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The detection of salient objects in foggy scenes is an important research component in many practical applica-
tions such as action recognition, target tracking and pedestrian re-identification. To facilitate saliency detec-
tion in foggy scenes, this paper explores two issues. The construction of dataset for foggy weather conditions 
and implementation scheme for foggy weather saliency detection. Firstly, a foggy sky image synthesis method 
is designed based on the atmospheric scattering model, and a saliency detection dataset applicable to foggy sky 
is constructed. Secondly, we compare the current classification networks and adopt resnet50, which has the 
highest classification accuracy, as the backbone network of the classification module, and classify the foggy sky 
images into three levels, namely fogless, light fog and dense fog, according to different concentrations. Then, 
Residual Refinement Network (R2Net) was selected to train and test the classified images. Horizontal and ver-
tical flipping and image cropping were used to enhance the training set to relieve over-fitting. The accuracy 
of the network model was improved by using Adam as the optimizer. Experimental results show that for the 
detection of fogless images, our method is almost on par with state-of-the-art, and performs well for both light 
and dense fog images. Our method has good adaptability, accuracy and robustness.
KEYWORDS: Foggy images, Saliency detection, Image classification, Deep learning.
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1. Introduction
Saliency detection, as one of the popular research 
directions in the field of computer vision, has wide 
range of applications in the fields of video surveil-
lance [24], image thumbnail [23], and semantic seg-
mentation [27]. The saliency detection under foggy 
conditions, as one of its branches, has also attracted 
the attention of related researchers. However, early 
saliency models such as Frequency Tuned (FT) [1], 
Histogram-based Contrast (HC) [3], Itti (IT) [8], 
Luminance Contrast (LC) [28] mainly rely on fea-
tures such as color, contrast and contour of the im-
age. With the development of deep learning theory, 
more and more network models have been proposed. 
The deep contrast network proposed by Li et al. [11] 
solves the problem of blurred saliency map in sa-
liency detection. The Amulet network proposed by 
Zhang et al. [29] utilizes convolutional features from 
multiple layers as saliency cues for salient object de-
tection. 
Most of these studies are aimed at targets in the natu-
ral environment, which are characterized by contrast-
ing colors and clear outlines. Although many saliency 
detection models can achieve good results on existing 
datasets, they often fail to achieve ideal results when 
they are actually applied to environments under foggy 
conditions. Foggy scene is an environment with un-
certain factors such as smoke suspended solids and 
automobile exhaust. These factors make the captured 
images subject to blur, occlusion, abnormal lighting, 
etc., resulting in loss of image detail, low contrast and 
color distortion. Accurate saliency detection plays 
important role in related applications.
The existing saliency detection networks are not 
aimed at foggy images, and are not suitable for sa-
liency detection under foggy conditions. There is 
also lack of foggy detection datasets. Therefore, this 
paper first simulates the distorted images affected by 
fog through the atmospheric scattering model, and 
generates synthetic fog images based on the DUTS 
[21] dataset. In order to not lose the detection qual-
ity of fogless images and have good detection ability 
of foggy images with different concentrations, the 
detection network based on R2Net [6] is adopted to 
train separately according to the classification re-
sults. and optimize the parameters corresponding to 
the concentration.

2. Related Works
As of now, human-annotated datasets in real fog-
gy conditions are very rare, and images for saliency 
detection are even rarer. Therefore, the method for 
synthesizing hazy images by atmospheric scattering 
model in this paper uses the generated dataset for 
training and testing the model.
The atmospheric scattering model of Koschmieder 
can simulate the effect of fog better. We use the atmo-
spheric scattering model to generate a simulated fog 
image. The fog image I(x) can be expressed as
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among them, β is called the attenuation coefficient, 
which can adjust the density of fog in the generated 
image. A larger β means that the fog density of the 
image is larger; conversely, the density is smaller. For 
haze-free image, the transmittance is first calculated 
using Equation (2), and the atmospheric light value A 
is calculated by substituting it into Equation (1); then 
mist and dense images are generated according to 
Equation (1).
In recent years, convolutional neural networks have 
become one of the research hotspots in many disci-
plines. The use of convolutional neural networks to 
process and analyze data has become popular trend. 
Classical network models such as AlexNet [10], VGG-
Net [19] , GoogleNet [20] and ResNet [15] have been 
proposed one after another. In order to solve the fog-
gy image classification task with small samples, this 
paper analyzes the current popular classification net-
work models, and determines the basis of the foggy 
image classification module from the perspectives of 
network structure, floating-point operations and pa-
rameters. Finally, this paper adopts ResNet50 [7] as 
the basic model to achieve three-classification.
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The residual network proposed by ResNet improves 
the structure of the convolutional neural network, 
so that it can maintain its feature expression ability 
while increasing the depth of the network, and effec-
tively solve the problem of gradient disappearance or 
gradient explosion caused by deepening the number 
of layers. The introduction of residual module is a 
crucial part in the development process of convolu-
tional neural network. The structure of this module is 
shown in Figure 1.

Figure 1
Residual structure of ResNet
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multi-scale, but gradually generates prediction maps 
of each scale. This strategy arranges the prediction 
maps at each scale from small to large until it match-
es the best ground-truth map. R2Net employs Dilated 
Convolutional Pyramid Pooling (DCPP) module to 
generate coarse predictions based on global contextu-
al information, which can locate the general location 
of target objects. The DCPP module consists of dilat-
ed convolutions at different rates to capture local and 
global information. This module has relatively few 
parameters compared to using fully connected layers. 
Then, by introducing new Attention Residual Modules 
(ARMs), the matching process of coarse predictions 
and ground-truth (GT) maps is guided. ARMs focus 
on edge details while guiding the refinement process, 
making the saliency map more discriminative. The 
R2Net network structure is shown in Figure 2.
An important topic in deep learning is the generalisa-
tion ability of the model. The problem of over-fitting 
is often encountered in applications, and the correct 
use of regularization techniques can improve or re-
duce the problem of over-fitting. Zheng et al. [32] 
proposed a two-stage training method to improve the 
generalization ability of the network. In the pre-train-
ing process, the network model is trained to extract 
the image representation for anomaly detection. In 
the implicit regularization training stage, the network 
is retrained to regularize the feature boundary to con-
verge based on the anomaly detection results. This 
approach effectively maintains a low over-fitting. 
Jin et al. [9] proposed computer-aided facial diag-
nosis for various diseases using deep transfer learn-
ing for face recognition. The overall top-1 accuracy 
can reach more than 90%, outperforming traditional 
machine learning methods and clinicians in exper-
iments. Zheng et al. [33] proposed a spectrum inter-
ference-based two-level data augmentation method 
for automatic modulation classification. This is the 
first time that frequency domain information is con-
sidered to augment radio signals to help modulation 
classification.
When deep neural networks process larger scale data, 
the excessive computation affects the learning and 
inference speed of the model and cannot meet the de-
mand in practical applications. Therefore, improving 
the computational speed has important application 
value. A new faster Mean-shift algorithm is proposed 
by Zhao et al. [30] By introducing a novel online seed 



Information Technology and Control 2023/3/52584

optimization policy (OSOP), the minimum number of 
seeds is determined adaptively to speed up the com-
putation and optimize GPU memory. You et al. [26] 
extended and improved the Mean-shift algorithm 
with a novel Seed Selection & Early stopping method, 
which greatly improves the computing speed and re-
duces GPU memory consumption.
In summary, making saliency algorithms applied to 
foggy scenes, the generalization ability of the algo-
rithm, computing speed and detection accuracy are 
undoubtedly among the main goals. To focus on the 
shortcomings in the current saliency network mod-
els, a method combining the resnet50-based clas-
sification module is proposed. The fog images with 
different concentrations are trained and tested using 
R2Net. Data augmentation [31] and Adam optimizer 
are used to alleviate the overfitting problem and im-

prove the generalization ability of the model. Use to 
speed up training and inference through enhanced 
CPU usage. Finally, the detection method of this paper 
is tested under foggy images with different concentra-
tions by comparing it with traditional algorithms and 
currently models.

3. Proposed Method
The fog density is not stable under real foggy condi-
tions, and the existing image dehazing algorithms are 
mostly aimed at the application of single image, and 
have no adaptive ability for fog image detection under 
different concentrations. Therefore, step of fog classi-
fication is added before the saliency detection, and the 
detection network is trained and optimized according 
to the classification results, thereby improving the 

Figure 2
Residual refinement network mode

saliency detection task very challenging. R2Net's 
residual learning strategy can gradually refine the 
coarse predictions. The residuals are predicted to 
compensate for the errors between the coarse 
saliency map and ground truth masks. It can 
generate coarse predictions through the DCPP 

module and guide the residual learning process 
through ARM. Even if the target profile is not 
successfully detected, the finest saliency map can 
be greatly approximated. The method structure is 
shown in Figure 3.  

Figure 2 
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Figure 3 
Saliency detection network in foggy weather 

3.1. Classify Module 
We use ResNet [7] as the basic network of 
classification modules. ResNet consists of several 
residual blocks. The principle of the residual 

block is to directly skip the data output of the 
previous layers and introduce it into the input part 
of the subsequent data layer. He uses ( )F x  to 

represent two-layer network without skip 
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image data with a size of 224 pixel × 224 pixel is 
transmitted, the residual network extracts features 
for learning and training, and finally reduces the 
size to 7 × 7 pixel. After the residual network 
training, the images are input to the average 
pooling layer and averaged, and finally the image 
category is divided by the Softmax function of the 
fully connected layer. 
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and the structure with multiple residual blocks is 
called a layer. The initial layer is an ordinary convolu-
tion structure, layer1 contains 3 residual blocks, layer2 
contains 4 residual blocks, layer3 contains 6 residual 
blocks, layer4 contains 3 residual blocks, and finally 
there is a full connection layer. From layer1 to layer5, 
after the image data with a size of 224 pixel × 224 pixel 
is transmitted, the residual network extracts features 
for learning and training, and finally reduces the size 
to 7 × 7 pixel. After the residual network training, the 
images are input to the average pooling layer and av-
eraged, and finally the image category is divided by the 
Softmax function of the fully connected layer.

3.2. Detection Module
We use R2Net [6] as the basic network of detection 
modules.R2Net is a novel residual structure-based sa-
liency detection network. Unlike existing methods, the 
network progressively modifies the error of the predic-
tion map and the saliency mask until it best matches 
the ground truth. R2Net mainly includes the R-VGG 
module, DCPP module and ARM module. The R-VGG 
module is modified from the VGG16 [19] network. 
The DCPP module structure employs four dilated con-
volutional layers, which are used to generate the coarse 
saliency map. The resulting rough saliency map is fed 
into the bottom residual learning branch of the resid-
ual module. Except for the different rate parameters, 
the four dilated convolution layers are all implemented 
using atrous convolution. The purpose of using atrous 
convolution is to enlarge the receptive field without 
losing spatial resolution. Atrous convolution has an-
other advantage, by setting different dilation rates to 
get different receptive fields. Information at different 
scales can be obtained from different receptive fields, 
which plays an important role in vision tasks.
When the image is converted into a two-dimension-
al matrix [ , ]x i j  and convolved with a filter ,i jw k k  
with a kernel size of K, [ , ]y i j  can be expressed as:

atrous convolution. The purpose of using atrous 
convolution is to enlarge the receptive field 
without losing spatial resolution. Atrous 
convolution has another advantage, by setting 
different dilation rates to get different receptive 
fields. Information at different scales can be 
obtained from different receptive fields, which 
plays an important role in vision tasks. 
When the image is converted into a two-

dimensional matrix [ , ]x i j  and convolved with a 

filter ,i jw k k  with a kernel size of K , [ , ]y i j  

can be expressed as: 

1 1

[ , ] , ,
 

          
i j

K K

i j i j
k k

y i j x i r k j r k w k k . (5) 

The parameter r   is the similarities and 
differences between the atrous convolution and 
the classical convolution. As shown in  

( 1)( 1)k rF k    ， (6) 
the expansion rate r   controls the distance 
between adjacent elements in the convolution 
kernel, and its change controls the size of the 
receptive field F of the convolution kernel, and 
will not boost the number and computation of 
parameters. 
R2Net adopts four dilated convolutional layers to 
form a dilated convolutional pyramid pooling 
module for predicting coarse global saliency 
maps. The network uses four dilated 
convolutional layers with = 3k  filters but 
different rate parameters. In order to ensure the 
extraction of global view and multi-scale features, 
the rate of the four dilated convolutional layers is 
set to =1,5,9,13,r respectively, and the number 

of output channels is 16. In this paper, in order to 
alleviate the saliency detection of small-scale 
objects subject to foggy conditions, the rate is set 
to = 1, 2, 5, 9r   according to [Error! 
Reference source not found.], and the number of 
output channels is unchanged. In the end, the 
network can still accurately extract local and 
global features. 

3.3. Loss Function 
In this paper, the binary cross entropy loss ( BCEL ), 
which is often used in classification problems, is 
used as the loss function of the classification 
module. R2Net adopts the standard cross-entropy 
loss to calculate the per-pixel loss, ignoring the 
global structure of the image. To remedy this 
deficiency, this paper uses the IOU loss [17] 
( IOUL ) to focus on the global structure, thereby 
forming global constraints on the network. For 
our optimized network, the loss function ( BCEL ) 
obtained in the classification module is used, and 
then the classified foggy image is sent to the 
detection network for training, and finally the 
detection result of the target is obtained. To sum 
up, the loss function of the model in this paper is 
defined as: BCE IOU L L L . Among them, L 
is the overall loss function, BCEL   is the loss 
function of the classification network module, 

IOUL   is the loss function of the detection 
network module, and   is the balance factor. 
 

4. Experiment  

4.1. Datasets 
Sakaridis [18] uses the Foggy-Cityscapes to 
process synthetic foggy images. There are three 
different concentrations of fog in this dataset. 
Different concentrations of fog have different β  

values in the atmospheric scattering model. In this 
paper, 0.04 ≤ β  ≤ 0.08 corresponds to light fog, 
and 0.12 ≤ β  ≤ 0.16 corresponds to dense fog, 

the fog-free images use the DUTS [21]. Figure 5 
is example of the dataset used in the text. 
This paper uses DUTS-TRAIN [21] and the 
generated light fog and dense fog datasets as 
training sets, and uses DUTS-TEST [21], ECSSD  
[25], HKU-IS [12] and PASCAL-S [14] as test 
sets.  
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adjacent elements in the convolution kernel, and its 
change controls the size of the receptive field F of the 
convolution kernel, and will not boost the number 
and computation of parameters.
R2Net adopts four dilated convolutional layers to form 
a dilated convolutional pyramid pooling module for 
predicting coarse global saliency maps. The network 
uses four dilated convolutional layers with k = 3 filters 
but different rate parameters. In order to ensure the 
extraction of global view and multi-scale features, the 
rate of the four dilated convolutional layers is set to 

= 1,5,9,13,r  respectively, and the number of output 
channels is 16. In this paper, in order to alleviate the 
saliency detection of small-scale objects subject to 
foggy conditions, the rate is set to = 1, 2, 5, 9r  ac-
cording to [22], and the number of output channels is 
unchanged. In the end, the network can still accurate-
ly extract local and global features.

3.3. Loss Function
In this paper, the binary cross entropy loss ( BCEL ), 
which is often used in classification problems, is used 
as the loss function of the classification module. R2Net 
adopts the standard cross-entropy loss to calculate 
the per-pixel loss, ignoring the global structure of the 
image. To remedy this deficiency, this paper uses the 
IOU loss [17] ( IOUL ) to focus on the global structure, 
thereby forming global constraints on the network. 
For our optimized network, the loss function ( BCEL ) 
obtained in the classification module is used, and then 
the classified foggy image is sent to the detection net-
work for training, and finally the detection result of 
the target is obtained. To sum up, the loss function of 
the model in this paper is defined as: BCE IOUλ= +L L L . 
Among them, L is the overall loss function, BCEL  is 
the loss function of the classification network mod-
ule, IOUL  is the loss function of the detection network 
module, and λ  is the balance factor.

4. Experiment 
4.1. Datasets
Sakaridis [18] uses the Foggy-Cityscapes to process 
synthetic foggy images. There are three different con-
centrations of fog in this dataset. Different concentra-
tions of fog have different β values in the atmospheric 
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scattering model. In this paper, 0.04 ≤ β ≤ 0.08 corre-
sponds to light fog, and 0.12 ≤ β ≤ 0.16 corresponds to 
dense fog, the fog-free images use the DUTS [21]. Fig-
ure 5 is example of the dataset used in the text.

Figure 5
The data set (a) no fog dataset; (b) light fog dataset;  
(c) dense fog dataset

 
4.2. Evaluation Metrics 
We evaluates the proposed method by adopting 
Maximun F-measure [1], S-measure [4], E-
measure [3] and Mean Absolute Error (MAE). 
Among them, Maximun F-measure and MAE are 
calculated in pixel-by-pixel manner, which 
cannot fully capture the structural information of 
the prediction graph. Therefore, S-measure is 
supplemented to compute structural similarity 
and E-measure to evaluate image-level properties. 
This paper adopts Mean Absolute Error (MAE) to 
predict the pixel-wise mean absolute error 
between the saliency map and the ground truth 
map, as follows: 
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where W and H represent the width and height of 
the saliency map, respectively, and the MAE 
value is normalized to {0,1} interval value. The 
MAE represents the similarity between the 
significance map and the ground truth map. 
Maximum F-measure is a commonly used 
evaluation method, which considers both 
precision and recall, and uses the beta parameter 
to trade off precision and recall: 
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This paper follows [1] to set 2   to 0.3 to 

enhance the accuracy, and we use the maximum 
value from all precision and recall pairs. 
Structure-measure [4] considers both region-
oriented and object-oriented structural similarity 
measures. To capture the importance of structural 
information in the image, S  is used to evaluate 

the structural similarity between region-
awareness ( rS  ) and object-awareness ( oS  ). 

Therefore, S can be defined as: 

= * + (1- )*o rS α S α S , (9) 

where α  ∈ [0, 1] is the balance parameter. 
Enhanced-alignment measure [5] is recently 
proposed method that considers both pixel and 
image level properties of expression composition, 
which is an effective and efficient way to evaluate 
saliency maps. E is proposed based on cognitive 
vision research to obtain image-level statistical 
information and its local pixel matching 
information. Therefore, E can be defined as: 
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where W and H are the height and width of the 
map, respectively, and FM   represents the 

enhanced diagonal matrix. 

4.3. Classification Experiment 
In order to better express the performance of deep 
learning on foggy image classification, this paper 
designs three classic convolutional neural 
network models (AlexNet [10], VGG16 [19] and 
ResNet50 [7]) for classification experiments and 
comparisons. In order to verify the effectiveness 
of the proposed scheme in this paper, training and 
testing are carried out through the DUTS [21] 
dataset. In the experiment, the three networks use 
the same parameters, batch size is set to 32, the 
loss function use Cross Entropy Loss, and the 
optimizer uses the Adam. 
In the early days of CNN, researchers focused on 
improving the classification accuracy of the 
network. While CNN has developed so far, in 
order to reduce the time cost and hardware 
limitations of training and testing, it has high 
image classification accuracy and a small amount 
of parameters. Therefore, this paper adopts the 
Resnet50 [7] network as the basic model of the 
foggy image classification module.  
Table 1  
Performance comparison of classified networks 
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This paper uses DUTS-TRAIN [21] and the generated 
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uses DUTS-TEST [21], ECSSD [25], HKU-IS [12] and 
PASCAL-S [14] as test sets. 

4.2. Evaluation Metrics
We evaluates the proposed method by adopting Maxi-
mun F-measure [1], S-measure [4], E-measure [3] and 
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F-measure and MAE are calculated in pixel-by-pixel 
manner, which cannot fully capture the structural in-
formation of the prediction graph. Therefore, S-mea-
sure is supplemented to compute structural similari-
ty and E-measure to evaluate image-level properties.
This paper adopts Mean Absolute Error (MAE) to 
predict the pixel-wise mean absolute error between 
the saliency map and the ground truth map, as follows:
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In the early days of CNN, researchers focused on im-
proving the classification accuracy of the network. 
While CNN has developed so far, in order to reduce 
the time cost and hardware limitations of training 
and testing, it has high image classification accuracy 
and a small amount of parameters. Therefore, this 
paper adopts the Resnet50 [7] network as the basic 
model of the foggy image classification module. 

Table 1 
Performance comparison of classified networks

Method Accuracy(%) FLOPs Parameters Size

AlexNet 89.54 7×109 62369155 233MB

VGG16 93.52 1.5×1011 138357544 528MB

ResNet50 94.35 3.8×1010 46159168 98MB

network; (3) Resnet50 [7] can achieve 94.35% with the 
least parameters and the smallest memory footprint 
It can meet the classification task performance while 
shortening the training time and reducing the complex-
ity of the training model.

4.4. Experimental Results and Analysis

In this paper, the experimental environment used 
are Windows 10, the CPU is Inter(R) Core i9-9900K 
@3.6GHz and the GTX2080TI GPU is used for train-
ing. The Python version uses Version 3.7, Torch ver-
sion uses version 1.2.0. During training, the batch size 
is set to 8. We set the momentum parameter to 0.9, the 
weight decay to 0.001, and the learning rate to 5e-5.
The Adam are selected to train our networks.

4.4.1. Comparative Analysis 
The experimental training data set adopts the DUTS-
TRAIN [21], which contains 5019 fogless images, 
5019 simulated light fog images, and 5019 simulated 
dense fog images. By comparing whether the detec-
tion performance is improved before and after the 
introduction of the classification module, the method 
is verified. The effectiveness of the module, the exper-
imental results are shown in Table 2.

Table 2 
Comparison results of R2Net network before and after improvement; M-F(Maximum F-Measure, Larger is Better); 
E-m(E-Measure, Larger is Better); S-m(S-Measure, Larger is Better); MAE(Small is Better); Fogless, Light and 
Dense(The degree of fog); The best results of fogless are shown in bold

M-F↑ E-m↑ S-m↑ MAE↓ M-F↑ E-m↑ S-m↑ MAE↓

Methods DUTS-TEST ECSSD

OURS

Fogless 0.861 0.926 0.886 0.040 0.937 0.958 0.928 0.038
Light 0.860 0.926 0.885 0.040 0.936 0.956 0.926 0.038

Dense 0.836 0.914 0.8675 0.048 0.920 0.945 0.911 0.049
HKU-IS PASCAL-S

Fogless 0.924 0.958 0.919 0.032 0.849 0.895 0.862 0.069
Light 0.921 0.957 0.917 0.033 0.844 0.894 0.859 0.070

Dense 0.912 0.953 0.910 0.038 0.819 0.878 0.838 0.082

R2Net

DUTS-TEST ECSSD
Fogless 0.863 0.927 0.886 0.040 0.935 0.956 0.926 0.039

Light 0.828 0.906 0.862 0.047 0.925 0.948 0.917 0.043
Dense 0.477 0.662 0.602 0.110 0.629 0.744 0.661 0.136

HKU-IS PASCAL-S
Fogless 0.923 0.959 0.920 0.033 0.842 0.890 0.858 0.071

Light 0.905 0.945 0.905 0.037 0.815 0.872 0.838 0.080
Dense 0.642 0.765 0.691 0.106 0.499 0.648 0.577 0.177

Under the same parameter settings, it can be seen from 
Table 1: (1) AlexNet [10], as the most classic convolution-
al neural network, still has an accuracy rate of 89.54% in 
the three-class experiment, but its 0.7 GFLOPs cannot 
meet the network requirements; (2) VGG16 [19], due to 
its deep network layers, although the accuracy rate is 
as high as 93.52%, the complexity and size of the mod-
el are not conducive to the optimization of the overall 
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Figure 6
Subjective visual contrast

It can be concluded from Table 2: (1) Under the fogless 
datasets, the four evaluation indicators of the DUTS-
TEST [21] have maximum difference of about 0.14% 
with that of R2Net; under the HKU-IS [12], the E-mea-
sure is similar to the S-measure. Compared with 
R2Net, it is 0.0007 behind; under the ECSSD [25] and 
PASCAL-S [14], the indicators are similar to R2Net. (2) 
In the light fog datasets, the evaluation indicators of the 
improved network in each data set are slightly higher 
than R2Net. (3) Under the dense fog datasets, the im-
proved network has significant advantages over R2Net 
in various evaluation indicators under each datasets.
It can be seen from Figure 6 that: (1) In the case of no 

fog, the network before and after the improvement 
can accurately identify the outline of the bird and even 
the beak. (2) In light fog, our method successfully de-
tects small-scale objects. (3) In the case of dense fog, 
our method can still clearly detect the outline of the 
cat, and the network performance before and after the 
improvement is clearly distinguished. It can be seen 
that the robustness of R2Net to images with different 
degrees of foggy degradation is not strong, and the 
network is more suitable for the situation where both 
training images and test images are clear images.

4.4.2. Comparison with Other Methods
This paper compares the improved network with other 
methods, including four deep learning methods (Pool-
Net [15], U2Net [16], PurNet [13], CSNet [2]) and four 
traditional algorithms (FT [1], HC [3], IT [8], LC [28]). 
For fair comparison, other deep learning networks are 
trained and tested in the same environment, and the 
same dataset is used for both training and testing.
As shown in Table 3, this paper presents the objec-
tive evaluation results of saliency map and saliency 
segmentation. In this paper, MAE and S-measure are 
used to evaluate non-binary saliency maps, and Max 
F-measure and E-measure are used to evaluate bi-
nary saliency segmentation. It can be seen from Fig-
ure 7 and Table 3: (1) From the subjective vision, for 

Table 3 
Detection results under the fogless dataset. The best results of fogless are shown in bold. D(DUTS); E(ECSSD); H(HKU-IS); 
P(PASCAL-S)

Methods OURS U2Net PoolNet PurNet CSNet FT HC IT LC

D

M-F↑ 0.861 0.823 0.852 0.859 0.779 0.291 0.224 0.185 0.284
E-m↑ 0.926 0.895 0.919 0.922 0.875 0.606 0.584 0.603 0.631
S-m↑ 0.886 0.858 0.879 0.882 0.823 0.472 0.420 0.410 0.478
MAE↓ 0.041 0.054 0.039 0.038 0.074 0.233 0.327 0.356 0.254

E

M-F↑ 0.937 0.929 0.931 0.936 0.895 0.370 0.316 0.288 0.364
E-m↑ 0.958 0.949 0.950 0.955 0.929 0.595 0.569 0.588 0.619
S-m↑ 0.928 0.918 0.919 0.923 0.891 0.447 0.413 0.413 0.459
MAE↓ 0.038 0.041 0.039 0.036 0.066 0.290 0.362 0.386 0.304

H

M-F↑ 0.924 0.915 0.913 0.927 0.881 0.373 0.287 0.255 0.369
E-m↑ 0.958 0.948 0.950 0.958 0.933 0.628 0.585 0.612 0.657
S-m↑ 0.919 0.908 0.910 0.917 0.882 0.477 0.427 0.420 0.494
MAE↓ 0.032 0.037 0.033 0.030 0.059 0.252 0.342 0.371 0.268

P

M-F↑ 0.849 0.815 0.842 0.841 0.795 0.357 0.301 0.292 0.360
E-m↑ 0.895 0.867 0.891 0.886 0.860 0.552 0.514 0.541 0.581
S-m↑ 0.862 0.832 0.852 0.849 0.817 0.427 0.384 0.397 0.451
MAE↓ 0.069 0.086 0.071 0.069 0.102 0.313 0.390 0.384 0.316
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Stimuli GT OURS R2Net 

It can be seen from Figure 6 that: (1) In the case 
of no fog, the network before and after the 
improvement can accurately identify the outline 
of the bird and even the beak. (2) In light fog, our 
method successfully detects small-scale objects. 
(3) In the case of dense fog, our method can still 
clearly detect the outline of the cat, and the 
network performance before and after the 
improvement is clearly distinguished. It can be 
seen that the robustness of R2Net to images with 
different degrees of foggy degradation is not 
strong, and the network is more suitable for the 
situation where both training images and test 
images are clear images. 

4.4.2. Comparison with Other Methods 
This paper compares the improved network with 
other methods, including four deep learning 
methods (PoolNet [15], U2Net [16], PurNet [13], 

CSNet [2]) and four traditional algorithms (FT 
[1], HC [3], IT [8], LC [28]). For fair comparison, 
other deep learning networks are trained and 
tested in the same environment, and the same 
dataset is used for both training and testing. 
As shown in Table 3, this paper presents the 
objective evaluation results of saliency map and 
saliency segmentation. In this paper, MAE and S-
measure are used to evaluate non-binary saliency 
maps, and Max F-measure and E-measure are 
used to evaluate binary saliency segmentation. It 
can be seen from Figure 7 and Table 3: (1) From 
the subjective vision, for multiple targets (the first 
row), we accurately detect two targets with 
different scales. For large objects (second row), 
we pinpoint the location of the object. Our 
method is also robust to complex background 
objects (fourth row). (2) In the case of light fog 
and dense fog, the MAE and S-measure indicators 
of the improved network are better than other 
methods on the four datasets, which shows that 
our saliency map is similar to the ground truth 
map and has good region-aware and object-aware 
structural similarity. (3) Max F-measure and E-
measure show that our saliency map has 
consistently high confidence in the target region, 
which can efficiently detect the location of the 
most prominent target and segment it. 
 

Figure 7 
Visually detected results at different concentrations. 
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Figure 7
Visually detected results at different concentrations

Stimuli GT OURS U2Net PoolNet PurNet CSNet FT HC IT LC

Table 4 
Detection results under the light fog dataset. The best results of light fog are shown in bold. D(DUTS); E(ECSSD); 
H(HKU-IS); P(PASCAL-S)

Methods OURS U2Net PoolNet PurNet CSNet FT HC IT LC

D

M-F↑ 0.861 0.779 0.798 0.823 0.732 0.251 0.189 0.179 0.251

E-m↑ 0.926 0.868 0.885 0.896 0.846 0.607 0.584 0.604 0.629

S-m↑ 0.885 0.831 0.841 0.856 0.793 0.447 0.394 0.358 0.456

MAE↓ 0.040 0.063 0.048 0.045 0.084 0.229 0.331 0.357 0.248

E

M-F↑ 0.936 0.911 0.909 0.919 0.869 0.327 0.287 0.279 0.325

E-m↑ 0.956 0.936 0.934 0.939 0.916 0.584 0.564 0.563 0.612

S-m↑ 0.926 0.905 0.903 0.907 0.871 0.416 0.379 0.327 0.425

MAE↓ 0.038 0.047 0.047 0.043 0.074 0.292 0.369 0.406 0.308

H

M-F↑ 0.921 0.890 0.887 0.912 0.847 0.331 0.255 0.231 0.333

E-m↑ 0.957 0.931 0.932 0.947 0.912 0.624 0.591 0.597 0.652

S-m↑ 0.917 0.890 0.889 0.904 0.856 0.450 0.401 0.351 0.464

MAE↓ 0.033 0.044 0.039 0.034 0.069 0.253 0.347 0.382 0.271

P

M-F↑ 0.844 0.791 0.809 0.805 0.755 0.318 0.285 0.283 0.327

E-m↑ 0.894 0.847 0.867 0.853 0.832 0.547 0.530 0.524 0.571

S-m↑ 0.859 0.813 0.826 0.821 0.788 0.393 0.355 0.326 0.411

MAE↓ 0.070 0.096 0.083 0.082 0.116 0.308 0.385 0.399 0.317
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multiple targets (the first row), we accurately detect 
two targets with different scales. For large objects 
(second row), we pinpoint the location of the object. 
Our method is also robust to complex background 
objects (fourth row). (2) In the case of light fog and 
dense fog, the MAE and S-measure indicators of the 
improved network are better than other methods 

Table 5 
Detection results under the dense fog dataset. The best results of dense fog are shown in bold. D(DUTS); E(ECSSD);  
H(HKU-IS); P(PASCAL-S)

Methods OURS U2Net PoolNet PurNet CSNet FT HC IT LC

D

M-F↑ 0.836 0.553 0.496 0.348 0.536 0.180 0.179 0.179 0.185

E-m↑ 0.914 0.733 0.664 0.537 0.728 0.60 0.415 0.595 0.618

S-m↑ 0.867 0.675 0.591 0.568 0.634 0.409 0.314 0.332 0.403

MAE↓ 0.048 0.118 0.110 0.107 0.140 0.204 0.399 0.330 0.236

E

M-F↑ 0.920 0.730 0.634 0.399 0.691 0.279 0.279 0.279 0.279

E-m↑ 0.945 0.816 0.727 0.543 0.792 0.577 0.395 0.543 0.579

S-m↑ 0.911 0.770 0.650 0.568 0.674 0.374 0.295 0.282 0.358

MAE↓ 0.049 0.109 0.136 0.161 0.156 0.281 0.450 0.393 0.311

H

M-F↑ 0.912 0.702 0.641 0.491 0.672 0.245 0.231 0.231 0.246

E-m↑ 0.953 0.804 0.759 0.628 0.797 0.609 0.399 0.588 0.625

S-m↑ 0.910 0.752 0.662 0.622 0.686 0.401 0.312 0.314 0.397

MAE↓ 0.038 0.104 0.108 0.117 0.134 0.239 0.417 0.363 0.269

P

M-F↑ 0.819 0.602 0.530 0.283 0.568 0.283 0.283 0.283 0.283

E-m↑ 0.878 0.722 0.665 0.410 0.690 0.534 0.396 0.521 0.543

S-m↑ 0.838 0.666 0.561 0.464 0.588 0.364 0.306 0.285 0.351

MAE↓s 0.082 0.159 0.177 0.208 0.204 0.285 0.401 0.390 0.311

on the four datasets, which shows that our saliency 
map is similar to the ground truth map and has good 
region-aware and object-aware structural similari-
ty. (3) Max F-measure and E-measure show that our 
saliency map has consistently high confidence in the 
target region, which can efficiently detect the location 
of the most prominent target and segment it.

5. Conclusion
We propose a foggy saliency detection network based 
on R2Net. In terms of network structure, R2Net is se-
lected as the basic network, and the fog concentra-
tion classification module is added, so that the net-
work can judge the fog concentration in the image 
and select the subsequent work module accordingly. 
Through the atmospheric scattering model, the foggy 
degradation process was simulated, and two types of 
simulated foggy images of «light fog» and «dense fog» 
were generated to expand the datasets. Compared 
with the original R2Net, the algorithm effectively 
improves the accuracy of saliency detection in foggy 
weather, improves the robustness and generalization 
ability of the network, and provides a new idea for sa-

liency detection in foggy images. In addition, the uni-
versality of the fog density classification module to 
other network models still needs to be improved, and 
the light-weight architecture of the fog density clas-
sification module is also worthy of further research.
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