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Graph neural network (GNN) based approaches have been successfully applied to session-based recommen-
dation. However, most of the existing methods do not fully take advantage of the context information in the 
session when capturing user’s interest, and there are few studies on context adaptation. Moreover, hypergraph 
has potential to express complex relations among items, but it has remained unexplored. Therefore, this paper 
proposes an Adaptive Context-Embedded Hypergraph Convolutional Network (AC-HCN) for session-based 
recommendation. At first, all sessions are constructed as a session hypergraph. Then, the representation of 
each item in the session hypergraph is learned using an adaptive context-embedded hypergraph convolution. 
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In the convolution, different types of context information, both from the current item and its neighborhoods, 
are adaptively integrated into the representation learning of the current item. Meanwhile, an adaptive trans-
formation function is employed to effectively eliminate the effects of irrelevant items in the learning. Next, the 
learned item representations are combined with time interval embeddings and reversed position embeddings 
to generate enhanced item representations, which fully reflect time interval information and sequential infor-
mation between items in the session. Finally, based on the enhanced item representations in the session, we use 
a soft attention mechanism to obtain user’s interest, and then give a recommendation list for user. Extensive 
experiments on the real-world datasets show that the proposed model is superior to the state-of-art methods.
KEYWORDS: Session-based recommendation, Hypergraph convolution; Context information; Context adap-
tation; Time interval.

1. Introduction
Nowadays, due to the information overload on the 
internet, users are facing the embarrassment of not 
being able to find the information they are interested 
in [36]. Recommendation system has become an es-
sential tool to ease the problem. Conventional recom-
mendation methods (e.g., collaborative filtering [21]) 
usually depend on complete user profiles and suffi-
cient historical data, but in many real-world scenar-
ios, such information is unavailable or limited avail-
able [7]. Thus, more and more researches are devoted 
to session-based recommendation (SBR). Generally, 
a session is denoted as a sequence of interactions in 
which a user purchases multiple items within a given 
time period, and SBR focuses on next-item prediction 
based on the current session. 
The even-enriching context information, such as 
time, holiday, week and location, has been collected by 
recommendation systems through explicit or implic-
it user feedback [29]. Context information has been 
proved to play a pivotal role in improving recommen-
dation accuracy [1]. For example, a user usually tends 
to relax at home on weekend, books on entertainment 
might be more attractive than books on professional 
topics. Therefore, how to fully take advantage of rich 
context information in SBR to improve the model-
ing of user’s behaviors in a more appropriate way is a 
challenging and critical issue.
In recent years, a lot of research achievements using 
deep learning have been made in SBR. Among them, 
approaches based on Recurrent Neural Networks 
(RNNs) [10, 27, 39] and approaches based on Graph 
Neural Networks (GNNs) [8, 28, 30] have shown great 
performance. 

In RNNs-based approaches, items in a session are 
time-dependent and ordered, so the session is typi-
cally modeled as unidirectional sequence. However, 
this assumption may trap these models, because there 
may be no such strict chronological order like linguis-
tic sequences. In real scenarios, the relative order of 
items might not matter so much. For example, there 
might be no difference between a user playing a music 
album and playing the music from the album in order. 
Hence, the user’s interest learned by these sequence 
models might be prone to inaccurate when the tempo-
ral order between items is considered too much [33]. 
Recently, GNNs-based approaches have become 
popular in SBR. Unlike the RNNs-based approaches, 
GNNs-based approaches model session data as di-
rected graphs and regard item transitions as pairwise 
relations, which slightly relaxes temporal dependence 
between consecutive items. However, although these 
approaches focus on pairwise relations, they would 
probably ignore more complex item correlations. In 
reality, an item transition is often influenced by the 
joint effect of previous items and complex relations 
among items. Since hypergraph can express complex 
many-to-many and high-order relations among items, 
Hypergraph Neural Networks (HGNNs) [6, 12] have 
entered the field of vision of researchers. Later, Hy-
pergraph Convolutional Network [2] is devised. After 
that, some researchers [26, 33] begin to apply hyper-
graph learning to SBR and achieve greater improve-
ments compared with GNNs-based models.
Since context information plays a crucial role in mod-
eling user’s behaviors, researchers have been inves-
tigating how context information can be exploited in 
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recommendation models when trying to implement 
SBR with various deep neural networks. At present, 
researches based on context awareness and deep neu-
ral networks fall into two categories: context-aware 
RNNs-based methods [17, 24] and context-aware 
GNNs-based methods [5, 14]. These studies further 
improve the recommendation accuracy.
Despite promising results of existing approaches, 
they still suffer from the following limitations. First, 
given a session, the user’s general interest represen-
tation is usually obtained by aggregating item repre-
sentations in the current session. However, existing 
researches neglect or fail to fully reflect the influenc-
es of context information on the item representation 
learning, resulting in the lack of context adaptation 
in the user interest representation. In other words, 
in addition to reflecting the complex high-order re-
lations among items, the user interest representa-
tion should also embody the interaction scenarios in 
which user purchases items. Second, we also observe 
that different types of context information may have 
different degrees of impact on item representation 
learning. While existing studies neglect this aspect. 
Third, some HGNNs-based approaches, such as lit-
erature [33], relax the temporally dependence be-
tween items and extract complex high-order relations 
among items by connecting items with each other in 
a session. It is proven to be effective, but may lead to 
item representation learning being easily disturbed 
by irrelevant items. In final, many existing GNNs-
based studies, such as literatures [28, 33], only focus 
on the effect of item order in session by using the 
reversed position embeddings, but ignore the time 
intervals between adjacent items, which represent 
the durations that user browses each item in session. 
These time intervals imply user’s preference to some 
extent. In general, the more time user spends on an 
item, the more likely like it.
To address the above issues, we propose a novel Adap-
tive Context-Embedded Hypergraph Convolutional 
Network (AC-HCN) to model the high-order rela-
tions among items and context information by a more 
suitable manner. In AC-HCN, we propose to use hy-
pergraph convolution to learn item representations 
from session hypergraph and context information. In 
addition, we also apply entmaxα −  function [37] and 
time interval embeddings to further raise the recom-
mendation accuracy.

The main contributions of this work are summarized 
as follows:
1 We propose a novel adaptive context-embedded 

hypergraph convolution for item representation 
learning, which incorporates context information 
into hypergraph convolution. Meanwhile, an adap-
tive entmaxα −  function is applied to eliminate 
irrelevant items in the learning.

2 We employ attention mechanism to distinguish the 
influences of different types of context information 
on item representation learning.

3 In addition to the reversed position embeddings, 
we put forward the time interval embeddings to 
further improve the recommendation efficiency.

4 Extensive experiments conducted on the re-
al-world datasets show that AC-HCN evidently 
outperforms the state-of-art baselines.

2. Related Work
In this section we first review some related work on 
SBR. Next, we introduce the context-aware recom-
mendation methods using deep neural networks.

2.1. Session-based Recommendations

Much progress has been made in SBR, mainly includ-
ing methods based on Markov chains, methods based 
on collaborative filtering and methods based on deep 
neural networks.
The initial SBR mainly focuses on Markov chains 
based methods, such as literatures [3, 32]. The item 
transitions in a session are modeled as Markov chain, 
and then the prediction probability is calculated to 
predict next item that is likely to be clicked. But the 
prediction only focuses on the local information of 
the session and lacks the consideration of the global 
information.
Methods based on collaborative filtering depend on 
the similarity between items according to the co-oc-
currence of items in the sessions. Item-KNN [21] 
proposed by Sarwar et al. is the representative work. 
However, the methods of capturing item relations in 
similarity way only obtain the co-occurrence of items, 
and fail to capture more accurate global information 
of the session. As another representation of collabo-
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rative filtering, matrix factorization methods, such 
as literatures [9, 13], decompose the user-item rating 
matrix to obtain user and item latent vectors. How-
ever, these methods are not suitable for new sessions 
that do not include any items (the cold start problem). 
Later, some researchers attempt to combine Mar-
kov chains and matrix factorization to model item 
relations for further improving the model accuracy. 
FPMC [20] presented by Rendle et al. is the represen-
tative work. However, since the natural shortcomings 
of these models, both methods based on Markov chain 
and methods based on collaborative filtering cannot 
be used to capture high-order relations among items.
With the boom of deep learning, RNNs have been 
attracted much attention because of their ability of 
exploiting sequential data. Many researchers have 
applied RNNs to SBR. Hidasi et al. [10] designed 
the GRU4REC method based on an improved Gated 
Recurrent Unit (GRU, variation of RNN) in SBR for 
the first time and achieved great success. Following 
the work, Li et al. [15] proposed the NARM method 
and Liu et al [16] put forward the STAMP method. 
Compared with GRU4REC, both methods utilized 
attention mechanism in RNNs. Later researchers ex-
plored further. Based on the assumption that user’s 
behaviors are scattered across domains, Wang et al. 
[27] devised the cross-domain and user-level RNNs-
based method to capture user’s global interest from 
cross-domain sessions. Sheng et al. [22] fused a time-
based directional attention mechanism with RNN to 
capture the sequential patterns in the session, which 
improves the accuracy of modeling user preference. 
Zhang et al. [39] applied two GRUs to explore the 
global and local preferences of user respectively, and 
then introduced a parallel co-attention mechanism to 
capture the interaction of both preferences. Although 
these RNNs-based methods can handle the depen-
dence between items in the session, they overem-
phasize temporal order between items, which would 
probably make them prone to over-fitting.
To alleviate the above problem, GNNs-based methods 
recently have become the hotspot in SBR. Wu et al. 
[30] proposed the SR-GNN method which used gated 
graph neural network to capture user’s local and glob-
al preferences, and utilized the soft attention to inte-
grate the two kinds of preferences to achieve session 
representation. Following the success of SR-GNN, Yu 
et al. [35] presented a target-aware attention and em-

ployed it in gated graph neural network, which aimed 
to obtain dynamic user interest representation. Wang 
et al. [28] devised a session graph and a global graph 
from all sessions, and proposed the GCE-GNN meth-
od to learn item transitions over the two graphs re-
spectively, which considered item relations via all 
sessions. Huang et al. [11] developed a position-aware 
attention to learn item transition patterns in individ-
ual session, and employed a graph hierarchical rela-
tion encoder to capture the cross-session item tran-
sitions. Pan et al. [18] designed the DGNN method in 
which the graph structure and the temporal dynamics 
were considered for learning the dynamic item em-
beddings. To learn both sequential and non-sequen-
tial item transitions, Gwadabe et al. [8] proposed the 
IC-GAR method to capture the complex transitions 
between items in the session. Wang et al. [25] pre-
sented the SGNN method which can model user’s 
behaviors from spatial and temporal perspectives. 
However, although these methods focus on pairwise 
relations between items instead of strictly temporal 
order in RNNs-based methods, they also ignore com-
plex many-to-many item correlations in the session. 
In real-world scenarios, an item transition is often 
influenced by the joint effect of previous items and 
complex relations among items.
Since hypergraph has inherent way to express com-
plex high-order relations among items, HGNNs-based 
methods [6, 12] have been favored by many research-
ers. At present, studies on the topic are just in infancy, 
and there are a few relevant researches. Bandyopad-
hyay et al [2] applied graph convolution to hypergraph 
and devised a line hypergraph convolutional network. 
Wang et al. [26] adopted hypergraph to represent item 
correlations and developed a next-item framework 
based on hypergraph convolutional network. How-
ever, these methods are not designed for SBR. After 
that, Xia et al. [33] constructed the DHCN model for 
SBR which bridged hypergraph neural network and 
SBR. The method firstly devised a hypergraph and a 
line graph to model all sessions by two channels, and 
then designed a hypergraph convolutional network to 
capture the complex high-order correlations among 
items. However, since the method relaxed the strictly 
temporal dependence between items by connecting 
items with each other in the session, it might be easily 
disturbed by irrelevant items in the item representa-
tion learning. By contrast, we try to adopt an adaptive 
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transformation function to overcome the problem. 
Meanwhile, we design a novel context-embedded hy-
pergraph convolution to aggregate context informa-
tion, which can achieve more informative and adap-
tive item representations.

2.2. Context-aware Recommendations
While researchers are constantly trying to apply vari-
ous deep neural networks to SBR, they are also study-
ing how to apply context information to SBR. Since 
AC-HCN is based on deep neural network, we only 
introduce the context-aware recommendations using 
deep neural networks. Current researchers mainly fo-
cus on the context-aware RNNs-based methods and 
GNNs-based methods, while few researchers have 
studied the context-aware HGNNs-based methods. 
In the context-aware RNNs-based methods, Mano-
tumruksa et al. [17] proposed a context-aware GRU 
recommendation framework to obtain dynamic user 
preference by adding context attention gate, time 
gate, and location gate in the GRU unit. Yuan et al. [38] 
inputted four kinds of context information, including 
input context, correlation context, static interest con-
text and transition context, into the GRU framework 
through redefined update gates and reset gates. Wang 
et al. [24] proposed a recommendation model based 
on Long Short-Term Memory (LSTM, variation of 
RNN), which employed time interval and duration 
information to obtain user’s interest. Wu et al. [31] 
projected context information into a uniform latent 
vector space and then fused them into the RNN model 
by means of three combinations including add, stack, 
and multilayer perception. 
In the context-aware GNNs-based methods, Li et 
al. [14] presented the CA-GGNN method based on 
context-aware and gated graph neural network. In 
the method, the session data was represented by the 
graph structure, and then various context informa-
tion and session data were incorporated into gated 
graph neural network. Tang et al. [23] built a time en-
hanced session graph and then captured user interest 
shift in the session by the time-based GNN. Feng et al. 
[5] proposed a context-aware item embedding meth-
od to aggregate the auxiliary information from item 
themselves and their neighborhoods. 
The context-aware HGNNs-based methods are in 
infancy. Peng et al. [19] put forward the GC-HGNN 
model, which utilized the global and local context in-

formation of items to learn user’s preference. But the 
method did not use interaction context information.
In summary, these methods are sufficient to demon-
strate that context information can achieve promis-
ing performance. However, they fail to fully demon-
strate context adaptation. For example, they cannot 
distinguish the influences of different types of con-
text information on the item representation learning. 
By contrast, we not only employ the attention mecha-
nism to distinguish the different influences, but also 
integrate the reversed position embeddings and the 
time interval embeddings with item representations.

3. The Proposed Model
In this section, the proposed AC-HCN model is pre-
sented in detail. In section 3.1, we give the problem 
formulation. In section 3.2, we overview the frame-
work of AC-HCN. In section 3.3, we introduce session 
hypergraph. In section 3.4, we describe the context 
representation based on attention. In section 3.5, we 
give the details of context-embedded hypergraph con-
volution. In section 3.6, we depict the joint integration 
of the position information and the time interval in-
formation between items. In section 3.7, we present 
the representation generation of user interest. In fi-
nal, the model training and recommendation are in-
troduced in section 3.8.

3.1. Problem Formulation
Let { }1 2, , , NV v v v=   denote the set of items, where 
N is the number of items. Let { }1 2, , , MS s s s=   rep-
resent the entire session set, where M is the number 
of sessions. A session is denoted as [ ]1 2, , , ns v v v=   
including interacted items with a chronological 
order, n is the length of the session. In addition, 

[ ]1 2, , , KT T T T=   indicates the set of interaction con-
text types, K is the number of types. Here, interaction 
contexts refer to the interaction scenario information 
(e.g., time, holiday, week), which are the important 
parts of context information. Each interaction con-
text type kT (1 )k K≤ ≤  has a set of context values. 
Given a session s, there is a corresponding interac-
tion context sequence [ ]1 2, , , nC C C C=  , where iC
(1 )i n≤ ≤  is also a sequence including interaction 
contexts in which user purchases item iv . Concretely, 

iC  is defined as 1 2, , , K
i i ic c c   , where k

ic  (1 )k K≤ ≤  
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is the context value according to interaction context 
type kT . So iC  contains a total of K context values 
corresponding to K interaction context types. In ad-
dition, we also set v

ie  to be a learnable context rep-
resentation of item iv  in the session s, which is also 
the part of context information and represents entire 
properties of the item (e.g., category, price). Since ses-
sion-based recommendations are designed for anon-
ymous users, the context representation of user is not 
considered in our model. Therefore, given a session 
and its relevant context information, the task of our 
work is to obtain the top-N items that the user is most 
likely to visit next. 

3.2. The Framework of AC-HCN
We illustrate the framework of AC-HCN in Figure 1. At 
first, all sessions are modeled as a session hypergraph 
via shared items, and each session is treated as a hyp-
eredge in which all items are connected with each oth-
er. Then, the adaptive context-embedded representa-
tions of all items in the session hypergraph are learned 
through the context-embedded hypergraph convolu-
tional layer. Instead of softmax function, we use an 
adaptive entmaxα −  function in the learning to elim-
inate irrelevant items. Meanwhile, we also distinguish 
influences of different type of context information in 
the learning. After that, we integrate the reversed po-

Figure 1 
The overview of the proposed AC-HCN model

sition embeddings and time interval embeddings with 
item representations by the learnable position matrix 
and time interval matrix in the position and interval 
hybrid layer. Next, in the softmax attention layer, for 
each session, the representation of user interest is ob-
tained by aggregating item representations with differ-
ent weights in the session. Finally, for each session, we 
predict the probability of each candidate item being the 
next click in the prediction layer.

3.3. Session Hypergraph
To capture the complex high-order translations in the 
session, we refer to literature [33] and adopt the hy-
pergraph to model sessions. Formally, a hypergraph is 
denoted as HG=(V,E), where V is the set of N unique 
vertices and E is the set of M hyperedges. Each hyp-
eredge Eε contains two or more vertices. Based on 
the hypergraph conception, we construct the session 
hypergraph.
In the session hypergraph, items in all sessions con-
sist of the set of vertices and all sessions comprise the 
set of hyperedges. Each item in the session is viewed 
as a vertex in the hyperedge. Instead of sequential 
dependence, items in each hyperedge are connected 
with each other in order to better capture the complex 
translations among items. Different sessions are con-
nected via shard items. The left of Figure 1 shows the 
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for each session, we predict the probability of each 
candidate item being the next click in the 
prediction layer. 

3.3 Session Hypergraph 

To capture the complex high-order translations in 
the session, we refer to literature [33] and adopt 
the hypergraph to model sessions. Formally, a 
hypergraph is denoted as HG=(V,E), where V is the 
set of N unique vertices and E is the set of M 
hyperedges. Each hyperedge Eε ∈ contains two or 
more vertices. Based on the hypergraph 
conception, we construct the session hypergraph. 

In the session hypergraph, items in all sessions 
consist of the set of vertices and all sessions 
comprise the set of hyperedges. Each item in the 
session is viewed as a vertex in the hyperedge. 
Instead of sequential dependence, items in each 
hyperedge are connected with each other in order 
to better capture the complex translations among 
items. Different sessions are connected via shard 
items. The left of Figure 1 shows the construction 
of the session hypergraph. Furthermore, each 
hyperedge in the session hypergraph is assigned a 
positive weight and all values construct a diagonal 
matrix M MW R ×∈ . An incidence matrix N MH R ×∈  
is defined to describe the relations between 
vertices and hyperedges, where, 1iH ε =  if the 
hyperedge Eε ∈  contains vertex iv V∈ , otherwise 
0. 

3.4 Attention-based Context Representation 

For each item in the session hypergraph, we 
adopt the attention mechanism to generate a 
weighted interaction context representation, 
which implicitly contains influences of 
different types of interaction contexts. 

 Specifically, given the interaction contexts 
1 2, , , K

i i i iC c c c =   , corresponding to item iv  

in a session. Each context value k
ic  in iC  is 

converted into a context embedding ,c k d
ie R∈  

by looking up a learnable parameter matrix 
corresponding to context type kT , d is the 
dimension of embedding. Thus, context 
embeddings from all values in iC  constitute 
a context embedding matrix c d K

iE R ×∈ . Next, 
the attention mechanism, defined as 
Equation (1), is used to generate a weighted 
vector K

i Rω ∈ , in which each element k
iω  

(1 )k K≤ ≤  implies the influence weight of 
the context types kT  when user interacts item 

iv  in the session. Based on the weighted 
vector, a weighted interaction context 
representation c d

ie R∈  related with 
interaction contexts iC  is obtained according 
to Equation (2). 

softmax( tanh( ))T c
i c c iq W Eω =                            (1) 

,

1
,

K
c k c k
i i i

k
e eω

=

= ∑                                                    (2) 

where d
cq R∈  and d d

cW R ×∈  are the 
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construction of the session hypergraph. Furthermore, 
each hyperedge in the session hypergraph is assigned 
a positive weight and all values construct a diagonal 
matrix M MW R ×∈ . An incidence matrix N MH R ×∈  
is defined to describe the relations between vertices 
and hyperedges, where, 1iH ε =  if the hyperedge Eε ∈  
contains vertex iv V∈ , otherwise 0.

3.4. Attention-based Context Representation
For each item in the session hypergraph, we adopt 
the attention mechanism to generate a weighted in-
teraction context representation, which implicitly 
contains influences of different types of interaction 
contexts.
Specifically, given the interaction contexts 

1 2, , , K
i i i iC c c c =   , corresponding to item iv  in a ses-

sion. Each context value k
ic  in iC  is converted into a 

context embedding ,c k d
ie R∈  by looking up a learnable 

parameter matrix corresponding to context type kT , d 
is the dimension of embedding. Thus, context embed-
dings from all values in iC  constitute a context em-
bedding matrix c d K

iE R ×∈ . Next, the attention mech-
anism, defined as Equation (1), is used to generate a 
weighted vector K

i Rω ∈ , in which each element k
iω  

(1 )k K≤ ≤  implies the influence weight of the context 
types kT  when user interacts item iv  in the session. 
Based on the weighted vector, a weighted interaction 
context representation c d

ie R∈  related with interac-
tion contexts iC  is obtained according to Equation (2).
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for each session, we predict the probability of each 
candidate item being the next click in the 
prediction layer. 

3.3 Session Hypergraph 

To capture the complex high-order translations in 
the session, we refer to literature [33] and adopt 
the hypergraph to model sessions. Formally, a 
hypergraph is denoted as HG=(V,E), where V is the 
set of N unique vertices and E is the set of M 
hyperedges. Each hyperedge Eε ∈ contains two or 
more vertices. Based on the hypergraph 
conception, we construct the session hypergraph. 

In the session hypergraph, items in all sessions 
consist of the set of vertices and all sessions 
comprise the set of hyperedges. Each item in the 
session is viewed as a vertex in the hyperedge. 
Instead of sequential dependence, items in each 
hyperedge are connected with each other in order 
to better capture the complex translations among 
items. Different sessions are connected via shard 
items. The left of Figure 1 shows the construction 
of the session hypergraph. Furthermore, each 
hyperedge in the session hypergraph is assigned a 
positive weight and all values construct a diagonal 
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As shown in Equation (4), the representation 
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the session are connected with each other. 
This assumption is proven to be valid in 
literature [33], but it may bring some noises. 
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relevant items [37]. By contrast, entmaxα −  
function tends to yield zero for the unrelated 
items, thus it has the ability to eliminate 
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items [37]. By contrast, entmaxα −  function tends to 
yield zero for the unrelated items, thus it has the abil-
ity to eliminate noises. Second, since context informa-
tion involved in the sessions is different, sessions have 
their own parameter selection modes. The entmaxα −  
function fittingly provides a way to adaptively learn α
, allowing each session to choose reasonable parameter 
mode based on its context information.
Therefore, the adaptive context-embedded hypergraph 
convolution in our model is defined as Equation (8).
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Figure 2 shows the demonstration of the adaptive 
context-embedded hypergraph convolution. Assum-
ing that there are three context types of interaction 
contexts: hour 1c , week 2c  and holiday 3c , and three 
sessions: session 1, session 2 and session 3. These 
three sessions, regarded as three hyperedges, con-
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stitute the session hypergraph, and all items in each 
session are connected with each other. There is over-
lap between sessions due to the presence of shared 
items. For example, item 2v  is shared with session 
1 and session 3. Without loss of generality, we only 
pay attention to the representation update of item 2v  
in the demonstration. As shown in Figure 2, item v2 
is connected with items 1v , 3v , 4v , 7v , 
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of item jv  to item iv , which is computed 
according to Equation (6). If item jv  is not 
connected with item iv , the value of j

iβ  is 0. ⊗  
denotes the element-wise product. 

Figure 2 shows the demonstration of the adaptive 
context-embedded hypergraph convolution. 
Assuming that there are three context types of 
interaction contexts: hour 1c , week 2c  and holiday 

3c , and three sessions: session 1, session 2 and 
session 3. These three sessions, regarded as three 
hyperedges, constitute the session hypergraph, 
and all items in each session are connected with 
each other. There is overlap between sessions due 
to the presence of shared items. For example, item 

2v  is shared with session 1 and session 3. Without 
loss of generality, we only pay attention to the 
representation update of item 2v  in the 
demonstration. As shown in Figure 2, item 2v  is 
connected with items 1v , 3v , 4v , 7v , 8v  and 9v , so 
the representation update of item 2v  is derived 
from the message aggregation of itself and its 
connected items, which are shown by seven 
branches. We annotate these branches with seven 
arrows in Figure 2.  

We only focus on the message aggregation of the 
branch 1v  to 2v . Assuming that the values of 
interaction contexts in which user 3u  interacts 
with current item 2v  in session 3 are [14 clock, 

Monday, True], and the values of interaction 
contexts in which user 1u  interacts with item 

1v  are [8 clock, Monday, False]. Next, the 
values [14 clock, Monday, True] are firstly 
converted into context embeddings by three 
learnable parameter matrices corresponding 
to three interaction context type. Then, these 
context embeddings are translated into a 
weighted interaction context representation 

2
ce  using Equations (1) and (2). Considering 

the context 2
ve  of item 2v , the overall context 

representation ,
2
ce ∗ is obtained using Equation 

(3). Similarly, The values [8 clock, Monday, 
False] are converted and ,

1
ce ∗  of item 1v is 

obtained. After that, the contribution of 1v  to 
2v  in the representation update of item 2v  is 

computed according to Equations (5), (6) and 
(7). In the same way, the contributions of all 
connected items of item 2v  are obtained. 
Finally, based on these contributions, the 
representation of item 2v  is updated from 
seven branches using Equation (8). 

3.6 Integration of Positions and Time 
Intervals 

Following literatures [28, 33], the temporal 
information in the session is also considered 
in AC-HCN to improve the recommendation 
performance. We integrate the reversed 
position embeddings with the item 
representations by a learnable position 
matrix [ ]1 2, , ,r nP p p p=  , n is the length of 
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tion of 1v  to 2v  in the representation update of item 2v  
is computed according to Equations (5), (6) and (7). 
In the same way, the contributions of all connected 
items of item v2 are obtained. Finally, based on these 
contributions, the representation of item 2v  is updat-
ed from seven branches using Equation (8).

3.6. Integration of Positions and Time 
Intervals
Following literatures [28, 33], the temporal informa-
tion in the session is also considered in AC-HCN to 
improve the recommendation performance. We in-
tegrate the reversed position embeddings with the 
item representations by a learnable position matrix 

[ ]1 2, , ,r nP p p p=  , n is the length of the current ses-
sion [ ]1 2, , , nv v v . Unlike the previous studies, we 
make use of time interval information between adja-
cent items in the session. Time interval between two 
adjacent items represents the time duration of user 
browsing an item. For instance, assuming that item 

1v  and item 2v  are adjacent in the session, the time 
interval between them is the timestamp difference 
of them, which represents the time duration of user 
browsing item 1v . To some extent, the more time user 
spends on an item, the more likely like it.
For computational convenience, we replace the time 
interval information between two items with the 
percentage of each item’s browsing time over the en-
tire time spent by the user completing the session. 
Then, we divide the percentage values into 10 un-
crossed segments with equal step 10%, denoted as 
(10i%,10(i+1)%] (0 9)i≤ ≤ . Each segment represents 
a type of time interval information, thus a total of 
10 types are used to represent the time interval in-
formation. For example, user browses an item in a 
session for 75s, and the entire time of the session is 
300s, the percentage of browsing time for the item is 
25%, which belongs to the segment (21%,30%], so the 
browsing time of the item is recorded as the third type 
of time interval information.
Therefore, we integrate the time interval embeddings 
with the item representations by a learnable time in-
terval matrix Wt ∈ R10×d in which each row corresponds 
to a type of time interval information. The represen-
tation of the i-th item iv  in a session is defined as 
Equation (9).
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where   is the concatenation. d
ig R∈  is the time 

interval embedding obtained by looking up the 
time interval matrix tW . ix  is the learned 
representation of item iv  using the hypergraph 
convolutional layer. 3d d

fW R ×∈  is the learnable 

parameter matrix and d
fb R∈  is the bias. 

3.7 User Interest Representation 

Given a session, following literature [30], we 
obtain general user interest representation d

s Rϕ ∈  
using Equations (10)-(11). 
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computed by averaging the item 
representations in the session. iλ  is the 
contribution of item iv . ( )σ ⋅  is the sigmod 
function. 1 d d

gW R ×∈ , 2 d d
gW R ×∈  and d

gb R∈  
are the learnable parameters. 

3.8 Model Training and Recommendation 

Given a session, by computing inner product 
between the user interest representation sϕ  
and each item representation ix∗ , we obtain 
the score vector ẑ , denoted as Equation (12). 
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where ˆiz  is the predicted score of the 
candidate item iv .  

Next, a softmax function is employed to 
calculate the probabilities ŷ  of each 
candidate item being the next one in current 
session, shown as Equation (13). 
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In the model training, the cross-entropy loss 
function is used to optimize objective, shown 
as Equation (14). 
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where y is the one-hot ground truth. The 
model is trained by minimizing ξ  with 
Adam to get high-quality session-based 
recommendation. 

4. Experiments 
We conduct extensive experiments on the 
real-world datasets to evaluate the 
performance of our AC-HCN model by 
answering the following research questions: 

RQ1: Does AC-HCN outperform state-of-the-
art baselines in the real-world datasets? 

RQ2: Does the context information affect the 
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4. Experiments
We conduct extensive experiments on the real-world 
datasets to evaluate the performance of our AC-HCN 
model by answering the following research questions:
 _ RQ1: Does AC-HCN outperform state-of-the-art 

baselines in the real-world datasets?
 _ RQ2: Does the context information affect the 

performance of AC-HCN? 
 _ RQ3: Are the time interval embeddings useful to 

AC-HCN?
 _ RQ4: Dose the entmaxα −  function with adaptive 
α  perform better than other transformation 
functions with fixed α ?

 _ RQ5: Does different generation patterns of session 
representation affect the performance of AC-HCN?

 _ RQ6: How well does AC-HCN perform with 
different depths of the hypergraph convolution?

4.1. Datasets and Preprocessing
We evaluate the AC-HCN on the real-world datasets 
with rich context information, i.e. Yoochoose [34] and 
Diginetica [4]. The former is a public dataset from 
RecSys Challenge 2015, and the latter is from CIKM 
Cup 2016. For fair comparison, following literatures 
[14, 16, 30, 33], we filter out all sessions of length 1 and 
items appearing less than 5 times in both datasets. For 
the Yoochoose dataset, we set the sessions of the last 
day as the test set and the other data as training set. 
For the Diginetica dataset, the sessions of the last sev-
en days as the test set and the rest as the training set. 
In addition, following literatures [14, 30, 33, 35], we 
also generate a lot of new sessions and corresponding 
labels on both datasets to extend training set and test 
set by splitting the raw input data. As the Yoochoose 
dataset is too large to be trained and tested by model, 
following literatures [14, 30, 35], we employ the most 
recent fractions 1/64 and 1/4 of the dataset. The sta-
tistics of the three datasets are summarized in Table 1.
We extract context information from the three data-
sets and apply them to the AC-HCN model present-
ed in the paper. Concretely, different types of context 
information can be obtained by using timestamp and 
other fields on three datasets. For the Yoochoose 1/64 
dataset and Yoochoose 1/4 dataset, we collect four 
types of context information including seven days a 
week, six time periods in a day, working day or not, and 

six category types, a total of 504 context values. For the 
Diginetica dataset, three types of context information 
are extracted, including seven days a week, six periods 
in a month, and working day or not. Therefore, there 
are 84 context values. For three datasets, the time in-
terval between each adjacent items in the session can 
be calculated by the timestamp difference between the 
two items, and then the time interval is converted to a 
type of time interval information, described in the sec-
tion 3.6. Thus, 10 type values of the time interval infor-
mation are used in our experiments.

4.2. Baseline Methods
We compare the proposed AC-HCN model with the 
following representative methods:
 _ POP and S-POP: they recommend the most 

frequent items in the training set and the current 
session respectively. 

 _ GRU4REC [10]: It applies RNN to model user’s 
click sequence in the first time. The samples and 
ranking-based loss are adopted.

 _ NARM [15]: It employs RNN with attention 
mechanism to model user’s sequential behaviors.

 _ STAMP [16]: It utilizes the memory and attention 
mechanism to capture the user’s long-term and 
short-term interests. 

 _ SR-GNN [30]: It applies the gated graph neural 
network to capture the user’s local and global 
preferences.

 _ CA-GGNN[14]: It is a context-aware method which 
integrates context information into the gated graph 
neural network. 

 _ TAGNN [35]: It harnesses the power of graph 
neural network to model item transitions, in which 
the target-aware attention is used.

Table 1
Dataset Statistics

Statistics Yoochoose 1/64 Yoochoose 1/4 Diginetica

# clicks 557,248 8,326,407 982,961

# training 369,859 5,917,745 719,470

# test 55,898 55,898 60,858

# items 16,766 29,618 43,097

avg. len. 6.16 5.71 5.12
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4.3. Evaluation Metrics
Following literatures [16, 30], we use P@N (Preci-
sion) and MRR@N (Mean Reciprocal Rank) to eval-
uate the experimental results. P@N evaluates the 
proportion of correctly recommended items of the 
top-N items. MRR@N is the average reciprocal ranks, 
which further considers the position of correctly rec-
ommended items in the ranked recommendation list.

4.4. Hyperparameter Setup
Following literatures [16, 30], for the general setting, 
the embedding size is 100, the batch size for mini-
batch is 100, the L2 penalty is set to 10-5 and the itera-
tion number is 30. All parameter vectors and matrices 
are initialized using the Gaussian distribution with the 
mean of 0 and the standard deviation of 0.1. The Adam 
optimizer is used to training parameters, where the 
learning rate is 0.001, and learning rate decay rate is 0.1. 
For these baseline methods, we directly use their re-
sults reported in the original papers if available, since 
the same datasets and evaluation settings are used.

4.5. Comparison with Baseline Methods 
(RQ1)
The experimental results of the performance com-
parison are reported in Table 2. It can be seen that 

Method
Yoochoose 1/64 Yoochoose 1/4 Diginetica

P@20 MRR@20 P@20 MRR@20 P@20 MRR@20

POP 6.71 1.65 1.33 0.30 0.89 0.20

S-POP 30.44 18.35 27.08 17.75 21.06 13.68

GRU4REC 60.64 22.89 59.53 22.60 29.45 8.33

NARM 68.32 28.63 69.73 29.23 49.70 16.17

STAMP 68.74 29.67 70.44 30.00 45.64 14.32

SR-GNN 70.57 30.94 71.36 31.89 50.73 17.59

TAGNN 71.02 31.12 - - 51.31 18.03

CA-GGNN 70.84 31.83 72.93 32.91 51.12 18.48

AC-HCN 71.24 32.07 73.86 33.35 51.73 18.71

Improve(%) 0.31 0.75 1.28 1.34 0.82 1.24

GRU4REC, NARM, STAMP, SR-GNN, TAGNN, 
CA-GGNN and AC-HCN, which employ deep learn-
ing technique, yield encouraging results. This re-
flects that the superiority of deep learning technique 
in SBR. For the RNNs-based methods, NARM and 
STAMP perform better than GRU4REC. This is be-
cause that GRU4REC only use RNN to model user’s 
sequential behaviors without considering the differ-
ent importance of items in the session, and does not 
deal with user’s interest shift. By contrast, NARM 
and STAMP not only employ RNN, but also utilize 
attention mechanism to assign different important 
values on items in the session. It is proved that the 
attention mechanism does play a crucial role on cap-
turing user’s interest. In addition, benefiting from the 
integration of user’s short-term and long-term inter-
ests, STAM has some improvement over NARM. For 
the GNNs-based methods, SR-GNN, TAGNN and 
CA-GGNN outperform the RNNs-based methods, 
which is owed to the great modeling capacity of graph 
neural networks. Compared to SR-GNN, TAGNN and 
CA-GGNN further improve recommendation accura-
cy. TAGNN outperforms SR-GNN by adding the tar-
get-ware attention to gated graph neural network, and 
CA-GGNN performs better than SR-GNN by virtue 
of context information.

Table 2
The performance of AC-HCN compared with other baseline methods on three datasets



Information Technology and Control 2023/1/52122

Figure 3 
Influence of context information on recommendation

 
 

 

   

(a)                                                       (b)                                                       (c) 

 

in the session, and does not deal with user’s 
interest shift. By contrast, NARM and STAMP not 
only employ RNN, but also utilize attention 
mechanism to assign different important values on 
items in the session. It is proved that the attention 
mechanism does play a crucial role on capturing 
user’s interest. In addition, benefiting from the 
integration of user’s short-term and long-term 
interests, STAM has some improvement over 
NARM. For the GNNs-based methods, SR-GNN, 
TAGNN and CA-GGNN outperform the RNNs-
based methods, which is owed to the great 
modeling capacity of graph neural networks. 
Compared to SR-GNN, TAGNN and CA-GGNN 
further improve recommendation accuracy. 
TAGNN outperforms SR-GNN by adding the 
target-ware attention to gated graph neural 
network, and CA-GGNN performs better than SR-
GNN by virtue of context information. 

Compared with the best results of baseline 
methods, our model improves P@20 by about 
0.31%, 1.28%, and 0.82%, and MRR@20 by about 
0.75%, 1.34%, and 1.24% on three datasets, which 
benefits from the following three advantages: (1) 
SR-GNN, TAGNN and CA-GGNN can only 
capture the pairwise relations between items, 
while AC-HCN can extract complex many-to-
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items. (2) Different from CA-GGNN, which 
only incorporate context information into 
gated graph neural network, AC-HCN not 
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hypergraph convolutional network, but also 
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context information on the item 
representation learning, which makes item 
representations have context adaptation. (3) 
Compared with existing GNNs-based 
methods, AC-HCN additionally utilizes time 
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sequence. Therefore, our proposed AC-HCN 
shows overwhelming superiority over all the 
baseline methods on three datasets. 

4.6 Influence of Context Information (RQ2) 

To investigate the contributions of context 
information and attention-based mechanism, 
we develop two variants of AC-HCN: AC-
HCN-NC and AC-HCN-NA. AC-HCN-NC 
represents the version without context 
information, and AC-HCN-NA denotes the 
version with only context information but not 
attention-based mechanism. Figure 3 shows 
the comparison between the two variants 
with AC-HCN. The results in Figure 3 show 
that AC-HCN achieves the best performance 
among the three models. Specifically, on the 
one hand, compared with AC-HCN-NC, AC-
HCN improves P@20 by about 2.34%, 3.99%, 
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and 0.82%, and MRR@20 by about 0.75%, 1.34%, and 
1.24% on three datasets, which benefits from the fol-
lowing three advantages: (1) SR-GNN, TAGNN and 
CA-GGNN can only capture the pairwise relations 
between items, while AC-HCN can extract complex 
many-to-many relations. This is because that AC-
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parison methods model sessions as directed graphs. 
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the complex relations among items. (2) Different 
from CA-GGNN, which only incorporate context in-
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variants of AC-HCN: AC-HCN-NC and AC-HCN-
NA. AC-HCN-NC represents the version without 
context information, and AC-HCN-NA denotes the 
version with only context information but not atten-
tion-based mechanism. Figure 3 shows the compar-
ison between the two variants with AC-HCN. The 
results in Figure 3 show that AC-HCN achieves the 
best performance among the three models. Specifi-
cally, on the one hand, compared with AC-HCN-NC, 
AC-HCN improves P@20 by about 2.34%, 3.99%, 
and 3.81%, and MRR@20 by about 4.56%, 7.68%, and 
8.28% on three datasets. These improvements indi-
cate that context information do have play an crucial 
role in the session-based recommendations. This is 
because that context information contains rich se-
mantic information, which can help to model user be-
haviors. On the other hand, compared with AC-HCN-
NA, AC-HCN improves P@20 by about 0.54%, 1.01%, 
and 0.78%, and MRR@20 by about 0.50%, 0.69%, and 
0.97% on three datasets. These improvements illus-
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trate that different types of context information do 
have distinguishing influences on the learning of item 
representations.

4.7. Influence of Time Interval 
Information(RQ3)
In order to demonstrate the contribution of time in-
terval information in AC-HCN, we develop two vari-
ants of AC-HCN: AC-HCN-NP and AC-HCN-NI. AC-
HCN-NP represents the version with only the time 
interval information but not the reversed position 
information, and AC-HCN-NI represents the ver-
sion with only the reversed position information but 
not the time interval information. We compare the 
two variants with the full AC-HCN on three datasets. 
As can be observed in Figure 4, the contributions of 
both components are obvious. On the one hand, com-
pared with AC-HCN-NP, AC-HCN improves P@20 
by about 0.44%, 0.83%, and 0.88%, and MRR@20 by 
about 0.56%, 1.12%, and 0.97% on three datasets. The 
results demonstrate that the position factors in the 
session play a crucial role in improving recommen-
dation accuracy. Although the GNNs-based methods 
relax the temporal relations between items, appropri-
ate consideration of the temporal relations between 
items can help to accurately model user behaviors. 
This is why many previous researches adopt this 
strategy. On the other hand, compared with AC-HCN-
NI, AC-HCN improves P@20 by about 0.17%, 0.12%, 
and 0.58%, and MRR@20 by about 0.47%, 0.39%, and 
0.32% on three datasets. These findings validate that 
the time interval information between items in the 
session implies user’s interest, and can be used to im-
prove recommendation performance to some extent.

4.8. Influence of Adaptive Transformation 
Function(RQ4)
In order to demonstrate the utility of entmaxα −  
function using adaptive α , we carry out the com-
parison experiments using adaptive α  and fixed α
on three datasets. We range the values of α  to 1, 1.2, 
1.4, 1.6, and 1.8, where 1α = , the function is softmax. 
Table 3 illustrates the performance of AC-HCN with 
varied α  on three datasets. As the observation from 
Table 3, the performances of AC-HCN with different 
fixed α  are similar, and the performance of AC-HCN 
with adaptive α  is better than all AC-HCN with fixed 
α . It is proved that each session has its own best α , 
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depending on the context information in the session. 
Meanwhile, when an item is unrelated with the cur-
rent item, entmaxα −  function tends to yield zero 
for the contribution of the item. Therefore, AC-HCN 
with adaptive α  performs better.

4.9. Influence of Aggregation Patterns (RQ5)
Since user interest representation is closely related 
to session representation, it is meaningful to compare 
AC-HCN performance with different generation pat-
terns of session representation. We consider three 
strategies, i.e., mean pooling, max pooling and concat-
enation mechanism.
For mean pooling, the session representation is 
achieved by averaging every dimension value of each 
item representation in the session, and the k-th di-
mension of the session representation ,s kx∗  is comput-
ed by Equation (15).
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P@20 MRR@20 P@20 MRR@20 P@20 MRR@20 

softmax (α=1) 71.13 31.84 73.75 33.22 51.68 18.69 

α=1.2 71.11 32.01 73.71 33.29 51.61 18.64 

α=1.4 71.09 32.03 73.67 33.12 51.59 18.61 

α=1.6 71.12 31.88 73.77 33.30 51.67 18.65 

α=1.8 71.14 31.98 73.72 33.28 51.64 18.66 

α-entmax 71.24 32.07 73.86 33.35 51.73 18.71 
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Max Pooling 70.89 31.77 73.13 31.97 50.55 17.85 
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, ,mean( )s k i kx x∗ ∗= .                                                (15) 

For max pooling, the maximum value of 
every dimension for each item representation 
in the session is taken, denoted as Equation 
(16). 

, ,max( )s k i kx x∗ ∗= .                                                 (16) 

For concatenation, the session representation 
is the joint of each item representation in the 
session, denoted as Equation (17), where 

d nd
hW R ×∈  is the transform parameter matrix. 

1 2([ ])s h nx W x x x∗ ∗ ∗ ∗=   .                                 (17) 

Table 4 shows the performance of AC-HCN 
with different generation patterns of session 
representation on three datasets. It can be 
observed that AC-HCN with mean pooling 
outperforms AC-HCN with other generation 
patterns on three datasets in terms of P@20 
and MRR@20. The performance of AC-HCN 
with max pooling is the worst on three 
datasets. It may be because that session 
representation is the general characteristic of 
the session, and max pooling is not 
unsuitable for representing the session. 
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Table 4 shows the performance of AC-HCN with dif-
ferent generation patterns of session representation 
on three datasets. It can be observed that AC-HCN 
with mean pooling outperforms AC-HCN with oth-
er generation patterns on three datasets in terms of 
P@20 and MRR@20. The performance of AC-HCN 
with max pooling is the worst on three datasets. It 
may be because that session representation is the 
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Figure 5 
Influence of model depth of hypergraph convolution

general characteristic of the session, and max pooling 
is not unsuitable for representing the session. Despite 
of using additional parameters, the performance of 
AC-HCN with concatenation is also worse than AC-
HCN with mean pooling, possibly because too many 
parameters may lead to over-fitting. Therefore, mean 
pooling is used in our model.

4.10. Influence of Model Depth (RQ6)
To study the influence of the depth of hypergraph 
convolutional layer, we set the numbers of the layer 
within 1 to 5. Figure 5 shows the influence on perfor-
mance when the layer takes different depths on three 
databases. The x-axis represents the different depths 
of the layer, and the y-axis represents the P@20 or 
MRR@20. From the experimental results, when layer 

depth is 3, the model achieves the best performance 
on Yoochoose dateset. When layer depth is 2, the 
model reaches the optimum state on Diginetica data-
set. In addition, with the depth of layer increases, the 
performance of AC-HCN drops. The possible cause 
could be the over-fitting of the model.

5. Conclusion
Existing GNNs-based methods for SBR only focus on 
the pairwise relations without considering the influ-
ence of context information, which leads to the fail-
ure to obtain the high-order relations among items 
and context adaptation. In the paper, we propose the 
AC-HCN model for SBR to address the problems. The 
model uses a context-embedded hypergraph convolu-
tional network to learn the item representations. In 
learning of item representations, the model fully con-
siders the complex relations among items using the 
session hypergraph, and applies entmaxα −  function 
to eliminate irrelevant items. Meanwhile, various 
kinds of context information with different contribu-
tions are considered. Moreover, to further enhance 
the performance of our model, we also use time inter-
val information between items in the model training. 
Extensive experimental results on three real-world 
datasets demonstrate our AC-HCN model is superior 
to other advanced methods.
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possible cause could be the over-fitting of the 
model. 

 

5. Conclusion 
Existing GNNs-based methods for SBR only 
focus on the pairwise relations without 
considering the influence of context 
information, which leads to the failure to 
obtain the high-order relations among items 
and context adaptation. In the paper, we 
propose the AC-HCN model for SBR to 
address the problems. The model uses a 
context-embedded hypergraph convolutional 
network to learn the item representations. In 
learning of item representations, the model 
fully considers the complex relations among 
items using the session hypergraph, and 
applies entmaxα −  function to eliminate 
irrelevant items. Meanwhile, various kinds of 
context information with different 
contributions are considered. Moreover, to 
further enhance the performance of our 
model, we also use time interval information 
between items in the model training. 
Extensive experimental results on three real-
world datasets demonstrate our AC-HCN 
model is superior to other advanced 
methods. 

 

Acknowledgement  
This research is supported by the Science & 
Technology Research Project of Henan 
Province (No.222102210140). 

References 
1. Adomavicius, G., Tuzhilin, A. Context-aware 

Recommender Systems. Proceedings of the 2008 
ACM Conference on Recommender Systems, (RecSys 
2008), Lausanne, Switzerland, October 23-25, 2008, 
335-336. https://doi.org/10.1145/1454008.1454068 

2. Bandyopadhyay, S., Das, K., Murty, M. N. Line 
Hypergraph Convolution Network: Applying Graph 
Convolution for Hypergraphs. arXiv, 2020. 
https://doi.org/10.48550/arXiv.2002.03392 

3. Bonchi, F., Perego, R., Silvestri, F., Vahabi, H., 
Venturini, R. Recommendations for the Long 
Tail by Term-query Graph. Proceedings of the 
20th International Conference Companion on 
World Wide Web, (WWW 2011), Hyderabad, 
India, March 28-April 1, 2011, 15–16. 
https://doi.org/10.1145/1963192.1963201 

4. Diginetica Dataset. 
https://competitions.codalab.org/competitions/
11161 

5. Feng, C., Shi, C., Liu, C., Zhang, Q., Hao, S., 

References
1. Adomavicius, G., Tuzhilin, A. Context-aware Re-

commender Systems. Proceedings of the 2008 ACM 
Conference on Recommender Systems, (RecSys 2008), 
Lausanne, Switzerland, October 23-25, 2008, 335-336. 
https://doi.org/10.1145/1454008.1454068

2. Bandyopadhyay, S., Das, K., Murty, M. N. Line Hypergra-
ph Convolution Network: Applying Graph Convolution 
for Hypergraphs. arXiv, 2020. https://doi.org/10.48550/
arXiv.2002.03392

3. Bonchi, F., Perego, R., Silvestri, F., Vahabi, H., Venturini, 
R. Recommendations for the Long Tail by Term-query 
Graph. Proceedings of the 20th International Conferen-
ce Companion on World Wide Web, (WWW 2011), Hy-
derabad, India, March 28-April 1, 2011, 15-16. https://doi.
org/10.1145/1963192.1963201

4. Diginetica Dataset. https://competitions.codalab.org/
competitions/11161



Information Technology and Control 2023/1/52126

5. Feng, C., Shi, C., Liu, C., Zhang, Q., Hao, S., Jiang, X. Con-
text-aware Item Attraction Model for Session-based Re-
commendation. Expert Systems with Applications, 2021, 
176, 114834. https://doi.org/10.1016/j.eswa.2021.114834

6. Feng, Y., You, H., Zhang, Z., Ji, R., Gao, Y. Hypergraph 
Neural Networks. Proceedings of the 33rd AAAI Confe-
rence on Artificial Intelligence, (AAAI 2019), Honolu-
lu, HI, USA, January 27-February 1, 2019, 33(1), 3558-
3565. https://doi.org/10.1609/aaai.v33i01.33013558

7. Guo, L., Yin, H., Wang, Q., Chen, T., Zhou, A., Hung, N. Q. 
V. Streaming Session-based Recommendation. Proce-
edings of the 25th ACM SIGKDD International Confe-
rence on Knowledge Discovery and Data Mining, (KDD 
2019), Anchorage AK, USA, August 4-8, 2019, 1569-
1577. https://doi.org/10.1145/3292500.3330839

8. Gwadabe, T. R., Liu, Y. IC-GAR: Item Co-occurrence 
graph Augmented Session-based Recommendation. 
Neural Computing and Applications, 2022, 34, 7581-
7596. https://doi.org/10.1007/s00521-021-06859-x

9. He, X., Zhang, H., Kan, M. Y., Chua, T. S. Fast Matrix Fac-
torization for Online Recommendation with Implicit 
Feedback. Proceedings of the 39th International ACM 
SIGIR Conference on Research and Development in In-
formation Retrieval, (SIGIR 2016), Pisa, Italy, July 17-21, 
2016, 549-558. https://doi.org/10.1145/2911451.2911489

10. Hidasi, B., Karatzoglou, A., Baltrunas, L., Tikk, D. Ses-
sion-based Recommendations with Recurrent Neu-
ral Networks. arXiv, 2016. https://doi.org/10.48550/
arXiv.1511.06939

11. Huang, C., Chen, J., Xia, L., Xu, Y., Dai, P., Chen, Y., Bo, 
L., Zhao, J., Huang, J. X. Graph-Enhanced Multi-Task 
Learning of Multi-Level Transition Dynamics for Ses-
sion-based Recommendation. Proceedings of the 35th 
AAAI Conference on Artificial Intelligence, (AAAI 
2021), Online, February 2-9, 2021, 35(5), 4123-4130. 
https://doi.org/10.1609/aaai.v35i5.16534

12. Jiang, J., Wei, Y., Feng, Y., Cao, J. Gao, Y. Dynamic Hyper-
graph Neural Networks. Proceedings of the Twenty-Ei-
ghth International Joint Conference on Artificial Intel-
ligence (IJCAI 2019), Macao, China, August 10-16, 2019, 
2635-2641.https://doi.org/10.24963/ijcai.2019/366

13. Koren, Y., Bell, R., Volinsky, C. Matrix Factorization 
Techniques for Recommender Systems. Computer, 
2009, 42(8), 30-37. https://doi.org/10.1109/MC.2009.263

14. Li, D., Gao, Q. Session Recommendation Model Based 
on Context-Aware and Gated Graph Neural Networks. 
Computational Intelligence and Neuroscience, 2021, 
7266960. https://doi.org/10.1155/2021/7266960

15. Li, J., Ren, P., Chen, Z., Ren, Z., Lian, T., Ma, J. Neural 
Attentive Session-based Recommendation. Procee-
dings of the 2017 ACM on Conference on Information 
and Knowledge Management, (CIKM 2017), Singapore, 
Singapore, November 6-10, 2017, 1419-1428. https://doi.
org/10.1145/3132847.3132926

16. Liu, Q., Zeng, Y., Mokhosi, R., Zhang, H. STAMP: Short-
Term Attention/Memory Priority Model for Sessi-
on-based Recommendation. Proceedings of the 24th 
ACM SIGKDD International Conference on Kno-
wledge Discovery and Data Mining, (KDD 2018), Lon-
don, UK, August 19-23, 2018, 1831-1839. https://doi.
org/10.1145/3219819.3219950

17. Manotumruksa, J., Macdonald, C., Ounis, I. A Contextu-
al Attention Recurrent Architecture for Context-Aware 
Venue Recommendation. Proceedings of the 41st In-
ternational ACM SIGIR Conference on Research and 
Development in Information Retrieval, (SIGIR 2018), 
Ann Arbor, MI, USA, July8-12, 2018, 555-564. https://
doi.org/10.1145/3209978.3210042

18. Pan, Z., Chen, W., Chen, H. Dynamic Graph Learning for 
Session-Based Recommendation. Mathematics, 2021, 
9(12), 1420. https://doi.org/10.3390/math9121420

19. Peng, D., Zhang, S. GC-HGNN: A Global-context 
Supported Hypergraph Neural Network for Enhancing 
Session-based Recommendation. Electronic Commer-
ce Research and Applications, 2022, 52, 101129. https://
doi.org/10.1016/j.elerap.2022.101129

20. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thie-
me, L. Factorizing Personalized Markov Chains for 
Next-basket Recommendation. Proceedings of the 19th 
International Conference on World Wide Web, (WWW 
2010), Raleigh, North Carolina, USA, April 26-30, 2010, 
811-820. https://doi.org/10.1145/1772690.1772773

21. Sarwar, B., Karypis, G., Konstan, J., Riedl, J. Item-Ba-
sed Collaborative Filtering Recommendation Algo-
rithms. Proceedings of the 10th International Con-
ference on World Wide Web, (WWW 2001), Hong 
Kong, China, May 1-5, 2001, 285-295. https://doi.
org/10.1145/371920.372071

22. Sheng, Z., Zhang, T., Zhang, Y. HTDA: Hierarchical Ti-
me-based Directional Attention Network for Sequenti-
al User Behavior Modeling. Neurocomputing, 2021, 441, 
323-334. https://doi.org/10.1016/j.neucom.2021.02.006

23. Tang, G., Zhu, X., Guo, J., Dietze S. Time Enhanced Gra-
ph Neural Networks for Session-based Recommenda-
tion. Knowledge-Based Systems. 2022, 251, 109204. 
https://doi.org/10.1016/j.knosys.2022.109204



127Information Technology and Control 2023/1/52

24. Wang, D., Xu, D., Yu, D., Xu, G. Time-aware Sequence 
Model for Next-item Recommendation. Applied In-
telligence, 2021, 51, 906-920. https://doi.org/10.1007/
s10489-020-01820-2

25. Wang, H., Zeng, Y., Chen, J., Zhao, Z., Chen, H. A Spa-
tiotemporal Graph Neural Network for Session-ba-
sed Recommendation. Expert Systems with Appli-
cations. 2022, 202, 117114. https://doi.org/10.1016/j.
eswa.2022.117114

26. Wang, J., Ding, K., Hong, L., Liu, H., Caverlee, J. Next-item 
Recommendation with Sequential Hypergraphs. Procee-
dings of the 43rd International ACM SIGIR Conference 
on Research and Development in Information Retrieval, 
(SIGIR 2020), Virtual Event, China, July 25-30, 2020, 
1101-1110. https://doi.org/10.1145/3397271.3401133

27. Wang, Y., Guo, C., Chu, Y., Hwang, J., Feng, C. A 
Cross-domain Hierarchical Recurrent Model for Perso-
nalized Session-based Recommendations. Neurocom-
puting, 2020, 380, 271-284. https://doi.org/10.1016/j.
neucom.2019.11.013

28. Wang, Z., Wei, W., Cong, G., Li, X., Mao, X., Qiu, M. Glo-
bal Context Enhanced Graph Neural Networks for Ses-
sion-based Recommendation. Proceedings of the 43rd 
International ACM SIGIR Conference on Research and 
Development in Information Retrieval, (SIGIR 2020), 
Virtual Event, China, July 25-30, 2020, 169-178. https://
doi.org/10.1145/3397271.3401142

29. Wu, S., Liu, Q., Wang, L., Tan, T. Contextual Operati-
on for Recommender Systems. IEEE Transactions on 
Knowledge and Data Engineering, 2016, 28(8), 2000-
2012. https://doi.org/10.1109/TKDE.2016.2562621

30. Wu, S., Tang, Y., Zhu, Y., Wang, L., Xie, X., Tan, T. Ses-
sion-based Recommendation with Graph Neural Ne-
tworks. Proceedings of the 33rd AAAI Conference on 
Artificial Intelligence, (AAAI 2019), Honolulu, HI, USA, 
January 27-February 1, 2019, 33(1), 346-353. https://
doi.org/10.1609/aaai.v33i01.3301346

31. Wu, T., Sun F., Dong, J., Wang, Z., Li, Y. Context-aware 
Session Recommendation Based on Recurrent Neu-
ral Networks. Computers and Electrical Engineering, 

2022, 100, 107916. https://doi.org/10.1016/j.compele-
ceng.2022.107916

32. Wu, X., Liu, Q., Chen, E., He, L., Lv, J., Cao, C., Hu, G. 
Personalized Next-song Recommendation in Onli-
ne Karaokes. Proceedings of the 7th ACM Conferen-
ce on Recommender Systems, (RecSys 2013), Hong 
Kong, China, October 12-16, 2013, 137-140. https://doi.
org/10.1145/2507157.2507215

33. Xia, X., Yin, H., Yu, J., Wang, Q., Cui, L., Zhang, X. 
Self-Supervised Hypergraph Convolutional Networks 
for Session-based Recommendation. Proceedings of 
the 35th AAAI Conference on Artificial Intelligence, 
(AAAI 2021), Online, February 2-9, 2021, 35(5), 4503-
4511. https://doi.org/10.1609/aaai.v35i5.16578

34. Yoochoose Dataset. http://2015.recsyschallenge.com/
challege.html

35. Yu, F., Zhu, Y., Liu, Q., Wu, S., Wang, L., Tan, T. TAGNN: 
Target Attentive Graph Neural Networks for Sessi-
on-based Recommendation. Proceedings of the 43rd 
International ACM SIGIR Conference on Research and 
Development in Information Retrieval, (SIGIR 2020), 
Virtual Event, China, July 25-30, 2020, 1921-1924. 
https://doi.org/10.1145/3397271.3401319

36. Yu, S., Yang, M., Qu, Q., Shen, Y. Contextual-boosted Deep 
Neural Collaborative Filtering Model for Interpretable Re-
commendation. Expert Systems with Applications, 2019, 
136, 365-375. https://doi.org/10.1016/j.eswa.2019.06.051

37. Yuan, J., Song, Z., Sun, M., Wang, X., Zhao, W. X. Dual Sparse 
Attention Network for Session-based Recommendation. 
Proceedings of the 35th AAAI Conference on Artificial In-
telligence, (AAAI 2021), Online, February 2-9, 2021, 35(5), 
4635-4643. https://doi.org/10.1609/aaai.v35i5.16593

38. Yuan, W., Wang, H., Yu, X., Liu, N., Li, Z. Attention-based 
Context-aware Sequential Recommendation Model. 
Information Sciences. 2020, 510, 122-134. https://doi.
org/10.1016/j.ins.2019.09.007

39. Zhang, J., Ma, C., Zhong, C., Mu, X., Wang, L. MBPI: Mixed 
Behaviors and Preference Interaction for Session-based 
Recommendation. Applied Intelligence, 2021, 51, 7440-
7452. https://doi.org/10.1007/s10489-021-02284-8

This article is an Open Access article distributed under the terms and conditions of the Creative 
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).




