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Sentiment Analysis task helps us to estimate the opinion of a person from his reviews or comments about a 
product, person, politics, etc., Cross-Domain Sentiment Analysis (CDSA) empowers the Sentiment models 
with the ability to forecast the opinion of a review coming from a different domain other than the domain where 
the model is trained. The challenge of the CDSA model relies on bridging the relationship between words in 
the source and target domain. Several types of research in CDSA focus on determining the domain invariant 
features to adapt the model to the target domain, such model shows less focus on aspect terms of the sentence. 
We propose CWAN (Collaborative Word Attention Network), which integrates aspects and domain invariant 
features of the sentences to calculate the sentiment. CWAN uses attention networks to capture the domain-in-
dependent features and aspects of the sentences. The sentence and aspect attention models are executed col-
laboratively to determine the sentiment of the sentence. Amazon product review dataset is used in this exper-
iment. The performance of the CWAN model is compared with other baseline CDSA models. The results show 
that CWAN outperforms other baseline models.
KEYWORDS: Cross Domain Sentiment Analysis, Domain invariant features, Attention Network, Bi-LSTM, 
Aspect-based sentiment analysis.
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1. Introduction
Sentiment analysis task is carried out by companies 
to measure the opinion of their products in the mar-
ket using customer reviews. It allows people to make 
significant decisions on their business products. 
Social media and the customer feedback corner of a 
website capture a massive volume of data each day. 
Synthesizing those data manually is challenging; that 
is where sentiment analysis comes into light. Senti-
ment analysis automates the opinion mining process 
and eases the task. A fair amount of opinioned data 
is required to train a sentiment analysis model. Most 
of the works in sentiment analysis intend to identify 
opinions for data on the domain in which the model 
is trained. The sentiment classifier trained on a par-
ticular domain shows high accuracy in sentiment pre-
diction on the same domain than a different domain 
dataset. Cross-Domain sentiment suits the situation 
where the labeled data in the target domain is less or 
not available.
The cross-domain classifier has to learn and under-
stand the aspect terms in the reviews for better sen-
timent prediction. Many research works in the liter-
ature focuses on learning the shared features across 
the domains. Yang [20] introduced transfer learning 
for domain adaptation. The similar words in source 
and target domain are utilized in transfer learning to 
make the model adapt to the target domain. Blitzer [5] 
proposed structural correspondence learning to learn 
domain specific features from the sentences. Pan[19] 
used mutual information score to distinguish be-
tween domain specific and domain invariant features. 
In the literature [7], [21] and [25] many methods are 
formulated to address the domain adaptation using 
attention networks. Attention transfer networks [14], 
[29]are applied to learn common features between the 
source and target domain using attention networks.
Concentrating only on the shared features might 
work well for source domain label prediction but not 
on the target domain. The proposed model intends to 
enhance the accuracy of the sentiment classifier by 
improving the feature representation for classifica-
tion tasks. We propose CWAN (Collaborative word 
attention network), which learns the sentence and 
aspect representation using a collaborative word 
attention mechanism. We hypothesize that the col-
laborative learning between the sentence and aspect 

vector provides a better sentiment feature represen-
tation. The proposed model addresses the problem of 
domain adaptation by learning the domain indepen-
dent feature representation to bridge the gap between 
the domains on which model is trained and tested. 
The experiments are executed by training the model 
using the source dataset and making it adapt to the 
target dataset. 
The previous studies on cross-domain sentiment 
analysis proclaim that domain invariant features 
could be extracted with the help of domain variant 
features from the source and target domains. How-
ever, the previous works did not consider the aspect 
terms which indirectly signify the sentiment in the 
sentence. Consider the example review from the 
Electronics domain and Kitchen domain in Table 1. 
The reviews have one common aspect, “design” the 
sentiment word expressed on this aspect is positive, 
but the overall sentiment of reviews 1 and 2 is Nega-
tive and Positive, respectively. This shows that in re-
view 1, aspect “Design” has a low weight compared to 
another aspect, “Memory”. In review 2 the weight of 
aspect “design” is high compared to another aspect, 
“rack space”. From this example, it is evident that the 
importance of the aspect may differ in the same do-
main based on the weights attained by each aspect. 
The aspects shared between the domains are highly 
utilized to identify the domain invariant features and 
help us in the transfer learning process.
The proposed method consists of two attention 
networks. One is to identify the common features 
between the domains. The second one utilizes the 
common features across the domains to extract the 

Table 1
Example of customer reviews with aspect words

Review 1 Review 2

Reviews

“The design of the 
mobile is good, but 
the Memory is too 

low”

“The design of the 
Utensils holder is 
good and the rack 
space is not bad”

Domain Electronics Kitchen

Aspects Design, Memory Design, Rack Space

Sentiment Negative Positive
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information from aspects. The aspects from both 
source and target domain are extracted. We Propose 
CWAN, which absorbs the hidden state represen-
tation of the sentence and aspect vector and jointly 
learns the new vector representation of the sentence. 
The new vector representation is prepared by using 
mean pooling on sentence and aspect vector to cre-
ate the new sentence and aspect representation. This 
representation is rich in sentiment awareness and 
helps in predicting the sentiment of the sentence.

2. Review of Literature
Sentiment analysis may usually be split into classes 
i.e. positive and negative based on the sentiment clas-
sification. The approaches for analyzing textual senti-
ment are largely divided into machine-based and lex-
icon based learning. The approach based on Lexicons 
uses primarily the lexicon to retrieve key terms in the 
corpus of emotional language. 
Mohammad et al. [18] utilizing crowdsourcing to de-
velop emotional features for sentiment analysis to 
forecast emotions. Xing et al. [27] proposed a lexi-
con-based method that trains the model initially us-
ing raw sentiment classifier and the model is further 
trained cognitively for life-long learning from wrong-
ly predicted sentences. The approach traces the 
wrongly expected sentences and imitates the lifetime 
dictionary learning as supervision. In recent years, 
the machine learning approach has become a com-
mon study rules. This approach for text-sentiment 
analysis is developed by modeling training and the 
text-sentiment analysis is then conducted. Guna et 
al. [9] use Naïve Bayes (NB), and Support Vector Ma-
chine (SVM) to identify and investigate the sentiment 
analysis using ensemble feature selection methods. 
Desai et al. [15] investigate approaches for sentiment 
analysis using machine learning methods.
The word vector referred is a low-dimensional vector 
and a similar text search field, which corresponds to 
the word distribution. The term vector represents the 
point in an N-dimensional space and it provides the 
relationship between the data points or semantics of 
the terms. In addition, the capacity of the neural net-
work to interpret structural knowledge also opens the 
door for word vectors to develop [4], [6], [13] and ap-
plications.

Analysis of text sentiments entails the issue of infor-
mation sharing between various realms. Meng et al. 
[16] proposes a cross-domain textual sentiment using 
a multi-layer CNN that does share the weights of the 
features from both the domains. In the cross-domain 
text-like analysis, Huang et al. [13] compare NB, SVM 
and expectation maximization (EM). The combina-
tion features of Xia et al. [26] were used with the NB, 
EM and SVM approaches as part of the speech and 
word relationship and improved study outcomes than 
the standard one-channel learning methods are used. 
Tang et al. [24] have previously studied uses of pro-
found research techniques for sentimental interpre-
tation which are superior to conventional approaches 
for classifying sentiment, views and emotional dictio-
naries. 
Ashraf et al. [2] created an ensemble model using 
LSTM-GRU to analyse the sentiment of the cryp-
tocurrency tweets. Using a deep learning process 
for modeling sentences Yu et al. [16] prove that the 
deep learning is superior to the conventional learn-
ing model. As the semantic representation in various 
fields can best be disclosed and obtained by machine 
learning, it usually is superior to the graph model and 
the statistical learning models.
Aspect based models provide more intuitive word 
representation such that the sentence vectors are 
associated learned jointly with the aspect learning. 
Tang et al. [23] generated a deep memory network 
with multiple convolutional layer to estimate the con-
text words while categorizing aspect terms from the 
sentence. Attention networks are utilized to capture 
the aspect terms. Huang et al. [10] proposed a novel 
Attention-over-Attention (AOA) model that inter-
actively learns the aspect terms and sentence repre-
sentation. AOA also focus on contextual learning to 
improve the vector representation. Rietzler et al. [22] 
created an Aspect Based Sentiment Analysis (ABSA) 
model involving detection and classification task. 
First step is to detect aspect category and aspect tar-
get. The second step is to classify the sentiment label 
on aspect category and aspect target.
Li et al. [12] proposed a novel SAL (Selective Adver-
sarial Learning) model which learns the word cor-
relation automatically. The weights of the word are 
perceived dynamically such that word with highest 
weight is considered to be the significant word in the 
sentence. Gong et al. [8] created a model that jointly 
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learns an instance based adaptation and feature vec-
tor representation. Pre-trained BERT model is adopt-
ed in his work to capture the domain independent fea-
tures. Zhang et al. [28] proposed a transfer learning 
model that comprises of two tasks, sentiment classi-
fication and domain invariant feature identification. 
The two tasks are executed simultaneously to infer 
the context aware domain representation. Ashraf et 
al. [3] developed a model to identify the best calling 
apps from google play store using app reviews. 
However, machine learning methods allow instruc-
tion and data testing in distributed manner. The con-
ventional research has shown that for sentimental 
analysis, the supervised classification approach is 
successful. The texts are typically classified into three 
groups according to various granularities. The estab-
lished classified data does not in most cases fall into 
the same domain as the data to be assessed, which ob-
viously reduces the efficiency of the supervised classi-
fication algorithm, leading to cross-domain analysis. 

3. Methodology
The proposed work focuses on generating aspect 
aware feature vector by jointly learning the domain 
invariant features and aspect features using atten-
tion networks. The architecture of proposed work 
is depicted in the Figure 1. Cross-domain sentiment 

analysis gains its attention from its ability to predict 
sentiment with less knowledge on the target domain. 
Aspect attention is an important factor to understand 
the real context of a review. In the proposed work the 
hidden state representation of aspect words are cap-
tured using Bi-GRU. The hidden state representation 
for the sentence is learned using Bi-LSTM. Then the 
sentence and aspect vectors are learned collaborative-
ly using mutual learning based on the mean pooling 
value of the sentence and aspect vectors. Gradient re-
versal layer is used to learn the common features from 
both domains. As a result of GRL the training process 
is reversed and the domain classifier can separate the 
domain invariant features from the sentence.

3.1. Word Encoding
The input representation for a deep learning model 
has to be numerical vectors. To convert text to a nu-
merical vector representation, we use the Embedding 
layer. The Encoding process converts each word from 
a review into a numerical vector.  Given a review S, 
containing words {w1, w2, w3,….wn} where w is word 
drawn from vocabulary V and n is the length of the re-
view. The value of n is made constant for all reviews 
in the corpus.

3.2. Hidden State Representation  
Using Bi-LSTM
The words are transferred into embeddings E ={x1, 
x2, x3, …. xn}. Since RNN is prone to gradient vanish-
ing problem, we prefer Bi-LSTM over RNN to learn 
hidden state representation for sentence embeddings 
E. Bi-LSTM uses cell state to store the data for lon-
ger time to make the hidden state learning deep and 
intuitive.
Bi-LSTM converts the output vector of word em-
bedding layer E into a hidden state representation 
H={h1,h2,h3,…ht}where t ranges from 1 to n. The hid-
den state representation at h t contains the informa-
tion of ht-1 and its antecedents ht-2,ht-3, …h1.
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words are assigned with weights at each step. To 
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Aspect attention is an important factor to 
understand the real context of a review. In the 
proposed work the hidden state representation of 
aspect words are captured using Bi-GRU. The 
hidden state representation for the sentence is 
learned using Bi-LSTM. Then the sentence and 
aspect vectors are learned collaboratively using 
mutual learning based on the mean pooling value 
of the sentence and aspect vectors. Gradient 
reversal layer is used to learn the common features 
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process is reversed and the domain classifier can 
separate the domain invariant features from the 
sentence. 

 
3.1 Word Encoding 
The input representation for a deep learning model 
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has to be numerical vectors. To convert text to a 
numerical vector representation, we use the Embedding 
layer. The Encoding process converts each word from a 
review into a numerical vector. Given a review S, 
containing words {w1, w2, w3,….wn} where w is word 
drawn from vocabulary V and n is the length of the 
review. The value of n is made constant for all reviews in 
the corpus. 
 
3.2 Hidden State Representation Using Bi-LSTM 
The words are transferred into embeddings E 
={x1,x2,x3,….xn}. Since RNN is prone to gradient 
vanishing problem, we prefer Bi-LSTM over RNN to 
learn hidden state representation for sentence 
embeddings E. Bi-LSTM uses cell state to store the data 
for longer time to make the hidden state learning deep and 
intuitive. 
Bi-LSTM converts the output vector of word embedding 
layer E into a hidden state representation 
H={h1,h2,h3,…ht}where t ranges from 1 to n. The hidden 
state representation at ht contains the information of ht-1 

and its antecedents ht-2,ht-3, …h1. 
 

1( )t ip t hi t ipi W x W h bδ −= + +                         (1) 
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1( )t op t op t oto W x W h bδ −= + +                      (4) 
 

tanh( )t t th o c= .                                            (5) 
 

Wip and bip are weight and bias for input gate it, Wft and 
bft are weight and bias of forget gate ft and Wop and bot are 
weight and bias of output gate ot. ct maintains the cell 
information. ht contains the hidden state representation 
for each reviews in the corpus. 
 
3.3 Aspect Extraction Using Bi-GRU 
Utilizing the Glove (pre-trained model) we convert each 
review from our corpus into an Embedding vector with 
fixed dimensions. Aspect extraction is a sequence tagging 
method; we adopt Bi-GRU to learn relation among the 
words in the reviews. The aspect learning method utilizes 
transfer learning to capture the relationship between a 
word and its adjoining words. The word sequence from 
the reviews is fed into Bi-GRUAE to create a relation 
among word vector representation. 
 

S={ w1, w2, w3,….wn} 
 

SE={x1,x2,x3,….xn} 
 

Sa= Bi-GRUAE(SE) 
 
Sa is a relation aware vector generated using 
Sentence embedding SE using Glove model with Bi-
GRU. We use conditional random field (CRF) to 
model the dependence between the consecutive 
words and aspect-labels 
 
3.4 Collaborative Learning 
The interactive learning of sentence and aspect 
representation guides the classifier in sentiment 
prediction. To reduce the size of features and 
uphold only the significant features we adopt a non-
linear down sampling method. We use mean 
pooling to do down sampling the hidden state and 
aspect representations. The mean pooling 
mechanism constructs Hsp sentence pooling and Hap 
aspect pooling vector using following equations 
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words are assigned with weights at each step. To 
perform interactive learning, the pooling vectors 
Hsp and Hap are added to Sa (relation aware Aspect 
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Score function for sentence attention vector is 
calculated using the following equation, 
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Wip and bip are weight and bias for input gate it, Wft and 
bft are weight and bias of forget gate ft and Wop and bot 

are weight and bias of output gate ot. ct maintains the 
cell information. ht contains the hidden state repre-
sentation for each reviews in the corpus.

3.3. Aspect Extraction Using Bi-GRU
Utilizing the Glove (pre-trained model) we convert 
each review from our corpus into an Embedding vec-
tor with fixed dimensions. Aspect extraction is a se-
quence tagging method; we adopt Bi-GRU to learn 
relation among the words in the reviews. The aspect 
learning method utilizes transfer learning to capture 
the relationship between a word and its adjoining 
words. The word sequence from the reviews is fed 
into Bi-GRUAE to create a relation among word vector 
representation.
S={ w1, w2, w3,….wn}

SE={x1,x2,x3,….xn}

Sa= Bi-GRUAE(SE)

Sa is a relation aware vector generated using Sen-
tence embedding SE using Glove model with Bi-GRU. 
We use conditional random field (CRF) to model the 
dependence between the consecutive words and as-
pect-labels

3.4. Collaborative Learning
The interactive learning of sentence and aspect rep-
resentation guides the classifier in sentiment predic-
tion. To reduce the size of features and uphold only the 
significant features we adopt a non-linear down sam-
pling method. We use mean pooling to do down sam-
pling the hidden state and aspect representations. The 
mean pooling mechanism constructs Hsp sentence 
pooling and Hap aspect pooling vector using following 
equations classify the sentiment and domain 
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Attention mechanism is adopted to highlight the im-
portant words in the input sentence. The input words 

are assigned with weights at each step. To perform 
interactive learning, the pooling vectors Hsp and Hap 

are added to Sa (relation aware Aspect vector) and H 
(hidden state representation of review) respectively. 
The hidden state sentence vector is updated as, 
H={h1,h2,h3,…ht, Hap}

Sa={h1,h2,h3,…ht, Hsp}

3.5. Sentence Representation
To obtain the sentence attention vector αi we adopt 
the following equation,
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Score function for sentence attention vector is calcu-
lated using the following equation,
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where Ws is weight matrix and bs is bias matrix. αi  
improves the explanatory ability of the model and it 
helps us in drawing out the high sentiment score word 
[17]. Attention vector also eases the cross domain 
transfer learning. The computation of final sentence 
representation is done using the sentence attention 
vector αi as follows,
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3.6 Aspect Representation 
The same method is followed to obtain the aspect 
attention vector 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖, 
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Score function for aspect attention vector is calculated 
using the following equation, 
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3.9. Dataset Pre-processing
To make a comparative study of our model with pre-
vious baseline models we adopt the standard Ama-
zon product review dataset. Since there are differ-
ent domains in the Amazon product review dataset 
we choose Books (B), DVD (D), Electronics (E) and 
Kitchen (K) datasets. For our experiment we consid-
er 2000 positive and 2000 negative labeled reviews 
from each domain. Also we consider 2000 unlabeled 
data from each domain. The dataset is further divid-
ed as train and test set with 80 and 20 percent re-
spectively.
We consider 2000 positive, negative and unlabeled re-
views from Amazon product review dataset. The no-

Table 2
Amazon product review dataset

Dataset Type Positive 
Reviews

Negative 
Reviews Unlabeled

Books

Amazon 
Product 
Reviews

2000 2000 2000

DVD 2000 2000 2000

Electronics 2000 2000 2000

Kitchen 2000 2000 2000

tion of cross domain sentiment analysis is to predict 
target domain by learning from source domain. Our 
model utilizes the labeled source domain data and un-
labeled target domain data for training the model. The 
prediction accuracy of the model is checked with the 
labeled target domain data. Data pre-processing in-
volves a series of steps to convert raw data into a use-
ful data for our experiment. This process eradicates 
the absurd data from the dataset. The data pre-pro-
cessing involves
 _ Removal of stop words from the corpus.
 _ Removal of punctuations, expressions, numerical 

tokens and special characters.
 _ Lemmatization - converting the words to its 

dictionary form.

3.10. Implementation
In the proposed work the embedding layer take the 
reviews from the source and target domain dataset 
and creates a vector representation for the reviews. 
The sentence vector is converted into feature vector 
using bi-directional LSTM. The proposed approach 
extracts the aspects using the Bi-GRU aspect ex-
traction. The attention mechanism is applied on the 
hidden state representation of the sentence and as-
pect vectors. Domain classifier is trained using both 
source and target domain dataset. Sentiment classi-
fier is trained using source labeled dataset. Our work 
makes use of two separate learning tasks domain 
and sentiment classification. The Cross entropy loss 
function is utilized to train domain and sentiment 
classifier.
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3.11. Algorithm: Aspect Feature Extraction 
and Classification
Input: Data Ds source and Dt target domain 
// Data Pre-Processing: 
Step 1: For data in Ds and Dt

Step 2: Remove absurd data
Step 3: End
// Word Embedding
Step 4: For each epoch=1 to max-epoch do
Step 5:  For each review in Ds , Dt do
Step 6:   Create Word Vector (Ei) using embedding 
                       layer
Step 7:         Compute sentence Hidden state 
                       representation (Hi) using Bi-LSTM
 Step 8:  Compute Aspect Extraction and       
                       representation (AEi) using Bi-GRU
Step 9:  Calculate sentence attention vector αi

Step 10: Calculate aspect attention vector βi  
Step 11: Compute Sentence representation

                        
1

1
( ) n

r i ii
H Hα+

=
=∑

Step 12: Compute Aspect representation 

                        1
( ) m i

r i ai
A Sβ

=
=∑

// Domain Classification:
Step 13: For each row in Hr do
Step 14:  ' max( )d d r ay soft W H b= +
Step 15:  End
// Sentiment Classification:
Step 16:  For each row in Hr and Ar do
Step 17:  ' max( [ ] )s s r r sy soft W H A b= ⊕ +
Step 18:  End
Step 19:  (Training: cross entropy loss function)
Step 20:  End
Step 21:  End

3.12. Hyperparameter Setting
The length of the sentences is fixed to 200 words. We 
use word2vec to create word embeddings and it is a 
200-dimension vector. The dimensions of the Atten-
tion, LSTM vectors are 64 and 64 respectively. The 
Uniform distribution μ(-0.01,0.01) is adopted to ini-
tialize all weight matrices. The weight matrices are 
randomly initialized. Relu activation function is used. 
The learning rate is considered to be 0.001 and the l2 
normalization is 0.0001. The number of iterations is 

set to 40 epochs. The progress of the training phase 
is monitored continuously to stop training when 
there is no significant improvement in the validation 
test sets. This strategy stops the training phase when 
there are no significant changes in the validation test 
sets after 15 epochs. 

3.13. Baseline Models Compared
SCL-MI (Blitzer, Dredze, and Pereira 2007): In 
SCL-MI pivot features are identified using mutual in-
formation of word with the source label.
MSDA (Chen et al. 2012): This model learns its 
feature representation from a large corrupted input 
dataset. Domain adaptation is made through unsu-
pervised learning on the union of the source and tar-
get dataset.
DANN (Ganin) has focused on the domain adapta-
tion of the model using labeled source domain and 
unlabeled target domain datasets. Domain adapted 
feature alignment is possible for all neural networks 
which uses back propagation.
CNN-aux: provides two auxiliary tasks to learn hid-
den feature representation and the sentiment classi-
fication interactively.
AMN (Zheng) provides a joint learning method to dig 
out the domain independent features from the source 
and target domain. This approach reduces the dis-
criminating characteristics between the features of 
the two domains.

4. Results and Discussion
The performance of CWAN model is assessed using 
the accuracy index of the confusion matrix. The gen-
eral parameter to assess the efficiency of a model is 
the Accuracy of that model. Accuracy is calculated as 
the ratio of the correctly predicted samples to the to-
tal samples. Parameters of the confusion matrix are,
TP: Computes the total amount of positive samples 
predicted correctly
TN: Computes the total amount of negative samples 
predicted correctly
FP: Computes the total amount of negative samples 
predicted as positive
FN: Computes the total amount of positive samples 
predicted as negative
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In our experiment, training and testing of the model 
is carried out using source domain and target domain 
dataset respectively. Figure 2 shows the results of 
the model that is trained using DVD, Electronics and 
Kitchen dataset and is tested on Books dataset. The re-
sults illustrate that the model performs better on DVD 
domain dataset compared to other domain dataset.

ter accuracy when trained on Kitchen source domain 
dataset compared to other domain dataset.
Figure 5 depicts the performance of the model that is 
trained using Books, DVD and Electronics dataset and 
is tested on Kitchen dataset. The model shows better 
accuracy when trained on Electronics source domain 
dataset compared to other domain dataset.
From the results it is evident that the dataset com-
binations Book – DVD and Electronics – Kitchen 
shares more common features. While observing the 
performance of CWAN on the pairs of dataset B->D, 
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D->B, E->K and K->E the accuracy of the model is 
above 80%.
From Figures 8-10 it is evident that the model trained 
on source domain kitchen and tested on target do-
main Electronics and vice versa has shown better 
Precision, Recall and F1 measure. 
When comparing the performance of CWAN with oth-
er baseline models, the accuracy of CWAN model out-

Figure 5 
Accuracy of adaptation between Book, DVD, Electronics 
domains with Kitchen domain

Figure 6 
Average Accuracy of the models

Figure 7 
Accuracy of different combination of dataset

Figure 8
Precision of CWAN across 4 datasets

Figure 9
Recall of CWAN across 4 datasets
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From the results it is evident that the dataset combinations 
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From Figures 8-10 it is evident that the model trained on 
source domain kitchen and tested on target domain 
Electronics and vice versa has shown better Precision, 
Recall and F1 measure.  
 
Figure 10 
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When comparing the performance of CWAN with other 
baseline models, the accuracy of CWAN model 
outperform other models. The accuracy of all the baseline 
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in Figure 6. The graph shows that the average accuracy 
of CWAN is higher compared to other baseline models 
average accuracy. The CWAN model is tested on 
different combinations of source and target domain 
datasets. From Figure 7 it is evident that the dataset 
combination Kitchen and electronics shows higher 

accuracy than any other dataset combinations 
 
5. Conclusion 
The proposed CWAN model uses two attention 
networks that are collaboratively executed to learn 
representation for domain and sentiment classifier. 
The sentence attention network generates new 
representation by utilizing the hidden state 
representation of sentence and the mean pooling on 
the aspect attention vector. Aspect attention 
network creates aspect representation from the 
hidden state representation of the aspects and the 
mean pooling on the sentence attention vector. The 
new sentence and aspect vectors have sentiment 
and domain influential information respectively. 
The experiment illustrates that the combination of 
different datasets produce different results. It is also 
shown that the proposed model accuracy is higher 
comparing to other baseline models considered. 
Though there are different combinations of source 
and target domain datasets are tested, Books->DVD 
and Electronics->Kitchen combination shows 
better results than other dataset combinations. 
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perform other models. The accuracy of all the baseline 
models and CWAN model are averaged and represent-
ed in Figure 6. The graph shows that the average accu-
racy of CWAN is higher compared to other baseline 
models average accuracy. The CWAN model is tested 
on different combinations of source and target domain 
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datasets. From Figure 7 it is evident that the dataset 
combination Kitchen and electronics shows higher ac-
curacy than any other dataset combinations.

5. Conclusion
The proposed CWAN model uses two attention net-
works that are collaboratively executed to learn rep-
resentation for domain and sentiment classifier. The 
sentence attention network generates new represen-
tation by utilizing the hidden state representation of 
sentence and the mean pooling on the aspect atten-
tion vector. Aspect attention network creates aspect 
representation from the hidden state representation 
of the aspects and the mean pooling on the sentence 
attention vector. The new sentence and aspect vec-
tors have sentiment and domain influential informa-
tion respectively. The experiment illustrates that the 
combination of different datasets produce different 
results. It is also shown that the proposed model ac-
curacy is higher comparing to other baseline models 
considered. Though there are different combina-
tions of source and target domain datasets are tested, 
Books->DVD and Electronics->Kitchen combination 
shows better results than other dataset combinations.
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