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An automatic system that helps teachers and students verify the correctness of handwritten derivation in math-
ematics homework is proposed. The system acquires input image containing handwritten mathematical deri-
vation. In our preliminary study, the system that comprises only mathematical expression recognition (MER) 
and computer algebra system (CAS) did not perform well due to high misrecognition rate. Therefore, our study 
focuses on fixing the misrecognized symbols by using symbols replacement and the surrounding information. 
If all the original mathematical expressions (MEs) in the derivation sequence are already equivalent, the deri-
vation is marked as “correct”. Otherwise, the symbols with low recognition confidence will be replaced by other 
possible candidates to maximize the number of equivalent MEs in that derivation. If there is none of symbols 
replacement that makes every line equivalent, the derivation is marked as “incorrect”. The recursive expression 
tree comparison was applied to report the types of mistake for those problems marked as incorrect. Finally, the 
performance of the system was evaluated by the digitally generated dataset of 6,000 handwritten mathematical 
derivations. The results showed that the symbols replacement improve the F1-score of derivation step marking 
from 69.41 to 95.95 % for the addition/ subtraction dataset and from 61.45 to 89.95 % for the multiplication 
dataset when compared to the case of using raw recognized string without symbols replacement.
KEYWORDS: Mathematical expression recognition, automatic homework grading, symbols replacement.
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1. Introduction
Formative assessment is best accomplished if teach-
ers are able to quickly mark the student works and 
immediately return the graded results to the students. 
Immediate feedback can be succeeded without too 
much attempt when using multiple choice questions 
or short answer questions where an exact keyword 
is prepared. Most of learning management systems 
(LMS) nowadays has automatic grading feature for 
multiple choice questions (MCQ) and short answer 
question built-in. 
However, handwritten homework assignments that 
show steps of derivation still plays an important role 
in mathematics education. It is one of the best ways 
to express step of thought, including logical think-
ing, theorem applying, and accurate calculation skill. 
Besides, working with a scratch paper and pencil (or 
electronic tablet with stylus) is still an intuitive way 
to solve mathematics problems [1].
Nowadays, automatic grading of handwritten home-
work containing the entire calculation steps by com-
puter is not at the state of practical use due to the 
complication of processes, unlike that of MCQ and 
short answer grading, which has been widely used for 
a long time. The idea of automatic homework grading 
system has been around for decades alongside with 
optical character recognition development. Started 
with grading handwritten short answers, the most 
feasible method requires special marks such as print-
ed underlining or boxes to locate the image region 
that contains the solution. Then the mathematical ex-
pression recognition is utilized [6, 14]. Recent works 
have focused on locating mathematical expressions 
embedded in handwritten text automatically [8, 19].
The more challenging task is the entire derivation 
grading. Since the different pathways of derivation 
could lead to the same correct answer, while a tenta-
tive guideline for mathematics homework checking 
could be utilized, not every correct derivation is writ-
ten in the exact same way. The grading system has to 
be flexible enough to accept every correct pathway to 
the final conclusion. 
In this study, we propose an automatic system that 
performs handwritten mathematics homework grad-
ing from images containing all the calculation steps. 
The core idea is to combine a mathematical expres-
sion recognition (MER) and a computer algebra sys-

tem (CAS). MER converts the mathematical expres-
sion (ME) from images into a sequence of symbols, 
where CAS then parses the expressions into expres-
sion trees and compares whether each pair of MEs 
from the consecutive lines are equivalent or not. If it 
is the case, the entire derivation is marked as correct. 
Conversely, if there exists ME that is not equivalent 
to the surroundings, that step is marked as incorrect.
Our preliminary design using convolutional neu-
ral network (CNN) OCR for symbol recognition and 
Sympy library in python (as a CAS) reveals a number 
of challenging issues in this study as follows:
 _ Since mathematical expressions usually contains 

a long sequence of symbols, the accuracy of the 
marking highly depends on the quality of symbol 
recognition. An incorrect recognized symbol could 
ruin the marking result of the entire derivation. 

 _ The incorrect symbols can be caused by both the 
mathematical mistake from the original image, or 
the MER misrecognition itself. The locations of 
the incorrect symbols are also unable to determine 
when the ground truth is unknown.

 _ In text OCR, misrecognition can be resolved by 
using character sequence patterns such as the 
n-gram model. Yet symbol ambiguity in MER 
sometimes cannot be handled because of the less 
strict symbol sequence patterns, for instance 
both “x+b” and “x+6” are valid MEs. It is possible 
that an expression is syntactically correct, but not 
consistent to the surroundings. For example, 16x + 
11 seems to be a valid ME, but it might be recognized 
from the actual expression (6x + 1) where both “(” 
and “)” are perceived as 1.

Therefore, the main focus of this study is to find an 
appropriate symbols replacement algorithm so that 
the effect of misrecognition is neutralized. 
In this study, we designed an algorithm aiming to 
solve the misrecognition by using the surrounding 
MEs in the same derivation sequence to confirm the 
correctness of the symbols replacement. Our key con-
cepts in this algorithm design consist of the following 
components:
 _ The candidates for the symbols replacement 

comes from the confusion matrix and the lower 
rank recognition candidates.
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 _ Instead of using the language model of symbol 
sequence alone, we use the information 
from the surrounding lines in the sequence 
of MEs to confirm the most likely symbols 
replacement. For example, if x + b makes that 
step of calculation consistent with the next 
line, it is more likely to be correct rather than  
x + 6. 

 _ With the unavailability of mathematical derivation 
dataset, the derivation images will be generated 
from the dataset of single mathematical symbols. 
The generated dataset contains some intentional 
calculation mistake to test whether the system can 
detect the mistake from the source image or not.

2. Literature Review
The literature review comprises five parts, including 
automatic homework marking, mathematical expres-
sion recognition, mathematical expression simpli-
fication, confusion matrix and error correction, and 
common mistakes in algebraic simplification.

2.1. Automatic Homework Marking (AHM)
Automatic homework marking has been proposed 
and used for a long time. Due to many advantages, 
such as, saving of manpower and time, better consis-
tency of grading criteria, bias free, and instantaneous 
feedback [24].
The development path of AHM started from automat-
ic mark recognition that has been used in MCQ test 
[21]. This method uses fixed format answer sheet. An-
swers are chosen by filling the circle with black pen-
cil. It can also be applied to the digits answers by using 
an array of circles.
Short answer marking works with both text and nu-
meric answers. Localization and recognition are used 
for detecting and converting the handwritten an-
swers into digital format. It needs text box or under-
line as the marker, so that pattern recognition be able 
to locate and recognize text in that area [14]. 
Long answer/ free-text marking is mostly used with 
digital text input since it is not practical for hand-
writing due to the limitation of character recognition 
technology. For free-text input, the system has to an-
alyze sentence structure and extract keywords that 
match the key answer [25]. Another field of practical 

use is the automatic code assessment, where the sys-
tem can analyze the source code in a programming 
language and return the evaluation in terms of syntax, 
plagiarism, semantic, performance, or quality [4, 5]. 
There are disadvantages of AHM when compared to 
human marking. First, the marking criteria must be 
simple enough. Submission that does not meet the 
criteria will be rejected since it is hard to design the 
machine to be as flexible as human grader. As a con-
sequence, the answer sheets for AHM are in the less 
flexible format and also limit the type of questions to 
assign. The limited type of the test and assignment 
that computer can grade also limit the creativity of 
teachers to design tests, and also limit the cognitive 
level required to answer the question [9]. 
From a study, the paper-and-pencil test (PPT) still 
have slightly better learning outcome than using com-
puter-based system because PPT allows inspection of 
high cognitive demand tasks [23]. In this study, we are 
looking for a solution to bridge the gap between the 
automatic marking by computer and the handwritten, 
free text homework, especially in mathematics. 

2.2. Mathematical Expression Recognition 
(MER)
Mathematical expression recognition (MER) is the 
software that converts mathematical expression 
(ME) images into a machine-understandable format 
[3]. The purpose of MER is to offer an alternative 
ME input method that is seamless to human writing, 
without the use of markup languages or any point-
and-click interface. MER is a special case of optical 
character recognition (OCR) with the domain re-
stricted to mathematical expressions and symbols. 
MER consists of the following common procedures.
Math expression localization and symbol segmen-
tation: ME is typically written in line with text and 
must be extracted before recognition. A number of 
techniques can be used to distinguish ME from plain 
text, for example, global features that take aspect ra-
tio, height, deviation of coordinates from the main 
line, and support vector machine classifier [7]. Some 
systems use a modern approach such as U-Net to sep-
arate ME regions from text [19]. 
Symbol recognition: The convolutional neural net-
work (CNN) is a widely used deep learning algorithm 
that transforms input images into symbol classes di-
rectly without any predefined features. The earlier 
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stages of CNN consist of the convolution and max 
pooling process which are used to learn the pixel pat-
terns into feature vectors. The learned features are 
then passed through the feedforward network to per-
form the classification, as shown in Figure 1. A num-
ber of MERs have been developed recently based on 
CNN [14, 16, 17, 20]. 

Figure 1
Structure of CNN
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Structural analysis: Structural analysis is the 
arrangement of recognized symbols into the 
expression with a valid syntax and then involves 
semantic extraction. Structural analysis can be as 
simple as the rule-based methods that use spatial 
relation. For example, the upper and lower bounds 
of the symbols can be used to classify the 
superscript from characters in the main line [10]. 
Machine learning algorithms such as neural 
network and SVM can also be applied to classify 
the spatial relation between a group of symbols 
into the mathematical syntax [22]. 

The state of the art for MER is based on encoder-
decoder network, where the encoder transforms 
the entire image of ME into a sequence of vector 
representation, then the decoder converts the 
representation into a 1D latex syntax, or 2D 
expression tree structure.  In the present, 
expression recognition rates (ExpRate) of encoder-
decoder network are around 65% [27, 28, 29]. One 
of the limitations is the lack of large public dataset 
for the handwritten ME [1].  

2.3 Mathematical Expression Simplification 

Simplification is the process of rewriting ME 
with minimal numbers of items and variables. 
The process transforms ME into an equivalent 
ME which reduces complication. Most of 
simplification process is based on 
representing ME as an abstract syntax tree 
(AST). Then apply the term rewrite rules by 
traversing the AST to match the subtree that 
is consistent with the rule for transformation 
[11]. 

2.4 Confusion Matrix and Error Correction 

The confusion matrix of character recognition 
contains information about the misrecognized 
symbol which is used for both system 
evaluation and error correction. Since the 
internal redundancy of symbols sequence is 
measured by a probabilistic language model 
such as N-gram, when symbol sequences with 
low consistency are found, other candidates 
in the confusion matrix that provide better 
consistency can be utilized [12, 15]. 

The problem of using error correction in the 
mathematical context is that the choice of 
symbols in ME rather depends on the 
surrounding MEs in the sequence than the 
surrounding symbols in the same ME itself. 
Therefore, the language model is not 
appropriate for error correction in our 
problem, but the confusion matrix still can be 
applied in some other ways. 

2.5 Common Mistakes in Algebraic 
Simplification 

Common mistakes are the miscalculations 
usually found in mathematics newcomers, 
comes from the lack of understanding, or the 
careless during the calculation, such as doing 
addition in place of multiplication. 

Some common mistakes in algebraic 
simplification are presented in Table 1. We 
then apply some types of mistakes to generate 
the derivation images containing intentional 
error and use these derivation images for our 
system evaluation. 

Table 1  
Types and examples of mathematical derivation 
mistake 

(1) Miscalculation (add 
and multiply)  

A × B = A + B 3 × 2 = 5 

(2) Ignorance of variable  A + BX = A + B 3 + 5x = 8 
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correction. Since the internal redundancy of sym-
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model such as N-gram, when symbol sequences with 
low consistency are found, other candidates in the 
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be utilized [12, 15].
The problem of using error correction in the mathe-
matical context is that the choice of symbols in ME 
rather depends on the surrounding MEs in the se-
quence than the surrounding symbols in the same ME 
itself. Therefore, the language model is not appropri-
ate for error correction in our problem, but the con-
fusion matrix still can be applied in some other ways.

2.5. Common Mistakes in Algebraic 
Simplification
Common mistakes are the miscalculations usually 
found in mathematics newcomers, comes from the 
lack of understanding, or the careless during the cal-
culation, such as doing addition in place of multipli-
cation.
Some common mistakes in algebraic simplification 
are presented in Table 1. We then apply some types of 
mistakes to generate the derivation images contain-
ing intentional error and use these derivation images 
for our system evaluation.

Table 1 
Types and examples of mathematical derivation mistake

(1) Miscalculation 
(add and multiply) A × B = A + B 3 × 2 = 5

(2) Ignorance of 
variable A + BX = A + B 3 + 5x = 8

(3) Add or multiply 
exponents XAXB = XAB x3x2 = x6

(4) Minus sign with 
square −A2 = A2 −52 = 25

(5) Improper 
distribution A(B + C) = AB + C 3(x + 2) = 3x + 2

(6) Improper 
cancellation 
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 (7) Additive assumption  (X + Y )A = XA + YA (x + 3)2 = x2 + 9 

In conclusion, the current technology seems to be 
feasible for creating a handwritten mathematical 
homework marking system. However, using the 
information from the confusion matrix alone 
cannot guarantee the practical result since there can 
be multiple candidates that make valid MEs. 
Therefore, we aim at using the context from the 
other MEs in the same derivation to determine the 
most likely symbol replacement.   

It is also possible that the surrounding MEs might 
contain some error as well, so the replacement 
algorithm is not just fixing each line and compare 
to the reliable reference, but every line in the 
derivation needs to be processed at the same time.  

To narrow the scope of this study, we simulated 
only two types of mistake from Table 1, including 
the miscalculation of addition and multiplication 
(1) and addition or multiplication of exponent (3) 
with the problem of polynomial simplification in 
our dataset generator.   

3. System Architecture 
3.1 System Structure   
The designed system acquires an image of a 
student’s homework that contains a sequence of 
handwritten mathematical expressions written in 
each line. The system then analyses and returns the 
marking output indicating whether each derivation 
lines is correct or not, together with short 
comments on the type of mistake (if any). The 
system components contain 3 modules as shown in 
Figure 2. 

1. Mathematical expression recognition: includes 
line and column segmentation, mathematical 
symbol recognition, and structural analysis. 
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2. Symbols replacement: uses the confusion 
matrix from symbol recognition and the fast 
ME matching to find an appropriate symbols 
replacement that make the ME consistent with 
the surrounding MEs. 

3. Mathematical error identification: 
comprises a computer algebra system and an 
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generates report that identifies the 
mismatches for the inconsistent derivation. 

3.2 Mathematical Expression Recognition 

3.2.1 Line Segmentation 

The input image containing multiple lines of 
MEs can be segmented by using the histogram 
projection into sub-images that contains only 
one expression each. Let M be a 2D array 
representing the inverted input image (black 
background and white foreground) with 
dimension m × n. The projection  P(M, y) = 
∑ 𝑀𝑀𝑀𝑀𝑦𝑦𝑦𝑦,𝑖𝑖𝑖𝑖  𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1  represents the sum of pixel values 

along the yth row. In the binarized image, the 
interval of y where P(M, y) = 0 is marked as 
space between lines, as shown in Figure 3. 
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In conclusion, the current technology seems to be 
feasible for creating a handwritten mathematical 
homework marking system. However, using the in-
formation from the confusion matrix alone cannot 
guarantee the practical result since there can be mul-
tiple candidates that make valid MEs. Therefore, we 
aim at using the context from the other MEs in the 
same derivation to determine the most likely symbol 
replacement. 
It is also possible that the surrounding MEs might 
contain some error as well, so the replacement algo-
rithm is not just fixing each line and compare to the 
reliable reference, but every line in the derivation 
needs to be processed at the same time. 
To narrow the scope of this study, we simulated only 
two types of mistake from Table 1, including the mis-
calculation of addition and multiplication (1) and 
addition or multiplication of exponent (3) with the 
problem of polynomial simplification in our dataset 
generator. 

3. System Architecture
3.1. System Structure 

The designed system acquires an image of a student’s 
homework that contains a sequence of handwrit-
ten mathematical expressions written in each line. 
The system then analyses and returns the marking 
output indicating whether each derivation lines is 
correct or not, together with short comments on the 
type of mistake (if any). The system components 
contain 3 modules as shown in Figure 2.
1 Mathematical expression recognition: includes 

line and column segmentation, mathematical 
symbol recognition, and structural analysis.

2 Symbols replacement: uses the confusion matrix 
from symbol recognition and the fast ME match-
ing to find an appropriate symbols replacement 
that make the ME consistent with the surround-
ing MEs.

3 Mathematical error identification: comprises a 
computer algebra system and an expression tree 
comparison. This module generates report that 
identifies the mismatches for the inconsistent 
derivation.

Figure 2
Workflow of the overall system structure
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verted input image (black background and white 
foreground) with dimension m × n. The projection   
P(M, y) = 

 
 

 

(3) Add or multiply 
exponents  

XAXB = XAB x3x2 = x6 

(4) Minus sign with 
square  

−A2 = A2 −52 = 25 

(5) Improper distribution  A(B + C) = AB + C 3(x + 2) = 3x + 2 
(6) Improper cancellation  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝐶𝐶𝐶𝐶

𝐴𝐴𝐴𝐴
= 𝐴𝐴𝐴𝐴 + 𝐶𝐶𝐶𝐶 

8 − 5
2

= 4 − 5 

 (7) Additive assumption  (X + Y )A = XA + YA (x + 3)2 = x2 + 9 

In conclusion, the current technology seems to be 
feasible for creating a handwritten mathematical 
homework marking system. However, using the 
information from the confusion matrix alone 
cannot guarantee the practical result since there can 
be multiple candidates that make valid MEs. 
Therefore, we aim at using the context from the 
other MEs in the same derivation to determine the 
most likely symbol replacement.   

It is also possible that the surrounding MEs might 
contain some error as well, so the replacement 
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to the reliable reference, but every line in the 
derivation needs to be processed at the same time.  

To narrow the scope of this study, we simulated 
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the miscalculation of addition and multiplication 
(1) and addition or multiplication of exponent (3) 
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our dataset generator.   

3. System Architecture 
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marking output indicating whether each derivation 
lines is correct or not, together with short 
comments on the type of mistake (if any). The 
system components contain 3 modules as shown in 
Figure 2. 

1. Mathematical expression recognition: includes 
line and column segmentation, mathematical 
symbol recognition, and structural analysis. 

 

Figure 2 

Workflow of the overall system structure 

 
2. Symbols replacement: uses the confusion 
matrix from symbol recognition and the fast 
ME matching to find an appropriate symbols 
replacement that make the ME consistent with 
the surrounding MEs. 

3. Mathematical error identification: 
comprises a computer algebra system and an 
expression tree comparison. This module 
generates report that identifies the 
mismatches for the inconsistent derivation. 

3.2 Mathematical Expression Recognition 

3.2.1 Line Segmentation 

The input image containing multiple lines of 
MEs can be segmented by using the histogram 
projection into sub-images that contains only 
one expression each. Let M be a 2D array 
representing the inverted input image (black 
background and white foreground) with 
dimension m × n. The projection  P(M, y) = 
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along the yth row. In the binarized image, the 
interval of y where P(M, y) = 0 is marked as 
space between lines, as shown in Figure 3. 
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terval of y where P(M, y) = 0 is marked as space be-
tween lines, as shown in Figure 3.

Figure 3 
Pixel histogram shows image with 3 lines and its projection

  

Figure 3  
Pixel histogram shows image with 3 lines and its 
projection 

 
 
3.2.2 Mathematical Symbol Recognition 

To extract foreground images of symbols from the 
background, we used the Connected- Component 
command from opencv library with the default 8-
way connectivity configuration. Each of the 
connected components is recognized by a 
convolutional neural network (CNN) trained by 
the dataset of mathematical symbols from 
CROHME and MNIST. The original dataset 
contains 82 classes. However, only 32 classes 
consisting of digits, binary operators, parenthesis, 
and variables are included in this study. Some 
examples of symbol images are shown in Figure 4. 

The training set is augmented by the modified 
images using dilation with the circular kernel of 
radius ranging from 1 to 5 pixels and rotation 
ranging from -10 to 10 degree to prevent the 
overfitting. 

Figure 4  

Sample images of symbols +, x, a, 7, 2, (, and ) from the 
dataset 

                  
 

We used the CNN library from TensorFlow. The 
detailed structure of the CNN is as follows: 
• Input size 45×45 pixels  
• Convolutional layer with 128 features, kernel 

size 3 × 3, ReLU activation function 
• Max pooling with pool size 2 × 2 
• Another convolutional layer with 128 features, 

kernel size 3 × 3, ReLU activation function 
• Dropout rate 0.25 
• Flatten layer 
• Dense layer with 256 nodes,  ReLU activation 

function. 
• Output layer with 32 nodes (equal to the 

number of symbols), softmax activation 
function 

The first few highest score (up to 5) candidates 
from CNN are selected. The list of candidates 

together with the coordinates are brought to 
the structural analysis. 

3.2.3 Structural Analysis 

Since the scope of this study is just polynomial 
simplification, the structural analysis needs to 
determine the main line and superscript only. 
Symbols with the lowest pixel located above 
the center of the main line will be counted as 
a superscript. The more complicated 
structural analysis can be used when other 
types of mathematical expressions are 
included in the future. 

3.3 Symbols Replacement 

As mentioned in the introduction, the 
inconsistent MEs between lines come from 
MER misrecognition or the calculation 
mistake written in the source image. If the ME 
from the image is incorrect at the first place, 
the MER error will not affect the marking 
result because the derivation is incorrect 
anyway. On the other hand, if the ME from 
the image is correct, the MER error can cause 
the false negative in the marking result. The 
aim of this process is to find the symbols 
replacement where the MER output is 
misrecognized in order to make the longest 
sequence of equivalent MEs possible. 

We first setup the notation for the symbols 
replacement as follows: 

Mathematical symbol (𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙): the ith symbol from 
line l, including numbers, mathematical 
constant, variables, operators, and brackets. 

Raw string from line l (Rl): consists of 
symbols 𝑠𝑠𝑠𝑠1𝑙𝑙𝑙𝑙 , 𝑠𝑠𝑠𝑠2𝑙𝑙𝑙𝑙 , 𝑠𝑠𝑠𝑠3𝑙𝑙𝑙𝑙 , . . . , 𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑙𝑙𝑙𝑙  where n is the length 
of the string.  
Rl is not necessary to be a valid mathematical 
expression since the misrecognized symbols 
can be fixed later. 

Replacement mapping (Ml : 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙 → 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙∗ ): 
mapping between the old symbols and their 
replacement at each position. The depth of 
replacement (d) in line l is the number of index 
i where 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙 ≠ 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙∗ . The mapping for every line 
altogether is denoted by M = (M1,M2, ...,ML). 

Valid expression (El), the string of symbols 
from line l that is parsable by the context free 
grammar of the standard mathematical 
expression. El can be converted into a 
corresponding expression tree Tl. 

Modified string ( 𝑀𝑀𝑀𝑀𝑙𝑙𝑙𝑙(𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙) ) is the result of 
applying a replacement Ml to the raw string 
Rl. If 𝑀𝑀𝑀𝑀𝑙𝑙𝑙𝑙(𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙)  is parsable, then 𝐸𝐸𝐸𝐸𝑙𝑙𝑙𝑙 =  𝑀𝑀𝑀𝑀𝑙𝑙𝑙𝑙(𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙) . 

3.2.2. Mathematical Symbol Recognition
To extract foreground images of symbols from the 
background, we used the Connected-Component 
command from opencv library with the default 8-way 
connectivity configuration. Each of the connected 
components is recognized by a convolutional neural 
network (CNN) trained by the dataset of mathemati-
cal symbols from CROHME and MNIST. The original 
dataset contains 82 classes. However, only 32 classes 
consisting of digits, binary operators, parenthesis, 
and variables are included in this study. Some exam-
ples of symbol images are shown in Figure 4.

Figure 4 
Sample images of symbols +, x, a, 7, 2, (, and ) from the dataset
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projection 
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contains 82 classes. However, only 32 classes 
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and variables are included in this study. Some 
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The training set is augmented by the modified 
images using dilation with the circular kernel of 
radius ranging from 1 to 5 pixels and rotation 
ranging from -10 to 10 degree to prevent the 
overfitting. 
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We used the CNN library from TensorFlow. The 
detailed structure of the CNN is as follows: 
• Input size 45×45 pixels  
• Convolutional layer with 128 features, kernel 

size 3 × 3, ReLU activation function 
• Max pooling with pool size 2 × 2 
• Another convolutional layer with 128 features, 

kernel size 3 × 3, ReLU activation function 
• Dropout rate 0.25 
• Flatten layer 
• Dense layer with 256 nodes,  ReLU activation 

function. 
• Output layer with 32 nodes (equal to the 

number of symbols), softmax activation 
function 

The first few highest score (up to 5) candidates 
from CNN are selected. The list of candidates 

together with the coordinates are brought to 
the structural analysis. 

3.2.3 Structural Analysis 

Since the scope of this study is just polynomial 
simplification, the structural analysis needs to 
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Symbols with the lowest pixel located above 
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the image is correct, the MER error can cause 
the false negative in the marking result. The 
aim of this process is to find the symbols 
replacement where the MER output is 
misrecognized in order to make the longest 
sequence of equivalent MEs possible. 

We first setup the notation for the symbols 
replacement as follows: 

Mathematical symbol (𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙): the ith symbol from 
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Rl is not necessary to be a valid mathematical 
expression since the misrecognized symbols 
can be fixed later. 
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altogether is denoted by M = (M1,M2, ...,ML). 

Valid expression (El), the string of symbols 
from line l that is parsable by the context free 
grammar of the standard mathematical 
expression. El can be converted into a 
corresponding expression tree Tl. 

Modified string ( 𝑀𝑀𝑀𝑀𝑙𝑙𝑙𝑙(𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙) ) is the result of 
applying a replacement Ml to the raw string 
Rl. If 𝑀𝑀𝑀𝑀𝑙𝑙𝑙𝑙(𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙)  is parsable, then 𝐸𝐸𝐸𝐸𝑙𝑙𝑙𝑙 =  𝑀𝑀𝑀𝑀𝑙𝑙𝑙𝑙(𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙) . 

The training set is augmented by the modified images 
using dilation with the circular kernel of radius rang-
ing from 1 to 5 pixels and rotation ranging from -10 to 
10 degree to prevent the overfitting.
We used the CNN library from TensorFlow. The de-
tailed structure of the CNN is as follows:
 _ Input size 45×45 pixels 
 _ Convolutional layer with 128 features, kernel size  

3 × 3, ReLU activation function
 _ Max pooling with pool size 2 × 2
 _ Another convolutional layer with 128 features, 

kernel size 3 × 3, ReLU activation function
 _ Dropout rate 0.25

 _ Flatten layer
 _ Dense layer with 256 nodes, ReLU activation 

function.
 _ Output layer with 32 nodes (equal to the number of 

symbols), softmax activation function

The first few highest score (up to 5) candidates from 
CNN are selected. The list of candidates together with 
the coordinates are brought to the structural analysis.

3.2.3. Structural Analysis
Since the scope of this study is just polynomial sim-
plification, the structural analysis needs to determine 
the main line and superscript only. Symbols with the 
lowest pixel located above the center of the main line 
will be counted as a superscript. The more complicat-
ed structural analysis can be used when other types of 
mathematical expressions are included in the future.

3.3. Symbols Replacement

As mentioned in the introduction, the inconsistent 
MEs between lines come from MER misrecognition 
or the calculation mistake written in the source im-
age. If the ME from the image is incorrect at the first 
place, the MER error will not affect the marking re-
sult because the derivation is incorrect anyway. On 
the other hand, if the ME from the image is correct, 
the MER error can cause the false negative in the 
marking result. The aim of this process is to find the 
symbols replacement where the MER output is mis-
recognized in order to make the longest sequence of 
equivalent MEs possible.
We first setup the notation for the symbols replace-
ment as follows:
Mathematical symbol (si

l): the ith symbol from line 
l, including numbers, mathematical constant, vari-
ables, operators, and brackets.
Raw string from line l (Rl): consists of symbols 
s1

l, s2
l, s3

l, . . . , sn
l where n is the length of the string.  

Rl is not necessary to be a valid mathematical expres-
sion since the misrecognized symbols can be fixed 
later.
Replacement mapping (Ml : si

l → si
l*): mapping be-

tween the old symbols and their replacement at each 
position. The depth of replacement (d) in line l is the 
number of index i where si

l ≠ si
l*. The mapping for every 

line altogether is denoted by M = (M1,M2, ...,ML).
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Valid expression (El), the string of symbols from line 
l that is parsable by the context free grammar of the 
standard mathematical expression. El can be convert-
ed into a corresponding expression tree Tl.
Modified string (Ml(Ri

l)) is the result of applying a re-
placement Ml to the raw string Rl. If Ml(Ri

l) is parsable, 
then El = Ml(Ri

l). Otherwise, El does not exist.
Mathematical equivalent: a pair of two distinct 
valid expressions El1 and El2 is said to be mathemati-
cal equivalent if the difference between two of them 
can be simplified to zero. The equivalent expressions 
always return the same output when we plug in the 
same value(s) of the variable(s).
Let K(M,R) be the set of equivalent MEs after replac-
ing the sequence of raw string R = [R1, R2, ..., Rm] by 
the mapping M. The purpose is to find the mapping M 
that maximizes the number of equivalent MEs after 
the symbols replacement, i.e., argmaxM|K(M,R)|.
Alternative symbols in the replacement mapping 
comes from the candidate from the frequently mis-
recognized symbols in the confusion matrix (as some 
examples are shown in Table 2) and the lower rank 
recognition candidates from MER for that particular 
symbol. For each line of raw string, there can be more 
than one replacement that generate valid expressions. 
Therefore, checking the consistency of MEs through-
out all combination of valid expression between lines 
is inevitable. The next goal is to make this process as 
fast as possible.

3.4. Fast Pruning and Exact MEs Sequence 
Matching
Comparison of MEs requires multiple loops for 
checking whether the expression tree simplification  
simp(El1 − El2) equals 0 or not, which is computation-
ally intensive. Suppose there are m lines of derivation 
and p1, p2, ... , pm be the number of valid replacement 
mappings that make valid MEs, the total number 
of pairwise expression tree comparison trials are  

Table 2 
Frequently misrecognized symbol pairs from the 
confusion matrix

Symbol Misrecognized as Symbol Misrecognized as

a 2 4 a, y, +

d b 9 a

z 2 + 4

2 z, a c (

7 ) y x, 4

) 1, 7 1 ), (, 7

b 6 6 b

x y ( 1, c

0 a , ), 1

 
 

 

Otherwise, El  does not exist. 
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some examples are shown in Table 2) and the lower 
rank recognition candidates from MER for that 
particular symbol. For each line of raw string, there 
can be more than one replacement that generate 
valid expressions. Therefore, checking the 
consistency of MEs throughout all combination of 
valid expression between lines is inevitable. The 
next goal is to make this process as fast as possible. 

3.4 Fast Pruning and Exact MEs Sequence 
Matching 

Comparison of MEs requires multiple loops for 
checking whether the expression tree simplification  
simp(El1 − El2) equals 0 or not, which is 
computationally intensive. Suppose there are m 
lines of derivation and p1, p2, ... , pm be the number 
of valid replacement mappings that make valid 
MEs, the total number of pairwise expression tree 
comparison trials are ∑ 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝+1𝑚𝑚𝑚𝑚−1

𝑖𝑖𝑖𝑖=1 , which is 
impractical in terms of CPU running time. 

Instead of using pairwise expression comparison, it 
is much more efficient to prune out the unusable 
MEs before applying the simplification of 
expression trees. We use the fact that the equivalent 
expressions have the same output value when we 
plug in the same values of the variables. 
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We substitute 2 randomized constants per 
variable and use the numerical output as the 
hash values representing the ME. With the 
hashing, the potential equivalent expressions 
between lines will be chosen without too 
much effort by finding the identical hash 
values between lines. Only a few pairs of 
expression need to be verified by the 
expression tree simplification. This method 
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We substitute 2 randomized constants per 
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of finding hash values of all possible MEs among all 3 
lines. The only identical hash values are (-524, 15), so 
there is only one candidate from each line to be veri-
fied. 

3.5. Steps for the MEs Sequence Matching
It is not always the case that exact match throughout 
the derivation can be found from the hashing process. 
The following steps guarantee to return the longest 
equivalent MEs after the symbols replacement. The 
flowchart version of this algorithm can also be found 
in Figure 6.
Step1: Obtain the first candidate from each line. Parse 
string in each line and check the equivalence between 
any two consecutive lines.
 _ If they are all equivalent, i.e., R1, . . . ,Rm can be 

parsed into valid expressions E1, . . . ,Em where E1 = 
E2 = E3 = . . . = Em, the matching process is satisfied 
and terminated here. This is the ideal case where 
symbols replacement is not necessary.

 _ If only some but not all expressions are equivalent, 
put them in the confident list. Then skip to the last 
step.

 _ If none of the expressions are equal, go to step 2.

Step 2: None of the raw strings are parsable or equiv-
alent to the surrounding lines at all,
 _ Use all possible candidates from the confusion 

matrix and lower rank recognition candidates to 
generate the replacement map for each line of raw 
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• If the confident list is still empty in this 
step, choose a valid expression generated 
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line. 

• Fill the missing lines by the valid ME 
(generated from the replacement 
mapping) that is similar to the previous 
confident expression the most. Use the 
expression tree comparison in the next 
section to evaluate the similarity. 
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Figure 7 (left) shows an example of an input 
image, together with some incorrect MER 
outputs (middle). After the MEs matching, the 
longest equivalent ME sequence can be 
obtained, as shown in Figure 7 (right). The 
expression 15𝑏𝑏𝑏𝑏2 + 26 + 9  was modified into 
(5𝑏𝑏𝑏𝑏2 + 2𝑏𝑏𝑏𝑏 + 9) in order to be consistent to the 
surrounding expressions. 

string, started from depth = 1 and increasing until 
reaching the maximum depth.

 _ Find the longest equivalent expression that starts 
from the first line (or closest to the first line if 
there are more than one sequence with the same 
length). Use the hashing mentioned earlier for the 
fast pruning of non-equivalent pairs, then simplify 
the cancellation of expressions only for a few 
remaining pairs.

 _ If there are some replacements that generate the 
exact match throughout every lines of derivation, 
return the modified MEs immediately. Otherwise, 
keep increasing the depth and repeat the symbols 
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replacement until reaching the maximum value. If 
there are some raw strings that do not match any 
other line, put all the exact match in the confident 
list.

 _ Go to step 3.

Step 3: Fill the missing lines in the confident list with 
the most likely MEs.
 _ If the confident list is still empty in this step, choose 

a valid expression generated from a replacement 
mapping for the first line.

 _ Fill the missing lines by the valid ME (generated 
from the replacement mapping) that is similar to 
the previous confident expression the most. Use 
the expression tree comparison in the next section 
to evaluate the similarity.

Figure 7 (left) shows an example of an input image, 
together with some incorrect MER outputs (mid-
dle). After the MEs matching, the longest equivalent 
ME sequence can be obtained, as shown in Figure 7 
(right). The expression 15b2 + 26 + 9 was modified into  
(5b2 + 2b + 9) in order to be consistent to the surround-
ing expressions.

Figure 7 
Derivation image (left), with faulty expression from 
recognition output (middle), and the corrected expression 
from symbol substitution (right)

 
 

 

 
Figure 7  
Derivation image (left), with faulty expression from 
recognition output (middle), and the corrected 
expression from symbol substitution (right) 
 

 

15b^{2}+26+9)-(9b^{2}-9b) 
 
9+(2+9)b+(5-9)b^{2} 
 
9+11b-4b^{2} 

(5b^{2}+2b+9)-(9b^{2}-9b) 
 
9+(2+9)b+(5-9)b^{2} 
 
9+11b-4b^{2} 

3.6 Expression Tree Comparison 

Expression tree comparison is the process to 
measure the similarity score between two 
simplified trees. A pair of expression trees with 
similar terms will get the similarity closer to 1 than 
the pair of trees that contains a lot of distinctions. 

Let Ti and Tj be the expression trees of the 
expression Ei and Ej from line i and j of the 
derivation, respectively. To find out the different 
terms between two MEs, terms in the MEs that 
have been matched correctly (simplified difference 
returns zero) are removed from both trees. The 
algorithm loops over 𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 and 𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠

𝑗𝑗𝑗𝑗, which are children 
nodes of the Ti.root and Tj.root, respectively. If there 
are subtrees 𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖  and 𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠

𝑗𝑗𝑗𝑗 , rooted at 𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖  and 𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠
𝑗𝑗𝑗𝑗 , such 

that the simplification of 𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖  and 𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠
𝑗𝑗𝑗𝑗  are identical, 

both 𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 and 𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠
𝑗𝑗𝑗𝑗 are removed. The algorithm recurs 

until there is none of identical subtree left in Ti and 
Tj.  

The similarity calculation is based on the intuition 
that similar subexpressions should contain similar 
sets of terms, functions, or constant.  

Figure 8 shows an example of the tree comparison 
and similarity score calculation. While the 
cancellation was traced downward from the entire 
ME to each component, the similarity calculation 
started from the smallest term and are accumulated 
from bottom up. The mismatches were shown at 
the leaf nodes where score = 0 and will be reported 
in the output. Moreover, the similarity scores can 
be used for selecting the most likely replacement 
mapping for the raw string that has no exact match 
with any other line as well. 
Figure 8  

Tree comparison between x2 + 3x − 2 and x2+ 2x − 3. 
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4. Results
4.1. Derivation Image Generator
Since there is none of available mathematical deri-
vation dataset labelled with the type of mistakes, we 
created our own dataset for this study. 
Similar to the pattern generation that help improve 
the performance of MER [13], the derivation images 
were generated by arranging the separated symbol im-
ages obtained from https://www.kaggle.com/atasets/
xainano/handwrittenmathsymbols that was parsed, 
extracted and modified from CROHME dataset, plus 
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digits images from MNIST datasets so that we can 
manipulate the mistake and the correctness for each 
line in the derivation as desired. Among 300,000 sym-
bol images, around 20% are used for derivation data-
set generator, while the remaining 80% are reserved 
for training MER. 
The process started with generating templates for 
polynomial addition, subtraction, and multiplica-
tion. Addition and subtraction templates contain 3 
lines: the addition or subtraction of two polynomials; 
grouping the monomial coefficient of the same de-
gree; and the simplified solution. Similarly, the mul-
tiplication template contains 4 lines. The additional 
line is where the multiplication derivation requires 
the polynomial expansion before grouping terms.
Some mistakes were intentionally added to the gen-
erated template of monomial addition and multipli-
cation according to the types of mistakes in Table 1. 
First, the addition symbols were randomly replaced 
by subtraction, and vice versa. Next, the sums of 
power were randomly replaced by the product of 
power.
The mistakes were randomly added to the expres-
sions at rate 5% of the total + and - signs and mono-
mial multiplication. The ground truth, consisting of 
the sequence of generated MEs themselves and the 
correctness for each step of derivation, were saved to 
a CSV file as shown in Figure 9.

Figure 9
Ground truth of the addition/subtraction dataset

Figure 10
Computer-generated images for polynomial subtraction 
and multiplication derivation, with incorrect steps

  

and monomial multiplication. The ground truth, 
consisting of the sequence of generated MEs 
themselves and the correctness for each step of 
derivation, were saved to a CSV file as shown in 
Figure 9. 

After the ground truth was generated, symbol 
images were picked up and rearranged to match 
each of the expressions. The thickness and size of 
the symbols were randomized. Figure 10 shows 
examples of the generated images with incorrect 
derivations. There are 3,000 derivation images for 
polynomial addition and subtraction and another 
3,000 images for polynomial multiplication being 
generated, as some examples shown in Figure 11. 
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Ground truth of the addition/subtraction dataset 

 
 
Figure 10 
Computer-generated images for polynomial subtraction 
and multiplication derivation, with incorrect steps 

 

(−6x2 + 3) − (2x − 7) 

= (3 + 7) − 6x2 + 2x  

= 10 − 6x2 + 2x 

 

Incorrect 

Correct 

 

(7y2 − 3y − 1)(−9y + 2) 

= −2 + 9y − 6y + 27y2 + 9y2 − 63y3 

= −2 + (9 − 6)y + (27 + 9)y2 − 63y3  

= −2 + 3y + 36y2 − 63y3 

 

Incorrect 

Correct 

Correct 

4.2 What Should Be Marked as “correct”? 

Correctness can be defined from different 
perspectives: full credit for the entire derivation, or 
partial credit for each step of derivation. We take 
both of them into our evaluation. Giving full credit 
for the entire derivation is straightforward. Any 
presence of incorrect step in the derivation makes 
the whole thing incorrect. On the other hand, to 
give partial credits to student, correctness should 
be considered between two consecutive lines. For 
polynomial addition and subtraction with 3 lines, 
there are two transitions between lines 1 and 2, and 
between lines 2 and 3. Similarly for the 
multiplication with 4 lines, there are 3 transitions to 
evaluate. 

 
Figure 11 
Sample of generated derivation images in 
addition/subtraction and multiplication dataset 

 

 
 

4.3 Experimental Results 

Tables 3 and 4 contains the number of correct 
partial credit marking, correct expression 
after the replacement when compared to the 
ground truth, and the CPU time for grading 
3000 derivations in every setting. The 
maximum depth varies from 0 to 6. When 
maximum depth is 0, only step 1 in the 
expression sequence matching was utilized, 
i.e., the raw MER outputs were taken to the 
evaluation directly. 

The number of correct MEs dropped slightly 
for the maximum depth > 5, while the number 
of correct marking still maintains the positive 
trend. It is because the more candidates 
allowed to use, the more expression can be 
replaced and become equivalent although the 
replacement might be incorrect. 

Expression tree comparison was applied to 
every pair of MEs after the symbols 
replacement. Marking results for partial credit 
counts are visualized in Figure 12. There are 
6,000 marks for addition and subtraction 
dataset, and 9,000 marks for multiplication 
dataset. 

After the ground truth was generated, symbol images 
were picked up and rearranged to match each of the 
expressions. The thickness and size of the symbols 
were randomized. Figure 10 shows examples of the 
generated images with incorrect derivations. There 
are 3,000 derivation images for polynomial addition 
and subtraction and another 3,000 images for polyno-
mial multiplication being generated, as some exam-
ples shown in Figure 11.
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i.e., the raw MER outputs were taken to the 
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for the maximum depth > 5, while the number 
of correct marking still maintains the positive 
trend. It is because the more candidates 
allowed to use, the more expression can be 
replaced and become equivalent although the 
replacement might be incorrect. 

Expression tree comparison was applied to 
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counts are visualized in Figure 12. There are 
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dataset, and 9,000 marks for multiplication 
dataset. 
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4.2. What Should Be Marked as “correct”?
Correctness can be defined from different perspec-
tives: full credit for the entire derivation, or partial 
credit for each step of derivation. We take both of 
them into our evaluation. Giving full credit for the 
entire derivation is straightforward. Any presence 
of incorrect step in the derivation makes the whole 
thing incorrect. On the other hand, to give partial 
credits to student, correctness should be consid-
ered between two consecutive lines. For polynomial 
addition and subtraction with 3 lines, there are two 
transitions between lines 1 and 2, and between lines 
2 and 3. Similarly for the multiplication with 4 lines, 
there are 3 transitions to evaluate.

4.3. Experimental Results
Tables 3 and 4 contains the number of correct partial 
credit marking, correct expression after the replace-
ment when compared to the ground truth, and the 
CPU time for grading 3000 derivations in every set-
ting. The maximum depth varies from 0 to 6. When 
maximum depth is 0, only step 1 in the expression se-
quence matching was utilized, i.e., the raw MER out-
puts were taken to the evaluation directly.
The number of correct MEs dropped slightly for the 
maximum depth > 5, while the number of correct 
marking still maintains the positive trend. It is be-
cause the more candidates allowed to use, the more 

Table 3 
Effect of depth to the correctness of expression, marking 
and CPU time for addition/subtraction dataset

Depth
Correct 
ME out 
of 9000

Correct 
marking 

(partial credit) 
out of 6000

Correct 
marking 

(full credit) 
Out of 3000

CPU 
time 
(sec)

0 6227 3357 813 4397

1 7872 5357 2647 8946

2 8037 5489 2693 8973

3 8035 5499 2697 9793

4 8036 5500 2696 10325

5 8040 5502 2698 11628

6 8038 5501 2698 13363

Depth
Correct 
ME out 

of 12000

Correct 
marking 

(partial credit) 
out of 9000

Correct 
marking 

(full credit) 
out of 3000

CPU 
time 
(sec)

0 7727 4689 1216 8600

1 10234 7367 2479 24930

2 10487 7571 2526 29812

3 10534 7601 2528 37719

4 10542 7606 2526 48118

5 10548 7607 2527 82183

6 10549 7613 2528 260254

Table 4 
Effect of depth to the correctness of expression, marking 
and CPU time for multiplication dataset

expression can be replaced and become equivalent 
although the replacement might be incorrect.
Expression tree comparison was applied to every 
pair of MEs after the symbols replacement. Marking 
results for partial credit counts are visualized in Fig-
ure 12. There are 6,000 marks for addition and sub-
traction dataset, and 9,000 marks for multiplication 
dataset.
A short comment was generated from the comparison 
results. If the pair of MEs are equivalent, the com-
ment showed “Equivalent expressions”. Otherwise, 
the comment pointed out the part of MEs that are 
mismatch, as shown in Figure 13.
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on a personal computer with CPU i7-4770, 
RAM 16 GB, 256 GB SATA3 SSD. 

As expected, using more maximum depth 
showed the positive trend of correct marking 
while taking exponential time, as shown in 
Figure 15. 

From the distribution of running time in 
Figure 16, the derivation with all correct MEs 
that does not need symbols replacement is the 

The plot in Figure 14 shows some slight drop of cor-
rectness because the objective of the symbols re-
placement algorithm is to maximize the number of 
expression in the exact match sequence. There are ex-
act matches caused by an incorrect replacement. For 
example, in Table 5, symbols replacement when using 
depth = 5 has the term 6a2, where a is replaced by 2 
and the term becomes 622 when depth = 6. If there is 
a restricted format of ME, the irrelevant ME are fil-
tered out so that the type of error can be avoided. 

4.5. Effect of Depth to the CPU Time
The algorithm was implemented and tested on a per-
sonal computer with CPU i7-4770, RAM 16 GB, 256 
GB SATA3 SSD.
As expected, using more maximum depth showed the 
positive trend of correct marking while taking expo-
nential time, as shown in Figure 15.
From the distribution of running time in Figure 16, 
the derivation with all correct MEs that does not need 
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age time at 1.56 second per image. The second fastest 
group is the derivation that needs symbols replace-
ment but return correct marking at last, with average 
running time at 2.17 seconds. The slowest group is the 
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fastest group, with average time at 1.56 second per 
image. The second fastest group is the derivation 
that needs symbols replacement but return correct 
marking at last, with average running time at 2.17 
seconds. The slowest group is the derivation with 
mistake and cannot be fixed, with average time at 
8.81 seconds. It can be seen that the last group has 
a wide range of variation, which depends on the 
number of candidate replacement. 
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addition/subtraction with depth = 6 

 
4.6 Performance Evaluation 

4.6.1 Single Symbol Accuracy 

The performance of the CNN symbol recognition 
was tested just once because every experiment on 
the replacement depth shares the same symbol 
recognition module. There are 387,290 symbols in 
both datasets combined and the number of 
misrecognized symbols was 7,475, making single 
symbol recognition accuracy at 98.07%. When 
applied this number to the average length of MEs 
in the addition/subtraction and multiplication 
dataset at 14.60 and 21.32 symbols, respectively, the 
average misrecognized symbols per ME were 
0.2818 and 0.4115 symbols, which are less than 1 in 
both datasets.  

4.6.2 ExpRate 

To the best of our knowledge, we cannot find any 
other similar system that evaluates the entire 
mathematical derivation after recognition, so the 
direct performance comparison cannot be made.  
However, the ExpRate (expression recognition 
rates) before applying symbols replacement (depth 
= 0) in this study (69.18% for addition/subtraction 
and 64.39% for multiplication dataset) were on par 

with the 60-65% results in most of the recent 
literatures that propose mathematical 
expression recognition systems [27, 28, 29]. 
ExpRate after applying the symbols 
replacement from our system were increased 
to 89.31% and 87.90% for addition/subtraction 
and for multiplication dataset, respectively.  

4.6.3 Accuracy of Partial Credit Marking   

From Tables 3 and 4, the accuracy of the 
partial credit marking after applying symbols 
replacement increases from  55.95% to 91.68% 
in addition/subtraction dataset, and from 
52.10% to 84.58% in multiplication dataset. 

4.6.4 Accuracy of Entire Derivation Marking  

Instead of counting for the number correct 
marking in each step to give the partial credit, 
the other marking style is to determine the 
correctness of the entire derivation. From 
Tables 3 and 4, the accuracy of the entire 
derivation marking after applying symbols 
replacement increases from  27.10% to 89.93% 
in addition/subtraction dataset, and from 
40.53% to 84.26% in multiplication dataset. 

4.6.5 Precision, recall, and F1-score 

Precision, recall, and F1-score for the partial 
credit marking are shown in Tables 6 and 7. 
The F1-scores improve from 0.6941 and 0.6145 
to 0.9494 and 0.8995 for addition/ subtraction 
and multiplication dataset, respectively. 

4.7 Discussion 

4.7.1 Optimal Replacement Depth 

From Tables 6 and 7, the replacement depth 
2–3 should be the optimal values of parameter 
since the marking results are not significantly 
different from the highest value, while the 
CPU running time is much faster than using 
depth = 6. This is consistent to the result of 
single symbol accuracy that the average 
misrecognized symbol is less than one, using 
replacement with depth = 1 already fix most 
of the error, and depth =  2 or 3 made a slight 
improvement. 

Table 6 

Effect of depth to the precision and recall for 
addition and subtraction dataset 

Depth TP TN FP FN P R F1 

0 2546 811 0 2244 1 0.5315 0.6941 

1 4493 864 0 635 1 0.8761 0.9339 

2 4624 865 0 506 1 0.9013 0.9481 

3 4634 865 0 496 1 0.9033 0.9492 
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derivation with mistake and cannot be fixed, with av-
erage time at 8.81 seconds. It can be seen that the last 
group has a wide range of variation, which depends on 
the number of candidate replacement.

4.6. Performance Evaluation
4.6.1. Single Symbol Accuracy
The performance of the CNN symbol recognition was 
tested just once because every experiment on the re-
placement depth shares the same symbol recognition 
module. There are 387,290 symbols in both datasets 
combined and the number of misrecognized symbols 
was 7,475, making single symbol recognition accuracy 
at 98.07%. When applied this number to the average 
length of MEs in the addition/subtraction and multi-
plication dataset at 14.60 and 21.32 symbols, respec-
tively, the average misrecognized symbols per ME 
were 0.2818 and 0.4115 symbols, which are less than 
1 in both datasets. 

4.6.2. ExpRate
To the best of our knowledge, we cannot find any 
other similar system that evaluates the entire math-
ematical derivation after recognition, so the direct 
performance comparison cannot be made. However, 
the ExpRate (expression recognition rates) before ap-
plying symbols replacement (depth = 0) in this study 
(69.18% for addition/subtraction and 64.39% for 
multiplication dataset) were on par with the 60-65% 
results in most of the recent literatures that propose 
mathematical expression recognition systems [27, 28, 
29]. ExpRate after applying the symbols replacement 
from our system were increased to 89.31% and 87.90% 
for addition/subtraction and for multiplication data-
set, respectively. 

4.6.3. Accuracy of Partial Credit Marking 
From Tables 3 and 4, the accuracy of the partial credit 
marking after applying symbols replacement increas-
es from 55.95% to 91.68% in addition/subtraction 
dataset, and from 52.10% to 84.58% in multiplication 
dataset.

4.6.4. Accuracy of Entire Derivation Marking 
Instead of counting for the number correct marking 
in each step to give the partial credit, the other mark-
ing style is to determine the correctness of the entire 
derivation. From Tables 3 and 4, the accuracy of the 

entire derivation marking after applying symbols re-
placement increases from 27.10% to 89.93% in addi-
tion/subtraction dataset, and from 40.53% to 84.26% 
in multiplication dataset.

4.6.5. Precision, Recall, and F1-score
Precision, recall, and F1-score for the partial credit 
marking are shown in Tables 6 and 7. The F1-scores 
improve from 0.6941 and 0.6145 to 0.9494 and 0.8995 
for addition/ subtraction and multiplication dataset, 
respectively.

4.7. Discussion
4.7.1. Optimal Replacement Depth
From Tables 6 and 7, the replacement depth 2–3 
should be the optimal values of parameter since the 
marking results are not significantly different from 
the highest value, while the CPU running time is 
much faster than using depth = 6. This is consistent to 

Depth TP TN FP FN P R F1

0 2546 811 0 2244 1 0.5315 0.6941

1 4493 864 0 635 1 0.8761 0.9339

2 4624 865 0 506 1 0.9013 0.9481

3 4634 865 0 496 1 0.9033 0.9492

4 4636 864 1 494 0.9997 0.9037 0.9493

5 4638 864 1 492 0.9997 0.9040 0.9495

6 4638 863 2 492 0.9997 0.9040 0.9494

Table 6
Effect of depth to the precision and recall for addition and 
subtraction dataset

Table 7 
Effect of depth to the precision and recall for multiplication 
dataset

Depth TP TN FP FN P R F1

0 3249 1440 0 4076 1 0.4435 0.6145

1 5893 1474 2 1612 0.9996 0.7852 0.8795

2 6098 1473 3 1411 0.9995 0.8120 0.8961

3 6128 1473 3 1381 0.9995 0.8160 0.8985

4 6133 1473 3 1376 0.9995 0.8167 0.8989

5 6134 1473 3 1375 0.9995 0.8168 0.8990

6 6140 1473 3 1369 0.9995 0.8176 0.8995
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the result of single symbol accuracy that the average 
misrecognized symbol is less than one, using replace-
ment with depth = 1 already fix most of the error, and 
depth = 2 or 3 made a slight improvement.

4.7.2. False Negative and False Positive
For the case of false negative (the actual derivation is 
correct, but marked as incorrect), there are reasons 
that MEs cannot be fixed by the surrounding expres-
sions to match the ground truth.
 _ A possible reason is the case that the longest 

sequence of the exact match does not contain 
the first line. Since the only chance to fix the first 
line is that it must be rebuilt with the second line 
reference. When the second line is incorrect, the 
first line has no reliable reference for correction, so 
the original ME cannot be restored.

 _ Some expressions cannot be parsed due to the 
existence of unexpected symbols in the way. Most 
of the cases is when there are broken handwritten 
strokes from MER, making an unwanted 
component in addition to the original symbols. 
The symbols replacement cannot unify the broken 
symbols, so there is no chance to restore these 
expressions.

 _ The last reason is that the lack of the candidate. 
If the correct replacement of the misrecognized 
symbol is not in the confusion matrix, the 
expression cannot be restored as well. 

For the case of false positive, it can be seen that the 
symbols replacement unexpectedly replaces the in-
correct derivation with a new set of symbols and be-
comes correct. It is the rare cases, but still is possible.
Although the false negative from the result is high, 
we can rely on the positive result (derivation marked 

as correct) because of the low false positive, which 
means the derivation marked as correct from the 
system is likely to be correct without need of further 
inspection. On the other hand, the derivation marked 
as incorrect can be either misrecognized or actually 
incorrect, manual inspection is strongly needed.

5. Conclusion
This research focused on designing an automatic sys-
tem to help teachers more effectively grade handwrit-
ten homework assignment in the entire derivation 
format. The main contribution of this research is to 
add symbols replacement in between the MER and 
CAS. The candidates for replacement can be chosen 
from the confusion matrix and lower rank candidates 
of the symbol recognition.
From the results, the symbols replacement algorithm 
can improve F1-score of the derivation step marking 
from 69.41% to 94.95% for the addition/subtraction 
dataset and from 61.45% to 89.95% for the multiplica-
tion dataset when compared to the raw strings from 
MER. It can be concluded that the symbols replace-
ment algorithm significantly improves the perfor-
mance of handwritten homework grading between 
consecutive lines of derivation. The accuracy of mark-
ing increases as the depth of the symbols replacement 
increases. However, the replacement depth at 2-3 are 
enough to correct most of the errors. 
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