
169Information Technology and Control 2023/1/52

A Step Toward an Automatic
Handwritten Homework Grading
System for Mathematics

ITC 1/52
Information Technology
and Control
Vol. 52 / No. 1 / 2023
pp. 169-184
DOI 10.5755/j01.itc.52.1.32066

A Step Toward an Automatic Handwritten Homework
Grading System for Mathematics

Received 2022/08/12 Accepted after revision 2023/01/30

https://doi.org/10.5755/j01.itc.52.1.32066

HOW TO CITE: Chaowicharat, E., Dejdumrong, N. (2023). A Step Toward an Automatic Handwritten Homework Grading System for
Mathematics. Information Technology and Control, 52(1), 169-184. https://doi.org/10.5755/j01.itc.52.1.32066

Ekawat Chaowicharat
Department of Mathematics, Faculty of Science, Mahidol University, Thailand; phone: +66-95-9670063;
e-mail: ekawat.cha@mahidol.ac.th

Natasha Dejdumrong
Department of Computer Engineering, Faculty of Engineering, King Mongkut’s University of Technology
Thonburi, Thailand; phone: +66-85-4545252; e-mail: natasha.dej@mail.kmutt.ac.th

Corresponding author: ekawat.cha@mahidol.ac.th

An automatic system that helps teachers and students verify the correctness of handwritten derivation in math-
ematics homework is proposed. The system acquires input image containing handwritten mathematical deri-
vation. In our preliminary study, the system that comprises only mathematical expression recognition (MER)
and computer algebra system (CAS) did not perform well due to high misrecognition rate. Therefore, our study
focuses on fixing the misrecognized symbols by using symbols replacement and the surrounding information.
If all the original mathematical expressions (MEs) in the derivation sequence are already equivalent, the deri-
vation is marked as “correct”. Otherwise, the symbols with low recognition confidence will be replaced by other
possible candidates to maximize the number of equivalent MEs in that derivation. If there is none of symbols
replacement that makes every line equivalent, the derivation is marked as “incorrect”. The recursive expression
tree comparison was applied to report the types of mistake for those problems marked as incorrect. Finally, the
performance of the system was evaluated by the digitally generated dataset of 6,000 handwritten mathematical
derivations. The results showed that the symbols replacement improve the F1-score of derivation step marking
from 69.41 to 95.95 % for the addition/ subtraction dataset and from 61.45 to 89.95 % for the multiplication
dataset when compared to the case of using raw recognized string without symbols replacement.
KEYWORDS: Mathematical expression recognition, automatic homework grading, symbols replacement.

Information Technology and Control 2023/1/52170

1. Introduction
Formative assessment is best accomplished if teach-
ers are able to quickly mark the student works and
immediately return the graded results to the students.
Immediate feedback can be succeeded without too
much attempt when using multiple choice questions
or short answer questions where an exact keyword
is prepared. Most of learning management systems
(LMS) nowadays has automatic grading feature for
multiple choice questions (MCQ) and short answer
question built-in.
However, handwritten homework assignments that
show steps of derivation still plays an important role
in mathematics education. It is one of the best ways
to express step of thought, including logical think-
ing, theorem applying, and accurate calculation skill.
Besides, working with a scratch paper and pencil (or
electronic tablet with stylus) is still an intuitive way
to solve mathematics problems [1].
Nowadays, automatic grading of handwritten home-
work containing the entire calculation steps by com-
puter is not at the state of practical use due to the
complication of processes, unlike that of MCQ and
short answer grading, which has been widely used for
a long time. The idea of automatic homework grading
system has been around for decades alongside with
optical character recognition development. Started
with grading handwritten short answers, the most
feasible method requires special marks such as print-
ed underlining or boxes to locate the image region
that contains the solution. Then the mathematical ex-
pression recognition is utilized [6, 14]. Recent works
have focused on locating mathematical expressions
embedded in handwritten text automatically [8, 19].
The more challenging task is the entire derivation
grading. Since the different pathways of derivation
could lead to the same correct answer, while a tenta-
tive guideline for mathematics homework checking
could be utilized, not every correct derivation is writ-
ten in the exact same way. The grading system has to
be flexible enough to accept every correct pathway to
the final conclusion.
In this study, we propose an automatic system that
performs handwritten mathematics homework grad-
ing from images containing all the calculation steps.
The core idea is to combine a mathematical expres-
sion recognition (MER) and a computer algebra sys-

tem (CAS). MER converts the mathematical expres-
sion (ME) from images into a sequence of symbols,
where CAS then parses the expressions into expres-
sion trees and compares whether each pair of MEs
from the consecutive lines are equivalent or not. If it
is the case, the entire derivation is marked as correct.
Conversely, if there exists ME that is not equivalent
to the surroundings, that step is marked as incorrect.
Our preliminary design using convolutional neu-
ral network (CNN) OCR for symbol recognition and
Sympy library in python (as a CAS) reveals a number
of challenging issues in this study as follows:
 _ Since mathematical expressions usually contains

a long sequence of symbols, the accuracy of the
marking highly depends on the quality of symbol
recognition. An incorrect recognized symbol could
ruin the marking result of the entire derivation.

 _ The incorrect symbols can be caused by both the
mathematical mistake from the original image, or
the MER misrecognition itself. The locations of
the incorrect symbols are also unable to determine
when the ground truth is unknown.

 _ In text OCR, misrecognition can be resolved by
using character sequence patterns such as the
n-gram model. Yet symbol ambiguity in MER
sometimes cannot be handled because of the less
strict symbol sequence patterns, for instance
both “x+b” and “x+6” are valid MEs. It is possible
that an expression is syntactically correct, but not
consistent to the surroundings. For example, 16x +
11 seems to be a valid ME, but it might be recognized
from the actual expression (6x + 1) where both “(”
and “)” are perceived as 1.

Therefore, the main focus of this study is to find an
appropriate symbols replacement algorithm so that
the effect of misrecognition is neutralized.
In this study, we designed an algorithm aiming to
solve the misrecognition by using the surrounding
MEs in the same derivation sequence to confirm the
correctness of the symbols replacement. Our key con-
cepts in this algorithm design consist of the following
components:
 _ The candidates for the symbols replacement

comes from the confusion matrix and the lower
rank recognition candidates.

171Information Technology and Control 2023/1/52

 _ Instead of using the language model of symbol
sequence alone, we use the information
from the surrounding lines in the sequence
of MEs to confirm the most likely symbols
replacement. For example, if x + b makes that
step of calculation consistent with the next
line, it is more likely to be correct rather than
x + 6.

 _ With the unavailability of mathematical derivation
dataset, the derivation images will be generated
from the dataset of single mathematical symbols.
The generated dataset contains some intentional
calculation mistake to test whether the system can
detect the mistake from the source image or not.

2. Literature Review
The literature review comprises five parts, including
automatic homework marking, mathematical expres-
sion recognition, mathematical expression simpli-
fication, confusion matrix and error correction, and
common mistakes in algebraic simplification.

2.1. Automatic Homework Marking (AHM)
Automatic homework marking has been proposed
and used for a long time. Due to many advantages,
such as, saving of manpower and time, better consis-
tency of grading criteria, bias free, and instantaneous
feedback [24].
The development path of AHM started from automat-
ic mark recognition that has been used in MCQ test
[21]. This method uses fixed format answer sheet. An-
swers are chosen by filling the circle with black pen-
cil. It can also be applied to the digits answers by using
an array of circles.
Short answer marking works with both text and nu-
meric answers. Localization and recognition are used
for detecting and converting the handwritten an-
swers into digital format. It needs text box or under-
line as the marker, so that pattern recognition be able
to locate and recognize text in that area [14].
Long answer/ free-text marking is mostly used with
digital text input since it is not practical for hand-
writing due to the limitation of character recognition
technology. For free-text input, the system has to an-
alyze sentence structure and extract keywords that
match the key answer [25]. Another field of practical

use is the automatic code assessment, where the sys-
tem can analyze the source code in a programming
language and return the evaluation in terms of syntax,
plagiarism, semantic, performance, or quality [4, 5].
There are disadvantages of AHM when compared to
human marking. First, the marking criteria must be
simple enough. Submission that does not meet the
criteria will be rejected since it is hard to design the
machine to be as flexible as human grader. As a con-
sequence, the answer sheets for AHM are in the less
flexible format and also limit the type of questions to
assign. The limited type of the test and assignment
that computer can grade also limit the creativity of
teachers to design tests, and also limit the cognitive
level required to answer the question [9].
From a study, the paper-and-pencil test (PPT) still
have slightly better learning outcome than using com-
puter-based system because PPT allows inspection of
high cognitive demand tasks [23]. In this study, we are
looking for a solution to bridge the gap between the
automatic marking by computer and the handwritten,
free text homework, especially in mathematics.

2.2. Mathematical Expression Recognition
(MER)
Mathematical expression recognition (MER) is the
software that converts mathematical expression
(ME) images into a machine-understandable format
[3]. The purpose of MER is to offer an alternative
ME input method that is seamless to human writing,
without the use of markup languages or any point-
and-click interface. MER is a special case of optical
character recognition (OCR) with the domain re-
stricted to mathematical expressions and symbols.
MER consists of the following common procedures.
Math expression localization and symbol segmen-
tation: ME is typically written in line with text and
must be extracted before recognition. A number of
techniques can be used to distinguish ME from plain
text, for example, global features that take aspect ra-
tio, height, deviation of coordinates from the main
line, and support vector machine classifier [7]. Some
systems use a modern approach such as U-Net to sep-
arate ME regions from text [19].
Symbol recognition: The convolutional neural net-
work (CNN) is a widely used deep learning algorithm
that transforms input images into symbol classes di-
rectly without any predefined features. The earlier

Information Technology and Control 2023/1/52172

stages of CNN consist of the convolution and max
pooling process which are used to learn the pixel pat-
terns into feature vectors. The learned features are
then passed through the feedforward network to per-
form the classification, as shown in Figure 1. A num-
ber of MERs have been developed recently based on
CNN [14, 16, 17, 20].

Figure 1
Structure of CNN

example, global features that take aspect ratio,
height, deviation of coordinates from the main line,
and support vector machine classifier [7]. Some
systems use a modern approach such as U-Net to
separate ME regions from text [19].

Symbol recognition: The convolutional neural
network (CNN) is a widely used deep learning
algorithm that transforms input images into
symbol classes directly without any predefined
features. The earlier stages of CNN consist of the
convolution and max pooling process which are
used to learn the pixel patterns into feature vectors.
The learned features are then passed through the
feedforward network to perform the classification,
as shown in Figure 1. A number of MERs have been
developed recently based on CNN [14, 16, 17, 20].

Figure 1

Structure of CNN

Structural analysis: Structural analysis is the
arrangement of recognized symbols into the
expression with a valid syntax and then involves
semantic extraction. Structural analysis can be as
simple as the rule-based methods that use spatial
relation. For example, the upper and lower bounds
of the symbols can be used to classify the
superscript from characters in the main line [10].
Machine learning algorithms such as neural
network and SVM can also be applied to classify
the spatial relation between a group of symbols
into the mathematical syntax [22].

The state of the art for MER is based on encoder-
decoder network, where the encoder transforms
the entire image of ME into a sequence of vector
representation, then the decoder converts the
representation into a 1D latex syntax, or 2D
expression tree structure. In the present,
expression recognition rates (ExpRate) of encoder-
decoder network are around 65% [27, 28, 29]. One
of the limitations is the lack of large public dataset
for the handwritten ME [1].

2.3 Mathematical Expression Simplification

Simplification is the process of rewriting ME
with minimal numbers of items and variables.
The process transforms ME into an equivalent
ME which reduces complication. Most of
simplification process is based on
representing ME as an abstract syntax tree
(AST). Then apply the term rewrite rules by
traversing the AST to match the subtree that
is consistent with the rule for transformation
[11].

2.4 Confusion Matrix and Error Correction

The confusion matrix of character recognition
contains information about the misrecognized
symbol which is used for both system
evaluation and error correction. Since the
internal redundancy of symbols sequence is
measured by a probabilistic language model
such as N-gram, when symbol sequences with
low consistency are found, other candidates
in the confusion matrix that provide better
consistency can be utilized [12, 15].

The problem of using error correction in the
mathematical context is that the choice of
symbols in ME rather depends on the
surrounding MEs in the sequence than the
surrounding symbols in the same ME itself.
Therefore, the language model is not
appropriate for error correction in our
problem, but the confusion matrix still can be
applied in some other ways.

2.5 Common Mistakes in Algebraic
Simplification

Common mistakes are the miscalculations
usually found in mathematics newcomers,
comes from the lack of understanding, or the
careless during the calculation, such as doing
addition in place of multiplication.

Some common mistakes in algebraic
simplification are presented in Table 1. We
then apply some types of mistakes to generate
the derivation images containing intentional
error and use these derivation images for our
system evaluation.

Table 1
Types and examples of mathematical derivation
mistake

(1) Miscalculation (add
and multiply)

A × B = A + B 3 × 2 = 5

(2) Ignorance of variable A + BX = A + B 3 + 5x = 8

Structural analysis: Structural analysis is the arrange-
ment of recognized symbols into the expression with
a valid syntax and then involves semantic extraction.
Structural analysis can be as simple as the rule-based
methods that use spatial relation. For example, the
upper and lower bounds of the symbols can be used to
classify the superscript from characters in the main
line [10]. Machine learning algorithms such as neural
network and SVM can also be applied to classify the
spatial relation between a group of symbols into the
mathematical syntax [22].
The state of the art for MER is based on encoder-de-
coder network, where the encoder transforms the en-
tire image of ME into a sequence of vector represen-
tation, then the decoder converts the representation
into a 1D latex syntax, or 2D expression tree struc-
ture. In the present, expression recognition rates
(ExpRate) of encoder-decoder network are around
65% [27, 28, 29]. One of the limitations is the lack of
large public dataset for the handwritten ME [1].

2.3. Mathematical Expression Simplification
Simplification is the process of rewriting ME with
minimal numbers of items and variables. The process
transforms ME into an equivalent ME which reduces
complication. Most of simplification process is based
on representing ME as an abstract syntax tree (AST).
Then apply the term rewrite rules by traversing the
AST to match the subtree that is consistent with the
rule for transformation [11].

2.4. Confusion Matrix and Error Correction
The confusion matrix of character recognition con-
tains information about the misrecognized symbol
which is used for both system evaluation and error
correction. Since the internal redundancy of sym-
bols sequence is measured by a probabilistic language
model such as N-gram, when symbol sequences with
low consistency are found, other candidates in the
confusion matrix that provide better consistency can
be utilized [12, 15].
The problem of using error correction in the mathe-
matical context is that the choice of symbols in ME
rather depends on the surrounding MEs in the se-
quence than the surrounding symbols in the same ME
itself. Therefore, the language model is not appropri-
ate for error correction in our problem, but the con-
fusion matrix still can be applied in some other ways.

2.5. Common Mistakes in Algebraic
Simplification
Common mistakes are the miscalculations usually
found in mathematics newcomers, comes from the
lack of understanding, or the careless during the cal-
culation, such as doing addition in place of multipli-
cation.
Some common mistakes in algebraic simplification
are presented in Table 1. We then apply some types of
mistakes to generate the derivation images contain-
ing intentional error and use these derivation images
for our system evaluation.

Table 1
Types and examples of mathematical derivation mistake

(1) Miscalculation
(add and multiply) A × B = A + B 3 × 2 = 5

(2) Ignorance of
variable A + BX = A + B 3 + 5x = 8

(3) Add or multiply
exponents XAXB = XAB x3x2 = x6

(4) Minus sign with
square −A2 = A2 −52 = 25

(5) Improper
distribution A(B + C) = AB + C 3(x + 2) = 3x + 2

(6) Improper
cancellation

(3) Add or multiply
exponents

XAXB = XAB x3x2 = x6

(4) Minus sign with
square

−A2 = A2 −52 = 25

(5) Improper distribution A(B + C) = AB + C 3(x + 2) = 3x + 2
(6) Improper cancellation 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝐶𝐶𝐶𝐶

𝐴𝐴𝐴𝐴
= 𝐴𝐴𝐴𝐴 + 𝐶𝐶𝐶𝐶

8 − 5
2

= 4 − 5

 (7) Additive assumption (X + Y)A = XA + YA (x + 3)2 = x2 + 9

In conclusion, the current technology seems to be
feasible for creating a handwritten mathematical
homework marking system. However, using the
information from the confusion matrix alone
cannot guarantee the practical result since there can
be multiple candidates that make valid MEs.
Therefore, we aim at using the context from the
other MEs in the same derivation to determine the
most likely symbol replacement.

It is also possible that the surrounding MEs might
contain some error as well, so the replacement
algorithm is not just fixing each line and compare
to the reliable reference, but every line in the
derivation needs to be processed at the same time.

To narrow the scope of this study, we simulated
only two types of mistake from Table 1, including
the miscalculation of addition and multiplication
(1) and addition or multiplication of exponent (3)
with the problem of polynomial simplification in
our dataset generator.

3. System Architecture
3.1 System Structure
The designed system acquires an image of a
student’s homework that contains a sequence of
handwritten mathematical expressions written in
each line. The system then analyses and returns the
marking output indicating whether each derivation
lines is correct or not, together with short
comments on the type of mistake (if any). The
system components contain 3 modules as shown in
Figure 2.

1. Mathematical expression recognition: includes
line and column segmentation, mathematical
symbol recognition, and structural analysis.

Figure 2

Workflow of the overall system structure

2. Symbols replacement: uses the confusion
matrix from symbol recognition and the fast
ME matching to find an appropriate symbols
replacement that make the ME consistent with
the surrounding MEs.

3. Mathematical error identification:
comprises a computer algebra system and an
expression tree comparison. This module
generates report that identifies the
mismatches for the inconsistent derivation.

3.2 Mathematical Expression Recognition

3.2.1 Line Segmentation

The input image containing multiple lines of
MEs can be segmented by using the histogram
projection into sub-images that contains only
one expression each. Let M be a 2D array
representing the inverted input image (black
background and white foreground) with
dimension m × n. The projection P(M, y) =
∑ 𝑀𝑀𝑀𝑀𝑦𝑦𝑦𝑦,𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1 represents the sum of pixel values

along the yth row. In the binarized image, the
interval of y where P(M, y) = 0 is marked as
space between lines, as shown in Figure 3.

(3) Add or multiply
exponents

XAXB = XAB x3x2 = x6

(4) Minus sign with
square

−A2 = A2 −52 = 25

(5) Improper distribution A(B + C) = AB + C 3(x + 2) = 3x + 2
(6) Improper cancellation 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝐶𝐶𝐶𝐶

𝐴𝐴𝐴𝐴
= 𝐴𝐴𝐴𝐴 + 𝐶𝐶𝐶𝐶

8 − 5
2

= 4 − 5

 (7) Additive assumption (X + Y)A = XA + YA (x + 3)2 = x2 + 9

In conclusion, the current technology seems to be
feasible for creating a handwritten mathematical
homework marking system. However, using the
information from the confusion matrix alone
cannot guarantee the practical result since there can
be multiple candidates that make valid MEs.
Therefore, we aim at using the context from the
other MEs in the same derivation to determine the
most likely symbol replacement.

It is also possible that the surrounding MEs might
contain some error as well, so the replacement
algorithm is not just fixing each line and compare
to the reliable reference, but every line in the
derivation needs to be processed at the same time.

To narrow the scope of this study, we simulated
only two types of mistake from Table 1, including
the miscalculation of addition and multiplication
(1) and addition or multiplication of exponent (3)
with the problem of polynomial simplification in
our dataset generator.

3. System Architecture
3.1 System Structure
The designed system acquires an image of a
student’s homework that contains a sequence of
handwritten mathematical expressions written in
each line. The system then analyses and returns the
marking output indicating whether each derivation
lines is correct or not, together with short
comments on the type of mistake (if any). The
system components contain 3 modules as shown in
Figure 2.

1. Mathematical expression recognition: includes
line and column segmentation, mathematical
symbol recognition, and structural analysis.

Figure 2

Workflow of the overall system structure

2. Symbols replacement: uses the confusion
matrix from symbol recognition and the fast
ME matching to find an appropriate symbols
replacement that make the ME consistent with
the surrounding MEs.

3. Mathematical error identification:
comprises a computer algebra system and an
expression tree comparison. This module
generates report that identifies the
mismatches for the inconsistent derivation.

3.2 Mathematical Expression Recognition

3.2.1 Line Segmentation

The input image containing multiple lines of
MEs can be segmented by using the histogram
projection into sub-images that contains only
one expression each. Let M be a 2D array
representing the inverted input image (black
background and white foreground) with
dimension m × n. The projection P(M, y) =
∑ 𝑀𝑀𝑀𝑀𝑦𝑦𝑦𝑦,𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1 represents the sum of pixel values

along the yth row. In the binarized image, the
interval of y where P(M, y) = 0 is marked as
space between lines, as shown in Figure 3.

(7) Additive
assumption (X + Y)A = XA + YA (x + 3)2 = x2 + 9

173Information Technology and Control 2023/1/52

In conclusion, the current technology seems to be
feasible for creating a handwritten mathematical
homework marking system. However, using the in-
formation from the confusion matrix alone cannot
guarantee the practical result since there can be mul-
tiple candidates that make valid MEs. Therefore, we
aim at using the context from the other MEs in the
same derivation to determine the most likely symbol
replacement.
It is also possible that the surrounding MEs might
contain some error as well, so the replacement algo-
rithm is not just fixing each line and compare to the
reliable reference, but every line in the derivation
needs to be processed at the same time.
To narrow the scope of this study, we simulated only
two types of mistake from Table 1, including the mis-
calculation of addition and multiplication (1) and
addition or multiplication of exponent (3) with the
problem of polynomial simplification in our dataset
generator.

3. System Architecture
3.1. System Structure

The designed system acquires an image of a student’s
homework that contains a sequence of handwrit-
ten mathematical expressions written in each line.
The system then analyses and returns the marking
output indicating whether each derivation lines is
correct or not, together with short comments on the
type of mistake (if any). The system components
contain 3 modules as shown in Figure 2.
1 Mathematical expression recognition: includes

line and column segmentation, mathematical
symbol recognition, and structural analysis.

2 Symbols replacement: uses the confusion matrix
from symbol recognition and the fast ME match-
ing to find an appropriate symbols replacement
that make the ME consistent with the surround-
ing MEs.

3 Mathematical error identification: comprises a
computer algebra system and an expression tree
comparison. This module generates report that
identifies the mismatches for the inconsistent
derivation.

Figure 2
Workflow of the overall system structure

(3) Add or multiply
exponents

XAXB = XAB x3x2 = x6

(4) Minus sign with
square

−A2 = A2 −52 = 25

(5) Improper distribution A(B + C) = AB + C 3(x + 2) = 3x + 2
(6) Improper cancellation 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝐶𝐶𝐶𝐶

𝐴𝐴𝐴𝐴
= 𝐴𝐴𝐴𝐴 + 𝐶𝐶𝐶𝐶

8 − 5
2

= 4 − 5

 (7) Additive assumption (X + Y)A = XA + YA (x + 3)2 = x2 + 9

In conclusion, the current technology seems to be
feasible for creating a handwritten mathematical
homework marking system. However, using the
information from the confusion matrix alone
cannot guarantee the practical result since there can
be multiple candidates that make valid MEs.
Therefore, we aim at using the context from the
other MEs in the same derivation to determine the
most likely symbol replacement.

It is also possible that the surrounding MEs might
contain some error as well, so the replacement
algorithm is not just fixing each line and compare
to the reliable reference, but every line in the
derivation needs to be processed at the same time.

To narrow the scope of this study, we simulated
only two types of mistake from Table 1, including
the miscalculation of addition and multiplication
(1) and addition or multiplication of exponent (3)
with the problem of polynomial simplification in
our dataset generator.

3. System Architecture
3.1 System Structure
The designed system acquires an image of a
student’s homework that contains a sequence of
handwritten mathematical expressions written in
each line. The system then analyses and returns the
marking output indicating whether each derivation
lines is correct or not, together with short
comments on the type of mistake (if any). The
system components contain 3 modules as shown in
Figure 2.

1. Mathematical expression recognition: includes
line and column segmentation, mathematical
symbol recognition, and structural analysis.

Figure 2

Workflow of the overall system structure

2. Symbols replacement: uses the confusion
matrix from symbol recognition and the fast
ME matching to find an appropriate symbols
replacement that make the ME consistent with
the surrounding MEs.

3. Mathematical error identification:
comprises a computer algebra system and an
expression tree comparison. This module
generates report that identifies the
mismatches for the inconsistent derivation.

3.2 Mathematical Expression Recognition

3.2.1 Line Segmentation

The input image containing multiple lines of
MEs can be segmented by using the histogram
projection into sub-images that contains only
one expression each. Let M be a 2D array
representing the inverted input image (black
background and white foreground) with
dimension m × n. The projection P(M, y) =
∑ 𝑀𝑀𝑀𝑀𝑦𝑦𝑦𝑦,𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1 represents the sum of pixel values

along the yth row. In the binarized image, the
interval of y where P(M, y) = 0 is marked as
space between lines, as shown in Figure 3.

3.2 Mathematical Expression Recognition
3.2.1. Line Segmentation
The input image containing multiple lines of MEs
can be segmented by using the histogram projec-
tion into sub-images that contains only one expres-
sion each. Let M be a 2D array representing the in-
verted input image (black background and white
foreground) with dimension m × n. The projection
P(M, y) =

(3) Add or multiply
exponents

XAXB = XAB x3x2 = x6

(4) Minus sign with
square

−A2 = A2 −52 = 25

(5) Improper distribution A(B + C) = AB + C 3(x + 2) = 3x + 2
(6) Improper cancellation 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝐶𝐶𝐶𝐶

𝐴𝐴𝐴𝐴
= 𝐴𝐴𝐴𝐴 + 𝐶𝐶𝐶𝐶

8 − 5
2

= 4 − 5

 (7) Additive assumption (X + Y)A = XA + YA (x + 3)2 = x2 + 9

In conclusion, the current technology seems to be
feasible for creating a handwritten mathematical
homework marking system. However, using the
information from the confusion matrix alone
cannot guarantee the practical result since there can
be multiple candidates that make valid MEs.
Therefore, we aim at using the context from the
other MEs in the same derivation to determine the
most likely symbol replacement.

It is also possible that the surrounding MEs might
contain some error as well, so the replacement
algorithm is not just fixing each line and compare
to the reliable reference, but every line in the
derivation needs to be processed at the same time.

To narrow the scope of this study, we simulated
only two types of mistake from Table 1, including
the miscalculation of addition and multiplication
(1) and addition or multiplication of exponent (3)
with the problem of polynomial simplification in
our dataset generator.

3. System Architecture
3.1 System Structure
The designed system acquires an image of a
student’s homework that contains a sequence of
handwritten mathematical expressions written in
each line. The system then analyses and returns the
marking output indicating whether each derivation
lines is correct or not, together with short
comments on the type of mistake (if any). The
system components contain 3 modules as shown in
Figure 2.

1. Mathematical expression recognition: includes
line and column segmentation, mathematical
symbol recognition, and structural analysis.

Figure 2

Workflow of the overall system structure

2. Symbols replacement: uses the confusion
matrix from symbol recognition and the fast
ME matching to find an appropriate symbols
replacement that make the ME consistent with
the surrounding MEs.

3. Mathematical error identification:
comprises a computer algebra system and an
expression tree comparison. This module
generates report that identifies the
mismatches for the inconsistent derivation.

3.2 Mathematical Expression Recognition

3.2.1 Line Segmentation

The input image containing multiple lines of
MEs can be segmented by using the histogram
projection into sub-images that contains only
one expression each. Let M be a 2D array
representing the inverted input image (black
background and white foreground) with
dimension m × n. The projection P(M, y) =
∑ 𝑀𝑀𝑀𝑀𝑦𝑦𝑦𝑦,𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1 represents the sum of pixel values

along the yth row. In the binarized image, the
interval of y where P(M, y) = 0 is marked as
space between lines, as shown in Figure 3.

 represents the sum of pixel val-
ues along the yth row. In the binarized image, the in-

Information Technology and Control 2023/1/52174

terval of y where P(M, y) = 0 is marked as space be-
tween lines, as shown in Figure 3.

Figure 3
Pixel histogram shows image with 3 lines and its projection

Figure 3
Pixel histogram shows image with 3 lines and its
projection

3.2.2 Mathematical Symbol Recognition

To extract foreground images of symbols from the
background, we used the Connected- Component
command from opencv library with the default 8-
way connectivity configuration. Each of the
connected components is recognized by a
convolutional neural network (CNN) trained by
the dataset of mathematical symbols from
CROHME and MNIST. The original dataset
contains 82 classes. However, only 32 classes
consisting of digits, binary operators, parenthesis,
and variables are included in this study. Some
examples of symbol images are shown in Figure 4.

The training set is augmented by the modified
images using dilation with the circular kernel of
radius ranging from 1 to 5 pixels and rotation
ranging from -10 to 10 degree to prevent the
overfitting.

Figure 4

Sample images of symbols +, x, a, 7, 2, (, and) from the
dataset

We used the CNN library from TensorFlow. The
detailed structure of the CNN is as follows:
• Input size 45×45 pixels
• Convolutional layer with 128 features, kernel

size 3 × 3, ReLU activation function
• Max pooling with pool size 2 × 2
• Another convolutional layer with 128 features,

kernel size 3 × 3, ReLU activation function
• Dropout rate 0.25
• Flatten layer
• Dense layer with 256 nodes, ReLU activation

function.
• Output layer with 32 nodes (equal to the

number of symbols), softmax activation
function

The first few highest score (up to 5) candidates
from CNN are selected. The list of candidates

together with the coordinates are brought to
the structural analysis.

3.2.3 Structural Analysis

Since the scope of this study is just polynomial
simplification, the structural analysis needs to
determine the main line and superscript only.
Symbols with the lowest pixel located above
the center of the main line will be counted as
a superscript. The more complicated
structural analysis can be used when other
types of mathematical expressions are
included in the future.

3.3 Symbols Replacement

As mentioned in the introduction, the
inconsistent MEs between lines come from
MER misrecognition or the calculation
mistake written in the source image. If the ME
from the image is incorrect at the first place,
the MER error will not affect the marking
result because the derivation is incorrect
anyway. On the other hand, if the ME from
the image is correct, the MER error can cause
the false negative in the marking result. The
aim of this process is to find the symbols
replacement where the MER output is
misrecognized in order to make the longest
sequence of equivalent MEs possible.

We first setup the notation for the symbols
replacement as follows:

Mathematical symbol (𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙): the ith symbol from
line l, including numbers, mathematical
constant, variables, operators, and brackets.

Raw string from line l (Rl): consists of
symbols 𝑠𝑠𝑠𝑠1𝑙𝑙𝑙𝑙 , 𝑠𝑠𝑠𝑠2𝑙𝑙𝑙𝑙 , 𝑠𝑠𝑠𝑠3𝑙𝑙𝑙𝑙 , . . . , 𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑙𝑙𝑙𝑙 where n is the length
of the string.
Rl is not necessary to be a valid mathematical
expression since the misrecognized symbols
can be fixed later.

Replacement mapping (Ml : 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙 → 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙∗):
mapping between the old symbols and their
replacement at each position. The depth of
replacement (d) in line l is the number of index
i where 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙 ≠ 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙∗ . The mapping for every line
altogether is denoted by M = (M1,M2, ...,ML).

Valid expression (El), the string of symbols
from line l that is parsable by the context free
grammar of the standard mathematical
expression. El can be converted into a
corresponding expression tree Tl.

Modified string (𝑀𝑀𝑀𝑀𝑙𝑙𝑙𝑙(𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙)) is the result of
applying a replacement Ml to the raw string
Rl. If 𝑀𝑀𝑀𝑀𝑙𝑙𝑙𝑙(𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙) is parsable, then 𝐸𝐸𝐸𝐸𝑙𝑙𝑙𝑙 = 𝑀𝑀𝑀𝑀𝑙𝑙𝑙𝑙(𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙) .

3.2.2. Mathematical Symbol Recognition
To extract foreground images of symbols from the
background, we used the Connected-Component
command from opencv library with the default 8-way
connectivity configuration. Each of the connected
components is recognized by a convolutional neural
network (CNN) trained by the dataset of mathemati-
cal symbols from CROHME and MNIST. The original
dataset contains 82 classes. However, only 32 classes
consisting of digits, binary operators, parenthesis,
and variables are included in this study. Some exam-
ples of symbol images are shown in Figure 4.

Figure 4
Sample images of symbols +, x, a, 7, 2, (, and) from the dataset

Figure 3
Pixel histogram shows image with 3 lines and its
projection

3.2.2 Mathematical Symbol Recognition

To extract foreground images of symbols from the
background, we used the Connected- Component
command from opencv library with the default 8-
way connectivity configuration. Each of the
connected components is recognized by a
convolutional neural network (CNN) trained by
the dataset of mathematical symbols from
CROHME and MNIST. The original dataset
contains 82 classes. However, only 32 classes
consisting of digits, binary operators, parenthesis,
and variables are included in this study. Some
examples of symbol images are shown in Figure 4.

The training set is augmented by the modified
images using dilation with the circular kernel of
radius ranging from 1 to 5 pixels and rotation
ranging from -10 to 10 degree to prevent the
overfitting.

Figure 4

Sample images of symbols +, x, a, 7, 2, (, and) from the
dataset

We used the CNN library from TensorFlow. The
detailed structure of the CNN is as follows:
• Input size 45×45 pixels
• Convolutional layer with 128 features, kernel

size 3 × 3, ReLU activation function
• Max pooling with pool size 2 × 2
• Another convolutional layer with 128 features,

kernel size 3 × 3, ReLU activation function
• Dropout rate 0.25
• Flatten layer
• Dense layer with 256 nodes, ReLU activation

function.
• Output layer with 32 nodes (equal to the

number of symbols), softmax activation
function

The first few highest score (up to 5) candidates
from CNN are selected. The list of candidates

together with the coordinates are brought to
the structural analysis.

3.2.3 Structural Analysis

Since the scope of this study is just polynomial
simplification, the structural analysis needs to
determine the main line and superscript only.
Symbols with the lowest pixel located above
the center of the main line will be counted as
a superscript. The more complicated
structural analysis can be used when other
types of mathematical expressions are
included in the future.

3.3 Symbols Replacement

As mentioned in the introduction, the
inconsistent MEs between lines come from
MER misrecognition or the calculation
mistake written in the source image. If the ME
from the image is incorrect at the first place,
the MER error will not affect the marking
result because the derivation is incorrect
anyway. On the other hand, if the ME from
the image is correct, the MER error can cause
the false negative in the marking result. The
aim of this process is to find the symbols
replacement where the MER output is
misrecognized in order to make the longest
sequence of equivalent MEs possible.

We first setup the notation for the symbols
replacement as follows:

Mathematical symbol (𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙): the ith symbol from
line l, including numbers, mathematical
constant, variables, operators, and brackets.

Raw string from line l (Rl): consists of
symbols 𝑠𝑠𝑠𝑠1𝑙𝑙𝑙𝑙 , 𝑠𝑠𝑠𝑠2𝑙𝑙𝑙𝑙 , 𝑠𝑠𝑠𝑠3𝑙𝑙𝑙𝑙 , . . . , 𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑙𝑙𝑙𝑙 where n is the length
of the string.
Rl is not necessary to be a valid mathematical
expression since the misrecognized symbols
can be fixed later.

Replacement mapping (Ml : 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙 → 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙∗):
mapping between the old symbols and their
replacement at each position. The depth of
replacement (d) in line l is the number of index
i where 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙 ≠ 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙∗ . The mapping for every line
altogether is denoted by M = (M1,M2, ...,ML).

Valid expression (El), the string of symbols
from line l that is parsable by the context free
grammar of the standard mathematical
expression. El can be converted into a
corresponding expression tree Tl.

Modified string (𝑀𝑀𝑀𝑀𝑙𝑙𝑙𝑙(𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙)) is the result of
applying a replacement Ml to the raw string
Rl. If 𝑀𝑀𝑀𝑀𝑙𝑙𝑙𝑙(𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙) is parsable, then 𝐸𝐸𝐸𝐸𝑙𝑙𝑙𝑙 = 𝑀𝑀𝑀𝑀𝑙𝑙𝑙𝑙(𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙) .

The training set is augmented by the modified images
using dilation with the circular kernel of radius rang-
ing from 1 to 5 pixels and rotation ranging from -10 to
10 degree to prevent the overfitting.
We used the CNN library from TensorFlow. The de-
tailed structure of the CNN is as follows:
 _ Input size 45×45 pixels
 _ Convolutional layer with 128 features, kernel size

3 × 3, ReLU activation function
 _ Max pooling with pool size 2 × 2
 _ Another convolutional layer with 128 features,

kernel size 3 × 3, ReLU activation function
 _ Dropout rate 0.25

 _ Flatten layer
 _ Dense layer with 256 nodes, ReLU activation

function.
 _ Output layer with 32 nodes (equal to the number of

symbols), softmax activation function

The first few highest score (up to 5) candidates from
CNN are selected. The list of candidates together with
the coordinates are brought to the structural analysis.

3.2.3. Structural Analysis
Since the scope of this study is just polynomial sim-
plification, the structural analysis needs to determine
the main line and superscript only. Symbols with the
lowest pixel located above the center of the main line
will be counted as a superscript. The more complicat-
ed structural analysis can be used when other types of
mathematical expressions are included in the future.

3.3. Symbols Replacement

As mentioned in the introduction, the inconsistent
MEs between lines come from MER misrecognition
or the calculation mistake written in the source im-
age. If the ME from the image is incorrect at the first
place, the MER error will not affect the marking re-
sult because the derivation is incorrect anyway. On
the other hand, if the ME from the image is correct,
the MER error can cause the false negative in the
marking result. The aim of this process is to find the
symbols replacement where the MER output is mis-
recognized in order to make the longest sequence of
equivalent MEs possible.
We first setup the notation for the symbols replace-
ment as follows:
Mathematical symbol (si

l): the ith symbol from line
l, including numbers, mathematical constant, vari-
ables, operators, and brackets.
Raw string from line l (Rl): consists of symbols
s1

l, s2
l, s3

l, . . . , sn
l where n is the length of the string.

Rl is not necessary to be a valid mathematical expres-
sion since the misrecognized symbols can be fixed
later.
Replacement mapping (Ml : si

l → si
l*): mapping be-

tween the old symbols and their replacement at each
position. The depth of replacement (d) in line l is the
number of index i where si

l ≠ si
l*. The mapping for every

line altogether is denoted by M = (M1,M2, ...,ML).

175Information Technology and Control 2023/1/52

Valid expression (El), the string of symbols from line
l that is parsable by the context free grammar of the
standard mathematical expression. El can be convert-
ed into a corresponding expression tree Tl.
Modified string (Ml(Ri

l)) is the result of applying a re-
placement Ml to the raw string Rl. If Ml(Ri

l) is parsable,
then El = Ml(Ri

l). Otherwise, El does not exist.
Mathematical equivalent: a pair of two distinct
valid expressions El1 and El2 is said to be mathemati-
cal equivalent if the difference between two of them
can be simplified to zero. The equivalent expressions
always return the same output when we plug in the
same value(s) of the variable(s).
Let K(M,R) be the set of equivalent MEs after replac-
ing the sequence of raw string R = [R1, R2, ..., Rm] by
the mapping M. The purpose is to find the mapping M
that maximizes the number of equivalent MEs after
the symbols replacement, i.e., argmaxM|K(M,R)|.
Alternative symbols in the replacement mapping
comes from the candidate from the frequently mis-
recognized symbols in the confusion matrix (as some
examples are shown in Table 2) and the lower rank
recognition candidates from MER for that particular
symbol. For each line of raw string, there can be more
than one replacement that generate valid expressions.
Therefore, checking the consistency of MEs through-
out all combination of valid expression between lines
is inevitable. The next goal is to make this process as
fast as possible.

3.4. Fast Pruning and Exact MEs Sequence
Matching
Comparison of MEs requires multiple loops for
checking whether the expression tree simplification
simp(El1 − El2) equals 0 or not, which is computation-
ally intensive. Suppose there are m lines of derivation
and p1, p2, ... , pm be the number of valid replacement
mappings that make valid MEs, the total number
of pairwise expression tree comparison trials are

Table 2
Frequently misrecognized symbol pairs from the
confusion matrix

Symbol Misrecognized as Symbol Misrecognized as

a 2 4 a, y, +

d b 9 a

z 2 + 4

2 z, a c (

7) y x, 4

) 1, 7 1), (, 7

b 6 6 b

x y (1, c

0 a ,), 1

Otherwise, El does not exist.

Mathematical equivalent: a pair of two distinct
valid expressions El1 and El2 is said to be
mathematical equivalent if the difference between
two of them can be simplified to zero. The
equivalent expressions always return the same
output when we plug in the same value(s) of the
variable(s).

Let K(M,R) be the set of equivalent MEs after
replacing the sequence of raw string R = [R1, R2, ...,
Rm] by the mapping M. The purpose is to find the
mapping M that maximizes the number of
equivalent MEs after the symbols replacement, i.e.,
argmaxM|K(M,R)|.

Alternative symbols in the replacement mapping
comes from the candidate from the frequently
misrecognized symbols in the confusion matrix (as
some examples are shown in Table 2) and the lower
rank recognition candidates from MER for that
particular symbol. For each line of raw string, there
can be more than one replacement that generate
valid expressions. Therefore, checking the
consistency of MEs throughout all combination of
valid expression between lines is inevitable. The
next goal is to make this process as fast as possible.

3.4 Fast Pruning and Exact MEs Sequence
Matching

Comparison of MEs requires multiple loops for
checking whether the expression tree simplification
simp(El1 − El2) equals 0 or not, which is
computationally intensive. Suppose there are m
lines of derivation and p1, p2, ... , pm be the number
of valid replacement mappings that make valid
MEs, the total number of pairwise expression tree
comparison trials are ∑ 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝+1𝑚𝑚𝑚𝑚−1

𝑖𝑖𝑖𝑖=1 , which is
impractical in terms of CPU running time.

Instead of using pairwise expression comparison, it
is much more efficient to prune out the unusable
MEs before applying the simplification of
expression trees. We use the fact that the equivalent
expressions have the same output value when we
plug in the same values of the variables.

Table 2

Frequently misrecognized symbol pairs from the
confusion matrix

Symbol Misrecognized
as

 Symbol Misrecognized
as

a 2 4 a, y, +

d b 9 a

z 2 + 4

2 z, a c (

7) y x, 4

) 1, 7 1), (, 7

b 6 6 b

x y (1, c

0 a ,), 1

Figure 5

Hashing and candidate selection

We substitute 2 randomized constants per
variable and use the numerical output as the
hash values representing the ME. With the
hashing, the potential equivalent expressions
between lines will be chosen without too
much effort by finding the identical hash
values between lines. Only a few pairs of
expression need to be verified by the
expression tree simplification. This method
takes ∑ 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚

𝑖𝑖𝑖𝑖=1 loops of evaluating the hashes,

Figure 5
Hashing and candidate selection

Information Technology and Control 2023/1/52176

Otherwise, El does not exist.

Mathematical equivalent: a pair of two distinct
valid expressions El1 and El2 is said to be
mathematical equivalent if the difference between
two of them can be simplified to zero. The
equivalent expressions always return the same
output when we plug in the same value(s) of the
variable(s).

Let K(M,R) be the set of equivalent MEs after
replacing the sequence of raw string R = [R1, R2, ...,
Rm] by the mapping M. The purpose is to find the
mapping M that maximizes the number of
equivalent MEs after the symbols replacement, i.e.,
argmaxM|K(M,R)|.

Alternative symbols in the replacement mapping
comes from the candidate from the frequently
misrecognized symbols in the confusion matrix (as
some examples are shown in Table 2) and the lower
rank recognition candidates from MER for that
particular symbol. For each line of raw string, there
can be more than one replacement that generate
valid expressions. Therefore, checking the
consistency of MEs throughout all combination of
valid expression between lines is inevitable. The
next goal is to make this process as fast as possible.

3.4 Fast Pruning and Exact MEs Sequence
Matching

Comparison of MEs requires multiple loops for
checking whether the expression tree simplification
simp(El1 − El2) equals 0 or not, which is
computationally intensive. Suppose there are m
lines of derivation and p1, p2, ... , pm be the number
of valid replacement mappings that make valid
MEs, the total number of pairwise expression tree
comparison trials are ∑ 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝+1𝑚𝑚𝑚𝑚−1

𝑖𝑖𝑖𝑖=1 , which is
impractical in terms of CPU running time.

Instead of using pairwise expression comparison, it
is much more efficient to prune out the unusable
MEs before applying the simplification of
expression trees. We use the fact that the equivalent
expressions have the same output value when we
plug in the same values of the variables.

Table 2

Frequently misrecognized symbol pairs from the
confusion matrix

Symbol Misrecognized
as

 Symbol Misrecognized
as

a 2 4 a, y, +

d b 9 a

z 2 + 4

2 z, a c (

7) y x, 4

) 1, 7 1), (, 7

b 6 6 b

x y (1, c

0 a ,), 1

Figure 5

Hashing and candidate selection

We substitute 2 randomized constants per
variable and use the numerical output as the
hash values representing the ME. With the
hashing, the potential equivalent expressions
between lines will be chosen without too
much effort by finding the identical hash
values between lines. Only a few pairs of
expression need to be verified by the
expression tree simplification. This method
takes ∑ 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚

𝑖𝑖𝑖𝑖=1 loops of evaluating the hashes,

, which is impractical in terms of CPU
running time.
Instead of using pairwise expression comparison, it is
much more efficient to prune out the unusable MEs
before applying the simplification of expression trees.
We use the fact that the equivalent expressions have
the same output value when we plug in the same val-
ues of the variables.
We substitute 2 randomized constants per variable
and use the numerical output as the hash values rep-
resenting the ME. With the hashing, the potential
equivalent expressions between lines will be chosen
without too much effort by finding the identical hash
values between lines. Only a few pairs of expression
need to be verified by the expression tree simplifica-
tion. This method takes

Otherwise, El does not exist.

Mathematical equivalent: a pair of two distinct
valid expressions El1 and El2 is said to be
mathematical equivalent if the difference between
two of them can be simplified to zero. The
equivalent expressions always return the same
output when we plug in the same value(s) of the
variable(s).

Let K(M,R) be the set of equivalent MEs after
replacing the sequence of raw string R = [R1, R2, ...,
Rm] by the mapping M. The purpose is to find the
mapping M that maximizes the number of
equivalent MEs after the symbols replacement, i.e.,
argmaxM|K(M,R)|.

Alternative symbols in the replacement mapping
comes from the candidate from the frequently
misrecognized symbols in the confusion matrix (as
some examples are shown in Table 2) and the lower
rank recognition candidates from MER for that
particular symbol. For each line of raw string, there
can be more than one replacement that generate
valid expressions. Therefore, checking the
consistency of MEs throughout all combination of
valid expression between lines is inevitable. The
next goal is to make this process as fast as possible.

3.4 Fast Pruning and Exact MEs Sequence
Matching

Comparison of MEs requires multiple loops for
checking whether the expression tree simplification
simp(El1 − El2) equals 0 or not, which is
computationally intensive. Suppose there are m
lines of derivation and p1, p2, ... , pm be the number
of valid replacement mappings that make valid
MEs, the total number of pairwise expression tree
comparison trials are ∑ 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝+1𝑚𝑚𝑚𝑚−1

𝑖𝑖𝑖𝑖=1 , which is
impractical in terms of CPU running time.

Instead of using pairwise expression comparison, it
is much more efficient to prune out the unusable
MEs before applying the simplification of
expression trees. We use the fact that the equivalent
expressions have the same output value when we
plug in the same values of the variables.

Table 2

Frequently misrecognized symbol pairs from the
confusion matrix

Symbol Misrecognized
as

 Symbol Misrecognized
as

a 2 4 a, y, +

d b 9 a

z 2 + 4

2 z, a c (

7) y x, 4

) 1, 7 1), (, 7

b 6 6 b

x y (1, c

0 a ,), 1

Figure 5

Hashing and candidate selection

We substitute 2 randomized constants per
variable and use the numerical output as the
hash values representing the ME. With the
hashing, the potential equivalent expressions
between lines will be chosen without too
much effort by finding the identical hash
values between lines. Only a few pairs of
expression need to be verified by the
expression tree simplification. This method
takes ∑ 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚

𝑖𝑖𝑖𝑖=1 loops of evaluating the hashes, loops of evaluating the
hashes, plus a much less intensive processes of the ex-
pression tree comparison. Figure 5 shows an example
of finding hash values of all possible MEs among all 3
lines. The only identical hash values are (-524, 15), so
there is only one candidate from each line to be veri-
fied.

3.5. Steps for the MEs Sequence Matching
It is not always the case that exact match throughout
the derivation can be found from the hashing process.
The following steps guarantee to return the longest
equivalent MEs after the symbols replacement. The
flowchart version of this algorithm can also be found
in Figure 6.
Step1: Obtain the first candidate from each line. Parse
string in each line and check the equivalence between
any two consecutive lines.
 _ If they are all equivalent, i.e., R1, . . . ,Rm can be

parsed into valid expressions E1, . . . ,Em where E1 =
E2 = E3 = . . . = Em, the matching process is satisfied
and terminated here. This is the ideal case where
symbols replacement is not necessary.

 _ If only some but not all expressions are equivalent,
put them in the confident list. Then skip to the last
step.

 _ If none of the expressions are equal, go to step 2.

Step 2: None of the raw strings are parsable or equiv-
alent to the surrounding lines at all,
 _ Use all possible candidates from the confusion

matrix and lower rank recognition candidates to
generate the replacement map for each line of raw

Figure 6
Flowchart for MEs sequence matching

plus a much less intensive processes of the
expression tree comparison. Figure 5 shows an
example of finding hash values of all possible MEs
among all 3 lines. The only identical hash values are
(-524, 15), so there is only one candidate from each
line to be verified.

3.5 Steps for the MEs Sequence Matching

It is not always the case that exact match
throughout the derivation can be found from the
hashing process. The following steps guarantee to
return the longest equivalent MEs after the symbols
replacement. The flowchart version of this
algorithm can also be found in Figure 6.

Step1: Obtain the first candidate from each line.
Parse string in each line and check the equivalence
between any two consecutive lines.

• If they are all equivalent, i.e., R1, . . . ,Rm can be
parsed into valid expressions E1, . . . ,Em where
E1 = E2 = E3 = . . . = Em, the matching process is
satisfied and terminated here. This is the ideal
case where symbols replacement is not
necessary.

• If only some but not all expressions are
equivalent, put them in the confident list. Then
skip to the last step.

• If none of the expressions are equal, go to step
2.

Step 2: None of the raw strings are parsable or
equivalent to the surrounding lines at all,

• Use all possible candidates from the confusion
matrix and lower rank recognition candidates
to generate the replacement map for each line
of raw string, started from depth = 1 and
increasing until reaching the maximum depth.

• Find the longest equivalent expression that
starts from the first line (or closest to the first
line if there are more than one sequence with
the same length). Use the hashing mentioned
earlier for the fast pruning of non-equivalent
pairs, then simplify the cancellation of
expressions only for a few remaining pairs.

• If there are some replacements that generate
the exact match throughout every lines of
derivation, return the modified MEs
immediately. Otherwise, keep increasing the
depth and repeat the symbols replacement
until reaching the maximum value. If there are
some raw strings that do not match any other
line, put all the exact match in the confident
list.

• Go to step 3.

Step 3: Fill the missing lines in the confident
list with the most likely MEs.

• If the confident list is still empty in this
step, choose a valid expression generated
from a replacement mapping for the first
line.

• Fill the missing lines by the valid ME
(generated from the replacement
mapping) that is similar to the previous
confident expression the most. Use the
expression tree comparison in the next
section to evaluate the similarity.

Figure 6
Flowchart for MEs sequence matching

Figure 7 (left) shows an example of an input
image, together with some incorrect MER
outputs (middle). After the MEs matching, the
longest equivalent ME sequence can be
obtained, as shown in Figure 7 (right). The
expression 15𝑏𝑏𝑏𝑏2 + 26 + 9 was modified into
(5𝑏𝑏𝑏𝑏2 + 2𝑏𝑏𝑏𝑏 + 9) in order to be consistent to the
surrounding expressions.

string, started from depth = 1 and increasing until
reaching the maximum depth.

 _ Find the longest equivalent expression that starts
from the first line (or closest to the first line if
there are more than one sequence with the same
length). Use the hashing mentioned earlier for the
fast pruning of non-equivalent pairs, then simplify
the cancellation of expressions only for a few
remaining pairs.

 _ If there are some replacements that generate the
exact match throughout every lines of derivation,
return the modified MEs immediately. Otherwise,
keep increasing the depth and repeat the symbols

177Information Technology and Control 2023/1/52

replacement until reaching the maximum value. If
there are some raw strings that do not match any
other line, put all the exact match in the confident
list.

 _ Go to step 3.

Step 3: Fill the missing lines in the confident list with
the most likely MEs.
 _ If the confident list is still empty in this step, choose

a valid expression generated from a replacement
mapping for the first line.

 _ Fill the missing lines by the valid ME (generated
from the replacement mapping) that is similar to
the previous confident expression the most. Use
the expression tree comparison in the next section
to evaluate the similarity.

Figure 7 (left) shows an example of an input image,
together with some incorrect MER outputs (mid-
dle). After the MEs matching, the longest equivalent
ME sequence can be obtained, as shown in Figure 7
(right). The expression 15b2 + 26 + 9 was modified into
(5b2 + 2b + 9) in order to be consistent to the surround-
ing expressions.

Figure 7
Derivation image (left), with faulty expression from
recognition output (middle), and the corrected expression
from symbol substitution (right)

Figure 7
Derivation image (left), with faulty expression from
recognition output (middle), and the corrected
expression from symbol substitution (right)

15b^{2}+26+9)-(9b^{2}-9b)

9+(2+9)b+(5-9)b^{2}

9+11b-4b^{2}

(5b^{2}+2b+9)-(9b^{2}-9b)

9+(2+9)b+(5-9)b^{2}

9+11b-4b^{2}

3.6 Expression Tree Comparison

Expression tree comparison is the process to
measure the similarity score between two
simplified trees. A pair of expression trees with
similar terms will get the similarity closer to 1 than
the pair of trees that contains a lot of distinctions.

Let Ti and Tj be the expression trees of the
expression Ei and Ej from line i and j of the
derivation, respectively. To find out the different
terms between two MEs, terms in the MEs that
have been matched correctly (simplified difference
returns zero) are removed from both trees. The
algorithm loops over 𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 and 𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠

𝑗𝑗𝑗𝑗, which are children
nodes of the Ti.root and Tj.root, respectively. If there
are subtrees 𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 and 𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠

𝑗𝑗𝑗𝑗 , rooted at 𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 and 𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠
𝑗𝑗𝑗𝑗 , such

that the simplification of 𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 and 𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠
𝑗𝑗𝑗𝑗 are identical,

both 𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 and 𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠
𝑗𝑗𝑗𝑗 are removed. The algorithm recurs

until there is none of identical subtree left in Ti and
Tj.

The similarity calculation is based on the intuition
that similar subexpressions should contain similar
sets of terms, functions, or constant.

Figure 8 shows an example of the tree comparison
and similarity score calculation. While the
cancellation was traced downward from the entire
ME to each component, the similarity calculation
started from the smallest term and are accumulated
from bottom up. The mismatches were shown at
the leaf nodes where score = 0 and will be reported
in the output. Moreover, the similarity scores can
be used for selecting the most likely replacement
mapping for the raw string that has no exact match
with any other line as well.
Figure 8

Tree comparison between x2 + 3x − 2 and x2+ 2x − 3.

4. Results
4.1 Derivation Image Generator

Since there is none of available mathematical
derivation dataset labelled with the type of
mistakes, we created our own dataset for this
study.

Similar to the pattern generation that help
improve the performance of MER [13], the
derivation images were generated by
arranging the separated symbol images
obtained from https://www.kaggle.com/
datasets/xainano/handwrittenmathsymbols
that was parsed, extracted and modified from
CROHME dataset, plus digits images from
MNIST datasets so that we can manipulate the
mistake and the correctness for each line in
the derivation as desired. Among 300,000
symbol images, around 20% are used for
derivation dataset generator, while the
remaining 80% are reserved for training MER.

The process started with generating templates
for polynomial addition, subtraction, and
multiplication. Addition and subtraction
templates contain 3 lines: the addition or
subtraction of two polynomials; grouping the
monomial coefficient of the same degree; and
the simplified solution. Similarly, the
multiplication template contains 4 lines. The
additional line is where the multiplication
derivation requires the polynomial expansion
before grouping terms.

Some mistakes were intentionally added to
the generated template of monomial addition
and multiplication according to the types of
mistakes in Table 1. First, the addition
symbols were randomly replaced by
subtraction, and vice versa. Next, the sums of
power were randomly replaced by the
product of power.

The mistakes were randomly added to the
expressions at rate 5% of the total + and - signs

3.6. Expression Tree Comparison
Expression tree comparison is the process to measure
the similarity score between two simplified trees. A
pair of expression trees with similar terms will get the
similarity closer to 1 than the pair of trees that con-
tains a lot of distinctions.
Let Ti and Tj be the expression trees of the expression
Ei and Ej from line i and j of the derivation, respective-
ly. To find out the different terms between two MEs,
terms in the MEs that have been matched correctly
(simplified difference returns zero) are removed from
both trees. The algorithm loops over Cr

i and Cs
j, which

are children nodes of the Ti.root and Tj.root, respec-
tively. If there are subtrees Tr

i and Ts
j, rooted at Cr

i and

Cs
j, such that the simplification of Tr

i and Ts
j are identi-

cal, both Tr
i and Ts

j are removed. The algorithm recurs
until there is none of identical subtree left in Ti and Tj.
The similarity calculation is based on the intuition
that similar subexpressions should contain similar
sets of terms, functions, or constant.
Figure 8 shows an example of the tree comparison
and similarity score calculation. While the cancella-
tion was traced downward from the entire ME to each
component, the similarity calculation started from the
smallest term and are accumulated from bottom up.
The mismatches were shown at the leaf nodes where
score = 0 and will be reported in the output. Moreover,
the similarity scores can be used for selecting the most
likely replacement mapping for the raw string that has
no exact match with any other line as well.

Figure 8
Tree comparison between x2 + 3x − 2 and x2+ 2x − 3

Figure 7
Derivation image (left), with faulty expression from
recognition output (middle), and the corrected
expression from symbol substitution (right)

15b^{2}+26+9)-(9b^{2}-9b)

9+(2+9)b+(5-9)b^{2}

9+11b-4b^{2}

(5b^{2}+2b+9)-(9b^{2}-9b)

9+(2+9)b+(5-9)b^{2}

9+11b-4b^{2}

3.6 Expression Tree Comparison

Expression tree comparison is the process to
measure the similarity score between two
simplified trees. A pair of expression trees with
similar terms will get the similarity closer to 1 than
the pair of trees that contains a lot of distinctions.

Let Ti and Tj be the expression trees of the
expression Ei and Ej from line i and j of the
derivation, respectively. To find out the different
terms between two MEs, terms in the MEs that
have been matched correctly (simplified difference
returns zero) are removed from both trees. The
algorithm loops over 𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 and 𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠

𝑗𝑗𝑗𝑗, which are children
nodes of the Ti.root and Tj.root, respectively. If there
are subtrees 𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 and 𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠

𝑗𝑗𝑗𝑗 , rooted at 𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 and 𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠
𝑗𝑗𝑗𝑗 , such

that the simplification of 𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 and 𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠
𝑗𝑗𝑗𝑗 are identical,

both 𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 and 𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠
𝑗𝑗𝑗𝑗 are removed. The algorithm recurs

until there is none of identical subtree left in Ti and
Tj.

The similarity calculation is based on the intuition
that similar subexpressions should contain similar
sets of terms, functions, or constant.

Figure 8 shows an example of the tree comparison
and similarity score calculation. While the
cancellation was traced downward from the entire
ME to each component, the similarity calculation
started from the smallest term and are accumulated
from bottom up. The mismatches were shown at
the leaf nodes where score = 0 and will be reported
in the output. Moreover, the similarity scores can
be used for selecting the most likely replacement
mapping for the raw string that has no exact match
with any other line as well.
Figure 8

Tree comparison between x2 + 3x − 2 and x2+ 2x − 3.

4. Results
4.1 Derivation Image Generator

Since there is none of available mathematical
derivation dataset labelled with the type of
mistakes, we created our own dataset for this
study.

Similar to the pattern generation that help
improve the performance of MER [13], the
derivation images were generated by
arranging the separated symbol images
obtained from https://www.kaggle.com/
datasets/xainano/handwrittenmathsymbols
that was parsed, extracted and modified from
CROHME dataset, plus digits images from
MNIST datasets so that we can manipulate the
mistake and the correctness for each line in
the derivation as desired. Among 300,000
symbol images, around 20% are used for
derivation dataset generator, while the
remaining 80% are reserved for training MER.

The process started with generating templates
for polynomial addition, subtraction, and
multiplication. Addition and subtraction
templates contain 3 lines: the addition or
subtraction of two polynomials; grouping the
monomial coefficient of the same degree; and
the simplified solution. Similarly, the
multiplication template contains 4 lines. The
additional line is where the multiplication
derivation requires the polynomial expansion
before grouping terms.

Some mistakes were intentionally added to
the generated template of monomial addition
and multiplication according to the types of
mistakes in Table 1. First, the addition
symbols were randomly replaced by
subtraction, and vice versa. Next, the sums of
power were randomly replaced by the
product of power.

The mistakes were randomly added to the
expressions at rate 5% of the total + and - signs

4. Results
4.1. Derivation Image Generator
Since there is none of available mathematical deri-
vation dataset labelled with the type of mistakes, we
created our own dataset for this study.
Similar to the pattern generation that help improve
the performance of MER [13], the derivation images
were generated by arranging the separated symbol im-
ages obtained from https://www.kaggle.com/atasets/
xainano/handwrittenmathsymbols that was parsed,
extracted and modified from CROHME dataset, plus

Information Technology and Control 2023/1/52178

digits images from MNIST datasets so that we can
manipulate the mistake and the correctness for each
line in the derivation as desired. Among 300,000 sym-
bol images, around 20% are used for derivation data-
set generator, while the remaining 80% are reserved
for training MER.
The process started with generating templates for
polynomial addition, subtraction, and multiplica-
tion. Addition and subtraction templates contain 3
lines: the addition or subtraction of two polynomials;
grouping the monomial coefficient of the same de-
gree; and the simplified solution. Similarly, the mul-
tiplication template contains 4 lines. The additional
line is where the multiplication derivation requires
the polynomial expansion before grouping terms.
Some mistakes were intentionally added to the gen-
erated template of monomial addition and multipli-
cation according to the types of mistakes in Table 1.
First, the addition symbols were randomly replaced
by subtraction, and vice versa. Next, the sums of
power were randomly replaced by the product of
power.
The mistakes were randomly added to the expres-
sions at rate 5% of the total + and - signs and mono-
mial multiplication. The ground truth, consisting of
the sequence of generated MEs themselves and the
correctness for each step of derivation, were saved to
a CSV file as shown in Figure 9.

Figure 9
Ground truth of the addition/subtraction dataset

Figure 10
Computer-generated images for polynomial subtraction
and multiplication derivation, with incorrect steps

and monomial multiplication. The ground truth,
consisting of the sequence of generated MEs
themselves and the correctness for each step of
derivation, were saved to a CSV file as shown in
Figure 9.

After the ground truth was generated, symbol
images were picked up and rearranged to match
each of the expressions. The thickness and size of
the symbols were randomized. Figure 10 shows
examples of the generated images with incorrect
derivations. There are 3,000 derivation images for
polynomial addition and subtraction and another
3,000 images for polynomial multiplication being
generated, as some examples shown in Figure 11.

Figure 9
Ground truth of the addition/subtraction dataset

Figure 10
Computer-generated images for polynomial subtraction
and multiplication derivation, with incorrect steps

(−6x2 + 3) − (2x − 7)

= (3 + 7) − 6x2 + 2x

= 10 − 6x2 + 2x

Incorrect

Correct

(7y2 − 3y − 1)(−9y + 2)

= −2 + 9y − 6y + 27y2 + 9y2 − 63y3

= −2 + (9 − 6)y + (27 + 9)y2 − 63y3

= −2 + 3y + 36y2 − 63y3

Incorrect

Correct

Correct

4.2 What Should Be Marked as “correct”?

Correctness can be defined from different
perspectives: full credit for the entire derivation, or
partial credit for each step of derivation. We take
both of them into our evaluation. Giving full credit
for the entire derivation is straightforward. Any
presence of incorrect step in the derivation makes
the whole thing incorrect. On the other hand, to
give partial credits to student, correctness should
be considered between two consecutive lines. For
polynomial addition and subtraction with 3 lines,
there are two transitions between lines 1 and 2, and
between lines 2 and 3. Similarly for the
multiplication with 4 lines, there are 3 transitions to
evaluate.

Figure 11
Sample of generated derivation images in
addition/subtraction and multiplication dataset

4.3 Experimental Results

Tables 3 and 4 contains the number of correct
partial credit marking, correct expression
after the replacement when compared to the
ground truth, and the CPU time for grading
3000 derivations in every setting. The
maximum depth varies from 0 to 6. When
maximum depth is 0, only step 1 in the
expression sequence matching was utilized,
i.e., the raw MER outputs were taken to the
evaluation directly.

The number of correct MEs dropped slightly
for the maximum depth > 5, while the number
of correct marking still maintains the positive
trend. It is because the more candidates
allowed to use, the more expression can be
replaced and become equivalent although the
replacement might be incorrect.

Expression tree comparison was applied to
every pair of MEs after the symbols
replacement. Marking results for partial credit
counts are visualized in Figure 12. There are
6,000 marks for addition and subtraction
dataset, and 9,000 marks for multiplication
dataset.

After the ground truth was generated, symbol images
were picked up and rearranged to match each of the
expressions. The thickness and size of the symbols
were randomized. Figure 10 shows examples of the
generated images with incorrect derivations. There
are 3,000 derivation images for polynomial addition
and subtraction and another 3,000 images for polyno-
mial multiplication being generated, as some exam-
ples shown in Figure 11.

(−6x2 + 3) − (2x − 7)

= (3 + 7) − 6x2 + 2x

= 10 − 6x2 + 2x

Incorrect

Correct

(7y2 − 3y − 1)(−9y + 2)

= −2 + 9y − 6y + 27y2 + 9y2 − 63y3

= −2 + (9 − 6)y + (27 + 9)y2 − 63y3

= −2 + 3y + 36y2 − 63y3

Incorrect

Correct

Correct

Figure 11
Sample of generated derivation images in addition/
subtraction and multiplication dataset

and monomial multiplication. The ground truth,
consisting of the sequence of generated MEs
themselves and the correctness for each step of
derivation, were saved to a CSV file as shown in
Figure 9.

After the ground truth was generated, symbol
images were picked up and rearranged to match
each of the expressions. The thickness and size of
the symbols were randomized. Figure 10 shows
examples of the generated images with incorrect
derivations. There are 3,000 derivation images for
polynomial addition and subtraction and another
3,000 images for polynomial multiplication being
generated, as some examples shown in Figure 11.

Figure 9
Ground truth of the addition/subtraction dataset

Figure 10
Computer-generated images for polynomial subtraction
and multiplication derivation, with incorrect steps

(−6x2 + 3) − (2x − 7)

= (3 + 7) − 6x2 + 2x

= 10 − 6x2 + 2x

Incorrect

Correct

(7y2 − 3y − 1)(−9y + 2)

= −2 + 9y − 6y + 27y2 + 9y2 − 63y3

= −2 + (9 − 6)y + (27 + 9)y2 − 63y3

= −2 + 3y + 36y2 − 63y3

Incorrect

Correct

Correct

4.2 What Should Be Marked as “correct”?

Correctness can be defined from different
perspectives: full credit for the entire derivation, or
partial credit for each step of derivation. We take
both of them into our evaluation. Giving full credit
for the entire derivation is straightforward. Any
presence of incorrect step in the derivation makes
the whole thing incorrect. On the other hand, to
give partial credits to student, correctness should
be considered between two consecutive lines. For
polynomial addition and subtraction with 3 lines,
there are two transitions between lines 1 and 2, and
between lines 2 and 3. Similarly for the
multiplication with 4 lines, there are 3 transitions to
evaluate.

Figure 11
Sample of generated derivation images in
addition/subtraction and multiplication dataset

4.3 Experimental Results

Tables 3 and 4 contains the number of correct
partial credit marking, correct expression
after the replacement when compared to the
ground truth, and the CPU time for grading
3000 derivations in every setting. The
maximum depth varies from 0 to 6. When
maximum depth is 0, only step 1 in the
expression sequence matching was utilized,
i.e., the raw MER outputs were taken to the
evaluation directly.

The number of correct MEs dropped slightly
for the maximum depth > 5, while the number
of correct marking still maintains the positive
trend. It is because the more candidates
allowed to use, the more expression can be
replaced and become equivalent although the
replacement might be incorrect.

Expression tree comparison was applied to
every pair of MEs after the symbols
replacement. Marking results for partial credit
counts are visualized in Figure 12. There are
6,000 marks for addition and subtraction
dataset, and 9,000 marks for multiplication
dataset.

179Information Technology and Control 2023/1/52

4.2. What Should Be Marked as “correct”?
Correctness can be defined from different perspec-
tives: full credit for the entire derivation, or partial
credit for each step of derivation. We take both of
them into our evaluation. Giving full credit for the
entire derivation is straightforward. Any presence
of incorrect step in the derivation makes the whole
thing incorrect. On the other hand, to give partial
credits to student, correctness should be consid-
ered between two consecutive lines. For polynomial
addition and subtraction with 3 lines, there are two
transitions between lines 1 and 2, and between lines
2 and 3. Similarly for the multiplication with 4 lines,
there are 3 transitions to evaluate.

4.3. Experimental Results
Tables 3 and 4 contains the number of correct partial
credit marking, correct expression after the replace-
ment when compared to the ground truth, and the
CPU time for grading 3000 derivations in every set-
ting. The maximum depth varies from 0 to 6. When
maximum depth is 0, only step 1 in the expression se-
quence matching was utilized, i.e., the raw MER out-
puts were taken to the evaluation directly.
The number of correct MEs dropped slightly for the
maximum depth > 5, while the number of correct
marking still maintains the positive trend. It is be-
cause the more candidates allowed to use, the more

Table 3
Effect of depth to the correctness of expression, marking
and CPU time for addition/subtraction dataset

Depth
Correct
ME out
of 9000

Correct
marking

(partial credit)
out of 6000

Correct
marking

(full credit)
Out of 3000

CPU
time
(sec)

0 6227 3357 813 4397

1 7872 5357 2647 8946

2 8037 5489 2693 8973

3 8035 5499 2697 9793

4 8036 5500 2696 10325

5 8040 5502 2698 11628

6 8038 5501 2698 13363

Depth
Correct
ME out

of 12000

Correct
marking

(partial credit)
out of 9000

Correct
marking

(full credit)
out of 3000

CPU
time
(sec)

0 7727 4689 1216 8600

1 10234 7367 2479 24930

2 10487 7571 2526 29812

3 10534 7601 2528 37719

4 10542 7606 2526 48118

5 10548 7607 2527 82183

6 10549 7613 2528 260254

Table 4
Effect of depth to the correctness of expression, marking
and CPU time for multiplication dataset

expression can be replaced and become equivalent
although the replacement might be incorrect.
Expression tree comparison was applied to every
pair of MEs after the symbols replacement. Marking
results for partial credit counts are visualized in Fig-
ure 12. There are 6,000 marks for addition and sub-
traction dataset, and 9,000 marks for multiplication
dataset.
A short comment was generated from the comparison
results. If the pair of MEs are equivalent, the com-
ment showed “Equivalent expressions”. Otherwise,
the comment pointed out the part of MEs that are
mismatch, as shown in Figure 13.

Figure 12
Number of partial credit correct marking for addition and
subtraction (left) and multiplication (right)

A short comment was generated from the
comparison results. If the pair of MEs are
equivalent, the comment showed “Equivalent
expressions”. Otherwise, the comment pointed out
the part of MEs that are mismatch, as shown in
Figure 13.
Figure 12

Number of partial credit correct marking for addition
and subtraction (left) and multiplication (right)

Figure 13

The system returns “Equivalent expressions” if no error
is found. Otherwise, the comments for the
miscalculations is reported

4.4 Effect of Depth to the MEs Correctness

We focused on the comparison between the Ml(Rl)
(the string after the replacement) and the ground
truth. The correctness trend is positive as shown in
Figure 14. In fact, the result when using different
maximum depth greater than 1 are not significantly
different.

The plot in Figure 14 shows some slight drop of
correctness because the objective of the symbols
replacement algorithm is to maximize the number
of expression in the exact match sequence. There
are exact matches caused by an incorrect
replacement. For example, in Table 5, symbols
replacement when using depth = 5 has the term 6a2,
where a is replaced by 2 and the term becomes 622
when depth = 6. If there is a restricted format of ME,
the irrelevant ME are filtered out so that the type of
error can be avoided.

Table 3
Effect of depth to the correctness of expression, marking
and CPU time for addition/subtraction dataset

Depth Correct
ME

out of
9000

Correct
marking

(partial credit)
out of 6000

Correct
marking

(full credit)
Out of 3000

CPU time
(sec)

0 6227 3357 813 4397

1 7872 5357 2647 8946

2 8037 5489 2693 8973

3 8035 5499 2697 9793

4 8036 5500 2696 10325

5 8040 5502 2698 11628

6 8038 5501 2698 13363

Table 4
Effect of depth to the correctness of expression,
marking and CPU time for multiplication dataset

Depth Correct
ME

out of
12000

Correct marking
(partial credit)

out of 9000

Correct
marking

(full credit)
out of 3000

CPU
time
(sec)

0 7727 4689 1216 8600

1 10234 7367 2479 24930

2 10487 7571 2526 29812

3 10534 7601 2528 37719

4 10542 7606 2526 48118

5 10548 7607 2527 82183

6 10549 7613 2528 260254

Table 5
Example of unexpected replacement that causes
incorrect expression while maintain the
equivalence of expressions between lines

Depth = 5
line1 (a+2)-(6a^2+6a+4)
line2 (2-4)+(1-6)a+6a^2
line3 -2-5a+6a^2

Depth = 6
line1 (a+2)-(62^2+6a+4)
line2 (2-4)+(1-6)a+62^2
line3 -2-5a+62^2

Figure 14
Number of correct expressions for addition and
subtraction dataset (left) and multiplication
dataset (right)

4.5 Effect of Depth to the CPU Time

The algorithm was implemented and tested
on a personal computer with CPU i7-4770,
RAM 16 GB, 256 GB SATA3 SSD.

As expected, using more maximum depth
showed the positive trend of correct marking
while taking exponential time, as shown in
Figure 15.

From the distribution of running time in
Figure 16, the derivation with all correct MEs
that does not need symbols replacement is the

A short comment was generated from the
comparison results. If the pair of MEs are
equivalent, the comment showed “Equivalent
expressions”. Otherwise, the comment pointed out
the part of MEs that are mismatch, as shown in
Figure 13.
Figure 12

Number of partial credit correct marking for addition
and subtraction (left) and multiplication (right)

Figure 13

The system returns “Equivalent expressions” if no error
is found. Otherwise, the comments for the
miscalculations is reported

4.4 Effect of Depth to the MEs Correctness

We focused on the comparison between the Ml(Rl)
(the string after the replacement) and the ground
truth. The correctness trend is positive as shown in
Figure 14. In fact, the result when using different
maximum depth greater than 1 are not significantly
different.

The plot in Figure 14 shows some slight drop of
correctness because the objective of the symbols
replacement algorithm is to maximize the number
of expression in the exact match sequence. There
are exact matches caused by an incorrect
replacement. For example, in Table 5, symbols
replacement when using depth = 5 has the term 6a2,
where a is replaced by 2 and the term becomes 622
when depth = 6. If there is a restricted format of ME,
the irrelevant ME are filtered out so that the type of
error can be avoided.

Table 3
Effect of depth to the correctness of expression, marking
and CPU time for addition/subtraction dataset

Depth Correct
ME

out of
9000

Correct
marking

(partial credit)
out of 6000

Correct
marking

(full credit)
Out of 3000

CPU time
(sec)

0 6227 3357 813 4397

1 7872 5357 2647 8946

2 8037 5489 2693 8973

3 8035 5499 2697 9793

4 8036 5500 2696 10325

5 8040 5502 2698 11628

6 8038 5501 2698 13363

Table 4
Effect of depth to the correctness of expression,
marking and CPU time for multiplication dataset

Depth Correct
ME

out of
12000

Correct marking
(partial credit)

out of 9000

Correct
marking

(full credit)
out of 3000

CPU
time
(sec)

0 7727 4689 1216 8600

1 10234 7367 2479 24930

2 10487 7571 2526 29812

3 10534 7601 2528 37719

4 10542 7606 2526 48118

5 10548 7607 2527 82183

6 10549 7613 2528 260254

Table 5
Example of unexpected replacement that causes
incorrect expression while maintain the
equivalence of expressions between lines

Depth = 5
line1 (a+2)-(6a^2+6a+4)
line2 (2-4)+(1-6)a+6a^2
line3 -2-5a+6a^2

Depth = 6
line1 (a+2)-(62^2+6a+4)
line2 (2-4)+(1-6)a+62^2
line3 -2-5a+62^2

Figure 14
Number of correct expressions for addition and
subtraction dataset (left) and multiplication
dataset (right)

4.5 Effect of Depth to the CPU Time

The algorithm was implemented and tested
on a personal computer with CPU i7-4770,
RAM 16 GB, 256 GB SATA3 SSD.

As expected, using more maximum depth
showed the positive trend of correct marking
while taking exponential time, as shown in
Figure 15.

From the distribution of running time in
Figure 16, the derivation with all correct MEs
that does not need symbols replacement is the

Information Technology and Control 2023/1/52180

Figure 13
The system returns “Equivalent expressions” if no error is
found. Otherwise, the comments for the miscalculations is
reported

4.4. Effect of Depth to the MEs Correctness
We focused on the comparison between the Ml(Rl)
(the string after the replacement) and the ground
truth. The correctness trend is positive as shown
in Figure 14. In fact, the result when using different
maximum depth greater than 1 are not significantly
different.

A short comment was generated from the
comparison results. If the pair of MEs are
equivalent, the comment showed “Equivalent
expressions”. Otherwise, the comment pointed out
the part of MEs that are mismatch, as shown in
Figure 13.
Figure 12

Number of partial credit correct marking for addition
and subtraction (left) and multiplication (right)

Figure 13

The system returns “Equivalent expressions” if no error
is found. Otherwise, the comments for the
miscalculations is reported

4.4 Effect of Depth to the MEs Correctness

We focused on the comparison between the Ml(Rl)
(the string after the replacement) and the ground
truth. The correctness trend is positive as shown in
Figure 14. In fact, the result when using different
maximum depth greater than 1 are not significantly
different.

The plot in Figure 14 shows some slight drop of
correctness because the objective of the symbols
replacement algorithm is to maximize the number
of expression in the exact match sequence. There
are exact matches caused by an incorrect
replacement. For example, in Table 5, symbols
replacement when using depth = 5 has the term 6a2,
where a is replaced by 2 and the term becomes 622
when depth = 6. If there is a restricted format of ME,
the irrelevant ME are filtered out so that the type of
error can be avoided.

Table 3
Effect of depth to the correctness of expression, marking
and CPU time for addition/subtraction dataset

Depth Correct
ME

out of
9000

Correct
marking

(partial credit)
out of 6000

Correct
marking

(full credit)
Out of 3000

CPU time
(sec)

0 6227 3357 813 4397

1 7872 5357 2647 8946

2 8037 5489 2693 8973

3 8035 5499 2697 9793

4 8036 5500 2696 10325

5 8040 5502 2698 11628

6 8038 5501 2698 13363

Table 4
Effect of depth to the correctness of expression,
marking and CPU time for multiplication dataset

Depth Correct
ME

out of
12000

Correct marking
(partial credit)

out of 9000

Correct
marking

(full credit)
out of 3000

CPU
time
(sec)

0 7727 4689 1216 8600

1 10234 7367 2479 24930

2 10487 7571 2526 29812

3 10534 7601 2528 37719

4 10542 7606 2526 48118

5 10548 7607 2527 82183

6 10549 7613 2528 260254

Table 5
Example of unexpected replacement that causes
incorrect expression while maintain the
equivalence of expressions between lines

Depth = 5
line1 (a+2)-(6a^2+6a+4)
line2 (2-4)+(1-6)a+6a^2
line3 -2-5a+6a^2

Depth = 6
line1 (a+2)-(62^2+6a+4)
line2 (2-4)+(1-6)a+62^2
line3 -2-5a+62^2

Figure 14
Number of correct expressions for addition and
subtraction dataset (left) and multiplication
dataset (right)

4.5 Effect of Depth to the CPU Time

The algorithm was implemented and tested
on a personal computer with CPU i7-4770,
RAM 16 GB, 256 GB SATA3 SSD.

As expected, using more maximum depth
showed the positive trend of correct marking
while taking exponential time, as shown in
Figure 15.

From the distribution of running time in
Figure 16, the derivation with all correct MEs
that does not need symbols replacement is the

Figure 14
Number of correct expressions for addition and subtraction
dataset (left) and multiplication dataset (right)

Table 5
Example of unexpected replacement that causes incorrect
expression while maintain the equivalence of expressions
between lines

A short comment was generated from the
comparison results. If the pair of MEs are
equivalent, the comment showed “Equivalent
expressions”. Otherwise, the comment pointed out
the part of MEs that are mismatch, as shown in
Figure 13.
Figure 12

Number of partial credit correct marking for addition
and subtraction (left) and multiplication (right)

Figure 13

The system returns “Equivalent expressions” if no error
is found. Otherwise, the comments for the
miscalculations is reported

4.4 Effect of Depth to the MEs Correctness

We focused on the comparison between the Ml(Rl)
(the string after the replacement) and the ground
truth. The correctness trend is positive as shown in
Figure 14. In fact, the result when using different
maximum depth greater than 1 are not significantly
different.

The plot in Figure 14 shows some slight drop of
correctness because the objective of the symbols
replacement algorithm is to maximize the number
of expression in the exact match sequence. There
are exact matches caused by an incorrect
replacement. For example, in Table 5, symbols
replacement when using depth = 5 has the term 6a2,
where a is replaced by 2 and the term becomes 622
when depth = 6. If there is a restricted format of ME,
the irrelevant ME are filtered out so that the type of
error can be avoided.

Table 3
Effect of depth to the correctness of expression, marking
and CPU time for addition/subtraction dataset

Depth Correct
ME

out of
9000

Correct
marking

(partial credit)
out of 6000

Correct
marking

(full credit)
Out of 3000

CPU time
(sec)

0 6227 3357 813 4397

1 7872 5357 2647 8946

2 8037 5489 2693 8973

3 8035 5499 2697 9793

4 8036 5500 2696 10325

5 8040 5502 2698 11628

6 8038 5501 2698 13363

Table 4
Effect of depth to the correctness of expression,
marking and CPU time for multiplication dataset

Depth Correct
ME

out of
12000

Correct marking
(partial credit)

out of 9000

Correct
marking

(full credit)
out of 3000

CPU
time
(sec)

0 7727 4689 1216 8600

1 10234 7367 2479 24930

2 10487 7571 2526 29812

3 10534 7601 2528 37719

4 10542 7606 2526 48118

5 10548 7607 2527 82183

6 10549 7613 2528 260254

Table 5
Example of unexpected replacement that causes
incorrect expression while maintain the
equivalence of expressions between lines

Depth = 5
line1 (a+2)-(6a^2+6a+4)
line2 (2-4)+(1-6)a+6a^2
line3 -2-5a+6a^2

Depth = 6
line1 (a+2)-(62^2+6a+4)
line2 (2-4)+(1-6)a+62^2
line3 -2-5a+62^2

Figure 14
Number of correct expressions for addition and
subtraction dataset (left) and multiplication
dataset (right)

4.5 Effect of Depth to the CPU Time

The algorithm was implemented and tested
on a personal computer with CPU i7-4770,
RAM 16 GB, 256 GB SATA3 SSD.

As expected, using more maximum depth
showed the positive trend of correct marking
while taking exponential time, as shown in
Figure 15.

From the distribution of running time in
Figure 16, the derivation with all correct MEs
that does not need symbols replacement is the

The plot in Figure 14 shows some slight drop of cor-
rectness because the objective of the symbols re-
placement algorithm is to maximize the number of
expression in the exact match sequence. There are ex-
act matches caused by an incorrect replacement. For
example, in Table 5, symbols replacement when using
depth = 5 has the term 6a2, where a is replaced by 2
and the term becomes 622 when depth = 6. If there is
a restricted format of ME, the irrelevant ME are fil-
tered out so that the type of error can be avoided.

4.5. Effect of Depth to the CPU Time
The algorithm was implemented and tested on a per-
sonal computer with CPU i7-4770, RAM 16 GB, 256
GB SATA3 SSD.
As expected, using more maximum depth showed the
positive trend of correct marking while taking expo-
nential time, as shown in Figure 15.
From the distribution of running time in Figure 16,
the derivation with all correct MEs that does not need
symbols replacement is the fastest group, with aver-
age time at 1.56 second per image. The second fastest
group is the derivation that needs symbols replace-
ment but return correct marking at last, with average
running time at 2.17 seconds. The slowest group is the

Figure 15
Running time (in second) for 3000 images (left) addition
and subtraction (right) multiplication

Figure 16
The distribution of running time for all 3 groups from
addition/subtraction with depth = 6

Depth = 5
line1 (a+2)-(6a^2+6a+4)
line2 (2-4)+(1-6)a+6a^2
line3 -2-5a+6a^2

Depth = 6
line1 (a+2)-(62^2+6a+4)
line2 (2-4)+(1-6)a+62^2
line3 -2-5a+62^2

fastest group, with average time at 1.56 second per
image. The second fastest group is the derivation
that needs symbols replacement but return correct
marking at last, with average running time at 2.17
seconds. The slowest group is the derivation with
mistake and cannot be fixed, with average time at
8.81 seconds. It can be seen that the last group has
a wide range of variation, which depends on the
number of candidate replacement.

Figure 15
Running time (in second) for 3000 images (left) addition
and subtraction (right) multiplication

Figure 16
The distribution of running time for all 3 groups from
addition/subtraction with depth = 6

4.6 Performance Evaluation

4.6.1 Single Symbol Accuracy

The performance of the CNN symbol recognition
was tested just once because every experiment on
the replacement depth shares the same symbol
recognition module. There are 387,290 symbols in
both datasets combined and the number of
misrecognized symbols was 7,475, making single
symbol recognition accuracy at 98.07%. When
applied this number to the average length of MEs
in the addition/subtraction and multiplication
dataset at 14.60 and 21.32 symbols, respectively, the
average misrecognized symbols per ME were
0.2818 and 0.4115 symbols, which are less than 1 in
both datasets.

4.6.2 ExpRate

To the best of our knowledge, we cannot find any
other similar system that evaluates the entire
mathematical derivation after recognition, so the
direct performance comparison cannot be made.
However, the ExpRate (expression recognition
rates) before applying symbols replacement (depth
= 0) in this study (69.18% for addition/subtraction
and 64.39% for multiplication dataset) were on par

with the 60-65% results in most of the recent
literatures that propose mathematical
expression recognition systems [27, 28, 29].
ExpRate after applying the symbols
replacement from our system were increased
to 89.31% and 87.90% for addition/subtraction
and for multiplication dataset, respectively.

4.6.3 Accuracy of Partial Credit Marking

From Tables 3 and 4, the accuracy of the
partial credit marking after applying symbols
replacement increases from 55.95% to 91.68%
in addition/subtraction dataset, and from
52.10% to 84.58% in multiplication dataset.

4.6.4 Accuracy of Entire Derivation Marking

Instead of counting for the number correct
marking in each step to give the partial credit,
the other marking style is to determine the
correctness of the entire derivation. From
Tables 3 and 4, the accuracy of the entire
derivation marking after applying symbols
replacement increases from 27.10% to 89.93%
in addition/subtraction dataset, and from
40.53% to 84.26% in multiplication dataset.

4.6.5 Precision, recall, and F1-score

Precision, recall, and F1-score for the partial
credit marking are shown in Tables 6 and 7.
The F1-scores improve from 0.6941 and 0.6145
to 0.9494 and 0.8995 for addition/ subtraction
and multiplication dataset, respectively.

4.7 Discussion

4.7.1 Optimal Replacement Depth

From Tables 6 and 7, the replacement depth
2–3 should be the optimal values of parameter
since the marking results are not significantly
different from the highest value, while the
CPU running time is much faster than using
depth = 6. This is consistent to the result of
single symbol accuracy that the average
misrecognized symbol is less than one, using
replacement with depth = 1 already fix most
of the error, and depth = 2 or 3 made a slight
improvement.

Table 6

Effect of depth to the precision and recall for
addition and subtraction dataset

Depth TP TN FP FN P R F1

0 2546 811 0 2244 1 0.5315 0.6941

1 4493 864 0 635 1 0.8761 0.9339

2 4624 865 0 506 1 0.9013 0.9481

3 4634 865 0 496 1 0.9033 0.9492

fastest group, with average time at 1.56 second per
image. The second fastest group is the derivation
that needs symbols replacement but return correct
marking at last, with average running time at 2.17
seconds. The slowest group is the derivation with
mistake and cannot be fixed, with average time at
8.81 seconds. It can be seen that the last group has
a wide range of variation, which depends on the
number of candidate replacement.

Figure 15
Running time (in second) for 3000 images (left) addition
and subtraction (right) multiplication

Figure 16
The distribution of running time for all 3 groups from
addition/subtraction with depth = 6

4.6 Performance Evaluation

4.6.1 Single Symbol Accuracy

The performance of the CNN symbol recognition
was tested just once because every experiment on
the replacement depth shares the same symbol
recognition module. There are 387,290 symbols in
both datasets combined and the number of
misrecognized symbols was 7,475, making single
symbol recognition accuracy at 98.07%. When
applied this number to the average length of MEs
in the addition/subtraction and multiplication
dataset at 14.60 and 21.32 symbols, respectively, the
average misrecognized symbols per ME were
0.2818 and 0.4115 symbols, which are less than 1 in
both datasets.

4.6.2 ExpRate

To the best of our knowledge, we cannot find any
other similar system that evaluates the entire
mathematical derivation after recognition, so the
direct performance comparison cannot be made.
However, the ExpRate (expression recognition
rates) before applying symbols replacement (depth
= 0) in this study (69.18% for addition/subtraction
and 64.39% for multiplication dataset) were on par

with the 60-65% results in most of the recent
literatures that propose mathematical
expression recognition systems [27, 28, 29].
ExpRate after applying the symbols
replacement from our system were increased
to 89.31% and 87.90% for addition/subtraction
and for multiplication dataset, respectively.

4.6.3 Accuracy of Partial Credit Marking

From Tables 3 and 4, the accuracy of the
partial credit marking after applying symbols
replacement increases from 55.95% to 91.68%
in addition/subtraction dataset, and from
52.10% to 84.58% in multiplication dataset.

4.6.4 Accuracy of Entire Derivation Marking

Instead of counting for the number correct
marking in each step to give the partial credit,
the other marking style is to determine the
correctness of the entire derivation. From
Tables 3 and 4, the accuracy of the entire
derivation marking after applying symbols
replacement increases from 27.10% to 89.93%
in addition/subtraction dataset, and from
40.53% to 84.26% in multiplication dataset.

4.6.5 Precision, recall, and F1-score

Precision, recall, and F1-score for the partial
credit marking are shown in Tables 6 and 7.
The F1-scores improve from 0.6941 and 0.6145
to 0.9494 and 0.8995 for addition/ subtraction
and multiplication dataset, respectively.

4.7 Discussion

4.7.1 Optimal Replacement Depth

From Tables 6 and 7, the replacement depth
2–3 should be the optimal values of parameter
since the marking results are not significantly
different from the highest value, while the
CPU running time is much faster than using
depth = 6. This is consistent to the result of
single symbol accuracy that the average
misrecognized symbol is less than one, using
replacement with depth = 1 already fix most
of the error, and depth = 2 or 3 made a slight
improvement.

Table 6

Effect of depth to the precision and recall for
addition and subtraction dataset

Depth TP TN FP FN P R F1

0 2546 811 0 2244 1 0.5315 0.6941

1 4493 864 0 635 1 0.8761 0.9339

2 4624 865 0 506 1 0.9013 0.9481

3 4634 865 0 496 1 0.9033 0.9492

181Information Technology and Control 2023/1/52

derivation with mistake and cannot be fixed, with av-
erage time at 8.81 seconds. It can be seen that the last
group has a wide range of variation, which depends on
the number of candidate replacement.

4.6. Performance Evaluation
4.6.1. Single Symbol Accuracy
The performance of the CNN symbol recognition was
tested just once because every experiment on the re-
placement depth shares the same symbol recognition
module. There are 387,290 symbols in both datasets
combined and the number of misrecognized symbols
was 7,475, making single symbol recognition accuracy
at 98.07%. When applied this number to the average
length of MEs in the addition/subtraction and multi-
plication dataset at 14.60 and 21.32 symbols, respec-
tively, the average misrecognized symbols per ME
were 0.2818 and 0.4115 symbols, which are less than
1 in both datasets.

4.6.2. ExpRate
To the best of our knowledge, we cannot find any
other similar system that evaluates the entire math-
ematical derivation after recognition, so the direct
performance comparison cannot be made. However,
the ExpRate (expression recognition rates) before ap-
plying symbols replacement (depth = 0) in this study
(69.18% for addition/subtraction and 64.39% for
multiplication dataset) were on par with the 60-65%
results in most of the recent literatures that propose
mathematical expression recognition systems [27, 28,
29]. ExpRate after applying the symbols replacement
from our system were increased to 89.31% and 87.90%
for addition/subtraction and for multiplication data-
set, respectively.

4.6.3. Accuracy of Partial Credit Marking
From Tables 3 and 4, the accuracy of the partial credit
marking after applying symbols replacement increas-
es from 55.95% to 91.68% in addition/subtraction
dataset, and from 52.10% to 84.58% in multiplication
dataset.

4.6.4. Accuracy of Entire Derivation Marking
Instead of counting for the number correct marking
in each step to give the partial credit, the other mark-
ing style is to determine the correctness of the entire
derivation. From Tables 3 and 4, the accuracy of the

entire derivation marking after applying symbols re-
placement increases from 27.10% to 89.93% in addi-
tion/subtraction dataset, and from 40.53% to 84.26%
in multiplication dataset.

4.6.5. Precision, Recall, and F1-score
Precision, recall, and F1-score for the partial credit
marking are shown in Tables 6 and 7. The F1-scores
improve from 0.6941 and 0.6145 to 0.9494 and 0.8995
for addition/ subtraction and multiplication dataset,
respectively.

4.7. Discussion
4.7.1. Optimal Replacement Depth
From Tables 6 and 7, the replacement depth 2–3
should be the optimal values of parameter since the
marking results are not significantly different from
the highest value, while the CPU running time is
much faster than using depth = 6. This is consistent to

Depth TP TN FP FN P R F1

0 2546 811 0 2244 1 0.5315 0.6941

1 4493 864 0 635 1 0.8761 0.9339

2 4624 865 0 506 1 0.9013 0.9481

3 4634 865 0 496 1 0.9033 0.9492

4 4636 864 1 494 0.9997 0.9037 0.9493

5 4638 864 1 492 0.9997 0.9040 0.9495

6 4638 863 2 492 0.9997 0.9040 0.9494

Table 6
Effect of depth to the precision and recall for addition and
subtraction dataset

Table 7
Effect of depth to the precision and recall for multiplication
dataset

Depth TP TN FP FN P R F1

0 3249 1440 0 4076 1 0.4435 0.6145

1 5893 1474 2 1612 0.9996 0.7852 0.8795

2 6098 1473 3 1411 0.9995 0.8120 0.8961

3 6128 1473 3 1381 0.9995 0.8160 0.8985

4 6133 1473 3 1376 0.9995 0.8167 0.8989

5 6134 1473 3 1375 0.9995 0.8168 0.8990

6 6140 1473 3 1369 0.9995 0.8176 0.8995

Information Technology and Control 2023/1/52182

the result of single symbol accuracy that the average
misrecognized symbol is less than one, using replace-
ment with depth = 1 already fix most of the error, and
depth = 2 or 3 made a slight improvement.

4.7.2. False Negative and False Positive
For the case of false negative (the actual derivation is
correct, but marked as incorrect), there are reasons
that MEs cannot be fixed by the surrounding expres-
sions to match the ground truth.
 _ A possible reason is the case that the longest

sequence of the exact match does not contain
the first line. Since the only chance to fix the first
line is that it must be rebuilt with the second line
reference. When the second line is incorrect, the
first line has no reliable reference for correction, so
the original ME cannot be restored.

 _ Some expressions cannot be parsed due to the
existence of unexpected symbols in the way. Most
of the cases is when there are broken handwritten
strokes from MER, making an unwanted
component in addition to the original symbols.
The symbols replacement cannot unify the broken
symbols, so there is no chance to restore these
expressions.

 _ The last reason is that the lack of the candidate.
If the correct replacement of the misrecognized
symbol is not in the confusion matrix, the
expression cannot be restored as well.

For the case of false positive, it can be seen that the
symbols replacement unexpectedly replaces the in-
correct derivation with a new set of symbols and be-
comes correct. It is the rare cases, but still is possible.
Although the false negative from the result is high,
we can rely on the positive result (derivation marked

as correct) because of the low false positive, which
means the derivation marked as correct from the
system is likely to be correct without need of further
inspection. On the other hand, the derivation marked
as incorrect can be either misrecognized or actually
incorrect, manual inspection is strongly needed.

5. Conclusion
This research focused on designing an automatic sys-
tem to help teachers more effectively grade handwrit-
ten homework assignment in the entire derivation
format. The main contribution of this research is to
add symbols replacement in between the MER and
CAS. The candidates for replacement can be chosen
from the confusion matrix and lower rank candidates
of the symbol recognition.
From the results, the symbols replacement algorithm
can improve F1-score of the derivation step marking
from 69.41% to 94.95% for the addition/subtraction
dataset and from 61.45% to 89.95% for the multiplica-
tion dataset when compared to the raw strings from
MER. It can be concluded that the symbols replace-
ment algorithm significantly improves the perfor-
mance of handwritten homework grading between
consecutive lines of derivation. The accuracy of mark-
ing increases as the depth of the symbols replacement
increases. However, the replacement depth at 2-3 are
enough to correct most of the errors.

Acknowledgement
This research project was supported by the Thai-
land Science Research and Innovation (TSRI grant
MRG6280204), and Faculty of Science, Mahidol Uni-
versity, Thailand.

References
1. Afshan, N., Mehdi, S. A. An Analysis of Mathemati-

cal Expression Recognition Techniques. Interna-
tional Journal of Advanced Research in Computer
Science, 2017, 8(5), 2021-2026. DOI: 10.26483/ijarcs.
v8i5.3846

2. Chai, D. Automated Marking of Printed Multi-
ple-Choice Answer Sheets. IEEE International Con-
ference on Teaching, Assessment, and Learning for En-

gineering (TALE), Bangkok, 2016, 145-149. https://doi.
org/10.1109/TALE.2016.7851785

3. Chan, K., Yeung, D. Mathematical expression Recog-
nition: A Survey. International Journal on Document
Analysis and Recognition, 2000, 3, 3-15. https://doi.
org/10.1007/PL00013549

4. Cipriano, B. P., Fachada, N., Alves, P. Drop Project: An
Automatic Assessment Tool for Programming Assign-

183Information Technology and Control 2023/1/52

ments. SoftwareX, 2022, 18. https://doi.org/10.1016/j.
softx.2022.101079

5. Combéfis, S. Automated Code Assessment for Educa-
tion: Review, Classification and Perspectives on Tech-
niques and Tools. Software, 2022, 1(1), 3-30. https://doi.
org/10.3390/software1010002

6. Darvishzadeh A., Entezari N., Stahovich T. Finding the
Answer: Techniques for Locating Students’ Answers
in Handwritten Problem Solutions. 16th International
Conference on Frontiers in Handwriting Recognition
(ICFHR). IEEE, 2018, 587-592. https://doi.org/10.1109/
ICFHR-2018.2018.00108

7. Furukori, F., Yamazaki, S., Miyagishi, T., Shirai, K., Oka-
moto, M. An OCR System with OCRopus for Scientific
Documents Containing Mathematical Formulas, 12th
International Conference on Document Analysis and
Recognition, Washington, DC, 2013, 1175-1179. https://
doi.org/10.1109/ICDAR.2013.238

8. Garain, U. Identification of Mathematical Expressions
in Document Images. 10th International Conference on
Document Analysis and Recognition, Barcelona, 2009,
1340-1344. https://doi.org/10.1109/ICDAR.2009.203

9. Hoogland, K., Tout, D. Computer-based Assessment of
Mathematics into the Twenty-first Century: Pressures
and Tensions. ZDM, 2018, 50. 1https://doi.org/10.1007/
s11858-018-0944-2

10. Hossain, M. B., Naznin, F., Joarder Y. A., Zahidul Islam.,
Uddin, M. J. Recognition and Solution for Handwritten
Equation Using Convolutional Neural Network. Joint
7th International Conference on Informatics, Elec-
tronics & Vision (ICIEV) and 2018 2nd International
Conference on Imaging, Vision & Pattern Recognition
(icIVPR), Kitakyushu, Japan, 2018, 250-255. https://
doi.org/10.1109/ICIEV.2018.8640991

11. Hosseinpour, S., Milani, M., Pehlivan, H. A Step-by-
Step Solution Methodology for Mathematical Expres-
sions. Symmetry, 2018, 10, 285. https://doi.org/10.3390/
sym10070285

12. Kissos, I., Dershowitz, N. OCR Error Correction Using
Character Correction and Feature-Based Word Classi-
fication. 12th IAPR Workshop on Document Analysis
Systems (DAS), Santorini, 2016, 198-203. https://doi.
org/10.1109/DAS.2016.44

13. Le, A.D., Indurkhya, B., Nakagawa, M. Pattern Gen-
eration Strategies for Improving Recognition of
Handwritten Mathematical Expressions. ArXiv,
2019, abs/1901.06763. https://doi.org/10.1016/j.pa-
trec.2019.09.002

14. Li, X., Yue, T., Huang, X., Yang, Z., Xu, G. BAGS: An Au-
tomatic Homework Grading System Using the Pic-
tures Taken by Smart Phones. ArXiv, abs/1906.03767,
2019.

15. Marti, U. V., Bunke, H. Using a Statistical Language Model
to Improve the Performance of an HMM-based Cursive
Handwriting Recognition Systems. In Hidden Markov
Models. World Scientific Series in Machine Perception
and Artificial Intelligence Series, Vol. 45. World Scien-
tific Publishing Co., Inc., River Edge, NJ, USA, 2001, 65-
90. https://doi.org/10.1142/9789812797605_0004

16. Marques, F. C. F. et al. Recognition of Simple Handwrit-
ten Polynomials Using Segmentation with Fractional
Calculus and Convolutional Neural Networks. 8th Bra-
zilian Conference on Intelligent Systems (BRACIS),
Salvador, Brazil, 2019, 245-250. https://doi.org/10.1109/
BRACIS.2019.00051

17. Nazemi, A., Tavakolian, N., Fitzpatrick, D., Fernando,
C. A., Suen, C. Y. Offine Handwritten Mathematical
Symbol Recognition Utilising Deep Learning. arX-
iv:1910.07395. [Online], 2019, Available: http://arxiv.
org/ abs/1910.07395

18. Nguyen, C. T., Khuong, V. T. M., Nguyen, H. T., Nakaga-
wa, M. CNN Based Spatial Classification Features for
Clustering Offline Handwritten Mathematical Expres-
sions. Pattern Recognition Letters, 2019, 131, 113-120.
https://doi.org/10.1016/j.patrec.2019.12.015

19. Ohyama, W., Suzuki, M., Uchida, S. Detecting Mathe-
matical Expressions in Scientific Document Images
Using a U-Net Trained on a Diverse Dataset. IEEE Ac-
cess, 2019, 7, 144030-144042. https://doi.org/10.1109/
ACCESS.2019.2945825

20. Ramadhan, I., Purnama, B., Faraby, S. A. Convolutional
Neural Networks Applied to Handwritten Mathemati-
cal Symbols Classification. 4th International Confer-
ence on Information and Communication Technology
(ICoICT), Bandung, 2016, 1-4. https://doi.org/10.1109/
ICoICT.2016.7571941

21. Scantron Corp. (n.d.). About Scantron. Retrieved 01 06,
2022, from Scantron website: https://www.scantron.
com/company/

22. Simistira, F., Papavassiliou, V., Katsouros, V., Carayan-
nis, G. Recognition of Spatial Relations in Mathemati-
cal Formulas. 14th International Conference on Fron-
tiers in Handwriting Recognition, Heraklion, 2014,
164-168. https://doi.org/10.1109/ICFHR.2014.35

23. Smolinsky, L. et al. Computer-based and Pa-
per-and-pencil Tests: A Study in Calculus for STEM
Major. arXiv, 2020. https://arxiv.org/abs/2005.05462

Information Technology and Control 2023/1/52184

This article is an Open Access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

24. Suleman, H. Automatic Marking with Sakai. Proceedings
of the Annual Research Conference of the South African
Institute of Computer Scientists and Information Tech-
nologists on IT Research in Developing Countries: Rid-
ing the Wave of Technology (SAICSIT’08). Association
for Computing Machinery, New York, NY, USA, 2008,
229-236.https://doi.org/10.1145/1456659.1456686

25. Sukkarieh, J., Pulman, S., Raikes, N. Auto-marking:
Using Computational Linguistics to Score Short, Free
Text Responses. International Association for Educa-
tional Assessment (IAEA), 2003.

26. Wang, X., Gülenman T., Pinkwart, N., de Witt, C., Glo-
erfeld, C., Wrede, S., Automatic Assessment of Student
Homework and Personalized Recommendation. IEEE
20th International Conference on Advanced Learn-
ing Technologies (ICALT), 2020, 150-154. https://doi.
org/10.1109/ICALT49669.2020.00051

27. Wu, C., Du, J., Li, Y., Zhang, J., Yang, C., Ren, B., Hu, Y. TDv2:
A Novel Tree-Structured Decoder for Offline Mathemat-
ical Expression Recognition. Proceedings of the AAAI
Conference on Artificial Intelligence, 2022, 36(3), 2694-
2702. https://doi.org/10.1609/aaai.v36i3.20172

28. Yuan, Y., Liu, X., Dikubab, W. Liu, H., Ji, Z., Wu, Z., Bai, X.
Syntax-Aware Network for Handwritten Mathematical
Expression Recognition. Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2022, 4553-4562. https://doi.org/10.1109/
CVPR52688.2022.00451

29. Zhao, W., Gao, L., Yan, Z., Peng, S., Du, L., Zhang, Z.
(2021). Handwritten Mathematical Expression Recog-
nition with Bidirectionally Trained Transformer. Doc-
ument Analysis and Recognition - ICDAR 2021, 2021.
https://doi.org/10.1007/978-3-030-86331-9_37

