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The availability of automated data collection techniques and the growth in the amount of data collected from 
cloud network traffic and cloud resource activities has transformed into a big data challenge, compelling the en-
gagement of big data tools to handle, manage, and interpret it. A single classification method may fail to execute 
successfully for the amount of acquired data. Despite being more complex and consuming more computational 
resources, the research shows that stacking-based ensemble Machine Learning (ML) methodologies perform 
better in data classification approaches than single classifiers. This research proposes Intrusion Detection Sys-
tems (IDS), both based on the ensemble of ML algorithms built on the Stacked Generalization Approach (SGA) 
and big data technology. The suggested approaches are tested and assessed on NSL-KDD and UNSW-NB15 
datasets, utilizing a Gain Ration (GR) based Feature Selection (FS) approach, J48, OneR, Support Vector Ma-
chine (SVM), Random Forest (RF), Multi- layer Perceptron (MLP) and Extreme Gradient Boosting (XGBoost) 
classifiers and Apache Spark, a prominent big data processing platform. The first technique involves storing 
data on HDFS, while the second involves selecting the most suitable subset of base classifiers for stacking. A 
thorough performance investigation reveals that our proposed model outperforms other current IDS models 
either in terms of accuracy or FPR or other performance metrics, in discovering intrusions for the Cloud. 
KEYWORDS: Cloud Security, Big Data, Machine learning, Intrusion detection system, Apache Spark, Stacking.

1. Introduction
The use of the cloud is expanding as cloud computing 
advances and evolves from distributed computing, 
and numerous clients use the same cloud resourc-
es utilizing conceptual isolation techniques. Recent 

technological breakthroughs have resulted in an ex-
ponential rise of Cloud Computing, IoT, and WSNs 
applications in a variety of fields, including smart cit-
ies, smart transportation, e-health, e-commerce, and 
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smart grids [51]. As per NIST, “Cloud computing is 
a model for enabling ubiquitous, convenient, on-de-
mand network access to a shared pool of configurable 
computing resources (e.g., networks, servers, storage, 
applications, and services) that can be rapidly provi-
sioned and released with minimal management effort 
or service provider interaction [33].”
Statistics show that security vulnerabilities in the 
virtual network layer of cloud computing have in-
creased dramatically in recent years [42]. Various 
threats such as denial of service (DoS) [58], unautho-
rized access [58], zero-day attack [4], data leak [54], 
malware attack [32], social engineering or phishing 
[21], have increased as a result of the growing reliance 
on digitalization. According to AV-TEST [8], com-
panies and institutions experienced 182.90 million 
malware attacks in 2013, which increased to 1312.64 
million by 2021, and the figure is continuously rising. 
Organizations and people have suffered significant 
harm and financial losses as a result of these cyber-at-
tacks. Cyber attackers will continue to attack health-
care providers and vaccine manufacturers, according 
to Juniper Research [27]. As a result, it is necessary 
to develop a strong cybersecurity mechanism capable 
of detecting various cyber-attacks quickly and ensur-
ing the security of relevant systems [48]. According 
to Juniper Research, the amount of data breaches 
will triple in the next five years, and the yearly cost of 
these breaches would exceed $5 trillion USD globally 
by 2024 [27]. Overall, malware data has evolved into a 
big data challenge [23], demanding the use of big data 
technologies [22] capable of successfully handling a 
tremendous flow of malicious data. 
Cloud security refers to a set of technologies and pro-
cedures that safeguard Cloud resources such as virtual 
machines (VMs), storage, networks, programmes, and 
data against attack, damage, or illegal access. Howev-
er, as cyber threats get more complex, conventional 
strategies fail to adequately address the problem. In 
the context of computing, cloud security has seen mas-
sive technological and operational advances in recent 
years, with ML, a key component of “Artificial Intelli-
gence,” playing a significant role. To intercept cyber-at-
tacks, several components (such as a firewall) and 
cryptographic procedures are installed, and an IDS is 
utilized to block the external attack and safeguard both 
business networks and Cloud resources [61]. IDS’ ob-
jective is to highlight various types of anomalous activ-

ity in the cloud’s network traffic and then use available 
protection mechanisms to prevent it. 
Intrusion detection is a significant decision-mak-
ing challenge that may be solved through the use of 
classification techniques [17]. Significant work has 
been performed on the use of ML techniques to im-
prove the performance of intrusion security mecha-
nisms [52, 53]. In the subject of intrusion detection, 
numerous ML methods such as fuzzy logic, neural 
networks, support vector machines, Naive Bayes, K 
nearest neighbor, and decision trees have been used 
[2]. However, due to the usage of single classifiers, 
these systems are restricted in their ability to identi-
fy and prevent serious threats. Individual algorithm 
performance can be improved when a combination or 
ensemble technique is used. 
As shown in the research, stacking or stacked gener-
alization is favorable since the approach is based on 
merging predictions from several individual classifi-
ers, which may significantly increase generalization 
[57, 67, 68]. The benefit of stacking for protein catego-
rization was stated in [12], and desirable performance 
was achieved. 
Cloud Service Providers (CSPs) with sophisticated 
cloud resources prefer to collect massive amounts 
of data regularly to update the model. As a result, a 
stacked ensemble of ML algorithms orientated mod-
els can provide additional benefits in IDS due to their 
excellent detection performance. Based on its appli-
cability, we, therefore, provide an ensemble of ML 
algorithms employing SGA for improving IDS per-
formance in this study. We employ FS in addition to 
a stacked ensemble of ML algorithms to attain high 
accuracy by selecting highly sensitive features for 
model construction. We initially rank the feature in 
descending order according to the value computed 
by the GR attribute evaluation method and select the 
features using the threshold method.
Stacking or SGA is an approach for combining the 
forecasts of two or more models. Depending on the 
learning technique, stacking can decrease bias or 
variance error. It employs a set of homogeneous or 
heterogeneous base classifiers, whose outputs are 
utilized to train a meta-classifier that makes the final 
prediction. The meta-classifier improves generaliza-
tion by correcting any errors generated by the base 
classifiers. Six classifiers are included in the proposed 
methodology. Each base classifier is assigned a rank 
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using a statistical approach. Following that, the rank-
ings are employed to choose the best classifiers for 
stacking. The proposed methodology is built using 
Apache Spark. The following are the accomplish-
ments of this paper:
1 Measure the significance of features i.e., FS  in 

ML-oriented IDS to reduce feature dimensions.
2 Develop an ensemble using SGA to detect intrusion 

in Clouds, which considers FS based on a score for 
ranking and then builds an ensemble SGA model 
around those features.

3 Scaling the input feature, fine-tuning model hy-
per-parameter, and decreased model over-fitting 
cross-validation.

4 Apache Spark, which can easily manage large intru-
sion  samples, is presented as a scalable approach. 
By adding extra nodes to an Apache Spark cluster, 
data processing scalability may be enhanced.

5 The procedure for determining the rankings of the 
base classifiers to be selected for stacking.

On a recent dataset, NSL-KDD [60] and UNSW-NB15 
[35], experiments are carried out to evaluate the per-
formance of suggested ensemble techniques and its 
comparison is carried out.
The rest of this article is written as such. The second 
section addresses relevant research. Section 3 delves 
into the proposed methodologies and procedures. 
Section 4 presents the experimental data as well as 
the environmental setup, and Section 5 concludes the 
study with recommendations for further research.

2. Related Work
An ensemble is a collection of ML algorithms that were 
used to identify intrusions using a dataset. Based on 
the combination methods utilized, several algorithms 
are integrated. According to multiple studies, ensem-
ble approaches generate more accurate findings than 
a single model [34]. Using a combo of algorithms and 
FS methodologies, researchers have developed many 
methods for detecting intrusions. The IDS research 
that employed hybridization and ensembles ML ap-
proaches is highlighted in this section.
Panigrahi and Patra [39] introduced a hybrid IDS 
model based on fuzzy and rough set theory to recog-

nize normal and abnormal activity in network data. 
There are two steps to their model. It first used rank 
and search based FS techniques to find the most sig-
nificant features, and then used the five classifiers to 
classify the NSL-KDD dataset. Performance study 
shows that out of all five classifiers, the “fuzzy rough 
nearest neighbor” classification approach produces 
better results.
The hybrid model proposed in [20] appeared to be 
more accurate than separate models. The dataset 
used is from “The University of New Mexico” and 
comprised both normal and anomalous mail pro-
gram records. A combination of SVM and K-nearest 
neighbor (KNN) was used to create an IDS in [1]. The 
weights obtained by particle swarm optimization 
(PSO) and the model outperformed the best base ex-
pert classifier accuracy by 0.756 percent. Because of 
its performance degradation with increasing data 
size, the SVM is not a good option for analysis of large 
amounts of data. In order to increase the detection 
accuracy, hybrid IDSs were discussed. However, they 
have the disadvantage of requiring a lot of processing 
resources.
Mukkamala et al. [36] advocated an intelligent IDS 
based on ML and ensemble classifiers, which detect-
ed intrusions with a 91 percent success rate. Their 
findings showed that when a two-level decision was 
made, ensemble approaches performed well in clas-
sification. As a result, numerous other researchers 
have developed intrusion detection systems based on 
ensemble methods. The contribution of this method 
to the detection of zero-day attacks is minimal and 
to create permanent signatures with all conceivable 
changes and non-intrusive actions to reduce FPR. 
Panigrahi and Patra [40] published Bayes net clas-
sifier-based IDS, where they employed search (K2, 
Tabu, and Hill Climbing) and Tree Augmented Naive 
Bayesian (TAN) techniques. They also used FS meth-
ods based on entropy and statistics for the NSL-KDD 
dataset. 
Shrivas and Dewangan [56] suggested employing en-
semble learning to present an efficient FS and classi-
fication for an intrusion detection system, in which an 
ensemble classifier with FS and boosting algorithm 
was utilized to provide the best intrusion detection 
rates using the kdd99 and NSL-KDD datasets. Raja-
gopal et al. [45] suggested a stacking ensemble-based 
IDS in which the base classifiers were Linear Regres-
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sion (LR), RF, and KNN, and the meta-classifier was 
SVM. To find key features, they employed an entro-
py-based feature selection strategy. UNSW-NB15 
and UGR’16 heterogeneous datasets were used in the 
experiments. When the dataset is in IoT systems, the 
SVM classifier algorithm cannot process it effective-
ly since the systems have a high rate of traffic, which 
makes SVM inappropriate.
Wankhade and Chandrasekaran [62] proposed a nov-
el hybrid classifier-based IDS that uses the Self Or-
ganized Ant Colony Optimization (ACO) approach 
and SVM. Salo et al. [50] proposed a hybrid IDS in 
which they coupled two feature selection approaches 
(information gain and principle component analysis 
(PCA) with an ensemble method that included SVM, 
KNN, and ANN. Tama and Rhee [59] proposed a nov-
el Intrusion Detection System based on the Gradient 
Boosted Method (GBM), which they compared to four 
other classifiers: random forest, deep neural network, 
support vector machine, and regression tree. The 
results suggest that gradient-boost performs better 
than other approaches.
A novel intrusion detection model was suggested by 
Ahmad [3] to calculate common patterns and choose 
features, they used an ensemble feature selection 
method based on PSO and correlation-based FS 
methods. They built ensemble classifiers using FS. 
The proposed method showed some promise in terms 
of the number of features chosen and the false alarm 
rate, but it still needs improvement in terms of accu-
racy and detection rate. Additionally, when proposing 
this strategy, the execution time necessary to identify 
every attack is overlooked. Prusti [43] suggested an 
effective intrusion detection system based on ensem-
ble learning. They employed three distinct ensem-
ble approaches to enhance accuracy and lower the 
false-positive rate, including bagging, boosting, and 
stacking. Rashid et al. [47] used a feature selection 
approach to examine alternative machine learning al-
gorithms for detecting cyber-attacks from IoT-based 
smart city applications. “UNSW-NB15 and CIC-
IDS2017”, two recent incursion datasets were used in 
the study. The results reveal that the stacking ensem-
ble outperforms other classifiers, with UNSW-NB15 
and CICIDS2017 datasets. 
A new FS technique for IDS based on a pigeon-in-
spired optimizer (PIO) is depicted in [5]. Using the 
described PIO FS approach, the number of features 

in the utilized datasets was minimized which attains 
high accuracy. Rashid et al. [46] deal with a tree-based 
stacking model with a selectKbest FS strategy to 
identify intrusion and developed a stacking ensemble 
method on UNSW-NB15 datasets. Performance as-
sessment demonstrates that the proposed model ex-
ceeds previous recent efforts in terms of accuracy and 
false alarm rate. SelectKBest approach utilisation, 
however, is less adaptable to new malicious network 
traffic over time.
Zhou et al. [69] offer a novel intrusion detection sys-
tem based on FS and ensemble learning approaches to 
deal with high-dimensional and imbalanced network 
data. At initial point, CFS-BA approach employed for 
FS based on feature correlation. The classification 
model is then generated using an ensemble classifier 
using C4.5, RF, and ForestPA. The experimental find-
ings for the NSL-KDD dataset are promising.
The following are some of the findings of the stud-
ies reviewed: (1) A single machine learning model or 
parameter optimization does not generate the best 
results, thus combining numerous learning models 
to build a powerful model is a superior strategy, and 
(2) For IDS, researchers have yet to study big data 
technologies and methods combined with ensemble 
methods. We employed an FS methodology and em-
ployed a ranking approach to rank the base classifiers 
for the optimal set of classifiers to be used for stacking 
in innovative ensemble learning methods to improve 
the efficiency of IDS, in this research. At the lower lev-
el, the proposed solution uses Apache Spark for fast 
dataset processing and produces multiple different 
base models. The findings of the experiments at this 
stage are used to produce rankings for the base mod-
els, which are then used to pick a set of appropriate 
base classifiers for stacking. 

3. Implementation Strategy
This section delves into the methods for detecting in-
trusions, in depth. Apache Spark is used to evaluate the 
dataset, which is stored in a distributed storage system. 
Following the FS technique, we built models using six 
different classifiers as base classifiers. We tested them 
on true positives, true negative rate, accuracy,  preci-
sion, and F-measure. The results are utilized to create 
techniques for computing the ranks for base classifiers 
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and selecting the best pool of classifiers for stacking. 
These stages are outlined in the sections below.

3.1. Datasets for IDS

Datasets comprise many entries, including various 
properties and information. These features and in-
formation may be utilized to create cloud security 
oriented IDS [55]. NSL-KDD and UNSW-NB15, two 
publicly available intrusion datasets were used in this 
work with two detection categories: normal and ab-
normal.
The KDDcup99 dataset was used to produce the NSL-
KDD dataset, which is a prominent intrusion dataset. 
NSL-KDD’s “KDDTrain+” and “KDDTest+” are used as 
a training set and testing set, respectively. The testing 
set has 22544 records from various attack and normal 
categories, whereas the training set contains 125973 
records, as shown in Table 1. The UNSW-NB15 intru-
sion dataset comprises contemporary attacks and is 
frequently utilized. The “Australian Centre for Cyber 
Security” (ACCS) created this dataset in 2015, using 
the IXIA PerfectStrom programme to produce raw 
network packets. There are about 2.5 million records 
in this collection. UNSW-NB15 training-set and UN-
SW-NB15 testing-set, two partitions from overall data-
set, are set up as a training set and testing set, respec-
tively. The testing set has 82,332 records from various 
attack and normal categories, whereas the training set 
contains 175,341 records as shown in Table 1.

A Feature normalization: The range of features is 
normalized by feature scaling, which guarantees 
that distinct features have different values. Fur-
thermore, training high-dimensional datasets re-
quire high computational power. Data is frequently 
scaled using methods like Z-score standardization, 
decimal scaling, Max normalization, and Min–Max 
scaling to address these difficulties [30]. The ap-
proach to utilize is frequently determined by the 
application. We have incorporated Min–Max scal-
ing (Equation (1)).

are utilized to create techniques for computing the 
ranks for base classifiers and selecting the best 
pool of classifiers for stacking. These stages are 
outlined in the sections below. 

33..11  DDaattaasseettss  ffoorr  IIDDSS  
Datasets comprise many entries, including various 
properties and information. These features and 
information may be utilized to create cloud 
security oriented IDS [55]. NSL-KDD and UNSW-
NB15, two publicly available intrusion datasets 
were used in this work with two detection 
categories: normal and abnormal. 

The KDDcup99 dataset was used to produce the 
NSL-KDD dataset, which is a prominent intrusion 
dataset. NSL-KDD’s “KDDTrain+” and 
“KDDTest+” are used as a training set and testing 
set, respectively. The testing set has 22544 records 
from various attack and normal categories, 
whereas the training set contains 125973 records, 
as shown in Table 1. The UNSW-NB15 intrusion 
dataset comprises contemporary attacks and is 
frequently utilized. The “Australian Centre for 
Cyber Security” (ACCS) created this dataset in 
2015, using the IXIA PerfectStrom programme to 
produce raw network packets. There are about 2.5 
million records in this collection. UNSW-NB15 
training-set and UNSW-NB15 testing-set, two 
partitions from overall dataset, are set up as a 
training set and testing set, respectively. The 
testing set has 82,332 records from various attack 
and normal categories, whereas the training set 
contains 175,341 records as shown in Table 1. 

Table 1 NSLKDD and UNSW-NB15 datasets 
distribution 

 NSL-KDD UNSW-NB15 

 KDD 
 Train+ 

KDD 
Test+ 

Training 
Set 

Testing 
Set 

Attack 58630 12833 119,321 45332 

Normal 67343 9711 56,000 37000 

Total 125973 22544 175341 8233 

  
33..22  DDaattaasseett  PPrree--pprroocceessssiinngg  
Feature normalization and encoding depending 
on the intrusion dataset's features are part of data 
pre-processing. 

A. Feature normalization: The range of features is 
normalized by feature scaling, which guarantees 

that distinct features have different values. 
Furthermore, training high-dimensional datasets 
require high computational power. Data is 
frequently scaled using methods like Z-score 
standardization, decimal scaling, Max 
normalization, and Min–Max scaling to address 
these difficulties [30]. The approach to utilize is 
frequently determined by the application. We 
have incorporated Min–Max scaling (Equation 
(1)). 

MinMax scaling X :  min
norm

max min

X X
X

X X
−

=
−

,                       (1) 

where Xmin and Xmax are the minimum and 
maximum values of feature X, respectively. The 
standardization calculation occurs as specified in 
Algorithm 1 for a dataset with an input vector 
(feature space) represented by U (x1,……,xn), 
1<n<N, where N is the total number of instances 
(features) in the space. 

Algorithm 1 for Min-Max scaling 
Input: U (x1,……,xn), where 1<n<N 
Output: 1( ,.... ),norm norm

normalised nU x x  
      for i from 1 to k do 
         if (𝒙𝒙𝒙𝒙𝒊𝒊𝒊𝒊 a non-numeric input value) then 
            Step 1: encode using “label encoding” 
            Step 2: Compute Min-Max scaling: 

min
norm

max min

X X
X

X X
−

=
−

 

        end if 
        Step 1: Compute Min-Max scaling: 

min
norm

max min

X X
X

X X
−

=
−

 

     end for 

B. Feature Encoding: For efficient model training, 
all categorical features will be encoded into 
vectors. There are several methods for converting 
categorical data into vectors. 'Label Encoding,' 
'One Hot Encoding,' and ‘scikit-learn feature 
mapping’ are the most often utilized approaches. 
We adopted the first approach since the number of 
feature dimensions in the later techniques 
significantly rises [41]. It took a straightforward 
approach to convert feature values to numeric 
numbers, for example, the values of instances like 
“icmp, http, tcp” in the dataset, will turn into 
vectors 0,1,2. 

33..33  FFeeaattuurree  SSeelleeccttiioonn  ((FFSS))  
Gain Ratio (GR) [28] is a variant of Information 
Gain (IG) that tackles IG's bias toward qualities 
with a larger range of values. When selecting a 

(1)

where Xmin and Xmax are the minimum and maximum 
values of feature X, respectively. The standardization 
calculation occurs as specified in Algorithm 1 for a 
dataset with an input vector (feature space) repre-
sented by U (x1,……,xn), 1<n<N, where N is the total 
number of instances (features) in the space.

Table 1
NSLKDD and UNSW-NB15 datasets distribution

NSL-KDD UNSW-NB15

KDD
 Train+

KDD
Test+

Training 
Set Testing Set

Attack 58630 12833 119,321 45332

Normal 67343 9711 56,000 37000

Total 125973 22544 175341 8233

3.2. Dataset Pre-processing
Feature normalization and encoding depending 
on the intrusion dataset’s features are part of data 
pre-processing.

Algorithm 1 for Min-Max scaling

Input: U (x1,……,xn), where 1<n<N

Output: 1( ,.... ),norm norm
normalised nU x x

      for i from 1 to k do
         if (xi a non-numeric input value) then
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        end if
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norm
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     end for

B Feature Encoding: For efficient model training, all 
categorical features will be encoded into vectors. 
There are several methods for converting categor-
ical data into vectors. ‘Label Encoding,’ ‘One Hot 
Encoding,’ and ‘scikit-learn feature mapping’ are 
the most often utilized approaches. We adopted 
the first approach since the number of feature di-
mensions in the later techniques significantly rises 
[41]. It took a straightforward approach to convert 
feature values to numeric numbers, for example, 
the values of instances like “icmp, http, tcp” in the 
dataset, will turn into vectors 0,1,2.
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3.3. Feature Selection (FS)
Gain Ratio (GR) [28] is a variant of Information Gain 
(IG) that tackles IG’s bias toward qualities with a larg-
er range of values. When selecting a gain ratio attri-
bute, the number and size of branches are considered. 
By accounting for the inherent information of a split, 
the IG is fixed (i.e., how much info is needed to identi-
fy which branch a given instance belongs to), and the 
entropy of instance distribution into branches is the 
intrinsic information. It is calculated as follows for a 
given attribute a and an attribute value of b:

gain ratio attribute, the number and size of 
branches are considered. By accounting for the 
inherent information of a split, the IG is fixed (i.e., 
how much info is needed to identify which branch 
a given instance belongs to), and the entropy of 
instance distribution into branches is the intrinsic 
information. It is calculated as follows for a given 
attribute a and an attribute value of b: 

( ) ( )
( )

 ,
 ,  

  
gain b a

Gain Ratio b a
intrinsic info a

=              (2) 

where, 

( ) 2  *i iS S
intrinsic Info a log

S S
=−∑ .               (3) 

The number of possible values for attribute a is 
|S|, and the number of actual values for attribute 
a is |Si|. Based on a user-defined threshold, a 
subset of features is picked, in this instance, GR> 
0.1, with the assumption that higher-valued 
features may contain more important information. 

33..44  IIDDSS  uussiinngg  BBaassee  CCllaassssiiffiieerrss 
Ensemble approaches are a type of machine 
learning methodology in which numerous base 
classifiers are combined to generate a single best 
prediction model [24, 63]. The final model will 
overcome each learner's flaws, yielding a strong 
model that will improve prediction results. 
Ensemble learning is more successful when the 
classifiers are heterogeneous, which may be done 
by combining multiple types of classifiers that 
employ different methodologies to classify the 
incoming data. As a result, six heterogeneous 
classifiers, namely J48, RF, XGBoost, OneR, MLP, 
and SVM, were employed as base classifiers.  

The J48 tree classification algorithm is the most 
widely utilized. Quinlan [44] was the one who 
came up with it. To reduce classification errors, 
the J48 approach uses an improved tree pruning 
methodology. Several studies investigated the 
influence of applying the J48 algorithm to enhance 
IDS accuracy [7, 31]. L.Breiman proposed an RF 
classifier [10]. It's an ensemble learning classifier 
based on trees. It was created by combining the 
forecasts of numerous trees that had each been 
trained independently. RF classifier has a 
substantial favorable impact on IDS accuracy, 
according to several prior research [15, 38]. RF is a 
highly successful classification strategy across a 
range of real-world applications,' Fernandez-
Delgado et al. write in [16]. Other studies have 
found that random forest produces good results 
[6, 9, 14]. Existing research supports all of the 

proposed classifiers, particularly because their 
findings are simply interpretable and their 
training is robust against outliers. All of the 
classifiers employed are gaining popularity in a 
variety of fields, including cyber security and 
cloud security, due to their high performance. The 
XGBoost idea is based on gradient-boosted trees 
with supervised learning as the primary approach 
and was pioneered by Chen and Guestrin [11]. It 
is Sparse Aware, meaning it can handle missing 
values, enables parallel tree construction, and has 
the unique ability to execute boosting on data that 
has already been added to the trained model [49].  

OneR [26] is a rule-based model-based algorithm. 
It creates a one-level decision tree in the form of a 
series of rules, each of which tests a single feature. 
OneR is a basic, low-cost approach that frequently 
produces useful rules for describing data 
structure. MLP refers to feed-forward neural 
networks trained using the back-propagation 
technique [25]. Because they are supervised 
networks, they must be taught the desired 
response. They can approximate any input-output 
map with one or two hidden layers. The binary 
classifier category includes SVM. It's a popular 
method for categorizing two groups. The “Radial 
Basis Function” (RBF) kernel is employed in this 
experiment. This kernel function is a suitable 
choice because it has fewer adjustable parameters 
and performs well in nonlinear forecasting. 

Figure 1  
The proposed ensemble method's overall framework 

(2)
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a is |Si|. Based on a user-defined threshold, a 
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incoming data. As a result, six heterogeneous 
classifiers, namely J48, RF, XGBoost, OneR, MLP, 
and SVM, were employed as base classifiers.  

The J48 tree classification algorithm is the most 
widely utilized. Quinlan [44] was the one who 
came up with it. To reduce classification errors, 
the J48 approach uses an improved tree pruning 
methodology. Several studies investigated the 
influence of applying the J48 algorithm to enhance 
IDS accuracy [7, 31]. L.Breiman proposed an RF 
classifier [10]. It's an ensemble learning classifier 
based on trees. It was created by combining the 
forecasts of numerous trees that had each been 
trained independently. RF classifier has a 
substantial favorable impact on IDS accuracy, 
according to several prior research [15, 38]. RF is a 
highly successful classification strategy across a 
range of real-world applications,' Fernandez-
Delgado et al. write in [16]. Other studies have 
found that random forest produces good results 
[6, 9, 14]. Existing research supports all of the 

proposed classifiers, particularly because their 
findings are simply interpretable and their 
training is robust against outliers. All of the 
classifiers employed are gaining popularity in a 
variety of fields, including cyber security and 
cloud security, due to their high performance. The 
XGBoost idea is based on gradient-boosted trees 
with supervised learning as the primary approach 
and was pioneered by Chen and Guestrin [11]. It 
is Sparse Aware, meaning it can handle missing 
values, enables parallel tree construction, and has 
the unique ability to execute boosting on data that 
has already been added to the trained model [49].  

OneR [26] is a rule-based model-based algorithm. 
It creates a one-level decision tree in the form of a 
series of rules, each of which tests a single feature. 
OneR is a basic, low-cost approach that frequently 
produces useful rules for describing data 
structure. MLP refers to feed-forward neural 
networks trained using the back-propagation 
technique [25]. Because they are supervised 
networks, they must be taught the desired 
response. They can approximate any input-output 
map with one or two hidden layers. The binary 
classifier category includes SVM. It's a popular 
method for categorizing two groups. The “Radial 
Basis Function” (RBF) kernel is employed in this 
experiment. This kernel function is a suitable 
choice because it has fewer adjustable parameters 
and performs well in nonlinear forecasting. 
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There are two reasons for utilizing stacking ensem-
ble: first, it can improve performance by lowering the 
variance component of prediction errors, and second, 
it can improve robustness by lowering prediction dis-
persion [13]. Furthermore, with increasingly power-
ful computing resources available at reduced hard-
ware costs, improved model performance surpasses 
the computational cost of model construction. J48, 
RF, XGBoost, OneR, MLP, and SVM are six classifiers. 
Figure 1 shows the proposed framework.
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We used the min-max feature scaling strategy to 
minimize model complexity by scaling all input fea-
tures into a range between 0 and 1 [65]. We employed 
cross-validation as a precautionary measure against 
overfitting by dividing the original training dataset 
into several small train-test parts. These splits were 
then used to fine-tune the model. The data was par-
titioned into 10 subgroups called folds using 10-fold 
cross-validation. The algorithm was then trained on 
9 folds in a row, with the last fold acting as a test set. 
Finally, the algorithm’s parameters were fine-tuned 
utilizing the scikit-learn RandomizedSearchCV() 
class, which uses the randomized search approach for 
parameter optimization.

3.5. Ranking Classifiers
The proposed methods for constructing an ensemble 
classifier are based on rank algorithms [64] for pick-
ing the best pool of classifiers for stacking. According 
to the literature, most classifiers produce different 

responses for distinct classes. They do not, for exam-
ple, classify intrusion and benign classes equally ac-
curately. This information was utilized to calculate 
the scores of the base classifiers that are used to cre-
ate the ranking. The Average Accuracy based Ranking 
Method (AARM) is employed for ranking the classi-
fiers. The ranking is obtained using this technique by 
considering the average of class prediction accura-
cies. A higher rank will be given to the base classifier 
that has greater average accuracy. Assuming the us-
age of s classifiers, represented by x1,x2,……xs to divide 
the data into two categories: intrusion, u, and benign, 
v. Let 

iu,xA  and 
i,xAv represent the malware and be-

nign class accuracies for a classifier xi, respectively. 
Equation (4), as shown below, is used to calculate the 
average accuracy 

iavgxA  of each classifier:
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where, Pu and Pv represent the numbers of 
intrusion and benign files, respectively. Assume 

{ }1 2 3 savgx avgx avgx avgxC A ,   A ,   A , .,A= ………  is the 

collection of all classifiers' average accuracies. The 
rank is then computed using the Rdesc() function, 
which assigns a rank to each classifier based on its 
average accuracy as shown in Equation (5) (i.e. 
larger the value of Aavgxi , higher is the rank). 
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Instead of using all of the base classifiers, the top 
three are chosen as the best set, using the rank 
approach, for stacking. 
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The experimental setup, evaluation settings, and 
results of the proposed solution are described in 
this section. Table 2 shows the hyper-parameter 
values of the classifiers selected by randomised 
search. 
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Classifier hyper-parameters 

Classifier Parameters 

J48 “Confidence factor” = 0.7, 
“num_folds” = 
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three slave nodes. 2.40 GHz Intel Xeon CPU, 32 GB 
RAM, and 512 GB SSD power at the master node. Intel 
Core i5 CPU of 3.1 GHz, 8 GB RAM, and 500 GB HDD 
are used in the slave nodes. Ubuntu 14.04.6 is the oper-
ating system in a multi-node cluster. The following is a 
quick explanation of the software system components:
Apache Spark: A resilient distributed dataset (RDD) 
[66] of Spark, is a collection of fault-tolerant units 
that can execute in parallel. Spark is known for its 
ability to process large datasets in memory which is 
a set of fault-tolerant units that may run in parallel. 
Spark is well recognized for its ability to handle mas-
sive datasets in memory. 
HDFS: HDFS is a widely used solution for large-scale 
distributed data storage [19]. High fault tolerance, 
high throughput, and easy portability across diverse 
systems are just a few of the advantages of HDFS [18].
Python: Python is favored as a programming language 
because of the availability of a large ecosystem of scien-
tific libraries, PySpark, a Python API for Apache Spark, 
and Jupyter Notebook, which offers the programming 
environment, are the additional development tools. 
The Pandas library, Numpy, Spark MLlib, and Sklearn 
were used to implement the models that were tested.

4.2. Performance Assessment Matrices
How well a classification system performs, is shown 
by the confusion matrix. Table 3 below represents the 
confusion matrix.

The below mentioned metrics in Table 4 are widely 
used to assess models. The following are the perfor-
mance metrics: True Positive (TP) represents obfus-
cated malware specimen that is accurately detected 
as malware. True Negative (TN) represents a normal 
specimen that is accurately classified as normal. False 
Positive (FP) means a normal specimen is misidenti-
fied as malware. False Negative (FN) represents ob-
fuscated malware specimen that is wrongly labelled 
as normal. 

Table 2 
Classifier hyper-parameters

Classifier Parameters

J48 “Confidence factor” = 0.7, “num_folds” = 
5,“minimum_number_of_instance_per_leaf ”=2

RF
“max_depth”= 90, “min_samples_leaf ”= 
6,“max_features”= 4 “n_estimators”= 200, “min_
samples_split”= 7

SVM
C=10, cache_size=200, coef0=0.0, kernel=”rbf ”, 
degree=3, max_iter=-1, gamma=0.0001, tol = 
001, verbose=False.

XGBoost learning rate=0.2, n_estimators=150, max 
depth=3, random state=1

OneR minBucketSize = 8

MLP LearningRate = 0.3, Momentum= 0.2, 
numberOfEpochs = 300

Table 3 
Confusion Matrix

Actual

Benign Malware

Predicted
Benign TP FP

Malware FN TN

Table 4 
Metrics for performance evaluation

Metrics Formula

Sensitivity TP/(TP+FN)

Specificity TN/(FP+TN)

Precision TP/(TP+FP)

FPR FP/(FP+TN)

FNR FN/(FN+TP)

Accuracy (TP+TN)/(FP +TP+FN+TN)

F1-Score 2TP/(2TP+FP+FN)

4.3. Impact of FS Approach
The dataset features do not all contribute equally to 
its effective design. In this experiment, we used the 
Gain Ratio approach to identify the best features, 
with a threshold value of 0.1 for selecting the top 
rank features, delivering us the most important fea-
tures based on their assessed value. Tables 5 and 7 
provide the selected features of the NSL-KDD and 
UNSW-NB15 datasets. The range of feature values is 
set between 0 to1. A feature with a higher score has 
a more significant impact on differentiating between 
normal and abnormal activity, so the value of features 
greater than or equal to 0.1, is selected and rejected 
the remaining features as shown in Tables 6 and 8.
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Table 5 
Selected Features from NSL-KDD Dataset

Feature Name Feature No. Value ≥ 0.1
“logged_in” 12 0.418    
“srv_serror_rate” 26 0.3739   
“flag” 4 0.3399    
“serror_rate” 25 0.3327   
“dst_host_srv_serror_rate” 39 0.332    
“diff_srv_rate” 30 0.2673   
“dst_host_serror_rate” 38 0.2648   
“dst_bytes” 6 0.2585    
“src_bytes” 5 0.2313    
“same_srv_rate” 29 0.2243   
“service” 3 0.1728    
“dst_host_srv_diff_host_rate” 37 0.1452   
“wrong_fragment” 8 0.134     
“dst_host_srv_count” 33 0.1327   
“dst_host_same_srv_rate” 34 0.1283   
“dst_host_diff_srv_rate” 35 0.1246   
“srv_diff_host_rate” 31 0.1143   

Table 6 
Rejected Features from NSL-KDD Dataset

Feature Name Feature No. Value < 0.1
“dst_host_srv_rerror_rate” 41 0.097    
“count” 23 0.0953  
“dst_host_count” 32 0.0899   
“srv_rerror_rate” 28 0.0821   
“num_root” 16 0.0798
“rerror_rate” 27 0.0786   
“dst_host_same_src_port_rate” 36 0.0775   
“num_access_files” 19 0.0743   
“protocol_type” 2 0.0725    
“num_compromised” 13 0.072    
“su_attempted” 15 0.0671   
“hot” 10 0.058    
“duration” 1 0.0554    
“is_host_login” 21 0.0491   
“dst_host_rerror_rate” 40 0.0449   
“num_file_creations” 17 0.0394   
“num_failed_logins” 11 0.0297   
“srv_count” 24 0.0252   
“root_shell” 14 0.022    
“num_shells” 18 0.0218   
“is_guest_login” 22 0.0152   
“land” 7 0.014     
“num_outbound_cmds” 20 0    
“urgent” 9 0      

Table 7 
Selected Features from UNSW-NB15 Dataset

Feature Name Feature No. Value ≥ 0.1
“sttl” 11 0.40367   
“dttl” 12 0.32594   
“ct_state_ttl” 33 0.30407   
“is_sm_ips_ports” 43 0.22527   
“xState” 5 0.17808    
“ackdat” 27 0.16677   
“tcprtt” 25 0.16217   
“synack” 26 0.15394   
“id” 1 0.14481    
“dinpkt” 18 0.13868   
“dload” 14 0.13382   
“dbytes” 9 0.13126    
“dpkts” 7 0.12333    
“rate” 10 0.11923   
“sbytes” 8 0.11524    
“dmean” 29 0.11521   
“dur” 2 0.11234    
“ct_dst_sport_ltm” 36 0.10629   

Table 8 
Rejected Features from UNSW-NB15 Dataset

Feature Name Feature No. Value < 0.1
“response_body_len” 31 0.0951    
“smean” 28 0.09274   
“djit” 20 0.08907   
“sjit” 19 0.08702   
“sload” 13 0.08522   
“sinpkt” 17 0.08504   
“swin” 21 0.08203   
“spkts” 6 0.08037    
“dloss” 16 0.07891   
“stcpb” 22 0.07517   
“dtcpb” 23 0.07512   
“dwin” 24 0.0751    
“xProt” 3 0.07344    
“sloss” 15 0.06997   
“ct_src_dport_ltm” 35 0.05152   
“ct_dst_ltm” 34 0.04926   
“ct_srv_dst” 42 0.03889   
“ct_dst_src_ltm” 37 0.03766   
“ct_src_ltm” 41 0.03742   
“ct_srv_src” 32 0.0348    
 “xServ” 4 0.03074    
 “trans_depth” 30 0.00173   
“is_ftp_login” 38 0.00165   
 “ct_ftp_cmd” 39 0.00165   
 “ct_flw_http_mthd” 40 0.00119   
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We investigate only 17 of the 41 features in the NSL-
KDD dataset based on their value, and only 18 of the 
43 features in the UNSW-NB15 dataset based on 
their ranking. By reducing the number of features, 
the feature significance score may assist us in de-
signing a simpler model. The model’s detection ex-
pertise is also improved by removing redundant fea-
tures.

4.4. Model Performance
Tables 9-10 illustrate the detection results. Table 9 
indicates that the sensitivity is 0.9967, specificity 
is 0.9983, precision is 0.9977, FPR is 0.0017, FNR is 
0.0033, Accuracy is 0.9976 and F1 score is 0.9972, XG-
Boost performance metrics for the NSL-KDD dataset. 
Table 10 indicates that the sensitivity is 0.9665, spec-
ificity is 0.9416, precision is 0.9722, FPR is 0.0584, 

Table 9
Results of the base classifiers for the NSL-KDD dataset

Classifier Sensitivity Specificity Precision FPR FNR Accuracy F1-Score Rank

J48 0.9906 0.9950 0.9934 0.0050 0.0094 0.9931 0.9920 3

RF 0.9916 0.9947 0.9930 0.0053 0.0084 0.9933 0.9923 2

SVM 0.9891 0.9867 0.9823 0.0133 0.0109 0.9871 0.9857 5

OneR 0.9796 0.9790 0.9721 0.0210 0.0204 0.9792 0.9758 6

MLP 0.9905 0.9881 0.9842 0.0119 0.0095 0.9891 0.9873 4

XGBoost 0.9967 0.9983 0.9977 0.0017 0.0033 0.9976 0.9972 1

Table 10
Results of the base classifiers for the UNSW-NB15 dataset

Classifier Sensitivity Specificity Precision FPR FNR Accuracy F1-Score Rank

J48 0.9516 0.9171 0.9369 0.3829 0.0084 0.9459 0.9604 3
RF 0.9581 0.9238 0.9638 0.0762 0.0419 0.9471 0.9609 2
SVM 0.9443 0.8947 0.9499 0.1053 0.0557 0.9284 0.9471 5
OneR 0.9444 0.8921 0.9486 0.1079 0.0556 0.9275 0.9465 6
MLP 0.9498 0.9063 0.9554 0.0937 0.0502 0.9358 0.9526 4
XGBoost 0.9665 0.9416 0.9722 0.0584 0.0335 0.9585 0.9693 1

FNR is 0.0335, Accuracy is 0.9585 and F1 score is 
0.9693, XGBoost performance metric for the UN-
SW-NB15 dataset. 
The top three classifiers, XGBoost, RF, and J48, are 
picked for stacking based on their rankings. XGBoost 
has been used as a level-2 meta-classifier in stacking. 
The final model will overcome each learner’s flaws, 
yielding a strong model that will improve prediction 
results. The SGA is a general architecture made up 
of two types of classifiers: base and meta-classifiers. 
The training dataset is used to train the base (initial) 
classifiers, while a new dataset is created for the me-
ta-classifier. This new dataset is then used to train the 
meta-classifier. Finally, the test dataset is predicted 
using the trained meta-classifier. We provide a model 
based on a stacked ensemble of ML algorithms, with 
XGBoost serving as a meta-classifier.

Table 11 
Results of stacking for the NSL-KDD dataset

Classifier Sensitivity Specificity Precision FPR FNR Accuracy F1-Score

Stacking (All Classifiers) 0.9971 0.9985 0.9980 0.0015 0.0029 0.9979 0.9976

Stacking (XGBoost, RF, J48) 0.9974 0.9988 0.9985 0.0012 0.0015 0.9982 0.9979
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Tables 11-12 and Figures 2-5 depict that compared 
to stacking all of the specified classifiers, stacking 
with the top three base classifiers gives better per-
formance. As a result, instead of considering all base 
classifiers, it is preferable to select the best collec-
tion of classifiers because it minimizes computing 
time. As a result, the presented ensemble technique 
schemes may be employed to increase generalization 
performance in detecting unknown intrusions.

Figure 2
Performance Comparison for NSL-KDD

Figure 3
FPR and FNR Comparison for NSL-KDD   
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4.5. Performance Comparison with Current 
Methodologies

Using the NSLKDD and UNSW-NB15 datasets, Ta-
ble 13 compares the performance of our stacking 
model to current attempts in intrusion detection for 
cloud security. In terms of accuracy and FPR, our 
SGA oriented ensemble model exceeds several cur-
rent approaches. We present several explanations 
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Table 13 
Performance comparison with current methodologies

Author Year Methodologies Dataset FS Approach FS Acc. FPR

Panigrah and Patra 
[39] 2016 “Fuzzy-Rough Ownership 

NN Classification” NSL-KDD Greedy Step-wise 11 99.6145 0.309

Panigrahi and 
Patra [40] 2019 JRip NSL-KDD Genetic Search 16 99.82 0.1396

Salo et al. [50] 2019

“Ensemble classifier based 
on SVM,
Instance-based learning 
algorithms (IBK), and mul-
tilayer perceptron (MLP)”

NSL-KDD

Information Gain 
(IG) + Principle 
Component Anal-
ysis (PCA)

7 99.011 0.01

Tama and 
Rhee[59] 2017

Gradient boosting machine 
(GBM) NSL-KDD NO NA 91.82 4.19

Rashid et al. [46] 2022 Stacking-DT, RF, XGBoost NSL-KDD SelectKbest 20 99.90 0.0009

Proposed Stacking- XGBoost,  
RF & J48 NSL-KDD GR 17 99.82 0.0012

Rajagopal et al. 
[45] 2020 Stacking (RF, LR, 

kNN, SVM) UNSW-NB15 Information Gain 
and Hashing 11 94 5.2

Alazzam et al. [5] 2020 Decision Tree (DT)

UNSW-NB15

Sigmoid -pigeon 
inspired optimiz-
er (PIO)

14 91.3 0.052

Cosine-PIO 5 91.7 0.034

NSL-KDD
Sigmoid - PIO 18 86.9 0.064

Cosine-PIO 5 88.3 0.088

Rashid et al.  [46] 2022 Stacking-DT, RF, XGBoost UNSW-NB15 SelectKbest 20 94.00 0.06

Proposed Stacking- XGBoost,  
RF & J48 UNSW-NB15 GR 18 95.96 0.0567

for why our suggested model outperforms current 
models. Our model first selects relevant features 
before building a model. This phase, according to 
some, reduces variance and over-fitting. Moreover, 
the proposed stacking ensemble method employs 
heterogeneous classifiers, which overcomes the dis-
advantages of homogeneous classifiers. 
As a result, the proposed method is more effective in 
detecting a previously unknown input. To minimize 
overfitting, we used hyper-parameter adjustment. Ta-
ble 14 shows the model construction time for the giv-
en dataset. J48 takes the least amount of time among 
the classifiers, whereas stacking takes the most time 
to create models for both datasets. 

The stacking method needs extra processing time 
since it combines several base classifiers, each tak-
ing time to build. Table 14 shows how much time it 
takes for classifiers. We discovered that J48 and RF 
are the fastest classifiers in this environment. Even 
if the complexity of the stacking model has risen, and 
as a result, the time requirements have increased, the 
fact that it beats conventional IDS, as noted in the 
previous result, is a significant consideration. The 
cost of missing an intrusion in such a system can be 
quite expensive. As an outcome, the cost of a little ex-
tra time, which is still secs for the datasets examined 
and therefore potentially well scalable in comparison 
to earlier approaches, is justified. As a result, the sug-
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gested model has significant practical usefulness. As a 
result, rather than examining all base classifiers, it is 
better to choose the optimal set of classifiers because 
it minimizes computing time.
Indeed, intrusion detection has been a topic of dis-
cussion, with the task being named one of the top data 
mining applications in enterprises [29]. In industries 
such as CSPs and the banking sector, Education, etc., 
the ability to identify unexpected network behavior 
quickly is critical to the long-term viability of ser-
vices. Attacks that go unnoticed in these areas can be 
expensive, and identifying them manually might be 
challenging [37]. The focus of such systems, which 
frequently employ large computing resources for 
automatically identifying intrusions, is on accurate 
intrusion detection. In comparison to existing algo-
rithms, the suggested stacking strategy shows a lot of 
potential in this regard, as the findings reveal.

5. Conclusion
Based on big data technologies  and ensemble learn-
ing, this research provided a scalable system for in-
trusion detection. The ensemble classifier is built 
using an approach based on determining rankings of 
the base classifiers. As a result, it can be inferred that 
the offered strategies can improve generalization per-
formance when identifying new intrusions. The cloud 
environment’s effective intrusion detection system is 
created and built using feature selection and SGA-ori-
ented ensemble method classification. We used a fea-

ture selection technique based on GR to reduce the 
dimensionality of the network data and discover the 
most important features. Then, using J48, RF, OneR, 
MLP, XGBoost, and SVM, we introduced an SGA en-
semble approach. By merging multiple classifiers, en-
semble classifiers build a robust classifier capable of 
recognizing network intrusions and improving fore-
cast accuracy. In which we used a majority SGA en-
semble approach to distinguish between attack data 
and legitimate data in network traffic using the top 
three classifiers i.e., XGBoost, RF and J48. The find-
ings of the experiments suggest that stacking with the 
top three base classifiers yields greater accuracy than 
stacking with all base classifiers, which might assist 
save computation time.
To assess the efficacy, we utilize the widely available 
NSLKDD and UNSW-NB15 datasets. The proposed 
model beats previous recent research in terms of ac-
curacy, having attained 99.82 percent and 95.96 per-
cent accuracy for the NSL-KDD and UNSW-NB15 
datasets, respectively. Aside from that, the proposed 
method might be supplied as a cloud-based intrusion 
detection service. To handle data on local and remote 
clusters, a hybrid technique may be employed. We’ll 
investigate several hybrid approaches in the future to 
surge prediction accuracy and identify different kinds 
of intrusions.
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Table 14
Model building and testing time

Methodologies
NSL-KDD UNSW-NB15

Building Time (s) Testing Time (s) Building Time (s) Testing Time (s)

J48 0.567 0.233 1.00 0.541

RF 0.684 0.342 1.51 0.583

SVM 1.42 0.81 2.31 1.54

XGBoost 1.52 0.97 2.56 1.79

MLP 2.58 1.25 3.54 1.02

OneR 1.52 0.85 3.98 0.58

Stacking (All) 9.24 5.85 14.52 8.52

Stacking (Top 3) 7.10 4.05 10.54 6.58
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