
Information Technology and Control 2023/4/52898

A Scalable and Stacked
Ensemble Approach to Improve
Intrusion Detection in Clouds

ITC 4/52
Information Technology
and Control
Vol. 52 / No. 4 / 2023
pp. 898-914
DOI 10.5755/j01.itc.52.4.32042

A Scalable and Stacked Ensemble Approach to Improve
Intrusion Detection in Clouds

Received 2022/08/09 Accepted after revision 2023/10/18

HOW TO CITE: Ghazi, M. R., Raghava, N. S. (2023). A Scalable and Stacked Ensemble Approach to
Improve Intrusion Detection in Clouds. Information Technology and Control, 52(4), 898-914. https://doi.
org/10.5755/j01.itc.52.4.32042

Mohd. Rehan Ghazi, N. S. Raghava
Department of Electronics and Communication Engineering, Delhi Technological University, Main Bawana
Road, Shahbad Daulatpur, Delhi -110042, India, e-mails: er.rehan.aras@gmail.com, nsraghava@gmail.com

Corresponding author: nsraghava@gmail.com

The availability of automated data collection techniques and the growth in the amount of data collected from
cloud network traffic and cloud resource activities has transformed into a big data challenge, compelling the en-
gagement of big data tools to handle, manage, and interpret it. A single classification method may fail to execute
successfully for the amount of acquired data. Despite being more complex and consuming more computational
resources, the research shows that stacking-based ensemble Machine Learning (ML) methodologies perform
better in data classification approaches than single classifiers. This research proposes Intrusion Detection Sys-
tems (IDS), both based on the ensemble of ML algorithms built on the Stacked Generalization Approach (SGA)
and big data technology. The suggested approaches are tested and assessed on NSL-KDD and UNSW-NB15
datasets, utilizing a Gain Ration (GR) based Feature Selection (FS) approach, J48, OneR, Support Vector Ma-
chine (SVM), Random Forest (RF), Multi- layer Perceptron (MLP) and Extreme Gradient Boosting (XGBoost)
classifiers and Apache Spark, a prominent big data processing platform. The first technique involves storing
data on HDFS, while the second involves selecting the most suitable subset of base classifiers for stacking. A
thorough performance investigation reveals that our proposed model outperforms other current IDS models
either in terms of accuracy or FPR or other performance metrics, in discovering intrusions for the Cloud.
KEYWORDS: Cloud Security, Big Data, Machine learning, Intrusion detection system, Apache Spark, Stacking.

1. Introduction
The use of the cloud is expanding as cloud computing
advances and evolves from distributed computing,
and numerous clients use the same cloud resourc-
es utilizing conceptual isolation techniques. Recent

technological breakthroughs have resulted in an ex-
ponential rise of Cloud Computing, IoT, and WSNs
applications in a variety of fields, including smart cit-
ies, smart transportation, e-health, e-commerce, and

mailto:obodovskiy58@gmail.com

899Information Technology and Control 2023/4/52

smart grids [51]. As per NIST, “Cloud computing is
a model for enabling ubiquitous, convenient, on-de-
mand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provi-
sioned and released with minimal management effort
or service provider interaction [33].”
Statistics show that security vulnerabilities in the
virtual network layer of cloud computing have in-
creased dramatically in recent years [42]. Various
threats such as denial of service (DoS) [58], unautho-
rized access [58], zero-day attack [4], data leak [54],
malware attack [32], social engineering or phishing
[21], have increased as a result of the growing reliance
on digitalization. According to AV-TEST [8], com-
panies and institutions experienced 182.90 million
malware attacks in 2013, which increased to 1312.64
million by 2021, and the figure is continuously rising.
Organizations and people have suffered significant
harm and financial losses as a result of these cyber-at-
tacks. Cyber attackers will continue to attack health-
care providers and vaccine manufacturers, according
to Juniper Research [27]. As a result, it is necessary
to develop a strong cybersecurity mechanism capable
of detecting various cyber-attacks quickly and ensur-
ing the security of relevant systems [48]. According
to Juniper Research, the amount of data breaches
will triple in the next five years, and the yearly cost of
these breaches would exceed $5 trillion USD globally
by 2024 [27]. Overall, malware data has evolved into a
big data challenge [23], demanding the use of big data
technologies [22] capable of successfully handling a
tremendous flow of malicious data.
Cloud security refers to a set of technologies and pro-
cedures that safeguard Cloud resources such as virtual
machines (VMs), storage, networks, programmes, and
data against attack, damage, or illegal access. Howev-
er, as cyber threats get more complex, conventional
strategies fail to adequately address the problem. In
the context of computing, cloud security has seen mas-
sive technological and operational advances in recent
years, with ML, a key component of “Artificial Intelli-
gence,” playing a significant role. To intercept cyber-at-
tacks, several components (such as a firewall) and
cryptographic procedures are installed, and an IDS is
utilized to block the external attack and safeguard both
business networks and Cloud resources [61]. IDS’ ob-
jective is to highlight various types of anomalous activ-

ity in the cloud’s network traffic and then use available
protection mechanisms to prevent it.
Intrusion detection is a significant decision-mak-
ing challenge that may be solved through the use of
classification techniques [17]. Significant work has
been performed on the use of ML techniques to im-
prove the performance of intrusion security mecha-
nisms [52, 53]. In the subject of intrusion detection,
numerous ML methods such as fuzzy logic, neural
networks, support vector machines, Naive Bayes, K
nearest neighbor, and decision trees have been used
[2]. However, due to the usage of single classifiers,
these systems are restricted in their ability to identi-
fy and prevent serious threats. Individual algorithm
performance can be improved when a combination or
ensemble technique is used.
As shown in the research, stacking or stacked gener-
alization is favorable since the approach is based on
merging predictions from several individual classifi-
ers, which may significantly increase generalization
[57, 67, 68]. The benefit of stacking for protein catego-
rization was stated in [12], and desirable performance
was achieved.
Cloud Service Providers (CSPs) with sophisticated
cloud resources prefer to collect massive amounts
of data regularly to update the model. As a result, a
stacked ensemble of ML algorithms orientated mod-
els can provide additional benefits in IDS due to their
excellent detection performance. Based on its appli-
cability, we, therefore, provide an ensemble of ML
algorithms employing SGA for improving IDS per-
formance in this study. We employ FS in addition to
a stacked ensemble of ML algorithms to attain high
accuracy by selecting highly sensitive features for
model construction. We initially rank the feature in
descending order according to the value computed
by the GR attribute evaluation method and select the
features using the threshold method.
Stacking or SGA is an approach for combining the
forecasts of two or more models. Depending on the
learning technique, stacking can decrease bias or
variance error. It employs a set of homogeneous or
heterogeneous base classifiers, whose outputs are
utilized to train a meta-classifier that makes the final
prediction. The meta-classifier improves generaliza-
tion by correcting any errors generated by the base
classifiers. Six classifiers are included in the proposed
methodology. Each base classifier is assigned a rank

Information Technology and Control 2023/4/52900

using a statistical approach. Following that, the rank-
ings are employed to choose the best classifiers for
stacking. The proposed methodology is built using
Apache Spark. The following are the accomplish-
ments of this paper:
1 Measure the significance of features i.e., FS in

ML-oriented IDS to reduce feature dimensions.
2 Develop an ensemble using SGA to detect intrusion

in Clouds, which considers FS based on a score for
ranking and then builds an ensemble SGA model
around those features.

3 Scaling the input feature, fine-tuning model hy-
per-parameter, and decreased model over-fitting
cross-validation.

4 Apache Spark, which can easily manage large intru-
sion samples, is presented as a scalable approach.
By adding extra nodes to an Apache Spark cluster,
data processing scalability may be enhanced.

5 The procedure for determining the rankings of the
base classifiers to be selected for stacking.

On a recent dataset, NSL-KDD [60] and UNSW-NB15
[35], experiments are carried out to evaluate the per-
formance of suggested ensemble techniques and its
comparison is carried out.
The rest of this article is written as such. The second
section addresses relevant research. Section 3 delves
into the proposed methodologies and procedures.
Section 4 presents the experimental data as well as
the environmental setup, and Section 5 concludes the
study with recommendations for further research.

2. Related Work
An ensemble is a collection of ML algorithms that were
used to identify intrusions using a dataset. Based on
the combination methods utilized, several algorithms
are integrated. According to multiple studies, ensem-
ble approaches generate more accurate findings than
a single model [34]. Using a combo of algorithms and
FS methodologies, researchers have developed many
methods for detecting intrusions. The IDS research
that employed hybridization and ensembles ML ap-
proaches is highlighted in this section.
Panigrahi and Patra [39] introduced a hybrid IDS
model based on fuzzy and rough set theory to recog-

nize normal and abnormal activity in network data.
There are two steps to their model. It first used rank
and search based FS techniques to find the most sig-
nificant features, and then used the five classifiers to
classify the NSL-KDD dataset. Performance study
shows that out of all five classifiers, the “fuzzy rough
nearest neighbor” classification approach produces
better results.
The hybrid model proposed in [20] appeared to be
more accurate than separate models. The dataset
used is from “The University of New Mexico” and
comprised both normal and anomalous mail pro-
gram records. A combination of SVM and K-nearest
neighbor (KNN) was used to create an IDS in [1]. The
weights obtained by particle swarm optimization
(PSO) and the model outperformed the best base ex-
pert classifier accuracy by 0.756 percent. Because of
its performance degradation with increasing data
size, the SVM is not a good option for analysis of large
amounts of data. In order to increase the detection
accuracy, hybrid IDSs were discussed. However, they
have the disadvantage of requiring a lot of processing
resources.
Mukkamala et al. [36] advocated an intelligent IDS
based on ML and ensemble classifiers, which detect-
ed intrusions with a 91 percent success rate. Their
findings showed that when a two-level decision was
made, ensemble approaches performed well in clas-
sification. As a result, numerous other researchers
have developed intrusion detection systems based on
ensemble methods. The contribution of this method
to the detection of zero-day attacks is minimal and
to create permanent signatures with all conceivable
changes and non-intrusive actions to reduce FPR.
Panigrahi and Patra [40] published Bayes net clas-
sifier-based IDS, where they employed search (K2,
Tabu, and Hill Climbing) and Tree Augmented Naive
Bayesian (TAN) techniques. They also used FS meth-
ods based on entropy and statistics for the NSL-KDD
dataset.
Shrivas and Dewangan [56] suggested employing en-
semble learning to present an efficient FS and classi-
fication for an intrusion detection system, in which an
ensemble classifier with FS and boosting algorithm
was utilized to provide the best intrusion detection
rates using the kdd99 and NSL-KDD datasets. Raja-
gopal et al. [45] suggested a stacking ensemble-based
IDS in which the base classifiers were Linear Regres-

901Information Technology and Control 2023/4/52

sion (LR), RF, and KNN, and the meta-classifier was
SVM. To find key features, they employed an entro-
py-based feature selection strategy. UNSW-NB15
and UGR’16 heterogeneous datasets were used in the
experiments. When the dataset is in IoT systems, the
SVM classifier algorithm cannot process it effective-
ly since the systems have a high rate of traffic, which
makes SVM inappropriate.
Wankhade and Chandrasekaran [62] proposed a nov-
el hybrid classifier-based IDS that uses the Self Or-
ganized Ant Colony Optimization (ACO) approach
and SVM. Salo et al. [50] proposed a hybrid IDS in
which they coupled two feature selection approaches
(information gain and principle component analysis
(PCA) with an ensemble method that included SVM,
KNN, and ANN. Tama and Rhee [59] proposed a nov-
el Intrusion Detection System based on the Gradient
Boosted Method (GBM), which they compared to four
other classifiers: random forest, deep neural network,
support vector machine, and regression tree. The
results suggest that gradient-boost performs better
than other approaches.
A novel intrusion detection model was suggested by
Ahmad [3] to calculate common patterns and choose
features, they used an ensemble feature selection
method based on PSO and correlation-based FS
methods. They built ensemble classifiers using FS.
The proposed method showed some promise in terms
of the number of features chosen and the false alarm
rate, but it still needs improvement in terms of accu-
racy and detection rate. Additionally, when proposing
this strategy, the execution time necessary to identify
every attack is overlooked. Prusti [43] suggested an
effective intrusion detection system based on ensem-
ble learning. They employed three distinct ensem-
ble approaches to enhance accuracy and lower the
false-positive rate, including bagging, boosting, and
stacking. Rashid et al. [47] used a feature selection
approach to examine alternative machine learning al-
gorithms for detecting cyber-attacks from IoT-based
smart city applications. “UNSW-NB15 and CIC-
IDS2017”, two recent incursion datasets were used in
the study. The results reveal that the stacking ensem-
ble outperforms other classifiers, with UNSW-NB15
and CICIDS2017 datasets.
A new FS technique for IDS based on a pigeon-in-
spired optimizer (PIO) is depicted in [5]. Using the
described PIO FS approach, the number of features

in the utilized datasets was minimized which attains
high accuracy. Rashid et al. [46] deal with a tree-based
stacking model with a selectKbest FS strategy to
identify intrusion and developed a stacking ensemble
method on UNSW-NB15 datasets. Performance as-
sessment demonstrates that the proposed model ex-
ceeds previous recent efforts in terms of accuracy and
false alarm rate. SelectKBest approach utilisation,
however, is less adaptable to new malicious network
traffic over time.
Zhou et al. [69] offer a novel intrusion detection sys-
tem based on FS and ensemble learning approaches to
deal with high-dimensional and imbalanced network
data. At initial point, CFS-BA approach employed for
FS based on feature correlation. The classification
model is then generated using an ensemble classifier
using C4.5, RF, and ForestPA. The experimental find-
ings for the NSL-KDD dataset are promising.
The following are some of the findings of the stud-
ies reviewed: (1) A single machine learning model or
parameter optimization does not generate the best
results, thus combining numerous learning models
to build a powerful model is a superior strategy, and
(2) For IDS, researchers have yet to study big data
technologies and methods combined with ensemble
methods. We employed an FS methodology and em-
ployed a ranking approach to rank the base classifiers
for the optimal set of classifiers to be used for stacking
in innovative ensemble learning methods to improve
the efficiency of IDS, in this research. At the lower lev-
el, the proposed solution uses Apache Spark for fast
dataset processing and produces multiple different
base models. The findings of the experiments at this
stage are used to produce rankings for the base mod-
els, which are then used to pick a set of appropriate
base classifiers for stacking.

3. Implementation Strategy
This section delves into the methods for detecting in-
trusions, in depth. Apache Spark is used to evaluate the
dataset, which is stored in a distributed storage system.
Following the FS technique, we built models using six
different classifiers as base classifiers. We tested them
on true positives, true negative rate, accuracy, preci-
sion, and F-measure. The results are utilized to create
techniques for computing the ranks for base classifiers

Information Technology and Control 2023/4/52902

and selecting the best pool of classifiers for stacking.
These stages are outlined in the sections below.

3.1. Datasets for IDS

Datasets comprise many entries, including various
properties and information. These features and in-
formation may be utilized to create cloud security
oriented IDS [55]. NSL-KDD and UNSW-NB15, two
publicly available intrusion datasets were used in this
work with two detection categories: normal and ab-
normal.
The KDDcup99 dataset was used to produce the NSL-
KDD dataset, which is a prominent intrusion dataset.
NSL-KDD’s “KDDTrain+” and “KDDTest+” are used as
a training set and testing set, respectively. The testing
set has 22544 records from various attack and normal
categories, whereas the training set contains 125973
records, as shown in Table 1. The UNSW-NB15 intru-
sion dataset comprises contemporary attacks and is
frequently utilized. The “Australian Centre for Cyber
Security” (ACCS) created this dataset in 2015, using
the IXIA PerfectStrom programme to produce raw
network packets. There are about 2.5 million records
in this collection. UNSW-NB15 training-set and UN-
SW-NB15 testing-set, two partitions from overall data-
set, are set up as a training set and testing set, respec-
tively. The testing set has 82,332 records from various
attack and normal categories, whereas the training set
contains 175,341 records as shown in Table 1.

A Feature normalization: The range of features is
normalized by feature scaling, which guarantees
that distinct features have different values. Fur-
thermore, training high-dimensional datasets re-
quire high computational power. Data is frequently
scaled using methods like Z-score standardization,
decimal scaling, Max normalization, and Min–Max
scaling to address these difficulties [30]. The ap-
proach to utilize is frequently determined by the
application. We have incorporated Min–Max scal-
ing (Equation (1)).

are utilized to create techniques for computing the
ranks for base classifiers and selecting the best
pool of classifiers for stacking. These stages are
outlined in the sections below.

33..11 DDaattaasseettss ffoorr IIDDSS
Datasets comprise many entries, including various
properties and information. These features and
information may be utilized to create cloud
security oriented IDS [55]. NSL-KDD and UNSW-
NB15, two publicly available intrusion datasets
were used in this work with two detection
categories: normal and abnormal.

The KDDcup99 dataset was used to produce the
NSL-KDD dataset, which is a prominent intrusion
dataset. NSL-KDD’s “KDDTrain+” and
“KDDTest+” are used as a training set and testing
set, respectively. The testing set has 22544 records
from various attack and normal categories,
whereas the training set contains 125973 records,
as shown in Table 1. The UNSW-NB15 intrusion
dataset comprises contemporary attacks and is
frequently utilized. The “Australian Centre for
Cyber Security” (ACCS) created this dataset in
2015, using the IXIA PerfectStrom programme to
produce raw network packets. There are about 2.5
million records in this collection. UNSW-NB15
training-set and UNSW-NB15 testing-set, two
partitions from overall dataset, are set up as a
training set and testing set, respectively. The
testing set has 82,332 records from various attack
and normal categories, whereas the training set
contains 175,341 records as shown in Table 1.

Table 1 NSLKDD and UNSW-NB15 datasets
distribution

 NSL-KDD UNSW-NB15

 KDD
 Train+

KDD
Test+

Training
Set

Testing
Set

Attack 58630 12833 119,321 45332

Normal 67343 9711 56,000 37000

Total 125973 22544 175341 8233

33..22 DDaattaasseett PPrree--pprroocceessssiinngg
Feature normalization and encoding depending
on the intrusion dataset's features are part of data
pre-processing.

A. Feature normalization: The range of features is
normalized by feature scaling, which guarantees

that distinct features have different values.
Furthermore, training high-dimensional datasets
require high computational power. Data is
frequently scaled using methods like Z-score
standardization, decimal scaling, Max
normalization, and Min–Max scaling to address
these difficulties [30]. The approach to utilize is
frequently determined by the application. We
have incorporated Min–Max scaling (Equation
(1)).

MinMax scaling X : min
norm

max min

X X
X

X X
−

=
−

, (1)

where Xmin and Xmax are the minimum and
maximum values of feature X, respectively. The
standardization calculation occurs as specified in
Algorithm 1 for a dataset with an input vector
(feature space) represented by U (x1,……,xn),
1<n<N, where N is the total number of instances
(features) in the space.

Algorithm 1 for Min-Max scaling
Input: U (x1,……,xn), where 1<n<N
Output: 1(,....),norm norm

normalised nU x x
 for i from 1 to k do
 if (𝒙𝒙𝒙𝒙𝒊𝒊𝒊𝒊 a non-numeric input value) then
 Step 1: encode using “label encoding”
 Step 2: Compute Min-Max scaling:

min
norm

max min

X X
X

X X
−

=
−

 end if
 Step 1: Compute Min-Max scaling:

min
norm

max min

X X
X

X X
−

=
−

 end for

B. Feature Encoding: For efficient model training,
all categorical features will be encoded into
vectors. There are several methods for converting
categorical data into vectors. 'Label Encoding,'
'One Hot Encoding,' and ‘scikit-learn feature
mapping’ are the most often utilized approaches.
We adopted the first approach since the number of
feature dimensions in the later techniques
significantly rises [41]. It took a straightforward
approach to convert feature values to numeric
numbers, for example, the values of instances like
“icmp, http, tcp” in the dataset, will turn into
vectors 0,1,2.

33..33 FFeeaattuurree SSeelleeccttiioonn ((FFSS))
Gain Ratio (GR) [28] is a variant of Information
Gain (IG) that tackles IG's bias toward qualities
with a larger range of values. When selecting a

(1)

where Xmin and Xmax are the minimum and maximum
values of feature X, respectively. The standardization
calculation occurs as specified in Algorithm 1 for a
dataset with an input vector (feature space) repre-
sented by U (x1,……,xn), 1<n<N, where N is the total
number of instances (features) in the space.

Table 1
NSLKDD and UNSW-NB15 datasets distribution

NSL-KDD UNSW-NB15

KDD
 Train+

KDD
Test+

Training
Set Testing Set

Attack 58630 12833 119,321 45332

Normal 67343 9711 56,000 37000

Total 125973 22544 175341 8233

3.2. Dataset Pre-processing
Feature normalization and encoding depending
on the intrusion dataset’s features are part of data
pre-processing.

Algorithm 1 for Min-Max scaling

Input: U (x1,……,xn), where 1<n<N

Output: 1(,....),norm norm
normalised nU x x

 for i from 1 to k do
 if (xi a non-numeric input value) then
 Step 1: encode using “label encoding”
 Step 2: Compute Min-Max scaling:

min
norm

max min

X X
X

X X
−

=
−

 end if

 Step 1: Compute Min-Max scaling: min
norm

max min

X X
X

X X
−

=
−

 end for

B Feature Encoding: For efficient model training, all
categorical features will be encoded into vectors.
There are several methods for converting categor-
ical data into vectors. ‘Label Encoding,’ ‘One Hot
Encoding,’ and ‘scikit-learn feature mapping’ are
the most often utilized approaches. We adopted
the first approach since the number of feature di-
mensions in the later techniques significantly rises
[41]. It took a straightforward approach to convert
feature values to numeric numbers, for example,
the values of instances like “icmp, http, tcp” in the
dataset, will turn into vectors 0,1,2.

903Information Technology and Control 2023/4/52

3.3. Feature Selection (FS)
Gain Ratio (GR) [28] is a variant of Information Gain
(IG) that tackles IG’s bias toward qualities with a larg-
er range of values. When selecting a gain ratio attri-
bute, the number and size of branches are considered.
By accounting for the inherent information of a split,
the IG is fixed (i.e., how much info is needed to identi-
fy which branch a given instance belongs to), and the
entropy of instance distribution into branches is the
intrinsic information. It is calculated as follows for a
given attribute a and an attribute value of b:

gain ratio attribute, the number and size of
branches are considered. By accounting for the
inherent information of a split, the IG is fixed (i.e.,
how much info is needed to identify which branch
a given instance belongs to), and the entropy of
instance distribution into branches is the intrinsic
information. It is calculated as follows for a given
attribute a and an attribute value of b:

() ()
()

 ,
 ,

gain b a

Gain Ratio b a
intrinsic info a

= (2)

where,

() 2 *i iS S
intrinsic Info a log

S S
=−∑ . (3)

The number of possible values for attribute a is
|S|, and the number of actual values for attribute
a is |Si|. Based on a user-defined threshold, a
subset of features is picked, in this instance, GR>
0.1, with the assumption that higher-valued
features may contain more important information.

33..44 IIDDSS uussiinngg BBaassee CCllaassssiiffiieerrss
Ensemble approaches are a type of machine
learning methodology in which numerous base
classifiers are combined to generate a single best
prediction model [24, 63]. The final model will
overcome each learner's flaws, yielding a strong
model that will improve prediction results.
Ensemble learning is more successful when the
classifiers are heterogeneous, which may be done
by combining multiple types of classifiers that
employ different methodologies to classify the
incoming data. As a result, six heterogeneous
classifiers, namely J48, RF, XGBoost, OneR, MLP,
and SVM, were employed as base classifiers.

The J48 tree classification algorithm is the most
widely utilized. Quinlan [44] was the one who
came up with it. To reduce classification errors,
the J48 approach uses an improved tree pruning
methodology. Several studies investigated the
influence of applying the J48 algorithm to enhance
IDS accuracy [7, 31]. L.Breiman proposed an RF
classifier [10]. It's an ensemble learning classifier
based on trees. It was created by combining the
forecasts of numerous trees that had each been
trained independently. RF classifier has a
substantial favorable impact on IDS accuracy,
according to several prior research [15, 38]. RF is a
highly successful classification strategy across a
range of real-world applications,' Fernandez-
Delgado et al. write in [16]. Other studies have
found that random forest produces good results
[6, 9, 14]. Existing research supports all of the

proposed classifiers, particularly because their
findings are simply interpretable and their
training is robust against outliers. All of the
classifiers employed are gaining popularity in a
variety of fields, including cyber security and
cloud security, due to their high performance. The
XGBoost idea is based on gradient-boosted trees
with supervised learning as the primary approach
and was pioneered by Chen and Guestrin [11]. It
is Sparse Aware, meaning it can handle missing
values, enables parallel tree construction, and has
the unique ability to execute boosting on data that
has already been added to the trained model [49].

OneR [26] is a rule-based model-based algorithm.
It creates a one-level decision tree in the form of a
series of rules, each of which tests a single feature.
OneR is a basic, low-cost approach that frequently
produces useful rules for describing data
structure. MLP refers to feed-forward neural
networks trained using the back-propagation
technique [25]. Because they are supervised
networks, they must be taught the desired
response. They can approximate any input-output
map with one or two hidden layers. The binary
classifier category includes SVM. It's a popular
method for categorizing two groups. The “Radial
Basis Function” (RBF) kernel is employed in this
experiment. This kernel function is a suitable
choice because it has fewer adjustable parameters
and performs well in nonlinear forecasting.

Figure 1
The proposed ensemble method's overall framework

(2)

where,

gain ratio attribute, the number and size of
branches are considered. By accounting for the
inherent information of a split, the IG is fixed (i.e.,
how much info is needed to identify which branch
a given instance belongs to), and the entropy of
instance distribution into branches is the intrinsic
information. It is calculated as follows for a given
attribute a and an attribute value of b:

() ()
()

 ,
 ,

gain b a

Gain Ratio b a
intrinsic info a

= (2)

where,

() 2 *i iS S
intrinsic Info a log

S S
=−∑ . (3)

The number of possible values for attribute a is
|S|, and the number of actual values for attribute
a is |Si|. Based on a user-defined threshold, a
subset of features is picked, in this instance, GR>
0.1, with the assumption that higher-valued
features may contain more important information.

33..44 IIDDSS uussiinngg BBaassee CCllaassssiiffiieerrss
Ensemble approaches are a type of machine
learning methodology in which numerous base
classifiers are combined to generate a single best
prediction model [24, 63]. The final model will
overcome each learner's flaws, yielding a strong
model that will improve prediction results.
Ensemble learning is more successful when the
classifiers are heterogeneous, which may be done
by combining multiple types of classifiers that
employ different methodologies to classify the
incoming data. As a result, six heterogeneous
classifiers, namely J48, RF, XGBoost, OneR, MLP,
and SVM, were employed as base classifiers.

The J48 tree classification algorithm is the most
widely utilized. Quinlan [44] was the one who
came up with it. To reduce classification errors,
the J48 approach uses an improved tree pruning
methodology. Several studies investigated the
influence of applying the J48 algorithm to enhance
IDS accuracy [7, 31]. L.Breiman proposed an RF
classifier [10]. It's an ensemble learning classifier
based on trees. It was created by combining the
forecasts of numerous trees that had each been
trained independently. RF classifier has a
substantial favorable impact on IDS accuracy,
according to several prior research [15, 38]. RF is a
highly successful classification strategy across a
range of real-world applications,' Fernandez-
Delgado et al. write in [16]. Other studies have
found that random forest produces good results
[6, 9, 14]. Existing research supports all of the

proposed classifiers, particularly because their
findings are simply interpretable and their
training is robust against outliers. All of the
classifiers employed are gaining popularity in a
variety of fields, including cyber security and
cloud security, due to their high performance. The
XGBoost idea is based on gradient-boosted trees
with supervised learning as the primary approach
and was pioneered by Chen and Guestrin [11]. It
is Sparse Aware, meaning it can handle missing
values, enables parallel tree construction, and has
the unique ability to execute boosting on data that
has already been added to the trained model [49].

OneR [26] is a rule-based model-based algorithm.
It creates a one-level decision tree in the form of a
series of rules, each of which tests a single feature.
OneR is a basic, low-cost approach that frequently
produces useful rules for describing data
structure. MLP refers to feed-forward neural
networks trained using the back-propagation
technique [25]. Because they are supervised
networks, they must be taught the desired
response. They can approximate any input-output
map with one or two hidden layers. The binary
classifier category includes SVM. It's a popular
method for categorizing two groups. The “Radial
Basis Function” (RBF) kernel is employed in this
experiment. This kernel function is a suitable
choice because it has fewer adjustable parameters
and performs well in nonlinear forecasting.

Figure 1
The proposed ensemble method's overall framework

(3)

The number of possible values for attribute a is |S|,
and the number of actual values for attribute a is |Si|.
Based on a user-defined threshold, a subset of fea-
tures is picked, in this instance, GR > 0.1, with the
assumption that higher-valued features may contain
more important information.

3.4. IDS using Base Classifiers
Ensemble approaches are a type of machine learning
methodology in which numerous base classifiers are
combined to generate a single best prediction model
[24, 63]. The final model will overcome each learner’s
flaws, yielding a strong model that will improve pre-
diction results. Ensemble learning is more successful
when the classifiers are heterogeneous, which may
be done by combining multiple types of classifiers
that employ different methodologies to classify the
incoming data. As a result, six heterogeneous classifi-
ers, namely J48, RF, XGBoost, OneR, MLP, and SVM,
were employed as base classifiers.
The J48 tree classification algorithm is the most
widely utilized. Quinlan [44] was the one who came
up with it. To reduce classification errors, the J48
approach uses an improved tree pruning method-
ology. Several studies investigated the influence of
applying the J48 algorithm to enhance IDS accuracy
[7, 31]. L.Breiman proposed an RF classifier [10]. It’s

an ensemble learning classifier based on trees. It was
created by combining the forecasts of numerous trees
that had each been trained independently. RF classi-
fier has a substantial favorable impact on IDS accu-
racy, according to several prior research [15, 38]. RF
is a highly successful classification strategy across a
range of real-world applications,’ Fernandez-Delgado
et al. write in [16]. Other studies have found that ran-
dom forest produces good results [6, 9, 14]. Existing
research supports all of the proposed classifiers, par-
ticularly because their findings are simply interpre-
table and their training is robust against outliers. All
of the classifiers employed are gaining popularity in
a variety of fields, including cyber security and cloud
security, due to their high performance. The XGBoost
idea is based on gradient-boosted trees with super-
vised learning as the primary approach and was pio-
neered by Chen and Guestrin [11]. It is Sparse Aware,
meaning it can handle missing values, enables paral-
lel tree construction, and has the unique ability to ex-
ecute boosting on data that has already been added to
the trained model [49].
OneR [26] is a rule-based model-based algorithm. It
creates a one-level decision tree in the form of a series
of rules, each of which tests a single feature. OneR is
a basic, low-cost approach that frequently produces
useful rules for describing data structure. MLP refers
to feed-forward neural networks trained using the
back-propagation technique [25]. Because they are
supervised networks, they must be taught the desired
response. They can approximate any input-output
map with one or two hidden layers. The binary clas-
sifier category includes SVM. It’s a popular method
for categorizing two groups. The “Radial Basis Func-
tion” (RBF) kernel is employed in this experiment.
This kernel function is a suitable choice because it
has fewer adjustable parameters and performs well in
nonlinear forecasting.
There are two reasons for utilizing stacking ensem-
ble: first, it can improve performance by lowering the
variance component of prediction errors, and second,
it can improve robustness by lowering prediction dis-
persion [13]. Furthermore, with increasingly power-
ful computing resources available at reduced hard-
ware costs, improved model performance surpasses
the computational cost of model construction. J48,
RF, XGBoost, OneR, MLP, and SVM are six classifiers.
Figure 1 shows the proposed framework.

Information Technology and Control 2023/4/52904

We used the min-max feature scaling strategy to
minimize model complexity by scaling all input fea-
tures into a range between 0 and 1 [65]. We employed
cross-validation as a precautionary measure against
overfitting by dividing the original training dataset
into several small train-test parts. These splits were
then used to fine-tune the model. The data was par-
titioned into 10 subgroups called folds using 10-fold
cross-validation. The algorithm was then trained on
9 folds in a row, with the last fold acting as a test set.
Finally, the algorithm’s parameters were fine-tuned
utilizing the scikit-learn RandomizedSearchCV()
class, which uses the randomized search approach for
parameter optimization.

3.5. Ranking Classifiers
The proposed methods for constructing an ensemble
classifier are based on rank algorithms [64] for pick-
ing the best pool of classifiers for stacking. According
to the literature, most classifiers produce different

responses for distinct classes. They do not, for exam-
ple, classify intrusion and benign classes equally ac-
curately. This information was utilized to calculate
the scores of the base classifiers that are used to cre-
ate the ranking. The Average Accuracy based Ranking
Method (AARM) is employed for ranking the classi-
fiers. The ranking is obtained using this technique by
considering the average of class prediction accura-
cies. A higher rank will be given to the base classifier
that has greater average accuracy. Assuming the us-
age of s classifiers, represented by x1,x2,……xs to divide
the data into two categories: intrusion, u, and benign,
v. Let

iu,xA and
i,xAv represent the malware and be-

nign class accuracies for a classifier xi, respectively.
Equation (4), as shown below, is used to calculate the
average accuracy

iavgxA of each classifier:

There are two reasons for utilizing stacking
ensemble: first, it can improve performance by
lowering the variance component of prediction
errors, and second, it can improve robustness by
lowering prediction dispersion [13]. Furthermore,
with increasingly powerful computing resources
available at reduced hardware costs, improved
model performance surpasses the computational
cost of model construction. J48, RF, XGBoost,
OneR, MLP, and SVM are six classifiers. Figure 1
shows the proposed framework.

We used the min-max feature scaling strategy to
minimize model complexity by scaling all input
features into a range between 0 and 1 [65]. We
employed cross-validation as a precautionary
measure against overfitting by dividing the
original training dataset into several small train-
test parts. These splits were then used to fine-tune
the model. The data was partitioned into 10
subgroups called folds using 10-fold cross-
validation. The algorithm was then trained on 9
folds in a row, with the last fold acting as a test
set. Finally, the algorithm's parameters were fine-
tuned utilizing the scikit-learn
RandomizedSearchCV() class, which uses the
randomized search approach for parameter
optimization.

33..55 RRaannkkiinngg CCllaassssiiffiieerrss

The proposed methods for constructing an
ensemble classifier are based on rank algorithms
[64] for picking the best pool of classifiers for
stacking. According to the literature, most
classifiers produce different responses for distinct
classes. They do not, for example, classify
intrusion and benign classes equally accurately.
This information was utilized to calculate the
scores of the base classifiers that are used to create
the ranking. The Average Accuracy based
Ranking Method (AARM) is employed for ranking
the classifiers. The ranking is obtained using this
technique by considering the average of class
prediction accuracies. A higher rank will be given
to the base classifier that has greater average
accuracy. Assuming the usage of s classifiers,
represented by x1,x2,……xs to divide the data into
two categories: intrusion, u, and benign, v. Let

iu,xA and
i,xAv represent the malware and benign

class accuracies for a classifier xi, respectively.
Equation (4), as shown below, is used to calculate
the average accuracy

iavgxA of each classifier:

{ }, ,* *
 1, 2,3, .,

i i

i

u u x v v x
avgx

u v

p A p A
A i s

p p
+

= ∀ ∈ ………
+

, (4)

where, Pu and Pv represent the numbers of
intrusion and benign files, respectively. Assume

{ }1 2 3 savgx avgx avgx avgxC A , A , A , .,A= ……… is the

collection of all classifiers' average accuracies. The
rank is then computed using the Rdesc() function,
which assigns a rank to each classifier based on its
average accuracy as shown in Equation (5) (i.e.
larger the value of Aavgxi , higher is the rank).

() () { } , 1, 2,3..,
ii avgx descRANK x A R C i s= ∀ ∈ . (5)

Instead of using all of the base classifiers, the top
three are chosen as the best set, using the rank
approach, for stacking.

44.. EExxppeerriimmeenntt
The experimental setup, evaluation settings, and
results of the proposed solution are described in
this section. Table 2 shows the hyper-parameter
values of the classifiers selected by randomised
search.

Table 2
Classifier hyper-parameters

Classifier Parameters

J48 “Confidence factor” = 0.7,
“num_folds” =
5,“minimum_number_of_instance_

, (4)

where, Pu and Pv represent the numbers of in-
trusion and benign files, respectively. Assume

{ }1 2 3 savgx avgx avgx avgxC A , A , A , .,A= ……… is the col-
lection of all classifiers’ average accuracies. The rank
is then computed using the Rdesc() function, which as-
signs a rank to each classifier based on its average ac-
curacy as shown in Equation (5) (i.e. larger the value
of Aavgxi

, higher is the rank).

There are two reasons for utilizing stacking
ensemble: first, it can improve performance by
lowering the variance component of prediction
errors, and second, it can improve robustness by
lowering prediction dispersion [13]. Furthermore,
with increasingly powerful computing resources
available at reduced hardware costs, improved
model performance surpasses the computational
cost of model construction. J48, RF, XGBoost,
OneR, MLP, and SVM are six classifiers. Figure 1
shows the proposed framework.

We used the min-max feature scaling strategy to
minimize model complexity by scaling all input
features into a range between 0 and 1 [65]. We
employed cross-validation as a precautionary
measure against overfitting by dividing the
original training dataset into several small train-
test parts. These splits were then used to fine-tune
the model. The data was partitioned into 10
subgroups called folds using 10-fold cross-
validation. The algorithm was then trained on 9
folds in a row, with the last fold acting as a test
set. Finally, the algorithm's parameters were fine-
tuned utilizing the scikit-learn
RandomizedSearchCV() class, which uses the
randomized search approach for parameter
optimization.

33..55 RRaannkkiinngg CCllaassssiiffiieerrss

The proposed methods for constructing an
ensemble classifier are based on rank algorithms
[64] for picking the best pool of classifiers for
stacking. According to the literature, most
classifiers produce different responses for distinct
classes. They do not, for example, classify
intrusion and benign classes equally accurately.
This information was utilized to calculate the
scores of the base classifiers that are used to create
the ranking. The Average Accuracy based
Ranking Method (AARM) is employed for ranking
the classifiers. The ranking is obtained using this
technique by considering the average of class
prediction accuracies. A higher rank will be given
to the base classifier that has greater average
accuracy. Assuming the usage of s classifiers,
represented by x1,x2,……xs to divide the data into
two categories: intrusion, u, and benign, v. Let

iu,xA and
i,xAv represent the malware and benign

class accuracies for a classifier xi, respectively.
Equation (4), as shown below, is used to calculate
the average accuracy

iavgxA of each classifier:

{ }, ,* *
 1, 2,3, .,

i i

i

u u x v v x
avgx

u v

p A p A
A i s

p p
+

= ∀ ∈ ………
+

, (4)

where, Pu and Pv represent the numbers of
intrusion and benign files, respectively. Assume

{ }1 2 3 savgx avgx avgx avgxC A , A , A , .,A= ……… is the

collection of all classifiers' average accuracies. The
rank is then computed using the Rdesc() function,
which assigns a rank to each classifier based on its
average accuracy as shown in Equation (5) (i.e.
larger the value of Aavgxi , higher is the rank).

() () { } , 1, 2,3..,
ii avgx descRANK x A R C i s= ∀ ∈ . (5)

Instead of using all of the base classifiers, the top
three are chosen as the best set, using the rank
approach, for stacking.

44.. EExxppeerriimmeenntt
The experimental setup, evaluation settings, and
results of the proposed solution are described in
this section. Table 2 shows the hyper-parameter
values of the classifiers selected by randomised
search.

Table 2
Classifier hyper-parameters

Classifier Parameters

J48 “Confidence factor” = 0.7,
“num_folds” =
5,“minimum_number_of_instance_

(5)

Instead of using all of the base classifiers, the top three
are chosen as the best set, using the rank approach, for
stacking.

4. Experiment
The experimental setup, evaluation settings, and re-
sults of the proposed solution are described in this
section. Table 2 shows the hyper-parameter values of
the classifiers selected by randomised search.

4.1. Environmental Setup
The proposed method uses Hadoop Distributed File
System (HDFS), Apache Spark, and Python program-
ming language. The tests are run on a multi-node clus-
ter based on Apache Spark, with one master node and

Figure 1
The proposed ensemble method’s overall framework

There are two reasons for utilizing stacking
ensemble: first, it can improve performance by
lowering the variance component of prediction
errors, and second, it can improve robustness by
lowering prediction dispersion [13]. Furthermore,
with increasingly powerful computing resources
available at reduced hardware costs, improved
model performance surpasses the computational
cost of model construction. J48, RF, XGBoost,
OneR, MLP, and SVM are six classifiers. Figure 1
shows the proposed framework.

We used the min-max feature scaling strategy to
minimize model complexity by scaling all input
features into a range between 0 and 1 [65]. We
employed cross-validation as a precautionary
measure against overfitting by dividing the
original training dataset into several small train-
test parts. These splits were then used to fine-tune
the model. The data was partitioned into 10
subgroups called folds using 10-fold cross-
validation. The algorithm was then trained on 9
folds in a row, with the last fold acting as a test
set. Finally, the algorithm's parameters were fine-
tuned utilizing the scikit-learn
RandomizedSearchCV() class, which uses the
randomized search approach for parameter
optimization.

33..55 RRaannkkiinngg CCllaassssiiffiieerrss

The proposed methods for constructing an
ensemble classifier are based on rank algorithms
[64] for picking the best pool of classifiers for
stacking. According to the literature, most
classifiers produce different responses for distinct
classes. They do not, for example, classify
intrusion and benign classes equally accurately.
This information was utilized to calculate the
scores of the base classifiers that are used to create
the ranking. The Average Accuracy based
Ranking Method (AARM) is employed for ranking
the classifiers. The ranking is obtained using this
technique by considering the average of class
prediction accuracies. A higher rank will be given
to the base classifier that has greater average
accuracy. Assuming the usage of s classifiers,
represented by x1,x2,……xs to divide the data into
two categories: intrusion, u, and benign, v. Let

iu,xA and
i,xAv represent the malware and benign

class accuracies for a classifier xi, respectively.
Equation (4), as shown below, is used to calculate
the average accuracy

iavgxA of each classifier:

{ }, ,* *
 1, 2,3, .,

i i

i

u u x v v x
avgx

u v

p A p A
A i s

p p
+

= ∀ ∈ ………
+

, (4)

where, Pu and Pv represent the numbers of
intrusion and benign files, respectively. Assume

{ }1 2 3 savgx avgx avgx avgxC A , A , A , .,A= ……… is the

collection of all classifiers' average accuracies. The
rank is then computed using the Rdesc() function,
which assigns a rank to each classifier based on its
average accuracy as shown in Equation (5) (i.e.
larger the value of Aavgxi , higher is the rank).

() () { } , 1, 2,3..,
ii avgx descRANK x A R C i s= ∀ ∈ . (5)

Instead of using all of the base classifiers, the top
three are chosen as the best set, using the rank
approach, for stacking.

44.. EExxppeerriimmeenntt
The experimental setup, evaluation settings, and
results of the proposed solution are described in
this section. Table 2 shows the hyper-parameter
values of the classifiers selected by randomised
search.

Table 2
Classifier hyper-parameters

Classifier Parameters

J48 “Confidence factor” = 0.7,
“num_folds” =
5,“minimum_number_of_instance_

905Information Technology and Control 2023/4/52

three slave nodes. 2.40 GHz Intel Xeon CPU, 32 GB
RAM, and 512 GB SSD power at the master node. Intel
Core i5 CPU of 3.1 GHz, 8 GB RAM, and 500 GB HDD
are used in the slave nodes. Ubuntu 14.04.6 is the oper-
ating system in a multi-node cluster. The following is a
quick explanation of the software system components:
Apache Spark: A resilient distributed dataset (RDD)
[66] of Spark, is a collection of fault-tolerant units
that can execute in parallel. Spark is known for its
ability to process large datasets in memory which is
a set of fault-tolerant units that may run in parallel.
Spark is well recognized for its ability to handle mas-
sive datasets in memory.
HDFS: HDFS is a widely used solution for large-scale
distributed data storage [19]. High fault tolerance,
high throughput, and easy portability across diverse
systems are just a few of the advantages of HDFS [18].
Python: Python is favored as a programming language
because of the availability of a large ecosystem of scien-
tific libraries, PySpark, a Python API for Apache Spark,
and Jupyter Notebook, which offers the programming
environment, are the additional development tools.
The Pandas library, Numpy, Spark MLlib, and Sklearn
were used to implement the models that were tested.

4.2. Performance Assessment Matrices
How well a classification system performs, is shown
by the confusion matrix. Table 3 below represents the
confusion matrix.

The below mentioned metrics in Table 4 are widely
used to assess models. The following are the perfor-
mance metrics: True Positive (TP) represents obfus-
cated malware specimen that is accurately detected
as malware. True Negative (TN) represents a normal
specimen that is accurately classified as normal. False
Positive (FP) means a normal specimen is misidenti-
fied as malware. False Negative (FN) represents ob-
fuscated malware specimen that is wrongly labelled
as normal.

Table 2
Classifier hyper-parameters

Classifier Parameters

J48 “Confidence factor” = 0.7, “num_folds” =
5,“minimum_number_of_instance_per_leaf ”=2

RF
“max_depth”= 90, “min_samples_leaf ”=
6,“max_features”= 4 “n_estimators”= 200, “min_
samples_split”= 7

SVM
C=10, cache_size=200, coef0=0.0, kernel=”rbf ”,
degree=3, max_iter=-1, gamma=0.0001, tol =
001, verbose=False.

XGBoost learning rate=0.2, n_estimators=150, max
depth=3, random state=1

OneR minBucketSize = 8

MLP LearningRate = 0.3, Momentum= 0.2,
numberOfEpochs = 300

Table 3
Confusion Matrix

Actual

Benign Malware

Predicted
Benign TP FP

Malware FN TN

Table 4
Metrics for performance evaluation

Metrics Formula

Sensitivity TP/(TP+FN)

Specificity TN/(FP+TN)

Precision TP/(TP+FP)

FPR FP/(FP+TN)

FNR FN/(FN+TP)

Accuracy (TP+TN)/(FP +TP+FN+TN)

F1-Score 2TP/(2TP+FP+FN)

4.3. Impact of FS Approach
The dataset features do not all contribute equally to
its effective design. In this experiment, we used the
Gain Ratio approach to identify the best features,
with a threshold value of 0.1 for selecting the top
rank features, delivering us the most important fea-
tures based on their assessed value. Tables 5 and 7
provide the selected features of the NSL-KDD and
UNSW-NB15 datasets. The range of feature values is
set between 0 to1. A feature with a higher score has
a more significant impact on differentiating between
normal and abnormal activity, so the value of features
greater than or equal to 0.1, is selected and rejected
the remaining features as shown in Tables 6 and 8.

Information Technology and Control 2023/4/52906

Table 5
Selected Features from NSL-KDD Dataset

Feature Name Feature No. Value ≥ 0.1
“logged_in” 12 0.418
“srv_serror_rate” 26 0.3739
“flag” 4 0.3399
“serror_rate” 25 0.3327
“dst_host_srv_serror_rate” 39 0.332
“diff_srv_rate” 30 0.2673
“dst_host_serror_rate” 38 0.2648
“dst_bytes” 6 0.2585
“src_bytes” 5 0.2313
“same_srv_rate” 29 0.2243
“service” 3 0.1728
“dst_host_srv_diff_host_rate” 37 0.1452
“wrong_fragment” 8 0.134
“dst_host_srv_count” 33 0.1327
“dst_host_same_srv_rate” 34 0.1283
“dst_host_diff_srv_rate” 35 0.1246
“srv_diff_host_rate” 31 0.1143

Table 6
Rejected Features from NSL-KDD Dataset

Feature Name Feature No. Value < 0.1
“dst_host_srv_rerror_rate” 41 0.097
“count” 23 0.0953
“dst_host_count” 32 0.0899
“srv_rerror_rate” 28 0.0821
“num_root” 16 0.0798
“rerror_rate” 27 0.0786
“dst_host_same_src_port_rate” 36 0.0775
“num_access_files” 19 0.0743
“protocol_type” 2 0.0725
“num_compromised” 13 0.072
“su_attempted” 15 0.0671
“hot” 10 0.058
“duration” 1 0.0554
“is_host_login” 21 0.0491
“dst_host_rerror_rate” 40 0.0449
“num_file_creations” 17 0.0394
“num_failed_logins” 11 0.0297
“srv_count” 24 0.0252
“root_shell” 14 0.022
“num_shells” 18 0.0218
“is_guest_login” 22 0.0152
“land” 7 0.014
“num_outbound_cmds” 20 0
“urgent” 9 0

Table 7
Selected Features from UNSW-NB15 Dataset

Feature Name Feature No. Value ≥ 0.1
“sttl” 11 0.40367
“dttl” 12 0.32594
“ct_state_ttl” 33 0.30407
“is_sm_ips_ports” 43 0.22527
“xState” 5 0.17808
“ackdat” 27 0.16677
“tcprtt” 25 0.16217
“synack” 26 0.15394
“id” 1 0.14481
“dinpkt” 18 0.13868
“dload” 14 0.13382
“dbytes” 9 0.13126
“dpkts” 7 0.12333
“rate” 10 0.11923
“sbytes” 8 0.11524
“dmean” 29 0.11521
“dur” 2 0.11234
“ct_dst_sport_ltm” 36 0.10629

Table 8
Rejected Features from UNSW-NB15 Dataset

Feature Name Feature No. Value < 0.1
“response_body_len” 31 0.0951
“smean” 28 0.09274
“djit” 20 0.08907
“sjit” 19 0.08702
“sload” 13 0.08522
“sinpkt” 17 0.08504
“swin” 21 0.08203
“spkts” 6 0.08037
“dloss” 16 0.07891
“stcpb” 22 0.07517
“dtcpb” 23 0.07512
“dwin” 24 0.0751
“xProt” 3 0.07344
“sloss” 15 0.06997
“ct_src_dport_ltm” 35 0.05152
“ct_dst_ltm” 34 0.04926
“ct_srv_dst” 42 0.03889
“ct_dst_src_ltm” 37 0.03766
“ct_src_ltm” 41 0.03742
“ct_srv_src” 32 0.0348
 “xServ” 4 0.03074
 “trans_depth” 30 0.00173
“is_ftp_login” 38 0.00165
 “ct_ftp_cmd” 39 0.00165
 “ct_flw_http_mthd” 40 0.00119

907Information Technology and Control 2023/4/52

We investigate only 17 of the 41 features in the NSL-
KDD dataset based on their value, and only 18 of the
43 features in the UNSW-NB15 dataset based on
their ranking. By reducing the number of features,
the feature significance score may assist us in de-
signing a simpler model. The model’s detection ex-
pertise is also improved by removing redundant fea-
tures.

4.4. Model Performance
Tables 9-10 illustrate the detection results. Table 9
indicates that the sensitivity is 0.9967, specificity
is 0.9983, precision is 0.9977, FPR is 0.0017, FNR is
0.0033, Accuracy is 0.9976 and F1 score is 0.9972, XG-
Boost performance metrics for the NSL-KDD dataset.
Table 10 indicates that the sensitivity is 0.9665, spec-
ificity is 0.9416, precision is 0.9722, FPR is 0.0584,

Table 9
Results of the base classifiers for the NSL-KDD dataset

Classifier Sensitivity Specificity Precision FPR FNR Accuracy F1-Score Rank

J48 0.9906 0.9950 0.9934 0.0050 0.0094 0.9931 0.9920 3

RF 0.9916 0.9947 0.9930 0.0053 0.0084 0.9933 0.9923 2

SVM 0.9891 0.9867 0.9823 0.0133 0.0109 0.9871 0.9857 5

OneR 0.9796 0.9790 0.9721 0.0210 0.0204 0.9792 0.9758 6

MLP 0.9905 0.9881 0.9842 0.0119 0.0095 0.9891 0.9873 4

XGBoost 0.9967 0.9983 0.9977 0.0017 0.0033 0.9976 0.9972 1

Table 10
Results of the base classifiers for the UNSW-NB15 dataset

Classifier Sensitivity Specificity Precision FPR FNR Accuracy F1-Score Rank

J48 0.9516 0.9171 0.9369 0.3829 0.0084 0.9459 0.9604 3
RF 0.9581 0.9238 0.9638 0.0762 0.0419 0.9471 0.9609 2
SVM 0.9443 0.8947 0.9499 0.1053 0.0557 0.9284 0.9471 5
OneR 0.9444 0.8921 0.9486 0.1079 0.0556 0.9275 0.9465 6
MLP 0.9498 0.9063 0.9554 0.0937 0.0502 0.9358 0.9526 4
XGBoost 0.9665 0.9416 0.9722 0.0584 0.0335 0.9585 0.9693 1

FNR is 0.0335, Accuracy is 0.9585 and F1 score is
0.9693, XGBoost performance metric for the UN-
SW-NB15 dataset.
The top three classifiers, XGBoost, RF, and J48, are
picked for stacking based on their rankings. XGBoost
has been used as a level-2 meta-classifier in stacking.
The final model will overcome each learner’s flaws,
yielding a strong model that will improve prediction
results. The SGA is a general architecture made up
of two types of classifiers: base and meta-classifiers.
The training dataset is used to train the base (initial)
classifiers, while a new dataset is created for the me-
ta-classifier. This new dataset is then used to train the
meta-classifier. Finally, the test dataset is predicted
using the trained meta-classifier. We provide a model
based on a stacked ensemble of ML algorithms, with
XGBoost serving as a meta-classifier.

Table 11
Results of stacking for the NSL-KDD dataset

Classifier Sensitivity Specificity Precision FPR FNR Accuracy F1-Score

Stacking (All Classifiers) 0.9971 0.9985 0.9980 0.0015 0.0029 0.9979 0.9976

Stacking (XGBoost, RF, J48) 0.9974 0.9988 0.9985 0.0012 0.0015 0.9982 0.9979

Information Technology and Control 2023/4/52908

Tables 11-12 and Figures 2-5 depict that compared
to stacking all of the specified classifiers, stacking
with the top three base classifiers gives better per-
formance. As a result, instead of considering all base
classifiers, it is preferable to select the best collec-
tion of classifiers because it minimizes computing
time. As a result, the presented ensemble technique
schemes may be employed to increase generalization
performance in detecting unknown intrusions.

Figure 2
Performance Comparison for NSL-KDD

Figure 3
FPR and FNR Comparison for NSL-KDD

Table 12
Results of stacking for the UNSW-NB15 dataset

Classifier Sensitivity Specificity Precision FPR FNR Accuracy F1-Score

Stacking (All Classifiers) 0.9668 0.9425 0.9726 0.0575 0.0332 0.9590 0.9697

Stacking (XGBoost, RF, J48) 0.9672 0.9433 0.9730 0.0567 0.0328 0.9596 0.9701

Figure 4
Performance Comparison for UNSW-NB15

Figure 5
FPR and FNR Comparison for UNSW-NB15

Table 12
Results of stacking for the UNSW-NB15 dataset

Classifier Sensitivity Specificity Precision FPR FNR Accuracy F1-Score
Stacking (All Classifiers) 0.9668 0.9425 0.9726 0.0575 0.0332 0.9590 0.9697
Stacking (XGBoost, RF, J48) 0.9672 0.9433 0.9730 0.0567 0.0328 0.9596 0.9701

Figure 4 Figure 5
Performance Comparison for UNSW-NB15 FPR and FNR Comparison for UNSW-NB15

Tables 11-12 and Figures 2-5 depict that compared
to stacking all of the specified classifiers, stacking
with the top three base classifiers gives better
performance. As a result, instead of considering
all base classifiers, it is preferable to select the best
collection of classifiers because it minimizes
computing time. As a result, the presented
ensemble technique schemes may be employed to
increase generalization performance in detecting
unknown intrusions.

44..55 PPeerrffoorrmmaannccee CCoommppaarriissoonn
wwiitthh CCuurrrreenntt MMeetthhooddoollooggiieess

Using the NSLKDD and UNSW-NB15 datasets,
Table 13 compares the performance of our
stacking model to current attempts in intrusion
detection for cloud security. In terms of accuracy
and FPR, our SGA oriented ensemble model
exceeds several current approaches. We present
several explanations for why our suggested model
outperforms current models. Our model first
selects relevant features before building a model.
This phase, according to some, reduces variance
and over-fitting. Moreover, the proposed stacking
ensemble method employs heterogeneous
classifiers, which overcomes the disadvantages of
homogeneous classifiers.

Table 13
Performance comparison with current methodologies

Author Year Methodologies Dataset FS Approach FS Acc. FPR
Panigrah and
Patra [39]

2016 “Fuzzy-Rough
Ownership NN
Classification”

NSL-KDD Greedy Step-
wise

11 99.614
5

0.309

Panigrahi and 2019 JRip NSL-KDD Genetic 16 99.82 0.1396

0.996

0.9965

0.997

0.9975

0.998

0.9985

0.999

Stacking (All
Classifiers)

Stacking
(XGBoost,RF,
J48) 0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

Stacking (All
Classifiers)

Stacking
(XGBoost,RF,

J48)

FPR

FNR

0.925
0.93

0.935
0.94

0.945
0.95

0.955
0.96

0.965
0.97

0.975
0.98

Stacking (All
Classifiers)

Stacking
(XGBoost,RF,
J48)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

FPR FNR

Stacking (All
Classifiers)

Stacking
(XGBoost,RF,
J48)

Table 12
Results of stacking for the UNSW-NB15 dataset

Classifier Sensitivity Specificity Precision FPR FNR Accuracy F1-Score
Stacking (All Classifiers) 0.9668 0.9425 0.9726 0.0575 0.0332 0.9590 0.9697
Stacking (XGBoost, RF, J48) 0.9672 0.9433 0.9730 0.0567 0.0328 0.9596 0.9701

Figure 4 Figure 5
Performance Comparison for UNSW-NB15 FPR and FNR Comparison for UNSW-NB15

Tables 11-12 and Figures 2-5 depict that compared
to stacking all of the specified classifiers, stacking
with the top three base classifiers gives better
performance. As a result, instead of considering
all base classifiers, it is preferable to select the best
collection of classifiers because it minimizes
computing time. As a result, the presented
ensemble technique schemes may be employed to
increase generalization performance in detecting
unknown intrusions.

44..55 PPeerrffoorrmmaannccee CCoommppaarriissoonn
wwiitthh CCuurrrreenntt MMeetthhooddoollooggiieess

Using the NSLKDD and UNSW-NB15 datasets,
Table 13 compares the performance of our
stacking model to current attempts in intrusion
detection for cloud security. In terms of accuracy
and FPR, our SGA oriented ensemble model
exceeds several current approaches. We present
several explanations for why our suggested model
outperforms current models. Our model first
selects relevant features before building a model.
This phase, according to some, reduces variance
and over-fitting. Moreover, the proposed stacking
ensemble method employs heterogeneous
classifiers, which overcomes the disadvantages of
homogeneous classifiers.

Table 13
Performance comparison with current methodologies

Author Year Methodologies Dataset FS Approach FS Acc. FPR
Panigrah and
Patra [39]

2016 “Fuzzy-Rough
Ownership NN
Classification”

NSL-KDD Greedy Step-
wise

11 99.614
5

0.309

Panigrahi and 2019 JRip NSL-KDD Genetic 16 99.82 0.1396

0.996

0.9965

0.997

0.9975

0.998

0.9985

0.999

Stacking (All
Classifiers)

Stacking
(XGBoost,RF,
J48) 0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

Stacking (All
Classifiers)

Stacking
(XGBoost,RF,

J48)

FPR

FNR

0.925
0.93

0.935
0.94

0.945
0.95

0.955
0.96

0.965
0.97

0.975
0.98

Stacking (All
Classifiers)

Stacking
(XGBoost,RF,
J48)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

FPR FNR

Stacking (All
Classifiers)

Stacking
(XGBoost,RF,
J48)

Table 12
Results of stacking for the UNSW-NB15 dataset

Classifier Sensitivity Specificity Precision FPR FNR Accuracy F1-Score
Stacking (All Classifiers) 0.9668 0.9425 0.9726 0.0575 0.0332 0.9590 0.9697
Stacking (XGBoost, RF, J48) 0.9672 0.9433 0.9730 0.0567 0.0328 0.9596 0.9701

Figure 4 Figure 5
Performance Comparison for UNSW-NB15 FPR and FNR Comparison for UNSW-NB15

Tables 11-12 and Figures 2-5 depict that compared
to stacking all of the specified classifiers, stacking
with the top three base classifiers gives better
performance. As a result, instead of considering
all base classifiers, it is preferable to select the best
collection of classifiers because it minimizes
computing time. As a result, the presented
ensemble technique schemes may be employed to
increase generalization performance in detecting
unknown intrusions.

44..55 PPeerrffoorrmmaannccee CCoommppaarriissoonn
wwiitthh CCuurrrreenntt MMeetthhooddoollooggiieess

Using the NSLKDD and UNSW-NB15 datasets,
Table 13 compares the performance of our
stacking model to current attempts in intrusion
detection for cloud security. In terms of accuracy
and FPR, our SGA oriented ensemble model
exceeds several current approaches. We present
several explanations for why our suggested model
outperforms current models. Our model first
selects relevant features before building a model.
This phase, according to some, reduces variance
and over-fitting. Moreover, the proposed stacking
ensemble method employs heterogeneous
classifiers, which overcomes the disadvantages of
homogeneous classifiers.

Table 13
Performance comparison with current methodologies

Author Year Methodologies Dataset FS Approach FS Acc. FPR
Panigrah and
Patra [39]

2016 “Fuzzy-Rough
Ownership NN
Classification”

NSL-KDD Greedy Step-
wise

11 99.614
5

0.309

Panigrahi and 2019 JRip NSL-KDD Genetic 16 99.82 0.1396

0.996

0.9965

0.997

0.9975

0.998

0.9985

0.999

Stacking (All
Classifiers)

Stacking
(XGBoost,RF,
J48) 0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

Stacking (All
Classifiers)

Stacking
(XGBoost,RF,

J48)

FPR

FNR

0.925
0.93

0.935
0.94

0.945
0.95

0.955
0.96

0.965
0.97

0.975
0.98

Stacking (All
Classifiers)

Stacking
(XGBoost,RF,
J48)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

FPR FNR

Stacking (All
Classifiers)

Stacking
(XGBoost,RF,
J48)

Table 12
Results of stacking for the UNSW-NB15 dataset

Classifier Sensitivity Specificity Precision FPR FNR Accuracy F1-Score
Stacking (All Classifiers) 0.9668 0.9425 0.9726 0.0575 0.0332 0.9590 0.9697
Stacking (XGBoost, RF, J48) 0.9672 0.9433 0.9730 0.0567 0.0328 0.9596 0.9701

Figure 4 Figure 5
Performance Comparison for UNSW-NB15 FPR and FNR Comparison for UNSW-NB15

Tables 11-12 and Figures 2-5 depict that compared
to stacking all of the specified classifiers, stacking
with the top three base classifiers gives better
performance. As a result, instead of considering
all base classifiers, it is preferable to select the best
collection of classifiers because it minimizes
computing time. As a result, the presented
ensemble technique schemes may be employed to
increase generalization performance in detecting
unknown intrusions.

44..55 PPeerrffoorrmmaannccee CCoommppaarriissoonn
wwiitthh CCuurrrreenntt MMeetthhooddoollooggiieess

Using the NSLKDD and UNSW-NB15 datasets,
Table 13 compares the performance of our
stacking model to current attempts in intrusion
detection for cloud security. In terms of accuracy
and FPR, our SGA oriented ensemble model
exceeds several current approaches. We present
several explanations for why our suggested model
outperforms current models. Our model first
selects relevant features before building a model.
This phase, according to some, reduces variance
and over-fitting. Moreover, the proposed stacking
ensemble method employs heterogeneous
classifiers, which overcomes the disadvantages of
homogeneous classifiers.

Table 13
Performance comparison with current methodologies

Author Year Methodologies Dataset FS Approach FS Acc. FPR
Panigrah and
Patra [39]

2016 “Fuzzy-Rough
Ownership NN
Classification”

NSL-KDD Greedy Step-
wise

11 99.614
5

0.309

Panigrahi and 2019 JRip NSL-KDD Genetic 16 99.82 0.1396

0.996

0.9965

0.997

0.9975

0.998

0.9985

0.999

Stacking (All
Classifiers)

Stacking
(XGBoost,RF,
J48) 0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

Stacking (All
Classifiers)

Stacking
(XGBoost,RF,

J48)

FPR

FNR

0.925
0.93

0.935
0.94

0.945
0.95

0.955
0.96

0.965
0.97

0.975
0.98

Stacking (All
Classifiers)

Stacking
(XGBoost,RF,
J48)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

FPR FNR

Stacking (All
Classifiers)

Stacking
(XGBoost,RF,
J48)

4.5. Performance Comparison with Current
Methodologies

Using the NSLKDD and UNSW-NB15 datasets, Ta-
ble 13 compares the performance of our stacking
model to current attempts in intrusion detection for
cloud security. In terms of accuracy and FPR, our
SGA oriented ensemble model exceeds several cur-
rent approaches. We present several explanations

909Information Technology and Control 2023/4/52

Table 13
Performance comparison with current methodologies

Author Year Methodologies Dataset FS Approach FS Acc. FPR

Panigrah and Patra
[39] 2016 “Fuzzy-Rough Ownership

NN Classification” NSL-KDD Greedy Step-wise 11 99.6145 0.309

Panigrahi and
Patra [40] 2019 JRip NSL-KDD Genetic Search 16 99.82 0.1396

Salo et al. [50] 2019

“Ensemble classifier based
on SVM,
Instance-based learning
algorithms (IBK), and mul-
tilayer perceptron (MLP)”

NSL-KDD

Information Gain
(IG) + Principle
Component Anal-
ysis (PCA)

7 99.011 0.01

Tama and
Rhee[59] 2017

Gradient boosting machine
(GBM) NSL-KDD NO NA 91.82 4.19

Rashid et al. [46] 2022 Stacking-DT, RF, XGBoost NSL-KDD SelectKbest 20 99.90 0.0009

Proposed Stacking- XGBoost,
RF & J48 NSL-KDD GR 17 99.82 0.0012

Rajagopal et al.
[45] 2020 Stacking (RF, LR,

kNN, SVM) UNSW-NB15 Information Gain
and Hashing 11 94 5.2

Alazzam et al. [5] 2020 Decision Tree (DT)

UNSW-NB15

Sigmoid -pigeon
inspired optimiz-
er (PIO)

14 91.3 0.052

Cosine-PIO 5 91.7 0.034

NSL-KDD
Sigmoid - PIO 18 86.9 0.064

Cosine-PIO 5 88.3 0.088

Rashid et al. [46] 2022 Stacking-DT, RF, XGBoost UNSW-NB15 SelectKbest 20 94.00 0.06

Proposed Stacking- XGBoost,
RF & J48 UNSW-NB15 GR 18 95.96 0.0567

for why our suggested model outperforms current
models. Our model first selects relevant features
before building a model. This phase, according to
some, reduces variance and over-fitting. Moreover,
the proposed stacking ensemble method employs
heterogeneous classifiers, which overcomes the dis-
advantages of homogeneous classifiers.
As a result, the proposed method is more effective in
detecting a previously unknown input. To minimize
overfitting, we used hyper-parameter adjustment. Ta-
ble 14 shows the model construction time for the giv-
en dataset. J48 takes the least amount of time among
the classifiers, whereas stacking takes the most time
to create models for both datasets.

The stacking method needs extra processing time
since it combines several base classifiers, each tak-
ing time to build. Table 14 shows how much time it
takes for classifiers. We discovered that J48 and RF
are the fastest classifiers in this environment. Even
if the complexity of the stacking model has risen, and
as a result, the time requirements have increased, the
fact that it beats conventional IDS, as noted in the
previous result, is a significant consideration. The
cost of missing an intrusion in such a system can be
quite expensive. As an outcome, the cost of a little ex-
tra time, which is still secs for the datasets examined
and therefore potentially well scalable in comparison
to earlier approaches, is justified. As a result, the sug-

Information Technology and Control 2023/4/52910

gested model has significant practical usefulness. As a
result, rather than examining all base classifiers, it is
better to choose the optimal set of classifiers because
it minimizes computing time.
Indeed, intrusion detection has been a topic of dis-
cussion, with the task being named one of the top data
mining applications in enterprises [29]. In industries
such as CSPs and the banking sector, Education, etc.,
the ability to identify unexpected network behavior
quickly is critical to the long-term viability of ser-
vices. Attacks that go unnoticed in these areas can be
expensive, and identifying them manually might be
challenging [37]. The focus of such systems, which
frequently employ large computing resources for
automatically identifying intrusions, is on accurate
intrusion detection. In comparison to existing algo-
rithms, the suggested stacking strategy shows a lot of
potential in this regard, as the findings reveal.

5. Conclusion
Based on big data technologies and ensemble learn-
ing, this research provided a scalable system for in-
trusion detection. The ensemble classifier is built
using an approach based on determining rankings of
the base classifiers. As a result, it can be inferred that
the offered strategies can improve generalization per-
formance when identifying new intrusions. The cloud
environment’s effective intrusion detection system is
created and built using feature selection and SGA-ori-
ented ensemble method classification. We used a fea-

ture selection technique based on GR to reduce the
dimensionality of the network data and discover the
most important features. Then, using J48, RF, OneR,
MLP, XGBoost, and SVM, we introduced an SGA en-
semble approach. By merging multiple classifiers, en-
semble classifiers build a robust classifier capable of
recognizing network intrusions and improving fore-
cast accuracy. In which we used a majority SGA en-
semble approach to distinguish between attack data
and legitimate data in network traffic using the top
three classifiers i.e., XGBoost, RF and J48. The find-
ings of the experiments suggest that stacking with the
top three base classifiers yields greater accuracy than
stacking with all base classifiers, which might assist
save computation time.
To assess the efficacy, we utilize the widely available
NSLKDD and UNSW-NB15 datasets. The proposed
model beats previous recent research in terms of ac-
curacy, having attained 99.82 percent and 95.96 per-
cent accuracy for the NSL-KDD and UNSW-NB15
datasets, respectively. Aside from that, the proposed
method might be supplied as a cloud-based intrusion
detection service. To handle data on local and remote
clusters, a hybrid technique may be employed. We’ll
investigate several hybrid approaches in the future to
surge prediction accuracy and identify different kinds
of intrusions.

Acknowledgement

First Author would like to thank DST for INSPIRE
Fellowship.

Table 14
Model building and testing time

Methodologies
NSL-KDD UNSW-NB15

Building Time (s) Testing Time (s) Building Time (s) Testing Time (s)

J48 0.567 0.233 1.00 0.541

RF 0.684 0.342 1.51 0.583

SVM 1.42 0.81 2.31 1.54

XGBoost 1.52 0.97 2.56 1.79

MLP 2.58 1.25 3.54 1.02

OneR 1.52 0.85 3.98 0.58

Stacking (All) 9.24 5.85 14.52 8.52

Stacking (Top 3) 7.10 4.05 10.54 6.58

911Information Technology and Control 2023/4/52

References
1. Aburomman, A. A., Reaz, M. B. I. A Novel SVM-Knn-

PSO Ensemble Method for Intrusion Detection System.
Applied Soft Computing, 2016, 38, 360-372. https://doi.
org/10.1016/j.asoc.2015.10.011

2. Aburomman, A. A., Reaz, M. B. I. Review of IDS De-
velopment Methods in Machine Learning. Inter-
national Journal of Electrical and Computer Engi-
neering (IJECE), 2016, 6(5), 2432-2436. https://doi.
org/10.11591/ijece.v6i5.pp2432-2436

3. Ahmad, I. Feature Selection Using Particle Swarm Opti-
mization in Intrusion Detection. International Journal
of Distributed Sensor Networks, 2015, 11(10). https://
doi.org/10.1155/2015/806954

4. Alazab, M., Venkatraman, S., Watters, P., Alazab, M. Ze-
ro-Day Malware Detection Based on Supervised Learn-
ing Algorithms of API Call Signatures. Proceedings of 9th
Australasian Data Mining Conference (AusDM’11), Bal-
larat, Australia. Conferences in Research and Practice in
Information Technology (CRPIT), 2011, 121, 171-181.

5. Alazzam, H., Ahmad, S., EddinSabri, K. A Feature Se-
lection Algorithm for Intrusion Detection System
Based on Pigeon Inspired Optimizer. Expert Systems
with Appications, 2020, 148. https://doi.org/10.1016/j.
eswa.2020.113249

6. Ali, J., Khan, R., Ahmad, N., Maqsood, I. Random Forests
and Decision Trees. International Journal of Computer
Science Issues, September, 2012, 9 (5), 272-278.

7. Aljawarneh, S., Yassein, M. B., Aljundi, M. An Enhanced
J48 Classification Algorithm tor the Anomaly Intrusion
Detection Systems. Cluster Computing, 2019, 22, 10549-
10565. https://doi.org/10.1007/s10586-017-1109-8

8. AV-Test Institute. Malware, https://www.av-test.org/
en/statistics/malware/. Accessed on Januray 14 2022.

9. Berhane, T. M., Lane, C. R., Wu, Q., Autrey, B. C., Anenk-
honov, O. A., Chepinoga, V. V., Liu, H. Decision-Tree,
Rule-Based, And Random Forest Classification of
High-Resolution Multispectral Imagery for Wetland
Mapping and Inventory. Remote Sensing, 2018, 10(4),
580. https://doi.org/10.3390/rs10040580

10. Breiman, L. Random Forests. Machine Learning, October
2001, 45, 5-32. https://doi.org/10.1023/A:1010933404324

11. Chen, T., Guestrin, C. Xgboost: A Scalable Tree Boosting
System. Proceedings of the 22nd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data
Mining, San Francisco, California, USA, August, 2016,
785-794. https://doi.org/10.1145/2939672.2939785

12. Diplaris, S., Tsoumakas, G., Mitkas, P. A., Vlahavas,
I. Protein Classification with Multiple Algorithms.
Panhellenic Conference on Informatics, Advances
in Informatics, Lecture Notes in Computer Science,
Berlin, Heidelberg. 2005, 3746, 448-456. https://doi.
org/10.1007/11573036_42

13. Džeroski, S., Ženko, B. Is Combining Classifiers with
Stacking Better than Selecting the Best One? Ma-
chine Learning, 2004, 54(3), 255-273. https://doi.
org/10.1023/B:MACH.0000015881.36452.6e

14. Esmaily, H., Tayefi, M., Doosti, H., Ghayour-Mobarhan,
M., Nezami, H., Amirabadizadeh, A. A Comparison Be-
tween Decision Tree and Random Forest in Determin-
ing the Risk Factors Associated with Type 2 Diabetes.
Journal of Reseasrch in Health Sciences, 2018, 18 (2),
412.

15. Farnaaz, N., Jabbar, M. A. Random Forest Modeling
for Network Intrusion Detection System. Proce-
dia Computer Science, 2016, 89, 213-217. https://doi.
org/10.1016/j.procs.2016.06.047

16. Fernández-Delgado, M., Cernadas, E., Barro, S., Amor-
im, D. Do We Need Hundreds of Classifiers to Solve Real
World Classification Problems? Journal of Machine
Learning Research, 2014, 15(1), 3133-3181.

17. Ganapathy, S., Kulothungan, K., Muthurajkumar, S., Vi-
jayalakshmi, M., Yogesh, P., Kannan, A. Intelligent Fea-
ture Selection and Classification Techniques for Intru-
sion Detection in Networks: A Survey. EURASIP Journal
on Wireless Communications and Networking, 2013, 1,
1-16. https://doi.org/10.1186/1687-1499-2013-271

18. Ghazi, M. R., Gangodkar, D. Hadoop, MapReduce and
HDFS: A Developers Perspective. Procedia Comput-
er Science, 2015, 48, 45-50. https://doi.org/10.1016/j.
procs.2015.04.108

19. Ghazi, M. R., Raghava, N. S. MapReduce Based Analysis
of Sample Applications Using Hadoop. International
Conference on Application of Computing and Commu-
nication Technologies, Applications of Computing and
Communication Technologies, Singapore, 899, 34-44.
https://doi.org/10.1007/978-981-13-2035-4_4

20. Govindarajan, M., Chandrasekaran, R. M. Intrusion
Detection Using Neural Based Hybrid Classification
Methods. Computer networks, 2011, 55(8), 1662-1671.
https://doi.org/10.1016/j.comnet.2010.12.008

21. Gupta, B. B., Tewari, A., Jain, A. K., Agrawal, D. P. Fight-
ing Against Phishing Attacks: State of the Art and Fu-

https://doi.org/10.1016/j.asoc.2015.10.011
https://doi.org/10.1016/j.asoc.2015.10.011
https://doi.org/10.11591/ijece.v6i5.pp2432-2436
https://doi.org/10.11591/ijece.v6i5.pp2432-2436
https://doi.org/10.1155/2015/806954
https://doi.org/10.1155/2015/806954
https://doi.org/10.1016/j.eswa.2020.113249
https://doi.org/10.1016/j.eswa.2020.113249
https://doi.org/10.1007/s10586-017-1109-8
https://doi.org/10.3390/rs10040580
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1007/11573036_42
https://doi.org/10.1007/11573036_42
https://doi.org/10.1023/B:MACH.0000015881.36452.6e
https://doi.org/10.1023/B:MACH.0000015881.36452.6e
https://doi.org/10.1016/j.procs.2016.06.047
https://doi.org/10.1016/j.procs.2016.06.047
https://doi.org/10.1186/1687-1499-2013-271
https://doi.org/10.1016/j.procs.2015.04.108
https://doi.org/10.1016/j.procs.2015.04.108
https://doi.org/10.1007/978-981-13-2035-4_4
https://doi.org/10.1016/j.comnet.2010.12.008

Information Technology and Control 2023/4/52912

ture Challenges. Neural Computing and Applications,
2016, 28(12), 3629-3654. https://doi.org/10.1007/
s00521-016-2275-y

22. Gupta, D., Rani, R. A Study of Big Data Evolu-
tion and Research Challenges. Journal of Infor-
mation Science, 2018, 45(3), 322-340. https://doi.
org/10.1177/0165551518789880

23. Gupta, D., Rani, R. Big Data Framework for Zero-Day
Malware Detection. Cybernetics and Systems, Febru-
ary 8, 2018, 49(2), 103-121. https://doi.org/10.1080/019
69722.2018.1429835

24. Hansen, L. K., Salamon, P. Neural network Ensem-
bles. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 2010, 12(10), 993-1001. https://doi.
org/10.1109/34.58871

25. Haykin, S. Neural Networks: A Comprehensive Foun-
dation, Prentice Hall, Englewood Cliffs, 1994. https://
dl.acm.org/doi/10.5555/975792.975796

26. Holte, R. C. Very Simple Classification Rules Per-
form Well on Most Commonly Used Datasets. Ma-
chine Learning, 1993, 11(1), 63-903. https://doi.
org/10.1023/A:1022631118932

27. Juniper Research. Cybercrime and the Internet of
Threats 2019. https://www.juniperresearch.com/white-
papers/cybercrime-and-the-internet-of-threats-2019.
Accessed on January 15, 2022.

28. Karegowda, A. G., Manjunath, A. S., Jayaram, M. S. Com-
parative Study of Attribute Selection Using Gain Ratio
and Correlation Based Feature Selection. Internation-
al Journal of Information Technology and Knowledge
Management, 2010, 2(2), 271-277.

29. Lin, W. C., Ke, S. W., Tsai, C. F. Top 10 Data Mining
Techniques in Business Applications: A Brief Sur-
vey. Kybernetes, 2017, 46(7), 1158-1170. https://doi.
org/10.1108/K-10-2016-0302

30. Liu, Z. A Method of SVM with Normalization in Intru-
sion Detection. Procedia Environmental Sciences, 2012,
11, 256-262. https://doi.org/10.1016/j.proenv.2011.12.040

31. Madi, M., Jarghon, F., Fazea, Y., Almomani, O., Saaidah,
A. Comparative Analysis of Classification Techniques
for Network Fault Management. Turkish Journal of
Electrical Engineering and Computer Sciences, 2020,
28(3), 1442-1457. https://doi.org/10.3906/elk-1907-84

32. McIntosh, T., Jang-Jaccard, J., Watters, P., Susnjak, T.
The Inadequacy of Entropy-Based Ransomware Detec-
tion. International Conference on Neural Information
Processing, December 5, 2019, 1143, 181-189. https://
doi.org/10.1007/978-3-030-36802-9_20

33. Mell, P., Grance, T. The NIST Definition of Cloud
Computing. NIST Special Publication, 2011, 800-145.
https://doi.org/10.6028/NIST.SP.800-145

34. Mirza, A. H. Computer Network Intrusion Detection
Using Various Classifiers and Ensemble Learning. 2018
26th Signal Processing and Communications Appli-
cations Conference (SIU) IEEE, 2018, 1-4. https://doi.
org/10.1109/SIU.2018.8404704

35. Moustafa, N., Slay, J. UNSW-NB15: A Comprehensive
Data Set for Network Intrusion Detection Systems (UN-
SW-NB15 Network Data Set). 2015 Military Commu-
nications and Information Systems Conference IEEE,
10 December, 2015, 1-6. https://doi.org/10.1109/Mil-
CIS.2015.7348942

36. Mukkamala, S., Sung, A. H., Abraham, A. Intrusion
Detection Using an Ensemble of Intelligent Para-
digms. Journal of Network and Computer Applica-
tions, 2005, 28(2), 167-182. https://doi.org/10.1016/j.
jnca.2004.01.003

37. Noor, U., Anwar, Z., Amjad, T., Choo, K. K. A Machine
Learning-Based Fintech Cyber Threat Attribution
Framework Using High-Level Indicators of Compro-
mise. Future Generation Computer Systems, 2019, 96,
227-242. https://doi.org/10.1016/j.future.2019.02.013

38. Negandhi, P., Trivedi, Y., Mangrulkar, R. Intrusion De-
tection System Using Random Forest on the NSL-KDD
Dataset. Emerging Research in Computing, Informa-
tion, Communication and Applications. Advances in
Intelligent Systems and Computing, 2019, 906, 519-531.
https://doi.org/10.1007/978-981-13-6001-5_43

39. Panigrahi, A., Patra, M. R. Fuzzy Rough Classification
Models for Network Intrusion Detection. Transactions
on Machine Learning and Artificial Intelligence, 2016,
4(2), 7-22. https://doi.org/10.14738/tmlai.42.1882

40. Panigrahi, A., Patra, M. R. Anomaly Based Network In-
trusion Detection Using Bayes Net Classifiers. Interna-
tional Journal of Scientific and Technology Research,
2019, 8(9), 481-485.

41. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel,
V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J. Scikit-learn:
Machine learning in Python. The Journal of machine
Learning Research, 2011, 12, 2825-2830.

42. Pham, N.T., Foo, E., Suriadi, S., Jeffrey, H., Lahza, H. F.
Improving Performance of Intrusion Detection System
Using Ensemble Methods and Feature Selection. Pro-
ceedings of the Australasian Computer Science Week
Multi-conference, Brisband, Queensland, Australia,
2018, 1-6. https://doi.org/10.1145/3167918.3167951

https://doi.org/10.1007/s00521-016-2275-y
https://doi.org/10.1007/s00521-016-2275-y
https://doi.org/10.1177/0165551518789880
https://doi.org/10.1177/0165551518789880
https://doi.org/10.1080/01969722.2018.1429835
https://doi.org/10.1080/01969722.2018.1429835
https://doi.org/10.1109/34.58871
https://doi.org/10.1109/34.58871
https://dl.acm.org/doi/10.5555/975792.975796
https://dl.acm.org/doi/10.5555/975792.975796
https://doi.org/10.1023/A:1022631118932
https://doi.org/10.1023/A:1022631118932
https://doi.org/10.1108/K-10-2016-0302
https://doi.org/10.1108/K-10-2016-0302
https://doi.org/10.1016/j.proenv.2011.12.040
https://doi.org/10.3906/elk-1907-84
https://doi.org/10.1007/978-3-030-36802-9_20
https://doi.org/10.1007/978-3-030-36802-9_20
https://doi.org/10.6028/NIST.SP.800-145
https://doi.org/10.1109/SIU.2018.8404704
https://doi.org/10.1109/SIU.2018.8404704
https://doi.org/10.1109/MilCIS.2015.7348942
https://doi.org/10.1109/MilCIS.2015.7348942
https://doi.org/10.1016/j.jnca.2004.01.003
https://doi.org/10.1016/j.jnca.2004.01.003
https://doi.org/10.1016/j.future.2019.02.013
https://doi.org/10.1007/978-981-13-6001-5_43
https://doi.org/10.14738/tmlai.42.1882
https://doi.org/10.1145/3167918.3167951

913Information Technology and Control 2023/4/52

43. Prusti, D. Efficient Intrusion Detection Model Using
Ensemble Methods. Dissertation, 2015. http://ethesis.
nitrkl.ac.in/7304/

44. Quinlan, J. R. C4.5: Programs for Machine Learning.
Morgan Kaufman Publishers, San Mateo, CA, Elsevier,
1993.

45. Rajagopal, S., Kundapur, P. P., Hareesha, K. S. A Stack-
ing Ensemble for Network Intrusion Detection Using
Heterogeneous Datasets. Security and Communica-
tion Networks, 2020, 2020(4586875), 1-9. https://doi.
org/10.1155/2020/4586875

46. Rashid, M., Kamruzzaman, J., Imam, T., Wibowo, S.,
Gordon S. A Tree-Based Stacking Ensemble Technique
With Feature Selection for Network Intrusion Detec-
tion. Applied Intelligence, 2022, 52, 9768-9781. https://
doi.org/10.1007/s10489-021-02968-1

47. Rashid, M. M., Kamruzzaman, J., Hassan, M. M., Imam,
T., Gordon, S. Cyberattacks Detection in IoT-Based
Smart City Applications Using Machine Learning
Techniques. International Journal of Environmental
Research and Public Health, 2020, 17(24), 9347. https://
doi.org/10.3390/ijerph17249347

48. Rashid, M. M., Kamruzzaman, J., Ahmed, M., Islam, N.,
Wibowo, S., Gordon, S. Performance Enhancement of
Intrusion detection System Using Bagging Ensemble
Technique with Feature Selection. 2020 IEEE Asia-Pa-
cific Conference on Computer Science and Data En-
gineering (CSDE), Gold Coast, Australia, 2020, 1-5.
https://doi.org/10.1109/CSDE50874.2020.9411608

49. Reinstein, I. Xgboost, A Top Machine Learning Method
on-Kaggle,Explained. https://www.kdnuggets.com/2017
/10/xgboost-top-machine-learning-method-kaggle-ex-
plained.html. Accessed on February 9, 2022.

50. Salo, F., Nassif, A. B., Essex, A. Dimensionality Reduc-
tion with IG-PCA and Ensemble Classifier for Network
Intrusion Detection. Computer Networks, 2019, 148,
164-175. https://doi.org/10.1016/j.comnet.2018.11.010

51. Sarker, I. H., Kayes, A. S. M., Badsha, S., Alqahtani, H.,
Watters, P., Ng, A. Cybersecurity Data Science: An Over-
view From Machine Learning Perspective. Journal
of Big Data, 2020, 7(41), 1-29. https://doi.org/10.1186/
s40537-020-00318-5

52. Sarker, I. H., Abushark, Y. B., Alsolami, F., Khan, A. I. In-
trudtree: A Machine Learning Based Cyber Security In-
trusion Detection Model. Symmetry, 2020, 12(5), 754.
https://doi.org/10.3390/sym12050754

53. Saxena, A. K., Sinha, S., Shukla, P. General Study of In-
trusion Detection System and Survey of Agent Based

Intrusion Detection System. 2017 IEEE International
Conference on Computing, Communication and Au-
tomation (ICCCA), Greater Noida, India, May 6, 2017,
421-471. https://doi.org/10.1109/CCAA.2017.8229866

54. Shaw, A. Data Breach: From Notification To Prevention
Using PCI DSS. Columbia Journal of Law and Social
Problems, 2009, 43(4), 517-562.

55. Shiravi, A., Shiravi, H., Tavallaee, M., Ghorbani, A. A.
Toward Developing a Systematic Approach to Gen-
erate Benchmark Datasets for Intrusion Detection.
Computers & Security, 2012, 31(3), 357-374. https://doi.
org/10.1016/j.cose.2011.12.012

56. Shrivas, A. K., Dewangan, A. K. An Ensemble Model
for Classification of Attacks with Feature Selection
Based on KDD99 and NSL-KDD Data Set. International
Journal of Computer Applications, 2014, 99(15), 8-13.
https://doi.org/10.5120/17447-5392

57. Sikora, R., O’la, A. A Modified Stacking Ensemble Ma-
chine Learning Algorithm Using Genetic Algorithms.
Handbook of Research on Organizational Transforma-
tions Through Big Data Analytics, IGI-Global, Hershey,
PA, 43-53. https://doi.org/10.4018/978-1-4666-7272-7.
ch004

58. Sun N., Zhang J., Rimba P., Gao S., Zhang L. Y., Xiang Y.
Data-Driven Cybersecurity Incident Prediction: A Sur-
vey. IEEE Communications Surveys & Tutorials, De-
cember, 2018, 21(2), 1744-1772. https://doi.org/10.1109/
COMST.2018.2885561

59. Tama, B. A., Rhee, K. H. An In-Depth Experimental Study
of Anomaly Detection Using Gradient Boosted Machine.
Neural Computing and Applications, 2017, 31(4), 955-
965. https://doi.org/10.1007/s00521-017-3128-z

60. Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A. A. A De-
tailed Analysis of the KDD CUP 99 Data Set. IEEE Sym-
posium on Computational Intelligence for Security and
Defense Applications, Ottawa, ON, Canada, 2009, 1-6.
https://doi.org/10.1109/CISDA.2009.5356528

61. Tsai, C. F., Hsu, Y. F., Lin, C. Y., Lin, W. Y. Intrusion De-
tection by Machine Learning: A Review. Expert Sys-
tems with Applications, 2009, 36(10) 11994-12000.
https://doi.org/10.1016/j.eswa.2009.05.029

62. Wankhade, A., Chandrasekaran, K. Distributed-Intru-
sion Detection System Using Combination of Ant Col-
ony Optimization (ACO) and Support Vector Machine
(SVM). 2016 IEEE International Conference on Mi-
cro-Electronics and Telecommunication Engineering
(ICMETE), Ghaziabad, India, 2016, 646-651. https://
doi.org/10.1109/ICMETE.2016.94

https://doi.org/10.1155/2020/4586875
https://doi.org/10.1155/2020/4586875
https://doi.org/10.1007/s10489-021-02968-1
https://doi.org/10.1007/s10489-021-02968-1
https://doi.org/10.3390/ijerph17249347
https://doi.org/10.3390/ijerph17249347
https://doi.org/10.1109/CSDE50874.2020.9411608
https://www.kdnuggets.com/2017 /10/xgboost-top-machine-learning-method-kaggle-explained.html
https://www.kdnuggets.com/2017 /10/xgboost-top-machine-learning-method-kaggle-explained.html
https://www.kdnuggets.com/2017 /10/xgboost-top-machine-learning-method-kaggle-explained.html
https://doi.org/10.1016/j.comnet.2018.11.010
https://doi.org/10.1186/s40537-020-00318-5
https://doi.org/10.1186/s40537-020-00318-5
https://doi.org/10.3390/sym12050754
https://doi.org/10.1109/CCAA.2017.8229866
https://doi.org/10.1016/j.cose.2011.12.012
https://doi.org/10.1016/j.cose.2011.12.012
https://doi.org/10.5120/17447-5392
https://doi.org/10.4018/978-1-4666-7272-7.ch004
https://doi.org/10.4018/978-1-4666-7272-7.ch004
https://doi.org/10.1109/COMST.2018.2885561
https://doi.org/10.1109/COMST.2018.2885561
https://doi.org/10.1007/s00521-017-3128-z
https://doi.org/10.1109/CISDA.2009.5356528
https://doi.org/10.1016/j.eswa.2009.05.029
https://doi.org/10.1109/ICMETE.2016.94
https://doi.org/10.1109/ICMETE.2016.94

Information Technology and Control 2023/4/52914

63. Wolpert, D.H. Stacked Generalization. Neural Net-
works, 1992, 5(2), 241-259. https://doi.org/10.1016/
S0893-6080(05)80023-1

64. Yerima, S. Y., Sezer, S. Droidfusion: A Novel Multilevel
Classifier Fusion Approach for Android Malware De-
tection. IEEE Transactions on Cybernetics, 2019, 49(2),
453-466. https://doi.org/10.1109/TCYB.2017.2777960

65. Ying, X. An Overview of Overfitting and Its Solutions.
Journal of Physics: Conference Series, 2019, 1168(2),
1-7. https://doi.org/10.1088/1742-6596/1168/2/022022

66. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J.,
McCauly, M., Franklin, M. J., Shenker, S., Stoica, I. Re-
silient Distributed Datasets: A Fault-Tolerant Abstrac-
tion for In-Memory Cluster Computing. 9th USENIX
Symposium on Networked Systems Design and Imple-
mentation, San Jose, CA, April, 2012, 15-28.

67. Zenko, B., Todorovski, L., Dzeroski, S. A Comparison of
Stacking with Meta Decision Trees to Bagging, Boost-
ing, and Stacking with Other Methods. Proceedings
2001 IEEE International Conference on Data Min-
ing, San Jose, CA, USA, 2002, 669-670. https://doi.
org/10.1109/ICDM.2001.989601

68. Zhao, G., Shen, Z., Miao, C., Gay, R. Enhanced Extreme
Learning Machine with Stacked Generalization. 2008
IEEE International Joint Conference on Neural Net-
works (IEEE World Congress on Computational Intel-
ligence), Hong Kong, China, 2008, 1191-1198. https://
doi.org/10.1109/IJCNN.2008.4633951

69. Zhou, Y., Cheng, G., Jiang, S., Dai, M. Building an Efficient
Intrusion Detection System Based on Feature Selection
and Ensemble Classifier. Computer Networks, 2020, 174,
107247. https://doi.org/10.1016/j.comnet.2020.107247

This article is an Open Access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/S0893-6080(05)80023-1
https://doi.org/10.1016/S0893-6080(05)80023-1
https://doi.org/10.1109/TCYB.2017.2777960
https://doi.org/10.1088/1742-6596/1168/2/022022
https://doi.org/10.1109/ICDM.2001.989601
https://doi.org/10.1109/ICDM.2001.989601
https://doi.org/10.1109/IJCNN.2008.4633951
https://doi.org/10.1109/IJCNN.2008.4633951
https://doi.org/10.1016/j.comnet.2020.107247

