
471Information Technology and Control 2023/2/52

Mod2Panel: A Design Framework
for Model-Based Automated
Generation of Interactive Panels

ITC 2/52
Information Technology
and Control
Vol. 52 / No. 2 / 2023
pp. 471-486
DOI 10.5755/j01.itc.52.2.32029

Mod2Panel: A Design Framework for Model-Based
Automated Generation of Interactive Panels

Received 2022/08/08 Accepted after revision 2023/05/08

HOW TO CITE: Chen, G., Wen, C. (2023). Mod2Panel: A Design Framework for Model-Based
Auto-mated Generation of Interactive Panels. Information Technology and Control, 52(2), 471-486.
https://doi.org/10.5755/j01.itc.52.2.32029

Corresponding author: zjucg@zju.edu.cn

Gang Chen
Institute of Computer Application, CAEP, Mianyang 621900, China; e-mails: zjucg@zju.edu.cn

Chunmei Wen
Department of Mathematical and Natural Science, Tübingen University,
Tübingen72076, Germany; e-mails: boawenmay@gmail.com

A panel is an event-centric starting point for implementing a model-based interactive system. The design and
construction of an interactive panel involve deciding what information to display, how to display it, and ways
to implement the design intent to produce an interactive panel. Traditionally, the design of panels has been
implicit in the deployed applications, rather than explicitly considered as digital artifacts. In addition, users
must realize this implicit design manually by coding or configuring it on programming platforms, resulting in
hampered and time-consuming control and analysis. Besides, current tools do not have a unified generation
mechanism, which makes it difficult for cooperation. In this paper, we propose a unified framework Mod2Panel,
which enables users to draw their interactive panel designs as models and can automatically generate interac-
tive panels from these models. The models are described in a modeling language that involves structures, be-
haviors, layout, and parameters. Mod2Panel also provides a GUI-assisted editor for customization to fine-tune
the generated panels and update their associated models. With the capabilities of Mod2Panel, users can unify
prototyping, generation and deployment in this framework for purposes of operation and control. We evalu-
ate its effectiveness and efficiency in applied case studies on complex control systems and system modeling,
in which Mod2Panel successfully generates interactive panels to support control monitoring and system-level
analysis. The operations in the generated panel systems demonstrate the effectiveness of Mod2Panel for re-
al-world scenarios.
KEYWORDS: Mod2Panel, Model, Design Intent, Auto-Generation, Control.

Information Technology and Control 2023/2/52472

1. Introduction
Over the past decades, interactive software has grown
in importance as an ingredient of the real world. Com-
prehensive information visualization interfaces for
models and data can aid users in creating reliable and
responsible decision-making systems [3, 12]. Regard-
less of where they are or what they are doing, people
are accustomed to using a range of interactive soft-
ware components that facilitate the communication
between humans and applications, such as communi-
cation applications, data analysis dashboards, vehicle
navigation systems, or other devices with interfaces
[10].
Human Computer Interaction (HCI) is widely used
in real-world environments and typically combines
several different academic fields [26], such as design,
computing, psychology, and others. For modern sys-
tems, continuous and rapid adaption to users’ pref-
erences is critical for a system’s success in the highly
competitive market environment [20, 23]. For exam-
ple, in current systems for engineering practice, to as-
sure the proper design of complex physical systems, it
is vital to develop a model-based system to eliminate
implicit or informal specified inter-dependencies in
documents. The ultimate goal is to offer tools for var-
ious types of system-level analysis and requirement
validation. By displaying some features, such as trace-
ability, incidents, and trends, the system instantly of-
fers a useful signal for decision-making when people
engage with it through interfaces.
An interface encapsulates a set of task-specific design
intent and visual elements for particular users. The
design intent behind the visualization techniques i.e.,
what information to convey or how to visualize it, is
typically implicitly inside the mind of users as knowl-
edge or habits. Although we find that current interfac-
es can work well for particular tasks and platforms,
the design intent cannot be fully extracted as digital
artifacts [7, 30]. That indicates that most interfaces
are not intended for reusing or sharing across func-
tional platforms. Meanwhile, because interfaces im-
plicitly suggest different design intent, it is difficult to
control their versions that are typically necessary for
task-specific scenarios.
Traditionally, developing the interface of software
can be roughly separated into two linked stages: de-
sign and implementation [8]. Designing an interface

allows designers to define their design intent and per-
sonal knowledge such as appropriate visual layouts
and effects, information architecture, and interaction
style, while implementing the interface focuses on
coding and testing inside a programming framework.
Therefore, this developing pattern can be a laborious,
time-consuming, and error-prone task in particular
when users lack developer expertise.
Since they have access to their information systems,
users frequently utilize interactive programming
platforms like Configuration Software [33] for ex-
ploring and modeling data. Users may implement
their design intent and ideas in those contexts in fact
without worrying about the code specifics. Howev-
er, they only offer a small collection of widgets and
insufficient means of converting users’ designs to
meaningful interfaces. For example, for system mod-
eling, these environments can assist with tabular
data analysis but lack representation techniques for
system-level analysis and traceability. Moreover, an-
other separate challenge is sharing the design intent
of users and exchanging the output of the platforms,
and then version-control it.
To address these issues, it is necessary to represent
users’ design intent explicitly. Theoretically, the de-
sign intent may be turned into a model that has all the
details on what to present and how to display it. Users
can edit and share the model according to their pref-
erences and do version control on the models. As a re-
sult, designers typically engage in an iterative process
of summarizing their design intent into a model and
subsequently translating it into particular interfaces.
A model can be regarded as the skeleton of design in-
tent that only lacks visual effects. The grammar and
syntactic architecture of the skeleton serve as the
foundation for an automated generation mechanism.
Compared to manually creating them, automati-
cally creating interfaces can result in a substantial
reduction in effort. Typically, we use text to imple-
ment models. During the early prototype stage, col-
laboration and communication are made easier by a
text-represented model. Designers may concretize,
illustrate, and store their designs in a document by
using suitable syntax. Some already-in-use tools [1,
14, 22, 34] demonstrate their capacity to transform
models into illustrations of interface design. Howev-

473Information Technology and Control 2023/2/52

er, they have not been widely applied to more complex
applications, such as large-scale control systems with
frequent interactions. This is due to the constraints of
their design. This makes it highly challenging to accu-
rately describe some key aspects of building interac-
tive interfaces, such as geometric layout, interactions,
parameters, and some other customization attributes,
and extremely difficult to accommodate more generic
circumstances.
In this paper, we introduce Mod2Panel: a design
framework that makes it simple for users to condense
their design needs into models, which is central to
the framework. The reason why we refer to the term
‘Panel’ here rather than ‘Interface’ is to emphasize
that the auto-generated interfaces follow a low cou-
pling and high cohesion design practice. The pro-
posed models are comprised of users’ design intent.
By merging a gallery-based widget pool, an automat-
ed generating mechanism is established to generate
interactive panels. In order to verify the correctness
and matching of the models, Mod2Panel also offers a
graphical editor so that users can edit the models by
configuration and customization according to their
needs. Every change will be persisted, which forms a
continuous feedback loop. Mod2Panel is highly con-
figurable, enabling users to customize what informa-
tion to present, how to display it when to trigger inter-
actions, where to obtain feedback signals from users,
and who will receive data. This framework enables
rapid development of prototypes and deployment of
task-specific, model-driven interactive panels to val-
idate and evaluate users’ design intent. Additionally,
because of a high-level, model-based design of inter-
action concepts, Mod2Panel is also advantageous to
users for focusing more on representation and visual-
ization, as it supports individualizations concerning
distinct scenarios and groups of users by customizing
models using specialization and configuration.
We implement a Java Swing based version of Mod-
2Panel and use it to automatically generate thor-
ough panels for different applications. We adopt this
tool to train our system modeling group and control
group that consists of more than 10 practitioners and
conduct a series of user studies to experimentally
evaluate Mod2Panel’s efficiency and effectiveness.
We use Mod2Panel for system modeling because of
their requirements for multi-level system analysis,
which are subject to change quickly. For the control

group, which has a high number of devices to moni-
tor and control, auto-generated tools like Mod2Panel
are more expected. Throughout case studies, we sys-
tematically select, gather, and human-aided compare
more than 10 integrated panels. Our evaluation shows
that Mod2Panel is capable of offering different types
of visual elements and spatially layout them in a pre-
cise and reliable manner. After interviewing the par-
ticipants, we can state that Mod2Panel can capture
their distinct design intent and satisfy their require-
ments for system-level analysis and control.
The main contribution of this paper is as follows:
 _ Model-driven and task-specific visualizations de-

rived from and updated with the grammar archi-
tecture of a proposed model language.

 _ An automatic generation mechanism is proposed
based on the model syntax where various visual
elements are combined and integrated to generate
relevant panels.

 _ A graphical editor is provided to enable a continu-
ous feedback loop to enhance the user’s design in-
tent and persist it into models.

 _ We demonstrate our tool’s robust visual under-
standing across large-scale experiments and pro-
vide initial evidence of its usefulness by case studies.

2. Related Work
In this section, we detail some key literatures relat-
ed to structured modeling languages, document data
transfer and automatic generation mechanism, from
which we are inspired to build our tool Mod2Panel for
interactive interface construction.

2.1. Structured Modeling Language

Patterns and structured modeling languages provide
hierarchy components and grammar for abstracting
and modeling the visualization behaviors. Modeling
languages have an increasing impact on HCI. It spec-
ifies how visualizations are constructed and how they
are related to data. Initially, these languages are ad-
opted by software engineers and system architects for
the reuse of generic visual solutions to facilitate the
transition from individual coding to models [2, 11].
Around the beginning of the 21st century, modeling
languages have gradually entered the fields of HCI,

Information Technology and Control 2023/2/52474

user experience [31], and organizational workflows
[14]. Modeling languages adopt a series of formal rep-
resentation methods to define important elements of
a visual solution to provide a common template for
implementing the solution.
To improve the quality and usability of visual design
and interactions, many pattern catalogs and modeling
languages have been developed [35]. Some UI pattern
catalogs are discussed and compared by Deng [9]. The
famous visualization library D3 [6] enables users to
arrange their design intent and bind data into arbi-
trary document elements. With D3, designers can use
a dynamic transform to both create and edit content,
which improves the expressiveness and facilitates in-
tegration with other development tools. A structured
approach is suggested by Märtin [22] both for struc-
turing the hierarchical HCI pattern language and op-
timizing the selection of the needed patterns during
development. Another approach from the perspective
of software engineering using abstract models and
atomic visual building blocks is designed by Seiger et
al. [28]. This framework follows a basic class struc-
ture consisting of a variety of components which are
usually software elements with predefined built-in
interfaces and behaviors and all of which are inter-
connected with each other. Unfortunately, most of the
aforementioned languages are not well organized to
support pattern selection and other domain-specific
design preferences.
Compared to the document-based and layer-based
visualization schema of D3, Vega is a higher-level
modeling language [27]. With the help of this tool,
users can concentrate more on the visual effects and
interaction design for data visualization. It provides
a chart pool and each entity within it implements re-
usable and sharable interfaces that can automatical-
ly produce customizable visual effects. For modeling
language, Vega has a JSON-based (JavaScript Object
Notation) language as well and it generates low-lev-
el visual specifications that abstract more than data
models, graphical marks, visual encodings, and oth-
er detailed specifications [20]. However, Vega places
more emphasis on chart diagrams or data visualiza-
tion. Although it can abstract users’ design intent and
interact with each other in some protocols, it lacks
capabilities like richer visual elements or additional
types of interactions, making it unsuitable for com-
prehensive scenarios.

2.2. Document Data and Transfer
For data visualization, a good solution for data doc-
umentation and transmission must deal with the
construction and deletion of document entities, not
merely the style of existing nodes [6]. Most existing
document manipulators, such as JavaScript libraries,
CSS, or JQuery, only have the ability to identify a set of
elements using simple predicates rather than adding
or removing target elements according to the user’s
design intent. That implies that JavaScript or JQuery
cannot move design intent from modeling documents
to visualizations or from visualizations to documents.
Therefore, they are not suitable for complex or dynam-
ic visualization tasks involving various transitions.
The eXtensible Markup Language (XML) is a remark-
able standard for document data representation and
exchange through WWW [5]. Extensible Style sheet
Language Transformation (XSLT) [4] is another pow-
erful tool for document transformation. Users can
choose, remove, rearrange, or add more information
to any XML document using XSLT to transform it into
another document. Multiple DTDs in XML provide
approaches for accessing, representing, or editing the
document that is encoded according to the CES data
architecture [16]. However, XSLT is only useful for
simple transformation. It lacks mechanisms to cap-
ture design intent as well as tools for high-level visual
abstractions.

2.3. Automated Interface Generation
Building high-quality applications in a respectable
amount of time are the ultimate goal of software de-
velopment. Achieving this goal has gotten increasing-
ly difficult as project scale and complexity have grown
significantly. Because of this, there is a surging de-
mand for techniques for producing more high-quality
products within less delivery time. During the initial
design phase, aforementioned visual modeling lan-
guages can help shorten development time in given
scenarios by providing modeling and model-checking
mechanisms. In the following implementation phase,
automatic code generation can be applied to produce
executable software from high-level design models,
which will further reduce delivery time and enhance
the benefits of modeling and validating [15].
Most existing code generation approaches typical-
ly already address design intent modeling and code

475Information Technology and Control 2023/2/52

Figure 1
An unrolled view of prototyping, validating and feedback loop

into a visualization template to fulfill interface au-
tomation. Palpanas et al. [25] defined an XML-based
meta-model to define the user’s design intent in the
domain of business performance. Information on
user roles, data metrics, interface templates, and el-
ement organization can all be summarized using
this paradigm. Meanwhile, a comparable tool for
generating code is also implemented in a given pro-
gramming environment and can generate automat-
ically executable interfaces. On JavaScript platform,
Kintz [18] provided an automatic mechanism for
generating interfaces from predefined model docu-
ments to regulate and track marketing behaviors.
The generic visual information present in these
models consists of data, logic, visual entities, and in-
teraction behaviors. Vázquez-Ingelmo et al. [34]

also employed an XML-based standard to
model user interaction patterns to improve the
capabilities of model languages in interaction.

The above tools generally suffer from two
clear drawbacks: their visualization tech-
niques mainly focus on chart-level interfaces
and the interior interaction is also associated
with various charts. The arrangement of vari-
ous charts cannot meet the demand of com-
plex design intent summarization. Meanwhile,
interactive graphical editing tools necessary to
improve user customization through visual
configuration are absent from these solutions,
which instead only offer model-based custom-
ization.

Figure 1
An unrolled view of prototyping, validating and feedback loop

3. Problem Formulation and Usage

Scenarios
We formulate the design-to-model-to-panel gener-
ation as a machine translation task. The input i to
the machine translator at the design-to-model node
is the design intent or ideas of designers, such as
color themes, visual requirements, geometric lay-
outs, etc. As shown in Fig. 1, for the input i, the ma-
chine translator should be able to "translate" i into
a document described by a modeling language.
Generally, the modeling document typically has a
tree-hierarchical or semi-structured format and is
composited of some container entity (non-leaf
nodes) and atomic entity (leaf nodes). By this trans-
lator, the modeling documents can accurately re-
flect the design intent of a designer.

The input j to the machine translator at the node of
model-to-panel can be regards the language trans-
lation by automatic generation mechanism com-
bined a GUI framework. In the GUI framework lan-
guage, its vocabulary is comprised of visual com-
ponent names, such as Layout, Label, Button, Table
or Plot. All the vocabulary should adhere to the

syntax both of the modeling language and
GUI framework language. The automatic gen-
eration mechanism should be able to interpret
the grammar of the structured modeling lan-
guage by name inferring, parse them into an
equivalent token sequence of components,
and then replace them by the visual elements
in the GUI framework. This is what the ma-
chine translation produced. In this work, we
use depth-first traversal (DFT) to enclose all
the contained components in the model.

3.1 Conceptual Framework

As depicted in Fig. 1, we present an unrolled
view of modeling and panel creation work-
flow, which explains the entire ‘pipeline’ from
converting user’s design to generated interac-
tive panels. In this view, control engineers,
data scientists, and UI designers are three
types of users that are used as examples. All of
them are very concerned about interface gen-
eration and user experience feedback. The con-
trol engineer is aware of which equipment
need to be continuously monitored and which
monitoring-related data is useful. They also
want to deal with invalid data issues. The data

generation for object-oriented analysis. For example,
IBM Rational Software Architect [19], MagicDraw
UML [24] as well as open sourced tools ArgoUML
[21], in which models are represented in UML dia-
grams.
Some other existing tools also offer mechanisms that
can generate interfaces based on modeling languages.
Generally, the approaches proposed by these tools fall
into two categories, namely data automation and vi-
sualization automation. Topalian Rivas et al. [32] pro-
posed a module concept in the manufacturing field to
process data before it is entered into a visualization
template to fulfill interface automation. Palpanas et
al. [25] defined an XML-based meta-model to define
the user’s design intent in the domain of business per-
formance. Information on user roles, data metrics,
interface templates, and element organization can
all be summarized using this paradigm. Meanwhile,
a comparable tool for generating code is also imple-
mented in a given programming environment and can
generate automatically executable interfaces. On Ja-
vaScript platform, Kintz [18] provided an automatic
mechanism for generating interfaces from predefined
model documents to regulate and track marketing
behaviors. The generic visual information present in
these models consists of data, logic, visual entities,
and interaction behaviors. Vázquez-Ingelmo et al.
[34] also employed an XML-based standard to model
user interaction patterns to improve the capabilities
of model languages in interaction.
The above tools generally suffer from two clear draw-
backs: their visualization techniques mainly focus on

chart-level interfaces and the interior interaction is
also associated with various charts. The arrangement
of various charts cannot meet the demand of complex
design intent summarization. Meanwhile, interactive
graphical editing tools necessary to improve user cus-
tomization through visual configuration are absent
from these solutions, which instead only offer mod-
el-based customization.

3. Problem Formulation and Usage
Scenarios
We formulate the design-to-model-to-panel genera-
tion as a machine translation task. The input i to the
machine translator at the design-to-model node is
the design intent or ideas of designers, such as color
themes, visual requirements, geometric layouts, etc.
As shown in Fig. 1, for the input i, the machine trans-
lator should be able to “translate” i into a document
described by a modeling language. Generally, the
modeling document typically has a tree-hierarchical
or semi-structured format and is composited of some
container entity (non-leaf nodes) and atomic entity
(leaf nodes). By this translator, the modeling docu-
ments can accurately reflect the design intent of a de-
signer.
The input j to the machine translator at the node of
model-to-panel can be regards the language transla-
tion by automatic generation mechanism combined a
GUI framework. In the GUI framework language, its
vocabulary is comprised of visual component names,

Information Technology and Control 2023/2/52476

such as Layout, Label, Button, Table or Plot. All the
vocabulary should adhere to the syntax both of the
modeling language and GUI framework language.
The automatic generation mechanism should be able
to interpret the grammar of the structured model-
ing language by name inferring, parse them into an
equivalent token sequence of components, and then
replace them by the visual elements in the GUI frame-
work. This is what the machine translation produced.
In this work, we use depth-first traversal (DFT) to en-
close all the contained components in the model.

3.1. Conceptual Framework
As depicted in Fig. 1, we present an unrolled view of
modeling and panel creation workflow, which ex-
plains the entire ‘pipeline’ from converting user’s de-
sign to generated interactive panels. In this view, con-
trol engineers, data scientists, and UI designers are
three types of users that are used as examples. All of
them are very concerned about interface generation
and user experience feedback. The control engineer
is aware of which equipment need to be continuous-
ly monitored and which monitoring-related data is
useful. They also want to deal with invalid data is-
sues. The data scientist concerns about what types of
data should be displayed and their relationships with
each other. Sometimes they are not the end users of
the generated panels. Similarly, the designer typical-
ly collects requirements from final users and deter-
mines visual techniques and interactive effects. They
are all involved into an iterative model explanation
and refinement. However, due to individualization,
they have different demands on the final interfaces.
Thus, users sometimes change their design rapidly in
the feedback loop even for the same requirement and
they also wish to version-control these changes.
In general, with these iterative processes, users may
be able to describe their design intent in a unified
modeling language and translate that model into in-
teractive panels. Users are able to avoid hard-coded
implementation during design phase and receive im-
mediate feedback to enhance their design. With aided
by the framework, all practitioners can focus more on
design and rapidly prototype their designs, and ver-
sion control all changes.

3.2. Usage Scenario in Control Systems
To understand how Mod2Panel is used to support
preliminary design, refinement from feedback, and

automatically generate final panels in term of distinct
roles in development groups, consider the following
usage scenario: Eva is a director in a control group
of a large scientific facility and she seeks to create a
variety of visual panels to display key indicators that
can reflect the health level of the facility. Alex is an or-
dinary control engineer in the maintenance team. His
primary responsibility is to monitor all of the physi-
cal properties of an equipment in the facility. Both of
them are aware that Mod2Panel is designed to handle
the challenges met by Eva and Alex and can help them
convert their design knowledge and intent into opera-
tional visual panels.
Preliminary Design. The first thing Eva and Alex
need to do in the preliminary phase is to inspect their
control requirements by themselves. They can also
consider individualization in this phase. Due to job
responsibilities, Eva pays more attention to the macro
indicators of the facility in a horizontal direction. She
checks up on crucial devices in a Location/Family/
Facility/Device manner. She is not very interested in
specific devices of a facility, while Alex inspects his
equipment in a detailed vertical way i.e., Equipment/
Device/Part/ Unit. The preliminary design aims to
convey Eva’s and Alex’s design intent based on their
domain knowledge, such as visualization techniques,
visual widgets, layout, color theme, and also interac-
tions. During this phase, they are also allowed to com-
municate with other engineers for consulting their
suggestions. This is the embryonic form of their initial
model of design intent. Overall Eva and Alex’s work
on Mod2Panel is depicted in Fig. 2. The design intent
reflecting the task knowledge and concept knowledge
of control engineers is captured in modeling phase.
Then, the models is input into the automatic visualiza-
tion mechanism to generate final panels. The feedback
from the GUI-driven editor is helpful for refinement
and all changes will be version controlled.
Modeling and Refinement. After reviewing the de-
sign intent and deciding what and how to display in-
formation, Eva and Alex develop a variety of versions
of their initial designs and then they can use manu-
al, semi-automatical, or automatical ways to model
their ideas by the proposed modeling language. In this
phase, as they need to bridge the modeling language
and the relevant widgets in the given UI framework,
Eva and Alex should be completely conversant in the
language’s grammar as well as, to a lesser extent, the

477Information Technology and Control 2023/2/52

Figure 2
Overall workflow of control on Mod2Panel

scientist concerns about what types of data should
be displayed and their relationships with each
other. Sometimes they are not the end users of the
generated panels. Similarly, the designer typically
collects requirements from final users and deter-
mines visual techniques and interactive effects.
They are all involved into an iterative model expla-
nation and refinement. However, due to individu-
alization, they have different demands on the final
interfaces. Thus, users sometimes change their de-
sign rapidly in the feedback loop even for the same
requirement and they also wish to version-control
these changes.

In general, with these iterative processes, users may
be able to describe their design intent in a unified
modeling language and translate that model into in-
teractive panels. Users are able to avoid hard-coded
implementation during design phase and receive
immediate feedback to enhance their design. With
aided by the framework, all practitioners can focus
more on design and rapidly prototype their de-
signs, and version control all changes.

3.2 Usage Scenario in Control Systems

To understand how Mod2Panel is used to sup-
port preliminary design, refinement from
feedback, and automatically generate final
panels in term of distinct roles in development
groups, consider the following usage scenario:
Eva is a director in a control group of a large
scientific facility and she seeks to create a vari-
ety of visual panels to display key indicators
that can reflect the health level of the facility.
Alex is an ordinary control engineer in the
maintenance team. His primary responsibility
is to monitor all of the physical properties of
an equipment in the facility. Both of them are
aware that Mod2Panel is designed to handle
the challenges met by Eva and Alex and can
help them convert their design knowledge and
intent into operational visual panels.

Preliminary Design. The first thing Eva and
Alex need to do in the preliminary phase is to

Figure 2
Overall workflow of control on Mod2Panel

inspect their control requirements by themselves.
They can also consider individualization in this
phase. Due to job responsibilities, Eva pays more at-
tention to the macro indicators of the facility in a
horizontal direction. She checks up on crucial de-
vices in a Location/Family/Facility/Device manner.
She is not very interested in specific devices of a fa-
cility, while Alex inspects his equipment in a de-
tailed vertical way i.e., Equipment/Device/Part/
Unit. The preliminary design aims to convey Eva’s
and Alex’s design intent based on their domain
knowledge, such as visualization techniques, visual
widgets, layout, color theme, and also interactions.

During this phase, they are also allowed to
communicate with other engineers for consult-
ing their suggestions. This is the embryonic
form of their initial model of design intent.
Overall Eva and Alex's work on Mod2Panel is
depicted in Fig. 2. The design intent reflecting
the task knowledge and concept knowledge of
control engineers is captured in modeling
phase. Then, the models is input into the auto-
matic visualization mechanism to generate fi-
nal panels. The feedback from the GUI-driven
editor is helpful for refinement and all changes
will be version controlled.

external UI framework. Moreover, Eva and Alex can
consult the authors and look at ideas with features
similar to their existing design. If they find a decent
predefined sample, they may simply import it and use
it as a template to quickly prototype their idea. How-
ever, if they find a sample that is not as good as the
others, Eva and Alex could update their design intent.
This refinement process enables intent-driven explo-
ration of Eva and Alex’s modeling.
Automatic Visualization. Towards the end of the de-
sign, the visualization model is directly input to the au-
tomated generation mechanism. This mechanism first-
ly scans the model document and then parses it in DFT
and generates the final panels using the specified UI
framework, i.e., JQuery or JavaSwing. This process of
development is much faster than starting from scratch.
Eva and Alex might be interested in certain functions
within the panels, or just want to fine-tune the geo-
metric layout of the widgets, a GUI-based graphical
editor is provided to manually adjust the hard-coded or
semi-generated model documents to make them fully
compliant with the modeling language. In addition, the
end users of these panels can interact with each other
via the feedback fetcher and improve their designs in
continuous iteration. Of course, each iteration can be
version controlled. By the way, the feedback fetcher
may just be an external communication platform.

4. Mod2Panel Framework
4.1. Mod2Panel Modeling Language

The modeling language in Mod2Panel provides users
with a visualization-oriented abstract specification
that defines what information can be visualized and
how it can be presented. Using this language, Mod-
2Panel can fully capture the user’s design intent, ab-
stract it into a model, and persist it in a certain format.
Upon the models, Mod2Panel provides an automatic
mechanism to generate the final panels. Moreover,
the model created by the language fully recovers the
user’s design requirement and can perform distribut-
ed collaboration, backup, and version control. From
the perspective of data abstraction, the language can
facilitate the user’s design process, enabling them to
save effort and focus more on design. On the other
hand, the model-driven approach helps developers
get out of the hard-coding development mindset, re-
duces the complexity of UI development, and increas-
es productivity and creativity.
Although UI and interface are frequently used in re-
al-world practices, they involve more than just the ar-
rangement of various visual entities, i.e., buttons, ta-
bles, and charts. They also involve multidisciplinary
aspects, such as design and psychology. As our end

Information Technology and Control 2023/2/52478

users are usually control engineers and modeling ana-
lyzers, we firstly try to integrate Mod2Panel into their
design sessions and conceptualize the implications of
prototypes. After that, the meta-models and models
are designed for Mod2Panel.

4.2. Meta-Model
Meta-model defines the language for specifying mod-
els [13]. After inspecting further visualization re-
quirements of end users, the modeling language we
designed should consist of three levels: the layout,
the widgets, and the interactions. The widgets here
are the center of the language which should also ad-
here to some UI framework for rendering. Widgets
are visual entities such as buttons, tables, graphs, and
other self-developed controls. Their properties and
attributes also can be configured during the entire life
circle. Layout decides what goes inside and how to or-
ganize them. The interactions usually provide inter-
faces for initiating actions and data coupling.
Like the Meta-Model Mechanism of UML, which is
based on a four-level meta-modeling architecture
[29], we design a three-level meta-model mechanism

Figure 3
Meta-model and model structure for Mod2Panel

for Mod2Panel. Fig. 3 depicts the meta-model archi-
tecture proposed for Mod2Panel. They are:
 _ Panel is the top container that contains a

variety of Widgets. The Panel class contains the
following attributes: name, author, description,
showTooltips, fullScreenMode, address, and
children list. Author is actually the names of the
creators, and name is used as a unique indicator of
the panel in the software.
ShowToolTips is a boolean value for deciding
whether to show tooltips when the mouse is over
widgets and fullScreenMode determines whether
to be in a full-screen mode. Address is reserved for
distributed control applications. Children is a list
of widgets in the panel that are its children.

 _ Widget is the atomic building block of visualization
rendering. It functions as the core part of the meta-
model mechanism. As aforementioned, the widget
here should have a close relationship with the
widgets of a specific UI framework. It is typically
a picture, button, table, or text. We associate a
layout with widgets. It determines the visual level
hierarchy for them, describing where the widgets

479Information Technology and Control 2023/2/52

are located and how to render them. A widget also
contains interactions.

 _ Interactions. We only offer interactivity at the
widget level. The Interaction class describes what
types of interactions are employed by this widget
and some detailed configurable properties, i.e., the
sender widget and the receiver widget.

4.3. Model
Within our proposed development approach, mod-
eling is used as means to alleviate the complexity of
model-driven interface generation. This approach
should provide pre-assembled building blocks that
can be used for domain and UI model construction.
Therefore, it is essential to specify the modeling pro-
cess in a uniform and machine-readable manner and
feed their attributes and properties with desired data
and interactions. Another important aspect is that it
must be possible to compose the building blocks man-
ually or automatically. In this paper, we adopt XML
(the eXtensible Markup Language) [26] to represent
the modeling specification. As a language, XML is
commonly used to structure data for storage, inter-
change, and transportation. By using XML syntax and

extracts the definition of panels to render the cur-
rent panel which is the top container of all widgets
in the model. The Layout Generator reads out the
model elements at the widget level, especially loca-
tion and bound properties, to locate each widget.
The Widget Generator also reads out the widget
level information, mainly the attributes and proper-
ties, to render the widgets within a certain UI frame-
work. Similarly, the Interaction Generator reads the

Layout Generator mainly concerns about the
locations and bounds of each widget defined
in the model. According to the widget-level in-
formation, it determines the locations and

Figure 5

Automatic composition pipeline of Mod2Panel

size of a widget. If there is overlap, the incoming widgets should be placed below the outgoing

the aforementioned meta-model, we can formulate
the modeling representation. Users can accurately
assemble models based on their requirements and
convey their design intent into them using XML.
For more clarity, we show a comprehensive example
in Fig. 4 from a control scenario of a large-scale facil-
ity that elaborately details the design and auto-gen-
eration of the three-level hierarchy meta-model
structure. , the left is a sample model structure for all
widgets and properties, the panel framer is the gen-
erator for the panel container, the widget generator
is for location arrangement and visual rendering, and
interaction binding is the specifications for interac-
tions. The layout generator and widget configuration
are combined in the widget generator. Interaction
generator should also work in widgets.

4.4. Automated Panels Rendering and
Graphical Editor
When the modeling documents have been estab-
lished, we propose to render the UI panels in a top-
down way due to the restrictions of data coupling be-
tween different widgets. This automated generation
mechanism enables users to render the specified pan-

Figure 4
An example in a control scenario

Information Technology and Control 2023/2/52480

els by the models rapidly to validate, refine and im-
prove their designs. At first, Panel Framer extracts the
definition of panels to render the current panel which
is the top container of all widgets in the model. The
Layout Generator reads out the model elements at the
widget level, especially location and bound proper-
ties, to locate each widget. The Widget Generator also
reads out the widget level information, mainly the at-
tributes and properties, to render the widgets within a
certain UI framework. Similarly, the Interaction Gen-
erator reads the configurations about interactions for
event triggers and data coupling.
Fig. 5 describes the overview pipeline of the panel
rendering composition mechanism in detail. It takes
the established models as input and adapts the exter-
nal UI framework to create the component hierarchy
structure.
As mentioned above, Fig. 5 shows four visual interpret-
ers of Mod2Panel. Here we describe them in detail.
Panel Framer reads the predefined information of
panel-level model. Since panel is the top container in
a model, it does not require any layout generator.
Layout Generator mainly concerns about the loca-
tions and bounds of each widget defined in the model.
According to the widget-level information, it deter-
mines the locations and size of a widget. If there is
overlap, the incoming widgets should be placed below
the outgoing ones.
Widget Generator is the center of the automated
rendering mechanism. It transforms the widget-lev-

Figure 5
Automatic composition pipeline of Mod2Panel

el models into renderable UI widgets together with
detailed configurations, such as the color definitions,
the functions, or the icons.
Interaction Generator primarily manages the inter-
actions for event triggers based on the interaction- re-
lated configurations. For example, if the interaction is
about opening a new window when clicking a button.
When the user clicks the specified button, another
new panel will be opened which is defined by its cor-
responding XML file.
We are all aware that the tremendous complexity,
heterogeneity, and dynamic of the environment lead
to constant changes in designs. It leads to the fact that
the generated panels from the original model some-
times fail to reflect the original designer’s intentions.
In this subsection, we provide a graphical editor so
that users may visually improve their designs. With
the help of this tool, users can create an iterative im-
provement feedback loop that closely matches their
design intent. This graphical tool help users create
task-specific and individual panels in particular use
cases. Fig. 6 describes this graphical editor which has
four sub-windows. The first sub-window in the cen-
ter position is Editor Area. It contains a design-time
view of the panel generated by the current model. The
widgets in this panel can be visualized during design
time. On the left is Component Inspector which hier-
archically displays all the widgets in the current mod-
el. Users can navigate all widgets with this tool. On
the upper right is the component Palette. From this
widget pool, users can add a new element to the mod-

An example in a control scenario

4.4 Automated Panels Rendering and Graphical
Editor

When the modeling documents have been estab-
lished, we propose to render the UI panels in a top-
down way due to the restrictions of data coupling
between different widgets. This automated genera-
tion mechanism enables users to render the speci-
fied panels by the models rapidly to validate, refine
and improve their designs. At first, Panel Framer
extracts the definition of panels to render the cur-
rent panel which is the top container of all widgets
in the model. The Layout Generator reads out the
model elements at the widget level, especially loca-
tion and bound properties, to locate each widget.
The Widget Generator also reads out the widget
level information, mainly the attributes and proper-
ties, to render the widgets within a certain UI frame-
work. Similarly, the Interaction Generator reads the

configurations about interactions for event
triggers and data coupling.
Fig. 5 describes the overview pipeline of the
panel rendering composition mechanism in
detail. It takes the established models as input
and adapts the external UI framework to cre-
ate the component hierarchy structure.
As mentioned above, Fig. 5 shows four visual
interpreters of Mod2Panel. Here we describe
them in detail.

Layout Generator mainly concerns about the
locations and bounds of each widget defined
in the model. According to the widget-level in-
formation, it determines the locations and

Figure 5

481Information Technology and Control 2023/2/52

el, and drag and drop the widget to relocate and resize.
On the bottom right is the Properties configuration
table. It shows all the editable setting parameters for
the currently active widget. In this table, users can
select configuration interaction to start to customize
and choose visualization techniques to set up visual-
ization and interaction parameters.
By this tool, users can roughly add elements, resize, re-
locate and configure them. For detailed visual effects,
manual editing is inevitable. Due to the three-level hi-
erarchy language architecture, Mod2Panel provides
configuration tools through this basic graphical edi-
tor for widgets at different levels, even for the ones in
other containers.

5. Evaluation
In this section, we describe the methodology of our
study, the feedback from the participants in the case
and the results we draw from the feedback. We use the
results to quantify the efficiency and effectiveness of
Mod2Panel in real-world situations.

5.1. User Study
In order to verify the intuitiveness of our workflow
and the usability of Mod2Panel, we conducted a va-
riety of user studies with two separate user groups.
The scenarios we used in the use cases were com-

Figure 6
Graphical editing tool for control model refinement of a device

ones.

Widget Generator is the center of the automated
rendering mechanism. It transforms the widget-
level models into renderable UI widgets together
with detailed configurations, such as the color defi-
nitions, the functions, or the icons.
Interaction Generator primarily manages the inter-
actions for event triggers based on the interaction-
related configurations. For example, if the interac-
tion is about opening a new window when clicking
a button. When the user clicks the specified button,
another new panel will be opened which is defined
by its corresponding XML file.
We are all aware that the tremendous complexity,
heterogeneity, and dynamic of the environment
lead to constant changes in designs. It leads to the
fact that the generated panels from the original
model sometimes fail to reflect the original design-
er's intentions. In this subsection, we provide a
graphical editor so that users may visually improve
their designs. With the help of this tool, users can
create an iterative improvement feedback loop that
closely matches their design intent. This graphical
tool help users create task-specific and individual
panels in particular use cases. Fig. 6 describes this
graphical editor which has four sub-windows. The

first sub-window in the center position is Edi-
tor Area. It contains a design-time view of the
panel generated by the current model. The
widgets in this panel can be visualized during
design time. On the left is Component Inspec-
tor which hierarchically displays all the widg-
ets in the current model. Users can navigate all
widgets with this tool. On the upper right is
the component Palette. From this widget pool,
users can add a new element to the model, and
drag and drop the widget to relocate and
resize. On the bottom right is the Properties
configuration table. It shows all the editable
setting parameters for the currently active
widget. In this table, users can select configu-
ration interaction to start to customize and
choose visualization techniques to set up visu-
alization and interaction parameters.
By this tool, users can roughly add elements,
resize, relocate and configure them. For de-
tailed visual effects, manual editing is inevita-
ble. Due to the three-level hierarchy language
architecture, Mod2Panel provides configura-
tion tools through this basic graphical editor
for widgets at different levels, even for the
ones in other containers.

Figure 6

Graphical editing tool for control model refinement of a device

5. Evaluation
In this section, we describe the methodology of our
study, the feedback from the participants in the case
and the results we draw from the feedback. We use
the results to quantify the efficiency and effective-
ness of Mod2Panel in real-world situations.

5.1 User Study

In order to verify the intuitiveness of our workflow

and the usability of Mod2Panel, we conducted
a variety of user studies with two separate
user groups. The scenarios we used in the use
cases were complex control-oriented systems
mainly for monitoring (in Germany) and mod-
eling level analysis for highly interactions (in
China), simulating a real- world environment.
The study aims to understand where the sys-
tem can be improved and whether the neces-
sary task-specific features for real-world sce-
narios have been covered by the framework.

plex control-oriented systems mainly for monitoring
(in Germany) and modeling level analysis for highly
interactions (in China), simulating a real- world en-
vironment. The study aims to understand where the
system can be improved and whether the necessary
task-specific features for real-world scenarios have
been covered by the framework.
Methodology and Study Design. We know that each
user has different technical and aesthetic priorities.
In order to avoid this type of discrepancy, we decide to
adopt similar approaches to pair analytics studies [17],
allowing each participant to inject their individual
design intent into both the control system and model-
ing system. We trained nine pairs of participants and
ensure that they fully learned how to use Mod2Panel.
The target participants were requirement analysis
users (RA,), model developer (MD,) and mainte-
nance staff (MS,), among which model developers
are mainly responsible modeling and generate the
final panels. Each study consists of three phases: a
quick introduction to the real-world requirements,
construction of panels and then a semi-structured
review for their user experience. All participants are
asked to properly transfer their design intent into
models by communication and thinking, taking as
much time as they want. The second phase is to use
Mod2Panel to realize their design intent. The final
phase is to collect their comments, complains, or any-
thing else that reflects the discrepancy between their

Information Technology and Control 2023/2/52482

initial expectation and the final panels. After three
phases are finished, all participants swap their roles,
i.e., the control group will evaluate the usability of the
modeling system under the guidance of all members
of modeling group, and vice versa. All user studies are
recorded by technical staff.
Participants. We chose the 18 participants from two
different user groups, who were working in the con-
trol systems and modeling level analysis respectively.
For RA, we asked 3 pairs of engineers to take charge
of three distinct subsystems. For MD, we chose 3 pair
of engineers with academic background of comput-
er science, who have worked long time in the field of
control and modeling analysis. And for MS, we invit-
ed 3 pairs of maintenance engineering from the two
groups. All participants were currently working in
the two groups and one female participant must be
involved in RA, MD and MS.
Tasks. Two out of three participants were working
with control systems, while the rest of participants
must join the tasks of modeling analysis, because
control system was more complex and required more
manpower. All the participants were guided through
the interactions along the task requirement under-
standing, modeling and refinement from the feedback
of other co-participant.

5.2. User Feedback
In this subsection, we describe and analyze the
feedback received from the participants during the
involved three phases (requirement analysis and
abstract modeling, design intent extraction and de-
velopment, refinement and panel re-generation).
We noticed that all participants must join all these
phases, not just finishing their own job, and gave the
comments (positive and negative, need to make a
human-assist statistics and analysis) based on their
user experience.
Requirement Analysis and Abstract Modeling. Re-
quirement analysis is the collection process of control-
and modeling-related development. During this peri-
od, the participants tried to make the outcome of the
requirement analysis practical, thorough, and reflect
the real-world scenarios. Meanwhile, they were also
allowed to refer to existing models and then finished
their abstract models in the modeling language which
only contained the skeleton of visual widgets. In this

phase, when the participants were asked about their
expected user experience for Mod2Panel, the most
frequent answers were modeling simplicity, model
quality monitoring, improvement of abstraction, and
design intent transferring, as depicted in Fig. 7.

Figure 7
Subjective results of user feedback in requirement analysis
and abstract modeling

Methodology and Study Design. We know that
each user has different technical and aesthetic pri-
orities. In order to avoid this type of discrepancy,
we decide to adopt similar approaches to pair ana-
lytics studies [17], allowing each participant to in-
ject their individual design intent into both the con-
trol system and modeling system. We trained nine
pairs of participants and ensure that they fully
learned how to use Mod2Panel. The target partici-
pants were requirement analysis users (RA,●),
model developer (MD,●) and maintenance staff
(MS,●), among which model developers are
mainly responsible modeling and generate the final
panels. Each study consists of three phases: a quick
introduction to the real-world requirements, con-
struction of panels and then a semi-structured re-
view for their user experience. All participants are
asked to properly transfer their design intent into
models by communication and thinking, taking as
much time as they want. The second phase is to use
Mod2Panel to realize their design intent. The final
phase is to collect their comments, complains, or an-
ything else that reflects the discrepancy between
their initial expectation and the final panels. After
three phases are finished, all participants swap their
roles, i.e., the control group will evaluate the usabil-
ity of the modeling system under the guidance of all
members of modeling group, and vice versa. All
user studies are recorded by technical staff.

Participants. We chose the 18 participants from two
different user groups, who were working in the con-
trol systems and modeling level analysis respec-
tively. For RA, we asked 3 pairs of engineers to take
charge of three distinct subsystems. For MD, we
chose 3 pair of engineers with academic back-
ground of computer science, who have worked long
time in the field of control and modeling analysis.
And for MS, we invited 3 pairs of maintenance en-
gineering from the two groups. All participants
were currently working in the two groups and one
female participant must be involved in RA, MD and
MS.

Tasks. Two out of three participants were working
with control systems, while the rest of participants
must join the tasks of modeling analysis, because
control system was more complex and required
more manpower. All the participants were guided
through the interactions along the task requirement
understanding, modeling and refinement from the
feedback of other co-participant.

5.2 User Feedback

In this subsection, we describe and analyze the feed-
back received from the participants during the in-
volved three phases (requirement analysis and ab-

stract modeling, design intent extraction and
development, refinement and panel re-gener-
ation). We noticed that all participants must
join all these phases, not just finishing their
own job, and gave the comments (positive and
negative, need to make a human-assist statis-
tics and analysis) based on their user experi-
ence.

Requirement Analysis and Abstract Model-
ing. Requirement analysis is the collection
process of control- and modeling-related de-
velopment. During this period, the partici-
pants tried to make the outcome of the require-
ment analysis practical, thorough, and reflect
the real-world scenarios. Meanwhile, they
were also allowed to refer to existing models
and then finished their abstract models in the
modeling language which only contained the
skeleton of visual widgets. In this phase, when
the participants were asked about their ex-
pected user experience for Mod2Panel, the
most frequent answers were modeling sim-
plicity, model quality monitoring, improve-
ment of abstraction, and design intent trans-
ferring, as depicted in Fig. 7.
Figure 7

Subjective results of user feedback in requirement
analysis and abstract modeling

Within our framework, this can be seen as an
example of the expressiveness and scalability
of the modeling language. Besides that, due to
dynamic requirements, participants were still
concerned about whether it was easy or not to
edit the abstract models and the close match-
ing between design intent and the models.
During this phase, we have noticed that the re-
quirement analysis staff was mainly con-
cerned about the layout and fundamental
components of panels rather than the details of
widgets. From the comments, we found that
the control group was not satisfied with the
skeleton visualization of the graphical editor.
They complained that the skeleton only was
represented by a variety of rectangles, which
were meaningless for design. MD and MS also
suggested adding more widgets for data visu-
alization.

Within our framework, this can be seen as an example
of the expressiveness and scalability of the modeling
language. Besides that, due to dynamic requirements,
participants were still concerned about whether it
was easy or not to edit the abstract models and the
close matching between design intent and the models.
During this phase, we have noticed that the require-
ment analysis staff was mainly concerned about the
layout and fundamental components of panels rather
than the details of widgets. From the comments, we
found that the control group was not satisfied with the
skeleton visualization of the graphical editor. They
complained that the skeleton only was represented
by a variety of rectangles, which were meaningless for
design. MD and MS also suggested adding more wid-
gets for data visualization.
Design Intent Extraction and Development. Each
panel has captured a set of design intent, reflecting
the participants’ knowledge about control and mod-
eling analysis. The abstract models from the phase
of Requirement Analysis and Abstract Modeling are
mainly about visual skeleton without detailed con-
figuration parameters. In order to make sure that
the process of creating panels could cover the design
intent of all practitioners, we followed a predefined
procedure to precisely extract the design intent.
First, all participants in the first phase who were
involved with the requirement analysis should also
participate in this phase. They explained all the pan-

483Information Technology and Control 2023/2/52

els one by one. If the developers in this phase faced
challenges, they ought to explain, especially the po-
tential design parameters, such as color theme, the
content of labels, and tables. Then, the developers
enriched the models in the modeling language and
generated the final panels. Finally, all the partici-
pants should check and confirm that all data and pa-
rameters were correctly distinguished.
During this phase, RA was satisfied with added visu-
al effects that made their deigns more colorful and
meaningful. MD and MS staff were mainly concerned
about the richness of the widget pool and the expres-
siveness of details of the design intent. Most of the
feedback was positive, as shown in Fig. 8. However,
due to the constraints of Mod2Panel, part of the plots
or charts were not supported. Mod2Panel provides
various plots for data trends, not for data classifica-
tion, such as PieChart and BarChart.

Figure 8
Subjective results of user feedback in design intent
extraction and development

 _ The RA, MD and MS staff examined and checked
the panels and compared them with the original
design intent.

 _ The MD iteratively kept improving the models by
GUI-aided editor to make the models better.

During the refinement and reconstruction phase, the
feedback and design intent was somewhat mixed.
Participants’ personalities and aesthetic preferences
varied. Some of them may have quite high hopes, sug-
gestions, and aspirations. They wanted to refine the
models in some ways, such as adding more widgets,
modifying parameters, or changing plots, as depict-
ed in Fig. 9. Moreover, some of the participants were
doubtful. Although they did not question the usability
of this tool, but rather the proficiency, because Mod-
2Panel sometimes is a little redundant to achieve the
design objective.
Demo-panels of Exemplary Scenarios. A set of pan-
els have been developed by the proposed Mod2Pan-
el framework in the context of control systems and
modeling level analysis. Here we noticed that when
the case studies were conducted, some CAE applica-
tions and numerical simulations were still under con-
struction. So the panels of modeling analysis were not
so perfect and colorful. However, it had no impact on
the effectiveness of Mod2Panel. The construction re-
sult of control systems can be found in Fig. 10. These
representative panels are mainly related to mac-
ro-controls which are more colorful and visually at-
tractive. The panels from the modeling analysis group
are described in Fig. 11. The demo panels show that
the generated panels by Mod2Panel framework rep-
resent the design intent of practitioners and have an
appearance with aesthetic functions combined with
layout, colors, and visual effects.

Design Intent Extraction and Development. Each
panel has captured a set of design intent, reflecting
the participants’ knowledge about control and
modeling analysis. The abstract models from the
phase of Requirement Analysis and Abstract Mod-
eling are mainly about visual skeleton without de-
tailed configuration parameters. In order to make
sure that the process of creating panels could cover
the design intent of all practitioners, we followed a
predefined procedure to precisely extract the de-
sign intent. First, all participants in the first phase
who were involved with the requirement analysis
should also participate in this phase. They ex-
plained all the panels one by one. If the developers
in this phase faced challenges, they ought to ex-
plain, especially the potential design parameters,
such as color theme, the content of labels, and ta-
bles. Then, the developers enriched the models in
the modeling language and generated the final pan-
els. Finally, all the participants should check and
confirm that all data and parameters were correctly
distinguished.

During this phase, RA was satisfied with added vis-
ual effects that made their deigns more colorful and
meaningful. MD and MS staff were mainly con-
cerned about the richness of the widget pool and the
expressiveness of details of the design intent. Most
of the feedback was positive, as shown in Fig. 8.
However, due to the constraints of Mod2Panel, part
of the plots or charts were not supported.
Mod2Panel provides various plots for data trends,
not for data classification, such as PieChart and Bar-
Chart.
Figure 8

Subjective results of user feedback in design intent extrac-
tion and development

Refinement and Panels Reconstruction. After the
generation of panels in the second phase, the MS
staff should use them in real control systems and
modeling level analysis systems, and confirmed
with RA to make sure that the design intent of RA
was captured as much as possible and visualized
the models as closely as possible in the panels.

• The MD staff examined the original abstract mod-
els and result of requirement analysis, and then en-
riched the XML described models.

• The MD staff version controlled these mod-
els in a certain repository, such as database or
Git.

• The MD staff generated panels according to
the models.

• The RA, MD and MS staff examined and
checked the panels and compared them with
the original design intent.

• The MD iteratively kept improving the
models by GUI-aided editor to make the mod-
els better.

Figure 9

During the refinement and reconstruction
phase, the feedback and design intent was
somewhat mixed. Participants' personalities
and aesthetic preferences varied. Some of
them may have quite high hopes, suggestions,
and aspirations. They wanted to refine the
models in some ways, such as adding more
widgets, modifying parameters, or changing
plots, as depicted in Fig. 9. Moreover, some of
the participants were doubtful. Although they
did not question the usability of this tool, but
rather the proficiency, because Mod2Panel
sometimes is a little redundant to achieve the
design objective.

Demo-panels of Exemplary Scenarios. A set
of panels have been developed by the pro-
posed Mod2Panel framework in the context of
control systems and modeling level analysis.
Here we noticed that when the case studies
were conducted, some CAE applications and
numerical simulations were still under con-
struction. So the panels of modeling analysis
were not so perfect and colorful. However, it
had no impact on the effectiveness of
Mod2Panel. The construction result of control
systems can be found in Fig. 10. These repre-
sentative panels are mainly related to macro-
controls which are more colorful and visually
attractive. The panels from the modeling anal-
ysis group are described in Fig. 11. The demo
panels show that the generated panels by
Mod2Panel framework represent the design
intent of practitioners and have an appearance

 _ Refinement and Panels Reconstruction. After
the generation of panels in the second phase, the
MS staff should use them in real control systems
and modeling level analysis systems, and confirmed
with RA to make sure that the design intent of RA
was captured as much as possible and visualized
the models as closely as possible in the panels.

 _ The MD staff examined the original abstract
models and result of requirement analysis, and
then enriched the XML described models.

 _ The MD staff version controlled these models in a
certain repository, such as database or Git.

 _ The MD staff generated panels according to the
models.

Figure 9
Subjective results of user feedback in refinement and
panels reconstruction

Design Intent Extraction and Development. Each
panel has captured a set of design intent, reflecting
the participants’ knowledge about control and
modeling analysis. The abstract models from the
phase of Requirement Analysis and Abstract Mod-
eling are mainly about visual skeleton without de-
tailed configuration parameters. In order to make
sure that the process of creating panels could cover
the design intent of all practitioners, we followed a
predefined procedure to precisely extract the de-
sign intent. First, all participants in the first phase
who were involved with the requirement analysis
should also participate in this phase. They ex-
plained all the panels one by one. If the developers
in this phase faced challenges, they ought to ex-
plain, especially the potential design parameters,
such as color theme, the content of labels, and ta-
bles. Then, the developers enriched the models in
the modeling language and generated the final pan-
els. Finally, all the participants should check and
confirm that all data and parameters were correctly
distinguished.

During this phase, RA was satisfied with added vis-
ual effects that made their deigns more colorful and
meaningful. MD and MS staff were mainly con-
cerned about the richness of the widget pool and the
expressiveness of details of the design intent. Most
of the feedback was positive, as shown in Fig. 8.
However, due to the constraints of Mod2Panel, part
of the plots or charts were not supported.
Mod2Panel provides various plots for data trends,
not for data classification, such as PieChart and Bar-
Chart.
Figure 8

Subjective results of user feedback in design intent extrac-
tion and development

Refinement and Panels Reconstruction. After the
generation of panels in the second phase, the MS
staff should use them in real control systems and
modeling level analysis systems, and confirmed
with RA to make sure that the design intent of RA
was captured as much as possible and visualized
the models as closely as possible in the panels.

• The MD staff examined the original abstract mod-
els and result of requirement analysis, and then en-
riched the XML described models.

• The MD staff version controlled these mod-
els in a certain repository, such as database or
Git.

• The MD staff generated panels according to
the models.

• The RA, MD and MS staff examined and
checked the panels and compared them with
the original design intent.

• The MD iteratively kept improving the
models by GUI-aided editor to make the mod-
els better.

Figure 9

During the refinement and reconstruction
phase, the feedback and design intent was
somewhat mixed. Participants' personalities
and aesthetic preferences varied. Some of
them may have quite high hopes, suggestions,
and aspirations. They wanted to refine the
models in some ways, such as adding more
widgets, modifying parameters, or changing
plots, as depicted in Fig. 9. Moreover, some of
the participants were doubtful. Although they
did not question the usability of this tool, but
rather the proficiency, because Mod2Panel
sometimes is a little redundant to achieve the
design objective.

Demo-panels of Exemplary Scenarios. A set
of panels have been developed by the pro-
posed Mod2Panel framework in the context of
control systems and modeling level analysis.
Here we noticed that when the case studies
were conducted, some CAE applications and
numerical simulations were still under con-
struction. So the panels of modeling analysis
were not so perfect and colorful. However, it
had no impact on the effectiveness of
Mod2Panel. The construction result of control
systems can be found in Fig. 10. These repre-
sentative panels are mainly related to macro-
controls which are more colorful and visually
attractive. The panels from the modeling anal-
ysis group are described in Fig. 11. The demo
panels show that the generated panels by
Mod2Panel framework represent the design
intent of practitioners and have an appearance

Information Technology and Control 2023/2/52484

Figure 10
Selected panels for macro-control

Selected panels for macro-control

Figure 11

Panels from modeling level analysis model, which are used to navigate between different design perspectives of the
system

5.3 Lessons Learned and Future Work
Generally, the feedback from all participants was
positive. Nevertheless, the participants also sug-
gested some complementary ideas for
Mod2Panel during the use studies. One of the
main complaints about Mod2Panel was its com-
plex representation in XML of the model struc-
ture. They suggested using a more abstract and
highly expressive approach to represent models.
Another significant point was interaction bind-
ing. Only some complicated widgets supported
distributed protocol or HTTP based data cou-
pling. This meat if we input data into these types
of widgets, we should implement the corre-
sponding interfaces on the server side, otherwise,
they could not receive data. Some requirement
analyzers suggested that an additional meta-
modeling GUI editor should be extended for
them because the current GUI tool was too com-
plicated. This meta-modeling tool should only

aim at skeleton modeling that could be used to
create better design interfaces. Finally, some
more visual widgets should be included in the
framework. This could be achieved by a way to
open sourcing the widget pool to other develop-
ers. A further extension could make this tool suit-
able for more advanced analysis and control
tasks.

Next, we are going to conduct more studies in
more scenarios to identify different requirements
of users with respect to their special tasks. By do-
ing this, we want to improve the functionality
and usability of Mod2Panel. When we get further
findings, we will enhance our modeling lan-
guage, for example, converting from XML to
JSON for better abstraction, or supporting more
open source widget libraries. In addition, in or-
der to use the saved models as templates to re-
duce the need for time-consuming and manual
collection, in the future we will create a rule-

Figure 11
Panels from modeling level analysis model, which are used to navigate between different design perspectives of the system

Selected panels for macro-control

Mod2Panel during the use studies. One of the
main complaints about Mod2Panel was its com-
plex representation in XML of the model struc-
ture. They suggested using a more abstract and
highly expressive approach to represent models.
Another significant point was interaction bind-
ing. Only some complicated widgets supported
distributed protocol or HTTP based data cou-
pling. This meat if we input data into these types
of widgets, we should implement the corre-
sponding interfaces on the server side, otherwise,
they could not receive data. Some requirement
analyzers suggested that an additional meta-
modeling GUI editor should be extended for
them because the current GUI tool was too com-
plicated. This meta-modeling tool should only

ers. A further extension could make this tool suit-
able for more advanced analysis and control
tasks.

Next, we are going to conduct more studies in
more scenarios to identify different requirements
of users with respect to their special tasks. By do-
ing this, we want to improve the functionality
and usability of Mod2Panel. When we get further
findings, we will enhance our modeling lan-
guage, for example, converting from XML to
JSON for better abstraction, or supporting more
open source widget libraries. In addition, in or-
der to use the saved models as templates to re-
duce the need for time-consuming and manual
collection, in the future we will create a rule-

5.3. Lessons Learned and Future Work

Generally, the feedback from all participants was
positive. Nevertheless, the participants also sug-
gested some complementary ideas for Mod2Panel
during the use studies. One of the main complaints
about Mod2Panel was its complex representation
in XML of the model structure. They suggested us-
ing a more abstract and highly expressive approach
to represent models. Another significant point was
interaction binding. Only some complicated widgets
supported distributed protocol or HTTP based data

coupling. This meat if we input data into these types
of widgets, we should implement the corresponding
interfaces on the server side, otherwise, they could
not receive data. Some requirement analyzers sug-
gested that an additional meta-modeling GUI editor
should be extended for them because the current
GUI tool was too complicated. This meta-modeling
tool should only aim at skeleton modeling that could
be used to create better design interfaces. Finally,
some more visual widgets should be included in the
framework. This could be achieved by a way to open
sourcing the widget pool to other developers. A fur-

485Information Technology and Control 2023/2/52

ther extension could make this tool suitable for more
advanced analysis and control tasks.
Next, we are going to conduct more studies in more
scenarios to identify different requirements of users
with respect to their special tasks. By doing this, we
want to improve the functionality and usability of
Mod2Panel. When we get further findings, we will en-
hance our modeling language, for example, converting
from XML to JSON for better abstraction, or support-
ing more open source widget libraries. In addition, in
order to use the saved models as templates to reduce
the need for time-consuming and manual collection,
in the future we will create a rule-based or machine
learning-based mechanism to capture users’ behav-
iors and patterns to recommend models for particu-
lar users. Users can quickly edit these recommended
models to generate their own versions.

6. Conclusion
This paper proposed Mod2Panel, a framework for
model-driven automated generation of interactive
panels, which can capture the theoretical and practi-

cal knowledge of users as well as their design intent.
Using this framework, users can rapidly model, proto-
type and produce interactive panels for the purposes
of control or analysis. Mod2Panel contains three fun-
damental stages. First, the modeling language is de-
signed to help users in summarizing their design in-
tent and converting it into an understandable format
that can be backed up and version controlled. Second,
an automatic visualization composition mechanism
is provided to generate operational panels. Users can
benefit from prototyping and validating their designs.
Finally, a GUI-assisted tool aids users iteratively en-
hancing and improving their designs. Mod2Panel is
evaluated in a variety of user studies. The result of the
evaluations shows that Mod2Panel can abstract and
visually show the designs in real-world scenarios.

Acknowledgement
This research has been supported by National Nature
Science Foundation under Grant 61903348. We es-
pecially thank all the participants of the user studies
both in Germany and China for their generosity and
creative work.

References
1. Aksu Ü., del-Río-Ortega A., Resinas M., Reijers H.An

Approach for the Automated Generation of Engaging
Dashboards. Lecture Notes in Computer Science on the
Move to Meaningful Internet Systems, 2019, 363-384.
https://doi.org/10.1007/978-3-030-33246-4_24

2. Alexander C., Ishikawa S., Silverstein M.A Pattern Lan-
guage. Oxford University Press, 1977.

3. Lawson B. How Designers Think: The Design Pro-
cess Demystified. University Press, Cambridge, 2006.
https://doi.org/10.4324/9780080454979

4. Onder R., Bayram Z. Xsl Transformations: A Delivery
Medium for Executable Content over the Internet. Doc-
tor Dobbs Journal, 2007, 32, 48-53.

5. Biron P., Malhotra A. Consortium WWW. XML Schema
Part 2: Datatypes. W3C Recommendation, 2001.

6. Bostock M., Ogievetsky V., Heer J. D3: Data-Driven Doc-
uments. IEEE Transactions on Visualization and Com-
puter Graphics, 2011, 17(12), 2301-2309. https://doi.
org/10.1109/TVCG.2011.185

7. Bäuerle A., Cabrera A., Hohman F., Maher M. Sym-
phony: Composing Interactive Interfaces for Machine
Learning. In the 2022 CHI Conference on Human

Factors in Computing Systems, 2022, 1-14. https://doi.
org/10.1145/3491102.3502102

8. Chen C., Su T., Meng G., Meng G. Xing Z. From UI Design
Image to GUI Skeleton: A Neural Machine Translator to
Bootstrap Mobile GUI implementation. In the 2018 In-
ternational Conference on Software Engineering, 2018,
665-676. https://doi.org/10.1145/3180155.3180240

9. Deng J., Kemp E., Todd E. Managing UI Pattern Collec-
tions. In the 2005 International Conference on Com-
puter-human Interaction: Making CHI Natural, 2005,
31-38. https://doi.org/10.1145/1073943.1073951

10. Engel J., Märtin C. Pamgis: A Framework for Pattern-Based
Modeling and Generation of Interactive Systems. In the
2019 Human-Computer Interaction Conference, 2019,
826-835. https://doi.org/10.1007/978-3-642-02574-7_92

11. Gamma E., Helm R., Johnson R., Vlissides J. Design Pat-
terns: Elements of Reusable Object-Oriented Software.
MA: Addison-Wesley, 1995.

12. Goel V., Pirolli P. The Structure of Design Problem
Spaces. Cognitive Science, 1992, 16(3), 395-429. https://
doi.org/10.1016/0364-0213(92)90038-V

13. Group OMG. Model Driven Architecture, MDA Guide,
2013.

Information Technology and Control 2023/2/52486

14. Guerrero Garcia J., Vanderdonckt J., Calleros J., Winckler
M. Towards A Library of Workflow User Interface Pat-
terns. In the 2008 International Conference on Interac-
tive Systems Design, Specification, and Verification, 2008,
96-101. https://doi.org/10.1007/978-3-540-70569-7_9

15. Hovsepyan A., Baelen S., Vanhooff B., Joosen W. Key Re-
search Challenges for Successfully Applying MDD With-
in Real-Time Embedded Software Development. In the
2006 International Conference on Embedded Computer
Systems: Architectures, Modeling, and Simulation, 2006,
49-58. https://doi.org/10.1007/11796435_7

16. Ide N., Bonhomme P., Romary L. XCES: An XML based
Encoding Standard for Linguistic Corpora. In the 2000
Annual Conference on Language Resources and Evalua-
tion, 2000.

17. Kaastra L., Fisher B. Field Experiment Methodolo-
gy for Pair Analytics. In the 2014 International Con-
ference on BELIV Beyond Time and Errors: Novel
Evaluation Methods for Visualization. https://doi.
org/10.1145/2669557.2669572

18. Kintz M. A Semantic Dashboard Description Language
for a Process-Oriented Dashboard Design Methodology.
In the 2012 International Workshop on Model-based In-
teractive Ubiquitous Systems, 2012.

19. Leroux D., Nally M., Hussey K. Rational Software Archi-
tect: A Tool for Domain-Specific Modeling. IBM Systems
Journal, 2006, 45(3), 555-568. https://doi.org/10.1147/
sj.453.0555

20. Li D., Mei H., Shen Y., Su S. ECharts: A Declarative Frame-
work for Rapid Construction of Web-Based Visualization.
Visual Informatics, 2018, 2(2). https://doi.org/10.1016/j.
visinf.2018.04.011

21. Lopes S., Silva C., Tavares A., Monteiro J. Extending Ar-
goUML for Real-Time UML. In the 2004 International
Conference on Advances in Computer Science and Tech-
nology, 2004, 431(57), 191-197.

22. Märtin C., Roski A. Structurally Supported Design of HCI
Pattern Languages. In the 2007 International Confer-
ence on Human-Computer Interaction, 2007, 1159-1167.
https://doi.org/10.1007/978-3-540-73105-4_126

23. McInerney J., Lacker B., Hansen S., Higley K. Explore,
Exploit, and Explain: Personalizing Explainable Rec-
ommendations with Bandits. In the 2018 ACM Confer-
ence on Recommender Systems, 2018, 31-39. https://doi.
org/10.1145/3240323.3240354

24. Neuendorf D. Review of Magicdraw UML, 11.5 Profes-
sional Edition. Journal of Object Technology, 2006, 5(7),
115-118. https://doi.org/10.5381/jot.2006.5.7.r1

25. Palpanas T., Chowdhary P., Mihaila G., Pinel F. Integrat-
ed Model-Driven Dashboard Development. Information
Systems Frontiers, 2007, 9(2-3), 195-208. https://doi.
org/10.1007/s10796-007-9032-9

26. Rehem Neto A., Saibel Santos C., Carvalho L. Touch
the Air: An Event-Driven Framework for Interac-
tive Environments. In the 2013 Brazilian Symposium
on Multimedia and the Web, 2013, 73-80. https://doi.
org/10.1145/2526188.2526216

27. Satyanarayan A., Russell R., Hoffswell J., Heer J. Reactive
Vega: A Streaming Dataflow Architecture for Declarative
Interactive Visualization. IEEE Transactions on Visu-
alization and Computer Graphics, 2015, 22(1), 659-668.
https://doi.org/10.1109/TVCG.2015.2467091

28. Seiger R., Niebling F., Korzetz M., Nicolai T. A Framework
for Rapid Prototyping of Multimodal Interaction Con-
cepts. CEUR Workshop Proceedings, 2015, 1380, 21-28.

29. Selic B. OMG Unified Modeling Language 2.0. OMG,
2005.

30. Shneiderman B. Bridging the Gap Between Ethics and
Practice: Guidelines for Reliable, Safe, and Trustworthy
Human-Centered AI Systems. ACM Transactions on In-
teractive Intelligent Systems, 2-020, 10(4), 1-31. https://
doi.org/10.1145/3419764

31. Tiedtke T., Krach T., Martin C. Multi-Level Patterns for
the Planes of User Experience. Theories Models and Pro-
cesses in HCI, 2005, 4.

32. Topalian Rivas G., Wassermann J., Severengiz M., Kruger
J. Automated Dashboard Generation for Machine Tools
with OPC UA Compatible Sensors. In the 2020 Interna-
tional Conference on Emerging Technologies and Facto-
ry Automation, 2020, 1009-1012. https://doi.org/10.1109/
ETFA46521.2020.9212136

33. Vlaeminck H., Vennekens J., Denecker M. A Logical
Framework for Configuration Software. In the 2009 In-
ternational ACM Conference on Principles and Practice
of Declarative Programming, 2009, p.141-148. https://doi.
org/10.1145/1599410.1599428

34. Vázquez-Ingelmo A., García-Peñalvo F., Therón R.Con-
necting Domain-Specific Features to Source Code:
Towards the Automatization of Dashboard Genera-
tion. Cluster Computing, 23(3), 1803-1816. https://doi.
org/10.1007/s10586-019-03012-1

35. Welie M., Trætteberg H. Interaction Patterns in User
Interfaces. In the 2000 Pattern Languages of Programs
Conference, 2000, 13-16.

This article is an Open Access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

