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This paper is concerned with the problem of pinning synchronization control for a class of nonlinear dis-
crete-time delayed complex cyber-physical networks under all-around attacks. To handle the all-around at-
tacks, a constrained hybrid attacks model is established, which incorporates the pattern feature of false data 
injection attacks and physical attacks. By utilizing the Lyapunov stability theory and the linear matrix in-
equality technique, a novel dynamic event-triggering pinning synchronization control scheme is developed 
to cope with the synchronization control task. Subsequently, sufficient conditions are obtained to guarantee 
that the closed-loop error dynamics are ultimately exponentially bounded. Furthermore, the design proce-
dure of the synchronization controller is presented for the considered complex cyber-physical networks sub-
ject to all-around attacks. Finally, an illustrative example is delivered to demonstrate the effectiveness of the 
proposed method.
KEYWORDS: Complex cyber-physical networks, all-around attacks, dynamic event-triggered mechanism, 
pinning control, synchronization control.
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1. Introduction
As a class typical massively interconnected complex 
systems, complex networks are composed of inter-
acting individuals or nodes, whose dynamics could 
be described by a single nonlinear vector field. For ex-
ample, biological networks, social networks, Internet 
networks, transportation networks, neural networks, 
electric power grids, etc. [3, 5, 6, 13, 25].
Complex cyber-physical networks have many char-
acteristics of a complex network, such as large node 
scale [28], the complexity of network dynamic behav-
iors [29], and continuous evolution of network topol-
ogy [23] and so on. Due to the information interaction 
process between the nodes of complex cyber-physical 
networks through cyber space has become more com-
plicated, thus complex cyber-physical networks are 
confronted with a larger risk of communications net-
work-induced issues like network delay [29] and cyber 
attacks [28]. As an emerging field, security issues due 
to cyber attacks in the complex networks has attracted 
extensive attention and achieved a series of meaning-
ful research results [10, 11, 12, 19, 34]. In general, there 
have been three cyber attacks that frequently arise in 
addressing the problem of secure control, i.e., false data 
injection (FDI) attacks [10, 12, 34], denial of service 
(DoS) attacks [19] and replay attacks [11]. From the 
perspective of security level, FDI attacks are the most 
dangerous attack, because the attackers can inject ma-
licious data to worsen or destabilize the performance 
of the target system. In [12], considering the resource 
constraints of cyber attacks, the method of local at-
tacks on sensor channels is proposed. In [10] and [34], 
sufficiently conditions have been derived for the state 
estimation issue under FDI attacks to guarantee the 
security of cyber-physical systems (CPS). However, 
the attacker needs to have complete information of the 
system in all of these cases. On the other hand, as a kind 
of adversarial disturbance, the physical attacks may 
cause the system components to operate incorrectly by 
maliciously modifying system inputs, and thus lead to 
system instability [7] and [9]. In [7], the machine learn-
ing method is utilizing to detect physical attacks on In-
ternet of Things applications. In response to the prob-
lem of multiple stochastic physical attacks, the robust 
secure controller is proposed to ensure the stability of 
the systems in [9]. The above results provide the secure 
control strategy of control systems in the malicious at-
tack environment, considering either FDI attacks or 

physical attacks. However, most of the available results 
only consider the impact of a single attack behaviour 
for the secure control of the system, and few results 
are obtained for the scene with all-around attacks (e.g., 
FDI attacks and physical attacks), which are more in 
line with control practice. Especially, it remains chal-
lenging now to address the synchronous control issue 
for discrete-time delayed complex cyber-physical net-
works with all-around attacks, and this provides us 
with motivation for shortening such a gap.
In complex networks, the synchronization of all nodes 
has been generally recognized as one of the most fasci-
nating issues of research [18, 22, 24]. On the one hand, 
because of the simultaneous transmission of signals 
between a tremendous number of nodes in complex 
cyber-physical networks and the complex coupling 
of the communication networks, it is inevitable to en-
counter the problem of time delay, which will lead to 
the damage of network performance, see, e.g., [20, 29, 
33]. On the other hand, as a result of the complicat-
ed network structure, it is always difficult to achieve 
synchronization spontaneously. So far, various con-
trol techniques have been presented to investigate the 
synchronization issue of complex networks, includ-
ing continuous control [17], and discontinuous con-
trol [16, 32]. Among them, it is impractical to control 
every network node of the complex networks since 
only partial network nodes could be directly con-
trolled according to their characteristics in practice. 
In such a situation, pinning control has been shown 
to be an efficient method of synchronizing complex 
networks. For instance, in [32], the pinning synchro-
nization of a class of complex dynamical networks is 
investigated to obtain a general criterion for ensuring 
network synchronization, and in [16], the pinning 
control synchronization problem with and nonlin-
ear coupling function is discussed for the complex 
network with symmetric coupling matrix. Recently, 
a pinning synchronization controller is proposed for 
ensuring the complex switching networks subject to 
nonzero control inputs to be stability in [27]. In [31], 
a pinning synchronization control method is present-
ed to guarantee the synchronization control perfor-
mance of the nonlinear multi-agent systems. In [21], 
the pinning synchronization control problem is dis-
cussed for the adaptive trajectory tracking of complex 
dynamical networks. 
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Due to the simultaneous transmission of signals be-
tween a tremendous number of nodes, the limited 
communication resources is one of the major prob-
lems that restrict the application of complex cy-
ber-physical networks. It is worth noting that, most 
of the existing results on control of complex networks 
investigate are obtained by the time-triggered scheme 
for simplicity of analysis and design [1, 8]. However, 
under the time-triggered control strategy, the simul-
taneous transmission of signals between a tremen-
dous number of network nodes will inevitably cause 
a waste of communication resources. To address this 
problem, researchers have proposed a variety of event 
triggering mechanisms to limit the waste of commu-
nication resources, including static event-triggered 
strategy [30], dynamic event-triggered strategy [26], 
and adaptive event-triggered strategy [14]. Among 
these event-based control techniques, a distributed 
security control technique based on a static event 
triggering scheme is proposed to handle second-or-
der connected vehicle systems subject to DoS at-
tacks and FDI attacks in [30]. By using the dynamic 
event-triggered strategy, the dynamic event-triggered 
state estimation problem is investigated for a class 
of discrete-time stochastic neural networks [26]. In 
[14], the quantized control problem of a class of neu-
ral networks subject to DoS attacks, FDI attacks and 
replay attacks is discussed by employing the adaptive 
event-triggered scheme. By now, most of the existing 
results focus on the synchronization control problem 
for the complex networks under the cyber attacks. 
In practice, however, the complex networks may be 
subject to both cyber attacks and physical attacks si-
multaneously. As a result, it is necessary to find a syn-
chronization control technique that can defend cyber 
attacks and physical attacks, and decrease the utiliza-
tion of communication resources, which constitutes 
second motivation of our work.
Motivated by the above-mentioned discussions, this 
paper is concerned with the dynamic event-triggering 
pinning synchronization control issue for complex 
cyber-physical networks under all-around attacks. 
For underlying issues, we have to face the following 
technical challenges: 1) how to model the all-around 
attacks arising from the combination of FDI attacks 
and physical attacks? 2) how to handle the synchro-
nization control problem for the considered com-
plex cyber-physical networks subject to all-around 

attacks? 3) how to determine the parameter of the 
synchronization controller such that the closed-loop 
synchronization error dynamics is ultimately expo-
nentially bounded? Therefore, the paper aims to pro-
vide satisfactory answers to the three technical chal-
lenges mentioned above, and the following are the 
primary contributions of this paper:
1 For the first time, the system model is established 

for the discrete-time delayed complex cyber-phys-
ical networks subject to all-around attacks. 

2 The pinning synchronization control strategy 
based on dynamic event-triggered communication 
is employed to deal with the time delay and the all-
around attacks.

3 The design procedure of the synchronization con-
troller is provided to ensure the ultimately expo-
nentially bounded of the closed-loop synchroniza-
tion error dynamics.

The rest of this paper is organized as follows. Sec-
tion II is the problem description and preliminaries. 
In Section III, the design procedure of the synchro-
nization controller is proposed for the discrete-time 

Table 1
Notations

Notations Expression

ℝn N-dimensional Euclidean space

ℝn × n The n × n - real matrices

ℝ+ Natural number

h : ℝn × ℝ+ →ℝn The nonlinear vector-valued function

RT The transpose of the matrix 

P > 0 Matrix P is positive definite

P ≥ 0 The positive semidefinite

λmin(P) The smallest eigenvalues of Matrix P

diag{R} The diagonal matrix

||x||2 The 2-norm

⊗ The Krorecker product

* Symmetric entry

I / 0 Identity matrix/zero matrix

IN The n × n  identity matrix

Δ The differential operator
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delayed complex cyber-physical networks with the 
effects of all-around attacks. An illustrative example 
is provided in Section IV to demonstrate the effec-
tiveness of the proposed results. Finally, Section V 
concludes the paper and discusses future research 
directions.
The notations used in this paper are standard and ex-
pressed as Table 1.

2. Problem Formulation and 
Preliminaries
Considering the following discrete-time delayed com-
plex cyber-physical networks consisting of N coupled 
nodes subject to FDI attacks [2] and physical attacks:
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  The n n× -real matrices 
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: n nh +× →    
The nonlinear vector-valued 
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TR  The transpose of the matrix  

0P >  Matrix P  is positive definite 
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( )min Pλ  The smallest eigenvalues of 
Matrix P  

{ }diag R  The diagonal matrix 
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/ 0I  Identity matrix/zero matrix 
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∆  The differential operator 
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( ) ( ) ( )( )1

N
ij j ij
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    (1) 
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( ) n
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iu k ∈ , and ( ) n
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state vector, the control input, and the initial 
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: n ng +× →    are nonlinear functions, 
respectively. : n nh +× →    is physical attack 
signal injected by the anomalies. n nA ×∈ is known 
constant matrices. kτ is the time-varying delay 
satisfying m k Mτ τ τ≤ ≤ , where mτ  and Mτ  are 
known non-negative integers. n n×Γ∈ denote the 
inner-coupling matrix, and ( )ij N NL l ×=   is a matrix 
representing the outer-coupling configuration with 

0( )ijl i j≥ ≠  and 
1,

N
ij ijj j i

l l
= ≠

= −∑  . ( )( ) n
im x k ∈  is 

the vector of FDI attacks. The Bernoulli 
variable ( ) { }0,1kπ ∈  with satisfy ( ){ }E kπ π=  and 

( ){ } 2E kπ π π− = . ( ) 1kπ =  indicates that FDI 
attacks have contaminated the measured data with 
false data, and ( ) 0kπ =  indicates that FDI attacks 
have failed to affect the transmitted data. 
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Figure 1 Illustration of complex cyber-physical 

networks under all-around attacks 
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where 1 f , 2 f , 1g , 2g , 1h  and 

2
n n

h
×∈  are known constant matrices. 

Assumption 2: For the constant matrices 
n nC ×∈  and n nU ×∈ , FDI attacks behaviour 
( )( )im x k  and physical attacks behaviour 
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( )( ) ( )
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( )( ) ( )
22i ih x k Cx k≤ , 

which represent the upper bound of FDI 
attacks and physical attacks. C and U  are 
given matrices with appropriate dimensions. 
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around attacks model is established following 
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Bernoulli variable. ( )( )h s k  denotes the 
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physical attack signal injected by the 
anomalies. 

Define the initial condition error and the 
synchronization error as follows: 

, 

  

    (1) 

for k +∈  and { }1,2,...,i N∈  , where 
( ) n

ix k ∈ , ( ) m
iu k ∈ , and ( ) n

iφ θ ∈  are the 
state vector, the control input, and the initial 
condition, respectively. : n nf +× →   and 

: n ng +× →    are nonlinear functions, 
respectively. : n nh +× →    is physical attack 
signal injected by the anomalies. n nA ×∈ is known 
constant matrices. kτ is the time-varying delay 
satisfying m k Mτ τ τ≤ ≤ , where mτ  and Mτ  are 
known non-negative integers. n n×Γ∈ denote the 
inner-coupling matrix, and ( )ij N NL l ×=   is a matrix 
representing the outer-coupling configuration with 

0( )ijl i j≥ ≠  and 
1,

N
ij ijj j i

l l
= ≠

= −∑  . ( )( ) n
im x k ∈  is 

the vector of FDI attacks. The Bernoulli 
variable ( ) { }0,1kπ ∈  with satisfy ( ){ }E kπ π=  and 

( ){ } 2E kπ π π− = . ( ) 1kπ =  indicates that FDI 
attacks have contaminated the measured data with 
false data, and ( ) 0kπ =  indicates that FDI attacks 
have failed to affect the transmitted data. 

1

0

2 3

4

Wireless
communication

Wireless
communication

Physical 
attack

Physical 
attack

Physical 
attack

Physical 
attack

Physical 
attack

Isolated 
nodes

Nodes 2

Nodes 1

Nodes 3

Nodes 4
Cyber 
attack

Cyber 
attack

Cyber 
attack

Cyber 
attack

 
Figure 1 Illustration of complex cyber-physical 

networks under all-around attacks 

Before proceeding further, we give the following 
Assumptions: 

Assumption 1. For any ( )1
nv k ∈  and ( )2

nv k ∈ , 
the nonlinear functions : n nf +× →   , 

: n ng +× →   , and : n nh +× →    satisfy the 
conditions as follows: 

( )( ) ( )( ) ( ) ( )( )
( )( ) ( )( ) ( ) ( )( )

( )( ) ( )( ) ( ) ( )( )
( )( ) ( )( ) ( ) ( )( )

( )( ) ( )( ) ( ) ( )( )
( )( ) ( )( ) ( ) ( )( )

1 2 1 1 2

1 2 2 1 2

1 2 1 1 2

1 2 2 1 2

1 2 1 1 2

1 2 2 1 2

0

0

0

T

f

f

T

g

g

T

h

h

f v k f v k v k v k

f v k f v k v k v k

g v k g v k v k v k

g v k g v k v k v k

h v k h v k v k v k

h v k h v k v k v k

 − − − 
  × − − − ≤ 

 − − − 


 × − − − ≤  
 − − − 
  × − − − ≤ 













, 

where 1 f , 2 f , 1g , 2g , 1h  and 

2
n n

h
×∈  are known constant matrices. 

Assumption 2: For the constant matrices 
n nC ×∈  and n nU ×∈ , FDI attacks behaviour 
( )( )im x k  and physical attacks behaviour 

( )( )ih x k  satisfy the following conditions: 

( )( ) ( )
22i im x k Ux k≤ , 

( )( ) ( )
22i ih x k Cx k≤ , 

which represent the upper bound of FDI 
attacks and physical attacks. C and U  are 
given matrices with appropriate dimensions. 

Remark 1. Based on above analysis, an all-
around attacks model is established following 
the above FDI attacks and physical attack 
strategies for the discrete-time delayed 
complex cyber-physical networks. It is 
assumed that the FDI attacks and physical 
attacks have limited resources by Assumption 
2.  

In this paper, the following form of isolated 
node is considered: 

( ) ( ) ( )( ) ( )( )1 ks k As k f s k g s k τ+ = + + −  

( ) ( )( ) ( )( )k m s k h s kπ+ +  

( ) ( ) [ ], ,0Ms θ φ θ θ τ= ∈ − ,          
(3) 

where ( ) ns k ∈  and ( ) nφ θ ∈  are the state 
vector and initial condition of isolated nodes, 
respectively. ( )( ) nm s k ∈  indicates the 
vector of FDI attacks. ( ) { }0,1kπ ∈  is the 

Bernoulli variable. ( )( )h s k  denotes the 
physical attack signal injected by the 
anomalies. 

Define the initial condition error and the 
synchronization error as follows: 

, 

  

    (1) 

for k +∈  and { }1,2,...,i N∈  , where 
( ) n

ix k ∈ , ( ) m
iu k ∈ , and ( ) n

iφ θ ∈  are the 
state vector, the control input, and the initial 
condition, respectively. : n nf +× →   and 

: n ng +× →    are nonlinear functions, 
respectively. : n nh +× →    is physical attack 
signal injected by the anomalies. n nA ×∈ is known 
constant matrices. kτ is the time-varying delay 
satisfying m k Mτ τ τ≤ ≤ , where mτ  and Mτ  are 
known non-negative integers. n n×Γ∈ denote the 
inner-coupling matrix, and ( )ij N NL l ×=   is a matrix 
representing the outer-coupling configuration with 

0( )ijl i j≥ ≠  and 
1,

N
ij ijj j i

l l
= ≠

= −∑  . ( )( ) n
im x k ∈  is 

the vector of FDI attacks. The Bernoulli 
variable ( ) { }0,1kπ ∈  with satisfy ( ){ }E kπ π=  and 

( ){ } 2E kπ π π− = . ( ) 1kπ =  indicates that FDI 
attacks have contaminated the measured data with 
false data, and ( ) 0kπ =  indicates that FDI attacks 
have failed to affect the transmitted data. 

1

0

2 3

4

Wireless
communication

Wireless
communication

Physical 
attack

Physical 
attack

Physical 
attack

Physical 
attack

Physical 
attack

Isolated 
nodes

Nodes 2

Nodes 1

Nodes 3

Nodes 4
Cyber 
attack

Cyber 
attack

Cyber 
attack

Cyber 
attack

 
Figure 1 Illustration of complex cyber-physical 

networks under all-around attacks 

Before proceeding further, we give the following 
Assumptions: 

Assumption 1. For any ( )1
nv k ∈  and ( )2

nv k ∈ , 
the nonlinear functions : n nf +× →   , 

: n ng +× →   , and : n nh +× →    satisfy the 
conditions as follows: 

( )( ) ( )( ) ( ) ( )( )
( )( ) ( )( ) ( ) ( )( )

( )( ) ( )( ) ( ) ( )( )
( )( ) ( )( ) ( ) ( )( )

( )( ) ( )( ) ( ) ( )( )
( )( ) ( )( ) ( ) ( )( )

1 2 1 1 2

1 2 2 1 2

1 2 1 1 2

1 2 2 1 2

1 2 1 1 2

1 2 2 1 2

0

0

0

T

f

f

T

g

g

T

h

h

f v k f v k v k v k

f v k f v k v k v k

g v k g v k v k v k

g v k g v k v k v k

h v k h v k v k v k

h v k h v k v k v k

 − − − 
  × − − − ≤ 

 − − − 


 × − − − ≤  
 − − − 
  × − − − ≤ 













, 

where 1 f , 2 f , 1g , 2g , 1h  and 

2
n n

h
×∈  are known constant matrices. 

Assumption 2: For the constant matrices 
n nC ×∈  and n nU ×∈ , FDI attacks behaviour 
( )( )im x k  and physical attacks behaviour 

( )( )ih x k  satisfy the following conditions: 

( )( ) ( )
22i im x k Ux k≤ , 

( )( ) ( )
22i ih x k Cx k≤ , 

which represent the upper bound of FDI 
attacks and physical attacks. C and U  are 
given matrices with appropriate dimensions. 

Remark 1. Based on above analysis, an all-
around attacks model is established following 
the above FDI attacks and physical attack 
strategies for the discrete-time delayed 
complex cyber-physical networks. It is 
assumed that the FDI attacks and physical 
attacks have limited resources by Assumption 
2.  

In this paper, the following form of isolated 
node is considered: 

( ) ( ) ( )( ) ( )( )1 ks k As k f s k g s k τ+ = + + −  

( ) ( )( ) ( )( )k m s k h s kπ+ +  

( ) ( ) [ ], ,0Ms θ φ θ θ τ= ∈ − ,          
(3) 

where ( ) ns k ∈  and ( ) nφ θ ∈  are the state 
vector and initial condition of isolated nodes, 
respectively. ( )( ) nm s k ∈  indicates the 
vector of FDI attacks. ( ) { }0,1kπ ∈  is the 

Bernoulli variable. ( )( )h s k  denotes the 
physical attack signal injected by the 
anomalies. 

Define the initial condition error and the 
synchronization error as follows: 

, 

  

    (1) 

for k +∈  and { }1,2,...,i N∈  , where 
( ) n

ix k ∈ , ( ) m
iu k ∈ , and ( ) n

iφ θ ∈  are the 
state vector, the control input, and the initial 
condition, respectively. : n nf +× →   and 

: n ng +× →    are nonlinear functions, 
respectively. : n nh +× →    is physical attack 
signal injected by the anomalies. n nA ×∈ is known 
constant matrices. kτ is the time-varying delay 
satisfying m k Mτ τ τ≤ ≤ , where mτ  and Mτ  are 
known non-negative integers. n n×Γ∈ denote the 
inner-coupling matrix, and ( )ij N NL l ×=   is a matrix 
representing the outer-coupling configuration with 

0( )ijl i j≥ ≠  and 
1,

N
ij ijj j i

l l
= ≠

= −∑  . ( )( ) n
im x k ∈  is 

the vector of FDI attacks. The Bernoulli 
variable ( ) { }0,1kπ ∈  with satisfy ( ){ }E kπ π=  and 

( ){ } 2E kπ π π− = . ( ) 1kπ =  indicates that FDI 
attacks have contaminated the measured data with 
false data, and ( ) 0kπ =  indicates that FDI attacks 
have failed to affect the transmitted data. 

1

0

2 3

4

Wireless
communication

Wireless
communication

Physical 
attack

Physical 
attack

Physical 
attack

Physical 
attack

Physical 
attack

Isolated 
nodes

Nodes 2

Nodes 1

Nodes 3

Nodes 4
Cyber 
attack

Cyber 
attack

Cyber 
attack

Cyber 
attack

 
Figure 1 Illustration of complex cyber-physical 

networks under all-around attacks 

Before proceeding further, we give the following 
Assumptions: 

Assumption 1. For any ( )1
nv k ∈  and ( )2

nv k ∈ , 
the nonlinear functions : n nf +× →   , 

: n ng +× →   , and : n nh +× →    satisfy the 
conditions as follows: 

( )( ) ( )( ) ( ) ( )( )
( )( ) ( )( ) ( ) ( )( )

( )( ) ( )( ) ( ) ( )( )
( )( ) ( )( ) ( ) ( )( )

( )( ) ( )( ) ( ) ( )( )
( )( ) ( )( ) ( ) ( )( )

1 2 1 1 2

1 2 2 1 2

1 2 1 1 2

1 2 2 1 2

1 2 1 1 2

1 2 2 1 2

0

0

0

T

f

f

T

g

g

T

h

h

f v k f v k v k v k

f v k f v k v k v k

g v k g v k v k v k

g v k g v k v k v k

h v k h v k v k v k

h v k h v k v k v k

 − − − 
  × − − − ≤ 

 − − − 


 × − − − ≤  
 − − − 
  × − − − ≤ 













, 

where 1 f , 2 f , 1g , 2g , 1h  and 

2
n n

h
×∈  are known constant matrices. 

Assumption 2: For the constant matrices 
n nC ×∈  and n nU ×∈ , FDI attacks behaviour 
( )( )im x k  and physical attacks behaviour 

( )( )ih x k  satisfy the following conditions: 

( )( ) ( )
22i im x k Ux k≤ , 

( )( ) ( )
22i ih x k Cx k≤ , 

which represent the upper bound of FDI 
attacks and physical attacks. C and U  are 
given matrices with appropriate dimensions. 

Remark 1. Based on above analysis, an all-
around attacks model is established following 
the above FDI attacks and physical attack 
strategies for the discrete-time delayed 
complex cyber-physical networks. It is 
assumed that the FDI attacks and physical 
attacks have limited resources by Assumption 
2.  

In this paper, the following form of isolated 
node is considered: 

( ) ( ) ( )( ) ( )( )1 ks k As k f s k g s k τ+ = + + −  

( ) ( )( ) ( )( )k m s k h s kπ+ +  

( ) ( ) [ ], ,0Ms θ φ θ θ τ= ∈ − ,          
(3) 
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around attacks model is established following 
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2.  

In this paper, the following form of isolated 
node is considered: 

( ) ( ) ( )( ) ( )( )1 ks k As k f s k g s k τ+ = + + −  

( ) ( )( ) ( )( )k m s k h s kπ+ +  

( ) ( ) [ ], ,0Ms θ φ θ θ τ= ∈ − ,          
(3) 

where ( ) ns k ∈  and ( ) nφ θ ∈  are the state 
vector and initial condition of isolated nodes, 
respectively. ( )( ) nm s k ∈  indicates the 
vector of FDI attacks. ( ) { }0,1kπ ∈  is the 

Bernoulli variable. ( )( )h s k  denotes the 
physical attack signal injected by the 
anomalies. 

Define the initial condition error and the 
synchronization error as follows: 

 and 

  

    (1) 

for k +∈  and { }1,2,...,i N∈  , where 
( ) n

ix k ∈ , ( ) m
iu k ∈ , and ( ) n

iφ θ ∈  are the 
state vector, the control input, and the initial 
condition, respectively. : n nf +× →   and 

: n ng +× →    are nonlinear functions, 
respectively. : n nh +× →    is physical attack 
signal injected by the anomalies. n nA ×∈ is known 
constant matrices. kτ is the time-varying delay 
satisfying m k Mτ τ τ≤ ≤ , where mτ  and Mτ  are 
known non-negative integers. n n×Γ∈ denote the 
inner-coupling matrix, and ( )ij N NL l ×=   is a matrix 
representing the outer-coupling configuration with 

0( )ijl i j≥ ≠  and 
1,

N
ij ijj j i

l l
= ≠

= −∑  . ( )( ) n
im x k ∈  is 

the vector of FDI attacks. The Bernoulli 
variable ( ) { }0,1kπ ∈  with satisfy ( ){ }E kπ π=  and 

( ){ } 2E kπ π π− = . ( ) 1kπ =  indicates that FDI 
attacks have contaminated the measured data with 
false data, and ( ) 0kπ =  indicates that FDI attacks 
have failed to affect the transmitted data. 

1

0

2 3

4

Wireless
communication

Wireless
communication

Physical 
attack

Physical 
attack

Physical 
attack

Physical 
attack

Physical 
attack

Isolated 
nodes

Nodes 2

Nodes 1

Nodes 3

Nodes 4
Cyber 
attack

Cyber 
attack

Cyber 
attack

Cyber 
attack

 
Figure 1 Illustration of complex cyber-physical 

networks under all-around attacks 

Before proceeding further, we give the following 
Assumptions: 

Assumption 1. For any ( )1
nv k ∈  and ( )2

nv k ∈ , 
the nonlinear functions : n nf +× →   , 

: n ng +× →   , and : n nh +× →    satisfy the 
conditions as follows: 

( )( ) ( )( ) ( ) ( )( )
( )( ) ( )( ) ( ) ( )( )

( )( ) ( )( ) ( ) ( )( )
( )( ) ( )( ) ( ) ( )( )

( )( ) ( )( ) ( ) ( )( )
( )( ) ( )( ) ( ) ( )( )

1 2 1 1 2

1 2 2 1 2

1 2 1 1 2

1 2 2 1 2

1 2 1 1 2

1 2 2 1 2

0

0

0

T

f

f

T

g

g

T

h

h

f v k f v k v k v k

f v k f v k v k v k

g v k g v k v k v k

g v k g v k v k v k

h v k h v k v k v k

h v k h v k v k v k

 − − − 
  × − − − ≤ 

 − − − 


 × − − − ≤  
 − − − 
  × − − − ≤ 













, 

(2) 

where 1 f , 2 f , 1g , 2g , 1h  and 

2
n n

h
×∈  are known constant matrices. 

Assumption 2: For the constant matrices 
n nC ×∈  and n nU ×∈ , FDI attacks behaviour 
( )( )im x k  and physical attacks behaviour 

( )( )ih x k  satisfy the following conditions: 

( )( ) ( )
22i im x k Ux k≤ , 

( )( ) ( )
22i ih x k Cx k≤ , 

which represent the upper bound of FDI 
attacks and physical attacks. C and U  are 
given matrices with appropriate dimensions. 

Remark 1. Based on above analysis, an all-
around attacks model is established following 
the above FDI attacks and physical attack 
strategies for the discrete-time delayed 
complex cyber-physical networks. It is 
assumed that the FDI attacks and physical 
attacks have limited resources by Assumption 
2.  

In this paper, the following form of isolated 
node is considered: 

( ) ( ) ( )( ) ( )( )1 ks k As k f s k g s k τ+ = + + −  

( ) ( )( ) ( )( )k m s k h s kπ+ +  

( ) ( ) [ ], ,0Ms θ φ θ θ τ= ∈ − ,          
(3) 

where ( ) ns k ∈  and ( ) nφ θ ∈  are the state 
vector and initial condition of isolated nodes, 
respectively. ( )( ) nm s k ∈  indicates the 
vector of FDI attacks. ( ) { }0,1kπ ∈  is the 

Bernoulli variable. ( )( )h s k  denotes the 
physical attack signal injected by the 
anomalies. 

Define the initial condition error and the 
synchronization error as follows: 

 are the state vector 
and initial condition of isolated nodes, respective-
ly. 

  

    (1) 

for k +∈  and { }1,2,...,i N∈  , where 
( ) n

ix k ∈ , ( ) m
iu k ∈ , and ( ) n

iφ θ ∈  are the 
state vector, the control input, and the initial 
condition, respectively. : n nf +× →   and 

: n ng +× →    are nonlinear functions, 
respectively. : n nh +× →    is physical attack 
signal injected by the anomalies. n nA ×∈ is known 
constant matrices. kτ is the time-varying delay 
satisfying m k Mτ τ τ≤ ≤ , where mτ  and Mτ  are 
known non-negative integers. n n×Γ∈ denote the 
inner-coupling matrix, and ( )ij N NL l ×=   is a matrix 
representing the outer-coupling configuration with 

0( )ijl i j≥ ≠  and 
1,

N
ij ijj j i

l l
= ≠

= −∑  . ( )( ) n
im x k ∈  is 

the vector of FDI attacks. The Bernoulli 
variable ( ) { }0,1kπ ∈  with satisfy ( ){ }E kπ π=  and 

( ){ } 2E kπ π π− = . ( ) 1kπ =  indicates that FDI 
attacks have contaminated the measured data with 
false data, and ( ) 0kπ =  indicates that FDI attacks 
have failed to affect the transmitted data. 

1

0

2 3

4

Wireless
communication

Wireless
communication

Physical 
attack

Physical 
attack

Physical 
attack

Physical 
attack

Physical 
attack

Isolated 
nodes

Nodes 2

Nodes 1

Nodes 3

Nodes 4
Cyber 
attack

Cyber 
attack

Cyber 
attack

Cyber 
attack

 
Figure 1 Illustration of complex cyber-physical 

networks under all-around attacks 

Before proceeding further, we give the following 
Assumptions: 

Assumption 1. For any ( )1
nv k ∈  and ( )2

nv k ∈ , 
the nonlinear functions : n nf +× →   , 

: n ng +× →   , and : n nh +× →    satisfy the 
conditions as follows: 

( )( ) ( )( ) ( ) ( )( )
( )( ) ( )( ) ( ) ( )( )

( )( ) ( )( ) ( ) ( )( )
( )( ) ( )( ) ( ) ( )( )

( )( ) ( )( ) ( ) ( )( )
( )( ) ( )( ) ( ) ( )( )

1 2 1 1 2

1 2 2 1 2

1 2 1 1 2

1 2 2 1 2

1 2 1 1 2

1 2 2 1 2

0

0

0

T

f

f

T

g

g

T

h

h

f v k f v k v k v k

f v k f v k v k v k

g v k g v k v k v k

g v k g v k v k v k

h v k h v k v k v k

h v k h v k v k v k

 − − − 
  × − − − ≤ 

 − − − 


 × − − − ≤  
 − − − 
  × − − − ≤ 













, 

(2) 

where 1 f , 2 f , 1g , 2g , 1h  and 

2
n n

h
×∈  are known constant matrices. 

Assumption 2: For the constant matrices 
n nC ×∈  and n nU ×∈ , FDI attacks behaviour 
( )( )im x k  and physical attacks behaviour 

( )( )ih x k  satisfy the following conditions: 

( )( ) ( )
22i im x k Ux k≤ , 

( )( ) ( )
22i ih x k Cx k≤ , 

which represent the upper bound of FDI 
attacks and physical attacks. C and U  are 
given matrices with appropriate dimensions. 

Remark 1. Based on above analysis, an all-
around attacks model is established following 
the above FDI attacks and physical attack 
strategies for the discrete-time delayed 
complex cyber-physical networks. It is 
assumed that the FDI attacks and physical 
attacks have limited resources by Assumption 
2.  

In this paper, the following form of isolated 
node is considered: 

( ) ( ) ( )( ) ( )( )1 ks k As k f s k g s k τ+ = + + −  

( ) ( )( ) ( )( )k m s k h s kπ+ +  

( ) ( ) [ ], ,0Ms θ φ θ θ τ= ∈ − ,          
(3) 

where ( ) ns k ∈  and ( ) nφ θ ∈  are the state 
vector and initial condition of isolated nodes, 
respectively. ( )( ) nm s k ∈  indicates the 
vector of FDI attacks. ( ) { }0,1kπ ∈  is the 

Bernoulli variable. ( )( )h s k  denotes the 
physical attack signal injected by the 
anomalies. 

Define the initial condition error and the 
synchronization error as follows: 

 indicates the vector of FDI attacks. 
( ) { }0,1kπ ∈  is the Bernoulli variable. ( )( )h s k  de-

notes the physical attack signal injected by the anom-
alies.
Define the initial condition error and the synchroni-
zation error as follows:

( ) ( ) ( )i iφ θ φ θ φ θ= − , ( ) ( ) ( )i ie k x k s k= − .
Then, the following matrices and notations are intro-
duced:

 
 

 

( ) ( ) ( )i iφ θ φ θ φ θ= − , ( ) ( ) ( )i ie k x k s k= − . 

Then, the following matrices and notations are 
introduced: 

( )( ) ( )( ) ( )( ) ( )1i i ff e k f x k f s k e k= − −  , 

( )( ) ( )( ) ( )( ) ( )1i k i k k g kg e k g x k g s k e kτ τ τ τ− = − − − − −  , 

( )( ) ( )( ) ( )( )i ih e k h x k h s k= − , 

( )( ) ( )( ) ( )( )i im e k m x k m s k= − , 

NA I A= ⊗ , L L= ⊗Γ , 2 2h N hI= ⊗  , 1 1f N fI= ⊗  , 

2 2f N fI= ⊗  , 1 1g N gI= ⊗  , 2 2g N gI= ⊗  , 

1 1h N hI= ⊗  , ( ) ( ) ( )1

TT T
Ne k e k e k = ⋅⋅ ⋅  , 

( ) ( ) ( )1

TT T
Nφ θ φ θ φ θ = ⋅⋅ ⋅ 

   , 

( )( ) ( )( ) ( )( )1

TT T
Nf e k f e k f e k = ⋅⋅ ⋅ 

   , 

( )( ) ( )( ) ( )( )1

TT T
k k N kg e k g e k g e kτ τ τ − = − ⋅⋅⋅ −    , 

( )( ) ( )( ) ( )( )1

TT T
Nh e k h e k h e k = ⋅⋅ ⋅ 

   , 

( )( ) ( )( ) ( )( )1

TT T
Nm e k m e k m e k = ⋅⋅ ⋅  . 

( ) ( ) ( ) ( )( )11 fe k A L e k f e k+ = + + +     

( )( ) ( ) ( )( )kg e k k m e kτ π+ − +   

( ) ( ) ( )( )1g ku k e k h e kτ+ + − +   

( ) ( ) [ ], ,0Me θ φ θ θ τ= ∈ − ,                  (4) 

where A , L , 1 f
  and 1

n n
g

×∈   are known 
constant matrices. 

By using the Assumption 1, one has 

( )( ) ( )( ) ( ) ( )

( )( ) ( )( ) ( ) ( )

( )( ) ( ) ( )( ) ( )

2 1

2 1

1 2

0

0

0

T
f f

T
g g

T

h h

f e k f e k e k

g e k g e k e k

h e k e k h e k e k

  − − ≤ 
  − − ≤  
   − − ≤   

   

 

 

  

 

 

 

.         (5) 

In this paper, to achieve the synchronization 
control for the complex cyber-physical networks, a 
pinned synchronization controller is employed as 
follows: 
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where iK  is the synchronization control gain 
matrices, { }1,2,3,...,Pin κ= ⊆   is the set of 
nodes to be fixed by the pinned state 
feedback synchronization controller. 

Let { }ir r
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 be the real-time sequence 

triggered by the event for the i-th network 
node, which is determined iteratively 
according to the following triggering rules 
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for r +∈  and { }1,2,3,...,Pini κ∈ = ⊆  , 
where 
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According to the function of zero-order 
holder, the sampled value at moment k  is 
maintained until moment 1k + . Thus, the 
control input of the i-th node can be 
expressed as follows: 
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Based on the above analysis, substituting 
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event-based pinning controller is obtained as 
follows: 
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Substituting (10) into (4), which yields the 
closed-loop synchronization error dynamics 
as follows: 

According to the above definition, the synchroniza-
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3. Main Results 
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Proof. For Pini∀ ∈ , define the ( )V k∆  as follows: 
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Subsequently, by considering (16) and (27), 
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Proof. For Pini∀ ∈ , define the ( )V k∆  as follows: 
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Applying Schur’s Lemma for (15), that the 
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It follows from (24) and (25) that 
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which means that 
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Subsequently, by considering (16) and (27), 
one has 
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Proof. For Pini∀ ∈ , define the ( )V k∆  as follows: 
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where 0 1γ< <  is decay index. by calculations, one 
obtains 
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Subsequently, by considering (16) and (27), 
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Applying Schur’s Lemma for (15), that the 
following inequality holds 

1
11 12 12 0TP−Π +Π Π < .        (25) 

It follows from (24) and (25) that 

( ) ( )1V k V kγ δ+ − ≤ ,        (26) 

which means that 
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follows: 
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According to (17), one has 
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Note the facts (29) and (30), it is obtained that 

( ) ( )2
00e k V δ≤ + .    (31) 

According to the Definition 1, the closed-loop 
synchronization error dynamics (12) is ultimately 
exponentially bounded. The proof is thus 
completed. 

Now, we are in the position of deriving the 
synchronization control gain iK  on the basis of 
Theorem 1, which provides sufficient conditions 
for the ultimately exponentially bounded of the 
closed-loop synchronization error dynamics (12). 

Theorem 2. Let the FDI attacks probability 
0 1π< < , the positive scalar 0δ , 1iε < , 1γ < , iψ  
and 1i iεψ ≥  ( Pini∈  ) be given. If there exist the 
diagonal matrices { }1 20 , , , n n

NP daig P P P ×< = ⋅⋅⋅ ∈ , 
the real matrices { }1, , ,0, ,0 n nY daig Y Yκ

×= ⋅⋅ ⋅ ⋅ ⋅⋅ ∈ , 
the matrices 0 n nQ ×< ∈ , and the scalar 1 0µ > , 

2 0µ > , 3 0µ >  and 4 0µ >  that satisfies the 
following inequalities 
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]0 TP P Y− . 

Then, the synchronization controller that renders 
the closed-loop synchronization error dynamics 

(12) to be exponentially bounded can be 
determined by 

1 ,i i i PinK P Y i−= ∈ .        (35) 

Proof. The variable substitution method is 
employed to prove this Theorem. Let 

i i iPK Y= , and substitute it into (15), which 
yields (32). This completes the proof. 

Remark 2. In Theorem 2, the design issue of 
synchronization control is investigated for 
delayed complex cyber-physical networks 
under all-around attacks. From the Theorem 
2, it is easy to obtain that the control gain 
matrices of the proposed synchronization 
control scheme. Compared with the results of 
existing work, this paper has provided the 
first attempts to consider the synchronization 
control problem for delayed complex cyber-
physical networks under all-around attacks. 

For comparison with the results of Theorem 
2, the static event-triggering strategy is 
adopted in Corollary 1. 

Corollary 1: Let the FDI attack probability 
0 1π< < , the positive scalar 1iε < , 1γ < , iψ  
and 1i iεψ ≥  ( Pini∈  ) be given. The static 
trigger condition is shown as follows. 

( ) ( ){ }1 min , 0i i T
r r i i ik k k k k kρ ζ ζ+
+ = ∈ > − < , 
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for all Pini∈ . If there exist diagonal matrices 
{ }1 20 , , , n n

NP daig P P P ×< = ⋅⋅⋅ ∈ , the real 
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Note the facts (29) and (30), it is obtained that 
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According to the Definition 1, the closed-loop 
synchronization error dynamics (12) is ultimately 
exponentially bounded. The proof is thus 
completed. 

Now, we are in the position of deriving the 
synchronization control gain iK  on the basis of 
Theorem 1, which provides sufficient conditions 
for the ultimately exponentially bounded of the 
closed-loop synchronization error dynamics (12). 

Theorem 2. Let the FDI attacks probability 
0 1π< < , the positive scalar 0δ , 1iε < , 1γ < , iψ  
and 1i iεψ ≥  ( Pini∈  ) be given. If there exist the 
diagonal matrices { }1 20 , , , n n

NP daig P P P ×< = ⋅⋅⋅ ∈ , 
the real matrices { }1, , ,0, ,0 n nY daig Y Yκ
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(12) to be exponentially bounded can be 
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1 ,i i i PinK P Y i−= ∈ .        (35) 

Proof. The variable substitution method is 
employed to prove this Theorem. Let 

i i iPK Y= , and substitute it into (15), which 
yields (32). This completes the proof. 

Remark 2. In Theorem 2, the design issue of 
synchronization control is investigated for 
delayed complex cyber-physical networks 
under all-around attacks. From the Theorem 
2, it is easy to obtain that the control gain 
matrices of the proposed synchronization 
control scheme. Compared with the results of 
existing work, this paper has provided the 
first attempts to consider the synchronization 
control problem for delayed complex cyber-
physical networks under all-around attacks. 

For comparison with the results of Theorem 
2, the static event-triggering strategy is 
adopted in Corollary 1. 

Corollary 1: Let the FDI attack probability 
0 1π< < , the positive scalar 1iε < , 1γ < , iψ  
and 1i iεψ ≥  ( Pini∈  ) be given. The static 
trigger condition is shown as follows. 
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+ = ∈ > − < , 
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According to (17), one has
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From 0 1γ< <  and (28), it can be obtained as 
follows: 

( ) ( ) ( )2
min 00P e k Vλ γ δ≤ + .   (29) 

According to (17), one has 

1P I
γ

> .     (30) 

Note the facts (29) and (30), it is obtained that 
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According to the Definition 1, the closed-loop 
synchronization error dynamics (12) is ultimately 
exponentially bounded. The proof is thus 
completed. 

Now, we are in the position of deriving the 
synchronization control gain iK  on the basis of 
Theorem 1, which provides sufficient conditions 
for the ultimately exponentially bounded of the 
closed-loop synchronization error dynamics (12). 

Theorem 2. Let the FDI attacks probability 
0 1π< < , the positive scalar 0δ , 1iε < , 1γ < , iψ  
and 1i iεψ ≥  ( Pini∈  ) be given. If there exist the 
diagonal matrices { }1 20 , , , n n
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×= ⋅⋅ ⋅ ⋅ ⋅⋅ ∈ , 
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Then, the synchronization controller that renders 
the closed-loop synchronization error dynamics 

(12) to be exponentially bounded can be 
determined by 

1 ,i i i PinK P Y i−= ∈ .        (35) 

Proof. The variable substitution method is 
employed to prove this Theorem. Let 

i i iPK Y= , and substitute it into (15), which 
yields (32). This completes the proof. 

Remark 2. In Theorem 2, the design issue of 
synchronization control is investigated for 
delayed complex cyber-physical networks 
under all-around attacks. From the Theorem 
2, it is easy to obtain that the control gain 
matrices of the proposed synchronization 
control scheme. Compared with the results of 
existing work, this paper has provided the 
first attempts to consider the synchronization 
control problem for delayed complex cyber-
physical networks under all-around attacks. 

For comparison with the results of Theorem 
2, the static event-triggering strategy is 
adopted in Corollary 1. 

Corollary 1: Let the FDI attack probability 
0 1π< < , the positive scalar 1iε < , 1γ < , iψ  
and 1i iεψ ≥  ( Pini∈  ) be given. The static 
trigger condition is shown as follows. 
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According to the Definition 1, the closed-loop 
synchronization error dynamics (12) is ultimately 
exponentially bounded. The proof is thus 
completed. 

Now, we are in the position of deriving the 
synchronization control gain iK  on the basis of 
Theorem 1, which provides sufficient conditions 
for the ultimately exponentially bounded of the 
closed-loop synchronization error dynamics (12). 

Theorem 2. Let the FDI attacks probability 
0 1π< < , the positive scalar 0δ , 1iε < , 1γ < , iψ  
and 1i iεψ ≥  ( Pini∈  ) be given. If there exist the 
diagonal matrices { }1 20 , , , n n

NP daig P P P ×< = ⋅⋅⋅ ∈ , 
the real matrices { }1, , ,0, ,0 n nY daig Y Yκ
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(12) to be exponentially bounded can be 
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1 ,i i i PinK P Y i−= ∈ .        (35) 

Proof. The variable substitution method is 
employed to prove this Theorem. Let 

i i iPK Y= , and substitute it into (15), which 
yields (32). This completes the proof. 

Remark 2. In Theorem 2, the design issue of 
synchronization control is investigated for 
delayed complex cyber-physical networks 
under all-around attacks. From the Theorem 
2, it is easy to obtain that the control gain 
matrices of the proposed synchronization 
control scheme. Compared with the results of 
existing work, this paper has provided the 
first attempts to consider the synchronization 
control problem for delayed complex cyber-
physical networks under all-around attacks. 

For comparison with the results of Theorem 
2, the static event-triggering strategy is 
adopted in Corollary 1. 

Corollary 1: Let the FDI attack probability 
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r r i i ik k k k k kρ ζ ζ+
+ = ∈ > − < , 

(36) 

for all Pini∈ . If there exist diagonal matrices 
{ }1 20 , , , n n

NP daig P P P ×< = ⋅⋅⋅ ∈ , the real 
matrices { }1, , ,0, ,0 n nY daig Y Yκ

×= ⋅⋅ ⋅ ⋅ ⋅⋅ ∈ , the 
matrices 0 n nQ ×< ∈ , and the scalar 1 0µ > , 

2 0µ > , 3 0µ >  and 4 0µ >  that satisfies the 
following inequalities 

11 12 0
P

 Π Π
Π = < 

∗ − 

 



,        (37) 

and 

0
I I

I P
γ 

> 
 

,         (38) 

where 

11 13 15

22

33

11 44

55

4

0 0 0 0
0 0 0 0 0

0 0 0 0
0 0 0

0 0
0I

I
π

µ

Λ Λ Λ 
 ∗ Λ 
 ∗ ∗ Λ
 

Π = ∗ ∗ ∗ Λ 
 ∗ ∗ ∗ ∗ Λ
 
∗ ∗ ∗ ∗ ∗ − 

 ∗ ∗ ∗ ∗ ∗ ∗ − 



, 

(31)

According to the Definition 1, the closed-loop syn-
chronization error dynamics (12) is ultimately expo-

nentially bounded. The proof is thus completed.
Now, we are in the position of deriving the synchro-
nization control gain iK  on the basis of Theorem 1, 
which provides sufficient conditions for the ultimate-
ly exponentially bounded of the closed-loop synchro-
nization error dynamics (12).
Theorem 2. Let the FDI attacks probability 0 1π< < , 
the positive scalar 0δ , 1iε < , 1γ < , iψ  and 1i iεψ ≥   
(

  

( ) ( ) ( )2
min
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1

kP e k Vλ γ δ
γ

≤ +
−

 

( ) 00kVγ δ≤ + .   (28) 

From 0 1γ< <  and (28), it can be obtained as 
follows: 

( ) ( ) ( )2
min 00P e k Vλ γ δ≤ + .   (29) 

According to (17), one has 

1P I
γ

> .     (30) 

Note the facts (29) and (30), it is obtained that 

( ) ( )2
00e k V δ≤ + .    (31) 

According to the Definition 1, the closed-loop 
synchronization error dynamics (12) is ultimately 
exponentially bounded. The proof is thus 
completed. 

Now, we are in the position of deriving the 
synchronization control gain iK  on the basis of 
Theorem 1, which provides sufficient conditions 
for the ultimately exponentially bounded of the 
closed-loop synchronization error dynamics (12). 

Theorem 2. Let the FDI attacks probability 
0 1π< < , the positive scalar 0δ , 1iε < , 1γ < , iψ  
and 1i iεψ ≥  ( Pini∈  ) be given. If there exist the 
diagonal matrices { }1 20 , , , n n

NP daig P P P ×< = ⋅⋅⋅ ∈ , 
the real matrices { }1, , ,0, ,0 n nY daig Y Yκ

×= ⋅⋅ ⋅ ⋅ ⋅⋅ ∈ , 
the matrices 0 n nQ ×< ∈ , and the scalar 1 0µ > , 

2 0µ > , 3 0µ >  and 4 0µ >  that satisfies the 
following inequalities 

11 12 0
P

 Π Π
Π = < ∗ − 



 ,      

(32) 

01
δ δ
γ
≤

−
,      

(33) 

and 

0
I I

I P
γ 

> 
 

.                  (34) 
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      

]0 TP P Y− . 

Then, the synchronization controller that renders 
the closed-loop synchronization error dynamics 

(12) to be exponentially bounded can be 
determined by 

1 ,i i i PinK P Y i−= ∈ .        (35) 

Proof. The variable substitution method is 
employed to prove this Theorem. Let 

i i iPK Y= , and substitute it into (15), which 
yields (32). This completes the proof. 

Remark 2. In Theorem 2, the design issue of 
synchronization control is investigated for 
delayed complex cyber-physical networks 
under all-around attacks. From the Theorem 
2, it is easy to obtain that the control gain 
matrices of the proposed synchronization 
control scheme. Compared with the results of 
existing work, this paper has provided the 
first attempts to consider the synchronization 
control problem for delayed complex cyber-
physical networks under all-around attacks. 

For comparison with the results of Theorem 
2, the static event-triggering strategy is 
adopted in Corollary 1. 

Corollary 1: Let the FDI attack probability 
0 1π< < , the positive scalar 1iε < , 1γ < , iψ  
and 1i iεψ ≥  ( Pini∈  ) be given. The static 
trigger condition is shown as follows. 

( ) ( ){ }1 min , 0i i T
r r i i ik k k k k kρ ζ ζ+
+ = ∈ > − < , 

(36) 

for all Pini∈ . If there exist diagonal matrices 
{ }1 20 , , , n n

NP daig P P P ×< = ⋅⋅⋅ ∈ , the real 
matrices { }1, , ,0, ,0 n nY daig Y Yκ

×= ⋅⋅ ⋅ ⋅ ⋅⋅ ∈ , the 
matrices 0 n nQ ×< ∈ , and the scalar 1 0µ > , 

2 0µ > , 3 0µ >  and 4 0µ >  that satisfies the 
following inequalities 
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) be given. If there exist the diagonal matri-
ces 

  

( ) ( ) ( )2
min
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kP e k Vλ γ δ
γ
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( ) 00kVγ δ≤ + .   (28) 

From 0 1γ< <  and (28), it can be obtained as 
follows: 

( ) ( ) ( )2
min 00P e k Vλ γ δ≤ + .   (29) 

According to (17), one has 

1P I
γ

> .     (30) 

Note the facts (29) and (30), it is obtained that 

( ) ( )2
00e k V δ≤ + .    (31) 

According to the Definition 1, the closed-loop 
synchronization error dynamics (12) is ultimately 
exponentially bounded. The proof is thus 
completed. 

Now, we are in the position of deriving the 
synchronization control gain iK  on the basis of 
Theorem 1, which provides sufficient conditions 
for the ultimately exponentially bounded of the 
closed-loop synchronization error dynamics (12). 

Theorem 2. Let the FDI attacks probability 
0 1π< < , the positive scalar 0δ , 1iε < , 1γ < , iψ  
and 1i iεψ ≥  ( Pini∈  ) be given. If there exist the 
diagonal matrices { }1 20 , , , n n

NP daig P P P ×< = ⋅⋅⋅ ∈ , 
the real matrices { }1, , ,0, ,0 n nY daig Y Yκ

×= ⋅⋅ ⋅ ⋅ ⋅⋅ ∈ , 
the matrices 0 n nQ ×< ∈ , and the scalar 1 0µ > , 

2 0µ > , 3 0µ >  and 4 0µ >  that satisfies the 
following inequalities 
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where 

( )12 1 1
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f gP A L Y P P PΠ = + + +
      

]0 TP P Y− . 

Then, the synchronization controller that renders 
the closed-loop synchronization error dynamics 

(12) to be exponentially bounded can be 
determined by 

1 ,i i i PinK P Y i−= ∈ .        (35) 

Proof. The variable substitution method is 
employed to prove this Theorem. Let 

i i iPK Y= , and substitute it into (15), which 
yields (32). This completes the proof. 

Remark 2. In Theorem 2, the design issue of 
synchronization control is investigated for 
delayed complex cyber-physical networks 
under all-around attacks. From the Theorem 
2, it is easy to obtain that the control gain 
matrices of the proposed synchronization 
control scheme. Compared with the results of 
existing work, this paper has provided the 
first attempts to consider the synchronization 
control problem for delayed complex cyber-
physical networks under all-around attacks. 

For comparison with the results of Theorem 
2, the static event-triggering strategy is 
adopted in Corollary 1. 

Corollary 1: Let the FDI attack probability 
0 1π< < , the positive scalar 1iε < , 1γ < , iψ  
and 1i iεψ ≥  ( Pini∈  ) be given. The static 
trigger condition is shown as follows. 

( ) ( ){ }1 min , 0i i T
r r i i ik k k k k kρ ζ ζ+
+ = ∈ > − < , 

(36) 

for all Pini∈ . If there exist diagonal matrices 
{ }1 20 , , , n n

NP daig P P P ×< = ⋅⋅⋅ ∈ , the real 
matrices { }1, , ,0, ,0 n nY daig Y Yκ

×= ⋅⋅ ⋅ ⋅ ⋅⋅ ∈ , the 
matrices 0 n nQ ×< ∈ , and the scalar 1 0µ > , 

2 0µ > , 3 0µ >  and 4 0µ >  that satisfies the 
following inequalities 
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, the real matri-
ces 
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min

10
1

kP e k Vλ γ δ
γ
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( ) 00kVγ δ≤ + .   (28) 

From 0 1γ< <  and (28), it can be obtained as 
follows: 

( ) ( ) ( )2
min 00P e k Vλ γ δ≤ + .   (29) 

According to (17), one has 

1P I
γ

> .     (30) 

Note the facts (29) and (30), it is obtained that 

( ) ( )2
00e k V δ≤ + .    (31) 

According to the Definition 1, the closed-loop 
synchronization error dynamics (12) is ultimately 
exponentially bounded. The proof is thus 
completed. 

Now, we are in the position of deriving the 
synchronization control gain iK  on the basis of 
Theorem 1, which provides sufficient conditions 
for the ultimately exponentially bounded of the 
closed-loop synchronization error dynamics (12). 

Theorem 2. Let the FDI attacks probability 
0 1π< < , the positive scalar 0δ , 1iε < , 1γ < , iψ  
and 1i iεψ ≥  ( Pini∈  ) be given. If there exist the 
diagonal matrices { }1 20 , , , n n

NP daig P P P ×< = ⋅⋅⋅ ∈ , 
the real matrices { }1, , ,0, ,0 n nY daig Y Yκ

×= ⋅⋅ ⋅ ⋅ ⋅⋅ ∈ , 
the matrices 0 n nQ ×< ∈ , and the scalar 1 0µ > , 

2 0µ > , 3 0µ >  and 4 0µ >  that satisfies the 
following inequalities 
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where 
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      

]0 TP P Y− . 

Then, the synchronization controller that renders 
the closed-loop synchronization error dynamics 

(12) to be exponentially bounded can be 
determined by 

1 ,i i i PinK P Y i−= ∈ .        (35) 

Proof. The variable substitution method is 
employed to prove this Theorem. Let 

i i iPK Y= , and substitute it into (15), which 
yields (32). This completes the proof. 

Remark 2. In Theorem 2, the design issue of 
synchronization control is investigated for 
delayed complex cyber-physical networks 
under all-around attacks. From the Theorem 
2, it is easy to obtain that the control gain 
matrices of the proposed synchronization 
control scheme. Compared with the results of 
existing work, this paper has provided the 
first attempts to consider the synchronization 
control problem for delayed complex cyber-
physical networks under all-around attacks. 

For comparison with the results of Theorem 
2, the static event-triggering strategy is 
adopted in Corollary 1. 

Corollary 1: Let the FDI attack probability 
0 1π< < , the positive scalar 1iε < , 1γ < , iψ  
and 1i iεψ ≥  ( Pini∈  ) be given. The static 
trigger condition is shown as follows. 

( ) ( ){ }1 min , 0i i T
r r i i ik k k k k kρ ζ ζ+
+ = ∈ > − < , 

(36) 

for all Pini∈ . If there exist diagonal matrices 
{ }1 20 , , , n n

NP daig P P P ×< = ⋅⋅⋅ ∈ , the real 
matrices { }1, , ,0, ,0 n nY daig Y Yκ

×= ⋅⋅ ⋅ ⋅ ⋅⋅ ∈ , the 
matrices 0 n nQ ×< ∈ , and the scalar 1 0µ > , 

2 0µ > , 3 0µ >  and 4 0µ >  that satisfies the 
following inequalities 
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( ) 00kVγ δ≤ + .   (28) 

From 0 1γ< <  and (28), it can be obtained as 
follows: 

( ) ( ) ( )2
min 00P e k Vλ γ δ≤ + .   (29) 

According to (17), one has 

1P I
γ

> .     (30) 

Note the facts (29) and (30), it is obtained that 

( ) ( )2
00e k V δ≤ + .    (31) 

According to the Definition 1, the closed-loop 
synchronization error dynamics (12) is ultimately 
exponentially bounded. The proof is thus 
completed. 

Now, we are in the position of deriving the 
synchronization control gain iK  on the basis of 
Theorem 1, which provides sufficient conditions 
for the ultimately exponentially bounded of the 
closed-loop synchronization error dynamics (12). 

Theorem 2. Let the FDI attacks probability 
0 1π< < , the positive scalar 0δ , 1iε < , 1γ < , iψ  
and 1i iεψ ≥  ( Pini∈  ) be given. If there exist the 
diagonal matrices { }1 20 , , , n n

NP daig P P P ×< = ⋅⋅⋅ ∈ , 
the real matrices { }1, , ,0, ,0 n nY daig Y Yκ

×= ⋅⋅ ⋅ ⋅ ⋅⋅ ∈ , 
the matrices 0 n nQ ×< ∈ , and the scalar 1 0µ > , 

2 0µ > , 3 0µ >  and 4 0µ >  that satisfies the 
following inequalities 
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]0 TP P Y− . 

Then, the synchronization controller that renders 
the closed-loop synchronization error dynamics 

(12) to be exponentially bounded can be 
determined by 

1 ,i i i PinK P Y i−= ∈ .        (35) 

Proof. The variable substitution method is 
employed to prove this Theorem. Let 

i i iPK Y= , and substitute it into (15), which 
yields (32). This completes the proof. 

Remark 2. In Theorem 2, the design issue of 
synchronization control is investigated for 
delayed complex cyber-physical networks 
under all-around attacks. From the Theorem 
2, it is easy to obtain that the control gain 
matrices of the proposed synchronization 
control scheme. Compared with the results of 
existing work, this paper has provided the 
first attempts to consider the synchronization 
control problem for delayed complex cyber-
physical networks under all-around attacks. 

For comparison with the results of Theorem 
2, the static event-triggering strategy is 
adopted in Corollary 1. 

Corollary 1: Let the FDI attack probability 
0 1π< < , the positive scalar 1iε < , 1γ < , iψ  
and 1i iεψ ≥  ( Pini∈  ) be given. The static 
trigger condition is shown as follows. 

( ) ( ){ }1 min , 0i i T
r r i i ik k k k k kρ ζ ζ+
+ = ∈ > − < , 

(36) 

for all Pini∈ . If there exist diagonal matrices 
{ }1 20 , , , n n

NP daig P P P ×< = ⋅⋅⋅ ∈ , the real 
matrices { }1, , ,0, ,0 n nY daig Y Yκ

×= ⋅⋅ ⋅ ⋅ ⋅⋅ ∈ , the 
matrices 0 n nQ ×< ∈ , and the scalar 1 0µ > , 

2 0µ > , 3 0µ >  and 4 0µ >  that satisfies the 
following inequalities 
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, and the scalar 1 0µ > , 2 0µ > , 3 0µ >  and 
4 0µ >  that satisfies the following inequalities
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( ) 00kVγ δ≤ + .   (28) 

From 0 1γ< <  and (28), it can be obtained as 
follows: 

( ) ( ) ( )2
min 00P e k Vλ γ δ≤ + .   (29) 

According to (17), one has 

1P I
γ

> .     (30) 

Note the facts (29) and (30), it is obtained that 

( ) ( )2
00e k V δ≤ + .    (31) 

According to the Definition 1, the closed-loop 
synchronization error dynamics (12) is ultimately 
exponentially bounded. The proof is thus 
completed. 

Now, we are in the position of deriving the 
synchronization control gain iK  on the basis of 
Theorem 1, which provides sufficient conditions 
for the ultimately exponentially bounded of the 
closed-loop synchronization error dynamics (12). 

Theorem 2. Let the FDI attacks probability 
0 1π< < , the positive scalar 0δ , 1iε < , 1γ < , iψ  
and 1i iεψ ≥  ( Pini∈  ) be given. If there exist the 
diagonal matrices { }1 20 , , , n n

NP daig P P P ×< = ⋅⋅⋅ ∈ , 
the real matrices { }1, , ,0, ,0 n nY daig Y Yκ

×= ⋅⋅ ⋅ ⋅ ⋅⋅ ∈ , 
the matrices 0 n nQ ×< ∈ , and the scalar 1 0µ > , 

2 0µ > , 3 0µ >  and 4 0µ >  that satisfies the 
following inequalities 
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Then, the synchronization controller that renders 
the closed-loop synchronization error dynamics 

(12) to be exponentially bounded can be 
determined by 

1 ,i i i PinK P Y i−= ∈ .        (35) 

Proof. The variable substitution method is 
employed to prove this Theorem. Let 

i i iPK Y= , and substitute it into (15), which 
yields (32). This completes the proof. 

Remark 2. In Theorem 2, the design issue of 
synchronization control is investigated for 
delayed complex cyber-physical networks 
under all-around attacks. From the Theorem 
2, it is easy to obtain that the control gain 
matrices of the proposed synchronization 
control scheme. Compared with the results of 
existing work, this paper has provided the 
first attempts to consider the synchronization 
control problem for delayed complex cyber-
physical networks under all-around attacks. 

For comparison with the results of Theorem 
2, the static event-triggering strategy is 
adopted in Corollary 1. 

Corollary 1: Let the FDI attack probability 
0 1π< < , the positive scalar 1iε < , 1γ < , iψ  
and 1i iεψ ≥  ( Pini∈  ) be given. The static 
trigger condition is shown as follows. 
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kP e k Vλ γ δ
γ

≤ +
−

 

( ) 00kVγ δ≤ + .   (28) 

From 0 1γ< <  and (28), it can be obtained as 
follows: 

( ) ( ) ( )2
min 00P e k Vλ γ δ≤ + .   (29) 

According to (17), one has 

1P I
γ

> .     (30) 

Note the facts (29) and (30), it is obtained that 

( ) ( )2
00e k V δ≤ + .    (31) 

According to the Definition 1, the closed-loop 
synchronization error dynamics (12) is ultimately 
exponentially bounded. The proof is thus 
completed. 

Now, we are in the position of deriving the 
synchronization control gain iK  on the basis of 
Theorem 1, which provides sufficient conditions 
for the ultimately exponentially bounded of the 
closed-loop synchronization error dynamics (12). 

Theorem 2. Let the FDI attacks probability 
0 1π< < , the positive scalar 0δ , 1iε < , 1γ < , iψ  
and 1i iεψ ≥  ( Pini∈  ) be given. If there exist the 
diagonal matrices { }1 20 , , , n n

NP daig P P P ×< = ⋅⋅⋅ ∈ , 
the real matrices { }1, , ,0, ,0 n nY daig Y Yκ

×= ⋅⋅ ⋅ ⋅ ⋅⋅ ∈ , 
the matrices 0 n nQ ×< ∈ , and the scalar 1 0µ > , 

2 0µ > , 3 0µ >  and 4 0µ >  that satisfies the 
following inequalities 

11 12 0
P

 Π Π
Π = < ∗ − 



 ,      

(32) 

01
δ δ
γ
≤

−
,      

(33) 

and 

0
I I

I P
γ 

> 
 

.                  (34) 

where 

( )12 1 1
T

f gP A L Y P P PΠ = + + +
      

]0 TP P Y− . 

Then, the synchronization controller that renders 
the closed-loop synchronization error dynamics 

(12) to be exponentially bounded can be 
determined by 

1 ,i i i PinK P Y i−= ∈ .        (35) 

Proof. The variable substitution method is 
employed to prove this Theorem. Let 

i i iPK Y= , and substitute it into (15), which 
yields (32). This completes the proof. 

Remark 2. In Theorem 2, the design issue of 
synchronization control is investigated for 
delayed complex cyber-physical networks 
under all-around attacks. From the Theorem 
2, it is easy to obtain that the control gain 
matrices of the proposed synchronization 
control scheme. Compared with the results of 
existing work, this paper has provided the 
first attempts to consider the synchronization 
control problem for delayed complex cyber-
physical networks under all-around attacks. 

For comparison with the results of Theorem 
2, the static event-triggering strategy is 
adopted in Corollary 1. 

Corollary 1: Let the FDI attack probability 
0 1π< < , the positive scalar 1iε < , 1γ < , iψ  
and 1i iεψ ≥  ( Pini∈  ) be given. The static 
trigger condition is shown as follows. 

( ) ( ){ }1 min , 0i i T
r r i i ik k k k k kρ ζ ζ+
+ = ∈ > − < , 

(36) 

for all Pini∈ . If there exist diagonal matrices 
{ }1 20 , , , n n

NP daig P P P ×< = ⋅⋅⋅ ∈ , the real 
matrices { }1, , ,0, ,0 n nY daig Y Yκ

×= ⋅⋅ ⋅ ⋅ ⋅⋅ ∈ , the 
matrices 0 n nQ ×< ∈ , and the scalar 1 0µ > , 

2 0µ > , 3 0µ >  and 4 0µ >  that satisfies the 
following inequalities 

11 12 0
P

 Π Π
Π = < 

∗ − 

 



,        (37) 

and 

0
I I

I P
γ 

> 
 

,         (38) 

where 
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 ∗ ∗ ∗ ∗ Λ
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∗ ∗ ∗ ∗ ∗ − 

 ∗ ∗ ∗ ∗ ∗ ∗ − 



, 

(33)

and

  

( ) ( ) ( )2
min

10
1

kP e k Vλ γ δ
γ

≤ +
−

 

( ) 00kVγ δ≤ + .   (28) 

From 0 1γ< <  and (28), it can be obtained as 
follows: 

( ) ( ) ( )2
min 00P e k Vλ γ δ≤ + .   (29) 

According to (17), one has 

1P I
γ

> .     (30) 

Note the facts (29) and (30), it is obtained that 

( ) ( )2
00e k V δ≤ + .    (31) 

According to the Definition 1, the closed-loop 
synchronization error dynamics (12) is ultimately 
exponentially bounded. The proof is thus 
completed. 

Now, we are in the position of deriving the 
synchronization control gain iK  on the basis of 
Theorem 1, which provides sufficient conditions 
for the ultimately exponentially bounded of the 
closed-loop synchronization error dynamics (12). 

Theorem 2. Let the FDI attacks probability 
0 1π< < , the positive scalar 0δ , 1iε < , 1γ < , iψ  
and 1i iεψ ≥  ( Pini∈  ) be given. If there exist the 
diagonal matrices { }1 20 , , , n n

NP daig P P P ×< = ⋅⋅⋅ ∈ , 
the real matrices { }1, , ,0, ,0 n nY daig Y Yκ

×= ⋅⋅ ⋅ ⋅ ⋅⋅ ∈ , 
the matrices 0 n nQ ×< ∈ , and the scalar 1 0µ > , 

2 0µ > , 3 0µ >  and 4 0µ >  that satisfies the 
following inequalities 
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P

 Π Π
Π = < ∗ − 



 ,      

(32) 

01
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(33) 

and 

0
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 

.                  (34) 

where 

( )12 1 1
T

f gP A L Y P P PΠ = + + +
      

]0 TP P Y− . 

Then, the synchronization controller that renders 
the closed-loop synchronization error dynamics 

(12) to be exponentially bounded can be 
determined by 

1 ,i i i PinK P Y i−= ∈ .        (35) 

Proof. The variable substitution method is 
employed to prove this Theorem. Let 

i i iPK Y= , and substitute it into (15), which 
yields (32). This completes the proof. 

Remark 2. In Theorem 2, the design issue of 
synchronization control is investigated for 
delayed complex cyber-physical networks 
under all-around attacks. From the Theorem 
2, it is easy to obtain that the control gain 
matrices of the proposed synchronization 
control scheme. Compared with the results of 
existing work, this paper has provided the 
first attempts to consider the synchronization 
control problem for delayed complex cyber-
physical networks under all-around attacks. 

For comparison with the results of Theorem 
2, the static event-triggering strategy is 
adopted in Corollary 1. 

Corollary 1: Let the FDI attack probability 
0 1π< < , the positive scalar 1iε < , 1γ < , iψ  
and 1i iεψ ≥  ( Pini∈  ) be given. The static 
trigger condition is shown as follows. 

( ) ( ){ }1 min , 0i i T
r r i i ik k k k k kρ ζ ζ+
+ = ∈ > − < , 

(36) 

for all Pini∈ . If there exist diagonal matrices 
{ }1 20 , , , n n

NP daig P P P ×< = ⋅⋅⋅ ∈ , the real 
matrices { }1, , ,0, ,0 n nY daig Y Yκ

×= ⋅⋅ ⋅ ⋅ ⋅⋅ ∈ , the 
matrices 0 n nQ ×< ∈ , and the scalar 1 0µ > , 

2 0µ > , 3 0µ >  and 4 0µ >  that satisfies the 
following inequalities 

11 12 0
P

 Π Π
Π = < 

∗ − 

 



,        (37) 

and 

0
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> 
 

,         (38) 

where 
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 ∗ ∗ ∗ ∗ Λ
 
∗ ∗ ∗ ∗ ∗ − 

 ∗ ∗ ∗ ∗ ∗ ∗ − 



, 

, (34)

where

  

( ) ( ) ( )2
min

10
1

kP e k Vλ γ δ
γ

≤ +
−

 

( ) 00kVγ δ≤ + .   (28) 

From 0 1γ< <  and (28), it can be obtained as 
follows: 

( ) ( ) ( )2
min 00P e k Vλ γ δ≤ + .   (29) 

According to (17), one has 

1P I
γ

> .     (30) 

Note the facts (29) and (30), it is obtained that 

( ) ( )2
00e k V δ≤ + .    (31) 

According to the Definition 1, the closed-loop 
synchronization error dynamics (12) is ultimately 
exponentially bounded. The proof is thus 
completed. 

Now, we are in the position of deriving the 
synchronization control gain iK  on the basis of 
Theorem 1, which provides sufficient conditions 
for the ultimately exponentially bounded of the 
closed-loop synchronization error dynamics (12). 

Theorem 2. Let the FDI attacks probability 
0 1π< < , the positive scalar 0δ , 1iε < , 1γ < , iψ  
and 1i iεψ ≥  ( Pini∈  ) be given. If there exist the 
diagonal matrices { }1 20 , , , n n

NP daig P P P ×< = ⋅⋅⋅ ∈ , 
the real matrices { }1, , ,0, ,0 n nY daig Y Yκ

×= ⋅⋅ ⋅ ⋅ ⋅⋅ ∈ , 
the matrices 0 n nQ ×< ∈ , and the scalar 1 0µ > , 

2 0µ > , 3 0µ >  and 4 0µ >  that satisfies the 
following inequalities 

11 12 0
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 Π Π
Π = < ∗ − 



 ,      

(32) 
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(33) 

and 
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 

.                  (34) 

where 

( )12 1 1
T

f gP A L Y P P PΠ = + + +
      

]0 TP P Y− . 

Then, the synchronization controller that renders 
the closed-loop synchronization error dynamics 

(12) to be exponentially bounded can be 
determined by 

1 ,i i i PinK P Y i−= ∈ .        (35) 

Proof. The variable substitution method is 
employed to prove this Theorem. Let 

i i iPK Y= , and substitute it into (15), which 
yields (32). This completes the proof. 

Remark 2. In Theorem 2, the design issue of 
synchronization control is investigated for 
delayed complex cyber-physical networks 
under all-around attacks. From the Theorem 
2, it is easy to obtain that the control gain 
matrices of the proposed synchronization 
control scheme. Compared with the results of 
existing work, this paper has provided the 
first attempts to consider the synchronization 
control problem for delayed complex cyber-
physical networks under all-around attacks. 

For comparison with the results of Theorem 
2, the static event-triggering strategy is 
adopted in Corollary 1. 

Corollary 1: Let the FDI attack probability 
0 1π< < , the positive scalar 1iε < , 1γ < , iψ  
and 1i iεψ ≥  ( Pini∈  ) be given. The static 
trigger condition is shown as follows. 

( ) ( ){ }1 min , 0i i T
r r i i ik k k k k kρ ζ ζ+
+ = ∈ > − < , 

(36) 

for all Pini∈ . If there exist diagonal matrices 
{ }1 20 , , , n n

NP daig P P P ×< = ⋅⋅⋅ ∈ , the real 
matrices { }1, , ,0, ,0 n nY daig Y Yκ

×= ⋅⋅ ⋅ ⋅ ⋅⋅ ∈ , the 
matrices 0 n nQ ×< ∈ , and the scalar 1 0µ > , 

2 0µ > , 3 0µ >  and 4 0µ >  that satisfies the 
following inequalities 

11 12 0
P

 Π Π
Π = < 

∗ − 

 



,        (37) 

and 

0
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γ 
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 

,         (38) 

where 
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 ∗ ∗ ∗ ∗ ∗ ∗ − 



, 

Then, the synchronization controller that renders the 
closed-loop synchronization error dynamics (12) to 
be exponentially bounded can be determined by

  

( ) ( ) ( )2
min

10
1

kP e k Vλ γ δ
γ

≤ +
−

 

( ) 00kVγ δ≤ + .   (28) 

From 0 1γ< <  and (28), it can be obtained as 
follows: 

( ) ( ) ( )2
min 00P e k Vλ γ δ≤ + .   (29) 

According to (17), one has 

1P I
γ

> .     (30) 

Note the facts (29) and (30), it is obtained that 

( ) ( )2
00e k V δ≤ + .    (31) 

According to the Definition 1, the closed-loop 
synchronization error dynamics (12) is ultimately 
exponentially bounded. The proof is thus 
completed. 

Now, we are in the position of deriving the 
synchronization control gain iK  on the basis of 
Theorem 1, which provides sufficient conditions 
for the ultimately exponentially bounded of the 
closed-loop synchronization error dynamics (12). 

Theorem 2. Let the FDI attacks probability 
0 1π< < , the positive scalar 0δ , 1iε < , 1γ < , iψ  
and 1i iεψ ≥  ( Pini∈  ) be given. If there exist the 
diagonal matrices { }1 20 , , , n n

NP daig P P P ×< = ⋅⋅⋅ ∈ , 
the real matrices { }1, , ,0, ,0 n nY daig Y Yκ

×= ⋅⋅ ⋅ ⋅ ⋅⋅ ∈ , 
the matrices 0 n nQ ×< ∈ , and the scalar 1 0µ > , 

2 0µ > , 3 0µ >  and 4 0µ >  that satisfies the 
following inequalities 

11 12 0
P

 Π Π
Π = < ∗ − 



 ,      

(32) 
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(33) 

and 

0
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 

.                  (34) 

where 

( )12 1 1
T

f gP A L Y P P PΠ = + + +
      

]0 TP P Y− . 

Then, the synchronization controller that renders 
the closed-loop synchronization error dynamics 

(12) to be exponentially bounded can be 
determined by 

1 ,i i i PinK P Y i−= ∈ .        (35) 

Proof. The variable substitution method is 
employed to prove this Theorem. Let 

i i iPK Y= , and substitute it into (15), which 
yields (32). This completes the proof. 

Remark 2. In Theorem 2, the design issue of 
synchronization control is investigated for 
delayed complex cyber-physical networks 
under all-around attacks. From the Theorem 
2, it is easy to obtain that the control gain 
matrices of the proposed synchronization 
control scheme. Compared with the results of 
existing work, this paper has provided the 
first attempts to consider the synchronization 
control problem for delayed complex cyber-
physical networks under all-around attacks. 

For comparison with the results of Theorem 
2, the static event-triggering strategy is 
adopted in Corollary 1. 

Corollary 1: Let the FDI attack probability 
0 1π< < , the positive scalar 1iε < , 1γ < , iψ  
and 1i iεψ ≥  ( Pini∈  ) be given. The static 
trigger condition is shown as follows. 

( ) ( ){ }1 min , 0i i T
r r i i ik k k k k kρ ζ ζ+
+ = ∈ > − < , 

(36) 

for all Pini∈ . If there exist diagonal matrices 
{ }1 20 , , , n n

NP daig P P P ×< = ⋅⋅⋅ ∈ , the real 
matrices { }1, , ,0, ,0 n nY daig Y Yκ

×= ⋅⋅ ⋅ ⋅ ⋅⋅ ∈ , the 
matrices 0 n nQ ×< ∈ , and the scalar 1 0µ > , 

2 0µ > , 3 0µ >  and 4 0µ >  that satisfies the 
following inequalities 

11 12 0
P

 Π Π
Π = < 

∗ − 

 



,        (37) 

and 

0
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 ∗ ∗ ∗ ∗ ∗ ∗ − 



, 

(35)

Proof. The variable substitution method is employed 
to prove this Theorem. Let i i iPK Y= , and substitute it 
into (15), which yields (32). This completes the proof.
Remark 2. In Theorem 2, the design issue of synchro-
nization control is investigated for delayed complex 
cyber-physical networks under all-around attacks. 
From the Theorem 2, it is easy to obtain that the con-
trol gain matrices of the proposed synchronization 
control scheme. Compared with the results of exist-
ing work, this paper has provided the first attempts 
to consider the synchronization control problem for 
delayed complex cyber-physical networks under all-
around attacks.
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For comparison with the results of Theorem 2, the stat-
ic event-triggering strategy is adopted in Corollary 1.
Corollary 1: Let the FDI attack probability 0 1π< < , 
the positive scalar 1iε < , 1γ < , iψ  and 1i iεψ ≥  (

  

( ) ( ) ( )2
min

10
1

kP e k Vλ γ δ
γ

≤ +
−

 

( ) 00kVγ δ≤ + .   (28) 

From 0 1γ< <  and (28), it can be obtained as 
follows: 

( ) ( ) ( )2
min 00P e k Vλ γ δ≤ + .   (29) 

According to (17), one has 

1P I
γ

> .     (30) 

Note the facts (29) and (30), it is obtained that 

( ) ( )2
00e k V δ≤ + .    (31) 

According to the Definition 1, the closed-loop 
synchronization error dynamics (12) is ultimately 
exponentially bounded. The proof is thus 
completed. 

Now, we are in the position of deriving the 
synchronization control gain iK  on the basis of 
Theorem 1, which provides sufficient conditions 
for the ultimately exponentially bounded of the 
closed-loop synchronization error dynamics (12). 

Theorem 2. Let the FDI attacks probability 
0 1π< < , the positive scalar 0δ , 1iε < , 1γ < , iψ  
and 1i iεψ ≥  ( Pini∈  ) be given. If there exist the 
diagonal matrices { }1 20 , , , n n

NP daig P P P ×< = ⋅⋅⋅ ∈ , 
the real matrices { }1, , ,0, ,0 n nY daig Y Yκ

×= ⋅⋅ ⋅ ⋅ ⋅⋅ ∈ , 
the matrices 0 n nQ ×< ∈ , and the scalar 1 0µ > , 

2 0µ > , 3 0µ >  and 4 0µ >  that satisfies the 
following inequalities 

11 12 0
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where 

( )12 1 1
T

f gP A L Y P P PΠ = + + +
      

]0 TP P Y− . 

Then, the synchronization controller that renders 
the closed-loop synchronization error dynamics 

(12) to be exponentially bounded can be 
determined by 

1 ,i i i PinK P Y i−= ∈ .        (35) 

Proof. The variable substitution method is 
employed to prove this Theorem. Let 

i i iPK Y= , and substitute it into (15), which 
yields (32). This completes the proof. 

Remark 2. In Theorem 2, the design issue of 
synchronization control is investigated for 
delayed complex cyber-physical networks 
under all-around attacks. From the Theorem 
2, it is easy to obtain that the control gain 
matrices of the proposed synchronization 
control scheme. Compared with the results of 
existing work, this paper has provided the 
first attempts to consider the synchronization 
control problem for delayed complex cyber-
physical networks under all-around attacks. 

For comparison with the results of Theorem 
2, the static event-triggering strategy is 
adopted in Corollary 1. 

Corollary 1: Let the FDI attack probability 
0 1π< < , the positive scalar 1iε < , 1γ < , iψ  
and 1i iεψ ≥  ( Pini∈  ) be given. The static 
trigger condition is shown as follows. 

( ) ( ){ }1 min , 0i i T
r r i i ik k k k k kρ ζ ζ+
+ = ∈ > − < , 

(36) 

for all Pini∈ . If there exist diagonal matrices 
{ }1 20 , , , n n

NP daig P P P ×< = ⋅⋅⋅ ∈ , the real 
matrices { }1, , ,0, ,0 n nY daig Y Yκ

×= ⋅⋅ ⋅ ⋅ ⋅⋅ ∈ , the 
matrices 0 n nQ ×< ∈ , and the scalar 1 0µ > , 

2 0µ > , 3 0µ >  and 4 0µ >  that satisfies the 
following inequalities 

11 12 0
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
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and 
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where 
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) 
be given. The static trigger condition is shown as fol-
lows.

  

( ) ( ) ( )2
min

10
1

kP e k Vλ γ δ
γ

≤ +
−

 

( ) 00kVγ δ≤ + .   (28) 

From 0 1γ< <  and (28), it can be obtained as 
follows: 

( ) ( ) ( )2
min 00P e k Vλ γ δ≤ + .   (29) 

According to (17), one has 

1P I
γ

> .     (30) 

Note the facts (29) and (30), it is obtained that 

( ) ( )2
00e k V δ≤ + .    (31) 

According to the Definition 1, the closed-loop 
synchronization error dynamics (12) is ultimately 
exponentially bounded. The proof is thus 
completed. 

Now, we are in the position of deriving the 
synchronization control gain iK  on the basis of 
Theorem 1, which provides sufficient conditions 
for the ultimately exponentially bounded of the 
closed-loop synchronization error dynamics (12). 

Theorem 2. Let the FDI attacks probability 
0 1π< < , the positive scalar 0δ , 1iε < , 1γ < , iψ  
and 1i iεψ ≥  ( Pini∈  ) be given. If there exist the 
diagonal matrices { }1 20 , , , n n
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Then, the synchronization controller that renders 
the closed-loop synchronization error dynamics 

(12) to be exponentially bounded can be 
determined by 

1 ,i i i PinK P Y i−= ∈ .        (35) 

Proof. The variable substitution method is 
employed to prove this Theorem. Let 

i i iPK Y= , and substitute it into (15), which 
yields (32). This completes the proof. 

Remark 2. In Theorem 2, the design issue of 
synchronization control is investigated for 
delayed complex cyber-physical networks 
under all-around attacks. From the Theorem 
2, it is easy to obtain that the control gain 
matrices of the proposed synchronization 
control scheme. Compared with the results of 
existing work, this paper has provided the 
first attempts to consider the synchronization 
control problem for delayed complex cyber-
physical networks under all-around attacks. 

For comparison with the results of Theorem 
2, the static event-triggering strategy is 
adopted in Corollary 1. 

Corollary 1: Let the FDI attack probability 
0 1π< < , the positive scalar 1iε < , 1γ < , iψ  
and 1i iεψ ≥  ( Pini∈  ) be given. The static 
trigger condition is shown as follows. 
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Note the facts (29) and (30), it is obtained that 
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According to the Definition 1, the closed-loop 
synchronization error dynamics (12) is ultimately 
exponentially bounded. The proof is thus 
completed. 

Now, we are in the position of deriving the 
synchronization control gain iK  on the basis of 
Theorem 1, which provides sufficient conditions 
for the ultimately exponentially bounded of the 
closed-loop synchronization error dynamics (12). 

Theorem 2. Let the FDI attacks probability 
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Then, the synchronization controller that renders 
the closed-loop synchronization error dynamics 

(12) to be exponentially bounded can be 
determined by 

1 ,i i i PinK P Y i−= ∈ .        (35) 

Proof. The variable substitution method is 
employed to prove this Theorem. Let 

i i iPK Y= , and substitute it into (15), which 
yields (32). This completes the proof. 

Remark 2. In Theorem 2, the design issue of 
synchronization control is investigated for 
delayed complex cyber-physical networks 
under all-around attacks. From the Theorem 
2, it is easy to obtain that the control gain 
matrices of the proposed synchronization 
control scheme. Compared with the results of 
existing work, this paper has provided the 
first attempts to consider the synchronization 
control problem for delayed complex cyber-
physical networks under all-around attacks. 

For comparison with the results of Theorem 
2, the static event-triggering strategy is 
adopted in Corollary 1. 

Corollary 1: Let the FDI attack probability 
0 1π< < , the positive scalar 1iε < , 1γ < , iψ  
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Note the facts (29) and (30), it is obtained that 
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According to the Definition 1, the closed-loop 
synchronization error dynamics (12) is ultimately 
exponentially bounded. The proof is thus 
completed. 

Now, we are in the position of deriving the 
synchronization control gain iK  on the basis of 
Theorem 1, which provides sufficient conditions 
for the ultimately exponentially bounded of the 
closed-loop synchronization error dynamics (12). 
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×= ⋅⋅ ⋅ ⋅ ⋅⋅ ∈ , 
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Then, the synchronization controller that renders 
the closed-loop synchronization error dynamics 

(12) to be exponentially bounded can be 
determined by 

1 ,i i i PinK P Y i−= ∈ .        (35) 

Proof. The variable substitution method is 
employed to prove this Theorem. Let 

i i iPK Y= , and substitute it into (15), which 
yields (32). This completes the proof. 

Remark 2. In Theorem 2, the design issue of 
synchronization control is investigated for 
delayed complex cyber-physical networks 
under all-around attacks. From the Theorem 
2, it is easy to obtain that the control gain 
matrices of the proposed synchronization 
control scheme. Compared with the results of 
existing work, this paper has provided the 
first attempts to consider the synchronization 
control problem for delayed complex cyber-
physical networks under all-around attacks. 

For comparison with the results of Theorem 
2, the static event-triggering strategy is 
adopted in Corollary 1. 

Corollary 1: Let the FDI attack probability 
0 1π< < , the positive scalar 1iε < , 1γ < , iψ  
and 1i iεψ ≥  ( Pini∈  ) be given. The static 
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According to the Definition 1, the closed-loop 
synchronization error dynamics (12) is ultimately 
exponentially bounded. The proof is thus 
completed. 

Now, we are in the position of deriving the 
synchronization control gain iK  on the basis of 
Theorem 1, which provides sufficient conditions 
for the ultimately exponentially bounded of the 
closed-loop synchronization error dynamics (12). 
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Then, the synchronization controller that renders 
the closed-loop synchronization error dynamics 

(12) to be exponentially bounded can be 
determined by 

1 ,i i i PinK P Y i−= ∈ .        (35) 

Proof. The variable substitution method is 
employed to prove this Theorem. Let 

i i iPK Y= , and substitute it into (15), which 
yields (32). This completes the proof. 

Remark 2. In Theorem 2, the design issue of 
synchronization control is investigated for 
delayed complex cyber-physical networks 
under all-around attacks. From the Theorem 
2, it is easy to obtain that the control gain 
matrices of the proposed synchronization 
control scheme. Compared with the results of 
existing work, this paper has provided the 
first attempts to consider the synchronization 
control problem for delayed complex cyber-
physical networks under all-around attacks. 

For comparison with the results of Theorem 
2, the static event-triggering strategy is 
adopted in Corollary 1. 

Corollary 1: Let the FDI attack probability 
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Theorem 1, which provides sufficient conditions 
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Then, the synchronization controller that renders 
the closed-loop synchronization error dynamics 

(12) to be exponentially bounded can be 
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1 ,i i i PinK P Y i−= ∈ .        (35) 

Proof. The variable substitution method is 
employed to prove this Theorem. Let 

i i iPK Y= , and substitute it into (15), which 
yields (32). This completes the proof. 

Remark 2. In Theorem 2, the design issue of 
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under all-around attacks. From the Theorem 
2, it is easy to obtain that the control gain 
matrices of the proposed synchronization 
control scheme. Compared with the results of 
existing work, this paper has provided the 
first attempts to consider the synchronization 
control problem for delayed complex cyber-
physical networks under all-around attacks. 

For comparison with the results of Theorem 
2, the static event-triggering strategy is 
adopted in Corollary 1. 

Corollary 1: Let the FDI attack probability 
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According to the Definition 1, the closed-loop 
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Now, we are in the position of deriving the 
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for the ultimately exponentially bounded of the 
closed-loop synchronization error dynamics (12). 

Theorem 2. Let the FDI attacks probability 
0 1π< < , the positive scalar 0δ , 1iε < , 1γ < , iψ  
and 1i iεψ ≥  ( Pini∈  ) be given. If there exist the 
diagonal matrices { }1 20 , , , n n

NP daig P P P ×< = ⋅⋅⋅ ∈ , 
the real matrices { }1, , ,0, ,0 n nY daig Y Yκ

×= ⋅⋅ ⋅ ⋅ ⋅⋅ ∈ , 
the matrices 0 n nQ ×< ∈ , and the scalar 1 0µ > , 

2 0µ > , 3 0µ >  and 4 0µ >  that satisfies the 
following inequalities 

11 12 0
P

 Π Π
Π = < ∗ − 



 ,      

(32) 

01
δ δ
γ
≤

−
,      

(33) 

and 

0
I I

I P
γ 

> 
 

.                  (34) 

where 

( )12 1 1
T

f gP A L Y P P PΠ = + + +
      

]0 TP P Y− . 
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under all-around attacks. From the Theorem 
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For comparison with the results of Theorem 
2, the static event-triggering strategy is 
adopted in Corollary 1. 
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Then, the synchronization controller that renders 
the closed-loop synchronization error dynamics 
(12) to be exponentially bounded can be obtained 
by 
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Proof. By letting ,  i Piniψ → +∞ ∈ , the proof of 
Corollary 1 can follow the same way as Theorem 2. 
No further details here. 

Remark 3. In Theorem 2 and Corollary 1, the 
design procedure of dynamic event-triggered and 
static event-triggered pinning synchronization 
controllers, respectively, is addressed for complex 
cyber-physical networks with unforced isolated 
node and all-around attacks. The exponential 
boundedness of synchronization error dynamics 
(12) has been proved, and the required 
synchronization controller gain matrices iK  is 
obtained by solving a group of LMIs. 

4. Numerical Simulations  
In this section, an illustrative example is provided 
for the discrete-time delayed complex cyber-
physical networks to demonstrate the effectiveness 
of presented synchronization control scheme. In 
what follows, we consider a delayed complex 
cyber-physical network of the form (1) that is 
composed of three identical nodes with the inner-
coupling matrix is set as 0.517IΓ =  and the 
following parameters (e.g., coupling matrix): 
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and the time-delay boundaries are as 3mτ = , 
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We assume that the FDI attacks and physical 
attacks have the following form: 
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The probabilities of FDI attack for the two 
selected network nodes are 1 0.15π =  
and 2 0.20π = , respectively. Pini∈  denotes the 
i-th network nodes. 

The random FDI attacks’ attack times of the 
two network nodes are shown in Figure 2. The 
energy evolution trajectory of a physical attack 
on two network nodes is given in Figure 3. 
Figures 4-6 plot the state evolutions trajectory 
of the synchronization error of the 
uncontrolled, which show that the network 
node cannot be synchronization with the 
unforced isolated node. 
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Figure 2 Attack time of the FDI attacks. 
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Figure 2 Attack time of the FDI attacks. 

(39)

Proof. By letting 

 
 

 

( )12 1 1
T

f i gP A L Y P PΠ = + + +


      

]TP P P Y− . 

Then, the synchronization controller that renders 
the closed-loop synchronization error dynamics 
(12) to be exponentially bounded can be obtained 
by 

1 ,i i i PinK P Y i−= ∈ .    (39) 

Proof. By letting ,  i Piniψ → +∞ ∈ , the proof of 
Corollary 1 can follow the same way as Theorem 2. 
No further details here. 

Remark 3. In Theorem 2 and Corollary 1, the 
design procedure of dynamic event-triggered and 
static event-triggered pinning synchronization 
controllers, respectively, is addressed for complex 
cyber-physical networks with unforced isolated 
node and all-around attacks. The exponential 
boundedness of synchronization error dynamics 
(12) has been proved, and the required 
synchronization controller gain matrices iK  is 
obtained by solving a group of LMIs. 

4. Numerical Simulations  
In this section, an illustrative example is provided 
for the discrete-time delayed complex cyber-
physical networks to demonstrate the effectiveness 
of presented synchronization control scheme. In 
what follows, we consider a delayed complex 
cyber-physical network of the form (1) that is 
composed of three identical nodes with the inner-
coupling matrix is set as 0.517IΓ =  and the 
following parameters (e.g., coupling matrix): 

0.65 0.1 0.55
0 0.05 0.05

0.5 0 0.5
L

− 
 = − 
 − 

. 

The complex cyber-physical networks (1) are with 
the following parameters: 

1.21 0.012 0.01
0.51 0.32 0
0.2 0.1 0.5

A
− − 

 = − 
 − 

, 

( )
( ) ( )

( )
( )

1 1

2

3

0.02sin 0 0.01tanh
0 0.02cos 0
0 0 0.03sin

x x
f x x

x

 
 =  
  

, 

( )
( ) ( )

( ) ( )
( ) ( )

1 1

2 2

3 3

0 0.01cos 0.01tanh
0.02sin 0 0.02 tanh

0 0.02cos 0.01sin

x x
g x x x

x x

− − 
 = − − 
  

, 

and the time-delay boundaries are as 3mτ = , 

 4Mτ = . 

Assumption 1 is easily verified by using 

1

0 0 0
0 0 0
0 0 0.75

f

 
 =  
 − 

 , 2

0.2 0 0
0 0.2 0
0 0 0.2

f

 
 = − 
  

 , 

1 1

0.1 0 0
0 0.1 0
0 0 0.1

g h

 
 = =  
  

  , 

2 2

0.2 0 0
0 0.2 0
0 0 0.2

g h

 
 = = − 
  

  . 

We assume that the FDI attacks and physical 
attacks have the following form: 

( )( )
( )

( )
( )

1

2

3

0.02sin 0 0
0 0.02cos 0
0 0 0.03sin

i

x
m x k x

x

 
 =  
  

, 

( )( )
( ) ( ) ( )
( )

( )

1 1 1

2

3

0.02sin 0.01cos 0.01tanh
0.02sin 0 0

0 0 0.01sin
i

x x x
h x k x

x

− − 
 = − 
  

. 

The probabilities of FDI attack for the two 
selected network nodes are 1 0.15π =  
and 2 0.20π = , respectively. Pini∈  denotes the 
i-th network nodes. 

The random FDI attacks’ attack times of the 
two network nodes are shown in Figure 2. The 
energy evolution trajectory of a physical attack 
on two network nodes is given in Figure 3. 
Figures 4-6 plot the state evolutions trajectory 
of the synchronization error of the 
uncontrolled, which show that the network 
node cannot be synchronization with the 
unforced isolated node. 

0 10 20 30 40 50 60 70 80 90 100

k

-0.5

0

0.5

1

1.5

FD
I A

tta
ck

s

The FDI attacks time of the node 1

0 10 20 30 40 50 60 70 80 90 100

k

-0.5

0

0.5

1

1.5

FD
I A

tta
ck

s

The FDI attacks time of the node 2

 
Figure 2 Attack time of the FDI attacks. 
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The probabilities of FDI attack for the two 
selected network nodes are 1 0.15π =  
and 2 0.20π = , respectively. Pini∈  denotes the 
i-th network nodes. 

The random FDI attacks’ attack times of the 
two network nodes are shown in Figure 2. The 
energy evolution trajectory of a physical attack 
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Figures 4-6 plot the state evolutions trajectory 
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uncontrolled, which show that the network 
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The probabilities of FDI attack for the two selected 
network nodes are 1 0.15π =  and 2 0.20π = , respec-
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The probabilities of FDI attack for the two 
selected network nodes are 1 0.15π =  
and 2 0.20π = , respectively. Pini∈  denotes the 
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The random FDI attacks’ attack times of the 
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of the synchronization error of the 
uncontrolled, which show that the network 
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Figure 2 Attack time of the FDI attacks. 
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Figure 2 Attack time of the FDI attacks. 
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Figure 3 Energy evolution of the physical attacks. 
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Figure 4 Synchronization error 1( ), ( 1, 2,3)ie k i =  

trajectory of the uncontrolled. 
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Figure 5 Synchronization error 2 ( ), ( 1, 2,3)ie k i =  

trajectory of the uncontrolled. 
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Figure 6 Synchronization error 3 ( ), ( 1, 2,3)ie k i =  

trajectory of the uncontrolled. 

Let the thresholds of dynamic trigger 
conditions (7) be 1 0.17ρ =  and 2 0.15ρ = , and 
other parameters are selected as 1 0.45ε = , 

2 0.55ε = , 1 5.8ψ =  as well as 2 6.8ψ = , 
respectively. Applying Theorem 2 and solving 
LMIs (32)-(34), a set of feasible solutions and 
the corresponding synchronization control 
gains matrices can be obtained as follow: 

1 4.5861µ = , 2 6.0727µ = , 3 5.7304µ = , 

4 6.1709µ = ,  
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The initial condition of complex cyber-physical 
networks and the unforced isolate node are set 
as ( ) [ ]0 1 1 1 T

ix = − and ( ) [ ]0 2 0.5 2 Ts = − − , 
respectively. The initial value of internal 
dynamic variables for the dynamic event-
triggering strategy is set as 1

0 8.5χ =  and 
2
0 8.6χ = , respectively. In this case, the 

trajectories of synchronization error between 
the unforced isolated node and the network 
nodes are shown by Figures 7-9, respectively. It 
could be found from Figures 7-9 that the 
synchronization errors converge to zero within 
the limited sampling periods, which implies 
that the presented event-based pinning control 
method is effective for the complex cyber-
physical networks subject to all-around attack. 
Subsequently, the results of dynamic event 
triggering communication are compared with 
those of static event triggering communication. 
Figures 10-11 show the triggered instants 
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Figure 3 Energy evolution of the physical attacks. 
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Figure 5 Synchronization error 2 ( ), ( 1, 2,3)ie k i =  

trajectory of the uncontrolled. 
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Figure 6 Synchronization error 3 ( ), ( 1, 2,3)ie k i =  

trajectory of the uncontrolled. 
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Figure 3 Energy evolution of the physical attacks. 
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Figure 6 Synchronization error 3 ( ), ( 1, 2,3)ie k i =  

trajectory of the uncontrolled. 
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Figure 6 Synchronization error 3 ( ), ( 1, 2,3)ie k i =  

trajectory of the uncontrolled. 
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Figure 10 Triggering instants of the dynamic 

event trigger. 

0 10 20 30 40 50 60 70 80 90 100
Time step (k)

0

0.5

1

1.5

Tr
ig

ge
rin

g 
in

st
an

ts Event-triggering instants for node 1

0 10 20 30 40 50 60 70 80 90 100
Time step (k)

0

0.5

1

1.5

Tr
ig

ge
rin

g 
in

st
an

ts Event-triggering instants for node 2

 
Figure 11 Triggering instants of the static event  

trigger. 

5. Conclusion 
In this paper, the dynamic event-triggered 
pinning synchronization control issue has been 
investigated for the discrete-time delayed 
complex cyber-physical networks under all-
around attacks. By using some linear matrix 
inequalities and the piecewise Lyapunov-like 
functions, an ultimately exponentially bounded 
condition has been derived for the closed-loop 
synchronization error dynamics. Furthermore, 
the special case of pinning synchronization 
control method based on static event-triggered 
scheme have also been addressed for the 
complex cyber-physical networks subject to all-
around attacks. In addition, it is interesting to 
consider the synchronization control problem 
for complex cyber-physical networks with fast-
varying input delays and complex cyber-
physical attacks, which is our future works. 
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Figure 11 Triggering instants of the static event  

trigger. 

5. Conclusion 
In this paper, the dynamic event-triggered 
pinning synchronization control issue has been 
investigated for the discrete-time delayed 
complex cyber-physical networks under all-
around attacks. By using some linear matrix 
inequalities and the piecewise Lyapunov-like 
functions, an ultimately exponentially bounded 
condition has been derived for the closed-loop 
synchronization error dynamics. Furthermore, 
the special case of pinning synchronization 
control method based on static event-triggered 
scheme have also been addressed for the 
complex cyber-physical networks subject to all-
around attacks. In addition, it is interesting to 
consider the synchronization control problem 
for complex cyber-physical networks with fast-
varying input delays and complex cyber-
physical attacks, which is our future works. 
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event-triggering schemes, respectively. It can be 
seen from Figures 10-11 that the dynamic event trig-
gering communication has far fewer times than its 
static counterpart. Therefore, it is easy to conclude 
that the dynamic events triggering strategy can ef-
fectively reduce the updating frequency of the con-
trol signals compared with the static ones.
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Figure 11 Triggering instants of the static event  

trigger. 

5. Conclusion 
In this paper, the dynamic event-triggered 
pinning synchronization control issue has been 
investigated for the discrete-time delayed 
complex cyber-physical networks under all-
around attacks. By using some linear matrix 
inequalities and the piecewise Lyapunov-like 
functions, an ultimately exponentially bounded 
condition has been derived for the closed-loop 
synchronization error dynamics. Furthermore, 
the special case of pinning synchronization 
control method based on static event-triggered 
scheme have also been addressed for the 
complex cyber-physical networks subject to all-
around attacks. In addition, it is interesting to 
consider the synchronization control problem 
for complex cyber-physical networks with fast-
varying input delays and complex cyber-
physical attacks, which is our future works. 
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Figure 9 Synchronization error 3 ( ), ( 1, 2,3)ie k i =  

trajectory of the controlled. 

0 10 20 30 40 50 60 70 80 90 100
Time step (k)

0

0.5

1

1.5

Tr
ig

ge
rin

g 
in

st
an

ts Event-triggering instants for node 1

0 10 20 30 40 50 60 70 80 90 100
Time step (k)

0

0.5

1

1.5

Tr
ig

ge
rin

g 
in

st
an

ts Event-triggering instants for node 2

 
Figure 10 Triggering instants of the dynamic 
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Figure 11 Triggering instants of the static event  

trigger. 

5. Conclusion 
In this paper, the dynamic event-triggered 
pinning synchronization control issue has been 
investigated for the discrete-time delayed 
complex cyber-physical networks under all-
around attacks. By using some linear matrix 
inequalities and the piecewise Lyapunov-like 
functions, an ultimately exponentially bounded 
condition has been derived for the closed-loop 
synchronization error dynamics. Furthermore, 
the special case of pinning synchronization 
control method based on static event-triggered 
scheme have also been addressed for the 
complex cyber-physical networks subject to all-
around attacks. In addition, it is interesting to 
consider the synchronization control problem 
for complex cyber-physical networks with fast-
varying input delays and complex cyber-
physical attacks, which is our future works. 
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Figure 8 Synchronization error 2 ( ), ( 1, 2,3)ie k i =  

trajectory of the controlled. 
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Figure 9 Synchronization error 3 ( ), ( 1, 2,3)ie k i =  
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Figure 10 Triggering instants of the dynamic 
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Figure 11 Triggering instants of the static event  

trigger. 

5. Conclusion 
In this paper, the dynamic event-triggered 
pinning synchronization control issue has been 
investigated for the discrete-time delayed 
complex cyber-physical networks under all-
around attacks. By using some linear matrix 
inequalities and the piecewise Lyapunov-like 
functions, an ultimately exponentially bounded 
condition has been derived for the closed-loop 
synchronization error dynamics. Furthermore, 
the special case of pinning synchronization 
control method based on static event-triggered 
scheme have also been addressed for the 
complex cyber-physical networks subject to all-
around attacks. In addition, it is interesting to 
consider the synchronization control problem 
for complex cyber-physical networks with fast-
varying input delays and complex cyber-
physical attacks, which is our future works. 
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