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A composite back-stepping sliding mode controller is proposed in the paper to address the under-actuated, 
input saturated, and time-varying disturbances, as well as model-dependent issues that bother the path 
tracking control of unmanned agricultural tractors. Specifically, the path tracking error model is intro-
duced. The extended state observers (ESO) with time-varying parameters are employed to handle the lump 
disturbances resulting from the external disturbances and model nonlinearity. A novel composite path 
tracking controller is proposed based on back-stepping method, active disturbance rejection control, and 
sliding mode control, whose effectiveness is verified by theory analysis, simulations, and experiments. Ac-
cording to the results, the proposed controller outperforms the improved pure pursuit control in reducing 
the lateral offset.
KEYWORDS: Back-stepping sliding mode, Extended state observer, Path tracking control, Unmanned agricul-
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1. Introduction
Unmanned tractors in agricultural operations has 
been gaining popularity thanks to their high accuracy, 
low labor cost, favorable efficiency, etc., but they may 
suffer from hypofunction under unstructured and 
challenging working environments [1]. The common-
ly-existing wheel sliding, which undermines accura-
cy and even safety, is a typical example [6]. Due to the 
difficulty in establishing the precision mathematical 
model of agricultural vehicles, mathematical mod-
el-based control methods are not effective enough. 
The path tracking control of unmanned farm vehicles 
remains to be a problem featuring serious nonlinear-
ity, time-varying disturbances, and under-actuated 
characteristics [25].
The path tracking control of unmanned farm trac-
tors generally serves as a guide for vehicles to follow 
the predetermined paths that cover the field, through 
which, the current lateral offset, heading offset, posi-
tion information from position sensors, and attitude 
sensors are obtained [28]. The actuating components 
covering hydraulic valves [22] and electric steering 
wheels [16] are then adopted to control the vehicle 
steering angle via a specific algorithm. Besides, a se-
ries of methods have been explored for better per-
formance of the precision tracking control. One rep-
resentative is the model predictive control (MPC) 
proposed by Falcone et al. [5] to achieve trajectory 
tracking control when the vehicle is subject to kine-
matic, dynamic, and actuator restrictions. However, 
the optimal control requires hardware performance, 
especially in computing power. As a response, Fang 
et al. [6] designed a back-stepping controller that re-
lieved the sliding effect through parameters adaption. 
However, such methods are generally based on an 
accurate model that is hard to establish in extreme 
environments, which complicates the design of a 
model-dependent vehicle controller because of the 
existing inevitable uncertain factors.
A model-free control method called Active Distur-
bance Rejection Control (ADRC) first proposed by 
Han [9] was inherited and developed by Gao [7]. Af-
ter translating the actual model into an integral chain 
model, the disturbance observer, Extended State 
Observer (ESO), is adopted to determine the lump 
disturbance, guaranteeing its strong robustness and 
low reliance on the precise mathematical model. The 

ADRC has been extensively used in diverse fields, in-
cluding disturbance coupling control [27], spraying 
control [10], and unmanned aerial vehicles [26]. As 
for the ground vehicle path tracking control, Xia et al. 
[18] designed a lateral path tracking controller tak-
ing into account the ADRC and differential flatness 
theory. Chen et al. [3] later launched an improved 
linear active disturbance rejection control (LADRC) 
method. The sliding mode control (SMC) is an ef-
fective control theory that far outranks in parameter 
uncertainty, disturbance rejection, and finite-time 
convergence [14]. However, it also has flaws, covering 
the chattering phenomenon that is mainly derived 
from the discontinuous sign function and causes se-
vere problems such as mechanical damage, shorter 
service life, and so on [12, 20], and its immunity to 
matched disturbance, that is, the disturbance and 
control input act on the same channel [8]. Because 
of the mismatched disturbance caused by unknown 
external disturbances and model nonlinearity in the 
path tracking control of unmanned tractors, the at-
tenuation of the mismatched disturbance influence 
and the sliding mode controller chattering phenom-
enon are urgent issues to be addressed. Research on 
mismatched disturbance suppression is fruitful [4, 
13], which supports the essential role of the combina-
tion of SMC and disturbance observer (i.e., composite 
SMC) in suppressing the chattering and disturbance. 
Wu et al. [17] constructed a robust control strategy to 
handle external disturbance using the terminal slid-
ing model technology and ESO, but its costs are high 
as it uses extra sensors and state observers in estimat-
ing the slippage angle.
A composite back-stepping sliding mode controller 
is adopted for the path tracking control of unmanned 
tractors in the paper in response to such issues as 
model dependence and disturbance rejection, with 
the traditional path tracking problem translated into 
a second-order single-input and multiple-output 
model featuring nonlinearity, under-actuated charac-
teristics, and unknown disturbances. Meanwhile, two 
time-varying parameters ESOs are taken to estimate 
the disturbances that exist in the lateral error subsys-
tem and heading error subsystem, respectively, the 
latter of which is decoupled by the newly-introduced 
virtual heading angle control variable. The finite-time 
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reaching control law is also adopted to guarantee the 
sliding variable’s finite-time convergence. Finally, the 
control expression of the front-wheel steering angle 
with hyperbolic tangent function saturation con-
straint is derived. The proposed scheme can effective-
ly enhance the robustness and flexibility, lowering its 
reliance on the mathematical model. The major con-
tributions of this paper can be summarized as follows:
1 Two ESO with time-varying parameters are intro-

duced to estimate both lumped mismatched and 
matched disturbances. In this way, the peaking 
phenomenon with large initial error can be signifi-
cantly reduced.

2 The composite back-stepping sliding mode control 
can significantly increase the system’s robustness 
under different scenarios without having to rely on 
the precise mathematical model.

3 The power reaching law guarantees that the sliding 
variable can reach the designed sliding manifold in 
a finite time, and that the lateral offset can reach a 
bounded set around zero asymptotically with dis-
turbances.

The rest of the paper is organized as follows. Section 
2 describes the kinematic and error model of the un-
manned tractor path tracking system in presence of 
matched and mismatched disturbances. Section 3 in-
troduces the design of ESO and back-stepping SMC, 
respectively. Section 4 and Section 5 illustrate the 
simulation and experiments that prove the effective-
ness and convergence of the proposed observer and 
controller. Section 6 concludes the manuscript.

2. Problem Formulation
The vehicle is assumed to be front-wheel steering and 
rear-wheel drive with constant speed in the absence 
of generality. Therefore, the tractor is simplified into 
2 degrees of freedom (DOF) bicycle model that only 
considers the lateral movement. The application of 
such a model is commonly seen in many papers, as 
shown in Figure 1 [11, 15].
The coordinate system  refers to the inertial coor-
dinate system fixed on the ground, while  
the longitudinal and lateral displacements of the trac-
tor in the ground. The motion model is described as 
follows:

Figure 1
Kinematic of the unmanned tractor

enhance the robustness and flexibility, lowering its 
reliance on the mathematical model. The major 
contributions of this paper can be summarized as 
follows: 

(1) Two ESO with time-varying parameters are 
introduced to estimate both lumped mismatched and 
matched disturbances. In this way, the peaking 
phenomenon with large initial error can be 
significantly reduced. 

(2) The composite back-stepping sliding mode control 
can significantly increase the system’s robustness 
under different scenarios without having to rely on the 
precise mathematical model. 

(3) The power reaching law guarantees that the sliding 
variable can reach the designed sliding manifold in a 
finite time, and that the lateral offset can reach a 
bounded set around zero asymptotically with 
disturbances. 

The rest of the paper is organized as follows. Section 2 
describes the kinematic and error model of the 
unmanned tractor path tracking system in presence of 
matched and mismatched disturbances. Section 3 
introduces the design of ESO and back-stepping SMC, 
respectively. Section 4 and Section 5 illustrate the 
simulation and experiments that prove the 
effectiveness and convergence of the proposed 
observer and controller. Section 6 concludes the 
manuscript. 

2. Problem Formulation 
The vehicle is assumed to be front-wheel steering and 
rear-wheel drive with constant speed in the absence of 
generality. Therefore, the tractor is simplified into 2 
degrees of freedom (DOF) bicycle model that only 
considers the lateral movement. The application of 
such a model is commonly seen in many papers, as 
shown in Figure 1 [11, 15]. 

 

Figure 1 
Kinematic of the unmanned tractor. 

 
The coordinate system   refers to the inertial 
coordinate system fixed on the ground, while 

  the longitudinal and lateral 
displacements of the tractor in the ground. The motion 
model is described as follows: 

 (1) 

where   represents the longitudinal velocity that 
can be taken as the constant,  the wheelbase between 
the front wheel and the rear wheel,  the steering 
angle of the front wheel, and  the heading angle. 

The method frequently employed is the one that 
transforms the 2-DOF model into a small-angle 
approximation model and the nonlinear model into a 
linear model. Other approaches like a state feedback 
controller or backstepping controller are also adopted, 
which fail to handle the path tracking, especially under 
time-varying disturbances because of both its limited 
application around a small origin of the error and the 
asymptotical convergence characteristic of error. 

The reference path falls into two categories, including 
straight-line paths and curve paths. Combined with 
kinematic constraints, the reference model is described 
as follows: 

 (2) 

where the subscript  denotes the reference model. 

Considering the difference between the system (1) and 
(2), the error model is 

(1)

where  represents the longitudinal velocity that 
can be taken as the constant,  the wheelbase between 
the front wheel and the rear wheel,  the steering 
angle of the front wheel, and  the heading angle.
The method frequently employed is the one that trans-
forms the 2-DOF model into a small-angle approxima-
tion model and the nonlinear model into a linear mod-
el. Other approaches like a state feedback controller or 
backstepping controller are also adopted, which fail to 
handle the path tracking, especially under time-vary-
ing disturbances because of both its limited applica-
tion around a small origin of the error and the asymp-
totical convergence characteristic of error.
The reference path falls into two categories, includ-
ing straight-line paths and curve paths. Combined 
with kinematic constraints, the reference model is 
described as follows:

enhance the robustness and flexibility, lowering its 
reliance on the mathematical model. The major 
contributions of this paper can be summarized as 
follows: 

(1) Two ESO with time-varying parameters are 
introduced to estimate both lumped mismatched and 
matched disturbances. In this way, the peaking 
phenomenon with large initial error can be 
significantly reduced. 

(2) The composite back-stepping sliding mode control 
can significantly increase the system’s robustness 
under different scenarios without having to rely on the 
precise mathematical model. 

(3) The power reaching law guarantees that the sliding 
variable can reach the designed sliding manifold in a 
finite time, and that the lateral offset can reach a 
bounded set around zero asymptotically with 
disturbances. 

The rest of the paper is organized as follows. Section 2 
describes the kinematic and error model of the 
unmanned tractor path tracking system in presence of 
matched and mismatched disturbances. Section 3 
introduces the design of ESO and back-stepping SMC, 
respectively. Section 4 and Section 5 illustrate the 
simulation and experiments that prove the 
effectiveness and convergence of the proposed 
observer and controller. Section 6 concludes the 
manuscript. 

2. Problem Formulation 
The vehicle is assumed to be front-wheel steering and 
rear-wheel drive with constant speed in the absence of 
generality. Therefore, the tractor is simplified into 2 
degrees of freedom (DOF) bicycle model that only 
considers the lateral movement. The application of 
such a model is commonly seen in many papers, as 
shown in Figure 1 [11, 15]. 

 

Figure 1 
Kinematic of the unmanned tractor. 

 
The coordinate system   refers to the inertial 
coordinate system fixed on the ground, while 

  the longitudinal and lateral 
displacements of the tractor in the ground. The motion 
model is described as follows: 

 (1) 

where   represents the longitudinal velocity that 
can be taken as the constant,  the wheelbase between 
the front wheel and the rear wheel,  the steering 
angle of the front wheel, and  the heading angle. 

The method frequently employed is the one that 
transforms the 2-DOF model into a small-angle 
approximation model and the nonlinear model into a 
linear model. Other approaches like a state feedback 
controller or backstepping controller are also adopted, 
which fail to handle the path tracking, especially under 
time-varying disturbances because of both its limited 
application around a small origin of the error and the 
asymptotical convergence characteristic of error. 

The reference path falls into two categories, including 
straight-line paths and curve paths. Combined with 
kinematic constraints, the reference model is described 
as follows: 

 (2) 

where the subscript  denotes the reference model. 

Considering the difference between the system (1) and 
(2), the error model is 

(2)

where the subscript  denotes the reference model.

enhance the robustness and flexibility, lowering its 
reliance on the mathematical model. The major 
contributions of this paper can be summarized as 
follows: 

(1) Two ESO with time-varying parameters are 
introduced to estimate both lumped mismatched and 
matched disturbances. In this way, the peaking 
phenomenon with large initial error can be 
significantly reduced. 

(2) The composite back-stepping sliding mode control 
can significantly increase the system’s robustness 
under different scenarios without having to rely on the 
precise mathematical model. 

(3) The power reaching law guarantees that the sliding 
variable can reach the designed sliding manifold in a 
finite time, and that the lateral offset can reach a 
bounded set around zero asymptotically with 
disturbances. 

The rest of the paper is organized as follows. Section 2 
describes the kinematic and error model of the 
unmanned tractor path tracking system in presence of 
matched and mismatched disturbances. Section 3 
introduces the design of ESO and back-stepping SMC, 
respectively. Section 4 and Section 5 illustrate the 
simulation and experiments that prove the 
effectiveness and convergence of the proposed 
observer and controller. Section 6 concludes the 
manuscript. 

2. Problem Formulation 
The vehicle is assumed to be front-wheel steering and 
rear-wheel drive with constant speed in the absence of 
generality. Therefore, the tractor is simplified into 2 
degrees of freedom (DOF) bicycle model that only 
considers the lateral movement. The application of 
such a model is commonly seen in many papers, as 
shown in Figure 1 [11, 15]. 

 

Figure 1 
Kinematic of the unmanned tractor. 

 
The coordinate system   refers to the inertial 
coordinate system fixed on the ground, while 

  the longitudinal and lateral 
displacements of the tractor in the ground. The motion 
model is described as follows: 

 (1) 

where   represents the longitudinal velocity that 
can be taken as the constant,  the wheelbase between 
the front wheel and the rear wheel,  the steering 
angle of the front wheel, and  the heading angle. 

The method frequently employed is the one that 
transforms the 2-DOF model into a small-angle 
approximation model and the nonlinear model into a 
linear model. Other approaches like a state feedback 
controller or backstepping controller are also adopted, 
which fail to handle the path tracking, especially under 
time-varying disturbances because of both its limited 
application around a small origin of the error and the 
asymptotical convergence characteristic of error. 

The reference path falls into two categories, including 
straight-line paths and curve paths. Combined with 
kinematic constraints, the reference model is described 
as follows: 

 (2) 

where the subscript  denotes the reference model. 

Considering the difference between the system (1) and 
(2), the error model is 



Information Technology and Control 2023/2/52518
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ESO serves as the key to ADRC. The initial nonlinear 
ESO designed by Han includes multiple parameters 
that require adjustment [9]. Gao developed a linear 
ESO (LESO) based on the concept of “bandwidth” 
[7]. The ESO or LESO peaks when the initial value 
has a large error, which can be explained by its nature 
as a high gain observer. Therefore, this paper designs 
time-varying parameters ESOs, where the time-vary-
ing parameters  and  will take the place of  
and  according to the saturation characteristics 
of the hyperbolic tangent function. The time-varying 
parameters are designed as
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Design 
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scheme that covers two ESOs, the virtual heading 
controller, the sliding mode controller.  

It should be pointed out that noises such as external 
environment noises, sensor noises, etc. widely exist in 
the path tracking system. The direct differential exact 
method will enlarge the noises. In order to exact the 
differential signal under noises, the tracking 
differential (TD) is employed, as can be found from 
Han’s work [9]. 
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where   is the initial lateral offset. Finally, the 
lateral deviation converges into a bounded set. It can be 
concluded form Step 1-3 that the sliding variable will 
reach the sliding surface in a finite time, and then the 
lateral offset will converge into a bounded set around 
zero. 

4. Simulation Analysis of the Path 
Tracking Control System 
Simulations of the back-stepping sliding mode 

controller are constructed in this section to illustrate the 
effectiveness of the proposed controller. Matlab2018 is 
employed as the simulation platform and the Euler 
method as a tool to discrete the model and the 
controller. The simulation time is set as 25 s and the 
fixed step size is 0.001 s. Table 1 lists the relevant tractor 
parameters, observers gains, and controller parameters. 

The initial system states are , 
and . The back-stepping controller designed 
by [6] is adopted for comparison.  
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In order to test the proposed controller under different 
scenarios, the following three different cases are set. To 
simulate the sensor noises, environment noises, etc., 
the Gaussian white noise has been added in the 
simulations, as shown in Figure 3.   
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A simulation comparison between time-varying ESO 
and LESO is conducted to show the peak suppression 
of time-varying parameters ESO (Figure 3). 

 
Figure 3 The history of LESO, time-varying parameters ESO and Gaussian noises. 

 

0 2 4 6 8 10 12 14 16 18

Time(s)

0.97

0.975

0.98

0.985

G
au

ss
ia

n 
no

is
e

0 2 4 6 8 10 12 14 16 18

Time(s)

0

10

20

D
is

tu
rb

an
ce

tanhESO disturbance LESO

0 0.2 0.4 0.6
0

10

11 11.1 11.2

1.3

1.4

(27)

According to Step 1, there exist positive constants  
and  such that

taking the virtual control (12) into the lateral subsystem, 
we have 

       (27) 

According to Step 1, there exist positive constants  

and  such that 

 and . (28) 

For the lateral subsystem, it shows that 

  (29) 

Integrating (27) and combining with the Gronwall-
Bellman inequality, yields 

  (30) 

where   is the initial lateral offset. Finally, the 
lateral deviation converges into a bounded set. It can be 
concluded form Step 1-3 that the sliding variable will 
reach the sliding surface in a finite time, and then the 
lateral offset will converge into a bounded set around 
zero. 

4. Simulation Analysis of the Path 
Tracking Control System 
Simulations of the back-stepping sliding mode 

controller are constructed in this section to illustrate the 
effectiveness of the proposed controller. Matlab2018 is 
employed as the simulation platform and the Euler 
method as a tool to discrete the model and the 
controller. The simulation time is set as 25 s and the 
fixed step size is 0.001 s. Table 1 lists the relevant tractor 
parameters, observers gains, and controller parameters. 

The initial system states are , 
and . The back-stepping controller designed 
by [6] is adopted for comparison.  

Table 1 
Main parameters in controller (18) 

Simulation parameters 
   

   
   

         

In order to test the proposed controller under different 
scenarios, the following three different cases are set. To 
simulate the sensor noises, environment noises, etc., 
the Gaussian white noise has been added in the 
simulations, as shown in Figure 3.   

 (31) 

A simulation comparison between time-varying ESO 
and LESO is conducted to show the peak suppression 
of time-varying parameters ESO (Figure 3). 

 
Figure 3 The history of LESO, time-varying parameters ESO and Gaussian noises. 

 

0 2 4 6 8 10 12 14 16 18

Time(s)

0.97

0.975

0.98

0.985

G
au

ss
ia

n 
no

is
e

0 2 4 6 8 10 12 14 16 18

Time(s)

0

10

20

D
is

tu
rb

an
ce

tanhESO disturbance LESO

0 0.2 0.4 0.6
0

10

11 11.1 11.2

1.3

1.4

   and   

taking the virtual control (12) into the lateral subsystem, 
we have 

       (27) 

According to Step 1, there exist positive constants  

and  such that 

 and . (28) 

For the lateral subsystem, it shows that 

  (29) 

Integrating (27) and combining with the Gronwall-
Bellman inequality, yields 

  (30) 

where   is the initial lateral offset. Finally, the 
lateral deviation converges into a bounded set. It can be 
concluded form Step 1-3 that the sliding variable will 
reach the sliding surface in a finite time, and then the 
lateral offset will converge into a bounded set around 
zero. 

4. Simulation Analysis of the Path 
Tracking Control System 
Simulations of the back-stepping sliding mode 

controller are constructed in this section to illustrate the 
effectiveness of the proposed controller. Matlab2018 is 
employed as the simulation platform and the Euler 
method as a tool to discrete the model and the 
controller. The simulation time is set as 25 s and the 
fixed step size is 0.001 s. Table 1 lists the relevant tractor 
parameters, observers gains, and controller parameters. 

The initial system states are , 
and . The back-stepping controller designed 
by [6] is adopted for comparison.  

Table 1 
Main parameters in controller (18) 

Simulation parameters 
   

   
   

         

In order to test the proposed controller under different 
scenarios, the following three different cases are set. To 
simulate the sensor noises, environment noises, etc., 
the Gaussian white noise has been added in the 
simulations, as shown in Figure 3.   

 (31) 

A simulation comparison between time-varying ESO 
and LESO is conducted to show the peak suppression 
of time-varying parameters ESO (Figure 3). 

 
Figure 3 The history of LESO, time-varying parameters ESO and Gaussian noises. 

 

0 2 4 6 8 10 12 14 16 18

Time(s)

0.97

0.975

0.98

0.985

G
au

ss
ia

n 
no

is
e

0 2 4 6 8 10 12 14 16 18

Time(s)

0

10

20

D
is

tu
rb

an
ce

tanhESO disturbance LESO

0 0.2 0.4 0.6
0

10

11 11.1 11.2

1.3

1.4

(28)

For the lateral subsystem, it shows that

taking the virtual control (12) into the lateral subsystem, 
we have 

       (27) 

According to Step 1, there exist positive constants  

and  such that 

 and . (28) 

For the lateral subsystem, it shows that 

  (29) 

Integrating (27) and combining with the Gronwall-
Bellman inequality, yields 

  (30) 

where   is the initial lateral offset. Finally, the 
lateral deviation converges into a bounded set. It can be 
concluded form Step 1-3 that the sliding variable will 
reach the sliding surface in a finite time, and then the 
lateral offset will converge into a bounded set around 
zero. 

4. Simulation Analysis of the Path 
Tracking Control System 
Simulations of the back-stepping sliding mode 

controller are constructed in this section to illustrate the 
effectiveness of the proposed controller. Matlab2018 is 
employed as the simulation platform and the Euler 
method as a tool to discrete the model and the 
controller. The simulation time is set as 25 s and the 
fixed step size is 0.001 s. Table 1 lists the relevant tractor 
parameters, observers gains, and controller parameters. 

The initial system states are , 
and . The back-stepping controller designed 
by [6] is adopted for comparison.  

Table 1 
Main parameters in controller (18) 

Simulation parameters 
   

   
   

         

In order to test the proposed controller under different 
scenarios, the following three different cases are set. To 
simulate the sensor noises, environment noises, etc., 
the Gaussian white noise has been added in the 
simulations, as shown in Figure 3.   

 (31) 

A simulation comparison between time-varying ESO 
and LESO is conducted to show the peak suppression 
of time-varying parameters ESO (Figure 3). 

 
Figure 3 The history of LESO, time-varying parameters ESO and Gaussian noises. 

 

0 2 4 6 8 10 12 14 16 18

Time(s)

0.97

0.975

0.98

0.985

G
au

ss
ia

n 
no

is
e

0 2 4 6 8 10 12 14 16 18

Time(s)

0

10

20

D
is

tu
rb

an
ce

tanhESO disturbance LESO

0 0.2 0.4 0.6
0

10

11 11.1 11.2

1.3

1.4

(29)

Integrating (27) and combining with the Gron-
wall-Bellman inequality, yields

taking the virtual control (12) into the lateral subsystem, 
we have 

       (27) 

According to Step 1, there exist positive constants  

and  such that 

 and . (28) 

For the lateral subsystem, it shows that 

  (29) 

Integrating (27) and combining with the Gronwall-
Bellman inequality, yields 

  (30) 

where   is the initial lateral offset. Finally, the 
lateral deviation converges into a bounded set. It can be 
concluded form Step 1-3 that the sliding variable will 
reach the sliding surface in a finite time, and then the 
lateral offset will converge into a bounded set around 
zero. 

4. Simulation Analysis of the Path 
Tracking Control System 
Simulations of the back-stepping sliding mode 

controller are constructed in this section to illustrate the 
effectiveness of the proposed controller. Matlab2018 is 
employed as the simulation platform and the Euler 
method as a tool to discrete the model and the 
controller. The simulation time is set as 25 s and the 
fixed step size is 0.001 s. Table 1 lists the relevant tractor 
parameters, observers gains, and controller parameters. 

The initial system states are , 
and . The back-stepping controller designed 
by [6] is adopted for comparison.  

Table 1 
Main parameters in controller (18) 

Simulation parameters 
   

   
   

         

In order to test the proposed controller under different 
scenarios, the following three different cases are set. To 
simulate the sensor noises, environment noises, etc., 
the Gaussian white noise has been added in the 
simulations, as shown in Figure 3.   

 (31) 

A simulation comparison between time-varying ESO 
and LESO is conducted to show the peak suppression 
of time-varying parameters ESO (Figure 3). 

 
Figure 3 The history of LESO, time-varying parameters ESO and Gaussian noises. 

 

0 2 4 6 8 10 12 14 16 18

Time(s)

0.97

0.975

0.98

0.985

Ga
us

sia
n n

oi
se

0 2 4 6 8 10 12 14 16 18

Time(s)

0

10

20

Di
stu

rb
an

ce

tanhESO disturbance LESO

0 0.2 0.4 0.6
0

10

11 11.1 11.2

1.3

1.4
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where  is the initial lateral offset. Finally, the later-
al deviation converges into a bounded set. It can be con-
cluded form Step 1-3 that the sliding variable will reach 
the sliding surface in a finite time, and then the lateral 
offset will converge into a bounded set around zero.

4. Simulation Analysis of the Path 
Tracking Control System
Simulations of the back-stepping sliding mode con-
troller are constructed in this section to illustrate the 

effectiveness of the proposed controller. Matlab2018 
is employed as the simulation platform and the Euler 
method as a tool to discrete the model and the control-
ler. The simulation time is set as 25 s and the fixed step 
size is 0.001 s. Table 1 lists the relevant tractor parame-
ters, observers gains, and controller parameters.

Table 1
Main parameters in controller (18)

Simulation parameters

      

The initial system states are , 
and . The back-stepping controller de-
signed by [6] is adopted for comparison. 
In order to test the proposed controller under differ-
ent scenarios, the following three different cases are 
set. To simulate the sensor noises, environment nois-
es, etc., the Gaussian white noise has been added in 
the simulations, as shown in Figure 3.
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of time-varying parameters ESO (Figure 3). 
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A simulation comparison between time-varying ESO 
and LESO is conducted to show the peak suppression 
of time-varying parameters ESO (Figure 3). 
Figure 3 illustrates the observation value of distur-
bance. Both observers can track the given disturbance 
after 0.4s, while the ESO excels in suppressing the 
peaking phenomenon, performing smaller tracking 
errors, and tracking speed.
Figure 4 reveals the evolution of absolute lateral error 
of 2 controllers under three cases. The tractor per-
forms absolute mean steady lateral error of 0.0989, 
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Figure 3 
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The absolute lateral offset under different speeds. 
 

 
 
Figure 5 
The mean absolute value of the steady lateral offset. 
 

 
 

5. Field Experiment Research 
The field experiment research is conducted in 
Chongming Land (Shanghai, China) in November with 
a tractor (Dongfanghong, 1104) serving as the field test 

platform after relevant intelligent modification. This 
paper takes the 32-bit chip STM32 (TI Corporation, 
USA) as the vehicle controller, the electrical steering 
wheel (Lianshi Co., Ltd., Shanghai) as an alternative to 
the previous manned wheel, together with the angle 
sensor (Tianhaike Co., Ltd., Beijing) to measure the 
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0.0145, and 0.0336 after 3.17s, and the absolute mean 
steady lateral error of 0.5595, 0.3247, and 0.2869 after 
3.71s with speeds of 0.5, 1.5, and 2.5 m/s, respectively, 
under the back-stepping SMC method in Case 1. The 
other two situations can be found in Figure 5. It can 
be concluded that, compared with the traditional con-
trollers, the proposed controller can largely enhance 
the tracking accuracy under diverse speeds and dis-
turbances.

5. Field Experiment Research
The field experiment research is conducted in Chong-
ming Land (Shanghai, China) in November with a 
tractor (Dongfanghong, 1104) serving as the field test 
platform after relevant intelligent modification. This 
paper takes the 32-bit chip STM32 (TI Corporation, 
USA) as the vehicle controller, the electrical steering 
wheel (Lianshi Co., Ltd., Shanghai) as an alternative 
to the previous manned wheel, together with the an-
gle sensor (Tianhaike Co., Ltd., Beijing) to measure 
the front steering’s angle. The satellite positioning 
system (Beidou Xingtong Technology Co., Ltd., Bei-
jing) and MTI-300 inertial navigation system (XS-
ENS, Netherlands) also make contributions. Figure 6 
portrays the experimental prototype.
The paper employs the pure pursuit controller fre-
quently seen in unmanned tractors to compare the 
proposed controller and the back-stepping sliding 
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where  denotes the look-ahead distance. 

Given the dependence of the control performance of 
the pure pursuit controller on the look-ahead distance, 
a fuzzy method is adopted in the paper to determine 
the optimal look-ahead distance that guarantees 
fairness [21, 23]. Besides, the lateral deviation and 
heading deviation act as the input, while the dynamic 
look-ahead distance is the output, which is subject to 
the following fuzzy rules. 

(1) The lateral deviation fuzzy set is {LV, LB, LM, LS, M, 
RS, RM, RB, RV}; 

(2) The heading deviation fuzzy set is {LB, LM, LS, M, 
RS, RM, RB}; 

(3) The look-ahead distance fuzzy set is {VC, C, LC, M, 
L, F, VF}. 

This paper also employs the trigonometric 
membership function and the Mamdani method, the 
former of which is illustrated in Figure 7. 

 

Figure 7 
Sketches of membership functions. 

 
The test field consists of weeds and water accumulation, 
which leads to the sliding effect and external 
disturbance. Four boundary points (A, B, C, D) of the 
operation area are picked in a rectangular paddy field 
with a portable positioning receiver, and the reference 
path that includes the straight path and curve path is 
generated by the navigation controller that records the 
actual position, lateral deviation, and heading angle 
deviation. The vehicle speed is fixed to be 1 m/s, the 
initial lateral deviation 0.3 m, while the initial heading 
angle deviation 0. Figure 8 reveals the reference path 
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where  denotes the look-ahead distance.
Given the dependence of the control performance 
of the pure pursuit controller on the look-ahead dis-
tance, a fuzzy method is adopted in the paper to deter-
mine the optimal look-ahead distance that guarantees 
fairness [21, 23]. Besides, the lateral deviation and 
heading deviation act as the input, while the dynamic 
look-ahead distance is the output, which is subject to 
the following fuzzy rules.
1 The lateral deviation fuzzy set is {LV, LB, LM, LS, 

M, RS, RM, RB, RV};
2 The heading deviation fuzzy set is {LB, LM, LS, M, 

RS, RM, RB};
3 The look-ahead distance fuzzy set is {VC, C, LC, M, 

L, F, VF}.
This paper also employs the trigonometric member-
ship function and the Mamdani method, the former of 
which is illustrated in Figure 7.
The test field consists of weeds and water accumu-
lation, which leads to the sliding effect and external 
disturbance. Four boundary points (A, B, C, D) of the 
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MTI-300 inertial navigation system (XSENS, 
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portrays the experimental prototype. 
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deviation. The vehicle speed is fixed to be 1 m/s, the 
initial lateral deviation 0.3 m, while the initial heading 
angle deviation 0. Figure 8 reveals the reference path 

operation area are picked in a rectangular paddy field 
with a portable positioning receiver, and the refer-
ence path that includes the straight path and curve 
path is generated by the navigation controller that 
records the actual position, lateral deviation, and 

heading angle deviation. The vehicle speed is fixed to 
be 1 m/s, the initial lateral deviation 0.3 m, while the 
initial heading angle deviation 0. Figure 8 reveals the 
reference path and the actual trajectories under the 
action of the two controllers.
Figure 9, Table 2, and Table 3 list the results of the 
proposed back-stepping SMC and the fuzzy pure 
pursuit control, according to which, the obvious lat-
eral deviation of the fuzzy pure pursuit control are 
observed, especially in the curve path. The sliding ef-
fect that results in the time-varying disturbances to 
the tractor matters a lot during the turning operation. 
However, the design of the fuzzy pure pursuit control 
fails to consider the robustness. 
The actuator that traps in a saturation dead zone 
undermines the dynamic response performance. As 
for the fuzzy pure pursuit control method, the min-
imum lateral deviation is 0.17 m during the straight 
path, while the maximum lateral deviation records 
0.27 m during the curve path. The proposed control-
ler performs favorably thanks to the disturbance 
observer and sliding mode control, and the lateral 
deviation is always within 0.045 m regardless of the 
path.
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Figure 8
Field experiment paths

and the actual trajectories under the action of the two controllers. 

 
Figure 8 
Field experiment paths. 

 
 

Figure 9, Table 2, and Table 3 list the results of the 
proposed back-stepping SMC and the fuzzy pure 
pursuit control, according to which, the obvious lateral 
deviation of the fuzzy pure pursuit control are 
observed, especially in the curve path. The sliding 
effect that results in the time-varying disturbances to 
the tractor matters a lot during the turning operation. 
However, the design of the fuzzy pure pursuit control 
fails to consider the robustness. The actuator that traps 

in a saturation dead zone undermines the dynamic 
response performance. As for the fuzzy pure pursuit 
control method, the minimum lateral deviation is 0.17 
m during the straight path, while the maximum lateral 
deviation records 0.27 m during the curve path. The 
proposed controller performs favorably thanks to the 
disturbance observer and sliding mode control, and the 
lateral deviation is always within 0.045 m regardless of 
the path. 

 

Figure 9 
The actual lateral deviation under two different kinds of controllers. 

 
 

Table 2 
The lateral deviation statistics under the 
backstepping-SMC control 
The 
serial 
number 
of the 
path 

Lateral deviation /m 

Maximum 
value 

Minimum 
value 

Average 
value 

root-
mean-
square 

standard 
deviation 

1 0.0460 -0.0430 0.0018 0.0528 0.0525 
2 0.0465 -0.0430 0.0127 0.0266 0.0264 
3 0.0450 -0.0430 0.0081 0.0232 0.0231 

 

The lateral deviation statistics under the fuzzy pure 
pursuit control  
The 
serial 
number 
of the 
path 

Lateral deviation /m 

Maximum 
value 

Minimum 
value 

Average 
value 

root-
mean-
square 

standard 
deviation 

1 0.2800 -0.1900 0.0300 0.1206 0.1199 
2 0.2700 -0.1900 -0.0146 0.1213 0.1206 
3 0.1700 -0.3300 -0.0560 0.1256 0.1248 
 

6. Conclusions 
In this paper, a back-stepping SMC is proposed for the 
unmanned tractors to realize the path following control 
with high robustness. Specifically, in this system, the 
time-varying parameters ESOs were used to estimate 
both the mismatched and matched disturbances; 
meanwhile, the bounded hyperbolic tangent function 
was used to limit the control input. The Lyapunov 
theory was applied to analyze the controller's stability, 
and the simulation and field experiments were carried 
out to verify its effectiveness. According to the 
experiment, the proposed controller can guarantee the 
lateral deviation within 0.045 m, verifying the 
effectiveness of the proposed back-stepping SMC for 
the unmanned farm tractor.  
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The actual lateral deviation under two different kinds of controllers
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6. Conclusions
In this paper, a back-stepping SMC is proposed for 
the unmanned tractors to realize the path following 
control with high robustness. Specifically, in this sys-
tem, the time-varying parameters ESOs were used to 
estimate both the mismatched and matched distur-
bances; meanwhile, the bounded hyperbolic tangent 
function was used to limit the control input. The Lya-
punov theory was applied to analyze the controller’s 
stability, and the simulation and field experiments 
were carried out to verify its effectiveness. According 
to the experiment, the proposed controller can guar-

Table 2
The lateral deviation statistics under the backstepping-SMC control

The serial num-
ber of the path

Lateral deviation /m

Maximum value Minimum value Average value root-mean-square standard deviation

1 0.0460 -0.0430 0.0018 0.0528 0.0525

2 0.0465 -0.0430 0.0127 0.0266 0.0264

3 0.0450 -0.0430 0.0081 0.0232 0.0231

Table 3
The lateral deviation statistics under the fuzzy pure pursuit control 

The serial 
number of 

the path

Lateral deviation /m

Maximum value Minimum value Average value root-mean-square standard deviation

1 0.2800 -0.1900 0.0300 0.1206 0.1199

2 0.2700 -0.1900 -0.0146 0.1213 0.1206

3 0.1700 -0.3300 -0.0560 0.1256 0.1248

antee the lateral deviation within 0.045 m, verifying 
the effectiveness of the proposed back-stepping SMC 
for the unmanned farm tractor. 
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