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Automaton learning has attained a renewed interest in many interesting areas of software engineering in-
cluding formal verification, software testing and model inference. An automaton learning algorithm typi-
cally learns the regular language of a Deterministic Finite Automaton (DFA) with the help of queries. These 
queries are posed by the learner (Learning Algorithm) to a Minimally Adequate Teacher (MAT). The MAT 
can generally answer two types of queries asked by the learning algorithm; membership queries and equiv-
alence queries. Learning algorithms can be categorized into three broad categories: incremental, sequential 
and complete learning algorithms. Likewise, these can be designed for 1-bit learning or k -bit learning. Ex-
isting automaton learning algorithms have polynomial (at-least cubic) time complexity in the presence of 
a MAT. Therefore, sometimes these algorithms are unable to learn large complex software systems. In this 
research work, we have reduced the time complexity of the DFA learning into lower bounds (from cubic to 
square form). For this, we introduce an efficient complete DFA learning algorithm through Inverse Queries 
(DLIQ) based on the concept of inverse queries introduced by John Hopcroft for state minimization of a DFA. 
The DLIQ algorithm takes (| || | | | )sO P F N+ Σ  complexity in the presence of a MAT which is also equipped 
to answer inverse queries. We give a theoretical analysis of the proposed algorithm along with providing an 
empirical analysis of DLIQ and ID (Identification of regular languages) algorithms. For this, we implement 
an evaluation framework. Results depict that in terms of time complexity our proposed algorithm DLIQ is 
more efficient than the ID algorithm. 
KEYWORDS: Automaton learning, complete learning algorithm, delta inverse transitions, inverse query, live 
complete set, distinguishing string.
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1. Introduction
Automaton learning or grammatical inference is a do-
main in which a system is inferred in the form of an 
automaton by providing a sequence of inputs (i1, i2, . . 
. , in) and then synthesizing the corresponding output 
sequence (o1, o2, . . . , on) obtained from the System Under 
Learning (SUL) into a finite automaton. Automaton 
learning makes use of a learner (automaton learning 
algorithm) and a Minimally Adequate Teacher (MAT) 
[2]. The learner learns the regular set from queries 
and counterexamples depending upon the setup pro-
vided by the learning algorithm. The learner poses que-
ries to the MAT which responds to those queries about 
the unknown regular set. It answers two types of ques-
tions: First type is a membership query, consisting of 
the string t ÎΣ∗. The adequate teacher answers as yes 
or no depending on whether string t is a member of 
the unknown regular set or not. The second type of 
question is a conjecture, consisting of a description of 
the regular set S; the answer is yes if S is behavioral-
ly equivalent to the unknown language and is a string 
t in the symmetric difference of S and the unknown 
language otherwise. In the second case, the string t is 
called a counterexample or a witness because it serves 
to demonstrate that the conjectured set S is incorrect.
Automaton learning algorithms are designed in a way 
to learn in the limit to yield a minimal approximation 
of the target DFA. The concept of learning in the limit 
was first introduced in 1967 by E. M. Gold [10]. In his 
paper, he showed that with the help of a grammatical 
inference or an automaton learning algorithm, a reg-
ular language corresponding to some unknown target 
DFA can be inferred by a finite number of queries / 
guesses. Three types of automaton learning algorithms 
have been proposed in the literature which include: 
complete learning algorithms, in- cremental learning 
algorithms and sequential learning algorithms. Exam-
ples of each category are provided in Section 3.
In recent years, the software engineering research 
community has used grammatical inference [21, 25, 
28, 29] because of its possibility to solve a wide range 
of practical applications of formal verication [12], 
model inference [11, 20, 22, 24, 30] and software test-
ing [4]. These applications in general use the concept 
of inferring an automaton by generating a model of a 
system under learn (SUL) and analyzing it to check its 
behavioral correctness with respect to a specification.

The existing automaton learning algorithms have 
polynomial time complexity (at-least in cubic form) 
in the presence of MAT. For testing and formal veri-
fication of large complex software systems, the exist-
ing automaton learning algorithms take a lot of time 
during inferring the model of System Under Learn 
(SUL). Sometimes, these algorithms even become 
fail to learn large complex software systems. In paper 
[32] authors specifically provide some real world ex-
amples of 6 transition systems of CSS processes [5–7] 
like buffers, schedulers, vending machines and mutu-
al exclusion protocols [23, 34] where they fail o learn 
them due to inefficient learning algorithms (in form 
of time) and lack of storage space. In their paper, au-
thors also emphasis on the need of some good autom-
aton learning algorithm that may efficient enough in 
form of execution time and memory. According to the 
existing literature [3, 31] although sig- nificant work 
has been done in the development of DFA learning 
algorithms but many researchers have an agreement 
that there is still a need to design more efficient au-
tomaton learning algorithms to solve practical learn-
ing problems and situations [33].
For this reason, in this paper we introduce a new ef-
ficient DFA learning algorithm DLIQ based on the 
concepts of the ID (Identification of regular languages) 
algorithm [1] because the concept of minimal adequate 
teacher (MAT) was first introduced in ID algorithm 
and without this concept, the learning of a DFA is 
an NP-hard problem. Secondly, the concept of dis-
tinguishing string was also given in the ID algorithm 
which is used in our proposed algorithm along with 
inverse queries. The DLIQ algorithm learns the Sys-
tem Under Learning (SUL) by splitting it into final 
and non-final state blocks and then identifying be-
haviorally equivalent and non-equivalent states by 
traversing towards the initial state using inverse que-
ries which were initially proposed by John Hopcroft 
for state minimization of DFAs [13].
The major contributions of the paper are given below:
1 We design and implement a new efficient DFA 

learning algorithm possessing worst case time 
complexity in square polynomial form unlike ex-
isting DFA learning algorithms.

2 We introduce and define the concept of δ−1 and In-
verse Queries (IQ) in DFA learning.
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3 We improve the complete learning process of DFAs 
by making use of Inverse Queries (IQ).

4 We enhance the capabilities of the existing MAT to 
make it capable to answer Inverse Queries (IQ).

5 We propose a method to generate live complete set 
of a randomly generated DFA, based on a procedure 
named as testing tree which is used for generating 
covering sets from FSMs.

Rest of the paper is organized as follows: we give pre-
liminaries to understand the proposed algorithm in 
Section 2, we review the related work of the field in 
Section 3. The proposed DLIQ algorithm is provided 
in Section 4, the proofs for correctness and termi-
nation of the DLIQ algorithm are given in Section 5, 
an example describing the working of the algorithm 
is shown in Section 6. In Section 7, we compare the 
performance of our proposed DLIQ algorithm with 
the ID algorithm because DLIQ is based on the con-
cepts introduced in the ID algorithm and both these 
algorithms have similar characteristics which are un-
like other DFA learning algorithm such as: the ID al-
gorithm is also a complete learning algorithm, which 
employs a table data structure and it does not use the 
concept of counter- examples as done in the *L  algo-
rithm. At the end, we analyze and present the time 
complexity of the DLIQ algorithm in Section 8, and 
finally, we present conclusions along with some new 
research directions in Section 9.

2. Mathematical Preliminaries and 
Notation
A Deterministic Finite Automaton (DFA) A  consists 
of a quintuple 0, , , ,Q q Fδ〈 Σ 〉 where Q  denotes the fi-
nite set of states, Σ  is a finite set of input symbols, δ  
is the transition function which gives the next state 
when we read an input symbol from a specific state 

: Q Qδ ×Σ→ . The state 0q Q∈  is the start state and 
F Q⊆  is the set of final states. 

As Σ  is a finite set of input symbols and *Σ  is the set of 
all finite length strings including the empty string λ. 
Let *, ,α β γ ∈Σ , if γ =α.β then α  is called a prefix and 
β  is called a suffix of γ .
A state q  is called a live state if there exists strings α  
and β  such that ( )L Aαβ ∈  and 0= ( , )q qδ α  since ( )L A  is 

the language accepted by A  [22], whereas a Live Com-
plete set P  is a set of all strings which may lead to some 
live state of a DFA. We let 1 2= { , , , }nP p p p  to be the 
live complete set of n  strings.
A state which is not live is called a dead state and we 
denote it by 0d . Mathematically, 0d F∉  and 0 0( , ) =d dδ α  
for all *α ∈Σ . 
Definition  2.1. Let for a DFA A , having transition func-
tion : Q Qδ ×Σ→  which can also be written as ( , ) =i jq qδ σ  
and the iterated transition function * *: Q Qδ ×Σ →  in-
ductively defined by ( , ) =q qδ λ  where λ  is an empty 
string and * *

1 2 1 2 1( , , , , ) = ( ( , , , , ), )j n n nq b b b q b b b bδ δ δ − 

Likewise, we inductively define 1*δ −  using the inverse 
transition relation 1δ − . Where 1 : Q Qδ − ×Σ ⊆  and can 
also be written as 1( , )jq Qδ σ− ⊆  where 1−Σ  denotes an 
inverse transition by reading an element of Σ  from a 
state Q  to give its predecessor states. The inductive 
definition of 1*δ −  is now simple to follow as 1( , ) =q qδ λ− , 
if and only if q  is a starting state otherwise it returns 
∅  and *1

1 2( , , , , )j nq b b bδ −   = *1 1
2 1( ({ }, , , ), )nq b b bδ δ− −  . 

In the automaton learning context we define the In-
verse Query (IQ) as a query which is asked by the 
learner from the teacher about the predecessor 
state(s) of a state jq , by reading some string *α ∈Σ  
from it, i.e., 1*( , ) = ?jqδ α−  The teacher gives response 
as (Yes/No) based on the answer which can be a set of 
state(s) or an empty set.
A string α  is called an accepting string which when 
read from the initial state 0q  of a DFA ( )A  leads to 
some final state F  of the DFA ( )A , i.e., *

0( , )q Fδ α ∈ , oth-
erwise, when *

0( , )q Fδ α ∉  then α  is termed a rejecting 
string. 
A block is a set of states denoted by ( )B num , the block 
of non-final states is initially specified as B(1) and can 
be computed as (Q F)−  and the block of final states is 
specified as B(2)= F . Let ( )B k  denote the thk  block in 
the set of blocks. The size of a block B(k) is denoted by 
| |B(k) , and gives the number of states in that block.

3. Related Work
In automaton learning [26, 27], there are three basic 
types of algorithms: incremental learning algorithms, 
sequential learning algorithms and complete learning 
algorithms. In incremental learning, the system under 
learning (SUL) is learnt in a number of increments i = 
1, 2, . . . , n and the learner makes the hypothesis DFA Mi 
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at the end of each increment and ask the equivalence 
query from the teacher. In case of a negative answer 
to the equivalence query, the teacher may or may 
not provide a counterexample. If the teacher pro-
vides a counterexample then the learner extends the 
learning process on the basis of the received counter-
example and incorporates the learning information 
from previous increment(s) in the new increments. 
In sequential learning, however, learning is also done 
in a number of increments but in each increment the 
learner starts learning from the scratch and does not 
use information from the previous increments. In 
complete learning, the entire system is learnt in a 
complete fashion to generate a hypothesis. When the 
whole system (SUL) is learnt by the learner only then 
it generates a hypothesis DFA, M .
According to the existing literature examples of in-
cremental learning algorithms include: IID [22], IDS 
[18], IKL [19], DKL [17] Kearns [15], TTT [14] and 
RPNI2 [9] whereas complete learning algorithms are 
L∗ [2], ID [1] and RPNI [8].
The *L  is a complete learning algorithm. It infers a 
regular language by asking two types of queries; mem-
bership and equivalence queries. It poses the mem-
bership queries and store the information in the form 
of a table which is called an Observation Table (OT). 
The OT should meet two basic properties before ask-
ing equivalence queries to make a conjecture. These 
properties are closure and consistency [2]. If the ob-
servation table is closed but not consistent then col-
umns of the observation table OT are extended with 
a symbol σ  where σ ∈Σ . When the OT is closed and 
consistent, a conjecture can be constructed. The *L  
continues its learning process until OT becomes con-
sistent and closed. 
The ID algorithm is a complete learning algorithm 
[1]. It poses membership queries from the adequate 
teacher (MAT) to learn the regular set. The concept 
of MAT was first introduced in this algorithm. It uses 
the concept of live states, live complete set and dead 
state 0d . The ID algorithm uses the concept of distin-
guishing strings. To find the blocks of accepting and 
non-accepting states, the ID algorithm constructs a 
table. When the first iteration completes, the ID al-
gorithm finds a pair of strings from the live complete 
set which have the same behavior but for some inσ ΣÎ inσ Σ  
concatenated with both strings results in different be-
haviors for these strings; as one goes to the accepting 

block and the other goes to the rejecting block. This 
gives a potential distinguishing string. If the ID algo-
rithm finds no such pair of strings then it constructs 
the hypothesis DFA,  which is isomorphic to the 
target DFA . 
The RPNI algorithm is a passive learning algorithm 
[8]. It uses a tree data structure instead of a table for 
storing information about the hypothesis and does 
not maintain consistency. It does not use member-
ship queries for learning purpose. It takes two input 
sets; a set of positive examples and a set of negative 
examples S+  and S−  respectively. It first writes the 
elements of S+  and its prefixes in lexicographical or-
der then from the set of positive examples and their 
prefixes, it constructs the prefix tree { }( )PT S+ . Then 
it recursively partitions the branches of the tree into 
blocks. Initially, each element of { }( )PT S+  belongs to 
its self containing block. The RPNI algorithm recur-
sively applies joint operation on these blocks so that 
they can be merged into two final blocks. One is the 
accepting state block and the second is the non-ac-
cepting state block. 
IID, IDS, RPNI, RPNI2, L*, Kearns, TTT and ID algo-
rithms are 1-bit in nature whereas, IKL, DKL and L* 
Mealy are k-bit in nature. If we analyze their complex-
ities, we can see that in the presence of an adequate 
teacher the complexity of these learning algorithms is 
polynomial (at-least in cubic form) given in Table 3. 
The state minimization concept introduced by John 
Hopcroft, in his algorithm he had used the strategy of 
making blocks of final and non-final states. With δ −  
transition method, he identified the similar states to 
generate the minimal target automaton. He claimed 
that his algorithm takes nlogn  complexity for genera-
tion of minimal target automaton.
On the basis of the existing literature for automaton 
learning and state minimization of automata, in this 
paper we introduce a new efficient DFA learning al-
gorithm DLIQ based on the concepts of the ID algo-
rithm along with inverse transition strategy of John 
Hopcroft algorithm for state minimization of DFAs. 
The aim of the current paper is to bring the complex-
ity of DFA learning from polynomial(cubic) to some 
lower bounds for complete learning of a DFA. A brief 
summary of existing DFA learning algorithms is given 
in Table 3 along with the comparison of our proposed 
algorithm.
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Table 1 
Summary of Existing DFA Learning Algorithms along with Comparison of the Proposed DLIQ Algorithm

Algorithm   Learning Type Data Structure Output Bits MQ   IQ Time ( )O Queries  Complexities

*L Complete Table 1 Yes No 2(| | . )O N MΣ

ID Complete Table 1 Yes No (| | . | | . )O P NΣ

IID Incremental Table 1 Yes No (| | . | | . )lO P NΣ

IDS Incremental Table 1 Yes No (| | . | | . )kO P NΣ

*L Mealy Complete Table k ≥  1 Yes No ( ( , ). | | . )O max N NMΣ Σ

RPNI   Complete Tree 1 No No
2((| | | |). | | )p n pO S S S+

RPNII   Incremental Tree 1 No No
2((| | | |). | | )p n pO S S S+

Kearns   Incremental Tree 1 Yes No 2( )O kN NlogM+

TTT   Incremental Tree 1 Yes No 2( )O kN NlogM+

IKL   Incremental Table k ≥  1 Yes No (| | . | | . )k lO P NΣ

DKL   Incremental Tree k ≥  1 Yes No ( . . | | . (| | . | |,| |))acc accO N k S max S iΣ

DLIQ   Complete Table 1 Yes Yes (| | . | || |)sO N P FΣ +

The detailed description of the DLIQ algorithm is given in Section 4.

Table 2
Description of used Notations

Notation Description

P The live complete set

Ps A set consisting of strings in the live complete set and their suffixes

λ The empty or null string

F The set of final states

N Number of states in the target

B(num) A block of one or multiple states

k A variable used as a block counter

BlockSet The set of blocks where = { (1), (2), , ( )}BlockSet B B B k

B(k) The kth block

num A variable which shows the block number in response to the BlockQuery function

Bnum The List of blocks which is maintained in response to the BlockQuery function

B(num′′) An element of numB  containing states which belong to the same block in response to the BlockQuery 
function
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4. The Proposed DLIQ Algorithm
The DLIQ is a complete learning algorithm which 
works on the strategy of 1δ −  transitions. It uses a set 

sP  of distinguishing strings. The detailed description 
of used notations is given in the Table 4. 
Initially, the DLIQ algorithm divides the state set into 
two blocks; the Non-final state block (1)B  and the 
Final state block (2)B . The DLIQ algorithm starts 
learning from the final states on the basis of distin-
guishing strings and creates / splits blocks into new 
blocks based on the distinguishing behavior of the 
predecessor states. In this way, learning is done from 
final to each live state (till the initial state). 
In each iteration, the learner (DLIQ) reads an element 
of set sP  from a final state set and finds its predecessor 
state(s). If the predecessor states belong to different 
blocks then it splits the respective blocks and places 
the states into new blocks. The learner completes its 
learning when all elements of set sP  are exhausted.
The proposed DLIQ algorithm is presented below in 
Algorithms 1 and 2.

Algorithm 1. DLIQ Algorithm
1: Input: A Live Complete set *P ⊆ Σ  and a DFA A  to 
act as a teacher to answer queries.
2: Output : A DFA M equivalent to the target DFA A.
3: Step 1: if =P ∅  then M  consists of a single 
non-final state having self transitions. else
4: Initially states are divided into two blocks by ask-
ing MQ for all ip P∈  as ( , ) =i ip qδ λ  where either 

iq F∈  or not. 
// Initiate BlockSet
5: B(1) = (Q - F ) //Non-final states block
6: B(2) = F //Final states block // update BlockSet
7: Step 2: Make table 1δ −  by using final state set F  and 
all their predecessor states, for all input elements σ  
along with empty string λ , where σ ∈Σ
8: Step 3: k = 3
9: Find suffix set of all P strings as Ps

10: Step 4:
11: for all pi ∈ Ps where pi ¹ λ do
12: for all fl ∈ F ask inverse query for pi do
13: // finding predecessor state(s) of set F via read-

ing element pi.

 there are three possibilities against the response 
of inverse query. “No” means no predecessor state, 
“Yes” with one predecessor state or “Yes” with mul-
tiple predecessor states.

14: if δ−1∗(fl, pi) = No = ∅ then
15:      go to Line 12;
16: else if  δ−1∗(fl, pi) = Yes =  {qj}then
17: BlockQuery(qj, BlockSet) = num // Block Mem-

bership call using Algorithm 2
18: B(k′) =  { qj}
19: if | ( ) |<| ( ) |B k B num′  then
20:    B(k) = B(k′)
21:    B(num) = B(num)  –B(k)
                        // update BlockSet
22: end if
23: else if  δ−1∗(fl, pi) = Yes =  {q1, . . . , qm}  then
24: for j = 1 to j = m do
25: BlockQuery(qj, BlockSet) = num // Block 

Membership call using Algorithm2.
 //All predecessor states those belong to 

the same block are placed in a single block 
named as B(num′′) such as:

 B(num′′)=B(num′′)  ∪ {qj } where B(num′′) 
belongs to the list Bnum

26: end for
27: B(k′) = B(num′′)
28:    if | ( ) |<| ( ) |B k B num′  then
29:    B(k) = B(k′)
30:    B(num) = B(num) – B(k)
    // update BlockSet
31:    end if
32: end if
33: Step 5
34: if ( ( ) )B k ≠ ∅  then k ++
35:                      if ( )numB ≠ ∅  then goto Line 27
36: end for
37: end for
38:  Generate hypothesis automaton M by reading in-
verse transitions from δ−1 table.
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Algorithm 2. Block Membership
1:  Input: A state qj where qj ∈ Q and a set of existing 
blocks BlockSet.
2:  Output: Block number named as num, from where 
qj belongs to.
3:  Function BlockQuery(qj, BlockSet)
4: {
5: return num
6: }

5. Correctness and Termination
The correctness of the algorithm is based on the fact 
that it correctly produces a learned DFA consistent 
with the target DFA A . 
Conjecture 5.1. Splitting of a block ( )B num  as 
B(a)  and B(b)  is done on the basis of mutually ex-

clusive =B(a) B(b)∩ ∅  and completely exhaustive 
= ( )B(a) B(b) B num  property. 

Lemma 5.2. Number of blocks | |BlockSet  can not ex-
ceed the number of states. 
Proof. Since only two blocks are created initially. One 
consists of only non-final states B(1)  and other con-
sists of only final states B(2) . When blocks are split 
then the DLIQ algorithm (line 4 and 4) makes sure 
that blocks meet mutually exclusive =B(1) B(2)∩ ∅  
and completely exhaustive =B(1) B(2) Q∪  proper-
ty. Therefore, no state can be in more than one block 
and every state must reside in some block. Therefore, 
even in the case when every state resides in a separate 
block, the number of blocks can not be greater than 
the number of states. 
Theorem 5.3. Let 1 2= { , , , }s nP p p p  is a set consist-
ing of strings in the live complete set for a target DFA 
A  and their suffixes. Then the blocks created during 

learning are distinguishable on the elements of sP  read 
so far and are mutually exclusive in nature. 
Proof. The main task is to show that 1δ −  transition is 
a well defined relation. As it takes two arguments; the 
state and an element i sp P∈  as a distinguishing string 
to find the distinguishing behavior of states and re-
turn predecessor state(s) via reading i sp P∈ . As 

1
1( , ) =j i jq p qδ −
−  or nq . Since the predecessor states: 

initially belonging to the same block are split and are 
placed in newly created blocks during learning. These 
blocks are distinguishable on the element ip . There-

fore, first part of the theorem is proved. 
Further, it follows from Conjecture 5.1 that since 
blocks are always created based on mutually exclu-
sive =B(a) B(b)∩ ∅  property hence, it suffices to 
establish that during partition refinement newly cre-
ated blocks will be mutually exclusive in nature. 
Corollary 5.4. Let 1 2= { , , , }s nP p p p  be a non-empty 
set consisting of strings in the live complete set and their 
suffixes and 1 i n≤ ≤ . The execution of DLIQ on sP  ter-
minates with the program variable i  having value n . 
Proof. It is obvious that the outer for loop of Algo-
rithm 4 terminates when the set sP  having | |=sP n  is 
exhausted. 
Theorem 5.5 (Theorem). Let 1 2= { , , , }s nP p p p  be 
a set consisting of strings in the live complete set for a 
target DFA A  and their suffixes. The DLIQ algorithm 
terminates on sP  and have k  distinct blocks at the 
end of the execution. 
Proof. (a) By Corollary 5.4, DLIQ terminates on sP  
with the program variable i  having value n. (b) The 
number of distinct blocks created during learning by 
reading some element i sp P∈ , can be shown to vary 
between 1 and m ; 1 k m≤ ≤  where | |m Q≤  by induc-
tion on sP . 
Theorem 5.6 (Theorem). The DLIQ algorithm ter-
minates on sP  and the hypothesis automaton M  is a 
canonical representation of A . 
Proof. As the DLIQ algorithm poses inverse and equiva-
lence queries to get the information about the grammar 
of the target DFA A . It is important to note that DLIQ 
specifically learns through inverse queries. We use the 
following two premises to prove this theorem: (a) The 
Termination Theorem 5.5 establishes that learning ter-
minates when all elements of the set sP  are exhausted. 
(b) The DLIQ algorithm merges all the states of the tar-
get automaton A  which are equivalent in behavior into 
a single state block and the hypothesis automaton M  is 
then constructed using all the blocks created as states 
of the learned hypothesis. Therefore, the hypothesis au-
tomaton M  is a unique minimal representation of A . 
Combining (a) and (b) prove the theorem.

6. An Example
Now we illustrate the working of the DLIQ algorithm 
on an example automaton given in Figure 1a. The in- 



Information Technology and Control 2022/4/51618

puts of the algorithm consist of the Target Automaton 
(A) (given in Figure 1a), the live complete set P = {λ, 
0,1,01,11,111,1110} of the target automaton A. Initially 
states are partitioned into two main blocks by asking 
the membership query (MQ) δ(pi, λ) =? where pi ∈ P of 
the target automaton A. Now states divided into two 
blocks are: B (1 ) = {A, B, D, E, F, G, H} and B (2 ) = {C}.

decessor states of C via reading 1 are found to be B, 
C, H. Both B and H belong to block B(1)  and C be-
longs to the block B(2) therefore, ''B(1 )  = { B, H } 
and ''B(2 )  = {C}. We get, =B(k ) B(4 )′ ′  = {B, H} as 
| |<| |B(4 ) B(1)′ , therefore, B(4) = {B, H} and B(1) = 
{A, E, G}. Now we go to step 5 and find B(4) ≠ ∅ , 
therefore k  = 5 and numB ≠ ∅  therefore, goto the 
line 27 of Algorithm 1. We get, =B(k ) B(5 )′ ′  = {C} as 
| |=| |B(5 ) B(2)′ , therefore, if condition is false. Now 
control again go to the step 5. As =B(5) ∅  therefore, 
value of k  remains the same as k  = 5. Since, B(2)  has 
no more elements therefore, inner for loop ends. The 
next ip  = 01. The predecessor states of C via reading 
01 are A, F, D, E. A and E belong to B(1)  and F, D be-
long to B(3)  therefore ''B(1 )  = { A, E } and ''B(3 )  = 
{F, D}. According to line 27, =B(k ) B(5 )′ ′  = {A, E} as 
| |<| |B(5 ) B(1)′  so, B(5)  = {A, E} and B(1)  = {G}. 
Again go to step 5. As B(5) ≠ ∅ , therefore, k  = 6. 
As numB ≠ ∅  therefore, goto the line 27. We get, 

=B(k ) B(6 )′ ′  = {F, D} as | |=| |B(6 ) B(3)′ , therefore, if 
condition is false. Now control again go to the step 5. As 

=B(6) ∅  therefore, value of k  remains the same as 
k  = 6. Similarly, algorithm will be executed for all ip  
elements one by one and split the blocks. When the set 

sP  is completely exhausted, the algorithm terminates 
and complete its learning. After termination, the final 
blocks will be: {{C}, {B, H}, {A, E}, {D, F} and {G}}. 
Automaton Construction: The final number of 
blocks show the number of states. Each block rep-
resents a single state. By reading the 1δ −  table input 
transitions, algorithm will construct the hypothesis 
automaton M (described in Figure 1(b)).

Figure 1
Target Automaton Before and After Learning

(b) Hypothesis Automaton M

(a) Target Automaton A (SUL)

According to the step 2, the algorithm finds the pre-
decessor(s) of all the final states and their predeces-
sor states (Table 3) by asking δ−1 queries from the 
teacher for all elements of Σ along with empty string λ 
(according to line 7 of the Algorithm 1).
Initially k = 3 and = { ,0,1,01,11,10,111,110,1110}sP λ . 
According to the step 4, pi = 0. Predecessor state(s) 
of = { }lb C  via reading 0 are F and D those belong 
to block B(1). Therefore, ''B(1 ) = { F, D } and now 

=B(k ) B(3 )′ ′  = { F, D }. As | |<| |B(3 ) B(1)′  therefore, 
B(3) = { F, D } and B(1) = { A, B, E, G, H }. Now ac-
cording to step 5, we find B(3) ≠ ∅, therefore, k = 
4 and =numB ∅ . Since, B(2) has no more elements 
therefore, inner for loop ends. Now, ip  = 1. The pre-

Table 3
δ−1 Table

States/Inputs λ 0 1

C ∅ F, D B, C, H

F ∅ ∅ A, E

D ∅ ∅ ∅

B ∅ A ∅

H ∅ E ∅

A A C ∅

E ∅ ∅ G

G ∅ B, H, G F, D
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7. Comparison of DLIQ and ID 
Algorithm
For comparison of performance of DLIQ with oth-
er related algorithms we considered the algorithms 
given in Table 1 which summarizes different types of 
automaton learning algorithms available in the liter-
ature based on different parameters. Like the DLIQ 
algorithm proposed in this paper only three others 
are complete learning algorithms which include: the 
L*, the ID,the RPNI.The L*, the ID and the DLIQ are 
based on table data structure while the RPNI is based 
on tree data structure therefore it cannot be used for 
comparison with DLIQ. Therefore, for comparison of 
DLIQ only the L* and/or the ID can be used. However, 
one significant difference in the design of the L* is its 
requirement to make use of a counterexample when-
ever the hypothesis built by it is not equivalent to the 
target automaton. Since this characteristic is lacked 
by the ID and the DLIQ algorithm plus it makes the 
learning more directed as compared to ID and DLIQ 
therefore, we were left with only the ID algorithm to 
perform comparison with the DLIQ algorithm as both 
share almost all parameters of comparison except the 
inverse query.
For the comparison of DLIQ and ID algorithms we 
have setup an evaluation framework (given in Figure 
2). This framework consists of following modules:
1 A target DFA (A)
2 A random DFA generator
3 DLIQ and ID algorithms
4 An automaton equivalence checker

Figure 2
Evaluation Framework

7.1. Experimental Setup

We have implemented the DLIQ and ID algorithms in 
Java. For execution of experiments we have used a PC 
having Windows 8.1 pro, 16GB RAM and Intel core i5-
3470 processor. We have performed multiple exper-
iments on both these algorithms. The experiments 
varied due to two main parameters of the target DFA 
A . These parameters include:  

1 The state size | |Q  
2 The input alphabet size | |Σ  
For performance analysis of both these algorithms, 
we setup the experiments to be executed with state 
size | |Q  varying between 10,20,30, ,100  and 
alphabet size varying between 2,4, ,10 . The tar-
get DFAs were randomly generated with all possi-
ble combinations of both the parameters such as for  
( | |Q =10, | |Σ =2), ( | |Q =10, | |Σ =4), ( | |Q =10, 
| |Σ  =6), ( | |Q =10, | |Σ =8), ( | |Q =10, | |Σ =10). We also 
generated their respective live complete sets. We ad-
opted the strategy of testing tree generation for FSMs 
as described in [16] for generating the live complete 
sets of randomly generated DFAs. For this, we start 
from the initial state and make it the root node of the 
tree and store it in a Hash Set. Then we find the next 
state for all the elements of set Σ  and if a new state is 
not stored in the Hash Set is found then we create a 
branch of the tree from the current node to that state. 
This process continues until no new state is found. 
Then we create strings that take us to the final states. 
This is the whole procedure that we followed to gen-
erate respective live complete set of a randomly gen-
erated DFA. Furthermore, for a particular parameter 
configuration we repeated the experiments 10 times 
and then compiled the results to compute the mean of 
10 experiments.

7.2. Empirical Evaluation

For comparison of both these algorithms (DLIQ and 
ID), we have considered the following two parameters:
1 Number of queries (these included the queries 

posed by the learner to the MAT);
2 The learning time (ms).

7.2.1. Number of Queries
In the case of the DLIQ algorithm, the learner(DLIQ) 
poses Inverse Queries (IQs) to learn a minimal target 
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DFA whereas, for the ID algorithm, the learner (ID) pos-
es Membership Queries (MQs) for learning purpose.

7.2.2. The Learning Time
In order to analyze the performance of both these 
algorithms with respect to time complexity, we have 
considered only the learning time which a learner 
takes to learn the target DFA. We are not interested 
to compare the time taken by the equivalence check-
er to check the behavioral equivalence of hypothesis 
automaton with target automaton.

Table 4
Query wise Comparison of ID and DLIQ Algorithm

No. of
States

ID DLIQ

|Σ|=2 |Σ|=4 |Σ|=6 |Σ|=8 |Σ|=10 |Σ|=2 |Σ|=4 |Σ|=6 |Σ|=8 |Σ|=10

10 120.3 280.1 661.7 720.6 800.0 28.6 76.4 89.9 96.8 132.7

20 160.4 720.7 840.3 1440.3 2200.2 58.5 161.2 160.8 196.0 288.3

30 660.8 960.4 2340.8 2400.8 3900.5 158.9 136.4 285.6 310.4 391.0

40 1120.0 3040.1 2880.3 4160.3 7200.1 206.4 252.9 338.1 463.2 544.1

50 1900.3 7000.0 9300.1 13600.2 19500.1 480.2 725.0 610.1 706.3 773.0

60 3480.2 7440.2 10080.0 16320.2 22800.1 336.0 457.9 472.3 865.1 866.6

70 5460.2 11480.2 16389.3 23520.0 30100.2 569.2 616.0 732.9 870.2 1150.4

80 6880.2 13120.6 21221.4 24960.1 32800.1 547.2 656.3 700.3 901.2 1292.3

90 7920.3 16920.4 24840.3 30960.7 42300.1 840.1 971.0 1184.2 1451.3 1276.3

100 9800.2 21200.3 30600.2 43200.1 55000.3 1033.0 1407.3 1467.2 1772.3 1770.5

Figure 3
Comparison of DLIQ and ID Algorithm with respect to Queries

7.3. Results and Analysis
The computed results are given in Table 4 and Table 5.
All the results in the tables and the graphs depict that 
when the number of states or input alphabet size in-
creases, there is a significant rise in the number of 
queries and learning time of the ID algorithm where-
as with the increase in states or input alphabet size, 
the graphs of DLIQ algorithm grow relatively slowly. 
Therefore, it is obvious that the DLIQ algorithm is 
more efficient than the ID algorithm in terms of time 
and number of queries posed to the MAT.
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Table 5
Time (ms) wise Comparison of ID and DLIQ Algorithm

No. of
States

ID DLIQ

|Σ|=2 |Σ|=4 |Σ|=6 |Σ|=8 |Σ|=10 |Σ|=2 |Σ|=4 |Σ|=6 |Σ|=8 |Σ|=10

10 8.3 10.1 19.1 22.3 24.8 6.3 7.2 12.4 13.8 13.9
20 11.0 22.3 23.3 27.6 72.1 7.2 10.3 12.7 15.6 28.7
30 58.1 83.0 113.0 120.0 138.2 20.0 17.8 38.8 38.9 42.3
40 67.2 173.0 169.7 189.2 481.5 29.1 31.9 41.0 44.3 49.7
50 81.6 341.7 411.8 512.3 778.4 34.3 51.0 47.9 50.2 58.0
60 93.2 398.2 439.1 823.4 998.3 36.2 51.2 51.3 55.1 61.3
70 121.4 437.9 632.4 1001.0 1102.5 39.8 57.3 63.2 65.2 69.8
80 156.2 510.2 691.2 1035.6 1214.3 42.7 61.9 71.7 74.3 79.2
90 181.4 578.0 783.0 1105.5 1538.4 47.9 64.0 78.1 83.1 87.9

100 210.3 631.2 987.4 1550.0 2053.6 55.3 67.3 81.2 92.4 113.4

Figure 4
Comparison of DLIQ and ID Algorithm with respect to Queries

Figure 5
Comparison of DLIQ and ID Algorithm with respect to Time Efficiency
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8. Complexity Analysis
The minimally adequate teacher (MAT) has polyno-
mial time complexity but its complexity is assumed 
as constant for the query complexity analysis [2]. The 
MAT possesses (1)O  time complexity for a member-
ship and 1δ −  query whereas it has polynomial time 
complexity for an equivalence query.
Table construction takes (| | 1)O NΣ +  time com-
plexity. In each iteration, the learner asks 1δ −  query 
against an element of set sP  (used as distinguishing 
string in the proposed algorithm) therefore, its time 
complexity is (| |)sO P  whereas, the number of states 
visited at each step are maximum of | |F  (which is in 
most of the cases < < N ) therefore, the nested loop 
takes (| || |)sO P F  time complexity. The block split-
ting process takes O(1) time complexity. Therefore, 
the query based time complexity of the proposed 
algorithm is (| || | | | )sO P F N+ Σ . Automaton recon-
struction is done by reading the 1δ −  table therefore, it 
also takes (| | )O NΣ  time complexity. In view of above 
asymptotic analysis, total worst case time complexity 
of the algorithm is (| || | | | )sO P F N+ Σ . 
If we carefully analyze this complexity, we can see 
that the dominant factor involved in this complexity 
is | || |sP F  where | |sP N≈  and in most of the cases 

<<F N  (almost constant). The other factor that is 
| | .NΣ ; in most of the time | |Σ  also act as nearly con-
stant therefore, the average case complexity of the 
DLIQ algorithm is nearly linear. For this, we can claim 

Figure 6
Comparison of DLIQ and ID Algorithm with respect to Time Efficiency
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that in this paper, we have reduced the time complexi-
ty of the DFA learning.

9. Conclusions and Future 
Directions
We have reduced the complexity of the determin-
istic finite automaton (DFA) learning (from cubic 
to square form in worst case) and presented a novel 
complete learning algorithm DLIQ for learning of a 
DFA. We have also shown experimentally that the 
DLIQ is more efficient than the ID algorithm in terms 
of time complexity. This algorithm improves the com-
plete learning process of DFAs by making use of 1δ −  
queries. In the future, we plan to extend the concept 
used for 1-bit learning to k -bit learning for reducing 
the complexity of k -bit learning algorithms also. An-
other direction of work can be to design incremental 
automaton learning algorithms both for the 1-bit and 
k -bit scenarios.
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