
611Information Technology and Control 2022/4/51

DLIQ: A Deterministic Finite
Automaton Learning Algorithm
through Inverse Queries

ITC 4/51
Information Technology
and Control
Vol. 51 / No. 4 / 2022
pp. 611-624
DOI 10.5755/j01.itc.51.4.31394

DLIQ: A Deterministic Finite Automaton Learning
Algorithm through Inverse Queries

Received 2022/05/14 Accepted after revision 2022/08/10

 http://dx.doi.org/10.5755/j01.itc.51.4.31394

HOW TO CITE: Haneef, F., Sindhu, M. A. (2022). DLIQ: A Deterministic Finite Automaton Learning Algorithm through Inverse Queries.
Information Technology and Control, 51(4), 611-624. http://dx.doi.org/10.5755/j01.itc.51.4.31394

Corresponding author: farah@cs.qau.edu.pk

Farah Haneef, Muddassar A. Sindhu
Department of Computer Science, Quaid i Azam University, Islamabad. 45320. Pakistan

Automaton learning has attained a renewed interest in many interesting areas of software engineering in-
cluding formal verification, software testing and model inference. An automaton learning algorithm typi-
cally learns the regular language of a Deterministic Finite Automaton (DFA) with the help of queries. These
queries are posed by the learner (Learning Algorithm) to a Minimally Adequate Teacher (MAT). The MAT
can generally answer two types of queries asked by the learning algorithm; membership queries and equiv-
alence queries. Learning algorithms can be categorized into three broad categories: incremental, sequential
and complete learning algorithms. Likewise, these can be designed for 1-bit learning or k -bit learning. Ex-
isting automaton learning algorithms have polynomial (at-least cubic) time complexity in the presence of
a MAT. Therefore, sometimes these algorithms are unable to learn large complex software systems. In this
research work, we have reduced the time complexity of the DFA learning into lower bounds (from cubic to
square form). For this, we introduce an efficient complete DFA learning algorithm through Inverse Queries
(DLIQ) based on the concept of inverse queries introduced by John Hopcroft for state minimization of a DFA.
The DLIQ algorithm takes (| || | | |)sO P F N+ Σ complexity in the presence of a MAT which is also equipped
to answer inverse queries. We give a theoretical analysis of the proposed algorithm along with providing an
empirical analysis of DLIQ and ID (Identification of regular languages) algorithms. For this, we implement
an evaluation framework. Results depict that in terms of time complexity our proposed algorithm DLIQ is
more efficient than the ID algorithm.
KEYWORDS: Automaton learning, complete learning algorithm, delta inverse transitions, inverse query, live
complete set, distinguishing string.

Information Technology and Control 2022/4/51612

1. Introduction
Automaton learning or grammatical inference is a do-
main in which a system is inferred in the form of an
automaton by providing a sequence of inputs (i1, i2, . .
. , in) and then synthesizing the corresponding output
sequence (o1, o2, . . . , on) obtained from the System Under
Learning (SUL) into a finite automaton. Automaton
learning makes use of a learner (automaton learning
algorithm) and a Minimally Adequate Teacher (MAT)
[2]. The learner learns the regular set from queries
and counterexamples depending upon the setup pro-
vided by the learning algorithm. The learner poses que-
ries to the MAT which responds to those queries about
the unknown regular set. It answers two types of ques-
tions: First type is a membership query, consisting of
the string t ÎΣ∗. The adequate teacher answers as yes
or no depending on whether string t is a member of
the unknown regular set or not. The second type of
question is a conjecture, consisting of a description of
the regular set S; the answer is yes if S is behavioral-
ly equivalent to the unknown language and is a string
t in the symmetric difference of S and the unknown
language otherwise. In the second case, the string t is
called a counterexample or a witness because it serves
to demonstrate that the conjectured set S is incorrect.
Automaton learning algorithms are designed in a way
to learn in the limit to yield a minimal approximation
of the target DFA. The concept of learning in the limit
was first introduced in 1967 by E. M. Gold [10]. In his
paper, he showed that with the help of a grammatical
inference or an automaton learning algorithm, a reg-
ular language corresponding to some unknown target
DFA can be inferred by a finite number of queries /
guesses. Three types of automaton learning algorithms
have been proposed in the literature which include:
complete learning algorithms, in- cremental learning
algorithms and sequential learning algorithms. Exam-
ples of each category are provided in Section 3.
In recent years, the software engineering research
community has used grammatical inference [21, 25,
28, 29] because of its possibility to solve a wide range
of practical applications of formal verication [12],
model inference [11, 20, 22, 24, 30] and software test-
ing [4]. These applications in general use the concept
of inferring an automaton by generating a model of a
system under learn (SUL) and analyzing it to check its
behavioral correctness with respect to a specification.

The existing automaton learning algorithms have
polynomial time complexity (at-least in cubic form)
in the presence of MAT. For testing and formal veri-
fication of large complex software systems, the exist-
ing automaton learning algorithms take a lot of time
during inferring the model of System Under Learn
(SUL). Sometimes, these algorithms even become
fail to learn large complex software systems. In paper
[32] authors specifically provide some real world ex-
amples of 6 transition systems of CSS processes [5–7]
like buffers, schedulers, vending machines and mutu-
al exclusion protocols [23, 34] where they fail o learn
them due to inefficient learning algorithms (in form
of time) and lack of storage space. In their paper, au-
thors also emphasis on the need of some good autom-
aton learning algorithm that may efficient enough in
form of execution time and memory. According to the
existing literature [3, 31] although sig- nificant work
has been done in the development of DFA learning
algorithms but many researchers have an agreement
that there is still a need to design more efficient au-
tomaton learning algorithms to solve practical learn-
ing problems and situations [33].
For this reason, in this paper we introduce a new ef-
ficient DFA learning algorithm DLIQ based on the
concepts of the ID (Identification of regular languages)
algorithm [1] because the concept of minimal adequate
teacher (MAT) was first introduced in ID algorithm
and without this concept, the learning of a DFA is
an NP-hard problem. Secondly, the concept of dis-
tinguishing string was also given in the ID algorithm
which is used in our proposed algorithm along with
inverse queries. The DLIQ algorithm learns the Sys-
tem Under Learning (SUL) by splitting it into final
and non-final state blocks and then identifying be-
haviorally equivalent and non-equivalent states by
traversing towards the initial state using inverse que-
ries which were initially proposed by John Hopcroft
for state minimization of DFAs [13].
The major contributions of the paper are given below:
1 We design and implement a new efficient DFA

learning algorithm possessing worst case time
complexity in square polynomial form unlike ex-
isting DFA learning algorithms.

2 We introduce and define the concept of δ−1 and In-
verse Queries (IQ) in DFA learning.

613Information Technology and Control 2022/4/51

3 We improve the complete learning process of DFAs
by making use of Inverse Queries (IQ).

4 We enhance the capabilities of the existing MAT to
make it capable to answer Inverse Queries (IQ).

5 We propose a method to generate live complete set
of a randomly generated DFA, based on a procedure
named as testing tree which is used for generating
covering sets from FSMs.

Rest of the paper is organized as follows: we give pre-
liminaries to understand the proposed algorithm in
Section 2, we review the related work of the field in
Section 3. The proposed DLIQ algorithm is provided
in Section 4, the proofs for correctness and termi-
nation of the DLIQ algorithm are given in Section 5,
an example describing the working of the algorithm
is shown in Section 6. In Section 7, we compare the
performance of our proposed DLIQ algorithm with
the ID algorithm because DLIQ is based on the con-
cepts introduced in the ID algorithm and both these
algorithms have similar characteristics which are un-
like other DFA learning algorithm such as: the ID al-
gorithm is also a complete learning algorithm, which
employs a table data structure and it does not use the
concept of counter- examples as done in the *L algo-
rithm. At the end, we analyze and present the time
complexity of the DLIQ algorithm in Section 8, and
finally, we present conclusions along with some new
research directions in Section 9.

2. Mathematical Preliminaries and
Notation
A Deterministic Finite Automaton (DFA) A consists
of a quintuple 0, , , ,Q q Fδ〈 Σ 〉 where Q denotes the fi-
nite set of states, Σ is a finite set of input symbols, δ
is the transition function which gives the next state
when we read an input symbol from a specific state

: Q Qδ ×Σ→ . The state 0q Q∈ is the start state and
F Q⊆ is the set of final states.

As Σ is a finite set of input symbols and *Σ is the set of
all finite length strings including the empty string λ.
Let *, ,α β γ ∈Σ , if γ =α.β then α is called a prefix and
β is called a suffix of γ .
A state q is called a live state if there exists strings α
and β such that ()L Aαβ ∈ and 0= (,)q qδ α since ()L A is

the language accepted by A [22], whereas a Live Com-
plete set P is a set of all strings which may lead to some
live state of a DFA. We let 1 2= { , , , }nP p p p to be the
live complete set of n strings.
A state which is not live is called a dead state and we
denote it by 0d . Mathematically, 0d F∉ and 0 0(,) =d dδ α
for all *α ∈Σ .
Definition  2.1. Let for a DFA A , having transition func-
tion : Q Qδ ×Σ→ which can also be written as (,) =i jq qδ σ
and the iterated transition function * *: Q Qδ ×Σ → in-
ductively defined by (,) =q qδ λ where λ is an empty
string and * *

1 2 1 2 1(, , , ,) = ((, , , ,),)j n n nq b b b q b b b bδ δ δ − 

Likewise, we inductively define 1*δ − using the inverse
transition relation 1δ − . Where 1 : Q Qδ − ×Σ ⊆ and can
also be written as 1(,)jq Qδ σ− ⊆ where 1−Σ denotes an
inverse transition by reading an element of Σ from a
state Q to give its predecessor states. The inductive
definition of 1*δ − is now simple to follow as 1(,) =q qδ λ− ,
if and only if q is a starting state otherwise it returns
∅ and *1

1 2(, , , ,)j nq b b bδ −  = *1 1
2 1(({ }, , ,),)nq b b bδ δ− −  .

In the automaton learning context we define the In-
verse Query (IQ) as a query which is asked by the
learner from the teacher about the predecessor
state(s) of a state jq , by reading some string *α ∈Σ
from it, i.e., 1*(,) = ?jqδ α− The teacher gives response
as (Yes/No) based on the answer which can be a set of
state(s) or an empty set.
A string α is called an accepting string which when
read from the initial state 0q of a DFA ()A leads to
some final state F of the DFA ()A , i.e., *

0(,)q Fδ α ∈ , oth-
erwise, when *

0(,)q Fδ α ∉ then α is termed a rejecting
string.
A block is a set of states denoted by ()B num , the block
of non-final states is initially specified as B(1) and can
be computed as (Q F)− and the block of final states is
specified as B(2)= F . Let ()B k denote the thk block in
the set of blocks. The size of a block B(k) is denoted by
| |B(k) , and gives the number of states in that block.

3. Related Work
In automaton learning [26, 27], there are three basic
types of algorithms: incremental learning algorithms,
sequential learning algorithms and complete learning
algorithms. In incremental learning, the system under
learning (SUL) is learnt in a number of increments i =
1, 2, . . . , n and the learner makes the hypothesis DFA Mi

Information Technology and Control 2022/4/51614

at the end of each increment and ask the equivalence
query from the teacher. In case of a negative answer
to the equivalence query, the teacher may or may
not provide a counterexample. If the teacher pro-
vides a counterexample then the learner extends the
learning process on the basis of the received counter-
example and incorporates the learning information
from previous increment(s) in the new increments.
In sequential learning, however, learning is also done
in a number of increments but in each increment the
learner starts learning from the scratch and does not
use information from the previous increments. In
complete learning, the entire system is learnt in a
complete fashion to generate a hypothesis. When the
whole system (SUL) is learnt by the learner only then
it generates a hypothesis DFA, M .
According to the existing literature examples of in-
cremental learning algorithms include: IID [22], IDS
[18], IKL [19], DKL [17] Kearns [15], TTT [14] and
RPNI2 [9] whereas complete learning algorithms are
L∗ [2], ID [1] and RPNI [8].
The *L is a complete learning algorithm. It infers a
regular language by asking two types of queries; mem-
bership and equivalence queries. It poses the mem-
bership queries and store the information in the form
of a table which is called an Observation Table (OT).
The OT should meet two basic properties before ask-
ing equivalence queries to make a conjecture. These
properties are closure and consistency [2]. If the ob-
servation table is closed but not consistent then col-
umns of the observation table OT are extended with
a symbol σ where σ ∈Σ . When the OT is closed and
consistent, a conjecture can be constructed. The *L
continues its learning process until OT becomes con-
sistent and closed.
The ID algorithm is a complete learning algorithm
[1]. It poses membership queries from the adequate
teacher (MAT) to learn the regular set. The concept
of MAT was first introduced in this algorithm. It uses
the concept of live states, live complete set and dead
state 0d . The ID algorithm uses the concept of distin-
guishing strings. To find the blocks of accepting and
non-accepting states, the ID algorithm constructs a
table. When the first iteration completes, the ID al-
gorithm finds a pair of strings from the live complete
set which have the same behavior but for some inσ ΣÎ inσ Σ
concatenated with both strings results in different be-
haviors for these strings; as one goes to the accepting

block and the other goes to the rejecting block. This
gives a potential distinguishing string. If the ID algo-
rithm finds no such pair of strings then it constructs
the hypothesis DFA, which is isomorphic to the
target DFA .
The RPNI algorithm is a passive learning algorithm
[8]. It uses a tree data structure instead of a table for
storing information about the hypothesis and does
not maintain consistency. It does not use member-
ship queries for learning purpose. It takes two input
sets; a set of positive examples and a set of negative
examples S+ and S− respectively. It first writes the
elements of S+ and its prefixes in lexicographical or-
der then from the set of positive examples and their
prefixes, it constructs the prefix tree { }()PT S+ . Then
it recursively partitions the branches of the tree into
blocks. Initially, each element of { }()PT S+ belongs to
its self containing block. The RPNI algorithm recur-
sively applies joint operation on these blocks so that
they can be merged into two final blocks. One is the
accepting state block and the second is the non-ac-
cepting state block.
IID, IDS, RPNI, RPNI2, L*, Kearns, TTT and ID algo-
rithms are 1-bit in nature whereas, IKL, DKL and L*
Mealy are k-bit in nature. If we analyze their complex-
ities, we can see that in the presence of an adequate
teacher the complexity of these learning algorithms is
polynomial (at-least in cubic form) given in Table 3.
The state minimization concept introduced by John
Hopcroft, in his algorithm he had used the strategy of
making blocks of final and non-final states. With δ −
transition method, he identified the similar states to
generate the minimal target automaton. He claimed
that his algorithm takes nlogn complexity for genera-
tion of minimal target automaton.
On the basis of the existing literature for automaton
learning and state minimization of automata, in this
paper we introduce a new efficient DFA learning al-
gorithm DLIQ based on the concepts of the ID algo-
rithm along with inverse transition strategy of John
Hopcroft algorithm for state minimization of DFAs.
The aim of the current paper is to bring the complex-
ity of DFA learning from polynomial(cubic) to some
lower bounds for complete learning of a DFA. A brief
summary of existing DFA learning algorithms is given
in Table 3 along with the comparison of our proposed
algorithm.

615Information Technology and Control 2022/4/51

Table 1
Summary of Existing DFA Learning Algorithms along with Comparison of the Proposed DLIQ Algorithm

Algorithm Learning Type Data Structure Output Bits MQ IQ Time ()O Queries Complexities

*L Complete Table 1 Yes No 2(| | .)O N MΣ

ID Complete Table 1 Yes No (| | . | | .)O P NΣ

IID Incremental Table 1 Yes No (| | . | | .)lO P NΣ

IDS Incremental Table 1 Yes No (| | . | | .)kO P NΣ

*L Mealy Complete Table k ≥ 1 Yes No ((,). | | .)O max N NMΣ Σ

RPNI Complete Tree 1 No No
2((| | | |). | |)p n pO S S S+

RPNII Incremental Tree 1 No No
2((| | | |). | |)p n pO S S S+

Kearns Incremental Tree 1 Yes No 2()O kN NlogM+

TTT Incremental Tree 1 Yes No 2()O kN NlogM+

IKL Incremental Table k ≥ 1 Yes No (| | . | | .)k lO P NΣ

DKL Incremental Tree k ≥ 1 Yes No (. . | | . (| | . | |,| |))acc accO N k S max S iΣ

DLIQ Complete Table 1 Yes Yes (| | . | || |)sO N P FΣ +

The detailed description of the DLIQ algorithm is given in Section 4.

Table 2
Description of used Notations

Notation Description

P The live complete set

Ps A set consisting of strings in the live complete set and their suffixes

λ The empty or null string

F The set of final states

N Number of states in the target

B(num) A block of one or multiple states

k A variable used as a block counter

BlockSet The set of blocks where = { (1), (2), , ()}BlockSet B B B k

B(k) The kth block

num A variable which shows the block number in response to the BlockQuery function

Bnum The List of blocks which is maintained in response to the BlockQuery function

B(num′′) An element of numB containing states which belong to the same block in response to the BlockQuery
function

Information Technology and Control 2022/4/51616

4. The Proposed DLIQ Algorithm
The DLIQ is a complete learning algorithm which
works on the strategy of 1δ − transitions. It uses a set

sP of distinguishing strings. The detailed description
of used notations is given in the Table 4.
Initially, the DLIQ algorithm divides the state set into
two blocks; the Non-final state block (1)B and the
Final state block (2)B . The DLIQ algorithm starts
learning from the final states on the basis of distin-
guishing strings and creates / splits blocks into new
blocks based on the distinguishing behavior of the
predecessor states. In this way, learning is done from
final to each live state (till the initial state).
In each iteration, the learner (DLIQ) reads an element
of set sP from a final state set and finds its predecessor
state(s). If the predecessor states belong to different
blocks then it splits the respective blocks and places
the states into new blocks. The learner completes its
learning when all elements of set sP are exhausted.
The proposed DLIQ algorithm is presented below in
Algorithms 1 and 2.

Algorithm 1. DLIQ Algorithm
1: Input: A Live Complete set *P ⊆ Σ and a DFA A to
act as a teacher to answer queries.
2: Output : A DFA M equivalent to the target DFA A.
3: Step 1: if =P ∅ then M consists of a single
non-final state having self transitions. else
4: Initially states are divided into two blocks by ask-
ing MQ for all ip P∈ as (,) =i ip qδ λ where either

iq F∈ or not.
// Initiate BlockSet
5: B(1) = (Q - F) //Non-final states block
6: B(2) = F //Final states block // update BlockSet
7: Step 2: Make table 1δ − by using final state set F and
all their predecessor states, for all input elements σ
along with empty string λ , where σ ∈Σ
8: Step 3: k = 3
9: Find suffix set of all P strings as Ps

10: Step 4:
11: for all pi ∈ Ps where pi ¹ λ do
12: for all fl ∈ F ask inverse query for pi do
13: // finding predecessor state(s) of set F via read-

ing element pi.

 there are three possibilities against the response
of inverse query. “No” means no predecessor state,
“Yes” with one predecessor state or “Yes” with mul-
tiple predecessor states.

14: if δ−1∗(fl, pi) = No = ∅ then
15: go to Line 12;
16: else if δ−1∗(fl, pi) = Yes = {qj}then
17: BlockQuery(qj, BlockSet) = num // Block Mem-

bership call using Algorithm 2
18: B(k′) = { qj}
19: if | () |<| () |B k B num′ then
20: B(k) = B(k′)
21: B(num) = B(num) –B(k)
 // update BlockSet
22: end if
23: else if δ−1∗(fl, pi) = Yes = {q1, . . . , qm} then
24: for j = 1 to j = m do
25: BlockQuery(qj, BlockSet) = num // Block

Membership call using Algorithm2.
 //All predecessor states those belong to

the same block are placed in a single block
named as B(num′′) such as:

 B(num′′)=B(num′′) ∪ {qj } where B(num′′)
belongs to the list Bnum

26: end for
27: B(k′) = B(num′′)
28: if | () |<| () |B k B num′ then
29: B(k) = B(k′)
30: B(num) = B(num) – B(k)
 // update BlockSet
31: end if
32: end if
33: Step 5
34: if (())B k ≠ ∅ then k ++
35: if ()numB ≠ ∅ then goto Line 27
36: end for
37: end for
38: Generate hypothesis automaton M by reading in-
verse transitions from δ−1 table.

617Information Technology and Control 2022/4/51

Algorithm 2. Block Membership
1: Input: A state qj where qj ∈ Q and a set of existing
blocks BlockSet.
2: Output: Block number named as num, from where
qj belongs to.
3: Function BlockQuery(qj, BlockSet)
4: {
5: return num
6: }

5. Correctness and Termination
The correctness of the algorithm is based on the fact
that it correctly produces a learned DFA consistent
with the target DFA A .
Conjecture 5.1. Splitting of a block ()B num as
B(a) and B(b) is done on the basis of mutually ex-

clusive =B(a) B(b)∩ ∅ and completely exhaustive
= ()B(a) B(b) B num property.

Lemma 5.2. Number of blocks | |BlockSet can not ex-
ceed the number of states.
Proof. Since only two blocks are created initially. One
consists of only non-final states B(1) and other con-
sists of only final states B(2) . When blocks are split
then the DLIQ algorithm (line 4 and 4) makes sure
that blocks meet mutually exclusive =B(1) B(2)∩ ∅
and completely exhaustive =B(1) B(2) Q∪ proper-
ty. Therefore, no state can be in more than one block
and every state must reside in some block. Therefore,
even in the case when every state resides in a separate
block, the number of blocks can not be greater than
the number of states.
Theorem 5.3. Let 1 2= { , , , }s nP p p p is a set consist-
ing of strings in the live complete set for a target DFA
A and their suffixes. Then the blocks created during

learning are distinguishable on the elements of sP read
so far and are mutually exclusive in nature.
Proof. The main task is to show that 1δ − transition is
a well defined relation. As it takes two arguments; the
state and an element i sp P∈ as a distinguishing string
to find the distinguishing behavior of states and re-
turn predecessor state(s) via reading i sp P∈ . As

1
1(,) =j i jq p qδ −
− or nq . Since the predecessor states:

initially belonging to the same block are split and are
placed in newly created blocks during learning. These
blocks are distinguishable on the element ip . There-

fore, first part of the theorem is proved.
Further, it follows from Conjecture 5.1 that since
blocks are always created based on mutually exclu-
sive =B(a) B(b)∩ ∅ property hence, it suffices to
establish that during partition refinement newly cre-
ated blocks will be mutually exclusive in nature.
Corollary 5.4. Let 1 2= { , , , }s nP p p p be a non-empty
set consisting of strings in the live complete set and their
suffixes and 1 i n≤ ≤ . The execution of DLIQ on sP ter-
minates with the program variable i having value n .
Proof. It is obvious that the outer for loop of Algo-
rithm 4 terminates when the set sP having | |=sP n is
exhausted.
Theorem 5.5 (Theorem). Let 1 2= { , , , }s nP p p p be
a set consisting of strings in the live complete set for a
target DFA A and their suffixes. The DLIQ algorithm
terminates on sP and have k distinct blocks at the
end of the execution.
Proof. (a) By Corollary 5.4, DLIQ terminates on sP
with the program variable i having value n. (b) The
number of distinct blocks created during learning by
reading some element i sp P∈ , can be shown to vary
between 1 and m ; 1 k m≤ ≤ where | |m Q≤ by induc-
tion on sP .
Theorem 5.6 (Theorem). The DLIQ algorithm ter-
minates on sP and the hypothesis automaton M is a
canonical representation of A .
Proof. As the DLIQ algorithm poses inverse and equiva-
lence queries to get the information about the grammar
of the target DFA A . It is important to note that DLIQ
specifically learns through inverse queries. We use the
following two premises to prove this theorem: (a) The
Termination Theorem 5.5 establishes that learning ter-
minates when all elements of the set sP are exhausted.
(b) The DLIQ algorithm merges all the states of the tar-
get automaton A which are equivalent in behavior into
a single state block and the hypothesis automaton M is
then constructed using all the blocks created as states
of the learned hypothesis. Therefore, the hypothesis au-
tomaton M is a unique minimal representation of A .
Combining (a) and (b) prove the theorem.

6. An Example
Now we illustrate the working of the DLIQ algorithm
on an example automaton given in Figure 1a. The in-

Information Technology and Control 2022/4/51618

puts of the algorithm consist of the Target Automaton
(A) (given in Figure 1a), the live complete set P = {λ,
0,1,01,11,111,1110} of the target automaton A. Initially
states are partitioned into two main blocks by asking
the membership query (MQ) δ(pi, λ) =? where pi ∈ P of
the target automaton A. Now states divided into two
blocks are: B (1) = {A, B, D, E, F, G, H} and B (2) = {C}.

decessor states of C via reading 1 are found to be B,
C, H. Both B and H belong to block B(1) and C be-
longs to the block B(2) therefore, ''B(1) = { B, H }
and ''B(2) = {C}. We get, =B(k) B(4)′ ′ = {B, H} as
| |<| |B(4) B(1)′ , therefore, B(4) = {B, H} and B(1) =
{A, E, G}. Now we go to step 5 and find B(4) ≠ ∅ ,
therefore k = 5 and numB ≠ ∅ therefore, goto the
line 27 of Algorithm 1. We get, =B(k) B(5)′ ′ = {C} as
| |=| |B(5) B(2)′ , therefore, if condition is false. Now
control again go to the step 5. As =B(5) ∅ therefore,
value of k remains the same as k = 5. Since, B(2) has
no more elements therefore, inner for loop ends. The
next ip = 01. The predecessor states of C via reading
01 are A, F, D, E. A and E belong to B(1) and F, D be-
long to B(3) therefore ''B(1) = { A, E } and ''B(3) =
{F, D}. According to line 27, =B(k) B(5)′ ′ = {A, E} as
| |<| |B(5) B(1)′ so, B(5) = {A, E} and B(1) = {G}.
Again go to step 5. As B(5) ≠ ∅ , therefore, k = 6.
As numB ≠ ∅ therefore, goto the line 27. We get,

=B(k) B(6)′ ′ = {F, D} as | |=| |B(6) B(3)′ , therefore, if
condition is false. Now control again go to the step 5. As

=B(6) ∅ therefore, value of k remains the same as
k = 6. Similarly, algorithm will be executed for all ip
elements one by one and split the blocks. When the set

sP is completely exhausted, the algorithm terminates
and complete its learning. After termination, the final
blocks will be: {{C}, {B, H}, {A, E}, {D, F} and {G}}.
Automaton Construction: The final number of
blocks show the number of states. Each block rep-
resents a single state. By reading the 1δ − table input
transitions, algorithm will construct the hypothesis
automaton M (described in Figure 1(b)).

Figure 1
Target Automaton Before and After Learning

(b) Hypothesis Automaton M

(a) Target Automaton A (SUL)

According to the step 2, the algorithm finds the pre-
decessor(s) of all the final states and their predeces-
sor states (Table 3) by asking δ−1 queries from the
teacher for all elements of Σ along with empty string λ
(according to line 7 of the Algorithm 1).
Initially k = 3 and = { ,0,1,01,11,10,111,110,1110}sP λ .
According to the step 4, pi = 0. Predecessor state(s)
of = { }lb C via reading 0 are F and D those belong
to block B(1). Therefore, ''B(1) = { F, D } and now

=B(k) B(3)′ ′ = { F, D }. As | |<| |B(3) B(1)′ therefore,
B(3) = { F, D } and B(1) = { A, B, E, G, H }. Now ac-
cording to step 5, we find B(3) ≠ ∅, therefore, k =
4 and =numB ∅ . Since, B(2) has no more elements
therefore, inner for loop ends. Now, ip = 1. The pre-

Table 3
δ−1 Table

States/Inputs λ 0 1

C ∅ F, D B, C, H

F ∅ ∅ A, E

D ∅ ∅ ∅

B ∅ A ∅

H ∅ E ∅

A A C ∅

E ∅ ∅ G

G ∅ B, H, G F, D

619Information Technology and Control 2022/4/51

7. Comparison of DLIQ and ID
Algorithm
For comparison of performance of DLIQ with oth-
er related algorithms we considered the algorithms
given in Table 1 which summarizes different types of
automaton learning algorithms available in the liter-
ature based on different parameters. Like the DLIQ
algorithm proposed in this paper only three others
are complete learning algorithms which include: the
L*, the ID,the RPNI.The L*, the ID and the DLIQ are
based on table data structure while the RPNI is based
on tree data structure therefore it cannot be used for
comparison with DLIQ. Therefore, for comparison of
DLIQ only the L* and/or the ID can be used. However,
one significant difference in the design of the L* is its
requirement to make use of a counterexample when-
ever the hypothesis built by it is not equivalent to the
target automaton. Since this characteristic is lacked
by the ID and the DLIQ algorithm plus it makes the
learning more directed as compared to ID and DLIQ
therefore, we were left with only the ID algorithm to
perform comparison with the DLIQ algorithm as both
share almost all parameters of comparison except the
inverse query.
For the comparison of DLIQ and ID algorithms we
have setup an evaluation framework (given in Figure
2). This framework consists of following modules:
1 A target DFA (A)
2 A random DFA generator
3 DLIQ and ID algorithms
4 An automaton equivalence checker

Figure 2
Evaluation Framework

7.1. Experimental Setup

We have implemented the DLIQ and ID algorithms in
Java. For execution of experiments we have used a PC
having Windows 8.1 pro, 16GB RAM and Intel core i5-
3470 processor. We have performed multiple exper-
iments on both these algorithms. The experiments
varied due to two main parameters of the target DFA
A . These parameters include:

1 The state size | |Q
2 The input alphabet size | |Σ
For performance analysis of both these algorithms,
we setup the experiments to be executed with state
size | |Q varying between 10,20,30, ,100 and
alphabet size varying between 2,4, ,10 . The tar-
get DFAs were randomly generated with all possi-
ble combinations of both the parameters such as for
(| |Q =10, | |Σ =2), (| |Q =10, | |Σ =4), (| |Q =10,
| |Σ =6), (| |Q =10, | |Σ =8), (| |Q =10, | |Σ =10). We also
generated their respective live complete sets. We ad-
opted the strategy of testing tree generation for FSMs
as described in [16] for generating the live complete
sets of randomly generated DFAs. For this, we start
from the initial state and make it the root node of the
tree and store it in a Hash Set. Then we find the next
state for all the elements of set Σ and if a new state is
not stored in the Hash Set is found then we create a
branch of the tree from the current node to that state.
This process continues until no new state is found.
Then we create strings that take us to the final states.
This is the whole procedure that we followed to gen-
erate respective live complete set of a randomly gen-
erated DFA. Furthermore, for a particular parameter
configuration we repeated the experiments 10 times
and then compiled the results to compute the mean of
10 experiments.

7.2. Empirical Evaluation

For comparison of both these algorithms (DLIQ and
ID), we have considered the following two parameters:
1 Number of queries (these included the queries

posed by the learner to the MAT);
2 The learning time (ms).

7.2.1. Number of Queries
In the case of the DLIQ algorithm, the learner(DLIQ)
poses Inverse Queries (IQs) to learn a minimal target

Information Technology and Control 2022/4/51620

DFA whereas, for the ID algorithm, the learner (ID) pos-
es Membership Queries (MQs) for learning purpose.

7.2.2. The Learning Time
In order to analyze the performance of both these
algorithms with respect to time complexity, we have
considered only the learning time which a learner
takes to learn the target DFA. We are not interested
to compare the time taken by the equivalence check-
er to check the behavioral equivalence of hypothesis
automaton with target automaton.

Table 4
Query wise Comparison of ID and DLIQ Algorithm

No. of
States

ID DLIQ

|Σ|=2 |Σ|=4 |Σ|=6 |Σ|=8 |Σ|=10 |Σ|=2 |Σ|=4 |Σ|=6 |Σ|=8 |Σ|=10

10 120.3 280.1 661.7 720.6 800.0 28.6 76.4 89.9 96.8 132.7

20 160.4 720.7 840.3 1440.3 2200.2 58.5 161.2 160.8 196.0 288.3

30 660.8 960.4 2340.8 2400.8 3900.5 158.9 136.4 285.6 310.4 391.0

40 1120.0 3040.1 2880.3 4160.3 7200.1 206.4 252.9 338.1 463.2 544.1

50 1900.3 7000.0 9300.1 13600.2 19500.1 480.2 725.0 610.1 706.3 773.0

60 3480.2 7440.2 10080.0 16320.2 22800.1 336.0 457.9 472.3 865.1 866.6

70 5460.2 11480.2 16389.3 23520.0 30100.2 569.2 616.0 732.9 870.2 1150.4

80 6880.2 13120.6 21221.4 24960.1 32800.1 547.2 656.3 700.3 901.2 1292.3

90 7920.3 16920.4 24840.3 30960.7 42300.1 840.1 971.0 1184.2 1451.3 1276.3

100 9800.2 21200.3 30600.2 43200.1 55000.3 1033.0 1407.3 1467.2 1772.3 1770.5

Figure 3
Comparison of DLIQ and ID Algorithm with respect to Queries

7.3. Results and Analysis
The computed results are given in Table 4 and Table 5.
All the results in the tables and the graphs depict that
when the number of states or input alphabet size in-
creases, there is a significant rise in the number of
queries and learning time of the ID algorithm where-
as with the increase in states or input alphabet size,
the graphs of DLIQ algorithm grow relatively slowly.
Therefore, it is obvious that the DLIQ algorithm is
more efficient than the ID algorithm in terms of time
and number of queries posed to the MAT.

June 13, 2022

·104

ID
DLIQ

Figure 3: Comparison of DLIQ and ID Algorithm with respect to Queries

8,000

6,000

4,000

2,000

2 3

1.5

2

1

1
0.5

20 40 60 80 100

Number of States
(a) For |Σ| = 2

20 40 60 80 100

Number of States
(b) For |Σ| = 4

20 40 60 80 100

Number of States
(c) For |Σ| = 6

ID

DLIQ

·104

ID
DLIQ

N
um

be
r o

f Q
ue

rie
s

N
um

be
r o

f Q
ue

rie
s

N
um

be
r o

f Q
ue

rie
s

N
um

be
r o

f Q
ue

ri
es

Number of States

June 13, 2022

·104

ID
DLIQ

Figure 3: Comparison of DLIQ and ID Algorithm with respect to Queries

8,000

6,000

4,000

2,000

2 3

1.5

2

1

1
0.5

20 40 60 80 100

Number of States
(a) For |Σ| = 2

20 40 60 80 100

Number of States
(b) For |Σ| = 4

20 40 60 80 100

Number of States
(c) For |Σ| = 6

ID

DLIQ

·104

ID
DLIQ

N
um

be
r o

f Q
ue

rie
s

N
um

be
r o

f Q
ue

rie
s

N
um

be
r o

f Q
ue

rie
s

N
um

be
r o

f Q
ue

ri
es

Number of States

June 13, 2022

·104

ID
DLIQ

Figure 3: Comparison of DLIQ and ID Algorithm with respect to Queries

8,000

6,000

4,000

2,000

2 3

1.5

2

1

1
0.5

20 40 60 80 100

Number of States
(a) For |Σ| = 2

20 40 60 80 100

Number of States
(b) For |Σ| = 4

20 40 60 80 100

Number of States
(c) For |Σ| = 6

ID

DLIQ

·104

ID
DLIQ

N
um

be
r o

f Q
ue

rie
s

N
um

be
r o

f Q
ue

rie
s

N
um

be
r o

f Q
ue

rie
s

N
um

be
r o

f Q
ue

ri
es

Number of States

(a) For |Σ| = 2 (b) For |Σ| = 4 (c) For |Σ| = 6

621Information Technology and Control 2022/4/51

Table 5
Time (ms) wise Comparison of ID and DLIQ Algorithm

No. of
States

ID DLIQ

|Σ|=2 |Σ|=4 |Σ|=6 |Σ|=8 |Σ|=10 |Σ|=2 |Σ|=4 |Σ|=6 |Σ|=8 |Σ|=10

10 8.3 10.1 19.1 22.3 24.8 6.3 7.2 12.4 13.8 13.9
20 11.0 22.3 23.3 27.6 72.1 7.2 10.3 12.7 15.6 28.7
30 58.1 83.0 113.0 120.0 138.2 20.0 17.8 38.8 38.9 42.3
40 67.2 173.0 169.7 189.2 481.5 29.1 31.9 41.0 44.3 49.7
50 81.6 341.7 411.8 512.3 778.4 34.3 51.0 47.9 50.2 58.0
60 93.2 398.2 439.1 823.4 998.3 36.2 51.2 51.3 55.1 61.3
70 121.4 437.9 632.4 1001.0 1102.5 39.8 57.3 63.2 65.2 69.8
80 156.2 510.2 691.2 1035.6 1214.3 42.7 61.9 71.7 74.3 79.2
90 181.4 578.0 783.0 1105.5 1538.4 47.9 64.0 78.1 83.1 87.9

100 210.3 631.2 987.4 1550.0 2053.6 55.3 67.3 81.2 92.4 113.4

Figure 4
Comparison of DLIQ and ID Algorithm with respect to Queries

Figure 5
Comparison of DLIQ and ID Algorithm with respect to Time Efficiency

June 13, 2022

·104

ID
DLIQ

N
um

be
r o

f Q
ue

rie
s

Figure 4: Comparison of DLIQ and ID Algorithm with respect to Queries

4

3 4

2
2

1

20 40 60 80 100

Number of States
(a) For |Σ| = 8

20 40 60 80 100

Number of States
(b) For |Σ| = 10

Figure 5: Comparison of DLIQ and ID Algorithm with respect to Time Efficiency

200

150

100

50

600

400

200

800

600

400

200

20 40 60 80 100

Number of States
(a) For |Σ| = 2

20 40 60 80 100

Number of States
(b) For |Σ| = 4

20 40 60 80 100

Number of States
(c) For |Σ| = 6

·104

ID
DLIQ

ID

DLIQ

ID

DLIQ

ID

DLIQ

Le
ar

ni
ng

 T
im

e
(m

s)

N
um

be
r o

f Q
ue

rie
s

Le
ar

ni
ng

 T
im

e
(m

s)

Le
ar

ni
ng

 T
im

e
(m

s)

June 13, 2022

·104

ID
DLIQ

N
um

be
r o

f Q
ue

rie
s

Figure 4: Comparison of DLIQ and ID Algorithm with respect to Queries

4

3 4

2
2

1

20 40 60 80 100

Number of States
(a) For |Σ| = 8

20 40 60 80 100

Number of States
(b) For |Σ| = 10

Figure 5: Comparison of DLIQ and ID Algorithm with respect to Time Efficiency

200

150

100

50

600

400

200

800

600

400

200

20 40 60 80 100

Number of States
(a) For |Σ| = 2

20 40 60 80 100

Number of States
(b) For |Σ| = 4

20 40 60 80 100

Number of States
(c) For |Σ| = 6

·104

ID
DLIQ

ID

DLIQ

ID

DLIQ

ID

DLIQ

Le
ar

ni
ng

 T
im

e
(m

s)

N
um

be
r o

f Q
ue

rie
s

Le
ar

ni
ng

 T
im

e
(m

s)

Le
ar

ni
ng

 T
im

e
(m

s)

June 13, 2022

·104

ID
DLIQ

N
um

be
r o

f Q
ue

rie
s

Figure 4: Comparison of DLIQ and ID Algorithm with respect to Queries

4

3 4

2
2

1

20 40 60 80 100

Number of States
(a) For |Σ| = 8

20 40 60 80 100

Number of States
(b) For |Σ| = 10

Figure 5: Comparison of DLIQ and ID Algorithm with respect to Time Efficiency

200

150

100

50

600

400

200

800

600

400

200

20 40 60 80 100

Number of States
(a) For |Σ| = 2

20 40 60 80 100

Number of States
(b) For |Σ| = 4

20 40 60 80 100

Number of States
(c) For |Σ| = 6

·104

ID
DLIQ

ID

DLIQ

ID

DLIQ

ID

DLIQ

Le
ar

ni
ng

 T
im

e
(m

s)

N
um

be
r o

f Q
ue

rie
s

Le
ar

ni
ng

 T
im

e
(m

s)

Le
ar

ni
ng

 T
im

e
(m

s)

June 13, 2022

·104

ID
DLIQ

N
um

be
r o

f Q
ue

rie
s

Figure 4: Comparison of DLIQ and ID Algorithm with respect to Queries

4

3 4

2
2

1

20 40 60 80 100

Number of States
(a) For |Σ| = 8

20 40 60 80 100

Number of States
(b) For |Σ| = 10

Figure 5: Comparison of DLIQ and ID Algorithm with respect to Time Efficiency

200

150

100

50

600

400

200

800

600

400

200

20 40 60 80 100

Number of States
(a) For |Σ| = 2

20 40 60 80 100

Number of States
(b) For |Σ| = 4

20 40 60 80 100

Number of States
(c) For |Σ| = 6

·104

ID
DLIQ

ID

DLIQ

ID

DLIQ

ID

DLIQ

Le
ar

ni
ng

 T
im

e
(m

s)

N
um

be
r o

f Q
ue

rie
s

Le
ar

ni
ng

 T
im

e
(m

s)

Le
ar

ni
ng

 T
im

e
(m

s)

N
um

be
r o

f Q
ue

ri
es

Number of States

June 13, 2022

·104

ID
DLIQ

N
um

be
r o

f Q
ue

rie
s

Figure 4: Comparison of DLIQ and ID Algorithm with respect to Queries

4

3 4

2
2

1

20 40 60 80 100

Number of States
(a) For |Σ| = 8

20 40 60 80 100

Number of States
(b) For |Σ| = 10

Figure 5: Comparison of DLIQ and ID Algorithm with respect to Time Efficiency

200

150

100

50

600

400

200

800

600

400

200

20 40 60 80 100

Number of States
(a) For |Σ| = 2

20 40 60 80 100

Number of States
(b) For |Σ| = 4

20 40 60 80 100

Number of States
(c) For |Σ| = 6

·104

ID
DLIQ

ID

DLIQ

ID

DLIQ

ID

DLIQ

Le
ar

ni
ng

 T
im

e
(m

s)

N
um

be
r o

f Q
ue

rie
s

Le
ar

ni
ng

 T
im

e
(m

s)

Le
ar

ni
ng

 T
im

e
(m

s)

N
um

be
r o

f Q
ue

ri
es

Number of States

(a) For |Σ| = 2 (b) For |Σ| = 4

(b) For |Σ| = 10

(c) For |Σ| = 6

(a) For |Σ| = 8

Le
ar

ni
ng

 T
im

e
(m

s)

Le
ar

ni
ng

 T
im

e
(m

s)

Le
ar

ni
ng

 T
im

e
(m

s)

Number of States Number of States Number of States

Information Technology and Control 2022/4/51622

8. Complexity Analysis
The minimally adequate teacher (MAT) has polyno-
mial time complexity but its complexity is assumed
as constant for the query complexity analysis [2]. The
MAT possesses (1)O time complexity for a member-
ship and 1δ − query whereas it has polynomial time
complexity for an equivalence query.
Table construction takes (| | 1)O NΣ + time com-
plexity. In each iteration, the learner asks 1δ − query
against an element of set sP (used as distinguishing
string in the proposed algorithm) therefore, its time
complexity is (| |)sO P whereas, the number of states
visited at each step are maximum of | |F (which is in
most of the cases < < N) therefore, the nested loop
takes (| || |)sO P F time complexity. The block split-
ting process takes O(1) time complexity. Therefore,
the query based time complexity of the proposed
algorithm is (| || | | |)sO P F N+ Σ . Automaton recon-
struction is done by reading the 1δ − table therefore, it
also takes (| |)O NΣ time complexity. In view of above
asymptotic analysis, total worst case time complexity
of the algorithm is (| || | | |)sO P F N+ Σ .
If we carefully analyze this complexity, we can see
that the dominant factor involved in this complexity
is | || |sP F where | |sP N≈ and in most of the cases

<<F N (almost constant). The other factor that is
| | .NΣ ; in most of the time | |Σ also act as nearly con-
stant therefore, the average case complexity of the
DLIQ algorithm is nearly linear. For this, we can claim

Figure 6
Comparison of DLIQ and ID Algorithm with respect to Time Efficiency

June 13, 2022

Figure 6: Comparison of DLIQ and ID Algorithm with respect to Time Efficiency

1,500

1,000

2,000

1,500

1,000

500
500

20 40 60 80 100

Number of States
(a) For |Σ| = 8

20 40 60 80 100

Number of States
(b) For |Σ| = 10

ID

DLIQ

ID

DLIQ

Le
ar

ni
ng

 T
im

e
(m

s)

Le
ar

ni
ng

 T
im

e
(m

s)

Le
ar

ni
ng

 T
im

e
(m

s)

Number of States

June 13, 2022

Figure 6: Comparison of DLIQ and ID Algorithm with respect to Time Efficiency

1,500

1,000

2,000

1,500

1,000

500
500

20 40 60 80 100

Number of States
(a) For |Σ| = 8

20 40 60 80 100

Number of States
(b) For |Σ| = 10

ID

DLIQ

ID

DLIQ

Le
ar

ni
ng

 T
im

e
(m

s)

Le
ar

ni
ng

 T
im

e
(m

s)

Le
ar

ni
ng

 T
im

e
(m

s)

Number of States

(b) For |Σ| = 10(a) For |Σ| = 8

that in this paper, we have reduced the time complexi-
ty of the DFA learning.

9. Conclusions and Future
Directions
We have reduced the complexity of the determin-
istic finite automaton (DFA) learning (from cubic
to square form in worst case) and presented a novel
complete learning algorithm DLIQ for learning of a
DFA. We have also shown experimentally that the
DLIQ is more efficient than the ID algorithm in terms
of time complexity. This algorithm improves the com-
plete learning process of DFAs by making use of 1δ −
queries. In the future, we plan to extend the concept
used for 1-bit learning to k -bit learning for reducing
the complexity of k -bit learning algorithms also. An-
other direction of work can be to design incremental
automaton learning algorithms both for the 1-bit and
k -bit scenarios.

Acknowledgement

We gratefully acknowledge financial support for this
research from Higher Education Commission of Pa-
kistan (HEC) under grant no: 9223/Federal/NRPU/
RD/HEC/2017.

623Information Technology and Control 2022/4/51

References
1. Angluin, D. A Note on the Number of Queries Needed

to Identify Regular Languages. Information and Con-
trol, 1981, 51, 76-87. https://doi.org/10.1016/S0019-
9958(81)90090-5

2. Angluin, D. Learning Regular Sets from Queries and Co-
unterexamples. Information and Computation, 1987, 75,
87-106. https://doi.org/10.1016/0890-5401(87)90052-6

3. Angluin, D., Chen, D. Learning a Random DFA from
Uniform Strings and State Information. In: Chaudhuri,
K., GENTILE, C., Zilles, S. (eds) Algorithmic Learning
Theory. Lecture Notes in Computer Science, 2015,
9355. Springer, Cham. https://doi.org/10.1007/978-3-
319-24486-0_8

4. Boehm, B. W. Software Engineering: R&D Trends and
Defense Needs. Research Directions in Software Tech-
nology, 1978.

5. Cleaveland R., J. P., Steffen, B. A Semantics-Based Veri-
fication Tool for Finite State Systems in Proceedings of
the Ninth IFIP Symposium on Protocol Specification,
Testing and Verification, North Holland, 1989.

6. Cleaveland R., J. P., Steffen, B. The Concurrency Work-
bench in Proceedings of the Workshop on Automatic
Verification Methods for Finite State Systems, LNCS,
1989. https://doi.org/10.1007/3-540-52148-8_3

7. Cleaveland R., J. P., Steffen, B. The Concurrency Work-
bench: Operating Instructions. University of Edinbur-
gh, Laboratory for Foundations of Computer Science,
Technical Note 10, 1988.

8. Departarnento, J. N., Garcia, P. Identifying Regular
Languages In Polynomial in Advances in Structural
and Syntactic Pattern Recognition. Series in Machine
Perception and Artificial Intelligence, 1992, 5, 99-108.
https://doi.org/10.1142/9789812797919_0007

9. Dupont, P. Incremental Regular Inference. Proceedings
of the Third ICGI-96, 1996. https://doi.org/10.1007/
BFb0033357

10. Gold, E. M. Language Identification in the Limit. In-
formation and Control, 1967, 10, 447-474. https://doi.
org/10.1016/S0019-9958(67)91165-5

11. Groce, A., Peled, D., Yannakakis, M. Adaptive Model
Checking. Logic Journal of the IGPL, 2006, 14, 729-744.
https://doi.org/10.1093/jigpal/jzl007

12. Hessel, A. et al. Testing Real-Time Systems Using
UPPAAL. Formal Methods and Testing, 2008, 77-117.
https://doi.org/10.1007/978-3-540-78917-8_3

13. Hopcroft, J. An n Log n Algorithm for Minimizing Sta-
tes in a Finite Automaton. Theory of Machines and
Computations, 1971, 189-196. https://doi.org/10.1016/
B978-0-12-417750-5.50022-1

14. Isberner, M., Howar, F., Steffen, B. The TTT Algorithm:
A Redundancy-free Approach to Active Automata Le-
arning in International Conference on Runtime Veri-
fication, 2014, 307-322. https://doi.org/10.1007/978-3-
319-11164-3_26

15. Kearns, M. J., Vazirani, U. V., Vazirani, U. An Introducti-
on to Computational Learning Theory, MIT Press, Cam-
bridge, Massachusetts, 1994. https://doi.org/10.7551/
mitpress/3897.001.0001

16. Mathur, A. P. Foundations of Software Testing 2E. Dor-
ling Kindersley (India) Pvt. Ltd, 2013.

17. Mazhar, R., Sindhu, M. A. DKL: An Efficient Algorithm
for Learning Deterministic Kripke Structures. Acta In-
formatica, 2020. https://doi.org/10.1007/s00236-020-
00387-2

18. Meinke, K., Sindhu, M. A. Correctness and Performan-
ce of an Incremental Learning Algorithm for Kripke
Structures. Technical Report, School of Computer Sci-
ence and Communication, Royal Institute of Technolo-
gy, Stockholm, 2010.

19. Meinke, K., Sindhu, M. A. Incremental Learning-Based
Testing for Reactive Systems. Tests and Proofs (eds Gogo-
lla, M. & Wolff, B.), 2011, 6706, 134-151. ISBN: 978-3-642-
21767-8. https://doi.org/10.1007/978-3-642-21768-5_11

20. Michaliszyn, J. O. J. Learning Deterministic Automata
on Infinite Words. ECAI 2020, 2020.

21. Michaliszyn, J. O. J. Learning Infinite-Word Automa-
ta with Loop Index Queries. Artificial Intelligence,
2022, 1(307), 103710. https://doi.org/10.1016/j.ar-
tint.2022.103710

22. Parekh, R., Nichitiu, C., Honavar, V. A Polynomial Time
Incremental Algorithm for Regular Grammar Inferen-
ce. Proceedings of Fourth International Colloquium
on Grammatical Inference (ICGI 98) (Springer, 1998).
https://doi.org/10.1007/BFb0054062

23. Parrow, J. Verifying a CSMA/CD Protocol with CCS in
Proceedings of the Seventh IFIP Symposium on Proto-
col Specification, Testing and Verification (1987).

24. Peled, D., Vardi, M. Y., Yannakakis, M. Black Box Checking
in FORTE, 1999, 225-240. https://doi.org/10.1007/978-
0-387-35578-8_13

Information Technology and Control 2022/4/51624

25. Pellegrino G., H. C.L. Q., Verwer, S. Learning Determi-
nistic Finite Automata from Infinite Alphabets. Inter-
national Conference on Grammatical Inference, 2017,
120-131.

26. Petrenko, A., Avellaneda, F., Groz, R., Oriat, C. FSM In-
ference and Checking Sequence Construction are Two
Sides of the Same Coin. Software Quality Journal, 2018,
1-24. https://doi.org/10.1007/s11219-018-9429-3

27. Seijas, P. L., Thompson, S., Francisco, M. Á. Model
Extraction and Test Generation from JUnit Test Suites.
Software Quality Journal, 2018, 26, 1519-1552. https://
doi.org/10.1007/s11219-017-9399-x

28. Sheinvald, S. Learning Deterministic Variable Auto-
mata over Infinite Alphabets. International Sympo-
sium on Formal Methods, 2019, 633- 650. https://doi.
org/10.1007/978-3-030-30942-8_37

29. Smetsers, R., Volpato, M., Vaandrager, F., Verwer, S. Big-
ger is Not Always Better: On the Quality of Hypotheses
in Active Automata Learning. International Conferen-
ce on Grammatical Inference, 2014, 167-181.

30. Smetsers, R., Fiterau-Brostean, P., Vaandrager, F.W.
Model Learning as a Satisfiability Modulo Theories
Problem. In S.T. Klein et al. (eds.) Proceedings 12th
International Conference on Language and Automata
Theory and Applications (LATA), Bar-Ilan, Israel, Ap-
ril 9-11, 2018, LNCS 10792, 182-194, 2018. https://doi.
org/10.1007/978-3-319-77313-1_14

31. Sofia, C., Howar, F., Jonsson, B., Steffen, B. Active le-
arning for extended finite state machines. Formal As-
pects of Computing, 2016, 28(2), 233-263. https://doi.
org/10.1007/s00165-016-0355-5

32. Therese, B., Jonsson, B., Leucker, M., Saksena, M. In-
sights to Angluin‘s learning. Electronic Notes in The-
oretical Computer Science, 2005, 118, 3-18. https://doi.
org/10.1016/j.entcs.2004.12.015

33. Vaandrager, F. Model learning. Communications of the
ACM, 2017, 60, 86-95. https://doi.org/10.1145/2967606

34. Walker, D. Analysing Mutual Exclusion Algorithms
Using CCS. University of Edinburgh Technical Report
ECS-LFCS-88-45, 1988.

This article is an Open Access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

