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Breast cancer prediction is essential for preventing and treating cancer. In this research, a novel breast cancer 
prediction model is introduced. In addition, this research aims to provide a range-based cancer score instead 
of binary classification results (yes or no). The Breast Cancer Surveillance Consortium dataset (BCSC) data-
set is used and modified by applying a proposed probabilistic model to achieve the range-based cancer score. 
The suggested model analyses a sub dataset of the whole BCSC dataset, including 67632 records and 13 risk 
factors. Three types of statistics are acquired (general cancer and non-cancer probabilities, previous medical 
knowledge, and the likelihood of each risk factor given all prediction classes). The model also uses the weight-
ing methodology to achieve the best fusion of the BCSC’s risk factors. The computation of the final prediction 
score is done using the post probability of the weighted combination of risk factors and the three statistics ac-
quired from the probabilistic model. This final prediction is added to the BCSC dataset, and the new version 
of the BCSC dataset is used to train an ensemble model consisting of 30 learners. The experiments are applied 
using the sub and the whole datasets (including 317880 medical records). The results indicate that the new 
range-based model is accurate and robust with an accuracy of 91.33%, a false rejection rate of 1.12%, and an 
AUC of 0.9795. The new version of the BCSC dataset can be used for further research and analysis.
KEYWORDS: Machine Learning, Ensemble Learning, Breast Cancer, Probability Estimation, Risk Factors.
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1. Introduction
Breast cancer is one of the most common and chal-
lenging diseases that has received much attention 
either in medical or biomedical domains. The main 
problem of cancer diagnosis and prediction is the 
huge amount of data that cannot be dealt with in the 
traditional manual method (physician’s observa-
tions), and a more powerful speed approach is need-
ed [14, 15, 22]. Fortunately, the rapid development 
in the computer science field, especially in machine 
learning methodologies, has revealed the hidden in-
formation inside those datasets and provided health 
organizations with useful tools for diagnosing and 
predicting cancer [1, 2, 5, 27]. 
Many previous breast cancer prediction tools were 
designed; some used well-known breast cancer data-
sets, while others used their own collected data. In 
some researches, the designed tools used known built-
in models like Kaplan-Meier [13], while others used 
some known machine learning models (Support Vec-
tor machines (SVM), K-Nearest Neighbour (K-NN), 
Random Forests (RF), Decision Trees (DT), Neural 
Networks, Naïve Bayes and Logistic Regression (LR)) 
[3, 4, 11, 17, 22]. Some researchers used deep learning 
methodologies and fused them with image models, 
obtaining mammography breast image features, with 
the textual information of risk factors to improve the 
prediction model’s accuracy [29]. Some of these re-
searches got benefit of the parameter optimizations 
and ensemble learning methods to enhance the per-
formance significantly [16, 21, 23].

2. Related Work
The conditional probability of the Bayes theorem was 
introduced by Ramkumar et al. [25] for liver cancer 
prediction. They used a dataset collected from 20 pa-
tients from the BUPA research lab. There were seven 
attributes in the data set including the Mean cor-
puscular volume, Alkaline phosphate, alkaline ami-
notransferase, aspartate aminotransferase, gamma 
transpeptidase, number of half-pints equivalent to 
alcohol and a selector to split the dataset into train-
ing and validation. For the used dataset, different 
probabilities were computed (the probability that an 
individual will suffer or not from liver cancer, and the 

test’s conditional probability will be positive/nega-
tive given that the disease is present/absent). The re-
searcher used the Weka tool in order to analyse their 
dataset and apply the required Naïve Bayes classifier. 
The obtained results were not so good, and the accu-
racy was only 50%. Their results indicated that the 
proposed methodology had no pre-processing steps. 
The size of the used dataset was very small.
For the aim of Breast Cancer Surgery Survivability 
Prediction, Al-Jawad et al. [3] used the Bayesian Net-
work and the Support Vector Machines SVM. Haber-
man’s survival dataset contained 306 cases (225 
confirmed cancer cases survived 5 years after cancer 
surgery). The Weka tool was used to apply the SVM 
and BN classifiers in their research. The research 
also computed five different statistical features of 
the used dataset’s three attributes: mean, median, 
standard deviation, maximum and minimum values). 
They also computed the correlation coefficients of the 
three features pairs (Age and survival status 0.067, 
Year and survival status -0.00477, Positive nodes and 
survival status 0.28677). They chose fixed values of 
the optimizable parameters of SVM and BN models, 
which was why their methodology achieved low per-
formance. Their results indicated that SVM outper-
formed the Bayesian Network by 6.88%. The SVM 
achieved 73.78% and 74.77% for Recall and Precision 
metrics, while the BN achieved 78.22% and 64.47% 
for Recall and Precision, respectively. The main prob-
lems of their research were the small dataset size and 
the fixed learning parameters.
In 2018, Annemieke et al. [4] compared logistic re-
gression with different Bayesian Networks BNs. 
They selected a subset of data from the Netherlands 
Cancer Registry, including 37,320 samples. The se-
lected dataset was between 2003 and 2006, related 
to women with early-stage breast cancer. The Bayes-
ian network classifiers, the correlation coefficients, 
the constraint-based learning methodologies, and 
the score-based learning models were used to sup-
port the BNs architectures to get better performance. 
AUC (Area Under Curve) evaluation metrics were 
used to evaluate those different models, and in or-
der to apply those validations, an external validation 
set was obtained from the NCR from 2007 and 2008 
(N = 12,308). Although logistic regression indicat-
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ed the best performance on most experiments of the 
sub-dataset analysis, BNs exceeded the performance 
of regression for SP prediction for the high and low-
risk subsets. The authors concluded that in the case 
of BNs, the value of coefficient estimators had no re-
lationship with the changes of the other variables’ 
values.
In Yang et al. [30] study, three different classifiers 
were fused to get the best efficiency (Bayesian and 
Markov models and the artificial neural network). 
Bayesian and Markov models were first used to estab-
lish a connection between the previous and current 
incidence of cancer. The outputs of these two clas-
sifiers fed back into the Neural Network classifier. A 
pre-processing step was applied to the used dataset. 
They applied normalization and missed data manipu-
lation steps to prepare the cancer dataset. Twenty at-
tributes were used from an entire dataset consisting 
of 36,000 cases. Those cancer cases included 10,500 
patients with lung cancer, 13,500 with liver cancer, 
and 12,000 with stomach cancer, respectively. The re-
searchers split the dataset into 75% training and 25% 
test. The experimental results showed that the overall 
training accuracy was 73.55%, 76.07% and 75.63% for 
the ANN, CBM and the proposed fusion methodolo-
gy. For the test set, they got 68.78%, 70.63%, 72.47% as 
accuracies for the same previous settings. The main 
problem of their results was that the F1-score was 
rather small, which indicated that their proposed ap-
proach suffered from false positive and false negative 
results. This might have been due to the fact that they 
collected their data from different data sources. They 
also compared their results with other classifiers like 
Random Forests (RF), SVM and ELM. While their ap-
proach’s performance exceeded the ELM, the perfor-
mance of SVM and RF was better.
Recently, in 2021, Khozama and Mayya [17] devel-
oped a breast cancer prediction model based on risk 
factors. They used the BCSC dataset containing 12 
risk factors and applied three different types of sam-
pling in order to unbias the dataset. They designed 
a weighting system of the risk factors depending on 
special medical questionnaires and information re-
trieved from the international medical reports. They 
got an accuracy of 95.8% of the oversampled dataset. 
Their system also indicated improvement in the false 
rejection and false discovery errors rates against the 
unweighted version of the dataset.

Another research used the BCSC dataset to predict 
breast cancer using 154899 records [22]. They used 
many machine learning algorithms like Logistic Re-
gression, SVM, Naïve Bayes, and Bayesian Network. 
Their results confirmed that the Naïve Bayes classi-
fier had the best accuracy in predicting the likelihood 
of breast cancer while the SVM and BNs had the low-
est performance.
A further type of research used Next-Generation 
Sequencing (NGS) methodology together with ma-
chine learning algorithms for the aim of breast can-
cer prediction [19]. The NCBI (National Centre for 
Biotechnology Information) dataset was used to ex-
tract the NGS data samples forming 4 different cate-
gories (1580 samples). The researchers extracted the 
sequence features and then used different machine 
learning classifiers (K-NN, SVM, Naïve Bayes, Ada-
Boost, Decision Trees, Random Forests and gradient 
boosting). The evaluation proved that the decision 
tress was the best classifier with 94.30% accuracy.
Miloš et al. [26] analyzed the machine learning mod-
els to predict life’s quality for breast cancer patients. 
They used two different datasets; the BcBase early 
breast cancer prediction dataset and the ORB pros-
tate cancer dataset. The researcher evaluated differ-
ent machine learning algorithms like RF, SVM, Naïve 
Bayes, K-NN and decision trees. They examined two 
different types of QoL models (centrally-trained and 
federated). The results indicated that both models 
gave accurate predictions in the case of short term 
predictors while the centrally-trained models over-
performed in the case of long predictors. The results 
also indicated low values of precision and recall in 
both models.
Recently in 2022, Guo et al. [16] proposed an MLP-
based cancer prediction model. In this case, ensemble 
learning was also used to improve the performance of 
the MLP classifier by applying the optimization pro-
cess for tuning some particular parameters (number 
of input features, number of hidden layers, number of 
neurons of each layer and weight values). The exper-
iments were applied on the Wisconsin Breast Cancer 
Database WBCD. The obtained accuracy was 98.79% 
when using the MLP classifier and the parameter op-
timization.
Some previous studies used the well-known ma-
chine learning models, and few of them used the idea 
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of ensemble learning or using a mix of many models. 
Many studies used the BCSC dataset (partially or 
completely), but none of them analyzed the probabi-
listic distribution of this dataset. All previous stud-
ies introduced the cancer prediction problem using 
specific cancer prediction results (yes or no). In our 
study, a range-based cancer score will be computed 
based on a probabilistic model. The probabilistic 
analysis of a selected subset of the BCSC dataset 
will be performed, so that previous knowledge of all 
risk factors, their likelihoods and the general can-
cer statistics will be extracted and used along with 
a weighted system (previous work) to compute the 
final cancer score. To evaluate our methodology, an 
ensemble model will be trained using the new ver-
sion of the BCSC dataset. The selection of hyperpa-
rameters of the ensemble model will be applied to 
get the best performance and avoid the limitations 
of the previous studies.

3. Materials and Methods
Whereas previous research achieved great result in 
the field of predicting cancer in patients, for more 
efficient and accurate prediction, we suggest using 
a range-based cancer score value instead of using a 
scalar value (0 or 1) so that the decision will not be 
either cancer or not. Rather, it will be a range val-
ue between 0% and 100%, indicating the potential 
breast cancer risk. Figure 1 includes the proposed 
methodology.

Figure 1
The proposed range-based cancer score methodology

Figure 2
The range-value cancer prediction score model

3.1. Designing the Breast Cancer  
Range-Based Model
The proposed methodology must include two 
main systems to design our model. The first is the 
breast-cancer factors weighting system (acquired 
from the previous work [17]), while the other is the 
proposed statistical system to compute the breast 
cancer statistics required for the final cancer score. 
The range-value cancer prediction model is described 
in Figure 2.

 

3.2. Computing Breast Cancer Prediction 
Score
Our breast cancer prediction system has the follow-
ing inputs:
1 Breast cancer factors’ weights were obtained from 

our previous research (previous paper [17]): each 
risk factor had been assigned a scalar weight (1, 2, 3, 
4…), indicating the degree of importance of each risk 
factor. These numbers will be used in our prediction 
system to get an accurate prediction score taking 
into account the importance of each risk factor.

2 General cancer statistics: The general probability 
of cancer “cancerBias” and non-cancer “Ncancer-
Bias”, which are computed from the breast cancer 
dataset.
The cancerBias and NcancerBias represent the 
previous knowledge obtained by the BCSC sub 
dataset in which the class “Cancer” constitutes 
68.88% of all samples while the “Ncancer” class 
has less than 31.12% of the entire samples.
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3 Likelihood of each risk factor given that the predic-
tion result is cancer or non-cancer: The sum of all 
other likelihoods of its inner values given the same 
prediction, as described in Equation (1).

P(Risk_Factori | Prediction) = Σk P(Inner_
Valueij | Prediction)

(1)

Where k is the total number of risk factor’s inner 
values.

4 Previous knowledge of each risk factor: The med-
ical opinion about the probability of the effect of 
each risk factor on the final breast cancer score. 
This part is formulated as P(pre_cancerij) and ob-
tained from the analysis of some medical question-
naires delivered to specialist physicians in breast 
cancer.
The final breast cancer prediction score as a 
range-value is calculated using the previous inputs 
(Equation (2)).

BCPSi= cancerBias*BCPScancer+ 
NcancerBias* BCPSNcancer

(2)

BCPScancer and BCPSNcancer are the post prob-
abilities of cancer and non-cancer, given the risk 
factors formulated as Equations 3 and 4 suggest 
based on Bayes’ theorem.

BCPScancer = Σn P(prediction = cancer |  
Risk_factori) × (STW( j) / Σn STW( j))  

(3)

BCPSNcancer = Σn P(prediction = Non-cancer | 
Risk_factori) × (STW( j) / Σn STW( j))

(4)

STWj is the suggested training weight (of our pre-
vious paper) and n is the number of all risk factors. 
The post probability of each risk factor is calculat-
ed as shown in Equation (5).

P(Prediction = Cancer | Inner_valuei) =  
Σk (P(Inner_valueij | Prediction = Cancer) × 
P(Pre_cancerij) /P(Inner_valueij))

(5)

Where K is the number of the risk factor’s inner 
values (For example, the menopause risk factor has 
three different values (K=3), which are Pre-meno-
pause (0), Post-Menopause (1) and Unknown (9)). 
P(Pre_cancerij) values are the pre-probabilities of 
the previous knowledge of cancer related to the 

risk factor’s inner value ijth. P(Innervalueij) is the 
evidence of each risk factor information and can be 
formulated as Equation (6) shows.

P(Inner_valueij) = P(Inner_Valueij | Pre-
diction= Cancer) × P(Pre_Cancerij) + P(In-
ner_Valueij |Prediction = Non-Cancer) ×   
(1 - P(Pre_Cancerij))

(6)

3.3. Modifying BCSC Dataset Based on Risk 
Range-based Score

The BCSC dataset is modified by adding three new at-
tributes in this step. The added attributes are the can-
cer score, the non-cancer score and the final predic-
tion. Future studies can use these attributes to predict 
and analyze the BCSC dataset. The final prediction of 
our proposed methodology will use this new version 
of the BCSC dataset.

3.4. Ensemble Learning Model Training

Ensemble learning is a method in which many clas-
sifiers (models) are fused to build a huge powerful 
model. It has the advantage of using many classifiers 
to improve performance. A fusion of ensemble learn-
ing and hyperparameters optimization has been given 
a lot of attention in the last few years [21].
Many hyperparameters are selected to be opti-
mized. Those parameters are the maximum number 
of splits, number of learners and learning rate. The 
used ensemble method is the AdaBoost algorithm 
[31], while the learner type is the decision trees al-
gorithm [18].
A Decision Tree (DT) is a machine learning model in 
which the internal nodes represent features, while 
branching denotes one of the possible results [10]. 
At the first step, the best promising feature is chosen 
as the root node, then the splitting process is applied 
based on a specific criterion (varying from one meth-
od to another).
Many learners are created and learned sequentially 
(fitting the model using the dataset) [24, 28]. Thus, 
in each step, a decision tree learner is chosen and fit-
ted so that the error is forwarded to the next step and 
used to learn the next step learner. In this way, the 
miss-classified samples of the previous model will be 
correctly classified by the next one [24].
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4. Results and Discussion
4.1. Dataset Description
We use a balanced version of the BCSC [6, 7] con-
taining 317880 records and 13 risk factors for the 
experimental part. The risk factors are menopause, 
age group (agegrp), race, Hispanic factor, Body Mass 
Index (BMI), age at first birth (agefirst), number of 
first relatives with breast cancer (nrelbc), breast pro-
cedure (brstproc), last mammogram before the in-
dex mammogram (lastmamm), surgical menopause 
(surgmeno) and current hormone therapy (Current_
hor). The last attribute in BCSC dataset is the “count” 
column which holds the frequency of each case in the 
dataset.

Table 1 
Cancer and non-cancer post probabilities of BCSC risk factors

No. Risk Factor P(Prediction=Cancer |Innervalue ij) P(Prediction=No cancer|Innervalue ij)

1 Menopause Pre=78.34%, Post (age>55)= 30.29%, 
Unknown= 21.89%

Pre=21.66%, Post (age>55)= 69.71%, 
Unknown= 78.11%

2 Age group

35-39=4.67%; 40-44=11.81%; 45-
49=22.47%; 50-54=41.57%; 55-59=29.2%; 
60-64 =22.2%; 65-69=12.43%; 70-
74=13.4%; 75-79=14.56%; 80-84=6.79%.

35-39=95.33%; 40-44=88.19%; 45-
49=77.53%; 50-54=58.43%; 55-59=70.8%; 
60-64 =77.8%; 65-69=87.57%; 70-
74=86.6%; 75-79=85.44%; 80-84=93.21%.

3 Density

Almost entirely fatty: 9.99%, Scattered 
fibro-glandular: 45.88%, Heterogeneously 
dense: 52.68%, Extremely dense: 38.24%, 
Unknown: 20.97%

Almost entirely fatty: 90.01%, Scattered 
fibro-glandular: 54.12%, Heterogeneously 
dense: 47.32%, Extremely dense: 61.76%, 
Unknown: 97.03%

4 Race

White: 72.85% ; Asian/Pacific Islander: 
36.36% ; Black: 10.62% ; Native 
American: 7.77% ; Other/mixed:28.1% ; 
Unknown: 19.66%.

White: 27.15% ; Asian/Pacific Islander: 
63.64% ; Black: 89.38% ; Native American: 
92.23% ; Other/mixed: 71.9% ; Unknown: 
80.34%.

5 Hispanic No: 28.33%;Yes: 81.6%; Unknown: 28.17%. No: 71.67%;Yes: 18.4%; Unknown: 71.83%.

6 BMI
10-24: 18.94%; 25-29.99: 23.34%; 30-
34.99: 31.41%; 35 or more: 41.58%; 
Unknown: 59.57%.

10-24: 81.06%; 25-29.99: 76.66%; 30-
34.99: 68.59%; 35 or more: 58.42%; 
Unknown: 40.43%.

7 Age at first birth (agefirst) Age<30: 30.54%; Age 30 or greater: 60.11%; 
Nulliparous: 60.24%; Unknown: 23.83%.

Age<30: 69.46%; Age 30 or greater: 39.89%; 
Nulliparous: 39.76%; Unknown: 76.17%.

8 Number of first degree relatives 
with breast cancer (nrelbc)

Zero: 21.75%; One: 49.02%; 2 or more: 
96.99%; Unknown: 24.68%.

Zero: 78.25%; One: 50.98%; 2 or more: 
3.01%; Unknown: 75.32%.

9 Previous breast procedure 
(brstproc)

No: 18.11% ; Yes:87.41%;  
Unknown: 36.34%.

No: 81.89% ; Yes:12.59%;  
Unknown: 63.66%.

10 last mammogram before the in-
dex mammogram (lastmamm)

Negative: 63.47%; False positive: 88.77%; 
Unknown: 20.25%.

Negative: 36.53%; False positive: 11.23%; 
Unknown: 79.75%.

11 Surgical menopause Natural: 31.38%; Surgical: 81.27%; 
Unknown or not Menopausal: 32.57%.

Natural: 68.62%; Surgical: 18.73%; 
Unknown or not Menopausal: 67.43%.

12 Hormone therapy No: 29.08%; Yes: 82.6%; Unknown: 31.92%. No: 70.92%; Yes: 17.64%; Unknown: 68.08%.

4.2. Training Scenarios
The machine learning model will be trained using 
the modified version of the BCSC dataset. Two train-
ing scenarios are suggested for the learning process. 
In the first scenario, the selected subset of the entire 
BCSC dataset is used to build and train the ensemble 
learning model. For the second scenario, the whole 
BCSC dataset is used. In both scenarios, the datasets 
are split into 80% training and 20% validation.

4.3. Computing the Probabilistic Model 
Using the Subset Training Dataset
For each risk factor in the subset, the pre and post prob-
abilities are computed using the 67633 records of the 
subset training dataset. The post probabilities comput-
ed according to equation 5 are illustrated in Table 1.
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For the “count” attribute and by using the distribution 
of cancer and non-cancer samples, the post probabili-
ties are computed as follows: P(Cancer|count<2)=0.3, 
P(NCancer|count<2)=0.3.
P(Cancer|count>=2&count<50)=0.8, 
(NCancer|count>=2 & count<8)=0.8.
P(Cancer|count>=50&count<1000)=0.95,  
P(NCancer|count>=8& count<16)=0.95.
P(Cancer|count>=1000)=1,  
P(NCancer|count>=16)=1.

4.4. Computing the Final Prediction  
Range-based Cancer Score Using the Subset 
Training Dataset
In this step, we use the probabilistic statistics of the 
previous stage and the risk factors weights obtained 
from previous work [17]. The calculations in this step 
aim to evaluate the probabilistic model and compute 
the final prediction score BCPScancer and BCPSNon_cancer 

according to equations 3 and 4.
Figure 3 illustrates the distribution of the “result 
prediction score” of the subset dataset where the 
main remark is that the “non-cancer” class is divid-
ed into the subclasses (‘19’, ‘20’, ‘21’, ‘22’, ‘23’, ‘24’, ‘25’, 
‘26’, ‘27’, ‘28’) representing the low-predicted per-
centages of breast cancer instead of using only one 
class to describe the presence or absence of breast 
cancer. On the other hand, the “cancer class” is di-

vided into 26 subclasses (‘48’, ‘49’, ‘50’, ‘51’, ‘52’, ‘53’, 
‘54’, ‘55’, ‘56’, ‘57’, ‘58’, ‘59’, ‘60’, ‘61’, ‘62’, ‘63’, ‘64’, ‘65’, 
‘66’, ‘67’, ‘68’, ‘69’, ‘70’, ‘71’, ‘72’, ‘73’) which are the 
high-predicted percentages of breast cancer scores.

4.5. Computing the Probabilistic Model Using 
the Whole (Original) Training Dataset
The same experiments are repeated to compute the 
distribution of the subclasses of the entire BCSC 
dataset (Figure 4). The same number of subclasses 
for the “cancer” class is obtained but with different 
distribution since the original dataset has a different 
distribution of “cancer” and “non-cancer” classes. 
On the other hand, three subclasses, “29”, “30”, and 
“31” of the “non-cancer” class are presented.

Figure 3
Distribution of new subclasses of the “cancer” and “non-
cancer” original classes in case of using the sub dataset

 

Figure 4
Distribution of new subclasses of the “cancer” and “non-
cancer” original classes in case of using the whole dataset

There is an essential distribution difference in the 
case of the sub dataset and the whole dataset. Figure 4 
shows this significant difference where the “non-can-
cer” categories (from “19” until “31”) have higher per-
centages than the “cancer” categories. This counts as 
normal since the original dataset has almost 84% of 
its samples as “non-cancer” class.

4.6. Ensemble Model Training Results
The sub dataset and whole dataset are given to the 
ensemble classifier to get two learned models; one for 
the subset and another for the whole dataset. 
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The hyperparameters optimization is applied in both 
training scenarios using the AdaBoost ensemble 
method and the Bayesian optimization. The Mini-
mum Classification Error (MCE) of the training pro-
cess on the sub and the whole dataset is computed. 
Through the iterations from 10 to 30, the MCE value 
of the subset is lower by 0.1 than the whole dataset.

4.7. Ensemble Model Evaluation

Many evaluation metrics are computed to evaluate 
the trained ensemble model that has been trained us-
ing the sub dataset and the entire dataset. Those met-
rics include the True Positive Rate (TPR), the False 
Negative Rate (FNR), the Positive Predictive Rate 
(PPR) and the False Discovery Rate (FDR) [8, 20]. All 
these metrics are calculated using four statistics (TP: 
the true positives which describe the correctly classi-
fied samples of the whole positive ones, FN: the false 
positives which express the incorrectly classified 
samples of the whole positive ones, TN: the true pos-
itives which calculate the correctly rejected samples 
of the whole negative ones, and the FP: the false pos-
itives representing the incorrectly accepted samples 
of the whole negative ones).
TPR (TP/(TP+FN)) is the proportion of the correctly 
classified samples per predictive class, while the FNR 
(FN/(TP+FN)) is the proportion of the incorrectly 
classified samples per true class [12]. Likewise, PPR 
(TP/(TP+FP)) is the proportion of the correctly clas-
sified samples per predictive class, while FDR (FP/
(TP+FP)) is the proportion of the incorrectly classi-
fied samples per predictive class [12]. On the other 
hand, the accuracy is calculated as ((TP+TN)/(TP+T-
N+FP+FN)) representing the proportion of the cor-
rectly classified samples of all data samples. Table 2 
includes the evaluation results of the trained ensem-
ble model using the new version of the sub dataset and 
the whole dataset.
Table 2 statistics show that the average TPR are 
94.61% and 92.52% for both sub and whole datasets. 
Similarly, the average PPRs are 92.28% and 85.55% 
for sub and whole datasets. The total accuracy of both 
sub and whole datasets is 95.5% and 85.3%, respec-
tively. To measure the ability to distinguish between 
different subclasses, the Area Under Curve (AUC) 
[9] is used for all trained ensemble models. Table 3 
includes detailed AUC results of all subclasses (“19”-
”73”) of the sub and whole datasets.

Table 2
Evaluation results of the ensemble model using the sub and 
whole dataset

Class TPR_
sub

TPR_
Whl

FNR_
sub

FNR_
Whl

PPR_
sub

PPR_
Whl

FDR_
sub

FDR_
Whl

19 64.1 77.9 35.9 22.1 83.33 86.7 16.7 13.3
20 86.58 83.9 13.42 16.1 87.53 87.5 12.47 12.5
21 85.85 84.4 14.15 16.6 82.41 85.3 17.59 14.7
22 85.88 84.4 14.12 16.6 88.12 85.6 11.88 14.4
23 88.61 83.9 11.39 16.1 87.8 85.9 12.2 14.1
24 87.14 82.9 12.86 17.1 87.41 85.2 12.59 14.8
25 77.73 75.3 22.27 24.7 77.73 80.6 22.27 19.4
26 84.62 83.9 15.38 16.1 83.4 85.3 16.6 14.7
27 77.78 72.3 22.22 27.7 87.5 78.6 12.5 21.4
28 75 64.3 25 35.7 75 72.3 25 27.7
29 - 64.5 - 35.5 - 69.6 - 30.4
30 - 69.4 - 30.6 - 73.5 - 26.5
31 - 0 - 100 - - - 100
48 100 100 0 0 100 100 0 0
49 100 100 0 0 100 94.1 0 5.9
50 100 100 0 0 100 82.1 0 17.9
51 100 100 0 0 95.9 86 4.1 14.0
52 100 100 0 0 100 81.9 0 18.1
53 98.16 100 1.84 0 100 83.6 0 16.4
54 100 96.6 0 3.4 100 83.1 0 16.9
55 100 99.2 0 0.8 100 84.0 0 16.0
56 100 100 0 0 99.16 85.8 0.84 14.2
57 100 99.6 0 1.4 100 86.8 0 13.2
58 99.38 99.2 0.62 0.8 100 86.4 0 13.6
59 100 100 0 0 98.73 84.9 1.27 15.1
60 99.66 98.6 0.34 1.4 100 84.8 0 15.2
61 100 99.3 0 0.7 100 87.2 0 12.8
62 100 100 0 0 100 87.1 0 12.9
63 100 99.1 0 0.9 100 85.3 0 14.7
64 100 99.3 0 0.7 100 85.8 0 14.2
65 100 98.1 0 1.9 100 89.8 0 10.2
66 100 100 0 0 100 89.5 0 10.5
67 100 100 0 0 100 83.4 0 16.6
68 100 100 0 0 98.17 93.0 1.83 7.0
69 97.92 100 2.08 0 97.9 90.1 2.1 9.9
70 97.7 100 2.3 0 100 90.4 0 9.6
71 100 100 0 0 100 90.5 0 9.5
72 100 100 0 0 100 79.2 0 20.8
73 100 100 0 0 100 100 0 0
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Table 3
AUC calculations of the subclasses of the sub and whole datasets: CN: class number, SUB: sub dataset, WHL: whole 
dataset, NoS: number of samples

CN 19 20 21 22 23 24 25 26 27 28

SUB 0.89 0.89 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1

WHL 0.96 0.97 0.97 0.96 0.96 0.96 0.95 0.97 0.96 0.94

NoS 2788 18982 38868 57875 62345 46653 21275 16621 3917 1380

CN 29 30 31 48 49 50 51 52 53 54

SUB - - - 1 1 1 1 1 1 1

WHL 0.94 0.94 0.72 1 1 1 1 1 1 1

NoS 495 146 10 15 60 185 465 885 1085 2560

CN 55 56 57 58 59 60 61 62 63 64

SUB 1 1 1 1 1 1 1 1 1 1

WHL 1 1 1 1 1 1 1 1 1 1

NoS 1905 2370 3055 6475 3105 5890 2710 4540 1805 2390

CN 65 66 67 68 69 70 71 72 73

SUB 1 1 1 1 1 1 1 1 1

WHL 1 1 1 1 1 1 1 1 1

NoS 1685 1595 565 1060 940 865 230 75 10

All “cancer” subclasses have the AUC=1 in both sub 
and whole datasets. However, the “non-cancer” sub-
class “31” has the least AUC value. Table 2 supports 
this point, since subclass “31’ has the highest FNR 
and FDR values. This issue arises because subclass 
“31” has too few samples (7 for training and 3 for vali-
dation) compared with the other subclasses.

4.8. Variance Results
The new subclasses of the original BCSC datasets have 
an original containing class, which means that the sub-
classes (“19” to “31”) belong to the “non-cancer” class. 
Similarly, the “cancer class” contains the subclasses 
(“48” to “73”). In order to express the actual results 
of the modified model, we repeated the performance 
evaluations in two other new trials; the first one has 
±1 classes-variance tolerance, while another one rep-
resents the ±2 classes-variance. The very closed sub-
classes (±1 or ±2) introduce similar cancer/non-cancer 
scores and can be treated as one subclass.
Therefore, if the actual subclass is “21” then the accept-
ed true classes can be “20”, “21” and “22” for ±1 class-
es-variance. On the other hand, for ±2 classes-variance, 
the accepted classes are “19”,”20”,”21”,”22”, and “23”.

In the first trial, two biases of the main classes are al-
lowed so that if the sample has the original true class i, 
then the expected valid classes are (i-1, i, i+1), while in 
the second trial the expected valid classes are (i-2, i-1, 
i, i+1, i+2). Tables 4 and 5 include the detailed results 
of these two described trials for both sub and whole 
datasets, respectively.
Results of Table 4 indicate that the average TPR of 
the original confusion matrix (of the sub dataset) is 
90.1564%, while it is increased by 4.2% and 5.38% 
for the (±1 and ±2) variance scenarios, respectively. 
In the same way, the PPR of the (±1 and ±2) variance 
scenarios has been enhanced by 4.56% and 4.72%, re-
spectively. Similarly, the average TPR of the original 
confusion matrix (of the whole dataset) is increased 
by 8.66% and 8.76% for both ±1 and ±2 variance sce-
narios, respectively (see Table 5). The average PPR 
values of the ±1 and ±2 variance scenarios also in-
creased by 5.33% and 5.55%, respectively. A similar 
computation of the accuracy also proves the same 
conclusion where the original accuracy was 85.3%, 
but it increases by 5.82% and 6.03% for ±1 and ±2 
class-variances, respectively.
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Table 4
TPR, FNR, PPR and FDR values of the ensemble model using the sub dataset and ±1 or ±2 class variances.

Class No.
±1 classes-variance ±2 classes-variance

TPR (%) FNR (%) PPR (%) FDR (%) TPR (%) FNR (%) PPR (%) FDR (%)

19 100 0 100 0 100 0 100 0

20 100 0 99.72 0.28 100 0 100 0

21 100 0 99.85 0.15 100 0 100 0

22 99.8 0.25 100 0 100 0 100 0

23 99.9 0.08 100 0 100 0 100 0

24 100 0 99.69 0.31 100 0 100 0

25 100 0 100 0 100 0 100 0

26 99.6 0.36 100 0 100 0 100 0

27 100 0 100 0 100 0 100 0

28 100 0 100 0 100 0 100 0

48 100 0 100 0 100 0 100 0

49 100 0 100 0 100 0 100 0

50 100 0 100 0 100 0 100 0

51 100 0 95.9 4.1 100 0 100 0

52 100 0 100 0 100 0 100 0

53 100 0 100 0 100 0 100 0

54 100 0 100 0 100 0 100 0

55 100 0 100 0 100 0 100 0

56 100 0 99.16 0.94 100 0 100 0

57 100 0 100 0 100 0 100 0

58 99.7 0.31 100 0 100 0 100 0

59 100 0 100 0 100 0 100 0

60 100 0 100 0 100 0 100 0

61 100 0 100 0 100 0 100 0

62 100 0 100 0 100 0 100 0

63 100 0 100 0 100 0 100 0

64 100 0 100 0 100 0 100 0

65 100 0 100 0 100 0 100 0

66 100 0 100 0 100 0 100 0

67 100 0 100 0 100 0 100 0

68 100 0 100 0 100 0 100 0

69 100 0 100 0 100 0 100 0

70 100 0 100 0 100 0 100 0

71 100 0 100 0 100 0 100 0

72 100 0 100 0 100 0 100 0

73 100 0 100 0 100 0 100 0
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Table 5 
TPR, FNR, PPR and FDR values of the ensemble model using the whole dataset and ±1 or ±2 class variances

Class No.
±1 classes-variance ±2 classes-variance

TPR (%) FNR (%) PPR (%) FDR (%) TPR (%) FNR (%) PPR (%) FDR (%)

19 98.28 1.72 86.7 13.3 98.28 1.72 86.7 13.3

20 97.3 2.7 99.98 0.02 97.34 2.66 100 0

21 97.54 2.46 99.89 0.11 97.54 2.46 100 0
22 97.49 2.51 99.7 0.3 97.51 2.49 99.86 0.14
23 97.02 2.98 99.91 0.09 97.11 2.89 99.95 0.05
24 96.96 3.04 99.64 0.36 97.17 2.83 99.81 0.19
25 96.99 3.01 99.8 0.2 97.09 2.91 99.88 0.12
26 97.39 2.61 99.39 0.61 97.28 2.72 99.71 0.29
27 96.32 3.68 100 0 96.63 3.67 100 0
28 92.46 7.54 99.35 0.65 95.65 4.35 100 0
29 96.77 3.23 99.13 0.87 96.77 3.23 100 0
30 97.22 2.78 94.12 5.88 97.22 2.78 100 0
31 100 0 - 0 100 0 - 0
48 100 0 100 0 100 0 100 0
49 100 0 94.1 5.9 100 0 94.1 5.9
50 100 0 82.1 17.9 100 0 82.1 17.9
51 100 0 86 14.0 100 0 86 14.0
52 100 0 81.9 18.1 100 0 81.9 18.1
53 100 0 83.6 16.4 100 0 83.6 16.4
54 100 0 83.1 16.9 100 0 83.1 16.9
55 99.32 0.68 85.16 14.84 99.32 0.68 85.16 14.84
56 99.6 0.8 85.8 14.2 99.6 0.8 85.8 14.2
57 99.6 1.4 86.8 13.2 99.6 1.4 86.8 13.2
58 99.2 0.8 86.4 13.6 99.2 0.8 86.4 13.6
59 100 0 84.9 15.1 100 0 84.9 15.1
60 98.6 1.4 84.8 15.2 98.6 1.4 84.8 15.2
61 99.3 0.7 87.2 12.8 99.3 0.7 87.2 12.8
62 100 0 87.1 12.9 100 0 87.1 12.9
63 99.1 0.9 85.3 14.7 99.1 0.9 85.3 14.7
64 99.3 0.7 85.8 14.2 99.3 0.7 85.8 14.2
65 98.1 1.9 89.8 10.2 98.1 1.9 89.8 10.2
66 100 0 89.5 10.5 100 0 89.5 10.5
67 100 0 83.4 16.6 100 0 83.4 16.6
68 100 0 93.0 7.0 100 0 93.0 7.0
69 100 0 90.1 9.9 100 0 90.1 9.9
70 100 0 90.4 9.6 100 0 90.4 9.6
71 100 0 90.5 9.5 100 0 90.5 9.5
72 100 0 79.2 20.8 100 0 79.2 20.8
73 100 0 100 0 100 0 100 0



Information Technology and Control 2022/4/51768

4.9. Comparison with Previous Studies
Table 6 includes a detailed comparison between our 
methodology and the previous studies in the field of 
breast cancer prediction.
Table 6 confirms the fact that our proposed method-
ology has the unique feature of defining the cancer 
prediction score as a percentage rather than a fixed 
binary score (0/1). The results also show the high per-
formance of our probabilistic-based ensemble model 
against all other previous studies. The big dataset size, 
the hyperparameters optimization and the range-
based score mechanism participate in achieving this 
high performance.

Table 6 
Comparison between our range-based cancer model and previous studies

Reseracher Methods Used dataset Output cancer 
score Results/ Limitations

Ramkumar et al. 
[25] Naïve Bayes classifier BUPA research lab

20 cases Yes or No

Accuracy: 50%
Low dataset size, low 
accuracy. 
No parameter tuning.

Al-Jawad et al. 
[3] SVM, Bayesian network

Haberman’s 
survival
306 cases

Yes or No

SVM:
Recall: 73.78%
Precision: 74.77%
BM:
Recall: 78.22%
Precision: 64.47%
Fixed learning parametes.
low datset size.

Yang et al. [30]
Bayesian models
Markov models 
ANN

36,000 cases Yes or No

Accuracy: 
ANN: 73.55%
CBM: 76.07%
Fusion: 75.63%
Low F1-score due to the 
nature of their dataset.

Li et al. [22]
Logistic Regression, SVM, 
Naïve Bayes, and Bayesian 
Network

154899 samples Yes or No
Naïve Bayes has the best 
accuracy.
No prarameter optimization.

Kurian and 
Jyothi [19]

K-NN, SVM, Naïve Bayes,
AdaBoost, Decision Trees,
Random Forests,
gradient boosting

NCBI dataset
1580 samples Yes or No

Descion trees accuray: 94.3%
No parameter optimization.
Low dataset size.

Our Previous 
Study [17]

Weghting model
Decision Trees

BCSC dataset
317880 samples Yes or No Accuracy: 95.8%

Fixed cancer score

This study
Naive Bayes probabilistic model
Ensemble learning
Hyperparameter optimization.

BCSC dataset 
317880 samples

Range-Based 
score

Original Accuracy: 85.3%,
±1 variation: 91.12%
±2 Variation 91.33%

5. Conclusion
Breast cancer prediction is one of the most challeng-
ing fields of medical engineering. A novel range-based 
breast cancer prediction model is designed in the cur-
rent research. The BCSC dataset is used and analysed 
using a probabilistic model to define the final predic-
tion value of each case of the dataset. This new final 
score is used to update the BCSC dataset. The new 
version of the dataset is used to train an ensemble 
learning model using the Bayesian hyperparameters 
optimization method. The training process is per-
formed in two scenarios; one includes the whole data-
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set, while the other uses a subset consisting of 67633 
samples. In both scenarios, the MCE, TPR, PPR and 
FDR are computed in three cases; the first case is the 
0-variance in which no error-margin is allowed, while 
for the second and third cases, ±1 classes-variance 
tolerance is applied (The very closed subclasses give 
similar results). The results indicate TPR, PPR and 
accuracy improvements for the (±1 and ±2) variance 
cases for the sub and whole dataset. Furthermore, the 
new modified version of the BCSC dataset is more 
robust and has much detailed information about the 
prediction of breast cancer, unlike the old version that 
reveals only the presence of cancer without any per-
centage.

The new version of the BCSC dataset is available as 
supplementary material for future research. The fu-
ture work can focus on applying deep learning tech-
nologies to the new version of the BCSC dataset.
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