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The robustness and computational efficiency of digital image correlation (DIC) are two key influencing factors 
for displacement field measurement applications. Especially when the speckle images are contaminated by 
salt-and-pepper noise, it is difficult to obtain reliable measurement results using traditional DIC methods. Dig-
ital image Spearman’s Rho Correlation (DISRC), as a new DIC technique, has certain robustness to salt-and-
pepper noise, but incurs a high computational load when computing subset ranks. It is found that the DISRC 
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can tolerate up to 15% noise level theoretically by analyzing the mean character of Spearman’s Rho. Meanwhile 
a fast scheme is proposed in which parallelization is adopted for precomputing subset rank and computing for 
displacement field to accelerate the DISRC. The simulation results indicate that the fast DISRC is about 60 
times faster than the original one, and the displacement field results are almost the same between them. The 
DISRC not only gives as well results as zero-mean normalized cross-correlation (ZNCC) without any noise, 
but also can tolerate 20% noise level in simulations. A case study also verifies that the result by DISRC is better 
than ZNCC when contaminated by smaller amounts of noise. The conclusion is that the DISRC is a strong an-
ti-interference DIC technique, which is very important in application under complex environment, and the fast 
scheme is an effective way to accelerate the DISRC.
KEYWORDS: Digital image correlation; digital image Spearman’s Rho correlation coefficient; salt-and-pepper 
noise; parallelization; Spearman’s Rho.

1. Introduction
Digital image correlation (DIC) is an image process-
ing technique used in full-field measurement methods 
developed from traditional speckle photography tech-
nique, and first proposed by Yamaguchi [52], Peters and 
Ranson [27], and Sutton et al. [39] in the 1980s. DIC is 
frequently used for displacement field measurements 
[49], structural characterizations [14-15], [40], mechan-
ical behavior assessment [2], [5], etc. In these applica-
tions, the accuracy of DIC is frequently a research focus, 
including the correlation criteria. A robust digital imag-
ing Spearman’s Rho correlation (DISRC) has been pro-
posed previously [16], but its robustness and computa-
tional optimization have been not discussed totally yet.
DIC methods can been divided into 2D-DIC (2-dimen-
sional DIC) [28], stereo-DIC [29] and digital volume 
correlation (DVC) [1] in the past three decades [6], 
[30]. The accuracy and precision of DIC is based on 
three primary components: image acquisition, image 
analysis, and the subject of image [3]. Factors affecting 
the effectiveness of a DIC method include the sub-pixel 
intensity interpolation scheme, the subset shape func-
tion used, the image noise, the subset size and the qual-
ity of the speckle pattern [17]. During the acquisition 
and transmission of a digital image, various types of 
noise will be introduced, due to the shooting environ-
ment and image sensors. For example, thermal noise 
will be caused by thermal agitation of the charge car-
riers, fixed-pattern noise will be caused by differences 
between the photosensitive diodes, salt-and-pepper 
noise will be produced because of strong interference 
or failure of the analog-to-digital converter [10], etc. 
Many solutions have been proposed to deal with this 
issue; these can be divided into two kinds: filtering 
of the speckle images and enlarging subset size. (1) 
Filtering speckle image: Pan et al. [31] proposed a 2D 

Savitzky-Golay digital differentiator to calculate the 
strain in 2007, and then Pan [32] proposed Gauss-
ian pre-filtering to reduce bias error in 2013. The 
finite element smoothing technique was investigat-
ed to enhance accuracy of displacement and strain 
measurement [7], [18], [25]. (2) Increasing the sub-
set size: Pan et al. [33] adopted the sum of square of 
subset intensity gradients (SSSIG) to determine the 
size and Yaofeng and Pang [54] optimized the subset 
size using subset entropy. The DIC speckle pattern is 
the most important aspect to subset size, so various 
pattern assessment criteria have been proposed [11]: 
speckle size [55], average speckle size [19], morpho-
logical methodologies [26], [44], SSSIG [33], mean 
intensity gradient [34], mean subset fluctuation [20], 
comparison of primary and secondary peaks [45], au-
tocorrelation peak sharpness [4], Shannon entropy, 
speckle distribution and size range, etc.
In addition, color can provide useful information for 
various computer vision tasks. In order to solve the 
influence of color on image characteristics caused 
by different lighting scenes and imaging equipment, 
Finlayson et al. [12] proposed a color invariant image 
representation method based on gray image enhance-
ment technology to keep the order of sensor response. 
The key technology of eddy current pulse thermog-
raphy (ECPT) is to locate and detect the surface and 
subsurface defects under complex geometric condi-
tions. Chen et al. [8] proposed a three-dimensional 
eddy current pulse thermal imaging system, which 
maps thermal image to RGB-D image by matching 
features of thermal image and visible image. The sys-
tem provides the quantitative data of 3D heat distri-
bution, as well as the 3D spatial relationship among 
the defect location, the excitation coil and the whole 
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specimen, showing its potential for quantitative eval-
uation of defect characteristics.
During DIC processing, we need to calculate the cor-
relation coefficients pixel-by-pixel, which is compu-
tationally intensive. Computational efficiency is one 
of the challenges in DIC techniques, and several solu-
tions have been proposed, such as the Fast Fourier 
Transform (FFT) in the frequency domain to calcu-
late zero-mean normalized cross-correlation (ZNCC) 
[9], [24], [30]; a reliability-guided displacement track-
ing scheme [35], using gradient orientation (GO) [57], 
sum-table approaches [21], and parallel computing 
[22], [36], [46], [58].
Salt-and-pepper noise is a common type of noise in 
digital speckle images, which often causes errors in 
traditional DIC techniques. DISRC was proposed as 
a new DIC method in our earlier studies, where the 
robustness to salt and pepper noise was only elemen-
tally discussed [16], [23]. In this paper, we will further 
discuss the robustness and the computational opti-
mization of DISRC. Based on the statistical charac-
teristics of Spearman’s Rho (SR) [47], [50-51], DISRC 
can calculate the corresponding points very well even 
if speckle images have been contaminated by small-
er amounts of salt-and-pepper noise. The DISRC can 
theoretically tolerate 15% level of salt-and-pepper 
noise. There are two main steps in SR calculation, one 
is calculating ranks, and the other is calculating the 

correlation coefficient. Because all the SR process-
es in DISRC are mutually independent, the parallel 
computing is adopted to accelerate DISRC calcula-
tions using a Graphics Processing Unit (GPU).
The structure of the paper is as follows. The next sec-
tion covers related work, including the principle of 
DIC, common correlation criteria, improvements for 
accuracy and accelerated methods. The definitions of 
DISRC, robustness analysis and fast scheme are pre-
sented in section 3. The robustness and acceleration 
are verified using artificial speckle images in section 
4 and a case study is discussed in section 5. The last 
section concludes the paper.

2. Related Work
2.1. Principles of DIC
A reference speckle image and a target speckle image 
are acquired before and after object deformation. A 
(2M + 1) ×(2M +1) subset is obtained from the reference 
speckle image. Then, a search operation is performed 
on the region of interest in the target speckle image to 
determine the target subset that correlates best with 
the reference subset. The center of the target subset is 
considered to map to the center of the reference subset.
A standard subset DIC is illustrated in Figure 1. First-
ly, the reference speckle image is separated into many 

Figure 1
Subset DIC frame
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non-overlapping and continuous subsets, and the 
center of each subset is denoted as a reference point. 
For example, if the subset size is 51×51 pixels, 81 sub-
sets will be captured from a 500×500 pixel reference 
speckle image. Then, a pixel-by-pixel search on the 
region of interest of the target speckle image is per-
formed to determine the target subset that yields the 
highest correlation coefficient compared to the refer-
ence subset. Lastly, the sub-pixel is calculated by the 
gradient algorithm [37]. The center of the target sub-
set is the target point. The vector from the reference 
point to the target point is called a calculated vector. 
Finally, to quantitatively analyze the performance of 
the simulation results, the mean and variance of the 
error vector magnitude (EVM) [48] between the calcu-
lated vector and the assumed vector will be calculated.

2.2. Correlation Criteria
Many correlation criteria have been proposed to 
evaluate the similarity between the reference subset 
and the target subset. Pan et al. [38] classified these 
criteria into four categories: cross correlation, sum of 
absolute differences, sum of squared differences, and 
parametric sum of squared differences. Except from 
the sum of absolute differences, which is less practical 
and thus rarely used, the other three types have many 
varieties, as shown in Table 1 [30]. The abbreviation 
Z stands for zero-mean processing, and the abbrevia-
tion N stands for normalized processing. 1

1 n
ii

r r
n =

= ∑ , 

1

1 n
ii

t t
n =

= ∑ , 2 1n M= + , i ir r r= − , i it t t= − , two un-
known parameters a and b.

2.3. Accuracy Improvements
In order to obtain accurate displacement and strain 
measurements, Pan et al. [31] used the two-dimen-
sional Savitzky-Golay digital differentiator to fit the 
displacement components, which were calculated 
using Newton-Raphson. This allows the avoidance 
greater strain error because of tiny displacement 
bias error caused by noise. Gaussian pre-filtering 
has also been used to reduce the level of speckle im-
age noise, so the interpolation error due to image 
noise is decreased accordingly [32]. Finite element 
smoothing technique was developed for both dis-
placement and strain analysis by Segalman et al. [42] 
and Sutton et al. [43]. Sun et al. [41] proposed a finite 
element formulation for digital image correlation, 
while Zhao et al. [56] investigated a finite element 
method and Tikhonov regularization for smoothing 
noisy displacement fields. Yang [53] developed finite 
element digital image correlation for irregular dis-
placement fields.
The effect of subset size on the accuracy of DIC has 
been thoroughly investigated by many researchers. 
Yaofeng and Pang [54] proposed a parameter called 
subset entropy, which is the average of absolute in-
tensity deviations at any point in the subset from its 
neighboring 8 points, which then normalized. Based 
on the relation between subset entropy and displace-
ment errors, a larger subset size was advised for un-
derlying actual deformations. Pan et al. [33] proposed 
the SSSIG, and gave a threshold of 1*10-5 to select 
suitable subset size. 

Table 1
Three types of correlation criteria

Cross correlation (CC) Squared differences (SSD) Parametric sum of squared differences (PSSD)
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The speckle pattern is an important factor that af-
fects the accuracy of DIC, which can be traced back 
to the image noise. Image noise and other specimen 
surface conditions determine the speckle pattern 
quality. The assessment criteria of speckle pattern 
are divided into local and global to assess subset and 
global speckle respectively [11]. Hua et al. [20] eval-
uated the quality of speckle pattern by mean subset 
fluctuation, and found that speckle size and density 
have an influence on the quality of speckle pattern. 
Bomarito et al. [3] proposed a digital image correla-
tion pattern optimization based on SSSIG and the 
secondary auto-correlation peak height. Lecompte 
et al. [26] proposed a speckle size distribution based 
on image morphology, and subsequently the rela-
tionship between the mean speckle size and the sub-
set size was verified.

2.4. Acceleration Methods

Computational efficiency is an important issue to 
DIC, and many fast solutions have been proposed. 
Chen et al. [9] initially introduced a two-step FFT 
for displacement measurement, and Jiang et al. [24] 
adapted the FFT to calculate cross-correlation for 
integer-pixel registration. Pan [35] proposed a reli-
ability-guided displacement tracking strategy using 
improved an initial guess transfer scheme, to avoid 
redundant computations. Zhong and Quan [57] used 
the GO technique to determine the potential target 
point. A pre-calculated sum-table scheme has been 
utilized for normal cross correlation (NCC), which 
allows the calculations of image mean, image vari-
ance and cross-correlation between images to be in-
variant to the size of subset window [21].
There are two kinds of parallel computing methods: 
those utilizing the GPU or multi-threaded methods. 
Zhang et al. [58] implemented a path-independent 
DIC method using the GPU, including integer-pixel 
and sub-pixel displacement values’ processing. Huang 
et al. [22] proposed programming models for GPU and 
CPU parallel computing, in which the CPU also per-
form tasks, such as calculating the integer-pixel and 
sub-pixel displacement. Pan and Tian [36] improved 
the reliability-guided digital image correlation using 
multi-threading, and Shao et al. [46] proposed a seed 
point-based parallel method to calculate the sub-pixel 
using multi-threading.

3. Robustness Analyses and Fast 
DISRC
3.1. DISRC
Let ( ){ } 1

,
n

i i i
r t

=
 denote the pair of reference speckle sub-

set image R and target speckle subset image T, ir  and 
it  are the gray values, n is the number of image pixel, 

2 1n M= + . We regard the two images as a bivariate 
Gaussian model, i.e. the pixel pairs are independent 
and identically distributed data pairs drawn from a 
bivariate population with a continuous joint distribu-
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while P and Q are the sets. The DISRC between R and T, 
denoted by Csr(R, T), is defined as follows [51]:
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fraction of salt-and-pepper noises (with huge variance) as 
described in section 1, the following contaminated Gaussian 
model represents the probability density function of the two 
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3.2. Robustness Analysis  

Studies on the correlation of bivariate contaminated Gaussian 
model by Xu et al. [51] proved that when ε  is sufficiently 
small, the approximate mean of the SR correlation 
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Here we only consider the situation where 0ρ >  and 
0ρ′ > . ε  will increase as ρ  and ρ′  increase as 

shown in Figure 2. For example, when 1ρ′ =  and 
0.85ρ > , the DISRC can tolerate 15.2% level of 

salt-and-pepper noise theoretically. 
 
Figure 2 
The percentage that DISRC can tolerate under different 
correlation coefficients 

 
 
 
 
 
 

3.3 Fast DISRC Scheme 

The computational efficiency of DIC is a bottleneck for 
real time processing, and the DISRC suffers from the 
same problem. We improve the DISRC computational 
efficiency in two aspects: subset rank precomputation 
and parallelization. After loading the reference and 
target speckle images, all the subset ranks are 
precalculated in parallel first. And then the displacement 
field calculations including correlation coefficient 
calculation and sub-pixel calculation, are also 
parallelized. 
1) Precomputing Subset ranks by parallelization 
Precomputation is a common fast solution in digital 
image correlation methods [22]. The target subset ranks 
will be required over and over again when searching in 
the ROI for target subset most similar to each reference 
subset. For example, if there are L reference subsets, the 
same target subset ranks will be calculated L times. 
Precalculated ranks thus reduce the calculation times. 
All ranks of reference subsets and target subsets are 
computed primarily by sorting the gray level values, and 
the subset rank operation has ( )2logO n n  time 
complexity. All of precalculated ranks of the reference 

(1)

The srC  has the following general properties:
1 Standardization: 1 1srC− ≤ ≤ .
2 Symmetry: ( ) ( ), ,sr srC R T C T R= .
3 1srC = ± , if R is a positive (negative) linear transfor-

mation of T.
4 0srC = , if R and T are independent.
5 ( ),srC R T  converges to a normal distribution when 

the image size n is large enough.
The parent of ( ){ },R T  (i.i.d) is also a bivariate Gauss-
ian distribution, whose density function is:

( ) ( )2

1, exp
2 2 1R T

zR Tφ
πσ σ ρ

 
 = −

−  
, (2)

where ( ) ( )( ) ( )
2 2

2R R T T

R R T T

R R T T
z

µ ρ µ µ µ
σ σ σ σ
− − − −

= − + , ρ  is 

the correlation coefficient between R and T, Rµ  and 
Tµ  

are the gray means of the reference image R and target 
image T, respectively, while 2

Rσ  and 2
Tσ  are the corre-

sponding gray variances.

The above bivariate Gaussian model can be expressed 
as follows:

bivariate Gaussian model, i.e. the pixel pairs are 
independent and identically distributed data pairs drawn 
from a bivariate population with a continuous joint 
distribution. Let ip  be the rank of ir  and iq  be the 

rank of it , while P and Q are the sets. The DISRC between 
R and T, denoted by ( ),srC R T , is defined as follows [51]: 

( ) ( )
( )

2

1
2

6
, 1

1

n
i ii

sr

p q
C R T

n n
=

−
−

−
∑



.
 

(1) 

The srC  has the following general properties: 
1.Standardization: 1 1srC− ≤ ≤ . 
2.Symmetry: ( ) ( ), ,sr srC R T C T R= . 
3. 1srC = ± , if R is a positive (negative) linear 
transformation of T. 
4. 0srC = , if R and T are independent. 
5. ( ),srC R T  converges to a normal distribution when 
the image size n is large enough. 
The parent of ( ){ },R T  (i.i.d) is also a bivariate Gaussian 
distribution, whose density function is: 

( ) ( )2

1, exp
2 2 1R T

zR Tφ
πσ σ ρ

 
 = −

−  

, (2) 

where ( ) ( )( ) ( )
2 2

2R R T T

R R T T

R R T T
z

µ ρ µ µ µ
σ σ σ σ
− − − −

= − + , 

ρ  is the correlation coefficient between R and T, Rµ  
and Tµ  are the gray means of the reference image R 
and target image T, respectively, while 2

Rσ  and 2
Tσ  are 

the corresponding gray variances. 

The above bivariate Gaussian model can be expressed as 
follows: 

( ) ( )2 2, , , , ,R T R TR T N µ µ σ σ ρ

. (3) 

When the two speckle images are contaminated by a tiny 
fraction of salt-and-pepper noises (with huge variance) as 
described in section 1, the following contaminated Gaussian 
model represents the probability density function of the two 
contaminated speckle images [47]. 

( ) ( ) ( )
( )

2 2

2 2

, 1 , , , ,

, , , ,

R T R T

R T R T

CN N

N

ρ ρ ε µ µ σ σ ρ

ε µ µ σ σ ρ

′ − +

′ ′ ′ ′ ′

 , (4) 

where 0 0.5ε< < , 1 1ρ− ≤ ≤ , 1 1ρ′− ≤ ≤ , ρ  is 
the population correlation coefficient between the two 
“clear” speckle images, and ρ′  is the population 
correlation coefficient between the parts of 
salt-and-pepper noise in the two speckle images. 

( ),CN ρ ρ′  is strongly biased with regard to ρ , i.e. for 

any 0ε > , there exists 2 2

2 2 1R T

R T

σ σλ
σ σ
′ ′

= = 

. 

3.2. Robustness Analysis  

Studies on the correlation of bivariate contaminated Gaussian 
model by Xu et al. [51] proved that when ε  is sufficiently 
small, the approximate mean of the SR correlation 
coefficient in a bivariate Gaussian model is as follows: 

( ) ( )6lim 1 3 arcsin arcsin
2

R
T

srn
E C

λ
λ

ρε ε ρ
π→∞

→∞
→∞

 ′− +  


. (5) 

The mean of srC  between the reference and target 
speckle images is composed of ρ  and ρ′ , and as 
n →∞ , λ →∞ . To guarantee that the correlation result 
is decided mainly by ρ , the set of inequalities are 
obtained from Equation (5). 

( )

( ) 2

1 3 arcsin 0
2

1 3 arcsin arcsin
2

ρε

ρε ε ρ

 − >

 ′− >


. (6) 

Here we only consider the situation where 0ρ >  and 
0ρ′ > . ε  will increase as ρ  and ρ′  increase as 

shown in Figure 2. For example, when 1ρ′ =  and 
0.85ρ > , the DISRC can tolerate 15.2% level of 

salt-and-pepper noise theoretically. 
 
Figure 2 
The percentage that DISRC can tolerate under different 
correlation coefficients 

 
 
 
 
 
 

3.3 Fast DISRC Scheme 

The computational efficiency of DIC is a bottleneck for 
real time processing, and the DISRC suffers from the 
same problem. We improve the DISRC computational 
efficiency in two aspects: subset rank precomputation 
and parallelization. After loading the reference and 
target speckle images, all the subset ranks are 
precalculated in parallel first. And then the displacement 
field calculations including correlation coefficient 
calculation and sub-pixel calculation, are also 
parallelized. 
1) Precomputing Subset ranks by parallelization 
Precomputation is a common fast solution in digital 
image correlation methods [22]. The target subset ranks 
will be required over and over again when searching in 
the ROI for target subset most similar to each reference 
subset. For example, if there are L reference subsets, the 
same target subset ranks will be calculated L times. 
Precalculated ranks thus reduce the calculation times. 
All ranks of reference subsets and target subsets are 
computed primarily by sorting the gray level values, and 
the subset rank operation has ( )2logO n n  time 
complexity. All of precalculated ranks of the reference 

(3)

When the two speckle images are contaminated by 
a tiny fraction of salt-and-pepper noises (with huge 



Information Technology and Control 2022/4/51666

variance) as described in section 1, the following con-
taminated Gaussian model represents the probability 
density function of the two contaminated speckle im-
ages [47].

bivariate Gaussian model, i.e. the pixel pairs are 
independent and identically distributed data pairs drawn 
from a bivariate population with a continuous joint 
distribution. Let ip  be the rank of ir  and iq  be the 

rank of it , while P and Q are the sets. The DISRC between 
R and T, denoted by ( ),srC R T , is defined as follows [51]: 
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When the two speckle images are contaminated by a tiny 
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described in section 1, the following contaminated Gaussian 
model represents the probability density function of the two 
contaminated speckle images [47]. 

( ) ( ) ( )
( )

2 2

2 2

, 1 , , , ,

, , , ,

R T R T

R T R T

CN N

N

ρ ρ ε µ µ σ σ ρ

ε µ µ σ σ ρ

′ − +

′ ′ ′ ′ ′

 , (4) 

where 0 0.5ε< < , 1 1ρ− ≤ ≤ , 1 1ρ′− ≤ ≤ , ρ  is 
the population correlation coefficient between the two 
“clear” speckle images, and ρ′  is the population 
correlation coefficient between the parts of 
salt-and-pepper noise in the two speckle images. 

( ),CN ρ ρ′  is strongly biased with regard to ρ , i.e. for 

any 0ε > , there exists 2 2

2 2 1R T

R T

σ σλ
σ σ
′ ′

= = 

. 
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the same problem. We improve the DISRC compu-
tational efficiency in two aspects: subset rank pre-
computation and parallelization. After loading the 
reference and target speckle images, all the subset 
ranks are precalculated in parallel first. And then the 
displacement field calculations including correlation 
coefficient calculation and sub-pixel calculation, are 
also parallelized.
1 Precomputing Subset ranks by parallelization
Precomputation is a common fast solution in digi-
tal image correlation methods [22]. The target sub-
set ranks will be required over and over again when 
searching in the ROI for target subset most similar 
to each reference subset. For example, if there are L 
reference subsets, the same target subset ranks will 
be calculated L times. Precalculated ranks thus re-
duce the calculation times. All ranks of reference 
subsets and target subsets are computed primarily 
by sorting the gray level values, and the subset rank 
operation has ( )2logO n n  time complexity. All of pre-
calculated ranks of the reference and target subsets 
could be computed in parallel using vectorization, 
multi-threading or through the GPU, because of inde-
pendent from each other. Figure 3 is the parallel cal-
culation frame of subset ranks. Subsets are extracted 
from the reference and target images, and then subset 
ranks are calculated using parallel computing.
2 Parallelization of displacement field computation
The purpose of the DIC technique is to determine the 
displaced position of every point in reference speckle 
image, and all of these processes are independent of 
each other. As known from Equation 1, the correlation 
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coefficient calculation of SR includes 
subtraction and accumulation be-
tween P and Q ranks, which has only 
( )O n  time complexity. The above 

calculations are mutually indepen-
dence, and can thus be parallelized 
as shown in Figure 4. Firstly, the 
integer-pixel displacement is deter-
mined by the position of the maxi-
mum correlation coefficient between 
the reference subset and the target 
subset. These subsets are located in 
the region of interest of the target 
speckle image. And then the sub-pix-
el displacement field calculation is 
parallelized again for high precision.
Therefore our fast DISRC parallel 
computation includes two parts: the 
pre-ranks of the reference and tar-
get subsets are calculated; and then 
high-precision displacement field 
is computed between a same refer-
ence subset and every target subset 
in region of interest of target speckle 
image.
Of course, the computational effi-
ciency of parallelism is related to 
the CPU cores and RAM space of 
the hardware device. The more CPU 
cores and higher CPU frequency, 
there will be higher the compu-
tational efficiency of parallelism. 
According to Amdahl’s law [13], 
the maximum speedup that can be 
achieved using N number of proces-
sors is ( ) ( )1/ 1 /S p Nρ= − +   , where 
p is the parallelism rate. At the same 
time it need more RAM space and 
time for storing data, for example, n 
(the number pixels of subset) times 
of space will be occupied at least for 
target subset ranks.

4. Simulation
To verify the robustness of the DIS-
RC and to implement parallel pro-
cessing, we performed displacement 

Figure 3
Precomputing subset ranks by parallelization

Figure 4
Parallel calculation of displacement field
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measurement simulation, and implemented a dis-
placement field case, both on a server, with two 12-
core CPUs and 32G RAM, Window server 2012 and 
Matlab 2018. In the following simulations, speckle 
images will be generated with small or no amounts of 
salt-and-pepper noise. All DISRC simulation results 
will be compared with only ZNCC, because the ZNCC 
has the linear relationship between ZNSSD and 
PSSD. As shown in Table 1, according to the equation 

( )2 1ZNSSD ZNCCC C= − , we can easily find that there 
is a linear relationship between ZNSSD and ZNCC. 
However, for the PSSD, although the linear relation-
ship between the PSSD and the ZNCC is not explic-
itly shown in the equation ( )2 21

abPSSD i ZNCCC t C= −∑ , if 
we take 2

it∑  as constants, mathematical inferences 
show that they have a simple linear relationship with 
the partial derivatives of the desired deformation param-
eter vector [30].

4.1. Speckle Image Generation

In order to verify the robustness of DISRC and its 
tolerance- to salt-and-pepper noise, the “clear” ref-
erence and target speckle images were artificially 
contaminated by a certain amount of salt-and-pepper 
noise, and then the target speckle image was linearly 
compressed. All “clear” speckle images were generat-
ed using the expression proposed in [59], as shown in 
following. Furthermore, the size and self-rotation an-
gle of each speckle granule were randomized values in 
order to increase the difference between subsets. The 
mathematical models of the “clear” speckle images 
are as follows:
Reference speckle image:
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M is the total number of speckle granules; iL  is a ran-
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are captured from a 500×500 reference speckle image 
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operation for the target sub-block is performed on the 
target speckle image based on the criterion of correlation 
coefficient, followed by a sub-pixel calculation using the 
gradient algorithm [38]. The center of the target subset is 
also denoted as the target point. Finally, both of the 
average and the variance of the EVM are computed. 

4.2 Fast DISRC results and analysis 

The fast DISRC algorithm was directly paralleled by the 
cellfunc function in Matlab, including precomputing 
subset ranks and sub-pixel displacement field. The 
ZNCC was parallelized in the same way: the zero-mean 
normalization of gray values was precomputed parallelly, 
and then correlation coefficients and sub-pixel 
displacement field were also computed in parallelism. 
The displacement field result errors between fast and 
original DISRC or ZNCC were about 1*10-5, so our fast 
scheme will not affect the precision. As shown in Table 
2, the runtime comparison of two main methods in 
DISRC and ZNCC respectively, we can find that 
computing rank took 42 times longer than correlation 
coefficient in DISRC, while it just spent almost the same 
time between computing zero-mean normalization and 
correlation coefficient in ZNCC. So it is quite essential 
to compute subset ranks in advance, otherwise it will 
spend a lot of time, which hamper popularization and 
application of SR.  
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Figure 5 shows the mean runtime of different subsets 
size between fast or not DISRC and ZNCC, which were 
done in our hardware and software environment. All of 
the runtime included subset rank precomputation, 
correlation coefficient computation and gradient 
algorithm sub-pixel displacement, all of which were run 
in parallelism. Figure 5 (a) shows the comparison 
between fast and original DISRC, where the left axis is 
for fast DISRC and the other is for original DISRC. Fast    
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continuous reference subsets are captured from the 
reference speckle image, and the center of each sub-
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is a suitable size as determined by SSSIG. The whole 
target speckle image is regarded as the ROI. and a pix-
el-by-pixel search operation for the target sub-block 
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a sub-pixel calculation using the gradient algorithm 
[38]. The center of the target subset is also denoted as 
the target point. Finally, both of the average and the 
variance of the EVM are computed.

4.2. Fast DISRC Results and Analysis
The fast DISRC algorithm was directly paralleled by 
the cellfunc function in Matlab, including precom-
puting subset ranks and sub-pixel displacement field. 
The ZNCC was parallelized in the same way: the ze-
ro-mean normalization of gray values was precom-
puted parallelly, and then correlation coefficients and 
sub-pixel displacement field were also computed in 
parallelism. The displacement field result errors be-
tween fast and original DISRC or ZNCC were about 
1*10-5, so our fast scheme will not affect the precision. 
As shown in Table 2, the runtime comparison of two 
main methods in DISRC and ZNCC respectively, we 
can find that computing rank took 42 times longer 
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Table 2
Runtime of main methods in DISRC and ZNCC, subsize: 
51×51. unit: second

Computing 
rank in DISRC

Correlation 
coefficient in 

DISRC

Zero-mean 
normaliza-

tion in ZNCC

Correlation 
coefficient in 

ZNCC

6.0942*10-4 1.4359*10-5 2.9292*10-5 2.1198*10-5

than correlation coefficient in DISRC, while it just 
spent almost the same time between computing ze-
ro-mean normalization and correlation coefficient in 
ZNCC. So it is quite essential to compute subset ranks 
in advance, otherwise it will spend a lot of time, which 
hamper popularization and application of SR. 
Figure 5 shows the mean runtime of different subsets 
size between fast or not DISRC and ZNCC, which 
were done in our hardware and software environ-
ment. All of the runtime included subset rank pre-
computation, correlation coefficient computation 
and gradient algorithm sub-pixel displacement, all of 
which were run in parallelism. Figure 5 (a) shows the 
comparison between fast and original DISRC, where 
the left axis is for fast DISRC and the other is for orig-
inal DISRC. Fast DISRC was about 60 times faster 
than the original one averagely, but it would become 
smaller as the subset size increase. Because the num-
ber L of reference subset will be smaller as the size 
increase, the times L need to recomputed the same 
target subset rank will be smaller in original DISRC. 
Figure 5 (b) shows the runtime comparison between 
fast and original ZNCC, but the fast ZNCC was only 
about 2 times faster than the original one, which ef-
fect was not as well as fast DISRC. The fast DISRC 
spent less time than fast ZNCC, known as in Figure 
5 (a) and (b), because ZNCC requires three times as 
many multiplications operations as DISRC does. And 
it help DISRC in popularization and application.

4.3. Simulation Result and Analysis 
1 Comparisons between DISRC and ZNCC
(1) Monolithic translation
To verify the feasibility and robustness of DISRC, 
two comparisons between DISRC and ZNCC were 
performed: speckle images without noise and imag-
es contaminated by 10% of salt-and-pepper noise; 
the target speckle image was displaced 5.345 pixels 
from the reference speckle image only along y-di-

Figure 5
Runtime comparison of fast and original algorithms

(a) Runtime comparison of fast and original DISRC

(b) Runtime comparison of fast and original ZNCC

rection. The subset size is only 51×51 in this section. 
The results are shown in Figure 6 and table 3. Fig-
ure 6 (a) and (b) are the noiseless versions, while the 
others are the contaminated versions. Table 3 shows 
the corresponding values of the mean and variance 
of the EVM.

Table 3
Mean and variance of EVM with monolithic translation

Noiseless Contaminated by 10% 
salt-and-pepper noise

DISRC ZNCC DISRC ZNCC

Mean 0.0014 0.0014 0.5222 27.1285

Variance 7.5178*10-7 7.5178*10-7 0.0749 7.0175*103
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ZNCC is one of classical DIC criteria, the result of 
which is accepted by most of scholars. As shown in 
Figure 6 (a) and (b), the y directional displacements 
both using DISRC and ZNCC are about 5.344 pixels, 
which are approximately to the expected value 5.345 
pixels. The mean and variance of the EVM are very 
small, in this case, as shown in Table 3, where the 
mean is only 0.0014 and the variance is 7.5178*10-7 the 
both cases. 
Figure 6 (c)-(f ) and Table 3 are the results obtained 
when the speckle images are contaminated by 10% 

Figure 6
Comparison between DISRC and ZNCC with monolithic translation

(a) DISRC without noise

(c) DISRC with 10% noise

(e) DISRC Displacement field with 10% noise (f ) ZNCC Displacement field with 10% noise

(b) ZNCC without noise

(d) ZNCC with 10% noise

salt-and-pepper noise, which mainly affects ZNCC. 
Figure 6 (c) and (d) are the y-directional displace-
ments both using DISRC and ZNCC. DISRC is more 
robust than ZNCC, because the corresponding means 
and variances of the EVM are smaller robust than 
ZNCC. It is also very clear in Figure 6 (e) and (f ) where 
the displacement vectors of DISRC are very consis-
tent while some vectors using ZNCC are chaotic.
(2) Linear compression
Another two comparisons between DISRC and ZNCC 
were performed for linear compression when speck-
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le images are without noise or contaminated by 10% 
salt-and-pepper noise. The subset size was again 
51×51, and the results are shown in Figure 7 and Ta-
ble 4. The y-direction displacements by DISRC and 
ZNCC without noise are shown in Figure 7 (a) and 
(b), which close to expected value. The mean and vari-
ance of EVM are small as shown in Table 4.
When the speckle images are contaminated by 10% 
salt-and-pepper noise, the result by DISRC is still 
very good as shown in Figure 7 (c) and (e), and the 
mean and variance of EVM are only 0.4894 and 0.1438 
respectively. However, for ZNCC as shown in Figure 
7 (d) and (f ), many vectors point to wrong positions, 

Table 4
Mean and variance of EVM with linear compression

Noiseless Contaminated by 10% 
salt-and-pepper noise

DISRC ZNCC DISRC ZNCC

Mean 0.1889 0.1962 0.4894 64.8649

Variance 0.0110 0.0129 0.1438 1.7903*104

Figure 7
Comparison between DISRC and ZNCC with linear compression

(a) DISRC without noise (b) ZNCC without noise

(c) DISRC with 10% noise (d) ZNCC with 10% noise

(e) DISRC Displacement field with 10% noise (f ) ZNCC Displacement field with 10% noise

and the means and variances of EVM are 64.8649 and 
1.7903*104 , as shown in Table 4.
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Figure 8
Comparison between different noise levels, subset size: 51×51

Two conclusions can be drawn from the above two sec-
tions: (1) DISRC shows the same results as ZNCC in the 
absence of noise. (2) DISRC is more robust to salt-and-
pepper noise than ZNCC, as the displacement field of 
DISRC is almost the same as the expected ideal one.
2) Comparisons between different noise levels
To verify the robustness of DISRC, Figure 8 shows 
the comparison results for different levels of salt-
and-pepper noise. The subset size was 51×51, and the 
noise levels varied from 1%-21% at 2% increments. 
The ZNCC was robust to a certain extent when noise 
levels were 1% and 3%, but results were poor when 
the level was larger than 5%, as shown in Figure 8 (a). 
However, the DISRC can tolerate to 21% noise level 
as shown in Figure 8 (b), in which all of the vectors 
pointed to correct positions. As shown in Figure 9, 
when the noise is amplified to 30%-40%, the direction 
of the vector in the figure deviates and cannot point to 
the correct position, thus losing its application value.

The DISRC may provide satisfactory results for even 
higher density noise, but this, in our opinion, is not 
significant. The correlation coefficient reduces as the 
noise level increases, as shown Figure 8 (c), but if it is 
less than 0.5, sufficient accuracy for engineering ap-
plications cannot be ensured. At 3% noise level, it is 
already 0.4404 for ZNCC, while it is still 0.5419 when 
the noise level is 15% for DISRC.
The EVM is an important factor to evaluate the cal-
culation result, and the mean of EVMs for DISRC 
and ZNCC at different noise density levels are shown 
in Figure 8 (d) (left axis for DISRC and right axis 
for ZNCC). The mean is less than 1 for DISRC even 
when the noise level is up to 21%, while it is about 
135 for ZNCC. The calculation result using DISRC is 
more stable than ZNCC, as the EVM variance using 
DISRC is less than 0.25 even with 21% noise , shown 
in Figure 8 (e). And it is up to 2750 using ZNCC with 
only 5% noise as shown in Figure 8 (f ).

(d) EVM mean for DISRC and 
ZNCC

(e) EVM variance for 
DISRC

(f ) EVM variance for 
ZNCC

(b) DISRC displacement field 
with 21% noise

(a) ZNCC displacement field with 
5% noise

(c) Correlation coefficient using 
ZNCC and DISRC
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Figure 9
Displacement field of different noises

(a) 30% noise displacement field

(c) 40% noise displacement field (d) 50% noise displacement field

(b) 35% noise displacement field

The conclusions from these comparisons 
are as follows: (1) the DISRC can deal 
with well 21% noise level; (2) The dis-
placement filed by DISRC is very stable.

5. Displacement 
Measurement Case
5.1. Platform
To verify the validity of DISRC using ac-
tual speckle images with salt-and-pep-
per noise, a displacement measurement 
case was designed. We utilized optical 
measuring equipment consisting of an 
industrial camera and a precise transla-
tion stage as shown in Figure 10 (a), and 
then a host computer saved the 8-bits 
gray digital speckle images obtained.
A speckle surface object was photo-
graphed before and after slightly mov-
ing the object using the precise trans-
lation stage. The exposure time was set 
1.28s to allow for the occurrence of salt-
and-pepper noise as shown in Figure 10 
(b), the right picture of which is a detail 
of the speckle image with some salt and 
pepper noises. The subset size is 51×51 
in all of the experiments. Results using 
DISRC and ZNCC would be compared 
and analyzed.

5.2. Result and Analysis
The DISRC and ZNCC were used 
to compute the displacement field 
when both the reference and target 
speckle images were contaminated by 
salt-and-peppernoise, and the result 
is shown in Figure 11 (a)-(c) are the re-
sults obtained using DISRC, while Fig-
ure 11 (d)-(f ) are the results obtained 
using ZNCC. Figure 11 (a) and (d) are 
the final effect of displacement field, 
including the displacement vector and 
10-rank contour line of y vectors’ size. 
Figure 11 (b) and (e) are the -direction-
al displacement, (c) and (f ) are the -di-
rectional displacement.

(a) Measuring equipment

(b) Speckle image with noises

Figure 10
Measuring equipment and a speckle image with noises



Information Technology and Control 2022/4/51674

Figure 11 
Comparisons between DISRC and ZNCC with 51×51subset size

(a) Displacement Field using 
DISRC

(d) Displacement Field using 
ZNCC

(b) x-directional displacement 
using DISRC

(e) x-directional displacement 
using ZNCC

(b) y-directional displacement 
using DISRC

(f ) y-directional displacement 
using ZNCC

As the final results using DISRC and ZNCC in Figure 
11 (a) and (d), most of the vector sizes using DISRC 
is about 6 pixels, while a part of the vector size using 
ZNCC is 0 pixel. The mean vector size obtained using 
DISRC is 6.15, with a variance of 2.25, while a mean of 
4.17 and variance of 8.03 were obtained using ZNCC. 
Therefore, we see that the effect of the displacement 
field using DISRC is better than ZNCC, when both the 
reference and the target speckle images are contami-
nated by salt-and-pepper noise. 

6. Conclusion
Salt-and-pepper noise, an unavoidable type of noise 
in digital images, is troublesome to process in digital 
image correlation techniques. Traditional DIC using 

ZNCC is sensitive to this kind of noise, which leads 
to incorrect displacement field. While the DISRC can 
successfully deal with the noise, but it need more time 
to compute the rank.
We focus our attention on the robustness of DISRC 
and accelerating computations. The robustness of 
DISRC was studied in theory and a preliminary ver-
ification was performed. The DISRC is an effective 
and strong anti-interference digital image correlation 
technique, and it is very important for practical engi-
neering applications, especially in complex environ-
ments. Parallelization is used to accelerate the DISRC 
calculations in our fast frame, including precomput-
ing ranks and computing displacement field, and the 
speed-up effect is suitable for DISRC application. In 
the future, more applications will be investigated.
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