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Biometric recognition based on palm vein trait has the advantages of liveness detection and high level of se-
curity. An improved human palm vein identification system based on ensembling the scores computed from 
scale invariant features and multiresolution adaptive Gabor features is proposed. In the training phase, from 
the input palm vein images, the interested palm regions are segmented using 3-valley point maximal palm ex-
traction strategy, an improved method that extracts the maximal region of interest (ROI) easily and properly. 
Extracted ROI is enhanced using contrast limited adaptive histogram equalization method. From the enhanced 
image, local invariant features are extracted by applying scale invariant feature transform (SIFT). The texture 
and multiresolution features are extracted by employing adaptive Gabor filter over the enhanced image. These 
two features, scale invariant and multiresolution Gabor features act as the templates. In the testing phase, 
for the test images, ROI extraction, image enhancement, and two different feature extractions are performed. 
Using cosine similarity and match count-based classification, the score, Ss is computed for the SIFT features. 
Another score, Sg is computed using the normalized Hamming distance measure for the Gabor features. Both 
these scores are ensembled using the weighted sum rule to produce the final score, SF for identifying the per-
son.  Experiments conducted with CASIA multispectral palmprint image database version 1.0 and VERA palm 
vein database show that, the proposed method achieves equal error rate of 0.026% and 0.0205% respectively. 
For these databases, recognition rate of 99.73% and 99.89% respectively are obtained which is superior to the 
state-of-the-art methods in authentication and identification. The proposed work is suitable for applications 
wherein the authenticated person should not be considered as imposter.
KEYWORDS: 3-valley point strategy, contrast limited adaptive histogram equalization, SIFT features, adap-
tive Gabor filter, normalized Hamming distance. 
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1. Introduction
Highly secure human recognition is more essential 
for today’s electronic world. Jain et al. [22] stated 
that biometrics is a way to recognize or automati-
cally identify the human beings based on either their 
physiological or behavioural characteristics. Earlier 
authentication methods are password mechanism, 
which needs the remembrance and card-based au-
thentication, requires carrying the card for authenti-
cation.  These traditional methods are not suitable for 
now-a-days because they can be easily broken (pass-
words) or stolen (cards) by the attackers. Out of the 
existing biometrics such as fingerprint, face, iris, reti-
na, hand geometry, veins (finger, hand, and palm), gait, 
handwriting, and voice, palm vein is an interesting 
biometric because of its high security nature, liveness 
detection, uniqueness, user comfort and acceptabil-
ity. Palm vein recognition is a biometric authentica-
tion method which uses the image processing and 
pattern recognition techniques to verify the persons 
based on their palm vein trait. Palm vein images are 
captured with near-infrared (NIR) wavelength light 
source. The complex pattern in the captured palm 
image shows the blood flow pattern of the user. Cross 
and Smith [13] and Wang et al. [63] concluded that the 
dark pixels in the image are because of the absorption 
of the infrared light by the blood. The entire image will 
vanish when the person is dead since there is no blood 
flow as mentioned by Arakala et al. [5]. As the palm 
vein is under the palm skin, it cannot be easily stolen 
or damaged by any intruders there by more secured 
biometric. Lee [33] and Zhou and Kumar [85] con-
cluded that palm vein image acquisition is easy and 
comfortable to the users as it is non-intrusive. Since 
there is no direct contact with the palm vein image ac-
quisition sensor, there are no hygiene issues, and the 
fear of contamination to the users’ hands. So, the user 
acceptability is high to this biometric. Hawkes et al. 
[20], Kong and Zhang [29], MacGregor and Welford 
[40], Masaki Watanabe et al. [41], Wang et al. [62] and 
Wilson [66] highlighted that the palm vein pattern is 
unique for different individuals even for the twins. 
Yoruk et al. [73] insisted that palm vein is long lasting 
over the period of life. Palm vein authentication and 
identification can be used in variety of applications 
like finance transactions, access control, attendance, 
and customer verification.
The organization of this paper is as follows: Section 2 
discusses the literatures related to the proposed work 

whereas section 3 elaborates all the modules of the 
proposed work. Experimental results are discussed in 
section 4. Section 5 provides the conclusion.

2. Related Work
Based on the type of features extracted, the existing 
methods for personal authentication from the input 
palm vein images are broadly categorized into geome-
try-based, texture-based, local invariant-based, wave-
let-based, deep learning-based and multibiometric 
approaches. 
Geometry-based approaches introduced by Cho etl. 
[12], Greitans et al. [16], Hernández-García et al. [21], 
Kilian et al. [28], Lee [32, 33], Moravec [45], Wang et 
al. [64], Wu et al. [67, 69, 70], Zhang et al. [75], Zhou 
and Kumar [84, 85] are based on the geometrical lo-
cations of the vein pattern. Feature extraction meth-
ods such as local thresholding, multiscale matched 
filtering, complex matched filtering, localized Radon 
transform, directional coding, directional filter bank, 
etc., are geometry-based approaches.
Palm vein images are rich in texture which is formed 
based on the blood vessel patterns. Methods such as 
Gabor filter, local binary pattern, local derivative pat-
tern, and binarized statistical image features descrip-
tor method are used in texture-based approaches. The 
authors Al-Zubi et al. [3], Babalola et al. [7], Deepama-
lar and Madheswaran [14], Han and Lee [19], Kang 
and Wu [27], Ma et al. [39], Mirmohamadsadeghi and 
Drygajlo [44], Piciucco et al. [51], and Wang et al. [65] 
used these texture-based approaches for palm vein 
authentication. 
Invariant feature extraction methods that were used by 
Al-Zubi et al. [3], Balasubramanian and Raja Sekar [8], 
Chengathir Selvi and Muneeswaran [11], Kang et al. 
[26], Moravec [45], Muneeswaran et al. [46], Pan and 
Kang [48], Wang and Han [61] and Yan et al. [72] are 
highly appreciated while working with contact-free 
image acquisition systems. Scale invariant feature 
transform (SIFT), speeded-up robust features (SURF) 
and affine-SIFT (ASIFT), and RootSIFT are some of 
the local invariant feature extraction methods.
Wavelet-based methods which were introduced by 
Al-juboori et al. [2], Ananthi et al. [4], Arivazhagan et 
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al. [6], Elnasir et al. [15], Li et al. [35], Raja Sekar et al. 
[54], Toh et al. [59], Wu et al. [68] extract multireso-
lution features by applying wavelets such as Haar 
wavelet, wavelet locality preserving projection, and 
Morlet wavelet. All the salient features of the palm 
vein images at different resolutions are extracted by 
these methods. In our earlier work, Ananthi et al. [4] 
curvelet multiresolution transform was used.
Convolutional neural network (CNN), deep CNN 
(DCNN), AlexNet, and visual geometry group (VGG) 
are the deep learning models used for palm vein recog-
nition by Jia et al. [23], Obayya et al. [47], Pan et al. [49], 
Qin et al. [52], Stanuch et al. [55], Zhong et al. [82]. These 
methods lead to good results while dealing with a huge 
volume of data. Zheng et al. [76-80] worked on data aug-
mentation methods with deep learning techniques.
Multibiometric methods combine information re-
ceived from multiple traits, multiple sensors, and 
multiple algorithms to improve the recognition ac-
curacy. The authors Chen et al. [10], Li et al. [36], Mi-
chael et al. [42], Wamg and Han [61], Wang et al. [62], 
Zhang et al. [74], and Zhou et al. [83] used multibio-
metric methods. Palmprint and palm vein traits were 
collectively used for person authentication. Other 
combinations of traits such as iris, palm vein, and fin-
ger vein were also introduced.
Generally all the existing palm vein recognition sys-
tems include the modules such as segmenting region 
of interest, feature extraction, feature matching and 
decision making. Gupta and Gupta [17, 18], Han and 
Lee [19], Joardar et al. [24] and Lee [33] adopted me-
dian filter for removing the salt-and-pepper noise and 
speckles. Mirmohamadsadeghi and Drygajlo [43] and 
Zhou and Kumar [85] used histogram equalization 
method to normalize and enhance palm vein images. 
Han and Lee [19], Lee [32] and Wu et al. [67] computed 
the background illumination as the local mean intensi-
ty and subtracted it from the original palm vein image 
to obtain the enhanced image. Kang and Wu [27] nor-
malized the palm vein images using bilinear gray value 
differential method. Ananthi et al. [4] and Yan et al. [72] 
applied Difference of Gaussian and histogram equaliza-
tion strategy (DoG-HE) for palm vein image enhance-
ment. Gupta and Gupta [17], Joardar at al. [24, 25], Ma 
et al. [39], Qiu et al. [53], Thillainayagi and Senthil Ku-
mar [58] and Yakno et al. [71] employed contrast limited 
adaptive histogram equalization method (CLAHE) [86] 
for improving the contrast of the image.

Lin and Fan [37] extracted multiple features such as 
mean, moment, and counter filters from palm dorsal 
vein images using multiresolution analysis with mul-
tiresolution filters. Unique feature called “Laplacian-
palm” was extracted by Wang et al. [62] on the palm-
print and palm vein fused images by applying locality 
preserving projection. Su [56] extracted the geometri-
cal features from the ROI by aligning all the palm imag-
es to the same position by performing image rotation, 
shifting and interpolation. Vein bifurcation and ending 
features were obtained by applying Mexican hat op-
erator in the ROI and minutiae features by Delaunay 
triangulation by Kumar and Venkata Prathyusha [30]. 
Zhou and Kumar [85] extracted palm vein features 
by using Hessian phase approach whereas Han and 
Lee [19], Lee [32] and Ma et al. [39] used Gabor filter 
approach. Wu et al. [67] used directional filter bank 
approach for line feature extraction from vein image. 
Kang et al. [27] used maximal principal curvature 
algorithm and k-means methodology for texture ex-
traction. Balasubramanian and Raja Sekar [8], Joardar 
et al. [25], Phalguni [50] and Yan et al. [72] used SIFT 
algorithm for local invariant feature extraction. Chen-
gathir Selvi and Muneeswaran [11] and Muneeswaran 
et al. [46] used local invariant features for recognition. 
Arivazhagan et al. [6] and Raja Sekar et al. [54] extract-
ed multiresolution features. Wu et al. [68] extracted the 
subspace feature of the palm vein by using Haar-wave-
let decomposition and partial least squares algorithm. 
Kumar et al. [30] calculated two different matching 
scores namely cumulative and shape matching score. 
Final matching score was the weighted combination 
of these matching scores. Han and Lee [19], Kang and 
Wu [27], Lee [32], Ma et al. [39], Sun and Abdulla [57], 
Wu et al. [67, 68], Zhixian and Qiang [81] and Zhou 
and Kumar [85] followed distance-based feature 
matching. Li et al. [34] used nearest-neighbour clas-
sifier; Yan et al. [72] applied Hellinger Kernel over the 
RootSIFT features.
Normally contactless biometric traits suffer from im-
age translation, rotation, and scaling variations. As 
SIFT features are invariant to these variations, the 
authors are motivated to use this transform and Ga-
bor filter, a multiresolution filter, with an improved 
ROI extraction method.
The highlights of the proposed work are as follows:
a Extracting the largest possible region of interest 

from the input palm vein image by using an im-
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proved 3-valley point maximal palm extraction 
strategy.

b Scale invariant SIFT features and Gabor multires-
olution features are extracted from the CLAHE en-
hanced palm image.

c Matching over the SIFT and Gabor features result 
in two different score namely, Ss and Sg.

d The palm vein identification system performance is 
appreciably improved by ensembling these scores 
using weighted sum rule to yield the final score, SF.

Figure 1
Schematic diagram of the proposed system

 

3. Proposed Work
The proposed palm vein recognition system consists 
of five modules namely region of interest extraction, 
enhancing the ROI, extracting the features, feature 
matching and decision making. The steps, region of 
interest extraction and enhancing the ROI are collec-
tively known as image preprocessing step. The sche-
matic diagram of the proposed palm vein identifica-
tion system is shown in Figure 1. 
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The proposed human identification system involves 
two phases – training and testing phase. During train-
ing phase, the users are registered to the authentica-
tion / identification system by storing the templates 
of features. During testing phase, the user is authenti-
cated / identified by comparing the currently extract-
ed features against the registered templates. i.e., for 
the test images, ROI extraction, image enhancement, 
and two different feature extractions are performed. 
A score, Ss is computed using cosine similarity and 
match count-based classification over the SIFT fea-
tures and another score, Sg is computed using NHD 
over the Gabor features. These two scores are ensem-
bled, and the final score, SF is computed using weight-
ed sum rule. 
The score, SF is used in decision making and identify-
ing the human. Sample palm vein images from CASIA 
and VERA palm vein databases are shown in Figure 
2(a) and 2(b) respectively.

3.1. Region of Interest Extraction

Region of interest extraction plays a major role 
in any image processing task as it selects only the 
crucial region consisting of more discriminating 
features. These discriminating features help in 
uniquely identifying the thing/object under test. In 
palm vein recognition task, palm region is the area 
having complex and wealthy features. Only the palm 
region is extracted as ROI while eliminating the fin-
ger region, and background. Background influence is 
overcome by applying Otsu thresholding to the input 
palm vein image as in Han and Lee [19], Kang and 
Wu [27], Lee [32], Ma et al. [39], Wu et al. [67], and 
Yan et al. [72]. 
In the resultant binary image, among all the con-
nected regions, the biggest connected region rep-
resents the boundary of palm region with fingers, IB. 
From this palm region, ROI is extracted with 3-val-
ley point maximal palm extraction strategy. The 
steps in ROI extraction process are shown in Fig-
ure 3. Working of 3-valley point maximal palm ex-
traction strategy: In the input palm vein image, Iinp, 
valley point V1 lying between index finger & middle 
finger, V2 between middle finger & ring finger, and 
V3 between ring finger and little finger are located 
on the palm border based on distance distribution 
as shown in Figure 3(b).
After locating the 3-valley points, the palm image is 
aligned, by rotating it by an angle based on its orien-
tation, to overcome the effect of palm rotation during 
acquisition. 
Let the valley points V1 and V3 be represented as V1(x1, 
y1) and V3(x3, y3); θ be the orientation between the line 
segments 1 3VV  and a vertical line passing through V1. 
θ is calculated as in Equation (1). Based on the cal-
culated θ value, Iinp is rotated by -θ so as to make 1 3VV  
vertical, resulting in IRot. Using rotation equation as 
in Equation (2), the rotated palm boundary points, IB’ 
in IRot are computed. In general, any point, P in Iinp is 
mapped to the point, P' in the rotated image IRot and is 
computed as in Equation (4). Rotated 3 valley points, 

' '
1 2,V V  and '

3V  are computed using Equation (4) and are 
located as shown in Figure 3(c). '

1V and V are moved / 
translated 20 pixels to the right so that ROI includes 
only the palm region and not the region from the little 
finger or index finger. Initially by keeping ' '

1 3V V  as the 
left edge, a region of 150 pixels width is considered as 

Figure 2
Sample palm vein images (a) From CASIA MS palmprint 
image database V1.0 (b) From Vera palm vein database

  

(a) (b)
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Figure 3
ROI extraction process (a) Input palm vein image (b) Locating 
3 valley points in the palm boundary (c) Rotating the image 
according to its orientation (d) Locating maximal ROI 

ROI. Then the ROI is grown diagonally in the bottom 
right direction until all the pixels in the ROI are inside 

'
BI . Then ROI is enlarged along top right direction and 

right direction to obtain the maximal ROI as shown 
in Figure 3(d). The maximal ROI, represented by the 
largest outer yellow rectangle, shown in Figure 3(d) is 
extracted from IRot. 
The extracted ROI is of varying size depending on the 
hand size of the person and hand positioning factors 
during image acquisition. The extracted ROI is nor-
malized to 256 x 256 pixels with bicubic interpolation 
strategy so as to make the feature extraction and fea-
ture matching steps easier.

1 3 1

3 1

tan y y
x x

−  −
θ =  − 

(1)

( )' .B B old newI R I Center Center= − + , (2)

where, oldCenter and newCenter  represent the centers of 
the images Iinp and IRot respectively. R is the rotation 
matrix which is defined in Equation (3).

cos( ) sin( )
sin( ) cos( )

R
θ θ
θ θ
− − −

=
− −

(3)

(a)

(c) (d)

(b)

 

         (a)                                        (b) 

        (c)                                        (d) 

 

         (a)                                        (b) 

        (c)                                        (d) 

 

         (a)                                        (b) 

        (c)                                        (d) 

 

         (a)                                        (b) 

        (c)                                        (d) 

( )' . old newP R P Center Center= − + . (4)

Algorithm 1 defines the steps involved in ROI ex-
traction using 3-valley point maximal palm extraction 
strategy. Various existing ROI extraction strategies, 
introduced by Han and Lee [19], Kang and Wu [27], 
Lee [32], Zhou and Kumar [85] segment the ROI cor-
rectly. But the novel 3-valley point maximal palm 
extraction strategy introduced by the authors in this 
work segments the palm region easily and correctly 
and more significantly covers the maximal palm in-
formation. In Algorithm 1 given below, the steps 1 – 8, 
is same as the strategy adopted in our previous work 
[4]. Let Δ, ~, δ denote respectively image binarization, 
image crop, and bicubic interpolation operator. Let ci, 
CR, #(c) represent respectively individual connected 
region, set of connected regions and number of pixels 
in region c.

Algorithm 1: ExtractMaximalROI_3ValleyPoints(Iinp)
Input: Palm vein image, Iinp

Output: Segmented ROI, IROI of size 256 x 256

Threshold t  ← Otsu (Iinp)
Binarized image B ← Δ(Iinp, t)
Compute CR ← {c1, c2, …, cn}
IB ← max(#(ci)),∀i = 1 .. n
Locate the valley points V1, V2, V3 using distance dis-
tribution
Let VP be any point with the column same as V1.
θ ← Angle ( 1 3VV , 1 PVV )
IRot ← Rotate (Iinp, –θ)

'
BI ← Rotate (

BI ) 
' '

1 2,V V and '
3V  ← Rotate (V1, V2, V3)

Largest area, Regionlarge ← max (all the rectangular re-
gions with ' '

1 3V V as their left edge inside '
BI ).

IROI ← ~ (Regionlarge from IRot)
IROI  ← δ(IROI , [256  256])

3.2. Enhancing the ROI 
Palm vein images acquired in contactless mode suffer 
from blurriness, impulse noise and uneven illumina-
tion when compared to contact-based images, stated 
by Kuamr and Zhou [31] and Yan et al. [72]. These fac-
tors affect the performance of the forthcoming fea-
ture extraction, feature matching, and decision mak-
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ing stages. Enhancing the ROI is carried out normally 
before performing the extraction of features so as to 
improve the performance. 
CLAHE does not work on the whole image but work 
on the smaller regions called tiles or blocks. On each 
tile, typical histogram equalization is applied. Any 
noise in the block is not amplified by limiting the 
contrast of the block. All the adjacent blocks are com-
bined by using bilinear interpolation method to pro-
duce the enhanced palm image. 
Ma et al. [39] used CLAHE for palm vein image en-
hancement and improved the recognition result. 
As CLAHE limits the contrast of the block and does 
not amplify the noise, in this work, CLAHE is used 
to increase the contrast of IROI, shown in Figure 4(a). 
Contrast enhanced image, Ie is obtained by applying 
CLAHE over IROI as in Equation (5) and it is shown in 
Figure 4(b).

( )e ROII CLAHE I= . (5)

lems when compared to contact palm vein images, 
insisted bt Yan et al. [72]. Pan and Kang [48] worked 
with three local invariant feature extraction methods 
such as SIFT, Speeded-Up Robust Features (SURF), 
and Affine-SIFT (ASIFT) in the palm vein images 
and the result illustrates that the problems existing 
with contactless palm vein images can be resolved by 
using these robust invariant feature extraction meth-
ods. As palm vein dataset used in this work consists 
of contactless palm vein images, SIFT, a robust local 
invariant feature extraction method is adopted. Lowe 
[38] introduced SIFT features whuch are invariant 
to rotation and scale of the image and are robust lo-
cal features. As these robust features are essential 
paricularly for contactless images, the authors used 
these features. The variants of SIFT are coloured 
SIFT (CSIFT) and ASIFT. CSIFT constructs SIFT 
descriptors in a colour invariant space but which can 
be used for colour images. Affine-SIFT (ASIFT) sim-
ulates a set of sample views of the image by varying 
the latitude and the longitude angles of the camera, 
which are not treated by the SIFT method. As the au-
thors use public palm vein dataset which consists of 
grayscale images, CSIFT is not needed. As the dataset 
is not custom built, ASIFT is also not needed. Hence 
the conventional SIFT is used for feature extraction. 
SIFT feature extraction includes four steps such as 
scale-space extrema detection, keypoint localization, 
orientation assignment, and finding keypoint descrip-
tor and the steps involved in SIFT feature extraction 
is detailed in Algorithm 2. Let DoG denote difference 
of Gaussian, D be DoG image, E be extrema, Fp be sta-
ble feature points, and Fd be feature descriptors.

Algorithm 2: ExtractSIFTFeatures(Ie)
Input: Enhanced image, Ie of size [256 x 256]
Output: Feature descriptors, Fd with size [930 x 128]

1. D ← DoG(Ie)
2. E ← Identify extrema in the scale space
3. Fp ← locate stable feature points in E
4. Calculate and assign direction p pf F∀ ∈  
5. Fd ← find local feature descriptors of 128 dimension

3.3.2. Gabor Features Extraction
Gabor filter is a powerful texture analysis tool as it re-
sembles the receptive field profiles in the mammalian 
cortical simple cells. Local texture features are ex-

 
(a) (b)

Figure 4 
Image Enhancement process. (a) Extracted ROI image 
(b) CLAHE enhanced ROI   

(a) (b)

3.3. Extracting the Features
The existence of significant translation, rotation, and 
scale variations in contactless images require the ex-
tracted features to be invariant of such variations. In 
this work, such invariant features are extracted using 
SIFT algorithm and Gabor filter, which are discussed 
in the below subsections.

3.3.1. SIFT Features Extraction
The contactless palm vein images always suffer from 
translation, scale, orientation, and illumination prob-
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tracted from the enhanced image, Ie using 2-D Gabor 
filter as it provides the optimized resolution both in 
spatial and frequency domain. A circular 2-D Gabor 
filter is an oriented complex sinusoidal grating which 
is modulated by a 2-D Gaussian function as in Equa-
tion (6).

2 ( cos sin )
, , ( , ) ( , ). ju x y
uG x y g x y e π θ θ

σ θ σ
+= , (6)

where, u and θ  are respectively, frequency and orien-
tation (in the interval of 0°-180°) of sinusoidal grat-
ing; σ  is the standard deviation of the Gaussian enve-
lope; 1j = − ; ( , )g x yσ  is the Gaussian function which 
is defined in quation (7).

2 2 2( )/(2 )
2

1( , ) .
2

x yg x y e σ
σ πσ

− += , (7)

In the complex form, the 2-D Gabor filter given in 
Equation (6) is represented as shown in Equation (8).

, , , , , ,( , ) ( , ) ( , )u u uG x y R x y jI x yσ θ σ θ σ θ= + (8)

The real and imaginary parts in Equation (8), which 
are useful in ridge and edge detection respectively, 
are expressed in Equations (9)-(10).

, , ( , ) ( , ).cos(2 ( cos sin ))uR x y g x y u x yσ θ σ π θ θ= + (9)

, , ( , ) ( , ).sin(2 ( cos sin ))u x y g x y u x yIσ θ σ π θ θ= + . (10)

The enhanced ROI, Ie is divided into 8 x 8 non-over-
lapping subregions of size 32 x 32 each. In each 
sub-region, the Gabor parameters such as ,uσ and θ   
are computed as in Ma et al. [39] and the adaptive 2-D 
Gabor filter is convolved in all the 64 subregions. The 
real and imaginary parts of the 2-D Gabor filtered im-
age are computed using discrete convolution as men-
tioned in Eqns. (11-12) while considering a neigh-
bourhood window of size S x S, where S = 2 * w +1. 

, , , ,( , ) ( , )( , ).u u

w w

e
i w j w

x y x yGR I x i y j Rσ θ σ θ

=− =−

= + +∑ ∑ (11)

, , , ,( , ) ( , )( , ).u u

w w

e
i w j w

x y x yGI I x i y j Iσ θ σ θ

=− =−

= + +∑ ∑ . (12)

From the Gabor filtered image, binary vein code fea-
ture is extracted in the form of (VCR, VCI) as stated in  

Equations (13)-(14). 

, ,

, ,

1, ( , ) 0
( , )

0, ( , ) 0
u

R
u

GR x y
VC x y

GR x y
σ θ

σ θ

≥
=  <

(13)

, ,

, ,

1, ( , ) 0
( , )

0, ( , ) 0
u

I
u

GI x y
VC x y

GI x y
σ θ

σ θ

≥
=  <

(14)

Gabor vein code feature matrices VCR and VCI of size 
256 x 256 are obtained by using Equations (13)-(14) 
with the neighbourhood window of size 3 x 3 with w 
being set as 1. In the next module, two different scores 
are computed by matching the SIFT and Gabor fea-
tures. Then are ensembled using weighted sum rule 
and is used in decision making. 

3.4. Feature Matching
The extracted SIFT and Gabor features are matched 
as in the following subsections. 

3.4.1. SIFT Feature Matching
Here, in the proposed work, the similarity is comput-
ed between two different images based on the cosine 
of the angle between the SIFT features extracted 
from those images. The included angle, ,A Bθ  between 
the feature vectors A and B is computed as in Equa-
tion (15).

1
,

.cos
*A B

A B
A B

θ −  
=   

 
, (15)

where, A, B represents the dot product of the vectors 
A and B, ||v|| represents the norm or length of the vec-
tor v and * denotes the scalar multiplication.
When ,A Bθ  is less than or equal to the threshold val-
ue, thresθ , the feature vectors A and B are assumed to be 
similar. Let the test image be represented by the set of 
feature vectors Ftst and the training image by the fea-
ture vectors Ftrn, both are of size nrows x ncols. 
The number of matching features between Ftst, and 
Ftrn is calculated as stated in Algorithm 3. The includ-
ed angles, θJ, J  = 1 … # ( SIFT descriptors of Ftrn), be-
tween the first SIFT descriptor of Ftst and all the in-
dividual SIFT descriptors of Ftrn are computed. Let θt,  
t ÎJ, be minimum value in the set of angles θJ. If θt is 
less than or equal to θthres, then the tth feature vector of 
Ftrn is the closely matching feature to the currently 
testing feature. As this tth feature of Ftrn is now matched 
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to the current feature of Ftst, it is removed from Ftrn. If 
the minimum of θJ is greater than θthres, it depicts that 
for the currently testing feature, there is no matching 
feature. Then the included angles between second 
SIFT descriptor of Ftst and all the available individu-
al SIFT descriptors of Ftrn is computed and the above 
mentioned process is repeated until the last feature of 
Ftst. Number of matching features, Matchcnt, between 
Ftst, Ftrn is calculated as in Equation (16).

trnMatchcnt nrows F= − , (16)

where trnF  denotes number of unmatched features of 
training image i.e., number of rows in Ftrn that remain 
at the end of feature matching.

Algorithm 3: ComputeMatchCount(Ftst, Ftrn)
Input: Ftst, Ftrn are feature matrices of testing and 
training images respectively. Both are of size nrows x 
ncols.
Output: Matchcnt – number of matching features be-
tween Ftst and Ftrn

begin
       for i = 1 to nrows do
        begin 
             f1 ←  Ftst(i, :) // select ith feature ie.,  ith row of Ftst

  θJ = [ ]
             for j = 1 to trnF  do
             begin
                  f2 ←  Ftrn(j, :)
                 

1 2,J J f fθ θ θ =                    
             end for
             θt ← min(θJ) where 1 ≤ t ≤ trnF
             if (θt ≤ thresθ )
             begin
                 ft ←  Ftrn(t, :)
                Ftrn ←  Θ(Ftrn, ft) // Θ - set difference operator

                    end if
        end for   
        Matchcnt = nrows – trnF
        return Matchcnt
end

3.4.2. Gabor Feature Matching
Han and Lee [19], Lee [32], and Ma et al. [39] used 
normalized Hamming distance measure (NHD) for 
similarity measurement between training and test-
ing veincode features. As NHD provides translation 
and rotation invariance, in this work, NHD is used for 
similarity calculation over the multiresolution Gabor 
features. 
Let X and Y be the training and testing veincode fea-
ture matrix respectively. The normalized Hamming 
distance is defined as in Equation (17).

( ) ( )
min( , ) min( , )

max(1,1 ) max(1,1 )

( , ) ( , ) ( , ) ( , )

2 ( ) ( )
.

i N N s j N N t

R R I I
i s j tNHD

X i s j t Y i j X i s j t Y i j

H s H t

= + = +

= + = +=

+ + ⊗ + + + ⊗∑ ∑

(17)

Here, XR and YR are the real part veincode features of X 
and Y respectively, whereas XI and YI represent imag-
inary part of veincode features; ⊗ is the exclusive-OR 
operator; N x N is the size of the veincode feature ma-
trix; s and t represent translation along horizontal and 
vertical directions; H(m) is calculated as in Equation 
(18).

( ) min( , ) max(1,1 )H m N N m m= + − + . (18)

To insist translation and rotation invariance, NHD is 
computed for all the possible values of s ∈  {1, 2, … 8} and  
t ∈{1, 2, … 8}. Out of all these NHDs, the minimum 
value is considered as the distance between X and Y.

3.5. Decision Making
SIFT features extracted from test image are com-
pared against SIFT features of training images using 
ComputeMatchCount algorithm and Matchcnt, which 
denotes the number of matching SIFT features be-
tween any two images (training and testing) is com-
puted. Higher the value of Matchcnt, the more simi-
lar the images are. Normalizing the Matchcnt values 
is essential, and they are normalized using min-max 
normalization method.
Let nmatches denote a vector of number of match-
ing features (Matchcnt) between a test image and all 
the individual template images. The score from SIFT 
features matching, Ss is computed by employing min-
max normalization to nmatches as in Equation (19) so 
that the score is normalized to the range of 0 to 1.
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min( )
max( ) min( )is

nmatches nmatchesS
nmatches nmatches

−
=

−
, (19)

where sS  and nmatches are the vectors of length equal 
to the number of training samples. 

isS  
and inmatches  

denote the ith element of the corresponding vectors.
Normalized Hamming distance which is computed 
between Gabor features of test image and training 
images lie in the range of 0 to 1. NHD is a dissimilarity 
measure whereas sS  is the similarity score from SIFT 
features. The similarity score from Gabor features, gS , 
is computed as in Equation (20), by subtracting all the 
NHD values from 1.

1
i ig NHDS V= − , (20)

where, gS  
and the normalized Hamming distance vec-

tor, NHDV , are the vectors of length equal to the number 
of training samples. 

igS  
and 

iNHDV  
denote the ith element 

of the corresponding vectors.
The two similarity scores computed from SIFT and 
Gabor features are ensembled using weighted sum 
rule to compute the final score, FS . Let α  and β  de-
note the weightages assigned to the individual scores. 
The weighted sum rule in Equation (21) represents 
the ensembling of scores.

. .F s gS S Sα β= + . (21)

The computed final score, FS  is used in identification. 
For a test image, this final matching score is com-
puted with all the training images. The maximum of 
these scores, if it is greater than the preset matching 
threshold, the test image is identified as the class la-
bel corresponding to the training image with highest 
score. 

4. Experimental Results
Experiments were conducted on CASIA multispec-
tral palmprint image database V1.0 [9] and VERA 
palm vein database [60]. A detailed description of 
these data sets was provided in our previous work, 
Ananthi et al. [4].

4.1. Performance Metrics 
For both authentication and identification of the 
claimant, matching score threshold, thresS  is set. 

During authentication or verification, the claimant’s 
palm vein image is compared against his/her own 
templates only. If FS  computed between the test im-
age and the claimant’s templates is greater than or 
equal to thresS , then the claimant is declared as genuine 
otherwise as imposter as in Equation (22).

,
Im ,

F thresGenuine S S
Decision

poster otherwise
≥

= 


, (22)

where FS  is the score computed between the test im-
age and the claimant’s template. 
In the identification process, the claimant is identified 
who he/she is. Computation of matching scores be-
tween the test image and all the registered templates 
is carried out. Let the result be MScores. If maximum 
of MScores corresponds to ith person, the test image is 
identified as ith person as in Equation (23).

, max( ) [ ]& [ ] .thresClass i if MScores MScores i MScores i S= = > (23)

Consider the below example for identification. Sup-
pose two samples are trained per subject / class and the 
Mscores vector contains the values as specified here.

1 2 3 4 ... 128 129 ...

0.231 0.957 0.897 0.983 ... 0.996 0.998 ...

The values above the vector represent the position. As 
two samples are trained per class, the values in posi-
tions 1 and 2 correspond to class 1, positions 3 and 4 
correspond to class 2, and so on. Now the test image 
is identified as class 65 since 0.998 is the largest value 
and is above the preset matching threshold, 0.91. 
Correct recognition result (CRR), false acceptance 
rate (FAR), false rejection rate (FRR), equal error rate 
(EER), and identification time are computed as the 
performance metrics. CRR is the ratio of number of 
images identified correctly to the total number of im-
ages tested and is computed as in Equation (24).

# 100
#

samples correctly identifiedCRR
samples tested

= × . (24)

FAR is the ratio of number of imposter images being 
accepted as genuine to the total number of images 
tested and is computed as in Equation (25).

# 100
#

wrongly accepted imposter imagesFAR
samples tested

= × . (25)
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FRR is the ratio of number of genuine images being 
rejected as imposter to the total number of images 
tested and is computed as in Equation (26). 

# 100
#

wrongly rejected genuine imagesFRR
samples tested

= × . (26)

EER is equal to FAR at some threshold, thresS , where 
both FAR and FRR are equal, i.e., 

thres thresS SFAR FRR= , 
where 

thresSFAR  and 
thresSFRR  

are FAR and FRR comput-
ed at the threshold, thresS . EER is computed by plotting 
a receiver operating characteristics (ROC) curve 
which is a graphical curve drawn FAR vs. FRR for fif-
teen different values of thresS  ranging from 0.5 to 0.95.

4.2. Performance Evaluation

In the proposed work, the right hand palm images of 
both the databases are used. Table 1 shows the perfor-
mance of the system with CASIA database, consider-
ing various values for matching threshold,  thresθ over 
the SIFT features. From table 1, it is understood that 
the optimal value for thresθ  is 20°.

With exhaustive experimentation, the empirically 
chosen value for preset matching threshold is 0.91 for 
both authentication and identification tasks.
Exhaustive experiments are conducted with three 
different test cases in the CASIA database. Test case 
1 involves 850 nm right hand palm images as in Zhou 
and Kumar [85] whereas test case 2 uses 940 nm right 
palm images for experimentation. Test case 3 uses a 
total of 1200 right palm images acquired at both 850 
nm and 940 nm wavelengths. In the VERA palm vein 
database, a total of 1100 right palm images are used 
for experimentation. 

Table 1 
Selection of optimal matching angle for SIFT features

# train 
per 

subject

# test 
per 

subject

EER (in %) with thresθ
=

10° 15° 20° 25° 30°

2 4 0.052 0.042 0.036 0.048 0.057

3 3 0.45 0.039 0.031 0.035 0.042

4 2 0.036 0.029` 0.026 0.032 0.039

5 1 0.038 0.035 0.031 0.037 0.043

In the input palm vein image, after applying Otsu 
thresholding, ROI of size 256 x 256 is extracted by 
3-valley point maximal palm extraction method. The 
extracted ROI is then enhanced using contrast limit-
ed adaptive histogram equalization method. SIFT fea-
tures and adaptive Gabor features are extracted from 
the enhanced ROI. Each ROI results in 930 number 
of 128-dimension SIFT features and Gabor vein code 
feature matrices VCR and VCI of size 256 x 256.

4.2.1. Performance Evaluation with CASIA Database 
Test cases 1 & 2 use only 600 images. Suppose that 
only 50% of the images are tested. Then in test cases 
1 & 2, only 300 images are tested, which is not suffi-
cient to report the system performance. As a result, 
it is proposed to work with different combinations of 
training and testing in all the test cases so as to im-
prove the test set size. While testing two samples per 
subject, various combination of samples tested are 
{(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 5), (2, 6), 
(3, 4), (3, 5), (3, 6), (4, 5), (4, 6), (5, 6)}, leading to a total 
of 15 ( )26C combinations. When the samples 1 and 2 
of each subject are tested, the remaining samples, 3, 4, 
5 and 6 of each subject are trained. While testing the 
samples 1 and 2, totally 200 (100 subjects x 2 samples) 
samples are tested. For 15 such combinations, a total 
of 3000 (15 combinations x 200 samples) samples are 
tested. Similarly, it is done for other possible combi-
nations.
Table 2 shows the system performance in terms of 
EER for test cases 1 and 2. For various training and 
testing combinations, EER is listed. In Table 2, the 
bolded items represent the optimal EER obtained 
in both the test cases. From this table, it is inferred 
that while training 4 out of 6 samples per subject, in-
creased system performance is achieved. 
Table 3 shows the performance of the system in test 
case 3. In test case 3, the best performance is achieved 
while training 8 samples per subject and testing the 
remaining 4 samples per subject. In Table 3, the bold-
ed data, 0.026%, denotes the best EER obtained in test 
case 3. From tables 2 & 3 it is evident that the ensem-
bled score results in better EER when compared to 
using only the individual scores. 
Table 4 exhibits the system performance with all the 
three test cases for various combination of weight-
ing parameters, α  and β . From Table 4, it is clear 
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Table 2
System performance of test cases 1 & 2 with CASIA database

# train 
per sub-

ject

# test 
per 

subject
# of combinations

Total 
images 
trained

Total 
images 
tested

EER (in %) in with

Test case 1 Test case 2

Ss score Sg 
score

Ensembled 
score, SF

Ss 

score
Sg 

score
Ensembled 

score, SF

2 4 15 3000 6000 0.051 0.049 0.046 0.049 0.039 0.036

3 3 20 6000 6000 0.045 0.039 0.032 0.037 0.034 0.031

4 2 15 6000 3000 0.042 0.034 0.029 0.035 0.031 0.026

5 1 6 3000 600 0.049 0.036 0.033 0.043 0.037 0.031

Table 3
System performance of test case 3 with CASIA database

# train per 
subject

# test per 
subject

# of combina-
tions

Total images 
trained

Total images 
tested

EER (in %) in Test case 3 with

Ss score Sg score Ensembled 
score, SF

4 8 495 198000 396000 0.093 0.085 0.076

5 7 792 396000 554400 0.089 0.072 0.065

6 6 924 554400 554400 0.052 0.048 0.037

7 5 792 554400 396000 0.034 0.032 0.030

8 4 495 396000 198000 0.032 0.029 0.026

9 3 220 198000 66000 0.041 0.032 0.034

Table 4
Deciding the suitable weight parameters for α and β

α β
EER (%) in Test case

1 2 3

0.1 0.9 0.081 0.078 0.092

0.2 0.8 0.063 0.059 0.078

0.3 0.7 0.035 0.040 0.061

0.4 0.6 0.029 0.026* 0.026*

0.5 0.5 0.031 0.027 0.032

0.6 0.4 0.039 0.034 0.43

0.7 0.3 0.059 0.049 0.053

0.8 0.2 0.068 0.051 0.064

0.9 0.1 0.074 0.072 0.077

* denotes the optimal EER achieved with CASIA database.

that the weight combination (0.4, 0.6) for α  and β
outperforms. 
Table 5 compares the proposed work with the state-
of-art methods for CASIA palm vein database. From 
Table 5, it is understood that the proposed method 
works well when compared to the state-of-art meth-
ods. Authors’ previous work, Ananthi et al. [4] results 
in better EER when compared to the proposed work 
as it used the Curvelet multiresolution transform. 
Though the proposed work uses SIFT and Gabor fea-
tures, it is better comparable to Haar wavelet decom-
position and partial least squares method, introduced 
by Wu et al. [68]. As the authors’ previous work [4] re-
sulted in FAR of 0.01%, it can be used in applications 
like finance transaction where imposter acceptance 
is highly prohibited. Proposed work can be deployed 
in applications where the genuine person should not 
be rejected as imposter. An example application is 
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Table 5 
Comparison with the state-of-art methods for CASIA palm vein database through EER

Authors Methods used Year EER
(in %)

Zhou  et al. [85] Neighborhood matching Radon transform and Hessian-phase-based 
approach 2011 0.32 #

0.66 **

Kang  et al. [27] Principal curvature, Mutual foreground – Local Binary Pattern 2014 0.267

Yan et al.  [72] SIFT features, multi-sampling, and feature-level fusion 2015 0.16

Ma et al.  [39] Adaptive Gabor filter 2017 0.12

Wu et al. [68] Haar wavelet decomposition and partial least squares algorithm 2019 0.0292

Ananthi et al. [4] Curvelet features with score level fusion 2021 0.021

Proposed work SIFT and Gabor features with score ensembling 2022 0.026

# - EER with left palm images, ** - EER with right palm images

authenticating the regular customers for discount 
offers in large retail shops. Through the ROC curves, 
the state-of-art methods are compared in Figure 5. 
The ROC curve which comes close to the origin rep-
resents the best EER. Figure 5 proves that the pro-
posed system works better than the state-of-methods. 
The proposed method is compared with the state-of-
art methods using identification time in Table 6. The 
proposed method is better comparable to Yan et al. 
[72]. Identification time of the proposed work is com-
paratively larger than the authors’ previous work [4] 
as SIFT feature extraction and matching takes ade-

Figure 5
Performance comparison with the start-of-art methods 
for CASIA database using ROC curve 

 

 

Table 6
Comparison with the state-of-art methods for CASIA palm 
vein database through identification time

Authors Methods used Year
Identifica-
tion time 

(in sec)

Kang  et 
al. [27]

Principal curvature, 
Mutual foreground – 
Local Binary Pattern

2014 4.58

Yan et al.  
[72]

SIFT features, multi-
sampling, and feature-
level fusion

2015 3.25

Ma et al.  
[39] Adaptive Gabor filter 2017 2.44

Wu et al. 
[68]

Haar wavelet 
decomposition & partial 
least squares algorithm

2019 0.7299

Ananthi et 
al. [4]

Curvelet features with 
score level fusion 2021 0.09

Proposed 
work

SIFT and Gabor 
features with score 
ensembling

2022 0.675

quate time. As the identification time of the proposed 
work is less than a second, it can better be used in the 
real-time palm vein identification applications. Time 
complexity for authentication and identification are 
respectively O(m) and O(nm) where m is the number 
of features and n is the number of templates com-
pared. The proposed work resulted in the recognition 
rate of 99.73% for CASIA palm vein database.
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4.2.2. Performance Evaluation with VERA 
Database
A total of 1100 right palm images acquired from 110 
subjects of Vera database are used for evaluating the 
performance of the proposed system. As with CASIA 
database, for various combinations of training and test-
ing samples, the system performance is evaluated for 
Vera database and is shown in Table 7. From Table 7, it 
is evident that, for the (training, testing) combination  
(7, 3) the proposed system outperforms. System per-
formance with Vera database is compared with the 
state-of-art methods in Table 8 and this table shows 
that the proposed method is superior in performance 
and yields comparable improvement to Hernán-
dez-García et al. [21]. Comparison of system perfor-
mance with the state-of-art methods for VERA palm 
vein database using ROC curve is shown in Figure 6. 
A recognition rate of 99.89% was achieved with VERA 
palm vein database.

Table 7
System performance with VERA database

# train per 
subject # test per subject # of combinations Total images 

trained
Total images 

tested EER  (in %)

5 5 252 138600 138600 0.3186

6 4 210 138600 92400 0.1086

7 3 120 92400 39600 0.0205

8 2 45 39600 9900 0.0310

Table 8
Proposed method comparison with state-of-art methods for VERA database

Authors Method Year EER  (in %)

Tome  et al. [60] Local Binary Pattern (LBP) and histogram intersection metric 2015 3.75

Hernández-García et al. [21] Coarse-to-fine Patch Match algorithm with Daisy descriptor 
and Displacement uniformity texture 2019 0.72

Ahmad et al.  [1] Wave atom transform 2020 3.61

Ananthi et al. [4] Curvelet features with score level fusion 2021 0.0207

Proposed work SIFT and Gabor features with score ensembling 2022 0.0205

Figure 6
Performance comparison with the start-of-art methods for 
VERA database using ROC curve

 

5. Conclusion
In the proposed work, human identification was 
achieved with the palm vein trait. Experimentation 
was done with CASIA multispectral palm print im-

age database V 1.0 and VERA palm vein database. 
The novel palm region extraction strategy, 3-valley 
point strategy, segments the maximal possible palm 
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from the input palm vein image. The segmented 
ROI is enhanced with CLAHE, a powerful image 
enhancement technique. As the dataset consists 
of contactless images, it is more prone to scale and 
rotation changes. Scale invariant features are ex-
tracted with SIFT and multiresolution features 
with Gabor filter. Separate scores are computed for 
both types of features and they are ensembled using 
weighted sum rule. The performance of the system 
while using the ensembled score is better than using 
a single score.  As the time complexity is linear for 
the proposed system, it can be used in the real-time 
authentication applications.
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