
345Information Technology and Control 2022/2/51

GATSum: Graph-Based 
Topic-Aware Abstract Text 
Summarization 

ITC 2/51
Information Technology  
and Control
Vol. 51 / No. 2 / 2022
pp. 345-355
DOI 10.5755/j01.itc.51.2.30796

GATSum: Graph-Based Topic-Aware Abstract Text Summarization 

Received 2022/02/24 Accepted after revision 2022/05/11

    http://dx.doi.org/10.5755/j01.itc.51.2.30796 

HOW TO CITE: Jiang, M., Zou, Y., Xu, J., Zhang, M. (2022). GATSum: Graph-Based Topic-Aware Abstract Text Summarization. 
Information Technology and Control, 51(2), 345-355. http://dx.doi.org/10.5755/j01.itc.51.2.30796

Corresponding author: Yifan Zou (hdu_zouyifan@163.com)

Ming Jiang, Yifan Zou, Jian Xu, Min Zhang
Hangzhou Dianzi University, College of Computer, Hangzhou, China, 310000;  
emails: jmzju@163.com,  hdu_zouyifan@163.com, jian.xu@hdu.edu.cn, hz_andy@163.com

The object of text summarization is to cut down the extent of the text into a summary containing key data. Abstract 
methods are challenging tasks, it is necessary to devise a machine-processed to pick up the message from the text 
with advantage, and after that make a summary. However, most of the existing abstract approaches are difficult to 
capture global semantics, ignoring the impact of global information on obtaining important content. To solve this 
difficulty, this paper suggests a Graph-Based Topic Aware abstract Text Summarization (GTASum) framework. 
Specifically, GTASum seamlessly incorporates a neural topic model to find potential topic information, which can 
maintain document-level characteristics for generating summaries. In addition, the model integrates the graph 
neural network which can effectively capture the relationship between sentences through the document repre-
sentation of graph structure, and simultaneously update the local and global information. The further discussion 
showed that latent topics can help the model capture salient content. We practiced experiments on two datasets, 
and the result shows that GTASum is superior to many extractive and abstract approaches in terms of ROUGE 
measurement. The result of the ablation study proves that the model has the ability to capture the original subject 
and the correct information and improve the factual accuracy of the summarization.
KEYWORDS: Text Summarization, Abstract, BERT, Neural topic model, Graph attention network.

1. Introduction
The purpose of text summarization is to aid people 
in quickly grasping the key data of the text, and it is 
a valuable job in NLP (Natural Language Process-

ing) tasks. Currently, summarization approaches can 
separate into two types: extractive and abstract. Ex-
tractive models mainly copy important information 
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from the original text and aggregate them into text 
[10, 17]. This can usually retain the salient informa-
tion of the original text and has the correct grammar, 
but it is easy to generate a lot of redundant messages. 
In contrast, neural-based abstract models usually use 
the sequence-to-sequence framework, which can un-
derstand text content and generate words that are not 
appearance in the source document. Abstract models 
are closer to the essence of summarization and have 
the potential to generate high-quality summariza-
tion. Therefore, the research in this paper is biased 
towards abstract approaches.
A key point of summarization is topic information 
modeling. Although current Transformer-based ab-
stract summarization models have achieved great 
success which because they can effectively capture 
contextual features and obtain local semantic in-
formation between sentences and paragraphs, they 
ignore higher-level semantic information. To better 
capture the global semantics of input documents, re-
searchers try to introduce topic information to con-
duct the process of making a summary. Topic models 
such as LDA [3] (Latent Dirichlet Allocation), PFA 
[41] (Poisson Factor Analysis), NVDM (Neural Vari-
ational Document Model) [22], and NTM [7] (Neu-
ral Topic Model) can provide additional information 
for document understanding. The distribution of all 
tokens in the vocabulary is described by taking topic 
information as a global variable. For the text summa-
rization domain, by integrating document-level char-
acteristics into the summarization model, we trust it 
will enhance the representation of the model.
However, despite the extensive literature incorporat-
ing topic modeling into the text summarization task 
[31, 39], we found that quite a few previous studies 
used topic models as a single source of information 
rather than unified and jointly improved the text 
summarization task and topic models. This attract-
ed our attention, and GNN (Graph Neural Networks) 
was considered to solve this problem. Lately, GNN 
has been universally used for cross-sentence rela-
tion modeling for summarization tasks [15]. Several 
studies [35, 37] set up document graphs according to 
discourse analysis. But, this method relies on exter-
nal tools, which possibly bring out semantically frag-
mented outputs [20]. To sum up, GAT (Graph Atten-
tion Network) is constructed using sentence context 
representation and topic information, and the docu-

ment context vector and topic information are updat-
ed simultaneously. This can not only jointly update 
local semantics and global semantics, but also reduce 
the problem of semantic fragmentation.
In this work, we suggest a novel GTASum model 
(Graph-Based Topic-Aware abstract text summari-
zation). First, the document is encoded with BERT 
[6] (Bidirectional Encoder Representation from 
Transformers) to obtain contextual sentence repre-
sentations; meanwhile, NTM [7] is used to learn the 
potential topic of the document. Second, construct 
a heterogeneous document graph that contains sen-
tence representation nodes and potential topic nodes, 
then revise them using a adapted GAT [30]. Finally, 
the sentence representations containing topic infor-
mation are fed into a Transformer-based decoder to 
generate summaries. Overall, the primary contribu-
tions of us are as follows:
1 A novel Graph-Based Topic-Aware abstract text 

summarization model is proposed, which helps to 
capture global semantic information and provides 
guidance in the procedure of making a summary. 
This solves the problem of text summarization 
lacking global semantic information.

2 A heterogeneous document graph is designed to 
jointly update local semantics and global seman-
tics and reduce the problem of semantic fragmen-
tation.

3 GTASum is evaluated on two standard datasets 
(CNN/DailyMail and XSum) and outperforms 
many existing extractive and abstract models in 
terms of ROUGE (Recall-Oriented Understudy for 
Gisting Evaluation) measure.

2. Related Work
2.1. Abstract Text Summarization 
In abstract text summarization, sequence-to-se-
quence [28] is the most mainstream framework. The 
early sequence-to-sequence framework is mainly 
based on RNN [5] (Recurrent Neural Network). This 
traditional model first uses some LSTM (Long Short-
Term Memory) units to obtain the input sequence, 
encodes it into a fixed-length vector representation, 
and then uses some LSTM units to read the vector and 
decoded into the output sequence [4]. However, re-
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searchers found when the input sequence is longer, it 
is more difficult for the model to acquire a reasonable 
vector representation, so the attention mechanism 
[2] was introduced into the field of text summariza-
tion. The problem derived from this is that there are a 
large number of OOV (Out-of-Vocabulary) problems 
and generation repetition problems, and the PGN+-
Cov [27] (Pointer Generator Network and Cover-
age mechanism) model cleverly optimizes the cover 
words in the generation process in a penalized man-
ner, and achieves good results. The traditional RNN 
structure is suitable for natural language modeling 
because it can handle variable-length inputs, but it 
has the disadvantages of being difficult to parallelize, 
difficult to train, and difficult to capture long-dis-
tance and hierarchical dependencies. Transformer 
[29] proposed by Google in 2017 abandoned RNN. It 
used self-attention to make the model parallelizable, 
and the improvement effect was significant, which 
leads more and more researchers using Transformer 
to replace RNN. In 2018, the Transformer-based pre-
trained language model BERT was born, providing a 
large number of performance gains for summariza-
tion tasks [8, 19]. The current state-of-the-art models 
of text summarization, including BART [16] (Bidirec-
tional and Auto-Regressive Transformers), PEGA-
SUS [38] (Pre-training with Extracted Gap-sentenc-
es for Abstractive Summarization), and ProphetNet 
[11], all use Transformer-based architectures. There-
fore, this paper adopts BERT as the document encod-
er to learn sentence context representation and ob-
tain local information.

2.2. Topic Model
Topic modeling is a strong method to learn docu-
ment-level characteristics, which can explore the 
hidden semantic structure of text [33]. However, it 
has not been applied to the field of text summariza-
tion until recent years. A core idea of topic models is 
that documents are mixtures of topics, each distrib-
uted over words in the corpus vocabulary. In order to 
obtain all distributions, the traditional approach is to 
utilize the LDA algorithm. Recent studies have intro-
duced neural networks, and topic models have been 
improved by general auto-encoders or neural VAEs 
(Variational Auto-encoders), which have also derived 
variants such as NVDM, GSM [21] (Gaussian Softmax 
Distribution), and NTM. The researchers conducted 

many experiments to explore the effect of topic mod-
eling. Ailem et al. [1] build a topic-augmented decoder 
which can generate summaries based on input docu-
ments and document latent topics. Narayan et al. [25] 
suggested a topic-conditioned sequence-to-sequence 
model which is using CNN (Convolutional Neural 
Networks) framework. Wang et al. [32] introduced 
topic helpers for Transformer-based summarization 
models, along with topic data explored by a separate 
topic component.
The various experiments above show that the use of top-
ic models to capture global semantics is very effective, 
and topic models can also be used as components alone 
to provide additional information [42]. Topic-features 
have been applied to the language generation process to 
guide text generation with specified topics

2.3. Graph-based Summarization

In earlier studies, there are mainly two algorithms, 
TextRank [23] and LexRank [9], which build docu-
ment graphs based on sentence similarity and extract 
summaries without supervision. Thereafter, Wei et 
al. [34] suggested constructing a document graph 
that contains words, topics, and sentences, and utilize 
Markov chains to learn the graph and generate sum-
maries. Recently, GNN networks have attracted much 
research in text summarization tasks [11, 36, 37]. And 
these text summarization models which are under the 
GNN framework only constructed document graphs 
based on words or sentences. On the contrary, we in-
troduce sentence nodes and topic information nodes 
to construct document graph at the same time, which 
can not only solve the joint updating of sentence con-
text representation and topic information but also 
reduce the problem of semantic fragmentation. In 
addition, since the traditional GAT is designed for ho-
mogeneous graphs and is not suitable for this model, it 
is necessary to modify the traditional GAT to design a 
new heterogeneous document graph.

2. Model
This section will describe our model structure, accord-
ing to Figure 1. The GTASum model contains three 
parts: First, Document encoder. Second, Neural topic 
models. Third, Graph Attention Layer. Given a doc-
ument containing N sentences },...,,{ 21 NsssD = , 
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supervised learning methods can be run on 
large-scale corpora to learn better feature 
representations for each vocabulary. It uses 
Transformer as the main framework, 
combined with the Attention mechanism, to 
better capture the bidirectional relationship in 
the sentence and solve the long dependency 
problem, so this paper chooses to obtain the 
feature representation of the document based 
on BERT. For every sentence, we insert <CLS> 
at the start and <SEP> at the end, after that in 
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tokens will be put into the BERT layer. By the 
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<SEP>, respectively. After BERT encoding, we 
treat the hidden states of <CLS> Hs={h10,...,hn0} 
as contextual representations of 
corresponding sentences, and they will be 
further enriched by topic information in later 
steps. 

3.2 Neural Topic Model 

Our topic information learning is based on 
the extraction of latent topic information via a 
NTM. NTM is implemented based on VAE  
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ate abstract summaries from documents D and refer-
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3.1. Document Encoder
The purpose of the document encoder is to get a sen-
tence contextual representation. Based on powerful 
pre-trained language models, self-supervised learn-
ing methods can be run on large-scale corpora to learn 
better feature representations for each vocabulary. It 
uses Transformer as the main framework, combined 
with the Attention mechanism, to better capture the 

bidirectional relationship in the sentence and solve 
the long dependency problem, so this paper chooses 
to obtain the feature representation of the document 
based on BERT. For every sentence, we insert <CLS> 
at the start and <SEP> at the end, after that in order to 
get the hidden representations, all tokens will be put 
into the BERT layer. By the following formula:
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where wij represents the j-th word of the i-th sentence; 
wi0 and wi* represent <CLS> and <SEP>, respectively. 
After BERT encoding, we treat the hidden states of 
<CLS> Hs={h10,...,hn0} as contextual representations 
of corresponding sentences, and they will be further 
enriched by topic information in later steps.

3.2. Neural Topic Model
Our topic information learning is based on the ex-
traction of latent topic information via a NTM. 
NTM is implemented based on VAE [14] frame-
work. It learns document latent topics through a se-
quence-to-sequence encoder. As shown in Figure 2, it 
is a representation of the NTM model. The model is 
given an input document and obtains a bag of words, 
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where V is the number of words xbox. The NTM is de-
fined as follows:
 _ In the encoder: Given an input bag of words x, μ = 

fμ(x) and logσ=fσ(x) are generated, where the μ and 
the σ are learnable prior parameter. Both functions 
fμ and fσ are linear transformation functions with 
ReLU activations.

 _ In the decoder: There are three main steps in the 
decoding step. First, Gaussian Softmax [21] is 
adopted to describe the topic distribution z~N(μ,σ) 
and θ=softmax(z), where z is the latent topic 
variable, θ∈RK is the result of z normalization, and 
its dimension is the predefined topic number K. 
Second, by learning pw=softmax(Wφθ) to predict 
the occurrence probability of words pw∈RV, where 
Wφ∈RV×K is the topic-word distribution matrix 
similar to the LDA topic model. Third, extract each 
word from p to reconstruct the input word bag xbox.

In this model, the intermediate parameters Wφ is 
used, and they are all encoded into topic information. 
So we can further construct topic representations by 
them, as shown below:

},...,{)( 1 K
T

T ttWfH == φφ , (2)

where HT∈RK×dt is a set of subject representations 
with a predefined dimension of dt.
The GAT will put to use HT to enhance the represen-
tations of all sentences. Unlike others [40], GTASum 
does not take topic information as a fixed feature of an 
external model, but learns it through neural learning 
methods and will be dynamically revised through the 
entire framework network.

3.3. Graph Attention Layer
First, a graph needs to be constructed. The definition 
of the graph is given as follows: Give G={V,E} indi-
cate an undirected graph, where V=VS∪VT is the set of 
nodes. VS={S1,S2,...,SN} represents N sentence nodes, 
VT={T1,T2,...,TK} represents K topic nodes. E is the set 
of edges, and E={e11,...,eNK} represents the weight of the 
edge between the i-th sentence node and the j-th topic 
node.
We initialize sentence node and topic node vectors 
with hidden representations learned from BERT HS 
and topic representations learned from NTM HT. The 
final representation of each node is then obtained 
through a graph attention network (GAT). GAT first 

performs self-attention processing, learns the atten-
tion value between nodes, and normalizes it: 
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where Si represents the i-th sentence node, Tj 
represents the j-th topic node, Wb is a learnable 
parameter, Ni represents a neighbor node, || is a 
vector splicing operation, a is a feed-forward 
neural network, can map the splicing vector to a 
real number, and LeakyRELU() is an activation 
function. However, considering the use of two 
semantic units, sentence and topic, we need to 
modify the ordinary GAT graph, Hu et al. [18] 
inspired us to consider mapping topics and 
sentences into an implicit common space, and then 
compute the attention value. So modify 
Equation(3) to Equation(5): 
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among them, the parameters Wb are removed, and 
a nonlinear transformation function fS and fT are 
used to project topic nodes and sentence nodes 
into the common space vector. 

After the attention value αij is obtained, the 
neighbor nodes hi

` can be weighted and summed 
to obtain the new node feature representation that 
the context of the article is the contextual 
knowledge representation: 
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where Ni represents the neighbor node, Wc is 
a learnable parameter, Tj represents the j-th 
topic node, Si` is the i-th sentence node 
weighted by the topic node, and σ() is a 
sigmoid function. 

Finally, a sentence feature representation 
with topic information is generated and 
output to the decoder: 
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When using GAT, it is not necessary to pay 
attention and calculate on all nodes, instead, 
pay attention to the neighbor nodes. That is, 
assigning weights of different values to the 
neighbor nodes of each node, the attention 
mechanism can be used to focus on the nodes 
that are more closely related to the text while 
ignoring the nodes that are less related to the 
text. The calculation process can better grasp 
the global information and knowledge of the 
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where Si represents the i-th sentence node, Tj 
represents the j-th topic node, Wb is a learnable 
parameter, Ni represents a neighbor node, || is a 
vector splicing operation, a is a feed-forward 
neural network, can map the splicing vector to a 
real number, and LeakyRELU() is an activation 
function. However, considering the use of two 
semantic units, sentence and topic, we need to 
modify the ordinary GAT graph, Hu et al. [18] 
inspired us to consider mapping topics and 
sentences into an implicit common space, and then 
compute the attention value. So modify 
Equation(3) to Equation(5): 
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and calculate on all nodes, instead, pay attention to 
the neighbor nodes. That is, assigning weights of 
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different values to the neighbor nodes of each node, 
the attention mechanism can be used to focus on the 
nodes that are more closely related to the text while 
ignoring the nodes that are less related to the text. The 
calculation process can better grasp the global infor-
mation and knowledge of the text without losing local 
information, and the calculated attention is used to 
represent the global information.

3.4. Enhanced Learning
The decoder of the framework adopts the Transform-
er framework. The Transformer-based decoder itself 
has its own encoding-decoding attention layer, which 
can effectively gather key information and capture 
the information that needs to be mined for text gen-
eration. In each decoding step, the components of a 
sequence are output according to the input sequence, 
and the generation is repeated until a termination 
symbol is encountered. Each time step is doing in-
put for the next time step, and then outputs the final 
result through the decoder side. This paper stacks a 
6-layer Transformer, each with a multi-head atten-
tion layer and a feed-forward layer. The final output of 
the encoder h` is the contextual embedding with top-
ic information, which can be input into the decoder. 
Finally, we will jointly train the NTM and decoder to 
reduce the loss.
For NTM, we define the objective function as the neg-
ative evidence lower bound, as follows:
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where x is the text, y is the reference summary, D is 
the training set, and θ is the model parameter. 

The final model loss function is a linear 
combination of the above two losses and 
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standard abstract and Countmatch(ref, pred) is the 
number of words that appear in both the manual 
standard abstract and the automatically generated 
abstract. They can be calculated by the Pyrouge 
package 
4.3 Experimental Settings 

GTASum is trained end-to-end, using a base 
version of the BERT model to extract lexical 
features for all experiments. By preprocessing 
the corpus articles, the input articles are 
truncated into 512 words. The decoder uses a 
6-layer Transformer. This paper uses Adam 
[13] as the optimizer with a learning rate of 
2e-4. And set the epoch to 30 and the batch 
size to 8. For NTM, we select the most 
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attention layer, which can effectively gather key 
information and capture the information that 
needs to be mined for text generation. In each 
decoding step, the components of a sequence are 
output according to the input sequence, and the 
generation is repeated until a termination symbol 
is encountered. Each time step is doing input for 
the next time step, and then outputs the final result 
through the decoder side. This paper stacks a 6-
layer Transformer, each with a multi-head 
attention layer and a feed-forward layer. The final 
output of the encoder h` is the contextual 
embedding with topic information, which can be 
input into the decoder. Finally, we will jointly train 
the NTM and decoder to reduce the loss. 

For NTM, we define the objective function as the 
negative evidence lower bound, as follows: 

)]|([))|(||)(( )|( zxpExzqzpDL xzqKLNTM −= ,  (8) 

where the first term represents the Kullback-
Leibler divergence loss, and the second term 
represents the reconstruction loss. q(z|x) and p(x|z) 
indicate the encoder and decoder network. 

For the decoder, during training, the maximum 
likelihood function objective is used to minimize, 
as follows: 

∑
∈

−=
Dxy

Trans xyp
D

L
,

);|(log1 θ ,               (9) 

where x is the text, y is the reference summary, D is 
the training set, and θ is the model parameter. 

The final model loss function is a linear 
combination of the above two losses and 
hyperparameters to balance their weights: 

,Trans NTML L Lλ= +                      (10) 

where λ∈[0,1]. 

 

4. Experimental setup 
4.1 Datasets 

To better train the model, this paper evaluates 
GTASum on two standard datasets: 
CNN/DailyMail [12] and XSum [25]. Both datasets 

are public, commonly used text 
summarization datasets. Both of them have 
been widely used in automatic text 
summarization tasks in the past two years. 
The data set is pre-divided into a training set 
Train, a validation set Valid and a test set 
Test. The data volume of the two is shown in 
the Table 1. 

Table 1 

Datasets structure 
Datasets Train Valid Test 

CNN/DM 287188 13367 11490 

XSum 204045 11332 11334 

 

4.2 Evaluation Index 

This paper adopts ROUGE-1 to measure the 
unigram recall between abstracts and 
documents, ROUGE-2 to measure similar 
bigram recalls, and ROUGE-L to measure the 
longest common sub-sequence between 
abstracts and documents. These three 
indicators are automatic evaluations. ROUGE 
compares auto-generated summaries and 
hand-crafted standard summaries by 
counting the overlapping vocabulary 
between the two. The larger the ROUGE 
value, the better the generation effect. This 
approach has become a metric for evaluating 
the generated summary model. The 
calculation method is as follows: 

)(
),(

refCount
predrefCountNROUGE match=−

,   (11) 

where Count(ref) is the length of the manual 
standard abstract and Countmatch(ref, pred) is the 
number of words that appear in both the manual 
standard abstract and the automatically generated 
abstract. They can be calculated by the Pyrouge 
package 
4.3 Experimental Settings 

GTASum is trained end-to-end, using a base 
version of the BERT model to extract lexical 
features for all experiments. By preprocessing 
the corpus articles, the input articles are 
truncated into 512 words. The decoder uses a 
6-layer Transformer. This paper uses Adam 
[13] as the optimizer with a learning rate of 
2e-4. And set the epoch to 30 and the batch 
size to 8. For NTM, we select the most 
frequent 2000 words as the topic vocabulary, 

, (11)

where Count(ref) is the length of the manual stan-
dard abstract and Countmatch(ref, pred) is the number 
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of words that appear in both the manual standard ab-
stract and the automatically generated abstract. They 
can be calculated by the Pyrouge package

4.3. Experimental Settings
GTASum is trained end-to-end, using a base version 
of the BERT model to extract lexical features for all 
experiments. By preprocessing the corpus articles, 
the input articles are truncated into 512 words. The 
decoder uses a 6-layer Transformer. This paper uses 
Adam [13] as the optimizer with a learning rate of 
2e-4. And set the epoch to 30 and the batch size to 8. 
For NTM, we select the most frequent 2000 words as 
the topic vocabulary, which comes from the training 
set, and then set the number of topics as K=128. Set 
λ=0.75 to equipoise the loss of information selection 
and topic modeling. In GAT, take GAT Layer=2, set 
the number of topic node attention heads to 4, set the 
number of sentence node attention heads to 6, and set 
the hidden size to 128. In each abstract, replace all en-
tities in the relevant reference chain in the abstract 
with the canonical entity used in the diagram.
For all input and output content, words that ap-
pear less than 3 times are replaced by <UNK>. The 
post-processing step removes duplicate sentences 
and duplicate compound sentences. During training, 
if the model performance drops, halve the learning 
rate and use the halved learning rate for fine-tuning.

4.4. Overall Performance
This section evaluates the proposed model, testing 
the accuracy and consistency of the proposed GTA-
Sum model on the task of generating abstract sum-
mary sentences. To better compare the models, we 
compared GTASum with the following powerful sum-
marization models, both extractive and abstract:
1 Lead-3 [27]: is a rules-based approach. Take 3 sen-

tences from the article as its summarization.
2 SummaRuNNer [24]: is an abstract model sum-

mary based on two-layer bidirectional GRU-RNN 
(Gated Recurrent Unit and Recurrent Neural Net-
work). It defines the summarization problem as 
a sequence classification problem, and for each 
sentence, a binary classifier is learned to decide 
whether to include it or not.

3 BERTSUM [19]: is the first extractive summariza-
tion model which under BERT-based. Insert mul-
tiple segmentation tokens in the document to get a 
representation of all sentence.

4 PGN+Cov [27]: flexibly copy words from the source 
text through pointers, so as to automatically choose 
to generate new words or copy words according to 
the probability, not only retaining the original text 
information but also consolidating the model gener-
ation ability. In addition, the replication mechanism 
ensures that duplicate words are not generated.

5 BART [16]: uses a bidirectional encoder to enrich 
sequence understanding, then use a left-to-right 
decoder to make a summary.

Tables 2-3 shows the automatic evaluation results of 
the proposed model GTASum and comparative mod-
els on the CNN/DailyMail datasets and the XSum 
datasets, and Table.3 shows examples of the generat-
ed summaries.
 _ Result on CNN/DailyMail: The Table.2 shows 

the evaluation results on the CNN/DailyMail 
datasets. We compare GTASum with kinds of strong 
baseline models, including strong abstraction. 
GTASum achieves better performance in most 
cases and achieves the best scores on ROUGE-1 and 
ROUGE-2, proving that global semantic information 
plays a guiding role in model generation. The rule-
based Lead-3 and the extractive model BERTSUM 
perform better on the CNN/DailyMail dataset 
which is biased towards extractive summarization. 
BART has the best performance on ROUGE-L, 
which shows its language representation ability 
based on a powerful pre-trained corpus. However, 
on ROUGE-1 and ROUGE-2, GTASum improves 
by 1.1% and 0.2%, respectively. The excellent 
performance of GTASum underlines the importance 
of introducing topic model components and graph 
attention network components to improve the 
generation effect.

Table 2
Results on CNN/DailyMail

Models Rouge1 Rouge2 RougeL

Lead-3 40.29 17.68 36.47

SummaRuNNer 39.60 16.20 35.30

BERTSUM 42.13 19.60 39.18

PGN+Cov 39.53 17.28 36.38

BART 44.16 21.28 40.90

GTASum(our’s) 44.46 21.32 39.84
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 _ Result on XSum: The Table.3 shows the 
evaluation results on the XSum dataset. The result 
of the XSum datasets retains just a short text, and 
the models need to condense the information and 
generate sentences containing key information, so 
the dataset is more inclined to generate segmented 
text summaries. BART absorbs the specific 
characteristics of BERT’s bidirectional encoder 
and GPT’s left-to-right decoder and is based on 
the standard sequence-to-sequence Transformer 
model, which makes it more appropriate for text 
generation tasks. While BART has made progress 
on generation tasks, it has also achieved state-of-
the-art on some text understanding tasks. The 
performance of GTASum on XSum is better than 
that of the extraction model, and it has achieved 
results comparable to BART, which also shows 
that the topic model has played a certain role in 
understanding and generating text.

Figure 2 shows examples of our model.

4.5. Ablation Study
This section discusses the impact of each part of the 
GTASum model on the final performance. As shown 
in Table.3, to evaluate the effectiveness of the GTA-
Sum module, we compared the full GTASum mod-
el with two ablation variants. First, without NTM, 
remove the NTM module. We can build a document 
graph that contains fully connected sentence nodes. It 
is also will be considered as computing self-attention 

Table 3
Result on XSum

Models Rouge1 Rouge2 RougeL

Lead-3 16.30 1.60 11.90

SummaRuNNer - - -

BERTSUM 38.79 16.40 31.16

PGN+Cov 28.10 8.02 21.22

BART 45.4 22.27 37.25

GTASum(our’s) 44.60 21.53 36.66

Figure 2
Examples of our model

Figure 3
Ablation study results
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4.5 Ablation Study 

This section discusses the impact of each part of 
the GTASum model on the final performance. As 
shown in Table.3, to evaluate the effectiveness of 
the GTASum module, we compared the full 
GTASum model with two ablation variants. First, 
without NTM, remove the NTM module. We can 
build a document graph that contains fully 
connected sentence nodes. It is also will be 
considered as computing self-attention on the top 
of BERT. Second, without GAT, remove the GAT 
module. Then splice the overall topic vector and 
each sentence representation, and send them into 
the decoder. 

As shown in Figure 3, the results of ablation 
studies on 2 datasets are presented, from that, the 
following conclusions will be observed: the full 
GTASum model gets the best outperforms, it 
shows that all module is needful and combine 
them for the best performance. 
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4.6 Influence of potential topics 

This section we desire to comprehend how 
underlying topics can guide the process of 
making a summary. For this reason, we set 
forth the local weight of a sentence as the 
weighted sum of the attention scores between 
the sentence and every topic, namely: 

∑
=

=−
K

j
ij

j
iWeightTopic

1
,αθ

           (12) 

where Topic-Weighti is the weighted topic weight 
of the i-th sentence; θj is the weight of the j-th 

topic in the document, which is the normalized 
document topic distribution learned by NTM in 

on the top of BERT. Second, without GAT, remove the 
GAT module. Then splice the overall topic vector and 
each sentence representation, and send them into the 
decoder.
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As shown in Figure 3, the results of ablation studies 
on 2 datasets are presented, from that, the following 
conclusions will be observed: the full GTASum model 
gets the best outperforms, it shows that all module is 
needful and combine them for the best performance.

4.6. Influence of Potential Topics
This section we desire to comprehend how underly-
ing topics can guide the process of making a summa-
ry. For this reason, we set forth the local weight of a 
sentence as the weighted sum of the attention scores 
between the sentence and every topic, namely:

  

generating text. 

Table 3 

Result on XSum 
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the GTASum module, we compared the full 
GTASum model with two ablation variants. First, 
without NTM, remove the NTM module. We can 
build a document graph that contains fully 
connected sentence nodes. It is also will be 
considered as computing self-attention on the top 
of BERT. Second, without GAT, remove the GAT 
module. Then splice the overall topic vector and 
each sentence representation, and send them into 
the decoder. 

As shown in Figure 3, the results of ablation 
studies on 2 datasets are presented, from that, the 
following conclusions will be observed: the full 
GTASum model gets the best outperforms, it 
shows that all module is needful and combine 

them for the best performance. 
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4.6 Influence of Potential Topics 

This section we desire to comprehend how 
underlying topics can guide the process of 
making a summary. For this reason, we set 
forth the local weight of a sentence as the 
weighted sum of the attention scores between 
the sentence and every topic, namely: 

∑
=

=−
K

j
ij

j
iWeightTopic

1
,αθ ,

           (12) 

where Topic-Weighti is the weighted topic weight 
of the i-th sentence; θj is the weight of the j-th 

topic in the document, which is the normalized 
document topic distribution learned by NTM in 
Section 3.2; αij is from the j-th topic node to the i-

th sentence Attention scores of nodes, learned 

Models Rouge1 Rouge2 RougeL 
Lead-3 16.30 1.60 11.90 
SummaRuNNer - - - 
BERTSUM 38.79 16.40 31.16 
PGN+Cov  28.10 8.02 21.22 
BART 45.4 22.27 37.25 
GTASum(our’s) 44.60 21.53 36.66 

(12)

where Topic-Weighti is the weighted topic weight of 
the i-th sentence; θj is the weight of the j-th topic in 
the document, which is the normalized document 
topic distribution learned by NTM in Section 3.2; αij is 
from the j-th topic node to the i-th sentence Attention 
scores of nodes, learned from Equation (4).

5. Conclusion and Future Work
In this study, we integrate the global semantic struc-
ture of the text by proposing a novel graph-based top-
ic-aware abstract text summarization model GTA-
Sum and investigate the abstract text summarization 
problem. In particular, neural topic models, BERT, 
and graph neural networks are combined for sum-
marization. Extensive experiments are conducted on 
two real-world datasets to compare GTASum with 
several methods. It turns out that GTASum outper-
forms the vast majority of classical models, with per-
formance approaching industry-leading methods. In 
future work, we will continue to explore incorporat-
ing more types of high-level semantic units into the 
model to improve the performance and robustness of 
the model.
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