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Abstract. Image and video compression exploits the redundancy of data to create a smaller representation. Lossy 
compression can be considered to be a type of transform coding where the raw data is transformed to a domain. Such a 
transform coding stores most of image energy into very few coefficients. In this paper we propose a compression 
algorithm based on Set Partitioning In Hierarchical Trees (SPIHT) that exploits the Human Visual System (HVS) and 
its fovea. In order to increase the image quality of the reconstructed image, regions of interest (ROI) are defined around 
a given point of gaze. The use of a fovea combined with ROI for image compression can help to improve the quality of 
the perception of the image and preserve different levels of detail around the ROI. In the proposed approach, the image 
is compressed using the Lifting Wavelet Transform and then quantized at multiple compression ratios around the point 
of fixation of an observer, taking advantage of the natural aliasing of the HVS around the fovea. Such a compression 
delivers better image or frame reconstruction when a fixation point of an observer is given. 

Keywords: Compression techniques; wavelet transforms; regions-of-interest; fovea; hierarchical trees. 

 

1. Introduction 
Compression is nowadays widely used for 

reducing the size of the data files in audio, image and 
video [20]. A variety of powerful and sophisticated 
wavelet-based image compression schemes have 
recently been developed. Such schemes are often lossy 
compression algorithms; however, lossy compression 
introduces distortions due to which useful information 
contained in images can be inevitably lost [16], [11]. 
Distortions introduced by lossy compression could 
lead into loss of sensitive data when used in areas such 
as medical imaging and remote sensing. On the other 
hand, compression algorithms based on regions with 
different compression ratios can alleviate such loss by 
preserving the details over a particular object or area. 
Given a ratio compression 𝑛, such algorithms isolate 
one or several regions of interest (ROI) from the 
background. Then, the background is compressed at 
higher ratios than 𝑛 while all ROIs are compressed at 
lower ratios than n. Overall, the image will be 
compressed at a ratio of n, but the quality of the ROIs 
will be higher than the background when the image is 

reconstructed. Standards like MPEG4 and JPEG2000 
define an operation mode using ROIs. 

Current research has been focused on 
incorporating the human perception into the coding 
systems to increase the quality of the coding 
algorithms [5]. The objective of perceptual coding is 
to achieve maximum visual quality of the decoded 
visual data by taking advantage of the human visual 
system (HVS) characteristics. While the HVS is 
characterized by a large field of view, one of its 
characteristics is that the amount of details that the 
HVS can perceive declines rapidly from the point of 
gaze [18]. Such an effect is known as fovea. Due to 
this decreasing of perception, images can be coded 
including less details in areas that are farther from the 
point of gaze. Image and video compression 
algorithms can be fed with the data of the point of 
gaze in order to achieve a better quality when the 
visual data are reconstructed. This is known as fovea 
compression. 

Proposals for wavelet-based fovea compression are 
presented in [3], [15], [6] and [24]. The idea of these 
approaches is to modify the continuous wavelet 
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(a) Foveated Wavelet Transform using CWT  (b) Quantized Wavelet Coefficients using DWT 

Figure 1. Different foveation methods using wavelets 

transform that decimate the coefficients using a weight 
function. Another approach using fovea points over a 
wavelet is discussed in [8]. Instead of using a fovea 
operator over the Continuous Wavelet Transform, a 
quantization operator 𝑞(𝑥)  is applied to each 
coefficient of the discrete wavelet transform (DWT). 
Such a quantization operator is defined by a weight 
window. Figure 1 depicts the results from both 
approaches applied to the image Lenna. Figure 1a 
shows the results of the foveated continuous wavelet 
transform applied to the image. Figure 1b shows the 
results of foveation by applying a quantized operator 
applied to the coefficients of the DWT of the image. It 
can be seen that the CWT-based fovea approach 
shows an anti-aliasing behavior in the image 
(especially in the upper right corner) than the DWT-
based fovea algorithm making the image details more 
diffused overall. 

Recent research has also been focused on detection 
of human eye point of gaze through either hardware 
such as in [17], [4], [21] or using collaborative 
computation as in [18]. Because this research solves 
one of the main problems of fovea compression, 
investigating new algorithms for fovea compression 
becomes relevant. 

The Set Partitioning In Hierarchical Tree (SPIHT) 
algorithm does not allow to define ROIs. In [7], [14] 
and [13], different proposals for ROI compression 
with SPIHT are presented. In this work, we propose to 
exploit the visual sensitivity reduction caused by 
increasing a pixel distance from the fixation point as a 
ROI isolation criteria. This approach takes advantage 
of the particular area of the structure of the human 
retina called fovea. The use of the fovea can 
potentially increase the quality of the perception of the 
reconstructed image while maintaining a high data 
quality over the ROI and isolating data loss outside of 
a given area around a fixation point. The proposed 
approach is based on the use of the Lifting Wavelet 

Transform (LWT) and the SPIHT algorithm applied as 
a multi-resolution compression method creating 
foveas over different areas of the image. The LWT has 
the advantage over the DWT and the CWT of being 
computationally less complex and yields into a 
sharper reconstructed images that the ones coded with 
the CWT. The remainder of this paper is organized as 
follows. In Section II an overview of the SPIHT 
algorithm is given. In Section III an overview of fovea 
based compression is reported. Section IV presents the 
proposed approach, Section V presents results and 
Section VI reports conclusions and future work. 

2. The SPIHT algorithm 
The algorithm called Set Partitioning In 

Hierarchical Trees (SPIHT) is a compression scheme 
based on wavelets proposed in [19]. It has important 
properties such as high compression ratios and 
progressive transmission. The SPIHT is based on bit-
plane encoding and takes advantage of the statistical 
behavior of the wavelet coefficients. When one level 
wavelet decomposition is applied to an image, four 
bands are obtained: an LL band or approximation 
coefficients band, and three detail coefficients bands 
called HL, HH, LH. Higher levels of decomposition 
over the LL sub-band applied recursively yield into 
more detail coefficients 𝐻𝐿𝑙 , 𝐿𝐻𝑙  and 𝐻𝐻𝑙  where 𝑙  is 
the level of decomposition to which the sub-band 
belongs. 

Let 𝐶(·) be a set of wavelet coefficients from a 
wavelet decomposition of the image 𝐼  with 𝐼𝑅  rows 
and 𝐼𝐶  columns and let 𝐾 ∈  𝑁  be the number of 
decomposition levels. There is a relation [25] between 
a coefficient 𝐶(𝑖, 𝑗)  with 𝐶(𝑖, 𝑗)  ∈  𝐻𝐿𝑙 ∪ 𝐿𝐻𝑙 ∪ 𝐻𝐻𝑙  
and 1 <  𝑙 ≤  𝐾  and the set of coefficients 𝑂(𝑖, 𝑗) 
known as offspring defined by The coefficient 𝐶(𝑖, 𝑗) 
is called parent of 𝒪(𝑖, 𝑗) . Applying such property

 

𝒪(𝑖, 𝑗) = {(2𝑖, 2𝑗), (2𝑖, 2𝑗 + 1), (2𝑖 + 1, 2𝑗), (2𝑖 + 1, 2𝑗 + 1)}. (1)
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recursively from the highest band with 𝐾  levels of 
decomposition to 𝐾 − 1  yields into a set 𝐷(𝑖, 𝑗) 

known as quadtree with the root 𝐶(𝑖, 𝑗) . 𝒟(𝑖, 𝑗)  is 
defined as 

 

𝒟(𝑖, 𝑗)  = �𝒪(𝑖, 𝑗) ∪ 𝒟(𝑘,𝑚) where (𝑘,𝑚) ∈ 𝒪(𝑖, 𝑗)
𝒪(𝑖, 𝑗)

𝑖𝑖 0 ≤  2 ∗  𝑖 ≤  𝐼𝑅  and 0 ≤  2 ∗  𝑗 ≤  𝐼𝐶
otherwise

 (2) 

 

where 𝐶(𝑖, 𝑗) ∈ 𝐻𝐿𝑙 ∪ 𝐿𝐻𝑙 ∪ 𝐻𝐻𝑙 and (𝑘,𝑚) ∈ 𝒪(𝑖, 𝑗). 
Lastly, a set 𝐿(𝑖, 𝑗) , called grand-descendant, is 
defined by 

ℒ(𝑖, 𝑗) = 𝒟(𝑖, 𝑗) \ 𝒪(𝑖, 𝑗). (3) 
Given a threshold 𝑇  if all coefficients from a 

quadtree 𝐷 are lower than 𝑇, such a quadtree is called 
a zerotree [22]. Zerotrees are common in wavelet 
decompositions and SPIHT exploits such property for 
compression. If a quadtree is a zerotree, SPIHT only 
outputs a zero instead of sending bits for each 
coefficient of the zerotree. SPIHT defines three lists: 
list of insignificant pixels (LIP), list of insignificant 
sets (LIS) and list of significant pixels (LSP). LIP 
stores the position of each pixel that are lower than a 
given threshold, LIS stores the position of each root of 
all zerotrees for a given threshold and LSP stores the 
position of all coefficients higher than a given 
threshold. 

The SPIHT algorithm is defined as a five steps 
algorithm: 
1. Initialization. The threshold is initialized as 
𝑇 = 2�log2(max(|𝐶(𝑖,𝑗)|))�  with 𝐶(𝑖, 𝑗) ∈ 𝐿𝐿 ∪ 𝐻𝐿𝑙 ∪
𝐿𝐻𝑙 ∪ 𝐻𝐻𝑙  and 1 ≤  𝑙 ≤  𝐾 . All pair (𝑖, 𝑗)  where 
𝐶(𝑖, 𝑗) ∈ 𝐿𝐿 ∪ 𝐻𝐿𝐾 ∪ 𝐿𝐻𝐾 ∪ 𝐻𝐻𝐾  is inserted into 
𝐿𝐼𝐿 and all pair (𝑖, 𝑗) where 𝐶(𝑖, 𝑗) ∈ 𝐻𝐿𝐾 ∪ 𝐿𝐻𝐾 ∪
𝐻𝐻𝐾 is inserted into 𝐿𝐼𝐿. 

2. Significance pass. Check all elements 𝐶(𝑖, 𝑗) with 
(𝑖, 𝑗) ∈ 𝐿𝐼𝐿. If the absolute value of the coefficient 
|𝐶(𝑖, 𝑗)| is higher than a threshold 𝑇, the algorithm 
outputs a 1 followed by the sign of 𝐶(𝑖, 𝑗). Then, 
(𝑖, 𝑗) is deleted from LIS and stored into LSP. Also, 
a matrix of thresholds 𝑊𝑄   is updated with 
𝑊𝑄(𝑖, 𝑗) = 𝑇 . Then, all the coefficients from the 
quadtrees that the position of its root (𝑖, 𝑗) is inside 
LIS are compared against the threshold 𝑇 in order 
to determine which quadtree is a zerotree. If a 
quadtree is not a zerotree when at least one of the 
coefficients |𝐶(𝑖′, 𝑗′)| that belongs to that quadtree 
is higher than the threshold 𝑇 . If that coefficient 
𝐶(𝑖′, 𝑗′) belongs to the set 𝐻𝐿𝛿 ∪ 𝐿𝐻𝛿 ∪ 𝐻𝐻𝛿  with 
1 ≤  𝛿 ≤  𝐾  each coefficient 𝐶(𝑘,𝑚) ∈ 𝐻𝐿𝜙 ∪
𝐿𝐻𝜙 ∪ 𝐻𝐻𝜙  with 1 ≤  𝜙 <  𝛿 is classified and its 
position inserted into LIS. After that, all 
coefficients are checked again. If a coefficient 
|𝐶(𝑘,𝑚)|  is lower than 𝑇  a 0  is output by the 
significance pass. If |𝐶(𝑘,𝑚)|  is higher than the 
threshold 𝑇 the significance pass outputs a 1 and its 
sign, the matrix of thresholds 𝑊𝑄  is updated with 
𝑊𝑄(𝑘,𝑚) = 𝑇 and inserted into 𝐿𝐿𝐿. All positions 
(𝑘,𝑚)  where 𝐶(𝑘,𝑚)  ∈  𝐻𝐿𝛿 ∪ 𝐿𝐻𝛿 ∪ 𝐻𝐻𝛿  are 
also stored inside LIS if 𝐶(𝑘,𝑚)  <  𝑇. 

3. Refinement pass. Each coefficient 𝐶(𝑖, 𝑗)  with 
(𝑖, 𝑗) ∈ 𝐿𝐿𝐿  is evaluated. If |𝐶(𝑖, 𝑗)| ∈
[𝑊𝑄(𝑖, 𝑗),𝑊𝑄(𝑖, 𝑗) + 𝑇)  then the refinement pass 
outputs a 0 . Else if |𝐶(𝑖, 𝑗)|  ∈  [𝑊𝑄(𝑖, 𝑗) +
𝑇,𝑊𝑄(𝑖, 𝑗) + 2𝑇) then the refinement pass outputs a 
1 and updates 𝑊𝑄(𝑖, 𝑗) as 𝑊𝑄(𝑖, 𝑗) = 𝑇. 

4. The threshold is updated as 𝑇 = 𝑇/2. 
5. Return to 2. 

The algorithm can be stopped either on an 
arbitrary value of 𝑇  or if a bit per pixel (bpp) 
compression ratio is met for the output. 

3. Fovea compression 
Foveated images are images which have a non-

uniform resolution [3]. Silverstein [23] reported how 
the human eye experiments a form of aliasing from the 
fixation point or fovea point to the edges of the image. 
Such aliasing increases in a logarithmic rate on all 
directions. This can be seen as concentric cutoff 
frequencies from the fixation point. Foveated images 
have been exploited in video and image compression. 
The use of fovea points yields reduced data 
dimensionality, which may be exploited within a 
compression framework. A foveated image can be 
represented by the following expression [6] 

𝐼0(𝑥) = �𝐼(𝑡)𝐶−1(𝑥)𝑠 �
𝑡 −  𝑥
𝑤(𝑥)

� 𝑑𝑡 (4) 

where 𝐶(𝑥)  = �𝑠 � −𝑥
𝑤(𝑥)

��, 𝐼(𝑥) is a given image and 
𝐼0(𝑥) is the foveated image. The function s is called 
the weighted translation of 𝑠 by 𝑥. Several weighted 
translation functions have been proposed [15]. For 
wavelets, foveation can be applied in both the wavelet 
transform [3], and the wavelet coefficients [9], [10]. 
Given a foveation operator 𝑇 with a weight function 
𝑤(𝑥) = 𝛼|𝑥| , and a smooth function 𝑔(𝑥)  with 
support on [−𝛼−1,𝛼−1] , a 2D wavelet transform is 
defined by 

𝜃𝑙,𝑚,𝑢,𝑛 = 〈𝑇𝜓𝑙,𝑚,𝜓𝑢,𝑛〉

= � � 𝜓𝑙,𝑚(𝑡)𝜓𝑢,𝑛(𝑥)
1

|𝑥|𝑔 �
𝑡 − 𝑥
𝛼|𝑥|

� 𝑑𝑡𝑑𝑥 
∞

−∞

∞

−∞
 (5) 

where 𝜃𝑙,𝑚,𝑢,𝑛 can be viewed as the wavelet transform 
of the kernel along with the 𝑡 -axis followed by 
wavelet transform along the 𝑥 -axis, and {𝜙𝑙0,𝑛}0 ≤
𝑛 ≤ 2𝑙0 ∪ {𝜓𝑙,𝑛}𝑙 < 𝑙0, 0 < 𝑛 < 2−𝑗  define an 
orthonormal wavelet basis, 𝜓𝑙,𝑛(·)  and 𝜑𝑙0,𝑛 (·) 
represent scaled and translated versions of the mother 
wavelet 𝜓(·)  and scaling function 𝜑(·)  respectively, 
and the notation < . , . >  defines the scalar product 
between two vectors [3]. 



J. C. Galan-Hernandez, V. Alarcon-Aquino, J. M. Ramirez-Cortes, O. Starostenko 

346 

 
Figure 2. Block diagram of the proposed approach 

 

4. Proposed approach 
Image compression on the frequency domain using 

real valued coefficients is done through coefficient 
quantization. After quantization, all coefficients 
become integer valued for further compression using a 
Variable Length Coding algorithm such Run Length 
Encoding or Arithmetic Encoding. We propose to use 
a variable quantization of each coefficient determined 
by the decomposition band where the coefficient 
belongs to and its distance from a given fixation point. 
Such a quantization exploits the fovea effect of the 
Human Visual System (HVS). The proposed approach 
uses a fovea window centered at a given fixation point 
to determine how to quantize each wavelet coefficient. 
The coefficients are quantized and compressed using a 
modified SPIHT algorithm. The reconstructed image 
will have the highest visual quality near the fixation 
point and it will decrease as the pixels are farther from 
the fixation point. 

Figure 2 shows a block diagram of the proposed 
Fovea Hierarchical Tree (FVHT) algorithm when 
applied to a video stream. Given a video stream with 
frames 𝐹𝑖, the applied blocks are the following: 

• Motion Estimation: The fovea points are estimated 
by using the movement of the objects in the video 
scene. In order to compute the absolute difference 
a fast algorithm for motion estimation is used. This 
block outputs the difference between two 
subsequent video frames 𝐹𝑖 and 𝐹𝑖−1. 

• ROI Estimation: The output from the absolute 
difference block is used as input for ROI 
Estimation block. Each pixel from the motion 
estimation block that is different of 0 will be taken 

as a fovea center. This block outputs an array of 
fovea points as 𝑅𝑂𝐼𝑖 

• LWT: This block applies the Lifting Wavelet 
Transform (LWT) to the input frame and outputs 
the coefficients as  𝐶(·)𝑖. 

• Quantization: The coefficients generated by the 
LWT block 𝐶(·)𝑖  are transformed to integers using 
a fixed quantization for compression 𝐶(·)𝑖

𝑞 
• FVHT: The FVHT block outputs a compressed 

stream of the quantized coefficients 𝐶(·)𝑖
𝑞   using 

the information of the estimated fovea points 𝑅𝑂𝐼𝑖 . 

If FVHT is applied to an image, the fovea points 
𝑅𝑂𝐼𝑖  must be input as a parameter to the FVHT 
instead of using motion estimation. Given a fixation 
point, the window parameters are computed and a 
cutoff window is created. This window will be used by 
the modified SPIHT algorithm in order to evaluate the 
compression ratio of each coefficient. The proposed 
approach takes an image or video frame and calculates 
the fovea cutoff window and the LWT of the image. 
Then, the coefficients are quantized to integers and the 
window is applied to get a compressed stream. In [15], 
when the fovea is applied to an image, the highest 
quality is reached at the pixel located on the fixation 
point. The proposed approach allows to define a ROI 
of variable size around the fixation point that will 
retain the best quality. 

A. Fovea Cutoff Window 
Fovea compression is expressed through a fovea 

cutoff window. Ideal fovea cutoff window is a 
logarithmic function as reported in [2]. However, such 
a function preserves only the center area of the size of 
a pixel of the fovea region. In order to have an 
arbitrary ROI size for the FVHT algorithm, a decaying 
window equation is proposed, 

 

𝑤(𝑛𝑥,𝑦) =

⎩
⎪
⎨

⎪
⎧𝑑 �

−�𝑛𝑥,𝑦�−𝛼
1−𝛼

�
1

𝑑 ��𝑛𝑥,𝑦�−𝛼
1−𝛼

�
0

𝑤ℎ𝑒𝑒𝑒 − 1 ≤ �𝑛𝑥,𝑦� − 𝛼
𝑤ℎ𝑒𝑒𝑒 − 𝛼 ≤ �𝑛𝑥,𝑦�𝛼
𝑤ℎ𝑒𝑒𝑒 𝛼 ≤ �𝑛𝑥,𝑦� ≤ 1

where 𝑛 ≥ 1

 (6) 
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where ||𝑛𝑥,𝑦|| is the ∞-norm from the point (𝑥,𝑦) to 
the fovea center 𝐹 , 𝛼  is the radius of the ROI and 
𝑑(𝑥)  is a decreasing function. 𝑑(𝑥)  can be defined 
according to the needs of the implementation. d(x) 
must satisfy the following conditions: 

1. It is a monotonically decreasing function 
over the interval [0, 1]. 

2. It is continuous over the interval [0, 1]. 
3. when 𝑥 = 0, 𝑑(𝑥) = 1. 
4. when 𝑥 = 1, 𝑑(𝑥) = 0. 

If 𝑑(𝑥) is a logarithmic function, then it gives the 
ideal fovea cutoff. The quality around the ROI is 
related to how fast the function 𝑑(𝑥) decreases. Better 
image quality around the fixation point is obtained 
when 𝑑 decrements its value slowly when 𝑥 is closer 
to 0 . However, regions that are farther from the 
fixation point will have lesser quality because most 
bits will be used to encode the region of interest. A 
useful function for 𝑑 is the power law function used in 
histogram equalization [23]: 

𝑑(𝑥) = 𝑐(1 − 𝑥)𝛾 (7) 

where 𝑐  and 𝛾  are positive constants and 𝑥 ∈ [0, 1] . 
The parameter 1 − 𝑥 was introduced as a modification 
of the original formula in order to satisfy the 
conditions of the proposed window in (6). The 
parameters 𝑐  and 𝛾  can be used to easily define the 
decaying speed of the window. Also, a useful and 
sightly less complex function derived from (7) is the 
ramp function: 

𝑑(𝑥) = 𝑐(1 − 𝑥) (8) 

Figure 3 shows decaying windows calculated with 
the proposed power law function. The decaying 
windows in Figure 3 were calculated using 𝑐 = 1 and 
𝛾 = 2, 𝛾 = 40, 𝛾 = 0.5, 𝛾 = 0.04 as parameters. Note 
that using 𝑐 ≠ 1 will create a window that scales the 
desired compression boundaries. The distance from 
the point (𝑥,𝑦) to the fovea center 𝐹  represented by 

the parameter ||𝑛𝑥,𝑦||  in (6) is calculated using the 
∞-norm normalized to the interval [0, 1] defined by 

||𝑛𝑥,𝑦|| =
𝑚𝑚𝑥 �|𝑥 − 𝑖𝑥| , |𝑦 − 𝑖𝑦|�

𝑁
 (9) 

where (𝑥,𝑦)  is an arbitrary position of a wavelet 
coefficient and (𝑖𝑥, 𝑖𝑦)  is the coordinate pair of the 
fovea centre 𝐹  and 𝑁  is the maximum distance 
between the fovea center 𝐹 and the farthest corner of 
the image. 

Figure 4 shows a comparison of two windows 
generated using the standard Euclidean norm and the 
proposed norm. In Figure 4a, the cutoff window was 
calculated using the ∞-norm for computing the 
distance between a coefficient and a given fixation 
point of (256, 256). In Figure 4b, the euclidean norm 
was used with the same parameters. It can be seen 
how the ∞-norm only adds a few more points around 
the fovea corner but calculating such norm is less 
complex, making it viable for low computer-power 
devices. 

If 𝑣  fovea centers are given 𝐹0,𝐹1, … ,𝐹𝑣  where 
𝑣 ∈ 𝑁, the distance �𝑛𝑥,𝑦� is given by 

�𝑛𝑥,𝑦� = min��𝑛𝑥,𝑦
0 �, �𝑛𝑥,𝑦

1 �, … , �𝑛𝑥,𝑦
𝑣 �� (10) 

where �𝑛𝑥,𝑦
𝑖 � is the distance from (𝑥,𝑦) to the fovea 

center 𝐹𝑖 . The Fovea Hierarchical Tree (FVHT) 
algorithm is a modified version of SPIHT that 
compress using fovea regions. The algorithm is fed 
with the wavelet coefficients, the fovea center 𝐹, the 
decaying function 𝑑(𝑥)  and the lower and upper 
bounds (𝑏, 𝐿] with 𝑏 as the lowest bit rate and 𝐿 as the 
highest bit rate of the compression. The interval (𝑏, 𝐿] 
defines how the compression bit rate will increase as 
the pixels move farther from the fovea centroid. The 
overall compression ratio will be of 𝐿  bpp. The 
previously defined decaying function defined in (6) is 
modified to 

 

 
Figure 3. Decaying window comparison using different parameters for the power law function 
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(a) Fovea Cuttoff Window using the ramp function 

and ∞-norm 
(b) Fovea Cutoff Window using the ramp function 

and euclidean norm 

Figure 4. Different foveation methods using wavelets 

 
Figure 5. Fovea cutoff window for a 512 × 512 pixels image with four levels of decomposition, higher value  

means less compression ratio 

 

𝑤�𝑛𝑥,𝑦� = �

𝐿

𝑑 �
�𝑛𝑥,𝑦

𝑙 � − 𝛼𝑙

1 − 𝛼𝑙
�

𝑏

𝑤ℎ𝑒𝑒𝑒 0 ≤ 𝑛 ≤ 𝛼
𝑤ℎ𝑒𝑒𝑒 𝛼 ≤ 𝑛 ≤ 1
𝑤ℎ𝑒𝑒𝑒 𝑛 ≥ 1.

 (11) 

In order to apply the fovea cutoff window to each 
wavelet sub-band, the fovea center is updated 
accordingly, 

𝑖𝑙 = �
𝑥
2𝑙

,
𝑦
2𝑙
� (12) 

where 𝑙 is the decomposition level to which the sub-
band belongs. From (11), on each pass of the 

algorithm, the distance function of each coefficient 
position for each sub-band with scale 𝑙 is evaluated as 
follows: 

�𝑛𝑥,𝑦
𝑙 � =

2𝑙𝑚𝑚𝑥�|𝑥 − 𝑖𝑥𝑙|,   �𝑦 − 𝑖𝑦𝑙��
𝑁

 (13) 

Also, 𝛼 from (11) is defined for each sub-band as: 

𝛼𝑙 =
𝛼
2𝑙

 (14) 

The cutoff window for each wavelet 
decomposition sub-band is expressed using (11), (13) 
and (14) as follows: 

 

𝑤𝑙�𝑛𝑥,𝑦
𝑙 � = �

𝐿

𝑑 �
�𝑛𝑥,𝑦

𝑙 � − 𝛼𝑙

1 − 𝛼𝑙
�

𝑏

(𝐿 − 𝑏) + 𝑏
𝑤ℎ𝑒𝑒𝑒 0 ≤ 𝑛 ≤ 𝛼
𝑤ℎ𝑒𝑒𝑒 𝛼 ≤ 𝑛 ≤ 1
𝑤ℎ𝑒𝑒𝑒 𝑛 ≥ 1.

 (15) 
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Figure 5 shows a window generated for a wavelet 
decomposition of an image of 512 × 512 pixels with 
four levels of decomposition. It can be seen how the 
window is scaled across all sub-bands. A value of 1 
means that coefficient is compressed with the lowest 
compression ratio given, while a coefficient with a 
window value of 0  is compressed with the highest 
compression ratio given. 

The proposed algorithm determines the 
compression bit rate for each coefficient evaluating 
the decaying window function on each algorithm pass 
at every coefficient coordinates. If the current bit rate 
is lower than 𝑤𝑙(𝑛𝑥,𝑦

𝑙 ), then the coefficient is encoded, 

otherwise it is discarded. Each quadtree is evaluated 
besides the distance of its root to its corresponding 
scaled fovea center to avoid loss of information if an 
element of the quadtree should still be encoded 
besides its root distance. The distance is evaluated on 
each pass in order to not increase the memory usage of 
the algorithm. The resultant image has a bit-rate of 𝐿. 
The distance evaluation should be done in both the 
significance pass and the refinement pass. However, 
on the significance pass, the positions of the 
coefficients are discarded from the 𝐿𝐼𝐿  and in the 
refinement pass they are discarded from the 𝐿𝐿𝐿. The 
list 𝐿𝐼𝐿 remains the same as in the SPIHT algorithm. 

B. FVHT Algorithm 

The proposed FVHT algorithm is described as follows: 
1. Initialization. The threshold is initialized as 𝑇 = 2⌊log2(𝑚𝑎𝑥(|𝐶(𝑖,𝑗)|))⌋ with 𝐶(𝑖, 𝑗) ∈ 𝐿𝐿 ∪ 𝐻𝐿𝑙 ∪ 𝐿𝐻𝑙 ∪ 𝐻𝐻𝑙  

and 1 ≤ 𝑙 ≤ 𝐾. Each (𝑖, 𝑗) with 𝐶(𝑖, 𝑗) ∈ 𝐿𝐿 ∪ 𝐻𝐿𝐾 ∪ 𝐿𝐻𝐾 ∪ 𝐻𝐻𝐾  is inserted into 𝐿𝐼𝐿 and each (𝑖, 𝑗) with 
𝐶(𝑖, 𝑗) ∈ 𝐻𝐿𝐾 ∪ 𝐿𝐻𝐾 ∪ 𝐻𝐻𝐾  is inserted into 𝐿𝐼𝐿 as entry type A. 

2. Significance pass 
2.1. ∀(𝑖, 𝑗) ∈ 𝐿𝐼𝐿 do: 

2.1.1. output 𝐿𝑛(𝑖, 𝑗) 
2.1.2. if 𝐿𝑛(𝑖, 𝑗) = 1 then: 

• 𝐿𝐼𝐿 = 𝐿𝐼𝐿\{(𝑖, 𝑗)} 
• if 𝑤𝑙(𝑛𝑖,𝑗𝑙 ) is greater than the current bpp then: 

⋆ 𝐿𝐿𝐿 = 𝐿𝐿𝐿 ∪ {(𝑖, 𝑗)} 
2.2. ∀(𝑖, 𝑗) ∈ 𝐿𝐼𝐿 do: 

2.2.1. if the entry is of type 𝐴 then: 
2.2.1.1. output 𝐿𝑛(𝒟(𝑖, 𝑗)) 
2.2.1.2. ∀(𝑘,𝑚) ∈ 𝒪(𝑖, 𝑗) do: 

• output 𝐿𝑛(𝑘,𝑚) 
• if 𝐿𝑛(𝑘,𝑚) = 1  and 𝑤𝑙(𝑛𝑘,𝑚

𝑙 )  is greater than the current bpp, then add (𝑘,𝑚)  to the LSP 
andoutput the sign of 𝐶(𝑘,𝑚) 

• if 𝐿𝑛(𝑘,𝑚) = 0, then add (𝑘,𝑚) to the end of the LIP 
2.2.1.3. if ℒ(𝑖, 𝑗) ≠ ∅, then move (𝑖, 𝑗) to the end of the LIS, as an entry of type 𝐵; else, remove 

(𝑖, 𝑗) from the LIS 
2.2.2. if entry is of type 𝐵 then: 

• output 𝐿𝑛(ℒ(𝑖, 𝑗)) 
• if 𝐿𝑛(ℒ(𝑖, 𝑗)) = 1 then: 

⋆ 𝐿𝐼𝐿 = 𝐿𝐼𝐿 ∪ 𝒪(𝑖, 𝑗) where (𝑘, 𝑙) ∈ 𝒪(𝑖, 𝑗) are of type A 
⋆ 𝐿𝐼𝐿 = 𝐿𝐼𝐿\{(𝑖, 𝑗)} 

3. Refinement pass: ∀(𝑖, 𝑗) ∈ 𝐿𝐿𝐿, except for the coefficients included in the last sorting pass (i.e., with the 
same 𝑇), output the 𝑛-th most significant bit of |𝐶(𝑖, 𝑗)| iff 𝑤𝑙(𝑛𝑖,𝑗𝑙 ) is greater than the current bit per pixel 
ratio. Else, remove (𝑖, 𝑗) from the LSP. 

4. Set 𝑇 = 𝑇/2. 
5. Return to 2. 

 
As in SPIHT, the proposed algorithm checks for 

zero trees on each wavelet sub-band from the highest 
to the lowest band. At the beginning of the algorithm, 
all quadtree roots are marked as type A. In each pass, 
the roots are checked for to be significant. When a 
quadtree root is significant, its Type changes to B 
either if it has descendants at two decomposition 
levels from its position, or if not, it is just removed 
from the list. This sorting allows the algorithm to 

guarantee the best quality of the reconstructed image 
[19]. 

5. Simulation results 
The proposed algorithm was implemented on 

python and tested using standard non-compressed 
512 × 512 pixel images. The fovea center used was 
the center pixel (256, 256) with parameters of 𝛼 = 0.3 
and the power law function with parameters 𝑐 = 1 and 
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𝛾 = 1 (the ramp function) for easy identification of 
the fovea center and to spot easily the compression 
artifacts on the tested reconstructed images. The 
wavelet used was the biorthogonal CDF 9/7 with four 
levels of decomposition. This wavelet, chosen for the 
JPEG2000 standard, shows a good PSNR when the 
image is reconstructed [1]. The proposed algorithm 
was tested against the SPIHT algorithm. Figure 6 
shows the reconstructed wavelet decomposition of the 
image cameraman. Figure 6a shows the reconstructed 
wavelet coefficients using standard SPIHT algorithm 
and Figure 6b shows the reconstructed wavelet 
coefficients using the proposed FVHT. In Figure 6b it 
is shown how FVHT gives preference to pixels inside 
the fovea area specially on the last decomposition sub-
band where coefficients from around the center 
enclosed within a dashed circle were recovered. On 
the other hand, the same coefficients were not 
recovered when using the SPIHT algorithm. The 
coefficients preserved by FVHT enclosed inside the 
dashed circle in Figure 6b allow a better 
reconstruction of the fovea area. This is because the 
FVHT algorithm keeps the coefficients near the fovea 
center and discards those farther from the fixation 
point when the data stream is closer to meet the 
compression ratio. Figure 7 shows the reconstructed 
image with both SPIHT and FVHT algorithms. 
Figure 7a shows the reconstructed image with the 
SPIHT algorithm at 1 bit per pixel (bpp) compression 
rate. Figure 7b shows the same reconstructed image 
using the FVHT algorithm at 1  bpp as its higher 
compression ratio and at 0.06  bpp as its lower 
compression ratio. Figure 7b shows more artifacts 
around the edges because that area was compressed at 
a higher compression ratio than the with the SPIHT 
algorithm. However, the area of the image closer to 
the fixation point shows less distortions on the FVHT 

reconstructed image. The data stream obtained from 
both images had a final compression ratio of 1 bpp. 

The PSNR (Peak Signal to Noise Ratio) is 
commonly used as a measure of quality of 
reconstruction of lossy compression. The function is 
defined by 

𝐿𝐿𝑁𝑅 = 10 log�
2552

𝑀𝐿𝑀
� (16) 

where 255 is the maximum value of the pixel for an 8-
bit image. 𝑀𝐿𝑀 is the mean squared error defined by 

𝑀𝐿𝑀 =
1
𝑚𝑛

� ��𝐼(𝑖, 𝑗) − 𝐼𝑞(𝑖, 𝑗)�2
𝑛−1

𝑗=0

𝑚−1

𝑖=0

 (17) 

where 𝐼 is the original image, 𝐼𝑞  is the reconstructed 
image and 𝑚  and 𝑛  are the number of rows and 
columns of the image respectively. 

Figure 8 shows a comparison of the PSNR of 
tested images compressed with both the SPIHT and 
the FVHT at different ratios. It can be seen how the 
SPIHT shows better performance on overall 
distortions. However, the main advantage of FVHT is 
to preserve the area around the fixation point. In order 
to test the performance of FVHT over smaller areas, 
several sub-images of different sizes were extracted 
from the reconstructed and original images. Each 
subimage was centered on the fovea center. The size 
of the first subimage was 80 pixels radius 𝑒. 

This radius was chosen because this is the edge of 
the ROI when 𝛼 = 0.3. The total size of the each sub-
image was 2𝑒 × 2𝑒  pixels. Several subimages were 
taken with incremental size of one pixel radius each. 
Figure 9 shows a PSNR comparison of the SPIHT 
algorithm and the proposed FVHT algorithm. Two 
compression ratios are shown in Figure 9, namely, 
1 bpp and 4 bpp. As expected, the FVHT algorithm 
has better performance  

 
(a) SPIHT Reconstructed Wavelet Coefficients at 1bpp 

 

 
(b) FVHT Reconstructed Wavelet Coefficients  

at 0.06-1 bpp range 

Figure 6. Reconstructed Wavelet Coefficients Comparison using SPIHT and FVHT compression algorithms
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(a) Reconstructed SPIHT compressed image “cameraman” 

at 1bpp 

 
(b) Reconstructed FVHT compressed image “cameraman” 

at 0.06-1 bpp range

Figure 7. Reconstructed Image Comparison using SPIHT and FVHT compression algorithms at 1bpp and 0.06-1bpp 
compression ratios respectively 

 
Figure 8. PSNR comparison of compressed “cameraman” 

image using SPIHT and FVHT 

 
Figure 9. PSNR comparison of subimages from a 

reconstructed “cameraman” image compressed 
with SPIHT and FVHT 

 
than SPIHT over small areas around the fovea centre 
and slowly decrease the quality of the reconstructed 
image of areas farther from the fovea center. When the 
compression ratio is 1 bpp both FVHT and SPIHT 
show the same PSNR over the fovea area. However, 
as the amount of bpp used increases, FVHT has better 
performance than SPIHT over small areas around the 
fovea center and slowly decrease the quality of the 
reconstructed image of areas farther from the fovea 
center as shown in Figure 9 with compression ratio of 
4 bpp. 

6. Conclusions and future work 
Fovea compression together with ROI allows to 

control the bit rate compression of given areas and 
preserve image perception quality to the human eye.  
Compression with hierarchical trees can be further 
improved as described in [7] by labeling beforehand 
each coefficient and using unbalanced quadtrees, 
however it will decrease the memory performance of 
the algorithm. The proposed approach reduces the 
memory usage by calculating on each pass the 
compression ratio. Also, each coefficient has different 
compression ratio. Thus, the fovea effect can be 
smoother than with fixed labeling. Future work will be 
focused on applying the proposed algorithm to video 
compression using automatic foveation such as in [12] 
and increasing the performance of FVHT based on 
faster versions of SPIHT such as the one proposed in 
[26]. 
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