
Information Technology and Control 2023/1/5268

Automatic Repair of 
Java Programs with 
Mixed Granularity and 
Variable Mapping

ITC 1/52
Information Technology  
and Control
Vol. 52 / No. 1 / 2023
pp. 68-84
DOI 10.5755/j01.itc.52.1.30715

Automatic Repair of Java Programs with Mixed Granularity and Variable Mapping

Received 2022/02/14 Accepted after revision 2022/11/07

https://doi.org/10.5755/j01.itc.52.1.30715

HOW TO CITE: Cao, H., Cui, Z., Deng, M., Chu, Y., Meng, Y. (2023). Automatic Repair of Java Programs with Mixed Granularity and 
Variable Mapping. Information Technology and Control, 52(1), 68-84. https://doi.org/10.5755/j01.itc.52.1.30715

Heling Cao
Key Laboratory of Grain Information Processing and Control, Henan; Ministry of Education; Henan University of 
Technology; Zhengzhou 450001; China; e-mail: caohl@haut.edu.cn

Zhiying Cui, Miaolei Deng, Yonghe Chu, Yangxia Meng
College of Information Science and Engineering; Henan University of Technology; Zhengzhou 450001; China; 
e-mails: cuizhiying2021@163.com, dengmiaolei@haut.edu.cn, chuyonghe@haut.edu.cn, 1958502687@qq.com

Corresponding author: dengmiaolei@haut.edu.cn

During the process of software repair, since the granularity of repair is too coarse and the way of fixing ingre-
dient is too simple, the repair efficiency needs to be further improved. To resolve the problems, we propose a 
Mixed Granularity and Variable Mapping based automatic software Repair (MGVMRepair). We adopt random 
search algorithm as the framework of program evolution, and utilize the mapping relationship between vari-
ables as an auxiliary specification. Firstly, fault localization is used to locate the suspicious statements and to 
form a list of modification points. Secondly, the ingredient of program repair at statement level is obtained, and 
the mapping relationship of variables is established. Then, the test case prioritization is improved from the per-
spective of the modification point. Finally, a program passes all test cases or the program iteration terminates. 
The experimental results show that MGVMRepair has a higher repair success rate than GenProg, CapGen, 
SimFix, jKali, jMutRepair and SketchFix on Defects4J.
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1. Introduction
The application of the software has been integrat-
ed into all aspects of life, involving many fields such 
as national defense, aviation, economy, and medical 
care. The gradual generation of various complex re-
quirements has also increased the complexity of the 
software, and faults are inevitable in software pro-
grams. A variety of software faults are generated al-
most every day, and the types of faults have become 
more complicated. In 2006, Mozilla’s software main-
tenance staff observed that approximately 300 pro-
gram bugs were found every day, a number far larger 
than Mozilla’s capacity to handle [24]. The automatic 
repair is a promising approach to reduce the costs of 
manual debugging and increase software quality [18].
Although the researchers have proposed a variety 
of approaches and technologies to support the auto-
matic repair of software faults, the existing research 
results show that the current automatic repair tech-
nology of software faults is still in its infancy, and the 
efficiency need to be improved. Fault repair is gener-
ally is generally time-consuming and expensive pro-
cess for developers. 
Existing fault repair techniques work at the state-
ment level, which are too coarse in repair granularity. 
Le Goues et al. [14] implemented the fault repair pro-
totype tool GenProg, which was the first fault repair 
tool based on genetic algorithm. Subsequently, Le 
Goues et al. [13] carried out a series of improvements 
and empirical studies on GenProg. Qi et al. [20] fol-
lowed the mutation rules of GenProg and replaced 
the genetic algorithm in GenProg with random search 
algorithm to implement the prototype tool RSRepair 
for fault repair. Kim et al. [12] summarized different 
repair strategies from manually written patches to 
implement the fault repair prototype tool PAR. The 
above repair techniques [12-14, 20] work at the state-
ment level, and the repair granularity is too coarse, 
which fails to use repair materials in a proper way. 
The repair material cannot be reasonably utilized, 
more fault programs cannot be repaired, therefore, 
these approaches have the lower efficiency of the re-
pair.
Currently, there are fault repair techniques based on 
fine-grained levels such as SimFix [9], CapGen [23] 
and SketchFix [7]. Jiang et al. [9] proposed SimFix, 

which is an automatic repair method based on fine-
grained code differences, while using similarity as a 
constraint for donor fragment selection and program 
evolution at the abstract syntax tree nodes. Wen et al. 
[23] proposed CapGen, which used the contextual in-
formation of the abstract syntax tree nodes for buggy 
program repair, and considered the abstract syntax 
tree node types and suspicious code elements of the 
desired components when selecting mutation opera-
tors. Hua et al. [7] proposed SketchFix, which worked 
in repairing bugs with expression manipulation at 
the AST node-level granularity, and utilized runtime 
information to substantially prune the space of can-
didate. In the above fine-grained program repair ap-
proaches, the search space of the candidate patches is 
so large that the computational cost is high, resulting 
in a lower repair efficiency of program repair.  
To address the problems of too coarse in repair gran-
ularity, inaccurate material usage and low repair suc-
cess rate, we propose a fault program evolution repair 
method MGVMRepair based on hybrid granularity 
and variable mapping. We mainly adopt a random 
search algorithm in program evolution, and use the 
mapping relationship between variables as an aux-
iliary specification. To summarize, this paper makes 
the following contributions:
 _ We propose a mixed granularity defect repair 

method, MGVMRepair to improve the success rate 
of buggy program repair.

 _ We propose a variable mapping approach that 
enables better use of defect repair ingredients at a 
fine-grained level.

 _ We propose a test case prioritization technique 
based on modification point execution information 
that can further improve the efficiency of program 
verification.

 _ We conduct the experimental study 224 real world 
faults on Defects4J defect dataset to show that 
MGVMRepair has higher repair success rate than 
the existing defect repair approaches.

The rest of this paper is organized as follows. Sec-
tion2 provides an overview of related works. Section 3 
outlines the background of automatic software repair. 
Section 4 elaborates the framework of our approach. 
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After that, we introduce the experimental study on 
the Defects4j in Section 5. Finally, we conclude the 
paper with potential future directions in Section 6.

2. Related Work
2.1. Coarse-grained Based Program Fixes
Coarse-grained based program fixes are at statement 
level. Le Goues et al. [14] implemented the fault repair 
prototype tool GenProg, which was the first fault re-
pair tool based on genetic algorithm. Subsequently, a 
series of improvements and empirical studies on Gen-
Prog were conducted in Le Goues et al. [6, 13, 22]. Qi 
et al. [20] followed the mutation rules of GenProg and 
used a random search algorithm instead of the genet-
ic algorithm in GenProg to implement the fault repair 
prototype tool RSRepair. The experimental results 
showed that GenProg did not take full advantage of 
the genetic algorithm. Kim et al. [12] summarized dif-
ferent repair strategies from manually written patch-
es to implement the fault repair prototype tool PAR. 
Martinez et al. [16] present Astor, a publicly available 
program repair library that includes the implementa-
tion of three notable repair approaches ( jGenProg2, 
jKali and jMutRepair) to explore the design space of 
automatic repair for Java. Le et al. [15] indicated that 
many real-world bugs cannot be repaired by existing 
techniques even after more than 12 hours of computa-
tion in a multi-core cloud environment. Afzal et al. [3] 
proposed SOSRepair, an automated program repair 
technique that used semantic code search to replace 
candidate buggy code regions with behaviorally-sim-
ilar code written by humans. Chen et al. [5] proposed 
SequenceR, a sequence-to-sequence deep learning 
model that aimed at automatically fixing bugs by gen-
erating one-line patches.
The granularity of these approaches is too coarse to 
apply repair materials in a more appropriate way 
and to fix more buggy programs. Our approach has 
the higher efficiency than the approaches mentioned 
above, due to making use of a mixed granularity and 
variable mapping repair.

2.2. Fine-grained Based Program Fixes
Fine-grained based program fixes are at expression 
level. Jiang et al. [9] proposed SimFix to extract an 
abstract search space from existing patches and 

similar code from buggy source programs to form a 
concrete candidate patch search space, and obtain 
program patches from the intersection of these two 
search spaces. Subsequently, Jiang et al. [8] proposed 
another program transformation approach, GEN-
PAT, which inferred program transformations based 
on code context and statistical information from a 
large code corpus. Wen et al. [23] proposed CapGen 
at a fine-grained level (e.g., expressions) to extract 
the contextual environment information of abstract 
syntax tree nodes and to select repair operators and 
ingredients under the contextual environment. Hua 
et al. [7] proposed an on-demand repair technique, 
SketchFix, which tightly integrated generation and 
validation phases of candidate programs. The tech-
nique reduced program repair to program synthesis 
by transforming faulty programs to sketches at the 
AST node-level granularity. Yuan and Banzhaf [25] 
proposed ARJA, a lower-granularity patch represen-
tation which properly decoupled the search subspac-
es of likely-buggy locations, operation types and in-
gredient statements. Thus, genetic programming can 
traverse the search space more effectively.
If the granularity of fault repair approaches is too 
fine, it is easy to cause explosion of search space of 
candidate patch. Our approach further improves the 
efficiency of the verification and reduces the sorting 
times of test cases. Therefore, our approach owns the 
higher efficiency than the compared SimFix, CapGen, 
and SketchFix approach.

3. Background

3.1. Repair Granularity
The repair granularity of fault repair approaches is 
a critical issue in the field of automatic fault repair. 
If the granularity is too coarse (e.g., at the statement 
level), the repair material cannot be reasonably used, 
if the granularity is too fine (e.g., at the expression lev-
el), search space of the candidate patch will explode 
easily. Existing fault repair techniques[6, 12-14, 20-
21] work at the statement level, and the repair gran-
ularity of these methods is too coarse to apply the 
repair material in a more appropriate way to repair 
more defective programs.
As shown in Figure 1, an expression fault in the re-
turn statement at line 417 caused a fault in the Math 
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63 project on Defects4J. To fix the fault, the software 
maintainer changed the expression at the statement 
to equals(x,y,1). In this buggy program, the correct 
repair material is present in lines 422 and 442 of the 
program. If the repair is performed at statement-lev-
el granularity and the incorrect statement is directly 
replaced using another statement, the program fault 
cannot be eliminated by replacing the statement at 
lines 422 and 442. This motivates this paper to con-
sider a more fine-grained repair approach to fix the 
buggy programs.
Martinez et al. [17] argue that code redundancy is 
more obvious at a finer granularity than the statement 
level, which indicates that better repair material can 
be found at finer granularity levels and that buggy 
programs are more likely to be repairable. Based on 
the current repair technology and research status, 
this paper proposes a fault program evolution repair 
method based on mixed granularity and variable map-
ping to solve the problems of too rough granularity at 
the statement level, too simple material usage and a 
low repair success rate. 

3.2. Random Search Algorithm
Compared with genetic programming, the random 
search algorithm is the simplest way of selection. 
When selecting individuals of the population for evo-
lution, the genetic programming resorts to the fitness 
function as a constraint for individual selection, but 
the random search algorithm randomly selects indi-
viduals for the evolution of the buggy program.
In theory, genetic programming using fitness func-
tion evaluation can better guide the population evo-
lution process. But, one of the challenges in the field 
of automatic repair of faults by intelligent evolution-
ary algorithms is how to set the appropriate fitness 
function to ensure the efficiency and accuracy of in-

Figure 1 
The faulty statement, correct statement and repair 
ingredient of Math 63 project on Defects4J
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4. Our Approach 
Different from the current coarse-grained fault 
program repair and fine-grained fault program 
repair, we propose a combination of coarse-grained 
and fine-grained fault program repair method 
MGVMRepair. At the same time, in order to 
further improve the efficiency of patch 

//Faulty statement
417: -  return  (Double.isNaN(x) && Double.isNaN(y)) || x == y;
//Correct statement
417: +  return  equals(x,y,1); 
//Repair Ingredient
422: return  (Double.isNaN(x) && Double.isNaN(y)) || equals(x,y,1);
442: return  equals(x,y,1) || FastMath.abs(y - x) <= eps;

dividual evaluation. If the fitness function is set too 
simply, it will not be able to distinguish the variability 
among individuals, which will reduce the repair effect 
or even lead to the failure of the repair. If the fitness 
function is set too complex, it will increase the time 
complexity of the repair algorithm and expand the 
time overhead of program evolution. In a study by Qi 
et al. [20], it was found that the existing fault repair 
method GenProg did not give full play the advantage 
of genetic programming, however a good repair effect 
could also be achieved by using a random search al-
gorithm.

4. Our Approach
Different from the current coarse-grained fault pro-
gram repair and fine-grained fault program repair, 
we propose a combination of coarse-grained and 
fine-grained fault program repair method MGVM-
Repair. At the same time, in order to further improve 
the efficiency of patch verification, a test case priori-
tization technology based on the execution informa-
tion of the modification point is proposed. This fault 
program repair method first uses fault localization 
technology to locate suspicious sentences and form 
a list of modified points. Secondly, the material space 
of the current sentence level is obtained. When se-
lecting materials, the mapping relationship between 
the variables in the material sentence and the modi-
fied point sentence is established, and the variable or 
expression required for repair is selected according 
to the variable mapping relationship to replace the 
modified point sentence variable or expression state-
ment. The entire program repair process is based on 
the idea of random search algorithm. When selecting 
population individuals for evolution, the selection is 
no longer based on the fitness value of individuals in 
genetic programming, but individuals are random-
ly selected for evolution. Then according to the test 
case execution status of the modified point, a test case 
priority execution information table is maintained 
for each modification point. The priority execution 
information table is dynamically adjusted according 
to the test case execution process. This program ver-
ification method can further improve the verification 
efficiency of candidate patches. The framework of our 
approach is shown in Figure 2.
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localization effectiveness of Ochiai [2] is better 
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Among them, s represents the program entity, nep(s) 
and nef(s) denote the number of successful test cas-
es and the number of failed test cases covering pro-
gram entity s, respectively, and nf denotes the num-
ber of all failed test cases of program entity s

2 Patch generation. The program undergoes evo-
lution using a mixed-granularity evolution tech-
nique, where the search space of the material is 
formed at the statement level and the expressions 
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the expression level. For specific fixes, ingredient 
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replacement. The constructed variable mapping 
relationship is a constraint condition for the ap-
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didate patches. During this phase, a test case exe-
cution information table is maintained for each 
modification point based on the test case execution 
at the modification point, and the table is dynami-
cally adjusted according to the test case execution 
process. This verification strategy can reduce the 
time complexity of the repair algorithm and de-
crease the program verification time without ad-
justing the test case execution order for each indi-
vidual verification. 

4.1. Fault Localization
Before fixing a buggy program, it is necessary to find 
out the location of likely-debugs in the program. Dif-
ferent fault localization techniques have different 
effects on the process of candidate patch generation.  
If the real bug is located in a program statement with 
a higher suspicious value, the correct patch can be 
found in a shorter time with fewer repair attempts. 
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If the real bug is located in a program statement with 
a lower suspicious value, it may take more computa-
tional resources to repair the buggy program or even 
cause the program to fail to repair. Therefore, the ac-
curacy of fault localization technique plays a crucial 
role in the repair of buggy programs. In an empirical 
study by Abreu et al. [1, 2], it found that the fault local-
ization effectiveness of Ochiai [2] is better than that 
of Tarantula [10] and Jaccard [4].
The modification points are selected according to the 
suspiciousness of the statements after fault localiza-
tion, and a list of modification points is formed. In the 
actual repair process, the list of modification points is 
the suspicious space in the evolutionary repair of the 
buggy program, and the weight of modification points 
is calculated as shown in Equation (2).

  

verification, a test case prioritization technology based 
on the execution information of the modification point is 
proposed. This fault program repair method first uses 
fault localization technology to locate suspicious 
sentences and form a list of modified points. Secondly, 
the material space of the current sentence level is 
obtained. When selecting materials, the mapping 
relationship between the variables in the material 
sentence and the modified point sentence is established, 
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expression statement. The entire program repair process 
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randomly selected for evolution. Then according to the 
test case execution status of the modified point, a test 
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for each modification point. The priority execution 
information table is dynamically adjusted according to 
the test case execution process. This program 
verification method can further improve the verification 
efficiency of candidate patches. The framework of our 
approach is shown in Figure 2. 
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(1) Fault localization. In this stage, the fault source 
procedure is localized and analyzed by using the fault 
localization technique Ochiai, whose suspicious value is 
calculated as described in Equation (1).  

Ochiai(s)=
nef(s)

�nf×(nef(s)+nep(s))
.               (1) 

Among them, s represents the program entity, nep(s) and 
nef(s) denote the number of successful test cases and the 
number of failed test cases covering program entity s, 
respectively, and nf denotes the number of all failed test 
cases of program entity s . 

(2) Patch generation. The program undergoes evolution 
using a mixed-granularity evolution technique, where 
the search space of the material is formed at the 
statement level and the expressions and variables in the 
ingredients are applied at the expression level. For 
specific fixes, ingredient statements are obtained from 
the ingredient space and modification points are selected 

from the list of modification points. The types and 
names of expressions and variables in ingredient 
statements and modification point statements are 
extracted. Then the mapping relationship between 
modification points and variables in the ingredient 
is established, and is used as the basis for 
expression replacement. The constructed variable 
mapping relationship is a constraint condition for 
the application of material, and is also utilized to 
guide the evolution process. On this foundation, 
the fault procedure is evolved according to the idea 
of random search algorithm. This is, individuals 
are not selected according to the fitness values in 
genetic programming, but are randomly selected 
when selecting individuals of the population for 
evolution.  

(3) Patch verification. After the candidate patches 
are generated by program evolution, test cases 
need to be run repeatedly to verify the validity of 
the candidate patches. During this phase, a test case 
execution information table is maintained for each 
modification point based on the test case execution 
at the modification point, and the table is 
dynamically adjusted according to the test case 
execution process. This verification strategy can 
reduce the time complexity of the repair algorithm 
and decrease the program verification time without 
adjusting the test case execution order for each 
individual verification.  
4.1 Fault Localization 
Before fixing a buggy program, it is necessary to 
find out the location of likely-debugs in the 
program. Different fault localization techniques 
have different effects on the process of candidate 
patch generation.  If the real bug is located in a 
program statement with a higher suspicious value, 
the correct patch can be found in a shorter time 
with fewer repair attempts. If the real bug is located 
in a program statement with a lower suspicious 
value, it may take more computational resources to 
repair the buggy program or even cause the 
program to fail to repair. Therefore, the accuracy 
of fault localization technique plays a crucial role 
in the repair of buggy programs. In an empirical 
study by Abreu et al. [1, 2], it found that the fault 
localization effectiveness of Ochiai [2] is better 
than that of Tarantula [10] and Jaccard [4]. 

The modification points are selected according to 
the suspiciousness of the statements after fault 
localization, and a list of modification points is 
formed. In the actual repair process, the list of 
modification points is the suspicious space in the 
evolutionary repair of the buggy program, and the 
weight of modification points is calculated as 
shown in Equation (2). 
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Si
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where i denotes the location information of the sus-
picious statement, Si and Sj denote the suspicious 
value of the suspicious statement, and W(i) denotes 
the weight value of the suspicious statement. When 
selecting the modification point, the weight value of 
the suspicious statement is used as a constraint for 
selecting the modification point.

4.2. Patch Generation
4.2.1 Mixed Repair Granularity
Mixed repair granularity refers to forming the ingre-
dient search space at the statement level and applying 
the expressions and variables in the ingredients at the 
expression level. The repair at the statement level is 
a coarse-grained program repair, and the expression 
level is a fine-grained program repair. Both coarse-
grained repair and fine-grained repair have extreme 
advantages and disadvantages, so we use a combina-
tion of coarse-grained repair and fine-grained repair 
for the buggy program evolution as a whole. In the 
process of program evolution, the ingredient search 
space is first formed at the coarse-grained level, i.e., 
the statement level, and in the ingredient search space 
at the statement level, the ingredient statements are 
first filtered according to the similarity values. After 
screening out the eligible ingredient statements, the 
mapping relationship is established between the ex-
pressions and variables between the selected ingre-

dient statements and the modified point statements, 
and is used as a constraint for expression and variable 
modification in the program evolution.
When selecting an ingredient statement, the return 
value type and method name of the method, and the 
type and variable name of the variables contained 
in the statement are extracted. Then the similarity 
between the ingredient statement and the modifi-
cation point is calculated using the Dice similarity 
coefficient, and the ingredient statement is selected 
based on the similarity. The similarity is calculated as 
shown in Equation (3).
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established between the expressions and variables 
between the selected ingredient statements and the 
modified point statements, and is used as a constraint for 
expression and variable modification in the program 
evolution. 

When selecting an ingredient statement, the return value 
type and method name of the method, and the type and 
variable name of the variables contained in the statement 
are extracted. Then the similarity between the ingredient 
statement and the modification point is calculated using 
the Dice similarity coefficient, and the ingredient 
statement is selected based on the similarity. The 
similarity is calculated as shown in Equation (3). 

Sim�fi,ml�=α×Sim1+β×Sim2,                   (3) 

where fi represents the ith current repair material, ml 
represents the current modification point, Sim(fi,ml) 
represents the similarity between fi and ml, Sim1 
represents the method similarity between the two, Sim2 
represents the variable similarity between the two, and α 
and β represent the method similarity coefficient and 
variable similarity coefficient, respectively. 
4.2.2 Mixed Repair Granularity 
After selecting an ingredient statement based on 
similarity, a variable mapping relationship between the 
ingredient statement and the modification point 
statement needs to be established. And this mapping 
relationship is used as a constraint for expression or 
variable replacement. When the buggy program is 
modified, the expressions or variables in the ingredient 
statements need to be reused. Therefore, it is important 
to ensure that the mapped expressions or variables have 

type compatibility. An expression in a 
modification point statement can be modified only 
when the ingredient statement is of the same type 
as the expression contained in the modification 
point statement. When the modification point 
statement contains more than one expression, the 
first consideration is whether the types of the 
expressions are consistent; if the types are 
consistent, the expressions in the ingredient 
statement can be selected for modification 
operation; otherwise, the modification is 
impossible. 

When the variable is used as a left value in a 
modification point statement, you need to make 
sure that the type of the variable in the selected 
ingredient statement is the parent type of the 
original variable; when the variable is used as a 
right value in a modification point statement, you 
need to make sure that the type of the variable in 
the selected ingredient statement is a subtype of the 
original variable. There is no explicit subtype 
relationship for basic types in Java program. 
Therefore there are two basic types T and T', if any 
value in type T can be converted to a value in type 
T' without loss, T is considered to be a subtype of 
T' and there is type compatibility between T and T'. 
The variables between both the selected 
modification point statement and the ingredient 
statement are combined one by one when 
performing variable mapping, and if there is type 
compatibility between the two variables, the set of 
mapped variables is saved. This mapping 
relationship is used as the main constraint for 
variable selection. When the variables are 
subsequently selected to modify the variables in 
the modification point, it is possible to further 
determine whether the location can be changed 
based on its location. 

Figure 3 shows an example of variable mapping, in 
which m1~m2 and f1~f4 represent the variables in 
the modification point statement and material 
statement, respectively, and the content in 
parentheses indicates the type of variables. Taking 
the variable m1 in the modification point statement 
as an example, if the variables between the 
modification point statement and the material 
statement are combined one by one, there are four 
combinations of <m1, f1>, <m1, f2>, <m1, f3>, and 
<m1, f4>. Among these four combinations of 
variables, there is a type compatibility between the 
variable combinations <m1, f3> and <m1, f4>, and 
then the two sets of variable mapping relationships 
are preserved. When m1 is used as the left value in 
the modification point statement, we further judge 
these two sets of mapping relationships and find 
that the variable combination <m1, f3> has a loss of 
precision when replacing variable m1 (float type) 
with variable f3 (int type) in the modification point 
statement, but the variable combination <m1, f4> 

, (3)

where fi represents the ith current repair material, ml 
represents the current modification point, Sim(fi,ml) 
represents the similarity between fi and ml, Sim1 rep-
resents the method similarity between the two, Sim2 
represents the variable similarity between the two, 
and α and β represent the method similarity coeffi-
cient and variable similarity coefficient, respectively.

4.2.2. Mixed Repair Granularity
After selecting an ingredient statement based on 
similarity, a variable mapping relationship between 
the ingredient statement and the modification point 
statement needs to be established. And this mapping 
relationship is used as a constraint for expression or 
variable replacement. When the buggy program is 
modified, the expressions or variables in the ingre-
dient statements need to be reused. Therefore, it is 
important to ensure that the mapped expressions or 
variables have type compatibility. An expression in 
a modification point statement can be modified only 
when the ingredient statement is of the same type as 
the expression contained in the modification point 
statement. When the modification point statement 
contains more than one expression, the first consid-
eration is whether the types of the expressions are 
consistent; if the types are consistent, the expressions 
in the ingredient statement can be selected for modi-
fication operation; otherwise, the modification is im-
possible.
When the variable is used as a left value in a modifica-
tion point statement, you need to make sure that the 
type of the variable in the selected ingredient state-
ment is the parent type of the original variable; when 
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the variable is used as a right value in a modification 
point statement, you need to make sure that the type 
of the variable in the selected ingredient statement is 
a subtype of the original variable. There is no explicit 
subtype relationship for basic types in Java program. 
Therefore there are two basic types T and T’, if any 
value in type T can be converted to a value in type T’ 
without loss, T is considered to be a subtype of T’ and 
there is type compatibility between T and T’. The vari-
ables between both the selected modification point 
statement and the ingredient statement are combined 
one by one when performing variable mapping, and if 
there is type compatibility between the two variables, 
the set of mapped variables is saved. This mapping 
relationship is used as the main constraint for vari-
able selection. When the variables are subsequently 
selected to modify the variables in the modification 
point, it is possible to further determine whether the 
location can be changed based on its location.
Figure 3 shows an example of variable mapping, in 
which m1~m2 and f1~f4 represent the variables in the 
modification point statement and material statement, 
respectively, and the content in parentheses indicates 
the type of variables. Taking the variable m1 in the 
modification point statement as an example, if the 
variables between the modification point statement 
and the material statement are combined one by one, 
there are four combinations of <m1, f1>, <m1, f2>, <m1, 
f3>, and <m1, f4>. Among these four combinations of 
variables, there is a type compatibility between the 
variable combinations <m1, f3> and <m1, f4>, and then 
the two sets of variable mapping relationships are 
preserved. When m1 is used as the left value in the 
modification point statement, we further judge these 
two sets of mapping relationships and find that the 
variable combination <m1, f3> has a loss of precision 

when replacing variable m1 (float type) with variable 
f3 (int type) in the modification point statement, but 
the variable combination <m1, f4> does not have this 
situation, so the variable combination relationship in 
<m1, f4> is as a constraint when the variables are mod-
ified. When m1 is used as the right value in the materi-
al statement, it is found that the variable combination 
<m1, f4> can expand the range of the right value expres-
sion type when using the variable f4 (double type) to 
replace the variable m1 (float type) in the modification 
point statement, which may conflict with the left val-
ue variable type in the modification point statement 
and easily introduce a new program bug, so the selec-
tion of this group of variable combination is dropped. 
The variable combination <m1, f3> is selected as the 
constraint condition for variable modification.

4.3. Patch Verification
The test case prioritization technique ranks test 
cases, according to their ability to identify the faults 
during the stage of the execution. And each individu-
al verification requires a ranking of the test case set, 
which results in a large time overhead for program ex-
ecution. Therefore, to further improve the efficiency 
of individual patch verification, we prioritize the test 
cases according to the test case execution informa-
tion at the modification point.
Regression testing is often used during the process 
of verifying defect patches. Regression testing aims 
to make sure that the change did not introduce new 
faults or cause faults in other code when you modify 
old code and re-test it, so it plays an important role 
in software defect repair. The purpose of patch veri-
fication is to check whether the generated candidate 
patch can fix the faults in the original defective pro-
gram and whether the repaired defective program in-
troduces new faults. Finally, if a patch passes all test 
cases, the patch is considered valid, the repair process 
ends, and a valid patch is output. Otherwise, if any test 
case fails, the patch is invalid.
As shown in Figure 4, the test case prioritization 
technique based on modification point, each modifi-
cation point has its corresponding test case priority 
execution information table, and the test cases are 
executed in different order among different modifica-
tion points. A test case execution information table is 
maintained for each modification point, and dynam-
ically adjusted according to the test case execution 
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technique based on modification point, each 
modification point has its corresponding test case 
priority execution information table, and the test cases 
are executed in different order among different 
modification points. A test case execution information 
table is maintained for each modification point, and 
dynamically adjusted according to the test case 
execution process. During the next-generation evolution, 
for the individual who selects the modification point for 
program evolution, the test cases in the information table 
are executed first, and then the other test cases in the test 
case set are executed after finishing the execution of the 

test cases in the information table. The test cases 
that have been executed at the modification point 
are marked, and are verified when all the program 
individuals evolved for the modification point. If 
any test case is not added to the test case execution 
priority information table, the test case is added to 
the test case execution information table and the 
table is dynamically adjusted. When an individual 
passes all test cases, the individual is output as a 
valid patch. 
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Algorithm 1 describes the specific process of the 
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process. During the next-generation evolution, for 
the individual who selects the modification point for 
program evolution, the test cases in the information 
table are executed first, and then the other test cases 
in the test case set are executed after finishing the ex-
ecution of the test cases in the information table. The 
test cases that have been executed at the modification 
point are marked, and are verified when all the pro-
gram individuals evolved for the modification point. 
If any test case is not added to the test case execution 
priority information table, the test case is added to the 
test case execution information table and the table is 
dynamically adjusted. When an individual passes all 
test cases, the individual is output as a valid patch.
While the test case prioritization technique based 
on the ability to identify errors requires test case or-
dering once per individual verification, the test case 
prioritization technique based on modification point 
execution information only requires uniform adjust-
ment of the modification point execution information 
table at the end of each generation of the verification 
process. Compared with the former, the latter only 
needs to adjust the information execution table once 
at the end of each generation of individual program 

Figure 4 
Test case prioritization technique based on modification point 

verification. Since each generation of program evolu-
tion contains multiple program individuals, the test 
case prioritization technique based on the execution 
information of modification points can greatly reduce 
the number of test case prioritization adjustments 
and thus improve the program verification efficiency.

4.4. Bug Fixing Algorithm MGVMRepair
Algorithm 1 describes the specific process of the bug-
gy program repair algorithm MGVMRepair in this pa-
per. There are a buggy source program P and its corre-
sponding test case set T. In lines 1~2 of this algorithm, 
a sequence of suspicious statements is located using 
the fault localization tool, and the suspicious space 
ModList is generated by selecting the suspicious 
statements according to the minimum suspicious 
value minSus and the maximum number of modifi-
cation points maxMod by the program settings. Line 
3 indicates the initialization operation of the popu-
lation, and line 4 is the marker of whether the bug-
gy program P is successfully repaired. Lines 7 to 22 
describe the specific process of individual variation 
evolution. First, the parent variant parent is selected 
according to random selection (line 7), the modifica-
tion point modPoint is selected from the list of mod-
ification points according to the size of the suspected 
value weight (line 8), and the operator Op is randomly 
selected from the operator space.
If the current operator can be applied to this modifi-
cation point location at line 10 and the operator re-
quires repair material at line 11. The repair material 
with high similarity to the modification point is ob-
tained from the current material space as the ingre-
dient statement at line 12. Line 13 indicates that the 
variables in the modification point statement and 
the material statement are extracted. Lines 14 to 16 
indicate that a mapping relationship is established 
between the variables in the modification point state-
ment and the variables in the material statement, and 
if a group of variables are type compatible (line 15), 
the mapping relationship will be stored in the match-
Map as a constraint condition for variation evolution 
in the subsequent program (line 16). From the saved 
variable mapping relations, the repair material for 
the mutation evolution of the program individual is 
selected (line 18), and the mutation evolution of the 
current parent individual is performed according to 
the currently selected modification point, operator 
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and repair material (line 19). If the selected modifi-
cation point does not require repair material, the se-
lected parent individual is modified directly (line 21). 
Finally, the evolved generated program individual is 
saved to Offsprings (line 22).

Lines 23 to 29 represent the specific process of pro-
gram individual verification. First, the modification 
point selected by the current program individual is 
obtained (line 23); then the test cases of the modifica-
tion point to execute the test cases in the information 
table is run, and if all the test cases in the informa-
tion table can pass the execution (line 24), then the 
other test cases in the test case set are run. If all the 
remaining test cases in the test case set can pass the 
execution, the output of this program individual as a 
valid patch for this buggy program is saved (line 26), 
and the fix marker is set to true (line 27) to end the fix-
ing process of this buggy program; otherwise, the test 
cases that have been executed at this modification 
point are marked (line 29). After this generation of 
population verification, for each modification point, 
if any test case is not added to the test case priority 
execution information table, this test case is added 
to this information table and the table is dynamically 
adjusted (line 31). After completing the variant evo-
lution and verification process of the buggy program, 
PopSize individuals are randomly selected from the 
Offersprings as the parent variants for the next gen-
eration of program evolution (line 32) until a program 
individual passes all test cases or reaches the program 
iteration termination condition.

5. Experimental Study
We perform the empirical evaluation over a real bugs 
database, called Defects4J [11], which has been ex-
tensively used for evaluating Java repair systems. 
This experiment was conducted with Spoon [19], a 
code parsing tool, GZoltar [21], a fault location tool, 
and the operation system of Ubuntu 18.04 LTS with a 
2.40 GHz Intel(R) CPU and 8G memory. 
Referring to existing repair approaches [9, 20, 23], 
this paper verifies the effectiveness of the repair in 
three aspects: (i) the number of successful repairs of 
buggy programs, (ii) the generated NCP (Number of 
Candidate Patches) values when the buggy programs 
are successfully repaired, and (iii) the time spent 
when the buggy programs are successfully repaired.

5.1. Comparison Between MGVMRepair and 
GenProg
In order to demonstrate the repair effectiveness, the 
classical repair tool GenProg was selected. By ana-

Algorithm 1: MGVMRepair repair algorithm

Input  P                // Faulty program
T                // Test case sets
OperatorSpace     // Operator space
popSize          // Population size
IngredientSpace   // Ingredient Space   

Output:   cp              // Valid patches through all test cases
begin
1 SusList ← FaultLocalization(T,P)
2 ModList ← GetSusSpace(SusList,minSus,maxMod)
3 Pop ← InitPopulation(popSize)
4 fixSuccess = false
5 repeat 
6 for i ← 1 to maxMut do
7    parent ← URSelect(Pop)    
8    modPoint ← WRSelect(ModList)/
9    Op ← URSelect(OperatorSpace) 
10    if canApplyOp(Op,modPoint) then
11       if opNeedIngredients(Op) then
12          fixIngredient ← getSimIng(IngredientSpace) 
13          mvariables, fvariables ← get code variables of 

      modPoint, fixIngredient
14          for all (mvariable, fvariable) ∈ (mvariables,  

       fvariables) do
15             if mvariable and fvariable are compatible then
16                matchMap.add(mvariable, fvariable)
17          end for
18          fixingIng ←WRSelect(matchMap)
19         child ← generateNewVariant(parent,modPoint,Op,   

 fixingIng)
20       else
21          child ← generateNewVariant(parent,modPoint,Op)
22    Offsprings add child
23    getmodPointTests(child)
24    if modPointValid(child) = true then
25       if validRestTests(T) = true then
26          cp ← child
27          fixSuccess = true
28          break
29       else markDifTests(T)
30 end for
31 adjustModPointTests(child)
32 Pop ← URSelect(PopSize,Offsprings,parents)
33 until fixSuccess = true
34 return cp
end
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lyzing the source code of the two 
methods, the time complexity of 
MGVMRepair is O(n3), and the 
time complexity of GenProg is 
O(n4). Table 1 shows the detailed 
comparison between MGVMRe-
pair and GenProg for repairing 
the four major items of Chart, 
Math, Lang, and Time. The exper-
imental results on the Defects4J 
dataset show that GenProg can 
successfully repair 28 buggy 
programs with a success rate 
of 12.50%, while MGVMRepair 
can successfully repair 40 buggy 
programs with a success rate of 
17.86%. Compared with GenProg, 
the overall repair success rate 
of MGVMRepair is improved by 
42.9%. In order to reduce the in-
fluence of chance factors, the data 
collected for each defect program 
is the average of 10 runs. Figure 
5 shows the comparison of the 
number of fixable faults between 
MGVMRepair and GenProg on 
the four major buggy items (Chart, 
Math, Lang, and Time). And it 
can be seen that MGVMRepair 
outperforms GenProg in fixing 
all four major items. Figure 6 is a 
Venn diagram of the comparison 
of the fixes between MGVMRe-
pair and GenProg. It can be visu-
ally seen that the specific differ-
ences between MGVMRepair and 
GenProg repair situations from 
this diagram.
From Table 1 and Figures 5 and 
6, it can be seen that in terms of 
the number of buggy programs 
fixed, MGVMRepair fixes 1 more 
buggy program than GenProg on 
the Chart project; MGVMRepair 
fixes 6 more buggy programs than 
GenProg on the Math project. On 
the Lang project, GenProg has 
no buggy programs to repair suc-
cessfully, while MGVMRepair 

Table 1
Comparison of MGVMRepair and GenProg Repair Situation

Project Number 
of Faults

Fixable Bug Procedures

MGVMRepair GenProg

Chart 26
C1,C3,C6,C11,

C12,C15,C24,C25
C1,C3,C5,C7,
C13,C15,C25

å=8 å=7

Math 106

M2,M5,M8,M20,M28,
M30,M40,M44,M49,
M50,M53,M57,M60,
M63,M70,M71,M73,
M78,M80,M81,M82,
M84,M85,M95,M97

M2,M5,M8,M28,M40,
M49,M50,M53,M60,
M70,M71,M73,M78,
M80,M81,M82,M84,

M85,M95

å=25 å=19

Lang 65
L7,L22,L24,L27 -

å=4 å=0

Time 27
T4,T9,T11 T4,T11

å=3 å=2

Total 224 40 28

Success rate - 17.86% 12.50%

  

passes all test cases or reaches the program iteration 
termination condition. 
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42.9%. In order to reduce the influence of chance factors, 
the data collected for each defect program is the average 
of 10 runs. Figure 5 shows the comparison of the number 
of fixable faults between MGVMRepair and GenProg on 
the four major buggy items (Chart, Math, Lang, and 
Time). And it can be seen that MGVMRepair 
outperforms GenProg in fixing all four major items. 
Figure 6 is a Venn diagram of the comparison of the fixes 
between MGVMRepair and GenProg. It can be visually 
seen that the specific differences between MGVMRepair 
and GenProg repair situations from this diagram. 

From Table 1 and Figures 5 and 6, it can be seen that in 
terms of the number of buggy programs fixed, 
MGVMRepair fixes 1 more buggy program than 
GenProg on the Chart project; MGVMRepair fixes 6 
more buggy programs than GenProg on the Math project. 
On the Lang project, GenProg has no buggy programs to 
repair successfully, while MGVMRepair can repair 4 
buggy programs successfully. On the Time project, 
MGVMRepair repaired 1 more buggy program than 
GenProg. MGVMRepair's repair success rate is 

improved due to making use of a mixed granularity 
and variable mapping repair, which is able to find 
the appropriate repair ingredients and apply them 
correctly to the evolution of the buggy program. 
The mixed granularity repair can quickly find the 
material statements that meet the requirements of 
the protocol, and the variable mapping allows for 
the variant evolution of the buggy program at a 
fine-grained level. Therefore, MGVMRepair can 
overcome the drawbacks of the coarse-grained 
repair approach by using materials in an overly 
simplistic manner and increase the successful 
repair rate of the buggy program.  
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Table 2 
Comparison of Repair Information between MGVMRepair and GenProg

can repair 4 buggy programs successfully. On the 
Time project, MGVMRepair repaired 1 more buggy 
program than GenProg. MGVMRepair’s repair suc-
cess rate is improved due to making use of a mixed 
granularity and variable mapping repair, which is 
able to find the appropriate repair ingredients and 
apply them correctly to the evolution of the buggy 
program. The mixed granularity repair can quickly 
find the material statements that meet the require-

ments of the protocol, and the variable mapping al-
lows for the variant evolution of the buggy program 
at a fine-grained level. Therefore, MGVMRepair can 
overcome the drawbacks of the coarse-grained re-
pair approach by using materials in an overly sim-
plistic manner and increase the successful repair 
rate of the buggy program. 
Table 2 provides detailed information on the NCP 
values, verification time, and total repair time for the 

Project Bug_Id Repair approaches NCP Verification 
time (min)

Total time 
(min)

Validation time
improvement rate

Total time
improvement rate

Chart

C1
GenProg 20 15.6 23.2

76.9% 64.2%
MGVMRepair 6 3.6 8.3

C3
GenProg 58 17.3 32.3

41.6% 32.8%
MGVMRepair 38 10.1 21.7

C15
GenProg 46 11.3 25.3

62.0% 46.6%
MGVMRepair 26 4.3 13.5

C25
GenProg 35 18.5 36.7

84.3% 81.7%
MGVMRepair 25 2.9 6.7

Math

M2
GenProg 42 45.6 63.4

89.3% 78.2%
MGVMRepair 9 4.9 13.8

M5
GenProg 63 58.2 68.3

90.5% 67.6%
MGVMRepair 15 5.5 22.1

M8
GenProg 25 44.8 80.6

88.8% 72.8%
MGVMRepair 11 5.0 21.9

M28
GenProg 53 66.2 89.1

90.6% 80.7%
MGVMRepair 17 6.2 17.2

M40
GenProg 54 78.3 89.4

96.8% 81.3%
MGVMRepair 6 2.5 16.7

M49
GenProg 43 90.2 100.4

91.7% 70.9%
MGVMRepair 25 7.5 29.2

M50
GenProg 20 21.5 43.6

83.3% 78.2%
MGVMRepair 9 3.6 9.5

M53
GenProg 64 77.2 117.3

92.1% 81.0%
MGVMRepair 31 6.1 22.3

M60
GenProg 42 37.4 50.9

80.5% 75.2%
MGVMRepair 38 7.3 12.6

M70
GenProg 38 18.3 23.8

80.3% 42.4%
MGVMRepair 22 3.6 13.7

M71
GenProg 64 28.9 42.7

66.4% 45.9%
MGVMRepair 14 9.7 23.1
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Project Bug_Id Repair approaches NCP Verification 
time (min)

Total time 
(min)

Validation time
improvement rate

Total time
improvement rate

Math

M73
GenProg 54 24.2 40.2

66.1% 38.1%
MGVMRepair 16 8.2 24.9

M78
GenProg 120 82.7 118.4

85.2% 58.7%
MGVMRepair 53 12.2 48.9

M80
GenProg 27 17.8 23.8

78.1% 52.9%
MGVMRepair 14 3.9 11.2

M81
GenProg 19 20.2 34.1

65.8% 49.3%
MGVMRepair 16 6.9 17.3

M82
GenProg 128 27.3 33.5

57.1% 35.5%
MGVMRepair 48 11.7 21.6

M84
GenProg 125 90.1 106.5

82.4% 74.2%
MGVMRepair 59 15.9 27.5

M85
GenProg 30 13.8 26.3

47.1% 13.7%
MGVMRepair 18 7.3 22.7

M95
GenProg 87 21.8 27.1

89.9% 80.8%
MGVMRepair 9 2.2 5.2

Time
T4

GenProg 36 11.2 19.6
23.2% 8.7%

MGVMRepair 27 8.6 17.9

T11
GenProg 24 7.3 10.7

34.2% 15.0%
MGVMRepair 11 4.8 9.1

25 buggy programs that can be repaired by MGVMRe-
pair and GenProg. The data collected for each buggy 
program is the average of 10 runs in order to reduce 
the effect of accidental factors during the repair.
As observed in Table 2, in terms of the number of can-
didate patches generated, GenProg needs to generate 
53 candidate patches per buggy program repaired on 
average, while MGVMRepair needs to generate only 
23 candidate patches per buggy program repaired on 
average. Compared with GenProg, MGVMRepair gen-
erates 56.6% fewer NCPs per buggy program repaired, 
which indicates that MGVMRepair can find valid 
patches for buggy programs after fewer evolutions. In 
terms of total program repair time, the longest time 
taken by MGVMRepair to repair a buggy program was 
48.9 minutes and the shortest time was 5.2 minutes, 
while the longest time taken by GenProg to repair a 
buggy program was 118.4 minutes and the shortest 
time was 10.7 minutes. MGVMRepair took only 458.6 
minutes to fully repair the 25 buggy programs, with 
an average of one buggy program every 18.34 minutes. 
Compared with repair time consumption of GenProg, 

the total time efficiency of MGVMRepair improved 
by 8.7% to 81.7%, and the total repair time efficiency 
increased by 57.1% on average, which indicates that 
MGVMRepair has a better advantage in the time effi-
ciency of repairing buggy programs.
In terms of candidate patch validation, the total time 
taken by GenProg to validate all individuals was 945.7 
minutes, with an average of 37.83 minutes per bug-
gy program validated, while the total time taken by 
MGVMRepair to validate all individuals was 164.5 
minutes, with an average of 6.58 minutes per buggy 
program validated. Compared with the GenProg, the 
total time efficiency of MGVMRepair improved by 
23.2% to 96.8%, and the time efficiency increased by 
73.8% on average. The test case prioritization tech-
nique is used to improve the efficiency of individual 
verification, which speeds up the process of the indi-
vidual verification. 
Figure 7 illustrates the total time spent on fault re-
pair for MGVMRepair and GenProg to visually com-
pare the efficiency of the repair and further explore 
the differences between different fault program. In 
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this graph, the x-axis represents the fault programs 
that can be repaired and the y-axis represents the to-
tal time spent on the fault repair (Unit: minute). Ac-
cording to Figure 7, it can be seen intuitively that the 
total time taken by MGVMRepair to repair the buggy 
program is much smaller than the total time required 
by GenProg, which indicates that MGVMRepair has a 
great efficiency.
Figure 8 shows the NCP comparison between 
MGVMRepair and GenProg on repairable faults. In 
this graph, the x-axis represents the fault program 
and the y-axis represents the number of candidate 
patches generated to repair the fault program. Ac-
cording to Figure 8, it can be seen that the number of 

Figure 7 
MGVMRepair and GenProg run time-consuming line graphs on repairable bugs

Figure 8 
Comparsion of NCP values between MGVMRepair and GenProg on repairable faults
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Figure 7 illustrates the total time spent on fault repair for 
MGVMRepair and GenProg to visually compare the 
efficiency of the repair and further explore the 
differences between different fault program. In this 
graph, the x-axis represents the fault programs that can 
be repaired and the y-axis represents the total time spent 
on the fault repair (Unit: minute). According to Figure 7, 
it can be seen intuitively that the total time taken by 
MGVMRepair to repair the buggy program is much 
smaller than the total time required by GenProg, which 
indicates that MGVMRepair has a great efficiency. 

Figure 8 shows the NCP comparison between 
MGVMRepair and GenProg on repairable faults. In this 

graph, the x-axis represents the fault program and 
the y-axis represents the number of candidate 
patches generated to repair the fault program. 
According to Figure 8, it can be seen that the 
number of NCPs generated during the repair 
process is not the same either between different 
fault programs or between different fault items. 
The different number of NCPs indicates that the 
difficulty of their repair is not consistent. Since the 
dataset used in the experiment originated from 
actual development, the project development time 
is long and large, and the types and locations of 
errors vary contained in each defective program, so 
the data fluctuation in the repair process will occur 
to different degrees. The smaller the NCP value 
indicates that the repair method has fewer repair 
attempts to find a valid patch for the defective 
program, and it is clear that MGVMRepair has 
better repair results from Figure 8. 

Compared with the GenProg, MGVMRepair 
overcomes the drawbacks of the coarse-grained 
repair approach by using materials in an overly 
simplistic manner to increase the successful repair 
rate and the time efficiency of the buggy programs. 
And MGVMRepair uses the test case prioritization 
technique which improves the efficiency of 
individual verification to reduce the total time 
taken to repair the buggy program. 

5.2 Comparison Between 
MGVMRepair and Other 
Existing Repair Approaches 
To further validate the effectiveness of repair, we 
compared MGVMRepair with four fault repair 
approaches, SimFix [9], CapGen [23], jKali [16], 
jMutRepair [16] and SketchFix[7], as shown in 
Table 3. We choose these five repair approaches to 
compare with MGVMRepair because they are 
typical approach in repair field. By analyzing the 
source code of the five methods, the time 
complexity of MGVMRepair is O(n3), while that 
of SimFix, CapGen, jKali, jMutRepair and 
SketchFix are O(2n), O(n3), O(n2), O(n3) and O(n3), 
respectively. From the table, it can be seen that 
MGVMRepair successfully repaired 40 buggy 
programs with a success rate of 17.86%. But in 
other approaches, only up to 28 buggy programs 
were repaired with a maximum success rate of 
12.50%. In order to reduce the influence of chance 
factors, the data collected for each defect program 
is the average of 10 runs. 

In terms of the number of successful fixes for 
buggy programs, MGVMRepair fixes 15, 12, 18, 
23 and 19 more buggy programs than CapGen, 
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NCPs generated during the repair process is not the 
same either between different fault programs or be-
tween different fault items. The different number of 
NCPs indicates that the difficulty of their repair is not 
consistent. Since the dataset used in the experiment 
originated from actual development, the project de-
velopment time is long and large, and the types and 
locations of errors vary contained in each defective 
program, so the data fluctuation in the repair process 
will occur to different degrees. The smaller the NCP 
value indicates that the repair method has fewer re-
pair attempts to find a valid patch for the defective 
program, and it is clear that MGVMRepair has better 
repair results from Figure 8.

  

on average, which indicates that MGVMRepair has a 
better advantage in the time efficiency of repairing 
buggy programs. 

In terms of candidate patch validation, the total time 
taken by GenProg to validate all individuals was 945.7 
minutes, with an average of 37.83 minutes per buggy 
program validated, while the total time taken by 
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minutes, with an average of 6.58 minutes per buggy 
program validated. Compared with the GenProg, the 
total time efficiency of MGVMRepair improved by 
23.2% to 96.8%, and the time efficiency increased by 
73.8% on average. The test case prioritization technique 
is used to improve the efficiency of individual 
verification, which speeds up the process of the 
individual verification.  
Figure 7  
MGVMRepair and GenProg run time-consuming line 
graphs on repairable bugs 

 
Figure 8  
Comparsion of NCP values between MGVMRepair and 
GenProg on repairable faults 

 

Figure 7 illustrates the total time spent on fault repair for 
MGVMRepair and GenProg to visually compare the 
efficiency of the repair and further explore the 
differences between different fault program. In this 
graph, the x-axis represents the fault programs that can 
be repaired and the y-axis represents the total time spent 
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it can be seen intuitively that the total time taken by 
MGVMRepair to repair the buggy program is much 
smaller than the total time required by GenProg, which 
indicates that MGVMRepair has a great efficiency. 
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MGVMRepair and GenProg on repairable faults. In this 

graph, the x-axis represents the fault program and 
the y-axis represents the number of candidate 
patches generated to repair the fault program. 
According to Figure 8, it can be seen that the 
number of NCPs generated during the repair 
process is not the same either between different 
fault programs or between different fault items. 
The different number of NCPs indicates that the 
difficulty of their repair is not consistent. Since the 
dataset used in the experiment originated from 
actual development, the project development time 
is long and large, and the types and locations of 
errors vary contained in each defective program, so 
the data fluctuation in the repair process will occur 
to different degrees. The smaller the NCP value 
indicates that the repair method has fewer repair 
attempts to find a valid patch for the defective 
program, and it is clear that MGVMRepair has 
better repair results from Figure 8. 

Compared with the GenProg, MGVMRepair 
overcomes the drawbacks of the coarse-grained 
repair approach by using materials in an overly 
simplistic manner to increase the successful repair 
rate and the time efficiency of the buggy programs. 
And MGVMRepair uses the test case prioritization 
technique which improves the efficiency of 
individual verification to reduce the total time 
taken to repair the buggy program. 

5.2 Comparison Between 
MGVMRepair and Other 
Existing Repair Approaches 
To further validate the effectiveness of repair, we 
compared MGVMRepair with four fault repair 
approaches, SimFix [9], CapGen [23], jKali [16], 
jMutRepair [16] and SketchFix[7], as shown in 
Table 3. We choose these five repair approaches to 
compare with MGVMRepair because they are 
typical approach in repair field. By analyzing the 
source code of the five methods, the time 
complexity of MGVMRepair is O(n3), while that 
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respectively. From the table, it can be seen that 
MGVMRepair successfully repaired 40 buggy 
programs with a success rate of 17.86%. But in 
other approaches, only up to 28 buggy programs 
were repaired with a maximum success rate of 
12.50%. In order to reduce the influence of chance 
factors, the data collected for each defect program 
is the average of 10 runs. 

In terms of the number of successful fixes for 
buggy programs, MGVMRepair fixes 15, 12, 18, 
23 and 19 more buggy programs than CapGen, 
SimFix, jKali, jMutRepair and SketchFix, 
respectively, with 60%, 43%, 82%, 135% and 90% 
higher fix success rates, respectively. The reason 
for the better repair results of MGVMRepair is the 
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Compared with the GenProg, MGVMRepair over-
comes the drawbacks of the coarse-grained repair 
approach by using materials in an overly simplis-
tic manner to increase the successful repair rate 
and the time efficiency of the buggy programs. And 
MGVMRepair uses the test case prioritization tech-
nique which improves the efficiency of individual 
verification to reduce the total time taken to repair 
the buggy program.

5.2. Comparison Between MGVMRepair and 
Other Existing Repair Approaches
To further validate the effectiveness of repair, we 
compared MGVMRepair with four fault repair 
approaches, SimFix [9], CapGen [23], jKali [16], 
jMutRepair [16] and SketchFix[7], as shown in Table 
3. We choose these five repair approaches to com-
pare with MGVMRepair because they are typical ap-
proach in repair field. By analyzing the source code 
of the five methods, the time complexity of MGVM-
Repair is O(n3), while that of SimFix, CapGen, jKali, 
jMutRepair and SketchFix are O(2n), O(n3), O(n2), 
O(n3) and O(n3), respectively. From the table, it can 
be seen that MGVMRepair successfully repaired 40 
buggy programs with a success rate of 17.86%. But in 
other approaches, only up to 28 buggy programs were 
repaired with a maximum success rate of 12.50%. In 
order to reduce the influence of chance factors, the 
data collected for each defect program is the average 
of 10 runs.
In terms of the number of successful fixes for buggy 
programs, MGVMRepair fixes 15, 12, 18, 23 and 19 

more buggy programs than CapGen, SimFix, jKali, 
jMutRepair and SketchFix, respectively, with 60%, 
43%, 82%, 135% and 90% higher fix success rates, re-
spectively. The reason for the better repair results of 
MGVMRepair is the ability to filter ingredient state-
ments from a huge space using similarity as a con-
straint and the ability to use repair ingredients at a 
fine-grained level. The MGVMRepair repair method 
not only finds ingredient statements that meet the 
constraints quickly but also applies the ingredient in 
a more appropriate manner, increasing the success 
rate of the fault repair process.
Figure 9 shows the comparison of the number of 
fixable fauts between MGVMRepair and CapGen, 
SimFix, jKali, jMutRepair and SketchFix on the four 
items Chart, Math, Lang, and Time. The details of the 
repairable fault procedures of MGVMRepair and the 
other five repair approaches on Chart, Math, Lang, 
and Time were further counted, as shown in Table 4. 
It can be visually seen that MGVMRepair is able to fix 
more of buggy programs than the existing fault repair 
approaches from Figure 9 and Table 4. 
MGVMRepair has the better repair results because 
it is able to filter ingredient statements from a huge 
space using similarity as a constraint and because 
it is able to use repair ingredients at a fine-grained 
level. The MGVMRepair not only finds ingredient 
statements that meet the constraints quickly, but 
also applies the ingredient in a more appropriate 
manner, lead to increasing the success rate of repair 
process. To sum up, MGVMRepair can obviously im-
prove the repair success rate of buggy programs.

Table 3
Repair Quantity Comparison between MGVMRepair and CapGen, SimFix, jKali, jMutRepair, SketchFix

Project Total number of 
faults MGVMRepair CapGen SimFix jKali jMutRepair SketchFix

Chart 26 8 4 4 6 4 8

Math 106 25 16 14 14 11 8

Lang 65 4 5 9 0 1 4

Time 27 3 0 1 2 1 1

Total 224 40 25 28 22 17 21

Success rate - 17.86% 11.16% 12.50% 9.80% 7.59% 9.40%
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Figure 9 
Comparison of the number of repairable faults between MGVMRepair and other repair approaches on Chart, Math, Lang, 
and Time
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5.3. Summary
In a word, our approach has the higher efficiency 
than the compared CapGen, SimFix, jKali, jMutRe-
pair and SketchFix from the above investigation. Be-
cause GenProg, jKali and jMutRepair approach work 
at the statement level, and their repair granularity is 
too coarse, their repair is lower efficiency than that of 
ours. The granularity of repair of SimFix, CapGen and 
SketchFix is fine-grained, the search space of the can-
didate patches is so large, resulting in a lower repair 
efficiency of program repair than that of ours. 

6. Conclusion and Future Work
In this paper, we propose MGVMRepair, an auto-
matic repair method based on hybrid granularity and 
variable mapping for fault program. MGVMRepair 
follows the general framework of random search al-
gorithm, which is able to apply ingredients at fine 
granularity level after filtering out the repair materi-
als that meet the constraints. Also, a test case prior-
itization technique based on modification point ex-
ecution information is proposed to further improve 
the efficiency of program verification. Experimental 

results on Defects4J show that the repair efficiency 
of MGVMRepair is higher than the existing program 
repair approaches, GenProg, CapGen, SimFix, jKali, 
jMutRepair, SketchFix.
Under the actual scenario of fixing faulty program, 
there is often more than one fault in the program. 
However, the current fault repair approaches have fo-
cused on exploring the automatic repair of single-fault 
programs, and the automatic repair for multi-fault 
programs is slightly under-researched. In the future, 
we want to consider the automatic repair of software 
faults under a multi-fault environment. 
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