
Information Technology and Control 2023/1/5268

Automatic Repair of
Java Programs with
Mixed Granularity and
Variable Mapping

ITC 1/52
Information Technology
and Control
Vol. 52 / No. 1 / 2023
pp. 68-84
DOI 10.5755/j01.itc.52.1.30715

Automatic Repair of Java Programs with Mixed Granularity and Variable Mapping

Received 2022/02/14 Accepted after revision 2022/11/07

https://doi.org/10.5755/j01.itc.52.1.30715

HOW TO CITE: Cao, H., Cui, Z., Deng, M., Chu, Y., Meng, Y. (2023). Automatic Repair of Java Programs with Mixed Granularity and
Variable Mapping. Information Technology and Control, 52(1), 68-84. https://doi.org/10.5755/j01.itc.52.1.30715

Heling Cao
Key Laboratory of Grain Information Processing and Control, Henan; Ministry of Education; Henan University of
Technology; Zhengzhou 450001; China; e-mail: caohl@haut.edu.cn

Zhiying Cui, Miaolei Deng, Yonghe Chu, Yangxia Meng
College of Information Science and Engineering; Henan University of Technology; Zhengzhou 450001; China;
e-mails: cuizhiying2021@163.com, dengmiaolei@haut.edu.cn, chuyonghe@haut.edu.cn, 1958502687@qq.com

Corresponding author: dengmiaolei@haut.edu.cn

During the process of software repair, since the granularity of repair is too coarse and the way of fixing ingre-
dient is too simple, the repair efficiency needs to be further improved. To resolve the problems, we propose a
Mixed Granularity and Variable Mapping based automatic software Repair (MGVMRepair). We adopt random
search algorithm as the framework of program evolution, and utilize the mapping relationship between vari-
ables as an auxiliary specification. Firstly, fault localization is used to locate the suspicious statements and to
form a list of modification points. Secondly, the ingredient of program repair at statement level is obtained, and
the mapping relationship of variables is established. Then, the test case prioritization is improved from the per-
spective of the modification point. Finally, a program passes all test cases or the program iteration terminates.
The experimental results show that MGVMRepair has a higher repair success rate than GenProg, CapGen,
SimFix, jKali, jMutRepair and SketchFix on Defects4J.
KEYWORDS: Automatic software repair, random search, mixed repair granularity, test case prioritization.

69Information Technology and Control 2023/1/52

1. Introduction
The application of the software has been integrat-
ed into all aspects of life, involving many fields such
as national defense, aviation, economy, and medical
care. The gradual generation of various complex re-
quirements has also increased the complexity of the
software, and faults are inevitable in software pro-
grams. A variety of software faults are generated al-
most every day, and the types of faults have become
more complicated. In 2006, Mozilla’s software main-
tenance staff observed that approximately 300 pro-
gram bugs were found every day, a number far larger
than Mozilla’s capacity to handle [24]. The automatic
repair is a promising approach to reduce the costs of
manual debugging and increase software quality [18].
Although the researchers have proposed a variety
of approaches and technologies to support the auto-
matic repair of software faults, the existing research
results show that the current automatic repair tech-
nology of software faults is still in its infancy, and the
efficiency need to be improved. Fault repair is gener-
ally is generally time-consuming and expensive pro-
cess for developers.
Existing fault repair techniques work at the state-
ment level, which are too coarse in repair granularity.
Le Goues et al. [14] implemented the fault repair pro-
totype tool GenProg, which was the first fault repair
tool based on genetic algorithm. Subsequently, Le
Goues et al. [13] carried out a series of improvements
and empirical studies on GenProg. Qi et al. [20] fol-
lowed the mutation rules of GenProg and replaced
the genetic algorithm in GenProg with random search
algorithm to implement the prototype tool RSRepair
for fault repair. Kim et al. [12] summarized different
repair strategies from manually written patches to
implement the fault repair prototype tool PAR. The
above repair techniques [12-14, 20] work at the state-
ment level, and the repair granularity is too coarse,
which fails to use repair materials in a proper way.
The repair material cannot be reasonably utilized,
more fault programs cannot be repaired, therefore,
these approaches have the lower efficiency of the re-
pair.
Currently, there are fault repair techniques based on
fine-grained levels such as SimFix [9], CapGen [23]
and SketchFix [7]. Jiang et al. [9] proposed SimFix,

which is an automatic repair method based on fine-
grained code differences, while using similarity as a
constraint for donor fragment selection and program
evolution at the abstract syntax tree nodes. Wen et al.
[23] proposed CapGen, which used the contextual in-
formation of the abstract syntax tree nodes for buggy
program repair, and considered the abstract syntax
tree node types and suspicious code elements of the
desired components when selecting mutation opera-
tors. Hua et al. [7] proposed SketchFix, which worked
in repairing bugs with expression manipulation at
the AST node-level granularity, and utilized runtime
information to substantially prune the space of can-
didate. In the above fine-grained program repair ap-
proaches, the search space of the candidate patches is
so large that the computational cost is high, resulting
in a lower repair efficiency of program repair.
To address the problems of too coarse in repair gran-
ularity, inaccurate material usage and low repair suc-
cess rate, we propose a fault program evolution repair
method MGVMRepair based on hybrid granularity
and variable mapping. We mainly adopt a random
search algorithm in program evolution, and use the
mapping relationship between variables as an aux-
iliary specification. To summarize, this paper makes
the following contributions:
 _ We propose a mixed granularity defect repair

method, MGVMRepair to improve the success rate
of buggy program repair.

 _ We propose a variable mapping approach that
enables better use of defect repair ingredients at a
fine-grained level.

 _ We propose a test case prioritization technique
based on modification point execution information
that can further improve the efficiency of program
verification.

 _ We conduct the experimental study 224 real world
faults on Defects4J defect dataset to show that
MGVMRepair has higher repair success rate than
the existing defect repair approaches.

The rest of this paper is organized as follows. Sec-
tion2 provides an overview of related works. Section 3
outlines the background of automatic software repair.
Section 4 elaborates the framework of our approach.

Information Technology and Control 2023/1/5270

After that, we introduce the experimental study on
the Defects4j in Section 5. Finally, we conclude the
paper with potential future directions in Section 6.

2. Related Work
2.1. Coarse-grained Based Program Fixes
Coarse-grained based program fixes are at statement
level. Le Goues et al. [14] implemented the fault repair
prototype tool GenProg, which was the first fault re-
pair tool based on genetic algorithm. Subsequently, a
series of improvements and empirical studies on Gen-
Prog were conducted in Le Goues et al. [6, 13, 22]. Qi
et al. [20] followed the mutation rules of GenProg and
used a random search algorithm instead of the genet-
ic algorithm in GenProg to implement the fault repair
prototype tool RSRepair. The experimental results
showed that GenProg did not take full advantage of
the genetic algorithm. Kim et al. [12] summarized dif-
ferent repair strategies from manually written patch-
es to implement the fault repair prototype tool PAR.
Martinez et al. [16] present Astor, a publicly available
program repair library that includes the implementa-
tion of three notable repair approaches (jGenProg2,
jKali and jMutRepair) to explore the design space of
automatic repair for Java. Le et al. [15] indicated that
many real-world bugs cannot be repaired by existing
techniques even after more than 12 hours of computa-
tion in a multi-core cloud environment. Afzal et al. [3]
proposed SOSRepair, an automated program repair
technique that used semantic code search to replace
candidate buggy code regions with behaviorally-sim-
ilar code written by humans. Chen et al. [5] proposed
SequenceR, a sequence-to-sequence deep learning
model that aimed at automatically fixing bugs by gen-
erating one-line patches.
The granularity of these approaches is too coarse to
apply repair materials in a more appropriate way
and to fix more buggy programs. Our approach has
the higher efficiency than the approaches mentioned
above, due to making use of a mixed granularity and
variable mapping repair.

2.2. Fine-grained Based Program Fixes
Fine-grained based program fixes are at expression
level. Jiang et al. [9] proposed SimFix to extract an
abstract search space from existing patches and

similar code from buggy source programs to form a
concrete candidate patch search space, and obtain
program patches from the intersection of these two
search spaces. Subsequently, Jiang et al. [8] proposed
another program transformation approach, GEN-
PAT, which inferred program transformations based
on code context and statistical information from a
large code corpus. Wen et al. [23] proposed CapGen
at a fine-grained level (e.g., expressions) to extract
the contextual environment information of abstract
syntax tree nodes and to select repair operators and
ingredients under the contextual environment. Hua
et al. [7] proposed an on-demand repair technique,
SketchFix, which tightly integrated generation and
validation phases of candidate programs. The tech-
nique reduced program repair to program synthesis
by transforming faulty programs to sketches at the
AST node-level granularity. Yuan and Banzhaf [25]
proposed ARJA, a lower-granularity patch represen-
tation which properly decoupled the search subspac-
es of likely-buggy locations, operation types and in-
gredient statements. Thus, genetic programming can
traverse the search space more effectively.
If the granularity of fault repair approaches is too
fine, it is easy to cause explosion of search space of
candidate patch. Our approach further improves the
efficiency of the verification and reduces the sorting
times of test cases. Therefore, our approach owns the
higher efficiency than the compared SimFix, CapGen,
and SketchFix approach.

3. Background

3.1. Repair Granularity
The repair granularity of fault repair approaches is
a critical issue in the field of automatic fault repair.
If the granularity is too coarse (e.g., at the statement
level), the repair material cannot be reasonably used,
if the granularity is too fine (e.g., at the expression lev-
el), search space of the candidate patch will explode
easily. Existing fault repair techniques[6, 12-14, 20-
21] work at the statement level, and the repair gran-
ularity of these methods is too coarse to apply the
repair material in a more appropriate way to repair
more defective programs.
As shown in Figure 1, an expression fault in the re-
turn statement at line 417 caused a fault in the Math

71Information Technology and Control 2023/1/52

63 project on Defects4J. To fix the fault, the software
maintainer changed the expression at the statement
to equals(x,y,1). In this buggy program, the correct
repair material is present in lines 422 and 442 of the
program. If the repair is performed at statement-lev-
el granularity and the incorrect statement is directly
replaced using another statement, the program fault
cannot be eliminated by replacing the statement at
lines 422 and 442. This motivates this paper to con-
sider a more fine-grained repair approach to fix the
buggy programs.
Martinez et al. [17] argue that code redundancy is
more obvious at a finer granularity than the statement
level, which indicates that better repair material can
be found at finer granularity levels and that buggy
programs are more likely to be repairable. Based on
the current repair technology and research status,
this paper proposes a fault program evolution repair
method based on mixed granularity and variable map-
ping to solve the problems of too rough granularity at
the statement level, too simple material usage and a
low repair success rate.

3.2. Random Search Algorithm
Compared with genetic programming, the random
search algorithm is the simplest way of selection.
When selecting individuals of the population for evo-
lution, the genetic programming resorts to the fitness
function as a constraint for individual selection, but
the random search algorithm randomly selects indi-
viduals for the evolution of the buggy program.
In theory, genetic programming using fitness func-
tion evaluation can better guide the population evo-
lution process. But, one of the challenges in the field
of automatic repair of faults by intelligent evolution-
ary algorithms is how to set the appropriate fitness
function to ensure the efficiency and accuracy of in-

Figure 1
The faulty statement, correct statement and repair
ingredient of Math 63 project on Defects4J

level. Jiang et al. [9] proposed SimFix to extract an
abstract search space from existing patches and similar
code from buggy source programs to form a concrete
candidate patch search space, and obtain program
patches from the intersection of these two search spaces.
Subsequently, Jiang et al. [8] proposed another program
transformation approach, GENPAT, which inferred
program transformations based on code context and
statistical information from a large code corpus. Wen et
al. [23] proposed CapGen at a fine-grained level (e.g.,
expressions) to extract the contextual environment
information of abstract syntax tree nodes and to select
repair operators and ingredients under the contextual
environment. Hua et al. [7] proposed an on-demand
repair technique, SketchFix, which tightly integrated
generation and validation phases of candidate programs.
The technique reduced program repair to program
synthesis by transforming faulty programs to sketches at
the AST node-level granularity. Yuan and Banzhaf [25]
proposed ARJA, a lower-granularity patch
representation which properly decoupled the search
subspaces of likely-buggy locations, operation types and
ingredient statements. Thus, genetic programming can
traverse the search space more effectively.

If the granularity of fault repair approaches is too fine, it
is easy to cause explosion of search space of candidate
patch. Our approach further improves the efficiency of
the verification and reduces the sorting times of test
cases. Therefore, our approach owns the higher
efficiency than the compared SimFix, CapGen, and
SketchFix approach.

3. Background
3.1 Repair Granularity
The repair granularity of fault repair approaches is a
critical issue in the field of automatic fault repair. If the
granularity is too coarse (e.g., at the statement level), the
repair material cannot be reasonably used, if the
granularity is too fine (e.g., at the expression level),
search space of the candidate patch will explode easily.
Existing fault repair techniques[6, 12-14, 20-21] work at
the statement level, and the repair granularity of these
methods is too coarse to apply the repair material in a
more appropriate way to repair more defective programs.

As shown in Figure 1, an expression fault in the return
statement at line 417 caused a fault in the Math 63 project
on Defects4J. To fix the fault, the software maintainer
changed the expression at the statement to equals(x,y,1).
In this buggy program, the correct repair material is
present in lines 422 and 442 of the program. If the repair
is performed at statement-level granularity and the
incorrect statement is directly replaced using another
statement, the program fault cannot be eliminated by
replacing the statement at lines 422 and 442. This
motivates this paper to consider a more fine-grained
repair approach to fix the buggy programs.

Figure 1

Martinez et al. [17] argue that code redundancy is
more obvious at a finer granularity than the
statement level, which indicates that better repair
material can be found at finer granularity levels and
that buggy programs are more likely to be
repairable. Based on the current repair technology
and research status, this paper proposes a fault
program evolution repair method based on mixed
granularity and variable mapping to solve the
problems of too rough granularity at the statement
level, too simple material usage and a low repair
success rate.

3.2 Random Search Algorithm
Compared with genetic programming, the random
search algorithm is the simplest way of selection.
When selecting individuals of the population for
evolution, the genetic programming resorts to the
fitness function as a constraint for individual
selection, but the random search algorithm
randomly selects individuals for the evolution of
the buggy program.

In theory, genetic programming using fitness
function evaluation can better guide the population
evolution process. But, one of the challenges in the
field of automatic repair of faults by intelligent
evolutionary algorithms is how to set the
appropriate fitness function to ensure the
efficiency and accuracy of individual evaluation. If
the fitness function is set too simply, it will not be
able to distinguish the variability among
individuals, which will reduce the repair effect or
even lead to the failure of the repair. If the fitness
function is set too complex, it will increase the time
complexity of the repair algorithm and expand the
time overhead of program evolution. In a study by
Qi et al. [20], it was found that the existing fault
repair method GenProg did not give full play the
advantage of genetic programming, however a
good repair effect could also be achieved by using
a random search algorithm.

4. Our Approach
Different from the current coarse-grained fault
program repair and fine-grained fault program
repair, we propose a combination of coarse-grained
and fine-grained fault program repair method
MGVMRepair. At the same time, in order to
further improve the efficiency of patch

//Faulty statement
417: - return (Double.isNaN(x) && Double.isNaN(y)) || x == y;
//Correct statement
417: + return equals(x,y,1);
//Repair Ingredient
422: return (Double.isNaN(x) && Double.isNaN(y)) || equals(x,y,1);
442: return equals(x,y,1) || FastMath.abs(y - x) <= eps;

dividual evaluation. If the fitness function is set too
simply, it will not be able to distinguish the variability
among individuals, which will reduce the repair effect
or even lead to the failure of the repair. If the fitness
function is set too complex, it will increase the time
complexity of the repair algorithm and expand the
time overhead of program evolution. In a study by Qi
et al. [20], it was found that the existing fault repair
method GenProg did not give full play the advantage
of genetic programming, however a good repair effect
could also be achieved by using a random search al-
gorithm.

4. Our Approach
Different from the current coarse-grained fault pro-
gram repair and fine-grained fault program repair,
we propose a combination of coarse-grained and
fine-grained fault program repair method MGVM-
Repair. At the same time, in order to further improve
the efficiency of patch verification, a test case priori-
tization technology based on the execution informa-
tion of the modification point is proposed. This fault
program repair method first uses fault localization
technology to locate suspicious sentences and form
a list of modified points. Secondly, the material space
of the current sentence level is obtained. When se-
lecting materials, the mapping relationship between
the variables in the material sentence and the modi-
fied point sentence is established, and the variable or
expression required for repair is selected according
to the variable mapping relationship to replace the
modified point sentence variable or expression state-
ment. The entire program repair process is based on
the idea of random search algorithm. When selecting
population individuals for evolution, the selection is
no longer based on the fitness value of individuals in
genetic programming, but individuals are random-
ly selected for evolution. Then according to the test
case execution status of the modified point, a test case
priority execution information table is maintained
for each modification point. The priority execution
information table is dynamically adjusted according
to the test case execution process. This program ver-
ification method can further improve the verification
efficiency of candidate patches. The framework of our
approach is shown in Figure 2.

Information Technology and Control 2023/1/5272

1 Fault localization. In this stage, the fault source pro-
cedure is localized and analyzed by using the fault
localization technique Ochiai, whose suspicious
value is calculated as described in Equation (1).

verification, a test case prioritization technology based
on the execution information of the modification point is
proposed. This fault program repair method first uses
fault localization technology to locate suspicious
sentences and form a list of modified points. Secondly,
the material space of the current sentence level is
obtained. When selecting materials, the mapping
relationship between the variables in the material
sentence and the modified point sentence is established,
and the variable or expression required for repair is
selected according to the variable mapping relationship
to replace the modified point sentence variable or
expression statement. The entire program repair process
is based on the idea of random search algorithm. When
selecting population individuals for evolution, the
selection is no longer based on the fitness value of
individuals in genetic programming, but individuals are
randomly selected for evolution. Then according to the
test case execution status of the modified point, a test
case priority execution information table is maintained
for each modification point. The priority execution
information table is dynamically adjusted according to
the test case execution process. This program
verification method can further improve the verification
efficiency of candidate patches. The framework of our
approach is shown in Figure 2.
Figure 2

(1) Fault localization. In this stage, the fault source
procedure is localized and analyzed by using the fault
localization technique Ochiai, whose suspicious value is
calculated as described in Equation (1).

Ochiai(s)=
nef(s)

�nf×(nef(s)+nep(s))
 (1)

Among them, s represents the program entity, nep(s) and
nef(s) denote the number of successful test cases and the
number of failed test cases covering program entity s,
respectively, and nf denotes the number of all failed test
cases of program entity s .

(2) Patch generation. The program undergoes evolution
using a mixed-granularity evolution technique, where
the search space of the material is formed at the
statement level and the expressions and variables in the
ingredients are applied at the expression level. For
specific fixes, ingredient statements are obtained from
the ingredient space and modification points are selected

from the list of modification points. The types and
names of expressions and variables in ingredient
statements and modification point statements are
extracted. Then the mapping relationship between
modification points and variables in the ingredient
is established, and is used as the basis for
expression replacement. The constructed variable
mapping relationship is a constraint condition for
the application of material, and is also utilized to
guide the evolution process. On this foundation,
the fault procedure is evolved according to the idea
of random search algorithm. This is, individuals
are not selected according to the fitness values in
genetic programming, but are randomly selected
when selecting individuals of the population for
evolution.

(3) Patch verification. After the candidate patches
are generated by program evolution, test cases
need to be run repeatedly to verify the validity of
the candidate patches. During this phase, a test case
execution information table is maintained for each
modification point based on the test case execution
at the modification point, and the table is
dynamically adjusted according to the test case
execution process. This verification strategy can
reduce the time complexity of the repair algorithm
and decrease the program verification time without
adjusting the test case execution order for each
individual verification.
4.1 Fault Localization
Before fixing a buggy program, it is necessary to
find out the location of likely-debugs in the
program. Different fault localization techniques
have different effects on the process of candidate
patch generation. If the real bug is located in a
program statement with a higher suspicious value,
the correct patch can be found in a shorter time
with fewer repair attempts. If the real bug is located
in a program statement with a lower suspicious
value, it may take more computational resources to
repair the buggy program or even cause the
program to fail to repair. Therefore, the accuracy
of fault localization technique plays a crucial role
in the repair of buggy programs. In an empirical
study by Abreu et al. [1, 2], it found that the fault
localization effectiveness of Ochiai [2] is better
than that of Tarantula [10] and Jaccard [4].

The modification points are selected according to
the suspiciousness of the statements after fault
localization, and a list of modification points is
formed. In the actual repair process, the list of
modification points is the suspicious space in the
evolutionary repair of the buggy program, and the
weight of modification points is calculated as
shown in Equation (2).

W(i)=
Si

∑ Sj
n
j=1

, (2)

List of
Modification

Points

Fault localization

Program Patch

Locating
suspicious
statements

Random selection of
individual evolution

Patch generation

Test cases sets

Buggy
program

Test cases
execution table

Patch verification

Test cases
sets

Variable mapping

.
(1)

Among them, s represents the program entity, nep(s)
and nef(s) denote the number of successful test cas-
es and the number of failed test cases covering pro-
gram entity s, respectively, and nf denotes the num-
ber of all failed test cases of program entity s

2 Patch generation. The program undergoes evo-
lution using a mixed-granularity evolution tech-
nique, where the search space of the material is
formed at the statement level and the expressions
and variables in the ingredients are applied at
the expression level. For specific fixes, ingredient
statements are obtained from the ingredient space
and modification points are selected from the list
of modification points. The types and names of ex-
pressions and variables in ingredient statements
and modification point statements are extracted.
Then the mapping relationship between modi-
fication points and variables in the ingredient is
established, and is used as the basis for expression
replacement. The constructed variable mapping
relationship is a constraint condition for the ap-

Figure 2
The framework of our approach

verification, a test case prioritization technology based
on the execution information of the modification point is
proposed. This fault program repair method first uses
fault localization technology to locate suspicious
sentences and form a list of modified points. Secondly,
the material space of the current sentence level is
obtained. When selecting materials, the mapping
relationship between the variables in the material
sentence and the modified point sentence is established,
and the variable or expression required for repair is
selected according to the variable mapping relationship
to replace the modified point sentence variable or
expression statement. The entire program repair process
is based on the idea of random search algorithm. When
selecting population individuals for evolution, the
selection is no longer based on the fitness value of
individuals in genetic programming, but individuals are
randomly selected for evolution. Then according to the
test case execution status of the modified point, a test
case priority execution information table is maintained
for each modification point. The priority execution
information table is dynamically adjusted according to
the test case execution process. This program
verification method can further improve the verification
efficiency of candidate patches. The framework of our
approach is shown in Figure 2.
Figure 2

(1) Fault localization. In this stage, the fault source
procedure is localized and analyzed by using the fault
localization technique Ochiai, whose suspicious value is
calculated as described in Equation (1).

Ochiai(s)=
nef(s)

�nf×(nef(s)+nep(s))
. (1)

Among them, s represents the program entity, nep(s) and
nef(s) denote the number of successful test cases and the
number of failed test cases covering program entity s,
respectively, and nf denotes the number of all failed test
cases of program entity s .

(2) Patch generation. The program undergoes evolution
using a mixed-granularity evolution technique, where
the search space of the material is formed at the
statement level and the expressions and variables in the
ingredients are applied at the expression level. For
specific fixes, ingredient statements are obtained from
the ingredient space and modification points are selected

from the list of modification points. The types and
names of expressions and variables in ingredient
statements and modification point statements are
extracted. Then the mapping relationship between
modification points and variables in the ingredient
is established, and is used as the basis for
expression replacement. The constructed variable
mapping relationship is a constraint condition for
the application of material, and is also utilized to
guide the evolution process. On this foundation,
the fault procedure is evolved according to the idea
of random search algorithm. This is, individuals
are not selected according to the fitness values in
genetic programming, but are randomly selected
when selecting individuals of the population for
evolution.

(3) Patch verification. After the candidate patches
are generated by program evolution, test cases
need to be run repeatedly to verify the validity of
the candidate patches. During this phase, a test case
execution information table is maintained for each
modification point based on the test case execution
at the modification point, and the table is
dynamically adjusted according to the test case
execution process. This verification strategy can
reduce the time complexity of the repair algorithm
and decrease the program verification time without
adjusting the test case execution order for each
individual verification.
4.1 Fault Localization
Before fixing a buggy program, it is necessary to
find out the location of likely-debugs in the
program. Different fault localization techniques
have different effects on the process of candidate
patch generation. If the real bug is located in a
program statement with a higher suspicious value,
the correct patch can be found in a shorter time
with fewer repair attempts. If the real bug is located
in a program statement with a lower suspicious
value, it may take more computational resources to
repair the buggy program or even cause the
program to fail to repair. Therefore, the accuracy
of fault localization technique plays a crucial role
in the repair of buggy programs. In an empirical
study by Abreu et al. [1, 2], it found that the fault
localization effectiveness of Ochiai [2] is better
than that of Tarantula [10] and Jaccard [4].

The modification points are selected according to
the suspiciousness of the statements after fault
localization, and a list of modification points is
formed. In the actual repair process, the list of
modification points is the suspicious space in the
evolutionary repair of the buggy program, and the
weight of modification points is calculated as
shown in Equation (2).

W(i)=
Si

∑ Sj
n
j=1

, (2)

List of
Modification

Points

Fault localization

Program Patch

Locating
suspicious
statements

Random selection of
individual evolution

Patch generation

Test cases sets

Buggy
program

Test cases
execution table

Patch verification

Test cases
sets

Variable mapping

plication of material, and is also utilized to guide
the evolution process. On this foundation, the fault
procedure is evolved according to the idea of ran-
dom search algorithm. This is, individuals are not
selected according to the fitness values in genetic
programming, but are randomly selected when se-
lecting individuals of the population for evolution.

3 Patch verification. After the candidate patches are
generated by program evolution, test cases need to
be run repeatedly to verify the validity of the can-
didate patches. During this phase, a test case exe-
cution information table is maintained for each
modification point based on the test case execution
at the modification point, and the table is dynami-
cally adjusted according to the test case execution
process. This verification strategy can reduce the
time complexity of the repair algorithm and de-
crease the program verification time without ad-
justing the test case execution order for each indi-
vidual verification.

4.1. Fault Localization
Before fixing a buggy program, it is necessary to find
out the location of likely-debugs in the program. Dif-
ferent fault localization techniques have different
effects on the process of candidate patch generation.
If the real bug is located in a program statement with
a higher suspicious value, the correct patch can be
found in a shorter time with fewer repair attempts.

73Information Technology and Control 2023/1/52

If the real bug is located in a program statement with
a lower suspicious value, it may take more computa-
tional resources to repair the buggy program or even
cause the program to fail to repair. Therefore, the ac-
curacy of fault localization technique plays a crucial
role in the repair of buggy programs. In an empirical
study by Abreu et al. [1, 2], it found that the fault local-
ization effectiveness of Ochiai [2] is better than that
of Tarantula [10] and Jaccard [4].
The modification points are selected according to the
suspiciousness of the statements after fault localiza-
tion, and a list of modification points is formed. In the
actual repair process, the list of modification points is
the suspicious space in the evolutionary repair of the
buggy program, and the weight of modification points
is calculated as shown in Equation (2).

verification, a test case prioritization technology based
on the execution information of the modification point is
proposed. This fault program repair method first uses
fault localization technology to locate suspicious
sentences and form a list of modified points. Secondly,
the material space of the current sentence level is
obtained. When selecting materials, the mapping
relationship between the variables in the material
sentence and the modified point sentence is established,
and the variable or expression required for repair is
selected according to the variable mapping relationship
to replace the modified point sentence variable or
expression statement. The entire program repair process
is based on the idea of random search algorithm. When
selecting population individuals for evolution, the
selection is no longer based on the fitness value of
individuals in genetic programming, but individuals are
randomly selected for evolution. Then according to the
test case execution status of the modified point, a test
case priority execution information table is maintained
for each modification point. The priority execution
information table is dynamically adjusted according to
the test case execution process. This program
verification method can further improve the verification
efficiency of candidate patches. The framework of our
approach is shown in Figure 2.
Figure 2

(1) Fault localization. In this stage, the fault source
procedure is localized and analyzed by using the fault
localization technique Ochiai, whose suspicious value is
calculated as described in Equation (1).

Ochiai(s)=
nef(s)

�nf×(nef(s)+nep(s))
. (1)

Among them, s represents the program entity, nep(s) and
nef(s) denote the number of successful test cases and the
number of failed test cases covering program entity s,
respectively, and nf denotes the number of all failed test
cases of program entity s .

(2) Patch generation. The program undergoes evolution
using a mixed-granularity evolution technique, where
the search space of the material is formed at the
statement level and the expressions and variables in the
ingredients are applied at the expression level. For
specific fixes, ingredient statements are obtained from
the ingredient space and modification points are selected

from the list of modification points. The types and
names of expressions and variables in ingredient
statements and modification point statements are
extracted. Then the mapping relationship between
modification points and variables in the ingredient
is established, and is used as the basis for
expression replacement. The constructed variable
mapping relationship is a constraint condition for
the application of material, and is also utilized to
guide the evolution process. On this foundation,
the fault procedure is evolved according to the idea
of random search algorithm. This is, individuals
are not selected according to the fitness values in
genetic programming, but are randomly selected
when selecting individuals of the population for
evolution.

(3) Patch verification. After the candidate patches
are generated by program evolution, test cases
need to be run repeatedly to verify the validity of
the candidate patches. During this phase, a test case
execution information table is maintained for each
modification point based on the test case execution
at the modification point, and the table is
dynamically adjusted according to the test case
execution process. This verification strategy can
reduce the time complexity of the repair algorithm
and decrease the program verification time without
adjusting the test case execution order for each
individual verification.
4.1 Fault Localization
Before fixing a buggy program, it is necessary to
find out the location of likely-debugs in the
program. Different fault localization techniques
have different effects on the process of candidate
patch generation. If the real bug is located in a
program statement with a higher suspicious value,
the correct patch can be found in a shorter time
with fewer repair attempts. If the real bug is located
in a program statement with a lower suspicious
value, it may take more computational resources to
repair the buggy program or even cause the
program to fail to repair. Therefore, the accuracy
of fault localization technique plays a crucial role
in the repair of buggy programs. In an empirical
study by Abreu et al. [1, 2], it found that the fault
localization effectiveness of Ochiai [2] is better
than that of Tarantula [10] and Jaccard [4].

The modification points are selected according to
the suspiciousness of the statements after fault
localization, and a list of modification points is
formed. In the actual repair process, the list of
modification points is the suspicious space in the
evolutionary repair of the buggy program, and the
weight of modification points is calculated as
shown in Equation (2).

W(i)=
Si

∑ Sj
n
j=1

, (2)

List of
Modification

Points

Fault localization

Program Patch

Locating
suspicious
statements

Random selection of
individual evolution

Patch generation

Test cases sets

Buggy
program

Test cases
execution table

Patch verification

Test cases
sets

Variable mapping

, (2)

where i denotes the location information of the sus-
picious statement, Si and Sj denote the suspicious
value of the suspicious statement, and W(i) denotes
the weight value of the suspicious statement. When
selecting the modification point, the weight value of
the suspicious statement is used as a constraint for
selecting the modification point.

4.2. Patch Generation
4.2.1 Mixed Repair Granularity
Mixed repair granularity refers to forming the ingre-
dient search space at the statement level and applying
the expressions and variables in the ingredients at the
expression level. The repair at the statement level is
a coarse-grained program repair, and the expression
level is a fine-grained program repair. Both coarse-
grained repair and fine-grained repair have extreme
advantages and disadvantages, so we use a combina-
tion of coarse-grained repair and fine-grained repair
for the buggy program evolution as a whole. In the
process of program evolution, the ingredient search
space is first formed at the coarse-grained level, i.e.,
the statement level, and in the ingredient search space
at the statement level, the ingredient statements are
first filtered according to the similarity values. After
screening out the eligible ingredient statements, the
mapping relationship is established between the ex-
pressions and variables between the selected ingre-

dient statements and the modified point statements,
and is used as a constraint for expression and variable
modification in the program evolution.
When selecting an ingredient statement, the return
value type and method name of the method, and the
type and variable name of the variables contained
in the statement are extracted. Then the similarity
between the ingredient statement and the modifi-
cation point is calculated using the Dice similarity
coefficient, and the ingredient statement is selected
based on the similarity. The similarity is calculated as
shown in Equation (3).

where i denotes the location information of the
suspicious statement, Si and Sj denote the suspicious
value of the suspicious statement, and W(i) denotes the
weight value of the suspicious statement. When selecting
the modification point, the weight value of the suspicious
statement is used as a constraint for selecting the
modification point.
4.2 Patch Generation
4.2.1 Mixed Repair Granularity
Mixed repair granularity refers to forming the ingredient
search space at the statement level and applying the
expressions and variables in the ingredients at the
expression level. The repair at the statement level is a
coarse-grained program repair, and the expression level
is a fine-grained program repair. Both coarse-grained
repair and fine-grained repair have extreme advantages
and disadvantages, so we use a combination of coarse-
grained repair and fine-grained repair for the buggy
program evolution as a whole. In the process of program
evolution, the ingredient search space is first formed at
the coarse-grained level, i.e., the statement level, and in
the ingredient search space at the statement level, the
ingredient statements are first filtered according to the
similarity values. After screening out the eligible
ingredient statements, the mapping relationship is
established between the expressions and variables
between the selected ingredient statements and the
modified point statements, and is used as a constraint for
expression and variable modification in the program
evolution.

When selecting an ingredient statement, the return value
type and method name of the method, and the type and
variable name of the variables contained in the statement
are extracted. Then the similarity between the ingredient
statement and the modification point is calculated using
the Dice similarity coefficient, and the ingredient
statement is selected based on the similarity. The
similarity is calculated as shown in Equation (3).

Sim�fi,ml�=α×Sim1+β×Sim2, (3)

where fi represents the ith current repair material, ml
represents the current modification point, Sim(fi,ml)
represents the similarity between fi and ml, Sim1
represents the method similarity between the two, Sim2
represents the variable similarity between the two, and α
and β represent the method similarity coefficient and
variable similarity coefficient, respectively.
4.2.2 Mixed Repair Granularity
After selecting an ingredient statement based on
similarity, a variable mapping relationship between the
ingredient statement and the modification point
statement needs to be established. And this mapping
relationship is used as a constraint for expression or
variable replacement. When the buggy program is
modified, the expressions or variables in the ingredient
statements need to be reused. Therefore, it is important
to ensure that the mapped expressions or variables have

type compatibility. An expression in a
modification point statement can be modified only
when the ingredient statement is of the same type
as the expression contained in the modification
point statement. When the modification point
statement contains more than one expression, the
first consideration is whether the types of the
expressions are consistent; if the types are
consistent, the expressions in the ingredient
statement can be selected for modification
operation; otherwise, the modification is
impossible.

When the variable is used as a left value in a
modification point statement, you need to make
sure that the type of the variable in the selected
ingredient statement is the parent type of the
original variable; when the variable is used as a
right value in a modification point statement, you
need to make sure that the type of the variable in
the selected ingredient statement is a subtype of the
original variable. There is no explicit subtype
relationship for basic types in Java program.
Therefore there are two basic types T and T', if any
value in type T can be converted to a value in type
T' without loss, T is considered to be a subtype of
T' and there is type compatibility between T and T'.
The variables between both the selected
modification point statement and the ingredient
statement are combined one by one when
performing variable mapping, and if there is type
compatibility between the two variables, the set of
mapped variables is saved. This mapping
relationship is used as the main constraint for
variable selection. When the variables are
subsequently selected to modify the variables in
the modification point, it is possible to further
determine whether the location can be changed
based on its location.

Figure 3 shows an example of variable mapping, in
which m1~m2 and f1~f4 represent the variables in
the modification point statement and material
statement, respectively, and the content in
parentheses indicates the type of variables. Taking
the variable m1 in the modification point statement
as an example, if the variables between the
modification point statement and the material
statement are combined one by one, there are four
combinations of <m1, f1>, <m1, f2>, <m1, f3>, and
<m1, f4>. Among these four combinations of
variables, there is a type compatibility between the
variable combinations <m1, f3> and <m1, f4>, and
then the two sets of variable mapping relationships
are preserved. When m1 is used as the left value in
the modification point statement, we further judge
these two sets of mapping relationships and find
that the variable combination <m1, f3> has a loss of
precision when replacing variable m1 (float type)
with variable f3 (int type) in the modification point
statement, but the variable combination <m1, f4>

, (3)

where fi represents the ith current repair material, ml
represents the current modification point, Sim(fi,ml)
represents the similarity between fi and ml, Sim1 rep-
resents the method similarity between the two, Sim2
represents the variable similarity between the two,
and α and β represent the method similarity coeffi-
cient and variable similarity coefficient, respectively.

4.2.2. Mixed Repair Granularity
After selecting an ingredient statement based on
similarity, a variable mapping relationship between
the ingredient statement and the modification point
statement needs to be established. And this mapping
relationship is used as a constraint for expression or
variable replacement. When the buggy program is
modified, the expressions or variables in the ingre-
dient statements need to be reused. Therefore, it is
important to ensure that the mapped expressions or
variables have type compatibility. An expression in
a modification point statement can be modified only
when the ingredient statement is of the same type as
the expression contained in the modification point
statement. When the modification point statement
contains more than one expression, the first consid-
eration is whether the types of the expressions are
consistent; if the types are consistent, the expressions
in the ingredient statement can be selected for modi-
fication operation; otherwise, the modification is im-
possible.
When the variable is used as a left value in a modifica-
tion point statement, you need to make sure that the
type of the variable in the selected ingredient state-
ment is the parent type of the original variable; when

Information Technology and Control 2023/1/5274

the variable is used as a right value in a modification
point statement, you need to make sure that the type
of the variable in the selected ingredient statement is
a subtype of the original variable. There is no explicit
subtype relationship for basic types in Java program.
Therefore there are two basic types T and T’, if any
value in type T can be converted to a value in type T’
without loss, T is considered to be a subtype of T’ and
there is type compatibility between T and T’. The vari-
ables between both the selected modification point
statement and the ingredient statement are combined
one by one when performing variable mapping, and if
there is type compatibility between the two variables,
the set of mapped variables is saved. This mapping
relationship is used as the main constraint for vari-
able selection. When the variables are subsequently
selected to modify the variables in the modification
point, it is possible to further determine whether the
location can be changed based on its location.
Figure 3 shows an example of variable mapping, in
which m1~m2 and f1~f4 represent the variables in the
modification point statement and material statement,
respectively, and the content in parentheses indicates
the type of variables. Taking the variable m1 in the
modification point statement as an example, if the
variables between the modification point statement
and the material statement are combined one by one,
there are four combinations of <m1, f1>, <m1, f2>, <m1,
f3>, and <m1, f4>. Among these four combinations of
variables, there is a type compatibility between the
variable combinations <m1, f3> and <m1, f4>, and then
the two sets of variable mapping relationships are
preserved. When m1 is used as the left value in the
modification point statement, we further judge these
two sets of mapping relationships and find that the
variable combination <m1, f3> has a loss of precision

when replacing variable m1 (float type) with variable
f3 (int type) in the modification point statement, but
the variable combination <m1, f4> does not have this
situation, so the variable combination relationship in
<m1, f4> is as a constraint when the variables are mod-
ified. When m1 is used as the right value in the materi-
al statement, it is found that the variable combination
<m1, f4> can expand the range of the right value expres-
sion type when using the variable f4 (double type) to
replace the variable m1 (float type) in the modification
point statement, which may conflict with the left val-
ue variable type in the modification point statement
and easily introduce a new program bug, so the selec-
tion of this group of variable combination is dropped.
The variable combination <m1, f3> is selected as the
constraint condition for variable modification.

4.3. Patch Verification
The test case prioritization technique ranks test
cases, according to their ability to identify the faults
during the stage of the execution. And each individu-
al verification requires a ranking of the test case set,
which results in a large time overhead for program ex-
ecution. Therefore, to further improve the efficiency
of individual patch verification, we prioritize the test
cases according to the test case execution informa-
tion at the modification point.
Regression testing is often used during the process
of verifying defect patches. Regression testing aims
to make sure that the change did not introduce new
faults or cause faults in other code when you modify
old code and re-test it, so it plays an important role
in software defect repair. The purpose of patch veri-
fication is to check whether the generated candidate
patch can fix the faults in the original defective pro-
gram and whether the repaired defective program in-
troduces new faults. Finally, if a patch passes all test
cases, the patch is considered valid, the repair process
ends, and a valid patch is output. Otherwise, if any test
case fails, the patch is invalid.
As shown in Figure 4, the test case prioritization
technique based on modification point, each modifi-
cation point has its corresponding test case priority
execution information table, and the test cases are
executed in different order among different modifica-
tion points. A test case execution information table is
maintained for each modification point, and dynam-
ically adjusted according to the test case execution

Figure 3
Variable mapping illustration

does not have this situation, so the variable combination
relationship in <m1, f4> is as a constraint when the
variables are modified. When m1 is used as the right
value in the material statement, it is found that the
variable combination <m1, f4> can expand the range of
the right value expression type when using the variable
f4 (double type) to replace the variable m1 (float type) in
the modification point statement, which may conflict
with the left value variable type in the modification point
statement and easily introduce a new program bug, so the
selection of this group of variable combination is
dropped. The variable combination <m1, f3> is selected
as the constraint condition for variable modification.
Figure 3
Variable mapping illustration

The test case prioritization technique ranks test cases,
according to their ability to identify the faults during the
stage of the execution. And each individual verification
requires a ranking of the test case set, which results in a
large time overhead for program execution. Therefore, to
further improve the efficiency of individual patch
verification, we prioritize the test cases according to the
test case execution information at the modification point.

Regression testing is often used during the process of
verifying defect patches. Regression testing aims to
make sure that the change did not introduce new faults
or cause faults in other code when you modify old code
and re-test it, so it plays an important role in software
defect repair. The purpose of patch verification is to
check whether the generated candidate patch can fix the
faults in the original defective program and whether the
repaired defective program introduces new faults.
Finally, if a patch passes all test cases, the patch is
considered valid, the repair process ends, and a valid
patch is output. Otherwise, if any test case fails, the patch
is invalid.

As shown in Figure 4, the test case prioritization
technique based on modification point, each
modification point has its corresponding test case
priority execution information table, and the test cases
are executed in different order among different
modification points. A test case execution information
table is maintained for each modification point, and
dynamically adjusted according to the test case
execution process. During the next-generation evolution,
for the individual who selects the modification point for
program evolution, the test cases in the information table
are executed first, and then the other test cases in the test
case set are executed after finishing the execution of the

test cases in the information table. The test cases
that have been executed at the modification point
are marked, and are verified when all the program
individuals evolved for the modification point. If
any test case is not added to the test case execution
priority information table, the test case is added to
the test case execution information table and the
table is dynamically adjusted. When an individual
passes all test cases, the individual is output as a
valid patch.
Figure 4
Test case prioritization technique based on modification
point

4.4 Bug Fixing Algorithm
MGVMRepair

Algorithm 1 describes the specific process of the
buggy program repair algorithm MGVMRepair in
this paper. There are a buggy source program P and
its corresponding test case set T. In lines 1~2 of this
algorithm, a sequence of suspicious statements is
located using the fault localization tool, and the
suspicious space ModList is generated by selecting
the suspicious statements according to the
minimum suspicious value minSus and the
maximum number of modification points maxMod
by the program settings. Line 3 indicates the

m1 (float)

...

Modification point
statement

m2 (char)

m3 (double)

m4 (boolean)

f1 (char)

...

Ingredient statement

f2 (String)

f3 (int)

f4 (double)

Modification point
list

Run test
cases

Valid
patches

Program
Individual

Run results

Pass all test cases

Execution
information

table

Y

N

Test cases

75Information Technology and Control 2023/1/52

does not have this situation, so the variable combination
relationship in <m1, f4> is as a constraint when the
variables are modified. When m1 is used as the right
value in the material statement, it is found that the
variable combination <m1, f4> can expand the range of
the right value expression type when using the variable
f4 (double type) to replace the variable m1 (float type) in
the modification point statement, which may conflict
with the left value variable type in the modification point
statement and easily introduce a new program bug, so the
selection of this group of variable combination is
dropped. The variable combination <m1, f3> is selected
as the constraint condition for variable modification.
Figure 3
Variable mapping illustration

The test case prioritization technique ranks test cases,
according to their ability to identify the faults during the
stage of the execution. And each individual verification
requires a ranking of the test case set, which results in a
large time overhead for program execution. Therefore, to
further improve the efficiency of individual patch
verification, we prioritize the test cases according to the
test case execution information at the modification point.

Regression testing is often used during the process of
verifying defect patches. Regression testing aims to
make sure that the change did not introduce new faults
or cause faults in other code when you modify old code
and re-test it, so it plays an important role in software
defect repair. The purpose of patch verification is to
check whether the generated candidate patch can fix the
faults in the original defective program and whether the
repaired defective program introduces new faults.
Finally, if a patch passes all test cases, the patch is
considered valid, the repair process ends, and a valid
patch is output. Otherwise, if any test case fails, the patch
is invalid.

As shown in Figure 4, the test case prioritization
technique based on modification point, each
modification point has its corresponding test case
priority execution information table, and the test cases
are executed in different order among different
modification points. A test case execution information
table is maintained for each modification point, and
dynamically adjusted according to the test case
execution process. During the next-generation evolution,
for the individual who selects the modification point for
program evolution, the test cases in the information table
are executed first, and then the other test cases in the test
case set are executed after finishing the execution of the

test cases in the information table. The test cases
that have been executed at the modification point
are marked, and are verified when all the program
individuals evolved for the modification point. If
any test case is not added to the test case execution
priority information table, the test case is added to
the test case execution information table and the
table is dynamically adjusted. When an individual
passes all test cases, the individual is output as a
valid patch.
Figure 4
Test case prioritization technique based on modification
point

4.4 Bug Fixing Algorithm
MGVMRepair

Algorithm 1 describes the specific process of the
buggy program repair algorithm MGVMRepair in
this paper. There are a buggy source program P and
its corresponding test case set T. In lines 1~2 of this
algorithm, a sequence of suspicious statements is
located using the fault localization tool, and the
suspicious space ModList is generated by selecting
the suspicious statements according to the
minimum suspicious value minSus and the
maximum number of modification points maxMod
by the program settings. Line 3 indicates the

m1 (float)

...

Modification point
statement

m2 (char)

m3 (double)

m4 (boolean)

f1 (char)

...

Ingredient statement

f2 (String)

f3 (int)

f4 (double)

Modification point
list

Run test
cases

Valid
patches

Program
Individual

Run results

Pass all test cases

Execution
information

table

Y

N

Test cases

process. During the next-generation evolution, for
the individual who selects the modification point for
program evolution, the test cases in the information
table are executed first, and then the other test cases
in the test case set are executed after finishing the ex-
ecution of the test cases in the information table. The
test cases that have been executed at the modification
point are marked, and are verified when all the pro-
gram individuals evolved for the modification point.
If any test case is not added to the test case execution
priority information table, the test case is added to the
test case execution information table and the table is
dynamically adjusted. When an individual passes all
test cases, the individual is output as a valid patch.
While the test case prioritization technique based
on the ability to identify errors requires test case or-
dering once per individual verification, the test case
prioritization technique based on modification point
execution information only requires uniform adjust-
ment of the modification point execution information
table at the end of each generation of the verification
process. Compared with the former, the latter only
needs to adjust the information execution table once
at the end of each generation of individual program

Figure 4
Test case prioritization technique based on modification point

verification. Since each generation of program evolu-
tion contains multiple program individuals, the test
case prioritization technique based on the execution
information of modification points can greatly reduce
the number of test case prioritization adjustments
and thus improve the program verification efficiency.

4.4. Bug Fixing Algorithm MGVMRepair
Algorithm 1 describes the specific process of the bug-
gy program repair algorithm MGVMRepair in this pa-
per. There are a buggy source program P and its corre-
sponding test case set T. In lines 1~2 of this algorithm,
a sequence of suspicious statements is located using
the fault localization tool, and the suspicious space
ModList is generated by selecting the suspicious
statements according to the minimum suspicious
value minSus and the maximum number of modifi-
cation points maxMod by the program settings. Line
3 indicates the initialization operation of the popu-
lation, and line 4 is the marker of whether the bug-
gy program P is successfully repaired. Lines 7 to 22
describe the specific process of individual variation
evolution. First, the parent variant parent is selected
according to random selection (line 7), the modifica-
tion point modPoint is selected from the list of mod-
ification points according to the size of the suspected
value weight (line 8), and the operator Op is randomly
selected from the operator space.
If the current operator can be applied to this modifi-
cation point location at line 10 and the operator re-
quires repair material at line 11. The repair material
with high similarity to the modification point is ob-
tained from the current material space as the ingre-
dient statement at line 12. Line 13 indicates that the
variables in the modification point statement and
the material statement are extracted. Lines 14 to 16
indicate that a mapping relationship is established
between the variables in the modification point state-
ment and the variables in the material statement, and
if a group of variables are type compatible (line 15),
the mapping relationship will be stored in the match-
Map as a constraint condition for variation evolution
in the subsequent program (line 16). From the saved
variable mapping relations, the repair material for
the mutation evolution of the program individual is
selected (line 18), and the mutation evolution of the
current parent individual is performed according to
the currently selected modification point, operator

Information Technology and Control 2023/1/5276

and repair material (line 19). If the selected modifi-
cation point does not require repair material, the se-
lected parent individual is modified directly (line 21).
Finally, the evolved generated program individual is
saved to Offsprings (line 22).

Lines 23 to 29 represent the specific process of pro-
gram individual verification. First, the modification
point selected by the current program individual is
obtained (line 23); then the test cases of the modifica-
tion point to execute the test cases in the information
table is run, and if all the test cases in the informa-
tion table can pass the execution (line 24), then the
other test cases in the test case set are run. If all the
remaining test cases in the test case set can pass the
execution, the output of this program individual as a
valid patch for this buggy program is saved (line 26),
and the fix marker is set to true (line 27) to end the fix-
ing process of this buggy program; otherwise, the test
cases that have been executed at this modification
point are marked (line 29). After this generation of
population verification, for each modification point,
if any test case is not added to the test case priority
execution information table, this test case is added
to this information table and the table is dynamically
adjusted (line 31). After completing the variant evo-
lution and verification process of the buggy program,
PopSize individuals are randomly selected from the
Offersprings as the parent variants for the next gen-
eration of program evolution (line 32) until a program
individual passes all test cases or reaches the program
iteration termination condition.

5. Experimental Study
We perform the empirical evaluation over a real bugs
database, called Defects4J [11], which has been ex-
tensively used for evaluating Java repair systems.
This experiment was conducted with Spoon [19], a
code parsing tool, GZoltar [21], a fault location tool,
and the operation system of Ubuntu 18.04 LTS with a
2.40 GHz Intel(R) CPU and 8G memory.
Referring to existing repair approaches [9, 20, 23],
this paper verifies the effectiveness of the repair in
three aspects: (i) the number of successful repairs of
buggy programs, (ii) the generated NCP (Number of
Candidate Patches) values when the buggy programs
are successfully repaired, and (iii) the time spent
when the buggy programs are successfully repaired.

5.1. Comparison Between MGVMRepair and
GenProg
In order to demonstrate the repair effectiveness, the
classical repair tool GenProg was selected. By ana-

Algorithm 1: MGVMRepair repair algorithm

Input P // Faulty program
T // Test case sets
OperatorSpace // Operator space
popSize // Population size
IngredientSpace // Ingredient Space

Output: cp // Valid patches through all test cases
begin
1 SusList ← FaultLocalization(T,P)
2 ModList ← GetSusSpace(SusList,minSus,maxMod)
3 Pop ← InitPopulation(popSize)
4 fixSuccess = false
5 repeat
6 for i ← 1 to maxMut do
7 parent ← URSelect(Pop)
8 modPoint ← WRSelect(ModList)/
9 Op ← URSelect(OperatorSpace)
10 if canApplyOp(Op,modPoint) then
11 if opNeedIngredients(Op) then
12 fixIngredient ← getSimIng(IngredientSpace)
13 mvariables, fvariables ← get code variables of

 modPoint, fixIngredient
14 for all (mvariable, fvariable) ∈ (mvariables,

 fvariables) do
15 if mvariable and fvariable are compatible then
16 matchMap.add(mvariable, fvariable)
17 end for
18 fixingIng ←WRSelect(matchMap)
19 child ← generateNewVariant(parent,modPoint,Op,

 fixingIng)
20 else
21 child ← generateNewVariant(parent,modPoint,Op)
22 Offsprings add child
23 getmodPointTests(child)
24 if modPointValid(child) = true then
25 if validRestTests(T) = true then
26 cp ← child
27 fixSuccess = true
28 break
29 else markDifTests(T)
30 end for
31 adjustModPointTests(child)
32 Pop ← URSelect(PopSize,Offsprings,parents)
33 until fixSuccess = true
34 return cp
end

77Information Technology and Control 2023/1/52

lyzing the source code of the two
methods, the time complexity of
MGVMRepair is O(n3), and the
time complexity of GenProg is
O(n4). Table 1 shows the detailed
comparison between MGVMRe-
pair and GenProg for repairing
the four major items of Chart,
Math, Lang, and Time. The exper-
imental results on the Defects4J
dataset show that GenProg can
successfully repair 28 buggy
programs with a success rate
of 12.50%, while MGVMRepair
can successfully repair 40 buggy
programs with a success rate of
17.86%. Compared with GenProg,
the overall repair success rate
of MGVMRepair is improved by
42.9%. In order to reduce the in-
fluence of chance factors, the data
collected for each defect program
is the average of 10 runs. Figure
5 shows the comparison of the
number of fixable faults between
MGVMRepair and GenProg on
the four major buggy items (Chart,
Math, Lang, and Time). And it
can be seen that MGVMRepair
outperforms GenProg in fixing
all four major items. Figure 6 is a
Venn diagram of the comparison
of the fixes between MGVMRe-
pair and GenProg. It can be visu-
ally seen that the specific differ-
ences between MGVMRepair and
GenProg repair situations from
this diagram.
From Table 1 and Figures 5 and
6, it can be seen that in terms of
the number of buggy programs
fixed, MGVMRepair fixes 1 more
buggy program than GenProg on
the Chart project; MGVMRepair
fixes 6 more buggy programs than
GenProg on the Math project. On
the Lang project, GenProg has
no buggy programs to repair suc-
cessfully, while MGVMRepair

Table 1
Comparison of MGVMRepair and GenProg Repair Situation

Project Number
of Faults

Fixable Bug Procedures

MGVMRepair GenProg

Chart 26
C1,C3,C6,C11,

C12,C15,C24,C25
C1,C3,C5,C7,
C13,C15,C25

å=8 å=7

Math 106

M2,M5,M8,M20,M28,
M30,M40,M44,M49,
M50,M53,M57,M60,
M63,M70,M71,M73,
M78,M80,M81,M82,
M84,M85,M95,M97

M2,M5,M8,M28,M40,
M49,M50,M53,M60,
M70,M71,M73,M78,
M80,M81,M82,M84,

M85,M95

å=25 å=19

Lang 65
L7,L22,L24,L27 -

å=4 å=0

Time 27
T4,T9,T11 T4,T11

å=3 å=2

Total 224 40 28

Success rate - 17.86% 12.50%

passes all test cases or reaches the program iteration
termination condition.

5. Experimental Study
We perform the empirical evaluation over a real bugs
database, called Defects4J [11], which has been
extensively used for evaluating Java repair systems. This
experiment was conducted with Spoon [19], a code
parsing tool, GZoltar [21], a fault location tool, and the
operation system of Ubuntu 18.04 LTS with a 2.40 GHz
Intel(R) CPU and 8G memory.

Referring to existing repair approaches [9, 20, 23], this
paper verifies the effectiveness of the repair in three
aspects: (i) the number of successful repairs of buggy
programs, (ii) the generated NCP (Number of Candidate
Patches) values when the buggy programs are
successfully repaired, and (iii) the time spent when the
buggy programs are successfully repaired.
5.1 Comparison Between
MGVMRepair and GenProg
In order to demonstrate the repair effectiveness, the
classical repair tool GenProg was selected. By analyzing
the source code of the two methods, the time complexity
of MGVMRepair is O(n3), and the time complexity of
GenProg is O(n4). Table 1 shows the detailed comparison
between MGVMRepair and GenProg for repairing the
four major items of Chart, Math, Lang, and Time. The
experimental results on the Defects4J dataset show that
GenProg can successfully repair 28 buggy programs
with a success rate of 12.50%, while MGVMRepair can
successfully repair 40 buggy programs with a success
rate of 17.86%. Compared with GenProg, the overall
repair success rate of MGVMRepair is improved by
42.9%. In order to reduce the influence of chance factors,
the data collected for each defect program is the average
of 10 runs. Figure 5 shows the comparison of the number
of fixable faults between MGVMRepair and GenProg on
the four major buggy items (Chart, Math, Lang, and
Time). And it can be seen that MGVMRepair
outperforms GenProg in fixing all four major items.
Figure 6 is a Venn diagram of the comparison of the fixes
between MGVMRepair and GenProg. It can be visually
seen that the specific differences between MGVMRepair
and GenProg repair situations from this diagram.

From Table 1 and Figures 5 and 6, it can be seen that in
terms of the number of buggy programs fixed,
MGVMRepair fixes 1 more buggy program than
GenProg on the Chart project; MGVMRepair fixes 6
more buggy programs than GenProg on the Math project.
On the Lang project, GenProg has no buggy programs to
repair successfully, while MGVMRepair can repair 4
buggy programs successfully. On the Time project,
MGVMRepair repaired 1 more buggy program than
GenProg. MGVMRepair's repair success rate is

improved due to making use of a mixed granularity
and variable mapping repair, which is able to find
the appropriate repair ingredients and apply them
correctly to the evolution of the buggy program.
The mixed granularity repair can quickly find the
material statements that meet the requirements of
the protocol, and the variable mapping allows for
the variant evolution of the buggy program at a
fine-grained level. Therefore, MGVMRepair can
overcome the drawbacks of the coarse-grained
repair approach by using materials in an overly
simplistic manner and increase the successful
repair rate of the buggy program.
Figure 5
Comparison of repair quantity between
MGVMRepair and GenProg

Table 1
Comparison of MGVMRepair and GenProg Repair
Situation

Project
Number

of
Faults

Fixable Bug Procedures
MVRepair GenProg

Chart 26
C1,C3,C6,C11,

C12,C15,C24,C25
C1,C3,C5,C7,
C13,C15,C25

∑=8 ∑=7

Math 106

M2,M5,M8,M20,M28,
M30,M40,M44,M49,
M50,M53,M57,M60,
M63,M70,M71,M73,
M78,M80,M81,M82,
M84,M85,M95,M97

M2,M5,M8,M28,M40,
M49,M50,M53,M60,
M70,M71,M73,M78,
M80,M81,M82,M84,

M85,M95

∑=25 ∑=19

Lang 65 L7,L22,L24,L27 -
∑=4 ∑=0

Time 27 T4,T9,T11 T4,T11
∑=3 ∑=2

Total 224 40 28
Success

rate - 17.86% 12.50%

Figure 6
Venn diagram of MGVMRepair and GenProg
repair comparison

Chart(C)-6,11,12,24
Math(M)-
20,30,44,57,63,97
Lang(L)-7,22,24,27
Time(T)-9

Chart(C)-1,3,15,25
Math(M)-
2,5,8,28,40,49,50,53,60,70,7
1,73,78,80,81,82,84,85,95
Time(T)-4,11

Chart(C)-5,7,13

MVRepair GenProg

Table 2

0

5

10

15

20

25

30

Chart Math Lang Time

N
um

be
r o

f r
ep

ai
rs

Bug_Id

MVRepair GenProg

passes all test cases or reaches the program iteration
termination condition.

5. Experimental Study
We perform the empirical evaluation over a real bugs
database, called Defects4J [11], which has been
extensively used for evaluating Java repair systems. This
experiment was conducted with Spoon [19], a code
parsing tool, GZoltar [21], a fault location tool, and the
operation system of Ubuntu 18.04 LTS with a 2.40 GHz
Intel(R) CPU and 8G memory.

Referring to existing repair approaches [9, 20, 23], this
paper verifies the effectiveness of the repair in three
aspects: (i) the number of successful repairs of buggy
programs, (ii) the generated NCP (Number of Candidate
Patches) values when the buggy programs are
successfully repaired, and (iii) the time spent when the
buggy programs are successfully repaired.
5.1 Comparison Between
MGVMRepair and GenProg
In order to demonstrate the repair effectiveness, the
classical repair tool GenProg was selected. By analyzing
the source code of the two methods, the time complexity
of MGVMRepair is O(n3), and the time complexity of
GenProg is O(n4). Table 1 shows the detailed comparison
between MGVMRepair and GenProg for repairing the
four major items of Chart, Math, Lang, and Time. The
experimental results on the Defects4J dataset show that
GenProg can successfully repair 28 buggy programs
with a success rate of 12.50%, while MGVMRepair can
successfully repair 40 buggy programs with a success
rate of 17.86%. Compared with GenProg, the overall
repair success rate of MGVMRepair is improved by
42.9%. In order to reduce the influence of chance factors,
the data collected for each defect program is the average
of 10 runs. Figure 5 shows the comparison of the number
of fixable faults between MGVMRepair and GenProg on
the four major buggy items (Chart, Math, Lang, and
Time). And it can be seen that MGVMRepair
outperforms GenProg in fixing all four major items.
Figure 6 is a Venn diagram of the comparison of the fixes
between MGVMRepair and GenProg. It can be visually
seen that the specific differences between MGVMRepair
and GenProg repair situations from this diagram.

From Table 1 and Figures 5 and 6, it can be seen that in
terms of the number of buggy programs fixed,
MGVMRepair fixes 1 more buggy program than
GenProg on the Chart project; MGVMRepair fixes 6
more buggy programs than GenProg on the Math project.
On the Lang project, GenProg has no buggy programs to
repair successfully, while MGVMRepair can repair 4
buggy programs successfully. On the Time project,
MGVMRepair repaired 1 more buggy program than
GenProg. MGVMRepair's repair success rate is

improved due to making use of a mixed granularity
and variable mapping repair, which is able to find
the appropriate repair ingredients and apply them
correctly to the evolution of the buggy program.
The mixed granularity repair can quickly find the
material statements that meet the requirements of
the protocol, and the variable mapping allows for
the variant evolution of the buggy program at a
fine-grained level. Therefore, MGVMRepair can
overcome the drawbacks of the coarse-grained
repair approach by using materials in an overly
simplistic manner and increase the successful
repair rate of the buggy program.
Figure 5
Comparison of repair quantity between
MGVMRepair and GenProg

Table 1
Comparison of MGVMRepair and GenProg Repair
Situation

Project
Number

of
Faults

Fixable Bug Procedures
MVRepair GenProg

Chart 26
C1,C3,C6,C11,

C12,C15,C24,C25
C1,C3,C5,C7,
C13,C15,C25

∑=8 ∑=7

Math 106

M2,M5,M8,M20,M28,
M30,M40,M44,M49,
M50,M53,M57,M60,
M63,M70,M71,M73,
M78,M80,M81,M82,
M84,M85,M95,M97

M2,M5,M8,M28,M40,
M49,M50,M53,M60,
M70,M71,M73,M78,
M80,M81,M82,M84,

M85,M95

∑=25 ∑=19

Lang 65 L7,L22,L24,L27 -
∑=4 ∑=0

Time 27 T4,T9,T11 T4,T11
∑=3 ∑=2

Total 224 40 28
Success

rate - 17.86% 12.50%

Figure 6
Venn diagram of MGVMRepair and GenProg
repair comparison

Chart(C)-6,11,12,24
Math(M)-
20,30,44,57,63,97
Lang(L)-7,22,24,27
Time(T)-9

Chart(C)-1,3,15,25
Math(M)-
2,5,8,28,40,49,50,53,60,70,7
1,73,78,80,81,82,84,85,95
Time(T)-4,11

Chart(C)-5,7,13

MVRepair GenProg

Table 2

0

5

10

15

20

25

30

Chart Math Lang Time

N
um

be
r o

f r
ep

ai
rs

Bug_Id

MVRepair GenProg

Figure 5
Comparison of repair quantity between MGVMRepair and GenProg

Figure 6
Venn diagram of MGVMRepair and GenProg repair comparison

MGVMRepair

MGVMRepair

Information Technology and Control 2023/1/5278

Table 2
Comparison of Repair Information between MGVMRepair and GenProg

can repair 4 buggy programs successfully. On the
Time project, MGVMRepair repaired 1 more buggy
program than GenProg. MGVMRepair’s repair suc-
cess rate is improved due to making use of a mixed
granularity and variable mapping repair, which is
able to find the appropriate repair ingredients and
apply them correctly to the evolution of the buggy
program. The mixed granularity repair can quickly
find the material statements that meet the require-

ments of the protocol, and the variable mapping al-
lows for the variant evolution of the buggy program
at a fine-grained level. Therefore, MGVMRepair can
overcome the drawbacks of the coarse-grained re-
pair approach by using materials in an overly sim-
plistic manner and increase the successful repair
rate of the buggy program.
Table 2 provides detailed information on the NCP
values, verification time, and total repair time for the

Project Bug_Id Repair approaches NCP Verification
time (min)

Total time
(min)

Validation time
improvement rate

Total time
improvement rate

Chart

C1
GenProg 20 15.6 23.2

76.9% 64.2%
MGVMRepair 6 3.6 8.3

C3
GenProg 58 17.3 32.3

41.6% 32.8%
MGVMRepair 38 10.1 21.7

C15
GenProg 46 11.3 25.3

62.0% 46.6%
MGVMRepair 26 4.3 13.5

C25
GenProg 35 18.5 36.7

84.3% 81.7%
MGVMRepair 25 2.9 6.7

Math

M2
GenProg 42 45.6 63.4

89.3% 78.2%
MGVMRepair 9 4.9 13.8

M5
GenProg 63 58.2 68.3

90.5% 67.6%
MGVMRepair 15 5.5 22.1

M8
GenProg 25 44.8 80.6

88.8% 72.8%
MGVMRepair 11 5.0 21.9

M28
GenProg 53 66.2 89.1

90.6% 80.7%
MGVMRepair 17 6.2 17.2

M40
GenProg 54 78.3 89.4

96.8% 81.3%
MGVMRepair 6 2.5 16.7

M49
GenProg 43 90.2 100.4

91.7% 70.9%
MGVMRepair 25 7.5 29.2

M50
GenProg 20 21.5 43.6

83.3% 78.2%
MGVMRepair 9 3.6 9.5

M53
GenProg 64 77.2 117.3

92.1% 81.0%
MGVMRepair 31 6.1 22.3

M60
GenProg 42 37.4 50.9

80.5% 75.2%
MGVMRepair 38 7.3 12.6

M70
GenProg 38 18.3 23.8

80.3% 42.4%
MGVMRepair 22 3.6 13.7

M71
GenProg 64 28.9 42.7

66.4% 45.9%
MGVMRepair 14 9.7 23.1

79Information Technology and Control 2023/1/52

Project Bug_Id Repair approaches NCP Verification
time (min)

Total time
(min)

Validation time
improvement rate

Total time
improvement rate

Math

M73
GenProg 54 24.2 40.2

66.1% 38.1%
MGVMRepair 16 8.2 24.9

M78
GenProg 120 82.7 118.4

85.2% 58.7%
MGVMRepair 53 12.2 48.9

M80
GenProg 27 17.8 23.8

78.1% 52.9%
MGVMRepair 14 3.9 11.2

M81
GenProg 19 20.2 34.1

65.8% 49.3%
MGVMRepair 16 6.9 17.3

M82
GenProg 128 27.3 33.5

57.1% 35.5%
MGVMRepair 48 11.7 21.6

M84
GenProg 125 90.1 106.5

82.4% 74.2%
MGVMRepair 59 15.9 27.5

M85
GenProg 30 13.8 26.3

47.1% 13.7%
MGVMRepair 18 7.3 22.7

M95
GenProg 87 21.8 27.1

89.9% 80.8%
MGVMRepair 9 2.2 5.2

Time
T4

GenProg 36 11.2 19.6
23.2% 8.7%

MGVMRepair 27 8.6 17.9

T11
GenProg 24 7.3 10.7

34.2% 15.0%
MGVMRepair 11 4.8 9.1

25 buggy programs that can be repaired by MGVMRe-
pair and GenProg. The data collected for each buggy
program is the average of 10 runs in order to reduce
the effect of accidental factors during the repair.
As observed in Table 2, in terms of the number of can-
didate patches generated, GenProg needs to generate
53 candidate patches per buggy program repaired on
average, while MGVMRepair needs to generate only
23 candidate patches per buggy program repaired on
average. Compared with GenProg, MGVMRepair gen-
erates 56.6% fewer NCPs per buggy program repaired,
which indicates that MGVMRepair can find valid
patches for buggy programs after fewer evolutions. In
terms of total program repair time, the longest time
taken by MGVMRepair to repair a buggy program was
48.9 minutes and the shortest time was 5.2 minutes,
while the longest time taken by GenProg to repair a
buggy program was 118.4 minutes and the shortest
time was 10.7 minutes. MGVMRepair took only 458.6
minutes to fully repair the 25 buggy programs, with
an average of one buggy program every 18.34 minutes.
Compared with repair time consumption of GenProg,

the total time efficiency of MGVMRepair improved
by 8.7% to 81.7%, and the total repair time efficiency
increased by 57.1% on average, which indicates that
MGVMRepair has a better advantage in the time effi-
ciency of repairing buggy programs.
In terms of candidate patch validation, the total time
taken by GenProg to validate all individuals was 945.7
minutes, with an average of 37.83 minutes per bug-
gy program validated, while the total time taken by
MGVMRepair to validate all individuals was 164.5
minutes, with an average of 6.58 minutes per buggy
program validated. Compared with the GenProg, the
total time efficiency of MGVMRepair improved by
23.2% to 96.8%, and the time efficiency increased by
73.8% on average. The test case prioritization tech-
nique is used to improve the efficiency of individual
verification, which speeds up the process of the indi-
vidual verification.
Figure 7 illustrates the total time spent on fault re-
pair for MGVMRepair and GenProg to visually com-
pare the efficiency of the repair and further explore
the differences between different fault program. In

Information Technology and Control 2023/1/5280

this graph, the x-axis represents the fault programs
that can be repaired and the y-axis represents the to-
tal time spent on the fault repair (Unit: minute). Ac-
cording to Figure 7, it can be seen intuitively that the
total time taken by MGVMRepair to repair the buggy
program is much smaller than the total time required
by GenProg, which indicates that MGVMRepair has a
great efficiency.
Figure 8 shows the NCP comparison between
MGVMRepair and GenProg on repairable faults. In
this graph, the x-axis represents the fault program
and the y-axis represents the number of candidate
patches generated to repair the fault program. Ac-
cording to Figure 8, it can be seen that the number of

Figure 7
MGVMRepair and GenProg run time-consuming line graphs on repairable bugs

Figure 8
Comparsion of NCP values between MGVMRepair and GenProg on repairable faults

on average, which indicates that MGVMRepair has a
better advantage in the time efficiency of repairing
buggy programs.

In terms of candidate patch validation, the total time
taken by GenProg to validate all individuals was 945.7
minutes, with an average of 37.83 minutes per buggy
program validated, while the total time taken by
MGVMRepair to validate all individuals was 164.5
minutes, with an average of 6.58 minutes per buggy
program validated. Compared with the GenProg, the
total time efficiency of MGVMRepair improved by
23.2% to 96.8%, and the time efficiency increased by
73.8% on average. The test case prioritization technique
is used to improve the efficiency of individual
verification, which speeds up the process of the
individual verification.
Figure 7
MGVMRepair and GenProg run time-consuming line
graphs on repairable bugs

Figure 8
Comparsion of NCP values between MGVMRepair and
GenProg on repairable faults

Figure 7 illustrates the total time spent on fault repair for
MGVMRepair and GenProg to visually compare the
efficiency of the repair and further explore the
differences between different fault program. In this
graph, the x-axis represents the fault programs that can
be repaired and the y-axis represents the total time spent
on the fault repair (Unit: minute). According to Figure 7,
it can be seen intuitively that the total time taken by
MGVMRepair to repair the buggy program is much
smaller than the total time required by GenProg, which
indicates that MGVMRepair has a great efficiency.

Figure 8 shows the NCP comparison between
MGVMRepair and GenProg on repairable faults. In this

graph, the x-axis represents the fault program and
the y-axis represents the number of candidate
patches generated to repair the fault program.
According to Figure 8, it can be seen that the
number of NCPs generated during the repair
process is not the same either between different
fault programs or between different fault items.
The different number of NCPs indicates that the
difficulty of their repair is not consistent. Since the
dataset used in the experiment originated from
actual development, the project development time
is long and large, and the types and locations of
errors vary contained in each defective program, so
the data fluctuation in the repair process will occur
to different degrees. The smaller the NCP value
indicates that the repair method has fewer repair
attempts to find a valid patch for the defective
program, and it is clear that MGVMRepair has
better repair results from Figure 8.

Compared with the GenProg, MGVMRepair
overcomes the drawbacks of the coarse-grained
repair approach by using materials in an overly
simplistic manner to increase the successful repair
rate and the time efficiency of the buggy programs.
And MGVMRepair uses the test case prioritization
technique which improves the efficiency of
individual verification to reduce the total time
taken to repair the buggy program.

5.2 Comparison Between
MGVMRepair and Other
Existing Repair Approaches
To further validate the effectiveness of repair, we
compared MGVMRepair with four fault repair
approaches, SimFix [9], CapGen [23], jKali [16],
jMutRepair [16] and SketchFix[7], as shown in
Table 3. We choose these five repair approaches to
compare with MGVMRepair because they are
typical approach in repair field. By analyzing the
source code of the five methods, the time
complexity of MGVMRepair is O(n3), while that
of SimFix, CapGen, jKali, jMutRepair and
SketchFix are O(2n), O(n3), O(n2), O(n3) and O(n3),
respectively. From the table, it can be seen that
MGVMRepair successfully repaired 40 buggy
programs with a success rate of 17.86%. But in
other approaches, only up to 28 buggy programs
were repaired with a maximum success rate of
12.50%. In order to reduce the influence of chance
factors, the data collected for each defect program
is the average of 10 runs.

In terms of the number of successful fixes for
buggy programs, MGVMRepair fixes 15, 12, 18,
23 and 19 more buggy programs than CapGen,
SimFix, jKali, jMutRepair and SketchFix,
respectively, with 60%, 43%, 82%, 135% and 90%
higher fix success rates, respectively. The reason
for the better repair results of MGVMRepair is the

0

20

40

60

80

100

120

C
1

C
3

C
15

C
25 M
2

M
5

M
8

M
28

M
40

M
49

M
50

M
53

M
60

M
70

M
71

M
73

M
78

M
80

M
81

M
82

M
84

M
85

M
95 T4 T1
1

Run time/min

Bug_id

MVRepair GenProg

0

20

40

60

80

100

120

140NCP

Bug_id

MVRepair GenProg

NCPs generated during the repair process is not the
same either between different fault programs or be-
tween different fault items. The different number of
NCPs indicates that the difficulty of their repair is not
consistent. Since the dataset used in the experiment
originated from actual development, the project de-
velopment time is long and large, and the types and
locations of errors vary contained in each defective
program, so the data fluctuation in the repair process
will occur to different degrees. The smaller the NCP
value indicates that the repair method has fewer re-
pair attempts to find a valid patch for the defective
program, and it is clear that MGVMRepair has better
repair results from Figure 8.

on average, which indicates that MGVMRepair has a
better advantage in the time efficiency of repairing
buggy programs.

In terms of candidate patch validation, the total time
taken by GenProg to validate all individuals was 945.7
minutes, with an average of 37.83 minutes per buggy
program validated, while the total time taken by
MGVMRepair to validate all individuals was 164.5
minutes, with an average of 6.58 minutes per buggy
program validated. Compared with the GenProg, the
total time efficiency of MGVMRepair improved by
23.2% to 96.8%, and the time efficiency increased by
73.8% on average. The test case prioritization technique
is used to improve the efficiency of individual
verification, which speeds up the process of the
individual verification.
Figure 7
MGVMRepair and GenProg run time-consuming line
graphs on repairable bugs

Figure 8
Comparsion of NCP values between MGVMRepair and
GenProg on repairable faults

Figure 7 illustrates the total time spent on fault repair for
MGVMRepair and GenProg to visually compare the
efficiency of the repair and further explore the
differences between different fault program. In this
graph, the x-axis represents the fault programs that can
be repaired and the y-axis represents the total time spent
on the fault repair (Unit: minute). According to Figure 7,
it can be seen intuitively that the total time taken by
MGVMRepair to repair the buggy program is much
smaller than the total time required by GenProg, which
indicates that MGVMRepair has a great efficiency.

Figure 8 shows the NCP comparison between
MGVMRepair and GenProg on repairable faults. In this

graph, the x-axis represents the fault program and
the y-axis represents the number of candidate
patches generated to repair the fault program.
According to Figure 8, it can be seen that the
number of NCPs generated during the repair
process is not the same either between different
fault programs or between different fault items.
The different number of NCPs indicates that the
difficulty of their repair is not consistent. Since the
dataset used in the experiment originated from
actual development, the project development time
is long and large, and the types and locations of
errors vary contained in each defective program, so
the data fluctuation in the repair process will occur
to different degrees. The smaller the NCP value
indicates that the repair method has fewer repair
attempts to find a valid patch for the defective
program, and it is clear that MGVMRepair has
better repair results from Figure 8.

Compared with the GenProg, MGVMRepair
overcomes the drawbacks of the coarse-grained
repair approach by using materials in an overly
simplistic manner to increase the successful repair
rate and the time efficiency of the buggy programs.
And MGVMRepair uses the test case prioritization
technique which improves the efficiency of
individual verification to reduce the total time
taken to repair the buggy program.

5.2 Comparison Between
MGVMRepair and Other
Existing Repair Approaches
To further validate the effectiveness of repair, we
compared MGVMRepair with four fault repair
approaches, SimFix [9], CapGen [23], jKali [16],
jMutRepair [16] and SketchFix[7], as shown in
Table 3. We choose these five repair approaches to
compare with MGVMRepair because they are
typical approach in repair field. By analyzing the
source code of the five methods, the time
complexity of MGVMRepair is O(n3), while that
of SimFix, CapGen, jKali, jMutRepair and
SketchFix are O(2n), O(n3), O(n2), O(n3) and O(n3),
respectively. From the table, it can be seen that
MGVMRepair successfully repaired 40 buggy
programs with a success rate of 17.86%. But in
other approaches, only up to 28 buggy programs
were repaired with a maximum success rate of
12.50%. In order to reduce the influence of chance
factors, the data collected for each defect program
is the average of 10 runs.

In terms of the number of successful fixes for
buggy programs, MGVMRepair fixes 15, 12, 18,
23 and 19 more buggy programs than CapGen,
SimFix, jKali, jMutRepair and SketchFix,
respectively, with 60%, 43%, 82%, 135% and 90%
higher fix success rates, respectively. The reason
for the better repair results of MGVMRepair is the

0

20

40

60

80

100

120

C
1

C
3

C
15

C
25 M
2

M
5

M
8

M
28

M
40

M
49

M
50

M
53

M
60

M
70

M
71

M
73

M
78

M
80

M
81

M
82

M
84

M
85

M
95 T4 T1
1

Run time/min

Bug_id

MVRepair GenProg

0

20

40

60

80

100

120

140
NCP

Bug_id

MVRepair GenProg

MGVMRepair

MGVMRepair

81Information Technology and Control 2023/1/52

Compared with the GenProg, MGVMRepair over-
comes the drawbacks of the coarse-grained repair
approach by using materials in an overly simplis-
tic manner to increase the successful repair rate
and the time efficiency of the buggy programs. And
MGVMRepair uses the test case prioritization tech-
nique which improves the efficiency of individual
verification to reduce the total time taken to repair
the buggy program.

5.2. Comparison Between MGVMRepair and
Other Existing Repair Approaches
To further validate the effectiveness of repair, we
compared MGVMRepair with four fault repair
approaches, SimFix [9], CapGen [23], jKali [16],
jMutRepair [16] and SketchFix[7], as shown in Table
3. We choose these five repair approaches to com-
pare with MGVMRepair because they are typical ap-
proach in repair field. By analyzing the source code
of the five methods, the time complexity of MGVM-
Repair is O(n3), while that of SimFix, CapGen, jKali,
jMutRepair and SketchFix are O(2n), O(n3), O(n2),
O(n3) and O(n3), respectively. From the table, it can
be seen that MGVMRepair successfully repaired 40
buggy programs with a success rate of 17.86%. But in
other approaches, only up to 28 buggy programs were
repaired with a maximum success rate of 12.50%. In
order to reduce the influence of chance factors, the
data collected for each defect program is the average
of 10 runs.
In terms of the number of successful fixes for buggy
programs, MGVMRepair fixes 15, 12, 18, 23 and 19

more buggy programs than CapGen, SimFix, jKali,
jMutRepair and SketchFix, respectively, with 60%,
43%, 82%, 135% and 90% higher fix success rates, re-
spectively. The reason for the better repair results of
MGVMRepair is the ability to filter ingredient state-
ments from a huge space using similarity as a con-
straint and the ability to use repair ingredients at a
fine-grained level. The MGVMRepair repair method
not only finds ingredient statements that meet the
constraints quickly but also applies the ingredient in
a more appropriate manner, increasing the success
rate of the fault repair process.
Figure 9 shows the comparison of the number of
fixable fauts between MGVMRepair and CapGen,
SimFix, jKali, jMutRepair and SketchFix on the four
items Chart, Math, Lang, and Time. The details of the
repairable fault procedures of MGVMRepair and the
other five repair approaches on Chart, Math, Lang,
and Time were further counted, as shown in Table 4.
It can be visually seen that MGVMRepair is able to fix
more of buggy programs than the existing fault repair
approaches from Figure 9 and Table 4.
MGVMRepair has the better repair results because
it is able to filter ingredient statements from a huge
space using similarity as a constraint and because
it is able to use repair ingredients at a fine-grained
level. The MGVMRepair not only finds ingredient
statements that meet the constraints quickly, but
also applies the ingredient in a more appropriate
manner, lead to increasing the success rate of repair
process. To sum up, MGVMRepair can obviously im-
prove the repair success rate of buggy programs.

Table 3
Repair Quantity Comparison between MGVMRepair and CapGen, SimFix, jKali, jMutRepair, SketchFix

Project Total number of
faults MGVMRepair CapGen SimFix jKali jMutRepair SketchFix

Chart 26 8 4 4 6 4 8

Math 106 25 16 14 14 11 8

Lang 65 4 5 9 0 1 4

Time 27 3 0 1 2 1 1

Total 224 40 25 28 22 17 21

Success rate - 17.86% 11.16% 12.50% 9.80% 7.59% 9.40%

Information Technology and Control 2023/1/5282

Figure 9
Comparison of the number of repairable faults between MGVMRepair and other repair approaches on Chart, Math, Lang,
and Time

ability to filter ingredient statements from a huge space
using similarity as a constraint and the ability to use
repair ingredients at a fine-grained level. The
MGVMRepair repair method not only finds ingredient

statements that meet the constraints quickly but
also applies the ingredient in a more appropriate
manner, increasing the success rate of the fault
repair process.

Table 3

Repair Quantity Comparison between MGVMRepair and CapGen, SimFix, jKali, jMutRepair, SketchFix
Project Total number of faults MVRepair CapGen SimFix jKali jMutRepair SketchFix
Chart 26 8 4 4 6 4 8
Math 106 25 16 14 14 11 8
Lang 65 4 5 9 0 1 4
Time 27 3 0 1 2 1 1
Total 224 40 25 28 22 17 21

Success rate - 17.86% 11.16% 12.50% 9.80% 7.59% 9.40%

Table 4

Comparison of MGVMRepair and Other Five Repair Approaches Fault Program Repair Situation

Project Number of
faults

Repairable fault program
MVRepair CapGen SimFix jKali jMutRepair SketchFix

Chart 26 C1,C3,C6,C1,C12,
C15,C24,C25

C1,C8,
C11,C24

C1,C3,
C7,C20

C1,C5,C13,
C15,C25, C26

C1,C7,
C25, C26

C1,C8,C9,C11,
C13,C20,C24,C26

Math 106

M2,M5,M8,M20,
M28,M30,M40,M44,
M49,M50,M53,M57,
M60,M63,M70,M71,
M73,M78,M80,M81,
M82,M84,M85,M95,

M97

M5,M30,M33,
M53,M57,M58,
M59,M63,M65,
M70,M75,M79,
M80,M81,M82,

M85

M5,M33,M35,
M41,M50,M53,
M57,M59,M63,
M70,M71,M75,

M79,M98

M2,M8,
M28,M32,M40,
M49,M50,M78,
M80,M81,M82,
M84,M85,M95

M2,M28,M40,
M50,M57,M58,
M81,M82,M84,

M85,M88

M5,M33,M50,M59,
M70,M73,M82,M85

Lang 65 L7,L22,L24,L27 L6,L26,L43,L57,
L59

L16,L27,L33,
L39,L41,L43,
L50,L58,L60

- L27 L6,L51,L55,L59

Time 27 T4,T9,T11 - T7 T4, T11 T11 T4
Total 224 40 25 28 22 17 21

Figure 9
Comparison of the number of repairable faults between MGVMRepair and other repair approaches on Chart, Math,
Lang, and Time

（a）Chart （b）Math

（c）Lang （d）Time

0

1

2

3

4

5

6

7

8

9

MVRepair CapGen SimFix jKali jMutRepair SketchFix

N
um

be
r o

f r
ep

ai
ra

bl
e

fa
ul

ts

0

5

10

15

20

25

30

MVRepair CapGen SimFix jKali jMutRepair SketchFix

N
um

be
r o

f r
ep

ai
ra

bl
e

fa
ul

ts

0

1

2

3

4

5

6

7

8

9

10

MVRepair CapGen SimFix jKali jMutRepair SketchFix

N
um

be
r o

f r
ep

ai
ra

bl
e

fa
ul

ts

0

0.5

1

1.5

2

2.5

3

3.5

MVRepair CapGen SimFix jKali jMutRepair SketchFix

N
um

be
r o

f r
ep

ai
ra

bl
e

fa
ul

ts

(a) Chart (b) Math

(c) Lang (d) Time

Table 4
Comparison of MGVMRepair and Other Five Repair Approaches Fault Program Repair Situation

Pr
oj

ec
t

N
um

be
r

of
 fa

ul
ts Repairable fault program

MGVMRepair CapGen SimFix jKali jMutRepair SketchFix

Chart 26 C1,C3,C6,C1,C12,
C15,C24,C25

C1,C8,
C11,C24

C1,C3,
C7,C20

C1,C5,C13,
C15,C25, C26

C1,C7,
C25, C26

C1,C8,C9,C11,
C13,C20,C24,C26

Math 106

M2,M5,M8,M20,
M28,M30,M40,M44,
M49,M50,M53,M57,
M60,M63,M70,M71,
M73,M78,M80,M81,
M82,M84,M85,M95,

M97

M5,M30,M33,
M53,M57,M58,
M59,M63,M65,
M70,M75,M79,
M80,M81,M82,

M85

M5,M33,M35,
M41,M50,M53,
M57,M59,M63,
M70,M71,M75,

M79,M98

M2,M8,
M28,M32,M40,
M49,M50,M78,
M80,M81,M82,
M84,M85,M95

M2,M28,M40,
M50,M57,M58,
M81,M82,M84,

M85,M88

M5,M33,M50,M59,
M70,M73,M82,M85

Lang 65 L7,L22,L24,L27 L6,L26,L43,L57,
L59

L16,L27,L33,
L39,L41,L43,
L50,L58,L60

- L27 L6,L51,L55,L59

Time 27 T4,T9,T11 - T7 T4, T11 T11 T4

Total 224 40 25 28 22 17 21

MGVMRepair MGVMRepair

MGVMRepairMGVMRepair

83Information Technology and Control 2023/1/52

5.3. Summary
In a word, our approach has the higher efficiency
than the compared CapGen, SimFix, jKali, jMutRe-
pair and SketchFix from the above investigation. Be-
cause GenProg, jKali and jMutRepair approach work
at the statement level, and their repair granularity is
too coarse, their repair is lower efficiency than that of
ours. The granularity of repair of SimFix, CapGen and
SketchFix is fine-grained, the search space of the can-
didate patches is so large, resulting in a lower repair
efficiency of program repair than that of ours.

6. Conclusion and Future Work
In this paper, we propose MGVMRepair, an auto-
matic repair method based on hybrid granularity and
variable mapping for fault program. MGVMRepair
follows the general framework of random search al-
gorithm, which is able to apply ingredients at fine
granularity level after filtering out the repair materi-
als that meet the constraints. Also, a test case prior-
itization technique based on modification point ex-
ecution information is proposed to further improve
the efficiency of program verification. Experimental

results on Defects4J show that the repair efficiency
of MGVMRepair is higher than the existing program
repair approaches, GenProg, CapGen, SimFix, jKali,
jMutRepair, SketchFix.
Under the actual scenario of fixing faulty program,
there is often more than one fault in the program.
However, the current fault repair approaches have fo-
cused on exploring the automatic repair of single-fault
programs, and the automatic repair for multi-fault
programs is slightly under-researched. In the future,
we want to consider the automatic repair of software
faults under a multi-fault environment.

Acknowledgements
This work was partially supported by National Nat-
ural Science Foundation of China (Nos.62276091,
62206087, 61602154), Cultivation Programme for
Young Backbone Teachers in Henan University of
Technology, Key scientific research project of colleges
and universities in Henan Province (No.22A520024),
Major Public Welfare Project of Henan Province
(No.201300311200) and Key Laboratory of Grain
Information Processing and Control (Henan Uni-
versity of Technology), Ministry of Education (No.
KFJJ2022006).

References
1. Abreu, R., Zoeteweij, P., Van Gemund, A. J. C. An Evalu-

ation of Similarity Coefficients for Software Fault Lo-
calization. Proceedings of the 12th Pacific Rim Interna-
tional Symposium on Dependable Computing (PRDC
2006), Riverside. USA, Dec, 2006, 39-46. https://doi.
org/10.1109/PRDC.2006.18

2. Abreu, R., Zoeteweij, P., Van Gemund, A. J. C. On the Ac-
curacy of Spectrum-Based Fault Localization. Procee-
dings of Academic and Industrial Conference Practice
and Research Techniques-Mutation (TAICPART-MU-
TAYION 2007), Windsor, UK, Sept, 2007, 89-98.https://
doi.org/10.1109/TAIC.PART.2007.13

3. Afzal, A., Motwani, M., Stolee, K. T., Brun, Y., Le Gou-
es, C. SOSRepair: Expressive Semantic Search for Re-
al-World Program Repair. IEEE Transactions on Soft-
ware Engineering, 2021, 47(10), 2162-2181.https://doi.
org/10.1109/TSE.2019.2944914

4. Chen, M. Y., Kiciman, E., Fratkin, E., Fox, A., Brewer, E.
Pinpoint: Problem Determination in Large, Dynamic
Internet Services. Proceedings of International Con-
ference on Dependable Systems and Networks (DSN

2002), Bethesda, Maryland, USA, June, 2002, 595-604,
http://dx.doi.org/ 10.1109/DSN.2002.1029005.

5. Chen, Z., Kommrusch, S., Tufano, M., Pouchet, L.-N.,
Poshyvanyk, D., Monperrus, M. SequenceR: Sequen-
ce-to-Sequence Learning for End-to-End Program
Repair. IEEE Transactions on Software Enginee-
ring, 2021, 47(9), 1943-1959. https://doi.org/10.1109/
TSE.2019.2940179

6. Forrest, S., Nguyen, T., Weimer, W., Le Goues, C. A Ge-
netic Programming Approach to Automated Software
Repair. Proceedings of the 11th Annual Conference
on Genetic and Evolutionary Computation (GECCO
2009), Montreal, Québec, Canada, July, 2009, 947-954.
https://doi.org/10.1145/1569901.1570031

7. Hua, J., Zhang, M., Wang, K., Khurshid, S. SketchFix: A Tool
for Automated Program Repair Approach using Lazy Can-
didate Generation. Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engine-
ering (ESEC/FSE 2018), Lake Buena Vista FL, USA, Oct,
2018, 888-891.https://doi.org/10.1145/3236024.3264600

Information Technology and Control 2023/1/5284

8. Jiang, J., Ren, L., Xiong, Y., Zhang, L. Inferring Program
Transformations from Singular Examples via Big Code.
Proceedings of the 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE
2019), San Diego, CA, USA, Nov, 2019, 255-266.https://
doi.org/10.1109/ASE.2019.00033

9. Jiang, J., Xiong, Y., Zhang, H., Gao, Q., Chen X. Shaping
Program Repair Space with Existing Patches and Simi-
lar Code. Proceedings of the 27th ACMSIGSOFT Inter-
national Symposium on Software Testing and Analysis
(ISSTA 2018), Amsterdam, Netherlands, Jul, 2018, 298-
309. https://doi.org/10.1145/3213846.3213871

10. Jones, J. A., Harrold, M. J., Stasko, J. Visualization of
Test Information to Assist Fault Localization. Procee-
dings of the 24th International Conference on Software
Engineering (ICSE 2002), Orlando, Florida, USA , May,
2002, 467-477. https://doi.org/10.1145/581396.581397

11. Just, R., Jalali, D., Ernst, M.D. Defects4J: A Database of
Existing Faults to Enable Controlled Testing Studies
for Java Programs. Proceedings of the 23th Interna-
tional Symposium on Software Testing and Analysis
(ISSTA 2014), Seattle, WA, USA, July, 2014, 437-440.
https://doi.org/10.1145/2610384.2628055

12. Kim, D., Nam, J., Song, J., Kim, S. Automatic Patch Ge-
neration Learned from Human-Written Patches. Proce-
edings of the 35th International Conferenceon Software
Engineering (ICSE 2013), San Francisco, USA, May. 2013,
802-811. https://doi.org/10.1109/ICSE.2013.6606626

13. Le Goues, C., Dewey-Vogt, M., Forrest, S., Weimer, W.
A Systematic Study of Automated Program Repair:
Fixing 55 out of 105 Bugs for 8 Each. Proceedings of the
34th International Conference on Software Enginee-
ring (ICSE 2012), Zürich, Switzerland, Jun, 2012, 3-13.
https://doi.org/10.1109/ICSE.2012.6227211

14. Le Goues, C., Nguyen, T., Forrest, S., Weimer, W.
GenProg: A Generic Method for Automatic Software
Repair. IEEE Transactions on Software Engineering,
2012, 38, 54-72. https://doi.org/10.1109/TSE.2011.104

15. Le, X. B. D., Lo, D., Le Goues, C. History Driven Program
Repair. Proceedings of International Conference on
Software Analysis, Evolution, and Reengineering (SA-
NER 2016), Osaka, Japan, Mar, 2016, 213-224. https://
doi.org/10.1109/SANER.2016.76

16. Martinez, M., Monperrus, M. Astor: A Program Repair
Library for Java. Proceedings of the 25th International
Symposium on Software Testing and Analysis (ISSTA

2016), Saarbrücken, Germany, July, 2016, 441-444.
https://doi.org/10.1145/2931037.2948705

17. Martinez, M., Weimer, W., Monperrus, M. Do the Fix
Ingredients Already Exist? An Empirical Inquiry Into
the Redundancy Assumptions of Program Repair
Approaches. Proceedings of the 36th International
Conference on Software Engineering (ICSE 2014),
Hyderabad, India, May, 2014, 492-495. https://doi.
org/10.1145/2591062.2591114

18. Motwani, M., Soto, M., Brun, Y., Just, R., Le Goues, C. Qua-
lity of Automated Program Repair on Real-World Defects.
IEEE Transactions on Software Engineering, 2022, 48(2),
637-661. https://doi.org/10.1109/TSE.2020.2998785

19. Pawlak, R., Monperrus, M., Petitprez, N., Noguera, C.,
Seinturier, L. Spoon: A Library for Implementing Ana-
lyses and Transformations of Java Source Code. Soft-
ware Practice and Experience, 2016, 46, 1155-1179.
https://doi.org/10.1002/spe.2346

20. Qi, Y., Mao, X., Lei, Y., Dai, Z., Wang, C. The Strength of
Random Search on Automated Program Repair. Proce-
edings of International Conference on Software Engi-
neering (ICSE 2014), Hyderabad, India, May, 2014, 254-
265, http://dx.doi.org/10.1145/256822 5.2568254

21. Riboira, A., Abreu, R. The GZoltar Project: A Graphical
Debugger Interface. Proceedings of International Acade-
mic and Industrial Conference on Practice and Research
Techniques(TAIC PART 2010), Windsor, UK, Sept, 2010,
215-218. https://doi.org/10.1007/978-3-642-15585-7_25

22. Weimer, W., Forrest, S., Le Goues, C., Nguyen, T. Auto-
matic Program Repair with Evolutionary Computation.
Communications of the ACM, 2010, 53, 109-116. https://
doi.org/10.1145/1735223.1735249

23. Wen, M., Chen, J., Wu, R., Hao, D., Cheung, S.-C. Con-
text-Aware Patch Generation for Better Automated Pro-
gram Repair. Proceedings of the 40th International Con-
ference on Software Engineering, Gothenburg, Sweden,
May, 2018, 1-11. https://doi.org/10.1145/3180155.3180233

24. Xuan, J., Martinez, M., Demarco, F., Clement, M., Marcote,
S. R. L., Durieux, T., Berre, D. L., Monperrus, M. Nopol: Au-
tomatic Repair of Conditional Statement Bugs in Java Pro-
grams. IEEE Transactions on Software Engineering, 2017,
43, 34-55. https://doi.org/10.1109/TSE.2016.2560811

25. Yuan, Y., Banzhaf, W. ARJA: Automated Repair of Java Pro-
grams via Multi-Objective Genetic Programming, IEEE
Transactions on Software Engineering, 2020, 46(10),
1040-1067. https://doi.org/10.1109/TSE.2018.2874648

This article is an Open Access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

