
Information Technology and Control 2022/4/51638

Revocable Certificateless Public
Key Encryption with Equality Test

ITC 4/51
Information Technology
and Control
Vol. 51 / No. 4 / 2022
pp. 638-660
DOI 10.5755/j01.itc.51.4.30691

Revocable Certificateless Public Key Encryption with Equality Test

Received 2022/02/10 Accepted after revision 2022/08/22

 http://dx.doi.org/10.5755/j01.itc.51.4.30691

HOW TO CITE: Tsai, T.-T., Lin, H.-Y., Tsai, H.-C. (2022). Revocable Certificateless Public Key Encryption with Equality Test. Information
Technology and Control, 51(4), 638-660. http://dx.doi.org/10.5755/j01.itc.51.4.30691

Corresponding author: tttsai@mail.ntou.edu.tw

Tung-Tso Tsai, Han-Yu Lin, Han-Ching Tsai
Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung 202, Taiwan

Traditional public key cryptography requires certificates as a link between each user’s identity and her/his
public key. Typically, public key infrastructures (PKI) are used to manage and maintain certificates. However,
it takes a lot of resources to build PKI which includes many roles and complex policies. The concept of cer-
tificateless public key encryption (CL-PKC) was introduced to eliminate the need for certificates. Based on
this concept, a mechanism called certificateless public key encryption with equality test (CL-PKEET) was
proposed to ensure the confidentiality of private data and provide an equality test of different ciphertexts. The
mechanism is suitable for cloud applications where users cannot only protect personal private data but also en-
joy cloud services which test the equality of different ciphertexts. More specifically, any two ciphertexts can be
tested to determine whether they are encrypted from the same plaintext. Indeed, any practical system needs to
provide a solution to revoke compromised users. However, these existing CL-PKEET schemes do not address
the revocation problem, and the related research is scant. Therefore, the aim of this article is to propose the first
revocable CL-PKEET scheme called RCL-PKEET which can effectively remove illegal users from the system
while maintaining the effectiveness of existing CL-PKEET schemes in encryption, decryption, and equality
testing processes. Additionally, we formally demonstrate the security of the proposed scheme under the bilin-
ear Diffie-Hellman assumption.
KEYWORDS: Revocable, certificateless, equality test, public key encryption, bilinear pairing.

1. Introduction
The 1970s saw new directions in cryptography called
the public key cryptography (PKC) presented by Dif-
fie and Hellman [10]. However, there exists a certifi-
cate management problem in PKC systems. To over-

come the drawback of using certificates, Shamir [31]
introduced a new notion called identity-based public
key cryptography (ID-PKC) which eliminates the
requirement of certificates since each user’s public

639Information Technology and Control 2022/4/51

key is generated by her/his identities. Since ID-PKC
systems have the key escrow problem, Al-Riyami and
Paterson [1] presented the concept of certificateless
public key cryptography (CL-PKC). A CL-PKC sys-
tem has a KGC that is only responsible for produc-
ing each user’s partial secret key. Each user takes the
partial secret key and combines it with a secret value
chosen by herself/himself to produce a full secret key.
Obviously, the KGC cannot obtain the full secret key
of any user due to the lack of secret value for each user.
Indeed, PKC or CL-PKC has also been applied to
cloud computing since there exist the potential risks
of privacy disclosure that the private data could be
leaked to cloud servers. In order to protect private
data and search encrypted data on the cloud, Yang et
al. [42] introduced a new concept of the public key en-
cryption with equality test (PKEET), which supports
comparing whether two encrypted data (ciphertexts)
are encrypted from the same message (plaintext). Un-
til 2018, Qu et al. [28] proposed a mechanism called
certificateless public key encryption with equality
test (CL-PKEET) to ensure the confidentiality of
private data and provide equality test of different ci-
phertexts. An important issue in all types of PKC is to
offer a revocation mechanism to revoke compromised
users (revoked users). Until now, these existing CL-
PKEET schemes do not address the revocation prob-
lem, and the related research is scant. Therefore, the
aim of this article is to propose the first revocable CL-
PKEET scheme called RCL-PKEET.

1.1. Related Work
The PKC directions cause extensive discussions of
the applications of cryptography such as the public
key signature [12, 31], the public key encryption [28,
30], and the key agreement in public key systems
[17, 42]. A fact we all know that PKC requires certif-
icates as a link between each user’s identity and her/
his public key. Typically, public key infrastructures
(PKI) are used to manage and maintain certificates.
However, it takes a lot of resources to build PKI which
includes many roles and complex policies. To over-
come the drawback of using certificates, Shamir [32]
introduced a new notion called identity-based public
key cryptography (ID-PKC). Based on the new notion,
Boneh and Franklin [5] employed bilinear pairings to
present the first practical identity (ID)-based encryp-
tion (IBE) scheme. Afterward, related schemes such

as ID-based signature [7-8, 16], hierarchical ID-based
encryption [20, 25], ID-based broadcast encryption
[9, 23], ID-based authentication [19, 22] have been
studied and published. However, ID-PKC inheres in
key escrow problem since the key generation center
(KGC), a major role in ID-PKC, is used to produce
each user’s secret key in the sense that the KGC keeps
the secret keys of all the users. In 2003, Al-Riyami
and Paterson [1] presented the concept of CL-PKC to
overcome the key escrow problem while eliminating
the certificate requirement. After that, there has been
a dramatic proliferation of research concerned with
CL-PKC such as certificateless public key signature
[2, 40], certificateless public key encryption [41, 46],
certificateless public key agreement [24, 36].
To protect private data and search encrypted data
on the cloud, a number of studies [3-4, 15, 38-39]
of searching the encrypted data, namely public key
encryption with keyword search (PEKS), were pro-
posed. Unfortunately, the PEKS is only suitable for
a user to search his/her encrypted data in the sense
that PEKS cannot apply to multiple users’ scenarios.
To offer the search of encrypted data for multiple us-
ers, Yang et al. [43] introduced a new concept of the
public key encryption with equality test (PKEET)
which supports to compare whether two encrypted
data (ciphertexts) are encrypted from the same mes-
sage (plaintext). But PKEET still has the drawback
of using certificates, Ma [26] combined the benefits
of PKEET and ID-PKC to present a new mechanism
called the identity-based public key encryption with
equality test (ID-PKEET), which eliminates the
requirement of certificates. As already mentioned
above, ID-PKC appears the key escrow problem, and
so does ID-PKEET. Based on the concept of CL-PKC,
a mechanism called certificateless public key encryp-
tion with equality test (CL-PKEET) was proposed by
Qu et al. [29] to ensure the confidentiality of private
data and provide equality test of different ciphertexts.
The mechanism, eliminating the requirement of cer-
tificates, does not have the key escrow problem and
is suitable for cloud applications where users can-
not only protect personal private data but also enjoy
cloud services which test the equality of different
ciphertexts. Two currently popular applications are
Internet of Vehicles (IoV) and Industrial Internet of
Things (IIoT). For the applications, two related liter-
atures, namely CL-PKEET toward IoV [45] and CL-
PKEET in IIoT [13], have been proposed.

Information Technology and Control 2022/4/51640

All types of PKC need to offer a revocation mechanism
to revoke compromised users (revoked users) such as
PKC with revocation mechanism [44], ID-PKC with
revocation mechanism [18, 35], CL-PKC with revoca-
tion mechanism [11, 34]. A revocation solution in tra-
ditional PKC is the certificate revocation list [14], but
it is not suitable for ID-PKC or CL-PKC, since they do
not have certificates. Boneh and Franklin [5] proposed
a suggestion of revocation on an ID-PKC where every
valid user can get a new secret key for each time peri-
od by secret channels, and a revoked user cannot get
a new secret key. However, the solution is inefficient
for multiple users since the cost of establishing secret
channels is increased linearly with the number of us-
ers. Indeed, CL-PKC can adopt the solution to achieve
a revocable CL-PKC (RCL-PKC), but the problem of
inefficiency still exists. Tsai and Tseng [37] presented
an efficient revocation method that uses public chan-
nels to revoke compromised users. Ma et al. [27] hired
the efficient revocation method to propose revocable
certificateless public key encryption with an out-
sourced semi-trusted cloud revocation agent.

1.2. Motivation
In fact, users can also be revoked in the existing ID-
PKEET [26] and CL-PKEETs [13, 29, 45]. In these
constructions, the KGC transmits secret keys to users
through secure channels. The KGC can realize revo-
cation by resending new secret keys to non-revoked
users. As a result, the user who has not received the
new secret key is the revoked user. However, such re-
vocation requires a secure channel, and the establish-
ment of this channel requires encryption and decryp-
tion procedures. In order to improve the efficiency of
revoking users, we must remove the way of revoking
users through secure channels. Therefore, we attempt
to propose a new mechanism to revoke users through
open channels.

1.3. Contribution and Organization
Until now, these existing CL-PKEET schemes do not
address the revocation problem, and the related re-
search is scant. Therefore, the aim of this article is to
propose the first revocable CL-PKEET scheme called
RCL-PKEET which can effectively remove illegal us-
ers from the system, while maintaining the effective-
ness of existing CL-PKEET schemes in encryption,
decryption, and equality testing processes. Addi-

tionally, we formally demonstrate the security of the
proposed scheme under the bilinear Diffie-Hellman
assumption.
The organization of this article is as follows. In Sec-
tion 2, we give some preliminaries. In Section 3, we
define the framework and security notions of RCL-
PKEET. A concrete RCL-PKEET scheme is present-
ed in Section 4. Section 5 analyzes the security of the
RCL-PKEET scheme. We compare the performance
with other existing schemes and draw a conclusion in
Sections 6 and 7, respectively.

2. Preliminaries
In this section, we briefly describe the bilinear pair-
ings and the bilinear Diffie-Hellman assumption
which are used to construct our concrete scheme and
analyze the security later. Let G1, G2, GT be three mul-
tiplicative cyclic groups of large prime order q and two
generators P Î G1 and Q Î G2. There is an asymmetric
bilinear pairings e: G1 × G2 → GT satisfying three con-
ditions as follows:
 _ Bilinear: for any a, b Î Zq

*, e(Pa, Qb) = e(P, Q)ab.
 _ Non-degenerate: e(P, Q) ≠ 1.
 _ Computable: the asymmetric bilinear pairings e is

computable efficiently.

The bilinear Diffie-Hellman (BDH) assumption in the
symmetric bilinear groups [5] was first presented in
2001. Boyen et al. [6] extended the BDH assumption
from the symmetric bilinear groups to the asymmet-
ric ones.
Bilinear Diffie-Hellman problem: let 𝒢 = (q, G1, G2, GT,
e) defined as above, P Î G1, Q Î G2 be two generators,
and a, b, c Î Zq

* be random numbers. Given (P, Pa, Pc, Q,
Qa, Qb) Î × , compute e(P, Q)abc Î GT.
Definition  1. (Bilinear Diffie-Hellman assump-
tion). Given an instance of bilinear Diffie-Hellman
problem, no probabilistic polynomial time (PPT) ad-
versary A computes e(P, Q)abc with non-negligible ad-
vantage which is defined as
Pr[A(P, Pa, Pc, Q, Qa, Qb) = e(P, Q)abc] < ϵ.
Note that the BDH assumption is based on solving the
discrete logarithm problem which is to compute a by
giving P Î G1 and Pa, where a is a random value chosen
in Zq

*.

641Information Technology and Control 2022/4/51

3. Framework and Security Notions
of RCL-PKEET
3.1. Framework
This subsection formalizes the RCL-PKEET frame-
work which is identical to CL-PKEET proposed by
Qu et al. [29] except that it adds ExtractTimeUpdate-
Key algorithm. The proposed RCL-PKEET compris-
es three entities, namely the key generation center
(KGC), the cloud server (CS) and users (senders and
receivers), which are depicted in Figure 1. The KGC
performs two tasks. One is responsible for creating
a partial secret key PSK for each user, and the other
for calculating the time update key TUK for each time
period. Then, the PSK and the TUK are respective-
ly issued via a secure channel and a public channel
to each user. Each user selects a secret value SV and
generates a full secret key FSK using SV, PSK and
TUK, where the FSK is used to decrypt the associat-
ed ciphertext and produce the trapdoor TD. The TD
of each user is transmitted to the CS, and then the CS
can use it to compare whether the two ciphertexts are
encrypted from the same plaintext. In the following,

we first present the framework of RCL-PKEET which
consists of ten algorithms:
 _ Setup(λ). Take a security parameter λ as input, and

output system public parameters PP and a master
secret key msk. This algorithm is run by a KGC to
initially set up the system of RCL-PKEET.

 _ ExtractPartialSecretKey(PP, ID, msk). Take the
public parameters PP, a user’s identity ID Î {0, 1}*

and the master secret key msk as input, and output
the user’s partial secret key PSK. This algorithm is
run by the KGC once for the user and returns the
PSK to the user via a secure channel.

 _ ExtractTimeUpdateKey(PP, ID, t, msk). Take the
public parameters PP, a user’s identity ID Î {0, 1}*,
a time period t and the master secret key msk as
input, and output the user’s time update key TUK.
This algorithm is run by the KGC and returns the
TUK to the user via a public channel.

 _ SetSecretValue(PP). Take the public parameters
PP as input, and output a secret value SV. This
algorithm is run by the user.

 _ ExtractFullSecretKey(PP, PSK, TUK, SV). Take
the public parameters PP, a user’s partial secret key

Figure 1

The framework of RCL-PKEET

Before defining the security notions of RCL-PKEET,
we discuss the types of adversaries. Four types of
adversaries have been formally defined in CL-
PKEET [29]. In addition to these four types, the
types of adversaries of RCL-PKEET include the
other two types named revoked users with and
without the trapdoor. The six types of adversaries
are detailed in the following way.

• Type-1 adversary: it is an outsider who is not a
member in the system, but the adversary can
replace the user’s public key PK and obtain any
user’s time update key TUK from a public
channel.

• Type-2 adversary: it is a malicious KGC who has
the master secret key msk. The adversary can
compute any user’s partial secret key PSK and
time update key TUK.

• Type-3 adversary: it was a member in the system,
but now has been revoked by KGC. However,
she/he still keeps own partial secret key PSK but
cannot obtain the current time update key TUK
from KGC.

• Type-4 adversary: besides the type-1 adversary’s
abilities, the type-4 adversary possesses the ability
to obtain the trapdoor.

• Type-5 adversary: besides the type-2 adversary’s
abilities, the type-5 adversary possesses the ability
to obtain the trapdoor.

• Type-6 adversary: besides the type-3
adversary’s abilities, the type-6 adversary
possesses the ability to obtain the trapdoor.

Then, we define two new security games,
namely GIND-CCA and GOW-CCA, to model our
security notions. The two games GIND-CCA and
GOW-CCA satisfy the IND-CCA and OW-CCA
security notions, respectively. Assume that A
is the adversary and B is the challenger in the
security games. To simplify our description of
security games, we present seven queries in
advance before playing the security games. A
may issue a number of queries many times to
B as follows:

• Partial secret key query(ID): B runs
ExtractPartialSecretKey algorithm on ID,
and forwards the resulting partial secret key
PSK to A.

• Time update key query(ID, t): B runs
ExtractTimeUpdateKey algorithm on (ID, t),
and forwards the resulting time update key
TUK to A.

• Full secret key query(ID, t): B runs
ExtractFullSecretKey algorithm on (ID, t),
and forwards the resulting full secret key
FSK to A.

• Public key query(ID): B runs ExtractPublicKey
algorithm on ID, and forwards the resulting
public key PK to A.

Figure 1
The framework of RCL-PKEET

Information Technology and Control 2022/4/51642

PSK, the user’s time update key TUK, and the user’s
secret value SV as input, and output the user’s full
secret key FSK. This algorithm is run by the user
who can use the FSK to decrypt the associated
ciphertext C or generate a trapdoor TD.

 _ ExtractPublicKey(PP, SV). Take the public
parameters PP and a user’s secret value SV as
input, and output the user’s public key PK. This
algorithm is run by the user, and anyone can use the
PK to generate the ciphertext C.

 _ Encryption(PP, ID, t, PK, M). Take the public
parameters PP, a user’s identity ID Î {0, 1}*, a time
period t, the user’s public key PK and a message
M as input, and output a ciphertext C or an error
symbol ⊥ to denote encryption failure. This
algorithm is run by a sender.

 _ Decryption(PP, FSK, C). Take the public parameters
PP, a user’s full secret key FSK, and a ciphertext C
as input, and output a corresponding message M
or an error symbol ⊥ to denote decryption failure.
This algorithm is run by a receiver.

 _ Authorization(PP, FSK). Take the public
parameters PP and a user’s full secret key FSK
as input, and output the user’s trapdoor TD. This
algorithm is run by the user who can authorize the
cloud server to test ciphertexts with TD.

 _ Test(PP, Cζ, TDζ, Cη, TDη). Take the public
parameters PP, two tuples (Cζ, TDζ), (Cη, TDη) as
input, and output 1 if Cζ and Cη are encrypted from
the same message. Otherwise, output 0. Here, the
ciphertext Cζ and the trapdoor TDζ are from the
user ζ, and the ciphertext Cη and the trapdoor TDη
are from the user η. This algorithm is run by a cloud
server who has the trapdoors.

3.2. Security Notions
Before defining the security notions of RCL-PKEET,
we discuss the types of adversaries. Four types of ad-
versaries have been formally defined in CL-PKEET
[29]. In addition to these four types, the types of ad-
versaries of RCL-PKEET include the other two types
named revoked users with and without the trapdoor.
The six types of adversaries are detailed in the follow-
ing way.
 _ Type-1 adversary: it is an outsider who is not a

member in the system, but the adversary can
replace the user’s public key PK and obtain any

user’s time update key TUK from a public channel.
 _ Type-2 adversary: it is a malicious KGC who has

the master secret key msk. The adversary can
compute any user’s partial secret key PSK and time
update key TUK.

 _ Type-3 adversary: it was a member in the system,
but now has been revoked by KGC. However, she/
he still keeps own partial secret key PSK but cannot
obtain the current time update key TUK from KGC.

 _ Type-4 adversary: besides the type-1 adversary’s
abilities, the type-4 adversary possesses the ability
to obtain the trapdoor.

 _ Type-5 adversary: besides the type-2 adversary’s
abilities, the type-5 adversary possesses the ability
to obtain the trapdoor.

 _ Type-6 adversary: besides the type-3 adversary’s
abilities, the type-6 adversary possesses the ability
to obtain the trapdoor.

Then, we define two new security games, namely
GIND-CCA and GOW-CCA, to model our security notions.
The two games GIND-CCA and GOW-CCA satisfy the IND-
CCA and OW-CCA security notions, respectively. As-
sume that A is the adversary and B is the challenger
in the security games. To simplify our description of
security games, we present seven queries in advance
before playing the security games. A may issue a num-
ber of queries many times to B as follows:
 _ Partial secret key query(ID): B runs

ExtractPartialSecretKey algorithm on ID, and
forwards the resulting partial secret key PSK to A.

 _ Time update key query(ID, t): B runs
ExtractTimeUpdateKey algorithm on (ID, t), and
forwards the resulting time update key TUK to A.

 _ Full secret key query(ID, t): B runs
ExtractFullSecretKey algorithm on (ID, t), and
forwards the resulting full secret key FSK to A.

 _ Public key query(ID): B runs ExtractPublicKey
algorithm on ID, and forwards the resulting public
key PK to A.

 _ Replace public key query(ID, PK′): after receiving
this query with (ID, PK′) from A, B replaces the
public key of user ID with PK′.

 _ Decryption query(ID, t, C): B runs Decryption
algorithm on (ID, t, C), and forwards the resulting
message M to A.

 _ Authorization query(ID, t): B runs Authorization

643Information Technology and Control 2022/4/51

algorithm on (ID, t), and forwards the resulting
trapdoor TD to A.

We say that a RCL-PKEET scheme has the security of
indistinguishability under chosen ciphertext attack
(IND-CCA) if any PPT adversary A has no advantage
in following security game GIND-CCA with a challenger
B. Define (λ) as A’s advantage which is neg-
ligible. Note that the adversary includes the type-1,
type-2 and type-3.
1 Setup: B executes the Setup(λ) algorithm to gener-

ate the public parameters PP and the master secret
key msk. Then PP is given to A. If A is the type-2
adversary, B gives the master key msk to A. Other-
wise, the master key msk is kept by B.

2 Phase 1: A may issue the Partial secret key query,
Time update key query, Full secret key query, Pub-
lic key query, Replace public key query, Decryption
query, and Authorization query as mentioned above
for many times. A restriction is that A should not
issue the Full secret key query if the public key with
the same identity ID has been replaced. Note that,
if A is the type-2 adversary, A can compute the par-
tial secret keys and time update keys by himself/
herself without issuing Partial secret key query and
Time update key query. However, the type-2 adver-
sary cannot issue the Replace public key query.

3 Challenge: A submits two messages M0
*, M1

*, a time
period t*, and an identity ID* to B. Three restric-
tions are given as the following:

 _ If A is type-1 adversary, ID* and t* must not be
issued in the Partial secret key query, Full secret
key query, Authorization query and Decryption
query.

 _ If A is type-2 adversary, ID* and t* must not be
issued in the Full secret key query, Authorization
query and Decryption query.

 _ If A is type-3 adversary, ID* and t* must not be
issued in the Time update key query, Full secret
key query, Authorization query and Decryption
query.

B picks a random bit ḃ ∈ {0, 1}, and then runs the En-
cryption(PP, ID*, t*, PK*, Mḃ

*) algorithm to compute
C* as the challenge ciphertext. If C* is invalid, outputs
with failure symbol ⊥. Otherwise, B sends C* to A.
4 Phase 2: A issues queries under the restrictions

which are given above and B responds as in Phase 1.

5 Guess: A submits a guess ḃ′ ∈ {0, 1}. A wins this
game if ḃ = ḃ′. We define that the advantage of A is

(λ) = | Pr[ḃ = ḃ′] – 1/2 |.
We say that a RCL-PKEET scheme is one-way secure
against the chosen ciphertext attack (OW-CCA) if any
PPT adversary A has no advantage in following secu-
rity game GOW-CCA with a challenger B. Define
(λ) as A’s advantage which is negligible. Note that the
adversary includes the type-4, type-5 and type-6.
1 Setup: B executes the Setup(λ) algorithm to gener-

ate the public parameters PP and the master secret
key msk. Then PP is given to A. If A is the type-5 ad-
versary, B gives the master key msk to A. Otherwise,
the master key msk is kept by B.

2 Phase 1: A may issue the Partial secret key query,
Time update key query, Full secret key query, Pub-
lic key query, Replace public key query, Decryption
query, and Authorization query as mentioned above
for many times. A restriction is that A should not
issue the Full secret key query if the public key with
the same identity ID has been replaced. Note that,
if A is the type-5 adversary, A can compute the par-
tial secret keys and time update keys by himself/
herself without issuing Partial secret key query and
Time update key query. However, the type-5 adver-
sary cannot issue the Replace public key query.

3 Challenge: A submits an identity ID*, and a time
period t* to B. Three restrictions are given as the
following:

 _ If A is type-4 adversary, ID* and t* must not be
issued in the Partial secret key query, Full secret
key query and Decryption query.

 _ If A is type-5 adversary, ID* and t* must not be
issued in the Full secret key query and Decryption
query.

 _ If A is type-6 adversary, ID* and t* must not be
issued in the Time update key query, Full secret
key query and Decryption query.

B picks a random message M*, and then runs the En-
cryption(PP, ID*, t*, PK*, M*) algorithm to compute
C*as the challenge ciphertext. Then B sends C* to A.
1 Phase 2: A issues queries under the restrictions

which are given above and B responds as in Phase 1.
2 Guess: A submits a guess M′. A wins this game

if M * = M′. We define that the advantage of A is
(λ) = Pr[M* = M′].

Information Technology and Control 2022/4/51644

4. The RCL-PKEET Scheme
The concrete RCL-PKEET scheme is composed of
ten algorithms and the details are presented as fol-
lows.
 _ Setup(λ). Take a security parameter λ as input

and generate 𝒢 = (q, G1, G2, GT, e) as mentioned in
section 2. Select two generators P ∈ G1, Q ∈ G2 and
a master secret key msk = s ∈ Zq

*, and then calculate
Ppub = Ps. Pick eight hash functions H1: {0, 1}* → G2,
H2: {0, 1}* → G2, H3: {0, 1}* → G2, H4: {0, 1}* → G2, H5:
GT × → {0, 1}λ+l, H6: {0, 1}λ → G2, H7: {0, 1}λ+l → Zq

*,
H8: GT → G2. Output public parameters PP = (𝒢, P, Q,
Ppub, H1, H2, H3, H4, H5, H6, H7, H8).

 _ ExtractPartialSecretKey(PP, ID, msk). Take public
parameters PP, an identity ID and the master
secret key msk as input. Output a partial secret
key PSK = (PSK1, PSK2) = (H1(ID)msk, H2(ID)msk) =
(H1(ID)s, H2(ID)s).

 _ ExtractTimeUpdateKey(PP, ID, t, msk). Take
public parameters PP, an identity ID, a time period
t and the master secret key msk as input. Output a
time update key TUK = (TUK1, TUK2) = (H3(ID, t)
msk, H4(ID, t)msk) = (H3(ID, t)s, H4(ID, t)s).

 _ SetSecretValue(PP). Take public parameters PP
as input. Then, select a random value x ∈ Zq

* and
output secret value SV = x.

 _ ExtractFullSecretKey(PP, PSK, TUK, SV). Take
public parameters PP, a partial secret key PSK,
a time update key TUK and a secret value SV as
input. Output a full secret key FSK = (FSK1, FSK2)
= ((PSK1∙TUK1)SV, (PSK2∙TUK2)SV) = ((PSK1∙TUK1)x,
(PSK2∙TUK2)x).

 _ ExtractPublicKey(PP, SV). Take public parameters
PP and a secret value SV as input. Output a public
key PK = (PK1, PK2) = (Ppub

SV, QSV) = (Ppub
 x, Qx).

 _ Encryption(PP, ID, t, PK, M). Take public
parameters PP, an identity ID, a time period t, the
public key PK and a message M as input, where M
∈ {0, 1}λ, and PK = (PK1, PK2).

 _ Check whether e(PK1, Q) = e(Ppub, PK2) holds. If
not holds, the algorithm aborts with failure.

 _ Choose k ∈ {0, 1}l and use the message M to
calculate R = H7(M, k).

 _ Randomly pick α ∈ Zq
* and set a ciphertext C by

computing (C1, C2, C3, C4) as follows:

 _ C1 = PR, C2 = Pα, C3 = H5(e(PK1, H1(ID)∙H3(ID,
t))α, C1, C2)⊕(M || k), C4 = H6(M)R∙H8(e(PK1,
H2(ID)∙H4(ID, t))α).

 _ Decryption(PP, FSK, C). Take public parameters
PP, a full secret key FSK, and a ciphertext C as
input.
 ▪ Obtain M′ || k′ by computing C3⊕H5(e(C2, FSK1),

C1, C2).
 ▪ Compute R′ = H7(M′, k′).
 ▪ Check if C1 = and C4 = H6 ∙H8(e(C2,

FSK2)) both hold, return M; otherwise, output
failed.

 _ Authorization(PP, FSK). Take public parameters
PP and a full secret key FSK as input. Output a
trapdoor TD = FSK2.

 _ Test(PP, Cζ, TDζ, Cη, TDη). Take public parameters
PP, two ciphertext Cζ, Cη and two trapdoor TDζ, TDη
as input, where Cζ = (Cζ1, Cζ2, Cζ3, Cζ4), Cη = (Cη1, Cη2,
Cη3, Cη4).
 ▪ Compute Tζ and Tη as below.

B picks a random message M*, and then runs the
Encryption(PP, ID*, t*, PK*, M*) algorithm to
compute C*as the challenge ciphertext. Then B
sends C* to A.

4. Phase 2: A issues queries under the restrictions
which are given above and B responds as in
Phase 1.

5. Guess: A submits a guess M′. A wins this game if
M* = M′. We define that the advantage of A is

(λ) = Pr[M* = M′].

4. The RCL-PKEET Scheme
The concrete RCL-PKEET scheme is composed of
ten algorithms and the details are presented as
follows.

• Setup(λ). Take a security parameter λ as input and
generate 𝒢𝒢𝒢𝒢 = (q, G1, G2, GT, e) as mentioned in
section 2. Select two generators P ∈ G1, Q ∈ G2 and
a master secret key msk = s ∈ Zq*, and then calculate
Ppub = Ps. Pick eight hash functions H1: {0, 1}* → G2,
H2: {0, 1}* → G2, H3: {0, 1}* → G2, H4: {0, 1}* → G2, H5:
GT × → {0, 1}λ+l, H6: {0, 1}λ → G2, H7: {0, 1}λ+l →
Zq*, H8: GT → G2. Output public parameters PP =
(𝒢𝒢𝒢𝒢, P, Q, Ppub, H1, H2, H3, H4, H5, H6, H7, H8).

• ExtractPartialSecretKey(PP, ID, msk). Take public
parameters PP, an identity ID and the master
secret key msk as input. Output a partial secret key
PSK = (PSK1, PSK2) = (H1(ID)msk, H2(ID)msk) =
(H1(ID)s, H2(ID)s).

• ExtractTimeUpdateKey(PP, ID, t, msk). Take
public parameters PP, an identity ID, a time period
t and the master secret key msk as input. Output a
time update key TUK = (TUK1, TUK2) = (H3(ID,
t)msk, H4(ID, t)msk) = (H3(ID, t)s, H4(ID, t)s).

• SetSecretValue(PP). Take public parameters PP as
input. Then, select a random value x ∈ Zq* and
output secret value SV = x.

• ExtractFullSecretKey(PP, PSK, TUK, SV). Take
public parameters PP, a partial secret key PSK, a
time update key TUK and a secret value SV as
input. Output a full secret key FSK = (FSK1, FSK2)
= ((PSK1·TUK1)SV, (PSK2·TUK2)SV) = ((PSK1·TUK1)x,
(PSK2·TUK2)x).

• ExtractPublicKey(PP, SV). Take public parameters
PP and a secret value SV as input. Output a public
key PK = (PK1, PK2) = (PpubSV, QSV) = (Ppub x, Qx).

• Encryption(PP, ID, t, PK, M). Take public
parameters PP, an identity ID, a time period t, the
public key PK and a message M as input, where M
∈ {0, 1}λ, and PK = (PK1, PK2).

 Check whether e(PK1, Q) = e(Ppub, PK2)
holds. If not holds, the algorithm aborts
with failure.

 Choose k ∈ {0, 1}l and use the message M
to calculate R = H7(M, k).

 Randomly pick α ∈ Zq* and set a
ciphertext C by computing (C1, C2, C3, C4)
as follows:

C1 = PR, C2 = Pα, C3 = H5(e(PK1,
H1(ID)·H3(ID, t))α, C1, C2)⊕(M || k), C4 =
H6(M)R·H8(e(PK1, H2(ID)·H4(ID, t))α).

• Decryption(PP, FSK, C). Take public
parameters PP, a full secret key FSK, and a
ciphertext C as input.

 Obtain M′ || k′ by computing C3⊕H5(e(C2,
FSK1), C1, C2).

 Compute R′ = H7(M′, k′).

 Check if C1 = and C4 = H6 ·H8(e(C2,
FSK2)) both hold, return M; otherwise,
output failed.

• Authorization(PP, FSK). Take public
parameters PP and a full secret key FSK as
input. Output a trapdoor TD = FSK2.

• Test(PP, Cζ, TDζ, Cη, TDη). Take public
parameters PP, two ciphertext Cζ, Cη and two
trapdoor TDζ, TDη as input, where Cζ = (Cζ1,
Cζ2, Cζ3, Cζ4), Cη = (Cη1, Cη2, Cη3, Cη4).

 Compute Tζ and Tη as below.

− Tζ = Cζ4

H8(e(Cζ2, TDζ))

= H6(Mζ)
Rζ·H8(e(PKζ1, H2(IDζ)·H4(IDζ, tζ))

αζ)
H8(e(P

αζ, (PSKζ2·TUKζ2)
xζ))

=
H6(Mζ)

Rζ·H8(e(Ppub
xζ, H2(IDζ)·H4(IDζ, tζ))

αζ)

H8(e(P
αζ, H2(IDζ)

s
·H4(IDζ, tζ)

s
)

xζ))

= H6(Mζ)
Rζ·H8(e(P

s·xζ, H2(IDζ)·H4(IDζ, tζ))
αζ)

H8(e(P
s·xζ, H2(IDζ)·H4(IDζ, tζ))

αζ)

= H6(Mζ)H7(Mζ, kζ)

− Tη = Cη4

H8(e(Cη2, TDη))

 = H6(Mη)
Rη·H8(e(PKη1, H2(IDη)·H4(IDη, tη))

αη)
H8(e(P

αη, (PSKη2·TUKη2)
xη))

 =
H6(Mη)

Rη·H8(e(Ppub
xη, H2(IDη)·H4(IDη, tη))

αη)

H8(e(P
αη, H2(IDη)

s
·H4(IDη, tη)

s
)

xη))

 = H6(Mη)
Rη·H8(e(P

s·xη, H2(IDη)·H4(IDη, tη))
αη)

H8(e(P
s·xη, H2(IDη)·H4(IDη, tη))

αη)

 = H6(Mη)H7(Mη, kη)

 Calculate e(Cζ1, Tη) and e(Cη1, Tζ) as below.

− e(Cζ1, Tη) = e(PH7(Mζ, kζ), H6(Mη)H7(Mη, kη))

 = e(P, H6(Mη))H7(Mζ, kζ)·H7(Mη, kη)

B picks a random message M*, and then runs the
Encryption(PP, ID*, t*, PK*, M*) algorithm to
compute C*as the challenge ciphertext. Then B
sends C* to A.

4. Phase 2: A issues queries under the restrictions
which are given above and B responds as in
Phase 1.

5. Guess: A submits a guess M′. A wins this game if
M* = M′. We define that the advantage of A is

(λ) = Pr[M* = M′].

4. The RCL-PKEET Scheme
The concrete RCL-PKEET scheme is composed of
ten algorithms and the details are presented as
follows.

• Setup(λ). Take a security parameter λ as input and
generate 𝒢𝒢𝒢𝒢 = (q, G1, G2, GT, e) as mentioned in
section 2. Select two generators P ∈ G1, Q ∈ G2 and
a master secret key msk = s ∈ Zq*, and then calculate
Ppub = Ps. Pick eight hash functions H1: {0, 1}* → G2,
H2: {0, 1}* → G2, H3: {0, 1}* → G2, H4: {0, 1}* → G2, H5:
GT × → {0, 1}λ+l, H6: {0, 1}λ → G2, H7: {0, 1}λ+l →
Zq*, H8: GT → G2. Output public parameters PP =
(𝒢𝒢𝒢𝒢, P, Q, Ppub, H1, H2, H3, H4, H5, H6, H7, H8).

• ExtractPartialSecretKey(PP, ID, msk). Take public
parameters PP, an identity ID and the master
secret key msk as input. Output a partial secret key
PSK = (PSK1, PSK2) = (H1(ID)msk, H2(ID)msk) =
(H1(ID)s, H2(ID)s).

• ExtractTimeUpdateKey(PP, ID, t, msk). Take
public parameters PP, an identity ID, a time period
t and the master secret key msk as input. Output a
time update key TUK = (TUK1, TUK2) = (H3(ID,
t)msk, H4(ID, t)msk) = (H3(ID, t)s, H4(ID, t)s).

• SetSecretValue(PP). Take public parameters PP as
input. Then, select a random value x ∈ Zq* and
output secret value SV = x.

• ExtractFullSecretKey(PP, PSK, TUK, SV). Take
public parameters PP, a partial secret key PSK, a
time update key TUK and a secret value SV as
input. Output a full secret key FSK = (FSK1, FSK2)
= ((PSK1·TUK1)SV, (PSK2·TUK2)SV) = ((PSK1·TUK1)x,
(PSK2·TUK2)x).

• ExtractPublicKey(PP, SV). Take public parameters
PP and a secret value SV as input. Output a public
key PK = (PK1, PK2) = (PpubSV, QSV) = (Ppub x, Qx).

• Encryption(PP, ID, t, PK, M). Take public
parameters PP, an identity ID, a time period t, the
public key PK and a message M as input, where M
∈ {0, 1}λ, and PK = (PK1, PK2).

 Check whether e(PK1, Q) = e(Ppub, PK2)
holds. If not holds, the algorithm aborts
with failure.

 Choose k ∈ {0, 1}l and use the message M
to calculate R = H7(M, k).

 Randomly pick α ∈ Zq* and set a
ciphertext C by computing (C1, C2, C3, C4)
as follows:

C1 = PR, C2 = Pα, C3 = H5(e(PK1,
H1(ID)·H3(ID, t))α, C1, C2)⊕(M || k), C4 =
H6(M)R·H8(e(PK1, H2(ID)·H4(ID, t))α).

• Decryption(PP, FSK, C). Take public
parameters PP, a full secret key FSK, and a
ciphertext C as input.

 Obtain M′ || k′ by computing C3⊕H5(e(C2,
FSK1), C1, C2).

 Compute R′ = H7(M′, k′).

 Check if C1 = and C4 = H6 ·H8(e(C2,
FSK2)) both hold, return M; otherwise,
output failed.

• Authorization(PP, FSK). Take public
parameters PP and a full secret key FSK as
input. Output a trapdoor TD = FSK2.

• Test(PP, Cζ, TDζ, Cη, TDη). Take public
parameters PP, two ciphertext Cζ, Cη and two
trapdoor TDζ, TDη as input, where Cζ = (Cζ1,
Cζ2, Cζ3, Cζ4), Cη = (Cη1, Cη2, Cη3, Cη4).

 Compute Tζ and Tη as below.

− Tζ = Cζ4

H8(e(Cζ2, TDζ))

= H6(Mζ)
Rζ·H8(e(PKζ1, H2(IDζ)·H4(IDζ, tζ))

αζ)
H8(e(P

αζ, (PSKζ2·TUKζ2)
xζ))

=
H6(Mζ)

Rζ·H8(e(Ppub
xζ, H2(IDζ)·H4(IDζ, tζ))

αζ)

H8(e(P
αζ, H2(IDζ)

s
·H4(IDζ, tζ)

s
)

xζ))

= H6(Mζ)
Rζ·H8(e(P

s·xζ, H2(IDζ)·H4(IDζ, tζ))
αζ)

H8(e(P
s·xζ, H2(IDζ)·H4(IDζ, tζ))

αζ)

= H6(Mζ)H7(Mζ, kζ)

− Tη = Cη4

H8(e(Cη2, TDη))

 = H6(Mη)
Rη·H8(e(PKη1, H2(IDη)·H4(IDη, tη))

αη)
H8(e(P

αη, (PSKη2·TUKη2)
xη))

 =
H6(Mη)

Rη·H8(e(Ppub
xη, H2(IDη)·H4(IDη, tη))

αη)

H8(e(P
αη, H2(IDη)

s
·H4(IDη, tη)

s
)

xη))

 = H6(Mη)
Rη·H8(e(P

s·xη, H2(IDη)·H4(IDη, tη))
αη)

H8(e(P
s·xη, H2(IDη)·H4(IDη, tη))

αη)

 = H6(Mη)H7(Mη, kη)

 Calculate e(Cζ1, Tη) and e(Cη1, Tζ) as below.

− e(Cζ1, Tη) = e(PH7(Mζ, kζ), H6(Mη)H7(Mη, kη))

 = e(P, H6(Mη))H7(Mζ, kζ)·H7(Mη, kη)

 _ Calculate e(Cζ1, Tη) and e(Cη1, Tζ) as below.

B picks a random message M*, and then runs the
Encryption(PP, ID*, t*, PK*, M*) algorithm to
compute C*as the challenge ciphertext. Then B
sends C* to A.

4. Phase 2: A issues queries under the restrictions
which are given above and B responds as in
Phase 1.

5. Guess: A submits a guess M′. A wins this game if
M* = M′. We define that the advantage of A is

(λ) = Pr[M* = M′].

4. The RCL-PKEET Scheme
The concrete RCL-PKEET scheme is composed of
ten algorithms and the details are presented as
follows.

• Setup(λ). Take a security parameter λ as input and
generate 𝒢𝒢𝒢𝒢 = (q, G1, G2, GT, e) as mentioned in
section 2. Select two generators P ∈ G1, Q ∈ G2 and
a master secret key msk = s ∈ Zq*, and then calculate
Ppub = Ps. Pick eight hash functions H1: {0, 1}* → G2,
H2: {0, 1}* → G2, H3: {0, 1}* → G2, H4: {0, 1}* → G2, H5:
GT × → {0, 1}λ+l, H6: {0, 1}λ → G2, H7: {0, 1}λ+l →
Zq*, H8: GT → G2. Output public parameters PP =
(𝒢𝒢𝒢𝒢, P, Q, Ppub, H1, H2, H3, H4, H5, H6, H7, H8).

• ExtractPartialSecretKey(PP, ID, msk). Take public
parameters PP, an identity ID and the master
secret key msk as input. Output a partial secret key
PSK = (PSK1, PSK2) = (H1(ID)msk, H2(ID)msk) =
(H1(ID)s, H2(ID)s).

• ExtractTimeUpdateKey(PP, ID, t, msk). Take
public parameters PP, an identity ID, a time period
t and the master secret key msk as input. Output a
time update key TUK = (TUK1, TUK2) = (H3(ID,
t)msk, H4(ID, t)msk) = (H3(ID, t)s, H4(ID, t)s).

• SetSecretValue(PP). Take public parameters PP as
input. Then, select a random value x ∈ Zq* and
output secret value SV = x.

• ExtractFullSecretKey(PP, PSK, TUK, SV). Take
public parameters PP, a partial secret key PSK, a
time update key TUK and a secret value SV as
input. Output a full secret key FSK = (FSK1, FSK2)
= ((PSK1·TUK1)SV, (PSK2·TUK2)SV) = ((PSK1·TUK1)x,
(PSK2·TUK2)x).

• ExtractPublicKey(PP, SV). Take public parameters
PP and a secret value SV as input. Output a public
key PK = (PK1, PK2) = (PpubSV, QSV) = (Ppub x, Qx).

• Encryption(PP, ID, t, PK, M). Take public
parameters PP, an identity ID, a time period t, the
public key PK and a message M as input, where M
∈ {0, 1}λ, and PK = (PK1, PK2).

 Check whether e(PK1, Q) = e(Ppub, PK2)
holds. If not holds, the algorithm aborts
with failure.

 Choose k ∈ {0, 1}l and use the message M
to calculate R = H7(M, k).

 Randomly pick α ∈ Zq* and set a
ciphertext C by computing (C1, C2, C3, C4)
as follows:

C1 = PR, C2 = Pα, C3 = H5(e(PK1,
H1(ID)·H3(ID, t))α, C1, C2)⊕(M || k), C4 =
H6(M)R·H8(e(PK1, H2(ID)·H4(ID, t))α).

• Decryption(PP, FSK, C). Take public
parameters PP, a full secret key FSK, and a
ciphertext C as input.

 Obtain M′ || k′ by computing C3⊕H5(e(C2,
FSK1), C1, C2).

 Compute R′ = H7(M′, k′).

 Check if C1 = and C4 = H6 ·H8(e(C2,
FSK2)) both hold, return M; otherwise,
output failed.

• Authorization(PP, FSK). Take public
parameters PP and a full secret key FSK as
input. Output a trapdoor TD = FSK2.

• Test(PP, Cζ, TDζ, Cη, TDη). Take public
parameters PP, two ciphertext Cζ, Cη and two
trapdoor TDζ, TDη as input, where Cζ = (Cζ1,
Cζ2, Cζ3, Cζ4), Cη = (Cη1, Cη2, Cη3, Cη4).

 Compute Tζ and Tη as below.

− Tζ = Cζ4

H8(e(Cζ2, TDζ))

= H6(Mζ)
Rζ·H8(e(PKζ1, H2(IDζ)·H4(IDζ, tζ))

αζ)
H8(e(P

αζ, (PSKζ2·TUKζ2)
xζ))

=
H6(Mζ)

Rζ·H8(e(Ppub
xζ, H2(IDζ)·H4(IDζ, tζ))

αζ)

H8(e(P
αζ, H2(IDζ)

s
·H4(IDζ, tζ)

s
)

xζ))

= H6(Mζ)
Rζ·H8(e(P

s·xζ, H2(IDζ)·H4(IDζ, tζ))
αζ)

H8(e(P
s·xζ, H2(IDζ)·H4(IDζ, tζ))

αζ)

= H6(Mζ)H7(Mζ, kζ)

− Tη = Cη4

H8(e(Cη2, TDη))

 = H6(Mη)
Rη·H8(e(PKη1, H2(IDη)·H4(IDη, tη))

αη)
H8(e(P

αη, (PSKη2·TUKη2)
xη))

 =
H6(Mη)

Rη·H8(e(Ppub
xη, H2(IDη)·H4(IDη, tη))

αη)

H8(e(P
αη, H2(IDη)

s
·H4(IDη, tη)

s
)

xη))

 = H6(Mη)
Rη·H8(e(P

s·xη, H2(IDη)·H4(IDη, tη))
αη)

H8(e(P
s·xη, H2(IDη)·H4(IDη, tη))

αη)

 = H6(Mη)H7(Mη, kη)

 Calculate e(Cζ1, Tη) and e(Cη1, Tζ) as below.

− e(Cζ1, Tη) = e(PH7(Mζ, kζ), H6(Mη)H7(Mη, kη))

 = e(P, H6(Mη))H7(Mζ, kζ)·H7(Mη, kη)

− e(Cη1, Tζ) = e(PH7(Mη, kη), H6(Mζ)H7(Mζ, kζ))

 = e(P, H6(Mζ))H7(Mζ, kζ)·H7(Mη, kη)

− Check e(Cζ1, Tη) = e(Cη1, Tζ). If it holds,
output 1; otherwise 0.

In the following, we state the rationality of the
proposed RCL-PKEET. We first discuss the user
revocation processes, and then prove that the
revoked user cannot decrypt the associated
ciphertext. The full secret key FSK of each user
contains PSK = (PSK1, PSK2), TUK = (TUK1, TUK2)
and SV, since FSK = (FSK1, FSK2) = ((PSK1·TUK1)SV,
(PSK2·TUK2)SV). Among these keys, only TUK
includes the current time period t due to TUK =
(TUK1, TUK2) = (H3(ID, t)msk, H4(ID, t)msk) = (H3(ID, t)s,
H4(ID, t)s). As a result, TUK is used to revoke a user
when stopping sending it to the user. Next, we
prove that only non-revoked user with the current
FSK can decrypt the associated ciphertext.

− According to the above Encryption algorithm,
the ciphertext C = (C1, C2, C3, C4), where

C1 = PR, C2 = Pα, C3 = H5(e(PK1, H1(ID)·H3(ID, t))α,
C1, C2)⊕ (M || k) and C4 = H6(M)R·H8(e(PK1,
H2(ID)·H4(ID, t))α).

− Non-revoked user with FSK = (FSK1, FSK2) can
obatin M by computing

C3⊕H5(e(C2, FSK1), C1, C2)

 = H5(e(PK1, H1(ID)·H3(ID, t))α, C1, C2)⊕(M||k)

 ⊕H5(e(C2, FSK1), C1, C2)

 = H5(e(PpubSV, H1(ID)·H3(ID, t))α, C1, C2)⊕(M||k)

 ⊕H5(e(Pα, (PSK1·TUK1)SV), C1, C2)

 = H5(e(PpubSV, H1(ID)·H3(ID, t))α, C1, C2)⊕(M||k)

 ⊕H5(e(Pα, (H1(ID)s·H3(ID, t)s)SV), C1, C2)

 = H5(e(PpubSV, H1(ID)·H3(ID, t))α, C1, C2)⊕(M||k)

 ⊕H5(e(Ps·SV, (H1(ID)·H3(ID, t))α), C1, C2)

= H5(e(PpubSV, H1(ID)·H3(ID, t))α, C1, C2)⊕(M||k)

 ⊕H5(e(PpubSV, H1(ID)·H3(ID, t))α, C1, C2)

= M||k

5. Security Proof

In this section, we propose a formal security proof
for RCL-PKEET by using the technique [33]. Based
on the assumed hard BDH problem, we give seven

theorems to prove the security of the proposed
RCL-PKEET scheme.

Theorem 1. Assume that there exists PPT Type-1
adversary A1 against IND-CCA security for the
proposed scheme in the random oracle model. Then,
A1 has the advantage ϵ to break the scheme. By the
ϵ from A1, we construct that a challenger B solves
the BDH assumption with the advantage ϵ′ and ϵ′
≥ (1/qH5

) [ϵ /(e(qPSK + qFSK + qAuth + 1)) – qD/q –
qH8

/q]. Suppose that the eight hash functions Hi (1
≤ i ≤ 8) are random oracles and then A1 can issue
random oracle queries qHi

 (1 ≤ i ≤ 8). Moreover, A1

also can issue Partial secret key queries qPSK, Time
update key queries qTUK, Full secret key queries qFSK,
Public key queries qPK, Replace public key queries
qRPK, Decryption queries qD and Authorization
queries qAuth to the challenger B.

Proof. Assume that (𝒢𝒢𝒢𝒢, P, Pa, Pc, Q, Qa, Qb) is an
instance of the BDH problem where 𝒢𝒢𝒢𝒢 = (q, G1,
G2, GT, e), and B would like to calculate the
BDH solution e(P, Q)abc. B acts as a challenger
and interacts with the Type-1 adversary A1 to
calculate e(P, Q)abc in the following GIND-CCA
game:

1. Setup: B sets Ppub = Pa and selects eight
collision-resistant hash functions Hi (1 ≤ i ≤
8) as random oracles. Then B outputs the
public parameters PP to A1, where PP = (𝒢𝒢𝒢𝒢,
P, Q, Ppub, H1, H2, H3, H4, H5, H6, H7, H8). To
keep the consistency between the random
oracle queries and the corresponding
responses, B needs to maintain the lists LH1,
LH2, …, LH8, LKey as below, which are empty
initially and the details of elements in the
lists will be introduced later:

− LH1 with items of the forms [IDi, μi, cn],

− LH2 with items of the forms [IDi, νi, cn],

− LH3 with items of the forms [IDi, ti, ηi, cn],

− LH4 with items of the forms [IDi, ti, ζi, cn],

− LH5 with items of the forms [W, C1, C2, ω],

− LH6 with items of the forms [M, R],

− LH7 with items of the forms [M, k, γ],

− LH8 with items of the forms [N, S],

− LKey with items of the forms [IDi, ti, xi,
PSKi, TUKi, FSKi, PKi, cn].

Note that B maintains the list LKey by the
answer to the Public key query.

2. Phase 1: A1 launches a series of queries to B,
and then B returns the corresponding

645Information Technology and Control 2022/4/51

– Check e(Cζ1, Tη) = e(Cη1, Tζ). If it holds, output
 1; otherwise 0.

In the following, we state the rationality of the pro-
posed RCL-PKEET. We first discuss the user revo-
cation processes, and then prove that the revoked
user cannot decrypt the associated ciphertext. The
full secret key FSK of each user contains PSK =
(PSK1, PSK2), TUK = (TUK1, TUK2) and SV, since FSK =
(FSK1, FSK2) = ((PSK1∙TUK1)SV, (PSK2∙TUK2)SV). Among
these keys, only TUK includes the current time period t
due to TUK = (TUK1, TUK2) = (H3(ID, t)msk, H4(ID, t)msk)
= (H3(ID, t)s, H4(ID, t)s). As a result, TUK is used to re-
voke a user when stopping sending it to the user. Next,
we prove that only non-revoked user with the current
FSK can decrypt the associated ciphertext.
 _ According to the above Encryption algorithm, the

ciphertext C = (C1, C2, C3, C4), where
 _ C1 = PR, C2 = Pα, C3 = H5(e(PK1, H1(ID) ∙ H3(ID, t)) α,

C1, C2)⊕(M || k) and C4 = H6(M)R∙H8(e(PK1,
H2(ID)∙H4(ID, t))α).

 _ Non-revoked user with FSK = (FSK1, FSK2) can
obatin M by computing
C3⊕H5(e(C2, FSK1), C1, C2)
 = H5(e(PK1, H1(ID)∙H3(ID, t))α, C1, C2)⊕(M||k)
 ⊕H5(e(C2, FSK1), C1, C2)
 = H5(e(Ppub

SV, H1(ID)∙H3(ID, t))α, C1, C2)⊕(M||k)
 ⊕H5(e(Pα, (PSK1∙TUK1)SV), C1, C2)
 = H5(e(Ppub

SV, H1(ID)∙H3(ID, t))α, C1, C2)⊕(M||k)
 ⊕H5(e(Pα, (H1(ID)s∙H3(ID, t)s)SV), C1, C2)
 = H5(e(Ppub

SV, H1(ID)∙H3(ID, t))α, C1, C2)⊕(M||k)
 ⊕H5(e(Ps∙SV, (H1(ID)∙H3(ID, t))α), C1, C2)
= H5(e(Ppub

SV, H1(ID)∙H3(ID, t))α, C1, C2)⊕(M||k)
 ⊕H5(e(Ppub

SV, H1(ID)∙H3(ID, t))α, C1, C2)
= M||k

5. Security Proof
In this section, we propose a formal security proof
for RCL-PKEET by using the technique [33]. Based
on the assumed hard BDH problem, we give seven
theorems to prove the security of the proposed RCL-
PKEET scheme.
Theorem 1. Assume that there exists PPT Type-1 ad-
versary A1 against IND-CCA security for the proposed

scheme in the random oracle model. Then, A1 has the
advantage ϵ to break the scheme. By the ϵ from A1, we
construct that a challenger B solves the BDH assump-
tion with the advantage ϵ′ and ϵ′ ≥ (1/qH5) [Î/(e(qPSK +
qFSK + qAuth + 1)) – qD/q – qH8/q]. Suppose that the eight
hash functions Hi (1 ≤ i ≤ 8) are random oracles and
then A1 can issue random oracle queries qHi

(1 ≤ i ≤ 8).
Moreover, A1 also can issue Partial secret key queries
qPSK, Time update key queries qTUK, Full secret key que-
ries qFSK, Public key queries qPK, Replace public key
queries qRPK, Decryption queries qD and Authorization
queries qAuth to the challenger B.
Proof. Assume that (𝒢, P, Pa, Pc, Q, Qa, Qb) is an in-
stance of the BDH problem where 𝒢 = (q, G1, G2, GT, e),
and B would like to calculate the BDH solution e(P, Q)
abc. B acts as a challenger and interacts with the Type-
1 adversary A1 to calculate e(P, Q)abc in the following
GIND-CCA game:
1 Setup: B sets Ppub = Pa and selects eight collision-re-

sistant hash functions Hi (1 ≤ i ≤ 8) as random or-
acles. Then B outputs the public parameters PP to
A1, where PP = (𝒢, P, Q, Ppub, H1, H2, H3, H4, H5, H6, H7,
H8). To keep the consistency between the random
oracle queries and the corresponding responses,
B needs to maintain the lists LH1, LH2, …, LH8, LKey as
below, which are empty initially and the details of
elements in the lists will be introduced later:

 _ LH1 with items of the forms [IDi, μi, cn],
 _ LH2 with items of the forms [IDi, νi, cn],
 _ LH3 with items of the forms [IDi, ti, ηi, cn],
 _ LH4 with items of the forms [IDi, ti, ζi, cn],
 _ LH5 with items of the forms [W, C1, C2, ω],
 _ LH6 with items of the forms [M, R],
 _ LH7 with items of the forms [M, k, γ],
 _ LH8 with items of the forms [N, S],
 _ LKey with items of the forms [IDi, ti, xi, PSKi,

TUKi, FSKi, PKi, cn].

Note that B maintains the list LKey by the answer to the
Public key query.
2 Phase 1: A1 launches a series of queries to B, and

then B returns the corresponding answers as fol-
lows.

 _ H1 query(IDi): by completing the following steps, B
can answer this query.

Information Technology and Control 2022/4/51646

 ▪ If IDi exists in LH1, B searches the tuple [IDi, μi,
cn] by IDi. Upon obtaining μi and cn from LH1,
compute:

 _ If cn = 0, B returns Qμi) to A1.
 _ If cn = 1, B returns Qbμi to A1.

 ▪ Otherwise B picks a time period ti at random and
makes Public key query on (IDi, ti) to generate μi,
cn and store them in LH1. Then repeat the above
step to return Qμi or Qbμi.

 _ H2 query(IDi): by completing the following steps, B
can answer this query.
 ▪ If IDi exists in LH2, B searches the tuple [IDi, νi,

cn] by IDi. Upon obtaining νi and cn from LH2,
compute:

 _ If cn = 0, B returns Qvi to A1.
 _ If cn = 1, B returns Qbvi to A1.

 ▪ Otherwise B picks a time period ti at random and
makes Public key query on (IDi, ti) to generate νi,
cn and store them in LH2. Then repeat the above
step to return Qvi or Qbvi.

 _ H3 query(IDi, ti): by completing the following steps,
B can answer this query.
 ▪ If (IDi, ti) exists in LH3, B searches the tuple [IDi,

ti, ηi, cn] by (IDi, ti). Upon obtaining ηi and cn
from LH3, compute Qηi as the answer to A1.

 ▪ Otherwise, B sends a Public key query to (IDi,
ti). to generate ηi, cn and store them in LH3. Then
repeat the above step to return Qηi.

 _ H4 query(IDi, ti): by completing the following steps,
B can answer this query.
 ▪ If (IDi, ti) exists in LH4, B searches the tuple [IDi,

ti, ζi, cn] by (IDi, ti). Upon obtaining ζi and cn from
LH4, compute Qζi as the answer to A1.

 ▪ Otherwise, B sends a Public key query to (IDi,
ti) to generate ζi, cn and store them in LH4. Then
repeat the above step to return Qζi.

 _ H5 query(W, C1, C2): by completing the following
steps, B can answer this query.
 ▪ If (W, C1, C2) exists in LH5, B searches the tuple

[W, C1, C2, ω] by (W, C1, C2), and returns ω to A1.
 ▪ Otherwise B randomly selects ω ∈ {0, 1}λ+l as the

answer to A1 and stores [W, C1, C2, ω] into LH5.
 _ H6 query(M): by completing the following steps, B

can answer this query.

 ▪ If M exists in LH6, B searches the tuple [M, R] by
M, and returns R to A1.

 ▪ Otherwise B randomly selects R ∈ G2 as the
answer to A1 and stores [M, R] into LH6.

 _ H7 query(M, k): by completing the following steps,
B can answer this query.
 ▪ If (M, k) exists in LH7, B searches the tuple

[M, k, γ] by (M, k), and returns γ to A1.
 ▪ Otherwise B randomly selects γ ∈ Zq

* as the
answer to A1 and stores [M, k, γ] into LH7.

 _ H8 query(N): by completing the following steps, B
can answer this query.
 ▪ If N exists in LH8, B searches the tuple [N, S] by N,

and returns S to A1.
 ▪ Otherwise B randomly selects S ∈ G2 as the

answer to A1 and stores [N, S] into LH8.
 _ Public key query(IDi, ti): after receiving this query

on (IDi, ti), B randomly selects μi, νi, ηi, ζi ∈ Zq
*, cn ∈

{0, 1} with Pr[cn = 0] = τ, and then adds four tuples
[IDi, μi, cn], [IDi, νi, cn], [IDi, ti, ηi, cn], [IDi, ti, ζi, cn]
into LH1, LH2, LH3, LH4 respectively.
 ▪ If cn = 0, B executes the SetSecretValue(PP)

algorithm to get the secret value xi, then
computes PSKi = (PSKi,1, PSK i,2) = (Qaμi, Qaνi),
TUKi = (TUKi,1, TUKi,2) = (Qaηi, Qaζi), FSKi =
(FSKi,1, FSKi,2) = ((PSKi,1 ∙ TUKi,1)Xi, (PSKi,2 ∙
TUKi,2)Xi) and PKi = (PKi,1, PKi,2) = (Ppub

Xi, QXi), adds
an tuple [IDi, ti, xi, PSKi, TUKi, FSKi, PKi, 0] into
LKey, and returns PKi to A1.

 ▪ Otherwise, B executes the SetSecretValue(PP)
algorithm to get the secret value xi, then
computes PK = (PK1, PK2) = (Ppub

Xi, QXi), TUKi =
(TUKi,1, TUKi,2) = (Qaηi, Qaζi) adds an tuple [IDi, ti,
xi, −, TUKi, −, PKi, 1] into LKey, and returns PKi to
A1.

 _ Partial secret key query(IDi): by completing the
following steps, B can answer this query.
 ▪ If IDi exists in LKey, B searches the tuple [IDi, ti, xi,

PSKi, TUKi, FSKi, PKi, cn] by IDi, and execute the
task as the following:

 _ If cn = 0, B returns PSKi to A1.
 _ If cn = 1, B aborts the game.

 ▪ Otherwise B picks a time period ti at random and
makes Public key query on (IDi, ti) to generate

647Information Technology and Control 2022/4/51

PSKi, cn. Then repeat the above step to return
PSKi or abort the game.

 _ Time update key query(IDi, ti): by completing the
following steps, B can answer this query.
 ▪ If (IDi, ti) exists in LKey, B searches the tuple [IDi,

ti, xi, PSKi, TUKi, FSKi, PKi, cn] by (IDi, ti), and
returns TUKi to A1.

 ▪ Otherwise, B sends a Public key query to (IDi, ti)
to generate TUKi and returns TUKi to A1.

 _ Full secret key query(IDi, ti): by completing the
following steps, B can answer this query.
 ▪ If (IDi, ti) exists in LKey, B searches the tuple [IDi,

ti, xi, PSKi, TUKi, FSKi, PKi, cn] by (IDi, ti), and
execute the task as the following:

 _ If cn = 0, B returns FSKi to A1.
 _ If cn = 1, B aborts the game.

 ▪ Otherwise B picks a time period ti at random and
makes Public key query on (IDi, ti) to generate
FSKi, cn. Then repeat the above step to return
FSKi or abort the game.

 _ Replace public key query(IDi, PKi′): after receiving
this query on (IDi, PKi′), B replaces the existing PKi
of the corresponding IDi with PKi′.
 ▪ If it satisfies e(PKi,1′, Q) = e(Ppub, PKi,2′), B keeps

the change.
 ▪ Otherwise B returns ⊥ to A1.

 _ Decryption query(IDi, ti, C): after receiving this
query on (IDi, ti, C) where C = (C1, C2, C3, C4), B
performs the following tasks.
 ▪ If (IDi, ti) exists in LKey, B searches the tuple [IDi,

ti, xi, PSKi, TUKi, FSKi, PKi, cn] by (IDi, ti), and
execute the task as the following:

 _ If cn = 0, and the public key has not been
replaced by A1, B uses FSKi from the tuple
[IDi, ti, xi, PSKi, TUKi, FSKi, PKi, 0] in LKey
to execute the Decryption(PP, FSKi, C)
algorithm and returns the output to A1.

 _ If cn = 1, B searches the tuple [W, C1, C2, ω] in
LH5 by C1, C2, and calculates M′ || k′ = C3⊕ω.
Next, (M′, k′) is used to search the tuple [M,
k, γ] in LH7. After obtaining γ, compute the Pγ.
Then retrieve the tuple [M, R] in LH6 by M′
to get R. If find the S in the tuple [N, S] in LH8
such that C4 = R∙S holds, B will check whether
C1 = Pγ holds. When both C1 = Pγ and C4 = R∙S

holds, return M′ to A1. B returns ⊥ to A1 if B
cannot search the tuple in LH5.

 ▪ Otherwise, B sends a Public key query to (IDi, ti)
to generate FSKi, cn. Then repeat the above step
to return M.

 _ Authorization query(IDi, ti): by completing the
following steps, B can answer this query.

 _ If (IDi, ti) exists in LKey, B searches the tuple [IDi, ti,
xi, PSKi, TUKi, FSKi, PKi, cn] by (IDi, ti), and:

 _ If cn = 0, B returns FSKi,2 to A1, where FSKi =
(FSKi,1, FSKi,2).

 _ If cn = 1, B aborts the game.
 ▪ Otherwise, B sends a Public key query to (IDi, ti)

to generate FSKi, cn. Then repeat the above step
to return FSKi,2 or abort the game.

3 Challenge: A1 sends an identity ID∗, a time period
t* and two different messages M0

*, M1
* ∈ {0, 1}λ to B

for challenge. B uses (ID∗, t*) as an input to produce
Public key query and get the tuple [ID*, t*, x*, PSK*,
TUK*, FSK*, PK*, cn] from LKey.

 _ If cn = 0, B aborts the game.
 _ If cn = 1, B performs the following tasks:

 ▪ Select ḃ ∈ {0, 1}, k ∈ {0, 1}l, C3
* ∈ {0, 1}λ+l and C4

* ∈
G2 at random.

 ▪ Set C2
* = Pc.

 ▪ Obtain γ by H7 query(Mḃ
*, k) and set C1

* = Pγ.
 ▪ Return C* = (C1

*, C2
*, C3

*, C4
*) to A1.

Based on the above construction, H5(e(P, Q)abcx*μ*∙e(Pac,
Q)x*η*, C1

*, C2
*) = (Mḃ

* || k)⊕C3
* and H8(e(P, Q)abcx*ν*∙

e(Pa, Q)cx*ζ*) = C4
* / (H6(Mḃ

)R), where Qbμ = H1(ID*) and
Qbν* = H2(ID*).
4 Phase 2: A1 launches a series of queries to B as in

Phase 1.
5 Guess: eventually, A1 outputs ḃ′ ∈ {0, 1} as the guess

bit. If ḃ′ = ḃ, A1 wins the game; otherwise loses the
game. B chooses a random tuple [σ*, C1

*, C2
*, θ] from

LH5 and outputs (σ*/e(P ac, Q)x*η*)(x*μ*)–1= e(P, Q)abc) as
the solution to the BDH instance.

Analysis. We need to evaluate the simulation of the
random oracles first. It is clear that H1, H2, H3, H4, H6,
and H7 simulations are perfect due to their construction.
AskH5

* is defined as the event that H5(e(P, Q)abcx*μ*∙e(Pac,
Q)x*η*, C1

*, C2
*) has been issued by A1, AskH8

* is defined as
the event that H8(e(P, Q)abcx*ν*∙e(Pa, Q)cx*ζ*) has been issued

Information Technology and Control 2022/4/51648

by A1. We say that the simulation of H5 is perfect if AskH5
*

does not happen and the simulation of H8 is perfect if
AskH8

* does not happen too. Now we assess the simula-
tion of the decryption oracle. DecErr indicates an event
in the valid ciphertext, and B cannot decrypt it exactly
during the emulation and we get Pr[DecErr] ≤ qD/q.
Next, define Abort as the event that the emulation is
aborted by B, and define Evt = (AskH5

* ∨ AskH8
* ∨ De-

cErr)|¬Abort. B guess ḃ with the advantage ≤ 1/2 if Evt
does not occur due to the randomness of the outputs
of H5 and H8. So Pr[ḃ = ḃ′ |¬ Evt] ≤ 1/2, we obtain

Pr[ḃ = ḃ′] = Pr[ḃ = ḃ′| Evt]Pr[Evt] + Pr[ḃ = ḃ′|¬
Evt]Pr[¬Evt]
 ≤ Pr[Evt] + (1/2) Pr[¬Evt]
 = Pr[Evt] + (1/2) (1–Pr[Evt])
 = (1/2)Pr[Evt] + 1/2.

(1)

According to (1) and the sense of ϵ, the following equa-
tion can be obtained.

ϵ = Pr[ḃ = ḃ′] – 1/2
≤ Pr[Evt]
≤ (Pr[AskH5

*] + Pr[AskH8
*] + Pr[DecErr])

/ Pr[¬Abort].

(2)

According to (2), we have:
Pr[AskH5

*] ≥ ϵ Pr[¬Abort]–Pr[DecErr]–Pr[AskH8
*].

Since Pr[¬Abort] = τqPSK + qFSK+qAuth) (1 − τ), we can obtain
Pr[¬Abort] ≥ 1/ e(qPSK + qFSK + qAuth + 1) when τ = 1 – 1/(qPSK

+ qFSK + qAuth + 1). We then have:

Pr[AskH5
*] ≥ ϵ/e(qPSK+qFSK+qAuth+1)–qD/q–qh8

/q. (3)

If AskH5
* occurs, A1 will distinguish the real one

during the simulation and the challenge ciphertext
C* is invalid. Then H5(e(P, Q)abcx*μ*∙e(Pac, Q)x*η*, C1

*, C2
*)

has been added in the LH5. B can pick the right bit from
the LH5 and wins the game. According to (3), the BDH
problem can be solved by B with the following advan-
tage
ϵ′ ≥ (1/ qh5

)Pr[AskH5
*]

 ≥ (1/qh5
)[ϵ/e(qPSK+qFSK+qAuth+1)–qD/q– qh8

/q].
Theorem 2. Assume that there exists PPT Type-2 ad-
versary A2 against IND-CCA security for the proposed
scheme in the random oracle model. Then, A2 has the
advantage ϵ to break the scheme. By the ϵ from A2, we

construct that a challenger B solves the BDH assump-
tion with the advantage ϵ′ and ϵ′ ≥ (1/qh5

) [ϵ/(e(qFSK +
qAuth + 1)) – qD/q – qh8

/q]. Suppose that the eight hash
functions Hi (1 ≤ i ≤ 8) are random oracles and then A2

can issue random oracle queries qhi
(1 ≤ i ≤ 8). Moreover,

A2 also can issue Full secret key queries qFSK, Public key
queries qPK, Decryption queries qD and Authorization
queries qAuth to challenger B. Note that A2 is a malicious
KGC so A2 cannot issue Partial secret key queries qPSK,
Time update key queries qTUK, Replace public key que-
ries qRPK.
Proof. Assume that (𝒢, P, Pa, Pc, Q, Qa, Qb) is an in-
stance of the BDH problem where 𝒢 = (q, G1, G2, GT, e),
and B would like to calculate the BDH solution e(P, Q)
abc. B acts as a challenger and interacts with the Type-
2 adversary A2 to calculate e(P, Q)abc in the following
GIND-CCA game:
1 Setup: B picks the master secret key s ∈ Zq

* at
random and sets Ppub = Ps. Then select eight colli-
sion-resistant hash functions Hi (1 ≤ i ≤ 8) as ran-
dom oracles. Then B outputs the master secret key
s and the public parameters PP to A2, where PP = (𝒢,
P, Q, Ppub, H1, H2, H3, H4, H5, H6, H7, H8). To keep the
consistency between the random oracle queries
and the corresponding responses, B needs to main-
tain the lists LH1, LH2, …, LH8, LKey, which are similar
to the proof of Theorem 1.

 _ H1-H8 queries: the queries are identical to the proof
of Theorem 1.

 _ Public key query(IDi, ti): after receiving this query
on (IDi, ti), B randomly selects μi, νi, ηi, ζi ∈ Zq

*, cn ∈
{0, 1} with Pr[cn = 0] = τ, and then adds four tuples
[IDi, μi, cn], [IDi, νi, cn], [IDi, ti, ηi, cn], [IDi, ti, ζi, cn]
into LH1, LH2, LH3, LH4 respectively.
 ▪ If cn = 0, B executes the SetSecretValue(PP)

algorithm to get the secret value xi, then
computes PSKi = (PSKi,1, PSK i,2) = (Qsμi, Qsνi),
TUKi = (TUKi,1, TUKi,2) = (Qsηi, Qsζi), FSKi =
(FSKi,1, FSKi,2) = ((PSKi,1∙ TUKi,1)Xi, (PSKi,2 ∙
TUKi,2)Xi) and PKi = (PKi,1, PKi,2) = (Ppub

Xi, QXi), adds
an tuple [IDi, ti, xi, PSKi, TUKi, FSKi, PKi, 0] into
LKey, and returns PKi to A2.

 ▪ Otherwise, B selects xi′∈ Zq
* at random, then

computes PSKi = (PSKi,1, PSK i,2) = (Qbsμi, Qbsνi),
TUKi = (TUKi,1, TUKi,2) = (Qsηi, Qsζi) and PKi =
(PKi,1, PKi,2) = (Ppab

axi′, Qaxi′) adds an tuple [IDi, ti,
xi′, PSKi, TUKi, −, PKi, 1] into LKey, and returns

649Information Technology and Control 2022/4/51

PKi to A2. Here, the secret value xi is seen as axi′
implicitly.

 _ Full secret key query(IDi, ti): the query is identical
to the proof of Theorem 1.

 _ Decryption query(IDi, ti, C): the query is identical to
the proof of Theorem 1.

 _ Authorization query(IDi, ti): the query is identical
to the proof of Theorem 1.

2 Phase 1: A2 launches a series of queries to B, and
then B returns the corresponding answers as fol-
lows.

3 Challenge: A2 sends an identity ID∗, a time period
t* and two different messages M0

*, M1
* ∈ {0, 1}λ to B

for challenge. B uses (ID∗, t*) as an input to produce
Public key query and get the tuple [ID*, t*, x*, PSK*,
TUK*, FSK*, PK*, cn] from LKey.

 _ If cn = 0, B aborts the game.
 _ If cn = 1, B performs the following tasks:

 ▪ Select ḃ ∈ {0, 1}, k ∈ {0, 1}l, C3
* ∈ {0, 1}λ+l and C4

* ∈
G2 at random.

 ▪ Set C2
* = Pc.

 ▪ Obtain γ by H7 query(Mḃ
*, k) and set C1

* = Pγ.
 ▪ Return C* = (C1

*, C2
*, C3

*, C4
*) to A2.

Based on the above construction, H5(e(P, Q)abcx*μ*s∙e(Pac,
Q)x*η*s, C1

*, C2
*) = (Mḃ

* || k)⊕C3
* and H8(e(P, Q)abcx*ν*s∙e(Pa,

Q)cx*ζ*s) = C4
* / (H6(Mḃ

)R), where Qbμ = H1(ID*) and Qbν*
= H2(ID*).
4 Phase 2: A2 launches a series of queries to B as in

Phase 1.
5 Guess: eventually, A2 outputs ḃ′ ∈ {0, 1} as the guess

bit. If ḃ′ = ḃ, A2 wins the game; otherwise loses the
game. B chooses a random tuple [σ*, C1

*, C2
*, θ] from

LH5 and outputs (σ*/e(P ac, Q)x*η*s)(x*μ*s)–1= e(P, Q)abc) as
the solution to the BDH instance.

Analysis. We need to evaluate the simulation of the
random oracles first. It is clear that H1, H2, H3, H4,
H6, and H7 simulations are perfect due to their con-
struction. AskH5

* is defined as the event that H5(e(P,
Q)abcx*μ*s∙e(Pac, Q)x*η*s, C1

*, C2
*) has been issued by A1,

AskH8
* is defined as the event that H8(e(P, Q)abcx*ν*s∙

e(Pa, Q)cx*ζ*s) has been issued by A1. We say that the
simulation of H5 is perfect if AskH5

* does not happen
and the simulation of H8 is perfect if AskH8

* does not
happen too. Now we assess the simulation of the de-
cryption oracle. DecErr indicates an event in the valid

ciphertext, and B cannot decrypt it exactly during the
emulation and we get Pr[DecErr] ≤ qD/q.
Next, define Abort as the event that the emulation is
aborted by B, and define Evt = (AskH5

* ∨ AskH8
* ∨ De-

cErr)|¬Abort. B guess ḃ with the advantage ≤ 1/2 if
Evt does not occur due to the randomness of the out-
puts of H5 and H8. So Pr[ḃ = ḃ′ |¬ Evt] ≤ 1/2, we obtain
Pr[ḃ = ḃ′] = Pr[ḃ = ḃ′| Evt]Pr[Evt] + Pr[ḃ = ḃ′|¬

Evt]Pr[¬Evt]
 ≤ Pr[Evt] + (1/2) Pr[¬Evt]
 = Pr[Evt] + (1/2) (1–Pr[Evt])
 = (1/2)Pr[Evt] + 1/2.

(4)

According to (4) and the sense of ϵ, the following
equation can be obtained.

ϵ = Pr[ḃ = ḃ′] – 1/2
 ≤ Pr[Evt]
 ≤ (Pr[AskH5

*] + Pr[AskH8
*] + Pr[DecErr])

 / Pr[¬Abort].

(5)

According to (5), we have:
Pr[AskH5

*] ≥ ϵ Pr[¬Abort] – Pr[DecErr]
– Pr[AskH8

*].
Since Pr[¬Abort] = τqFSK + qAuth(1 − τ), we can obtain
Pr[¬Abort] ≥ 1/e(qFSK + qAuth + 1) when τ = 1 – 1/(qFSK +
qAuth + 1). We then have:

Pr[AskH5
*] ≥ ϵ/e(qFSK+qAuth+1)–qD/q– qh8

/q. (6)

If AskH5
* occurs, A2 will distinguish the real one during

the simulation and the challenge ciphertext C* is inval-
id. Then H5(e(P, Q)abcx*μ*s∙e(Pac, Q)x*η*s, C1

*, C2
*) has been

added in the LH5. B can pick the right bit from the LH5
and wins the game. According to (6), the BDH problem
can be solved by B with the following advantage
ϵ′ ≥ (1/qh5

)Pr[AskH5
*]

 ≥ (1/qh5
)[ϵ/e(qFSK+qAuth+1)–qD/q– qh8

/q].
Theorem 3. Assume that there exists PPT Type-3 ad-
versary A3 against IND-CCA security for the proposed
scheme in the random oracle model. Then, A3 has the
advantage ϵ to break the scheme. By the ϵ from A3, we
construct that a challenger B solves the BDH assump-
tion with the advantage ϵ′ and ϵ′ ≥ (1/qh5

) [ϵ/(e(qTUK +
qFSK + qAuth + 1)) – qD/q – qh8

/q]. Suppose that the eight

Information Technology and Control 2022/4/51650

hash functions Hi (1 ≤ i ≤ 8) are random oracles and
then A3 can issue random oracle queries (1 ≤ i ≤
8). Moreover, A3 also can issue Partial secret key que-
ries qPSK, Time update key queries qTUK, Full secret key
queries qFSK, Public key queries qPK, Replace public key
queries qRPK, Decryption queries qD and Authorization
queries qAuth to challenger B.
Proof. Assume that (𝒢, P, Pa, Pc, Q, Qa, Qb) is an in-
stance of the BDH problem where 𝒢 = (q, G1, G2, GT, e),
and B would like to calculate the BDH solution e(P, Q)
abc. B acts as a challenger and interacts with the Type-
3 adversary A3 to calculate e(P, Q)abc in the following
GIND-CCA game:
1 Setup: B sets Ppub = Pa and selects eight collision-re-

sistant hash functions Hi (1 ≤ i ≤ 8) as random or-
acles. Then B outputs the public parameters PP to
A3, where PP = (𝒢, P, Q, Ppub, H1, H2, H3, H4, H5, H6, H7,
H8). To keep the consistency between the random
oracle queries and the corresponding responses,
B needs to maintain the lists LH1, LH2, …, LH8, LKey,
which are similar to the proof of Theorem 1.

2 Phase 1: A3 launches a series of queries to B, and
then B returns the corresponding answers as fol-
lows.

 _ H1 query(IDi): by completing the following steps, B
can answer this query.
 ▪ If IDi exists in LH1, B searches the tuple [IDi, μi,

cn] by IDi. Upon obtaining μi and cn from LH1,
compute Qμi as the answer to A3.

 ▪ Otherwise B picks a time period ti at random and
makes Public key query on (IDi, ti) to generate μi,
cn and store them in LH1. Then repeat the above
step to return Qμi.

 _ H2 query(IDi): by completing the following steps, B
can answer this query.
 ▪ If IDi exists in LH2, B searches the tuple [IDi, νi,

cn] by IDi. Upon obtaining νi and cn from LH2,
compute Qνi as the answer to A3.

 ▪ Otherwise B picks a time period ti at random and
makes Public key query on (IDi, ti) to generate νi,
cn and store them in LH2. Then repeat the above
step to returnQνi.

 _ H3 query(IDi, ti): by completing the following steps,
B can answer this query.
 ▪ If (IDi, ti) exists in LH3, B searches the tuple [IDi,

ti, ηi, cn] by (IDi, ti). Upon obtaining ηi and cn

from LH3, compute:
 _ If cn = 0, B returns Qηi to A3.
 _ If cn = 1, B returns Qbηi to A3.

 ▪ Otherwise, B sends a Public key query to (IDi,
ti) to generate νi, cn and store them in LH3. Then
repeat the above step to return Qηi or Qbηi.

 _ H4 query(IDi, ti): by completing the following steps,
B can answer this query.
 ▪ If (IDi, ti) exists in LH4, B searches the tuple [IDi,

ti, ζi, cn] by (IDi, ti). Upon obtaining ζi and cn from
LH4, compute:

 _ If cn = 0, B returns Qζi to A3.
 _ If cn = 1, B returns Qbζi to A3.

 ▪ Otherwise, B sends a Public key query to (IDi,
ti) to generate ζi, cn and store them in LH4. Then
repeat the above step to return Qζi or Qbζi.

 _ H5-H8 queries: the query is identical to the proof of
Theorem 1.

 _ Public key query(IDi, ti): after receiving this query
on (IDi, ti), B randomly selects μi, νi, ηi, ζi ∈ Zq

*, cn ∈
{0, 1} with Pr[cn = 0] = τ, and then adds four tuples
[IDi, μi, cn], [IDi, νi, cn], [IDi, ti, ηi, cn], [IDi, ti, ζi, cn]
into LH1, LH2, LH3, LH4 respectively.
 ▪ If cn = 0, B executes the SetSecretValue(PP)

algorithm to get the secret value xi, then
computes PSKi = (PSKi,1, PSK i,2) = (Qaμi, Qaνi),
TUKi = (TUKi,1, TUKi,2) = (Qaηi, Qaζi) , FSKi =
(FSKi,1, FSKi,2) = ((PSKi,1 ∙ TUKi,1)Xi, (PSKi,2 ∙
TUKi,2)Xi) and PKi = (PKi,1, PKi,2) = (Ppub

Xi, QXi) adds
an tuple [IDi, ti, xi, PSKi, TUKi, FSKi, PKi, 0] into
LKey, and returns PKi to A3.

 ▪ Otherwise, B executes the SetSecretValue(PP)
algorithm to get the secret value xi, then
computes PK = (PK1, PK2) = (Ppub

Xi, QXi),
PSKi = (PSKi,1, PSK i,2) = (Qaμi, Qaνi) adds an tuple
[IDi, ti, xi, PSKi, −, −, PKi, 1] into LKey, and returns
PKi to A3.

 _ Partial secret key query(IDi) : by completing the
following steps, B can answer this query.
 ▪ IDi exists in LKey, B searches the tuple [IDi, ti, xi,

PSKi, TUKi, FSKi, PKi, cn] by IDi, and returns
PSKi to A3.

 ▪ Otherwise B picks a time period ti at random and
makes Public key query on (IDi, ti) to generate
PSKi and returns PSKi to A3.

651Information Technology and Control 2022/4/51

 _ Time update key query(IDi, ti): by completing the
following steps, B can answer this query.
 ▪ If (IDi, ti) exists in LKey, B searches the tuple [IDi,

ti, xi, PSKi, TUKi, FSKi, PKi, cn] by (IDi, ti), and
execute the task as the following:

 _ If cn = 0, B returns TUKi to A3.
 _ If cn = 1, B aborts the game.

 ▪ Otherwise, B sends a Public key query to (IDi, ti)
to generate PSKi, cn. Then repeat the above step
to return TUKi or abort the game.

 _ Full secret key query(IDi, ti): the query is identical
to the proof of Theorem 1.

 _ Replace public key query(IDi, PKi′): the query is
identical to the proof of Theorem 1.

 _ Decryption query(IDi, ti, C): the query is identical to
the proof of Theorem 1.

 _ Authorization query(IDi, ti): the query is identical
to the proof of Theorem 1.

3 Challenge: A3 sends an identity ID∗, a time period t*
and two different messages M0

*, M1
* ∈ {0, 1}λ to B for

challenge. B usess (ID∗, t*) as an input to produce
Public key query and get the tuple [ID*, t*, x*, PSK*,
TUK*, FSK*, PK*, cn] from LKey.

 _ If cn = 0, B aborts the game.
 _ If cn = 1, B performs the following tasks:

 ▪ Select ḃ ∈ {0, 1}, k ∈ {0, 1}l, C3
* ∈ {0, 1}λ+l and C4

* ∈
G2 at random.

 ▪ Set C2
* = Pc.

 ▪ Obtain γ by H7 query(Mḃ
*, k) and set C1

* = Pγ.
 ▪ Return C* = (C1

*, C2
*, C3

*, C4
*) to A3.

Based on the above construction, H5(e(Pac, Q)x*μ*∙
e(P, Q)abcx*η*, C1

*, C2
*) = (Mḃ

* || k)⊕C3
* and H8(e(Pac,

Q)x*ν*∙e(P, Q)abcx*ζ*) = C4
* / (H6(Mḃ

)R), where Qbη =
H3(ID*) and Qbζ* = H4(ID*).
4 Phase 2: A3 launches a series of queries to B as in

Phase 1.
5 Guess: eventually, A3 outputs ḃ′ ∈ {0, 1} as the guess

bit. If ḃ′ = ḃ, A3 wins the game; otherwise loses the
game. B chooses a random tuple [σ*, C1

*, C2
*, θ] from

LH5 and outputs (σ*/e(P ac, Q)x*μ*)(x*η*)–1 =e(P, Q)abc) as
the solution to the BDH instance.

Analysis. We need to evaluate the simulation of
the random oracles first. It is clear that H1, H2, H3,
H4, H6, and H7 simulations are perfect due to their

construction. AskH5
* is defined as the event that

H5(e(Pac, Q)x*μ*∙e(P, Q)abcx*η*, C1
*, C2

*) has been is-
sued by A3, AskH8

* is defined as the event that
H8(e(Pac, Q)x*ν*∙e(P, Q)abcx*ζ*) has been issued by A3. We
say that the simulation of H5 is perfect if AskH5

* does
not happen and the simulation of H8 is perfect if AskH8

*
does not happen too. Now we assess the simulation of
the decryption oracle. DecErr indicates an event in the
valid ciphertext, and B cannot decrypt it exactly during
the emulation and we get Pr[DecErr] ≤ qD/q.
Next, define Abort as the event that the emulation is
aborted by B, and define Evt = (AskH5

* ∨ AskH8
* ∨ De-

cErr)|¬Abort. B guess ḃ with the advantage ≤ 1/2 if Evt
does not occur due to the randomness of the outputs
of H5 and H8. So Pr[ḃ = ḃ′ |¬ Evt] ≤ 1/2, we obtain

Pr[ḃ = ḃ′] = Pr[ḃ = ḃ′| Evt]Pr[Evt] + Pr[ḃ = ḃ′|¬
Evt]Pr[¬Evt]
 ≤ Pr[Evt] + (1/2) Pr[¬Evt]
 = Pr[Evt] + (1/2) (1–Pr[Evt])
 = (1/2)Pr[Evt] + 1/2.

(7)

According to (7) and the sense of ϵ, the following
equation can be obtained.

ϵ = Pr[ḃ = ḃ′] – 1/2
≤ Pr[Evt]
≤ (Pr[AskH5

*] + Pr[AskH8
*] + Pr[DecErr])

/ Pr[¬Abort].

(8)

According to (8), we have:
Pr[AskH5

*] ≥ ϵ Pr[¬Abort] – Pr[DecErr]
– Pr[AskH8

*].
Since Pr[¬Abort] = τqTUK +qFSK + qAuth (1 − τ), we can obtain
Pr[¬Abort] ≥ 1/e(qTUK + qFSK + qAuth + 1) when τ = 1 – 1/
(qTUK + qFSK + qAuth + 1). We then have:

Pr[AskH5
*]≥ϵ/e(qTUK+qful+qAuth+1)–qD/q– qh8

/q. (9)

If AskH5
* occurs, A3 will distinguish the real one during

the simulation and the challenge ciphertext C* is inval-
id. Then H5(e(Pac, Q)x*μ*∙e(P, Q)abcx*η*, C1

*, C2
*) has been

added in the LH5. B can pick the right bit from the LH5
and wins the game. According to (9), the BDH problem
can be solved by B with the following advantage
ϵ′ ≥ (1/qh5

)Pr[AskH5
*]

≥ (1/qh5
) [ϵ/e(qTUK+qFSK+qAuth+1) – qD/q – qh8

/q].

Information Technology and Control 2022/4/51652

Theorem 4. Assume that there exists PPT Type-4 ad-
versary A4 against OW-CCA security for the proposed
scheme in the random oracle model. Then, A4 has the
advantage ϵ to break the scheme. By the ϵ from A4, we
construct that a challenger B solves the BDH assump-
tion with the advantage ϵ′ and ϵ′ ≥ (1/qh5

) [(ϵ – 1/2λ)/
(e(qPSK + qFSK + 1)] – qD/q. Suppose that the eight hash
functions Hi (1 ≤ i ≤ 8) are random oracles and then A4

can issue random oracle queries qHi
(1 ≤ i ≤ 8). More-

over, A4 also can issue Partial secret key queries qPSK,
Time update key queries qTUK, Full secret key queries
qFSK, Public key queries qPK, Replace public key queries
qRPK, Decryption queries qD and Authorization queries
qAuth to challenger B.
Proof. Assume that (𝒢, P, Pa, Pc, Q, Qa, Qb) is an in-
stance of the BDH problem where 𝒢 = (q, G1, G2, GT, e),
and B would like to calculate the BDH solution e(P, Q)
abc. B acts as a challenger and interacts with the Type-
4 adversary A4 to calculate e(P, Q)abc in the following
GOW-CCA game:
1 Setup: B sets Ppub = Pa and selects eight collision-re-

sistant hash functions Hi (1 ≤ i ≤ 8) as random or-
acles. Then B outputs the public parameters PP to
A4, where PP = (𝒢, P, Q, Ppub, H1, H2, H3, H4, H5, H6, H7,
H8). To keep the consistency between the random
oracle queries and the corresponding responses,
B needs to maintain the lists LH1, LH2, …, LH8, LKey,
which are similar to the proof of Theorem 1.

2 Phase 1: A4 launches a series of queries to B, and
then B returns the corresponding answers as fol-
lows.

 _ H1 query(IDi): the query is identical to the proof of
Theorem 1.

 _ H2 query(IDi): after receiving this query on IDi, B
does the following.
 ▪ If IDi exists in LH2, B searches the tuple [IDi, νi,

cn] by IDi. Upon obtaining νi and cn from LH2,
compute Qνi as the answer to A4.

 ▪ Otherwise B picks a time period ti at random and
makes Public key query on (IDi, ti) to generate νi,
cn and store them in LH2. Then repeat the above
step to return Qνi.

 _ H3-H8 queries: the queries are identical to the proof
of Theorem 1.

 _ Public key query(IDi, ti): the query is identical to the
proof of Theorem 1.

 _ Partial secret key query(IDi) : the query is identical
to the proof of Theorem 1.

 _ Time update key query(IDi, ti): the query is identical
to the proof of Theorem 1.

 _ Full secret key query(IDi, ti): the query is identical
to the proof of Theorem 1.

 _ Replace public key query(IDi, PKi′): the query is
identical to the proof of Theorem 1.

 _ Decryption query(IDi, ti, C): after receiving this
query on (IDi, ti, C) where C = (C1, C2, C3, C4), B
performs the following tasks.
 ▪ If (IDi, ti) exists in LKey, B searches the tuple [IDi,

ti, xi, PSKi, TUKi, FSKi, PKi, cn] by (IDi, ti), and
execute the task as the following:

 _ If cn = 0, and the public key has not been
replaced by A4, B uses FSKi from the tuple
[IDi, ti, xi, PSKi, TUKi, FSKi, PKi, 0] in LKey
to execute the Decryption(PP, FSKi, C)
algorithm and returns the output to A4.

 _ If cn = 1, B searches the tuple [W, C1, C2, ω] in
LH5 by C1, C2, and calculates M′ || k′ = C3⊕ω.
Next, (M′, k′) is used to search the tuple [M,
k, γ] in LH7. After obtaining γ, compute the P γ.
Then retrieve the tuple [IDi, νi, cn] in LH2 by
IDi and research the tuple [IDi, ti, ζi, cn] in LH4
by (IDi, ti) to compute FSK2∙TUK2 = Qa(νi+ζi)xi. If
find the S in the tuple [e(C2, Qa(νi+ζi)xi), S] in LH8
such that C4 = R∙S holds, B will check whether
C1 = P γ holds. When both C1 = P γ and C4 = R∙S
holds, return M′ to A4. B returns ⊥ to A4 if B
cannot search the tuple in LH5.

 ▪ Otherwise, B sends a Public key query to (IDi, ti)
to generate FSKi, cn. Then repeat the above step
to return M.

 _ Authorization query(IDi, ti): by completing the
following steps, B can answer this query.
 ▪ If (IDi, ti) exists in LKey, B searches the tuple [IDi,

ti, xi, PSKi, TUKi, FSKi, PKi, cn] by (IDi, ti), and
returns FSKi,2 to A4, where FSKi = (FSKi,1, FSKi,2).

 ▪ Otherwise B retrieves the tuple [IDi, νi, cn] in
LH2 by IDi to compute FSKi,2 = Qaνixi and returns
FSKi,2 to A4.

3 Challenge: A4 sends an identity ID*, a time period t*
to B for challenge. B selects M* ∈ {0, 1}λ at random
and uses (ID*, t*) as an input to produce Public key

653Information Technology and Control 2022/4/51

query and get the tuple [ID*, t*, x*, PSK*, TUK*, FSK*,
PK*, cn] from LKey.

 _ If cn = 0, B aborts the game.
 _ If cn = 1, B performs the following tasks:

 ▪ Select k ∈ {0, 1}l, C3
* ∈ {0, 1}λ+l at random.

 ▪ Set C2
* = Pc.

 ▪ Obtain γ by H7 query(M*, k) and set C1
* = Pγ.

 ▪ Obtain R and S by H6 query(M*)γ and H8
query(e(C2

*, Qa(ν*i + ζ*i )x*i )), respectively.
 ▪ Set C4

* = R∙S.
 ▪ Return C* = (C1

*, C2
*, C3

*, C4
*) to A4.

Based on the above construction, H5(e(P, Q)abcx*μ*∙e(Pac,
Q)x*η*, C1

*, C2
) = (M || k)⊕C3

, where Qbμ = H1(ID*).
4 Phase 2: A4 launches a series of queries to B as in

Phase 1.
5 Guess: eventually, A4 outputs M′ ∈ {0, 1}λ as the

guess bit. If M′ = M, A4 wins the game; otherwise
loses the game. B chooses a random tuple [σ*, C1

*,
C2

, θ] from LH5 and outputs (σ/e(P ac, Q)x*η*)(x*μ*)–1 =
e(P, Q)abc) as the solution to the BDH instance.

Analysis. We need to evaluate the simulation of the
random oracles first. It is clear that H1, H2, H3, H4, H6,
H7 and H8 simulations are perfect due to their con-
struction. AskH5

* is defined as the event that H5(e(P,
Q)abcx*μ*∙e(Pac, Q)x*η*, C1

*, C2
*) has been issued by A4. We

say that the simulation of H5 is perfect if AskH5
* does

not happen. Now we assess the simulation of the de-
cryption oracle. DecErr indicates an event in the valid
ciphertext, and B cannot decrypt it exactly during the
emulation and we get Pr[DecErr] ≤ qD/q.
Next, define Abort as the event that the emulation
is aborted by B, and define Evt = (AskH5

* ∨
DecErr)|¬Abort. B guess M with the advantage ≤ 1/2λ
if Evt does not occur due to the randomness of the
outputs of H5. So Pr[M = M′ |¬ Evt] ≤ 1/2λ, we obtain

Pr[M = M′] = Pr[M = M′| Evt]Pr[Evt]
 + Pr[M = M′|¬ Evt]Pr[¬Evt]
 ≤ Pr[Evt] + (1/2λ) Pr[¬Evt]
 = Pr[Evt] + (1/2λ) (1–Pr[Evt])
 = (1−1/2λ)Pr[Evt] + (1/2λ).

(10)

According to (10) and the sense of ϵ, the following
equation can be obtained.

 ϵ = Pr[M = M′]
 ≤ (1–1/2λ)Pr[Evt] + (1/2λ)
 ≤ (1–1/2λ) (Pr[AskH5

*] + Pr[DecErr])
 / Pr[¬Abort] + (1/2λ).

(11

According to (11), we have:

Pr[AskH5
*] ≥ [(ϵ – 1/2λ)/(1–1/2λ)]Pr[¬Abort]

 – Pr[DecErr]
Since Pr[¬Abort] = τqPSK + qFSK(1 − τ), we can obtain
Pr[¬Abort] ≥ 1/e(qPSK + qFSK + 1) when τ = 1 – 1/(qPSK +
qFSK + 1). We then have:
Pr[AskH5

*]≥[(ϵ–1/2λ)/e(qPSK+qFSK+1)]–qD/q. (12)
If AskH5

* occurs, A4 will distinguish the real one during
the simulation and the challenge ciphertext C* is inval-
id. Then H5(e(P, Q)abcx*μ*∙e(Pac, Q)x*η*, C1

*, C2
*) has been

added in the LH5. B can pick the right bit from the LH5
and wins the game. According to (12), the BDH prob-
lem can be solved by B with the following advantage
ϵ′ ≥ (1/qh5

)Pr[AskH5
*]

≥ (1/qh5
) [(ϵ – 1/2λ)/e(qPSK + qFSK + 1)] – qD/q.

Theorem 5. Assume that there exists PPT Type-5 ad-
versary A5 against OW-CCA security for the proposed
scheme in the random oracle model. Then, A5 has the
advantage ϵ to break the scheme. By the ϵ from A5, we
construct that an algorithm challenger B solves the
BDH assumption with the advantage ϵ′ and ϵ′ ≥ (1/qh5

)
[(ϵ – 1/2λ)/(e(qFSK + 1)] – qD/q. Suppose that the eight
hash functions Hi (1 ≤ i ≤ 8) are random oracles and
then A5 can issue random oracle queries qHi

(1 ≤ i ≤ 8).
Moreover, A5 also can issue Full secret key queries qFSK,
Public key queries qPK, Decryption queries qD and Au-
thorization queries qAuth to challenger B. Note that A5
is a malicious KGC so A5 cannot issue Partial secret
key queries qPSK, Time update key queries qTUK, Replace
public key queries qRPK.
Proof. Assume that (𝒢, P, Pa, Pc, Q, Qa, Qb) is an in-
stance of the BDH problem where 𝒢 = (q, G1, G2, GT, e),
and B would like to calculate the BDH solution e(P, Q)
abc. B acts as a challenger and interacts with the Type-
5 adversary A5 to calculate e(P, Q)abc in the following
GOW-CCA game:
1 Setup: B picks the master secret key s ∈ Zq

* at
random and sets Ppub = Ps. Then select eight colli-
sion-resistant hash functions Hi (1 ≤ i ≤ 8) as ran-

Information Technology and Control 2022/4/51654

dom oracles. Then B outputs the master secret key
s and the public parameters PP to A5, where PP = (𝒢,
P, Q, Ppub, H1, H2, H3, H4, H5, H6, H7, H8). To keep the
consistency between the random oracle queries
and the corresponding responses, B needs to main-
tain the lists LH1, LH2, …, LH8, LKey, which are similar
to the proof of Theorem 1.

2 Phase 1: A4 launches a series of queries to B, and
then B returns the corresponding answers as fol-
lows.

 _ H1 query(IDi): the query is identical to the proof of
Theorem 1.

 _ H2 query(IDi): the query is identical to the proof of
Theorem 4.

 _ H3-H8 queries: the queries are identical to the proof
of Theorem 1.

 _ Public key query(IDi, ti): the query is identical to the
proof of Theorem 1.

 _ Public key query(IDi, ti): after receiving this query
on (IDi, ti), B randomly selects μi, νi, ηi, ζi ∈ Zq

*, cn ∈
{0, 1} with Pr[cn = 0] = τ, and then adds four tuples
[IDi, μi, cn], [IDi, νi, cn], [IDi, ti, ηi, cn], [IDi, ti, ζi, cn]
into LH1, LH2, LH3, LH4 respectively.
 ▪ If cn = 0, B executes the SetSecretValue(PP)

algorithm to get the secret value xi, then
computes PSKi = (PSKi,1, PSK i,2) = (Qsμi, Qsνi),
TUKi = (TUKi,1, TUKi,2) = (Qsηi, Qsζi) , FSKi =
(FSKi,1, FSKi,2) = ((PSKi,1 ∙ TUKi,1)Xi, (PSKi,2 ∙
TUKi,2)Xi) and PKi = (PKi,1, PKi,2) = (Ppub

Xi, QXi), adds
an tuple [IDi, ti, xi, PSKi, TUKi, FSKi, PKi, 0] into
LKey, and returns PKi to A5.

 ▪ Otherwise, B selects xi′∈ Zq
* at random, then

computes PSKi = (PSKi,1, PSK i,2) = (Qbsμi, Qsνi),
TUKi = (TUKi,1, TUKi,2) = (Qsηi, Qsζi) and PKi =
(PKi,1, PKi,2) = (Ppub

axi′, Qaxi′) adds an tuple [IDi, ti,
xi′, PSKi, TUKi, −, PKi, 1] into LKey, and returns
PKi to A5. Here, the secret value xi is seen as axi′
implicitly.

 _ Full secret key query(IDi, ti): the query is identical
to the proof of Theorem 1.

 _ Decryption query(IDi, ti, C): the query is identical to
the proof of Theorem 4.

 _ Authorization query(IDi, ti): the query is identical
to the proof of Theorem 4.

3 Challenge: A5 sends an identity ID*, a time period t*
to B for challenge. B selects M* ∈ {0, 1}λ at random

and uses (ID*, t*) as an input to produce Public key
query and get the tuple [ID*, t*, x*, PSK*, TUK*, FSK*,
PK*, cn] from LKey.

 _ If cn = 0, B aborts the game.
 _ If cn = 1, B performs the following tasks:

 ▪ Select k ∈ {0, 1}l, C3
* ∈ {0, 1}λ+l at random.

 ▪ Set C2
* = Pc.

 ▪ Obtain γ by H7 query(M*, k) and set C1
* = Pγ.

 ▪ Obtain R and S by H6 query(M*)γ and H8
query(e(C2

*, Qa(ν*i + ζ *i)x*i )) respectively.
 ▪ Set C4

* = R∙S.
 ▪ Return C* = (C1

*, C2
*, C3

*, C4
*) to A5.

Based on the above construction, H5(e(P, Q)abcx*μ*s∙e(Pac,
Q)x*η*s, C1

*, C2
) = (M || k)⊕C3

, where Qbμ = H1(ID*).
4 Phase 2: A5 launches a series of queries to B as in

Phase 1.
5 Guess: eventually, A5 outputs M′ ∈ {0, 1}λ as the

guess bit. If M′ = M, A5 wins the game; otherwise
loses the game. B chooses a random tuple [σ*, C1

*,
C2

, θ] from LH5 and outputs (σ/e(P ac, Q)x*η*s)(x*μ*s)–1

=e(P, Q)abc) as the solution to the BDH instance.
Analysis. We need to evaluate the simulation of the
random oracles first. It is clear that H1, H2, H3, H4, H6,
H7 and H8 simulations are perfect due to their con-
struction. AskH5

* is defined as the event that H5(e(P,
Q)abcx*μ*s∙e(Pac, Q)x*η*s, C1

*, C2
*) has been issued by A5. We

say that the simulation of H5 is perfect if AskH5
* does

not happen. Now we assess the simulation of the de-
cryption oracle. DecErr indicates an event in the valid
ciphertext, and B cannot decrypt it exactly during the
emulation and we get Pr[DecErr] ≤ qD/q.
Next, define Abort as the event that the emulation
is aborted by B, and define Evt = (AskH5

* ∨ DecEr-
r)|¬Abort. B guess M with the advantage ≤ 1/2λ if Evt
does not occur due to the randomness of the outputs
of H5. So Pr[M = M′ |¬ Evt] ≤ 1/2λ, we obtain

 Pr[M = M′] = Pr[M = M′| Evt]Pr[Evt]
+ Pr[M = M′|¬ Evt]Pr[¬Evt]
≤ Pr[Evt] + (1/2λ) Pr[¬Evt]
= Pr[Evt] + (1/2λ) (1–Pr[Evt)
= (1–1/2λ)Pr[Evt] + (1/2λ).

(13)

According to (13) and the sense of ϵ, the following
equation can be obtained.

655Information Technology and Control 2022/4/51

ϵ = Pr[M = M′]
≤ (1–1/2λ)Pr[Evt] + (1/2λ)
≤ (1–1/2λ) (Pr[AskH5

*] + Pr[DecErr])
 / Pr[¬Abort] + (1/2λ).

(14)

According to (14), we have:
Pr[AskH5

*] ≥ [(ϵ – 1/2λ)/(1−1/2λ)]Pr[¬Abort]
– Pr[DecErr]
Since Pr[¬Abort] = τqFSK(1 − τ), we can obtain Pr[¬Abort]
≥ 1/e(qFSK + 1) when τ = 1 – 1/(qFSK + 1). We then have:

Pr[AskH5
*]≥[(ϵ–1/2λ)/e(qFSK+1)]–qD/q. (14)

If AskH5
* occurs, A5 will distinguish the real one

during the simulation and the challenge ciphertext C*
is invalid. Then H5(e(P, Q)abcx*μ*s∙e(Pac, Q)x*η*s, C1

*, C2
*)

has been added in the LH5. B can pick the right bit from
the LH5 and wins the game. According to (15), the BDH
problem can be solved by B with the following advan-
tage
ϵ′ ≥ (1/qh5

)Pr[AskH5
*]

 ≥ (1/qh5
) [(ϵ – 1/2λ)/e(qFSK + 1)] – qD/q.

Theorem 6. Assume that there exists PPT Type-6 ad-
versary A6 against OW-CCA security for the proposed
scheme in the random oracle model. Then, A6 has the
advantage ϵ to break the scheme. By the ϵ from A6, we
construct that a challenger B solves the BDH assump-
tion with the advantage ϵ′ and ϵ′ ≥ (1/qh5

) [(ϵ –1/2λ)/
(e(qTUK + qFSK + 1)] – qD/q. Suppose that the eight hash
functions Hi (1 ≤ i ≤ 8) are random oracles and then A6

can issue random oracle queries qHi
(1 ≤ i ≤ 8). More-

over, A6 also can issue Partial secret key queries qPSK,
Time update key queries qTUK, Full secret key queries
qFSK, Public key queries qPK, Replace public key queries
qRPK, Decryption queries qD and Authorization queries
qAuth to challenger B.
Proof. Assume that (𝒢, P, Pa, Pc, Q, Qa, Qb) is an in-
stance of the BDH problem where 𝒢 = (q, G1, G2, GT, e),
and B would like to calculate the BDH solution e(P, Q)
abc. B acts as a challenger and interacts with the Type-
6 adversary A6 to calculate e(P, Q)abc in the following
GOW-CCA game:
1 Setup: B sets Ppub = Pa and selects eight collision-re-

sistant hash functions Hi (1 ≤ i ≤ 8) as random or-
acles. Then B outputs the public parameters PP to
A6, where PP = (𝒢, P, Q, Ppub, H1, H2, H3, H4, H5, H6, H7,

H8). To keep the consistency between the random
oracle queries and the corresponding responses,
B needs to maintain the lists LH1, LH2, …, LH8, LKey,
which are similar to the proof of Theorem 1.

2 Phase 1: A6 launches a series of queries to B, and
then B returns the corresponding answers as fol-
lows.

 _ H1-H3 queries(IDi): the queries are identical to the
proof of Theorem 3.

 _ H4-H8 queries: the queries are identical to the proof
of Theorem 1.

 _ Public key query(IDi, ti): the query is identical to the
proof of Theorem 3.

 _ Partial secret key query(IDi) : the query is identical
to the proof of Theorem 3.

 _ Time update key query(IDi, ti): the query is identical
to the proof of Theorem 3.

 _ Full secret key query(IDi, ti): the query is identical
to the proof of Theorem 1.

 _ Replace public key query(IDi, PKi′): the query is
identical to the proof of Theorem 1.

 _ Decryption query(IDi, ti, C): the query is identical to
the proof of Theorem 4.

 _ Authorization query(IDi, ti): the query is identical
to the proof of Theorem 4.

3 Challenge: A6 sends an identity ID*, a time period t*
to B for challenge. B selects M* ∈ {0, 1}λ at random
and uses (ID*, t*) as an input to produce Public key
query and get the tuple [ID*, t*, x*, PSK*, TUK*, FSK*,
PK*, cn] from LKey.

 _ If cn = 0, B aborts the game.
 _ If cn = 1, B performs the following tasks:

 ▪ Select k ∈ {0, 1}l, C3
* ∈ {0, 1}λ+l at random.

 ▪ Set C2
* = Pc.

 ▪ Obtain γ by H7 query(M*, k) and set C1
* = Pγ.

 ▪ Obtain R and S by H6 query(M*)γ and H8
query(e(C2

*, Qa(ν*i + ζ *i)x*i )) respectively.
 ▪ Set C4

* = R∙S.
 ▪ Return C* = (C1

*, C2
*, C3

*, C4
*) to A6.

Based on the above construction, H5(e(P, Q)x*μ*∙e(Pac,
Q)abcx*η*, C1

*, C2
) = (M || k)⊕C3

, where Qbη = H3(ID*).
4 Phase 2: A6 launches a series of queries to B as in

Phase 1.

Information Technology and Control 2022/4/51656

5 Guess: eventually, A6 outputs M′ ∈ {0, 1}λ as the
guess bit. If M′ = M, A6 wins the game; otherwise
loses the game. B chooses a random tuple [σ*, C1

*,
C2

, θ] from LH5 and outputs (σ/e(P ac, Q)x*μ*)(x*η*)–1

=e(P, Q)abc) as the solution to the BDH instance.
Analysis. We need to evaluate the simulation of the
random oracles first. It is clear that H1, H2, H3, H4, H6,
H7 and H8 simulations are perfect due to their con-
struction. AskH5

* is defined as the event that H5(e(P,
Q)x*μ*∙e(Pac, Q)abcx*η*, C1

*, C2
*) has been issued by A6. We

say that the simulation of H5 is perfect if AskH5
* does

not happen. Now we assess the simulation of the de-
cryption oracle. DecErr indicates an event in the valid
ciphertext, and B cannot decrypt it exactly during the
emulation and we get Pr[DecErr] ≤ qD/q.
Next, define Abort as the event that the emulation
is aborted by B, and define Evt = (AskH5

* ∨ DecEr-
r)|¬Abort. B guess M with the advantage ≤ 1/2λ if Evt
does not occur due to the randomness of the outputs
of H5. So Pr[M = M′ |¬Evt] ≤ 1/2λ, we obtain

Pr[M = M′] = Pr[M = M′| Evt]Pr[Evt]
+ Pr[M = M′|¬ Evt]Pr[¬Evt]
≤ Pr[Evt] + (1/2λ) Pr[¬Evt]
= Pr[Evt] + (1/2λ) (1−Pr[Evt])
= (1–1/2λ)Pr[Evt] + (1/2λ).

(16)

According to (16) and the sense of ϵ, the following
equations can be obtained.

ϵ = Pr[M = M′]
≤ (1–1/2λ)Pr[Evt] + (1/2λ)
≤ (1–1/2λ) (Pr[AskH5

*]
+ Pr[DecErr]) / Pr[¬Abort] + (1/2λ).

(17)

According to (17), we have:
Pr[AskH5

*] ≥ [(ϵ – 1/2λ)/(1−1/2λ)]Pr[¬Abort]
– Pr[DecErr]
Since Pr[¬Abort] = τqTUK + qFSK(1 − τ), we can obtain
Pr[¬Abort] ≥ 1/e(qTUK + qFSK + 1) when τ = 1 – 1/(qTUK +
qFSK + 1). We then have:

Pr[AskH5
*]≥[(ϵ–1/2λ)/e(qTUK+qFSK+1)]–qD/q. (18)

If AskH5
* occurs, A6 will distinguish the real one during

the simulation and the challenge ciphertext C* is inval-
id. Then H5(e(P, Q)x*μ*∙e(Pac, Q)abcx*η*, C1

*, C2
*) has been

added in the LH5. B can pick the right bit from the LH5
and wins the game. According to (18), the BDH prob-
lem can be solved by B with the following advantage
ϵ′ ≥ (1/qh5

)Pr[AskH5
*]

 ≥ (1/qh5
) [(ϵ – 1/2λ)/e(qTUK + qFSK + 1)] – qD/q.

Theorem 7. Assume that there exists PPT adversary A
(all types adversary) against the security of brute force
attacks for the proposed scheme. Then, A has the negli-
gible advantage to break the scheme.
Proof. As mentioned in Section 4 (The RCL-PKEET
scheme), the master secret key is msk = s ∈ Zq

* and the
public parameters is PP = (𝒢, P, Q, Ppub, H1, H2, H3, H4,
H5, H6, H7, H8). We can ensure that the PPT adversary A
cannot break the system to obtain the master secret key
from the public parameters, since only Ppub and msk are
related and Ppub = Ps. Calculating msk = s from Ppub and P
is a problem of discrete logarithm that the PPT adver-
sary A cannot solve in the polynomial time. In fact, the
user’s partial secret key PSK and time update key TUK
are also designed based on the discrete logarithm prob-
lem, where PSK = (PSK1, PSK2) = (H1(ID)msk, H2(ID)msk)
= (H1(ID)s, H2(ID)s) and TUK = (TUK1, TUK2) = (H3(ID,
t)msk, H4(ID, t)msk) = (H3(ID, t)s, H4(ID, t)s). Therefore, we
believe that the proposed scheme can withstand brute
force attacks.

6. Comparsions
In this section, the computation cost, the communi-
cation cost and functionalities of our proposed RCL-
PKEET scheme, the existing IBEET scheme [26], CL-
PKEET schemes [13, 29, 45] and RCL-PKE scheme
[37] are compared. For the computation cost in the
procedures of encryption, decryption and equality test
and communication cost in piublic key, ciphertext and
trapdoor, we first define several notations as below.
 _ Tpair: the cost of computing a bilinear pairing.
 _ Texp: the cost of computing an exponentiation.
 _ Thash: the cost of computing a hash function.
 _ |G1|: the size of a point in G1.
 _ |G2|: the size of a point in G2.
 _ |Zq|: the bit length in Zq.
 _ |PK|: the bit length of public key.
 _ |CT|: the bit length of ciphertext.

|TD|: the bit length of trapdoor.

657Information Technology and Control 2022/4/51

Table 1 lists the cost of Tpair, Texp and Thash in the sim-
ulation experiences [21] where the CPU is Intel Core
i7-8550U with 1.80 Ghz processor. In addition, Fq, G1
and G2 are selective parameters, where Fq is a finite
field composed of the sets of integers {0, 1, …, q − 1}, q
∈ {0, 1}256 is a prime number and G1, G2 are groups of
order 224 bits prime number over Fq.

Table 1
The cost of Tpair, Texp and Thash

Tpair Texp Thash

The executing time 7.8351 ms 0.4746 ms 0.0126 ms

Table 2 compares our RCL-PKEET scheme with oth-
er existing schemes in terms of encryption, decryp-
tion, equality test and three functionalities. Although
our scheme may be slower than the existing IBEET
scheme in the procedures of encryption and decryp-
tion, our scheme possesses the ability to solve the key
escrow problem and provide the efficient revocation
mechanism. Similarly, the overall efficiency of the
existing RCL-PKE scheme is better than that of our
RCL-PKEET scheme. However, our RCL-PKEET
scheme has the functionality of the equality test but

Table 2
Comparison between our proposed scheme and other existing schemes

Schemes Encryption Decryption Equality test
With

 equality
test

Without
key escrow

problem

With
revocation

mechanism

IBEET [26] 2Tpair+6Texp+3Thash
(18.5556ms)

2Tpair+2Texp+2Thash
(16.6446ms)

4Tpair+2Texp+2Thash

(32.3148ms) Yes No No

CL-PKEET [29] 4Tpair+5Texp+6Thash
(33.7890ms)

2Tpair+2Texp+4Thash
(16.6698ms)

4Tpair+2Thash

(31.3656ms) Yes Yes No

CL-PKEET [45] 2Tpair+5Texp+8Thash

(18.144ms)
2Tpair+2Texp+4Thash

(16.6698ms)
4Tpair+2Thash

(31.3656ms) Yes Yes No

CL-PKEET [13] 4Tpair+5Texp+6Thash

(33.789ms)
2Tpair+2Texp+2Thash

(16.6446ms)
4Tpair+2Thash

(31.3656ms) Yes Yes No

RCL-PKE [37] Tpair+3Texp+5Thash
(9.3219ms)

Tpair+2Texp+3Thash
(8.8221ms) - No Yes Yes

Our RCL-
PKEET

4Tpair+5Texp+8Thash
(33.8142ms)

2Tpair+2Texp+4Thash
(16.6698ms)

4Tpair+2Thash

(31.3656ms) Yes Yes Yes

Table 3
Comparison of communication cost

|PK| |CT| |TD|

IBEET [26] |G1| 4|G1|+|Zq| |G1|

CL-PKEET [29] |G1|+|G2| 2|G1|+|G2|+|Zq| |G2|

CL-PKEET [45] 2|G1| 3|G1|+2|Zq| |G1|

CL-PKEET [13] 3|G1| 3|G1|+|Zq| |G1|

RCL-PKE [37] |G1| |G1|+2|Zq| -

Our RCL-
PKEET |G1|+|G2| 2|G1|+|G2|+|Zq| |G2|

the existing RCL-PKE scheme does not. Compared
with the existing CL-PKEET schemes, our RCL-
PKEET scheme provides the efficient revocation
mechanism while retaining the performance in the
procedures of encryption, decryption and equality
test. Obviously, our RCL-PKEET scheme solves key
escrow problem and possesses the functionalities of
equality test and revocation mechanism.
Table 3 compares our RCL-PKEET scheme with oth-
er existing schemes in terms of the bit length of public
key, ciphertext and trapdoor. Obviously, the commu-
nication cost of our scheme is close to other existing
schemes.

Information Technology and Control 2022/4/51658

7. Conclusions
In this article, we defined the framework of RCL-
PKEET and formalized two security models which
include six types of adversaries. Based on the frame-
work, we presented the first RCL-PKEET scheme
which possesses an efficient revocation mechanism.
In addition, we demonstrated the proposed scheme
is provably secure under the BDH assumption. Com-
pared with the existing CL-PKEET scheme, the pro-

posed scheme can efficiently revoke compromised
users from the system while retaining the perfor-
mance in the procedures of encryption, decryption
and equality test.

Acknowledgement
This research was partially supported by Ministry
of Science and Technology, Taiwan, under contract
no. MOST 110-2222-E-019-001-MY2 and MOST
110-2221-E-019-041-MY3.

References
1. Al-Riyami, S. S., Paterson, K. G. Certificateless Public

Key Cryptography. In: ASIACRYPT’03, 2003, LNCS
2894, 452-473. https://doi.org/10.1007/978-3-540-
40061-5_29

2. Ali, I., Gervais, M., Ahene, E., Li, F. A Blockchain-based
Certificateless Public Key Signature Scheme for Ve-
hicle-to-Infrastructure Communication in VANETs.
Journal of Systems Architecture, 2019, 99, 101636-
101652. https://doi.org/10.1016/j.sysarc.2019.101636

3. Baek, J., Safavi-Naini, R., Susilo, W. Public Key En-
cryption with Keyword Search Revisited. In: ICC-
SA’08, 2008, LNCS 5072, 1249-1259. https://doi.
org/10.1007/978-3-540-69839-5_96

4. Boneh, D., Crescenzo, G. D., Ostrovsky, R., Persiano, G.
Public Key Encryption with Keyword Search. In: EU-
ROCRYPT’04, 2004, LNCS 3027, 506-522. https://doi.
org/10.1007/978-3-540-24676-3_30

5. Boneh, D., Franklin, M. Identity-based Encryption from
the Weil Pairing. In: CRYPTO’01, 2001, LNCS 2139,
213-229. https://doi.org/10.1007/3-540-44647-8_13

6. Boyen, X., Mei, Q., Waters, B. Direct Chosen Ciphertext
Security from Identity-based Techniques. In: Comput-
er and Communications Security’05, 2005, ACM Press,
320-329. https://doi.org/10.1145/1102120.1102162

7. Chang, J., Wang, H., Wang, F., Zhang, A., Ji, Y. RKA Se-
curity for Identity-based Signature Scheme. lEEE Ac-
cess, 2020, 8, 17833-17841. https://doi.org/10.1109/AC-
CESS.2020.2967904

8. Choon, J. C., Cheon, J. H. An Identity-based Signature
from Gap Diffie-Hellman Groups. In: PKC’03, 2003,
LNCS 2567, 18-30. https://doi.org/10.1007/3-540-
36288-6_2

9. Delerablée, C. Identity-based Broadcast Encryption
with Constant Size Ciphertexts and Private Keys. In:

ASIACRYPT’07, 2007, LNCS 4833, 200-215. https://
doi.org/10.1007/978-3-540-76900-2_12

10. Diffie, W., Hellman, M. New Directions in Cryptography.
lEEE Transactions on Information Theory, 1976, 22(6),
644-654. https://doi.org/10.1109/TIT.1976.1055638

11. Du, H., Wen, Q., Zhang, S. A Provably-secure Outsourced
Revocable Certificateless Signature Scheme Without
Bilinear Pairings. IEEE Access, 2018, 6, 73846-73855.
https://doi.org/10.1109/ACCESS.2018.2880875

12. Elgamal, T. A Public Key Cryptosystem and a Signature
Scheme Based on Discrete Logarithms. IEEE Trans-
actions on Information Theory, 1985, 31(4), 469-472.
https://doi.org/10.1109/TIT.1985.1057074

13. Elhabob, R., Zhao, Y., Sella, I., Xiong, H. An Efficient Cer-
tificateless Public Key Cryptography with Authorized
Equality Test in IIoT. Journal of Ambient Intelligence
and Humanized Computing, 2020, 11(3), 1065-1083.
https://doi.org/10.1007/s12652-019-01365-4

14. Housley, R., Polk, W., Ford, W., Solo, D. Internet X.509
Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile. RFC 3280, 2002, IETF.
https://doi.org/10.17487/rfc3280

15. Hsu, S. T., Yang, C. C., Hwang, M. S. A Study of Public
Key Encryption with Keyword Search. International
Journal of Network Security, 2013, 15(2), 71-79.

16. Hung, Y. H., Tsai, T. T., Tseng, Y. M., Huang, S. S. Strongly
Secure Revocable ID-based Signature Without Random
Oracles. Information Technology and Control, 2014,
43(3), 264-276. https://doi.org/10.5755/j01.itc.43.3.5718

17. Iriyama, S., Jimbo, K., Regoli, M. New Subclass Frame-
work and Concrete Examples of Strongly Asymmet-
ric Public Key Agreement. MDPI Applied Sciences,
2021, 11(12), 5540-5571. https://doi.org/10.3390/
app11125540

659Information Technology and Control 2022/4/51

18. Jia, X., He, D., Zeadally, S., Li, L. Efficient Revocable ID-
based Signature with Cloud Revocation Server. IEEE
Access, 2017, 5, 2945-2954. https://doi.org/10.1109/AC-
CESS.2017.2676021

19. Kumar, V., Ahmad, M., Kumar, P. An Identity-based
Authentication Framework for Big Data Securi-
ty. In: ICCCN’18, 2018, LNNS 46, 63-71. https://doi.
org/10.1007/978-981-13-1217-5_7

20. Langrehr, R., Pan, J. Hierarchical Identity-based En-
cryption with Tight Multi-challenge Security. In:
PKC’20, 2020, LNCS 12110, 153-183. https://doi.
org/10.1007/978-3-030-45374-9_6

21. Li, Y., Cheng, Q., Liu, X., Li, X. A Secure Anonymous
Identity-based Scheme in New Authentication Archi-
tecture for Mobile Edge Computing. IEEE Systems
Journal, 2021, 15(1), 935-946. https://doi.org/10.1109/
JSYST.2020.2979006

22. Li, H., Dai, Y., Tian, L., Yang, H. Identity-based Authen-
tication for Cloud Computing. In: CloudCom’09, 2009,
LNCS 5931, 157-166. https://doi.org/10.1007/978-3-
642-10665-1_14

23. Li, J., Yu, Q., Zhang, Y. Identity-based Broadcast Encryp-
tion with Continuous Leakage Resilience. Information
Sciences, 2018, 429, 177-193. https://doi.org/10.1016/j.
ins.2017.11.008

24. Lin, H. Y. Secure Certificateless Two-party Key Agree-
ment with Short Message. Information Technology and
Control, 2016, 45(1), 71-76. https://doi.org/10.5755/j01.
itc.45.1.12595

25. Liu, W., Liu, J., Wu, Q., Qin, B. Hierarchical Identity-based
Broadcast Encryption. In: ACISP’14, 2014, LNCS 8544,
242-257. https://doi.org/10.1007/978-3-319-08344-5_16

26. Ma, S. Identity-based Encryption with Outsourced
Equality Test in Cloud Computing. Information Sci-
ences, 2016, 328, 389-402. https://doi.org/10.1016/j.
ins.2015.08.053

27. Ma, M., Shi, G., Shi, X., Su, M., Li, F. Revocable Certificate-
less Public Key Encryption with Outsourced Semi-trusted
Cloud Revocation Agent. lEEE Access, 2020, 8, 148157-
148168. https://doi.org/10.1109/ACCESS.2020.3015893

28. Mehibel, N., Hamadouche, M. A New Algorithm for
a Public Key Cryptosystem Using Elliptic Curve. In:
EECS’17, 2017, IEEE, 17-22. https://doi.org/10.1109/
EECS.2017.12

29. Qu, H., Yan, Z., Lin, X. J., Zhang, Q., Sun, L. Certifi-
cateless Public Key Encryption with Equality Test.
Information Sciences, 2018, 462, 76-92. https://doi.
org/10.1016/j.ins.2018.06.025

30. Raghunandan, K. R., Ganesh, A., Surendra, S., Bhavya, K.
Key Generation Using Generalized Pell’s Equation in Pub-
lic Key Cryptography Based on the Prime Fake Modulus
Principle to Image Encryption and Its Security Analysis.
Cybernetics and Information Technologies, 2020, 20(3),
86-101. https://doi.org/10.2478/cait-2020-0030

31. Rivest, R. L., Shamir, A., Adleman, L. A Method for Ob-
taining Digital Signatures and Public-Key Cryptosys-
tems. Communications of the ACM, 1978, 21(2), 120-
126. https://doi.org/10.1145/359340.359342

32. Shamir, A. Identity-based Cryptosystems and Signa-
ture Schemes. In: CRYPTO’84, 1984, LNCS 196, 47-53.
https://doi.org/10.1007/3-540-39568-7_5

33. Sun, Y., Zhang, F., Baek, J. Strongly secure Certifi-
cateless Public Key Encryption Without Pairing. In:
CANS’07, 2007, LNCS 4856, 194-208. https://doi.
org/10.1007/978-3-540-76969-9_13

34. Sun, Y., Zhang, Z., Shen, L. A Revocable Certificateless
Signature Scheme Without Pairing. In: ICCCS’16, 2016,
LNCS 10039, 355-364. https://doi.org/10.1007/978-3-
319-48671-0_32

35. Takayasu, A., Watanabe, Y. Lattice-based Revocable
Identity-based Encryption with Bounded Decryption
Key Exposure Resistance. In: ACISP’17, 2017, LNCS
10342, 184-204. https://doi.org/10.1007/978-3-319-
60055-0_10

36. Tedeschi, P., Sciancalepore, S., Eliyan, A., Pietro, R. D.
LiKe: Lightweight Certificateless Key Agreement for
Secure IoT Communications. IEEE Internet of Things
Journal, 2020, 7(1), 621-638. https://doi.org/10.1109/
JIOT.2019.2953549

37. Tsai, T. T., Tseng, Y. M. Revocable Certificateless Pub-
lic Key Encryption. lEEE Systems Journal, 2015, 9(3),
824-833. https://doi.org/10.1109/JSYST.2013.2289271

38. Wu, T. Y., Chen, C. M., Wang, K. H., Meng, C., Wang, E. A
Provably Secure Certificateless Public Key Encryption
with Keyword Search. Journal of the Chinese Institute
of Engineers, 2019, 42(1), 20-28. https://doi.org/10.108
0/02533839.2018.1537807

39. Wu, T. Y., Chen, C. M., Wang, K. H., Wu, J. M. T. Security
Analysis and Enhancement of a Certificateless Search-
able Public Key Encryption Scheme for IIoT Environ-
ments. IEEE Access, 2019, 7, 49232-49239. https://doi.
org/10.1109/ACCESS.2019.2909040

40. Wu, J. D., Tseng, Y. M., Huang, S. S. Leakage-resilient Cer-
tificateless Signature Under Continual Leakage Model.
Information Technology and Control, 2018, 47(2), 363-
386. https://doi.org/10.5755/j01.itc.47.2.17847

Information Technology and Control 2022/4/51660

41. Wu, J. D., Tseng, Y. M., Huang, S. S., Chou, W. C. Leak-
age-resilient Certificateless Key Encapsulation
Scheme. Informatica, 2018, 29(1), 125-155. https://doi.
org/10.15388/Informatica.2018.161

42. Yang, Z., Lai, J., Sun, Y., Zhou, J. A Novel Authenticated
Key Agreement Protocol with Dynamic Credential for
WSNs. ACM Transactions on Sensor Networks, 2019,
15(2), 1-27. https://doi.org/10.1145/3303704

43. Yang, G., Tan, C. H., Huang, Q., Wong, D. S. Probabilis-
tic Public Key Encryption with Equality Test. In: The
Cryptographers’ Track at the RSA Conference’10, 2010,
LNCS 5985, 119-131. https://doi.org/10.1007/978-3-
642-11925-5_9

44. Zhang, J., Mao, J. Efficient Public Key Encryption
with Revocable Keyword Search in Cloud Computing.
Cluster Computing, 2016, 19, 1211-1217. https://doi.
org/10.1007/s10586-016-0584-7

45. Zhao, Y., Hou, Y., Chen, Y., Kumar, S., Deng, F. An Effi-
cient Certificateless Public Key Encryption with Equal-
ity Test Toward Internet of Vehicles. T Transactions on
Emerging Telecommunications Technologies, 33(5),
e3812. https://doi.org/10.1002/ett.3812

46. Zhou, Y., Yang, B. Continuous Leakage-Resilient Cer-
tificateless Public Key Encryption with CCA Security.
Knowledge-Based Systems, 2017, 136, 27-36. https://
doi.org/10.1016/j.knosys.2017.08.019

This article is an Open Access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

