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Traditional public key cryptography requires certificates as a link between each user’s identity and her/his 
public key. Typically, public key infrastructures (PKI) are used to manage and maintain certificates. However, 
it takes a lot of resources to build PKI which includes many roles and complex policies. The concept of cer-
tificateless public key encryption (CL-PKC) was introduced to eliminate the need for certificates. Based on 
this concept, a mechanism called certificateless public key encryption with equality test (CL-PKEET) was 
proposed to ensure the confidentiality of private data and provide an equality test of different ciphertexts. The 
mechanism is suitable for cloud applications where users cannot only protect personal private data but also en-
joy cloud services which test the equality of different ciphertexts. More specifically, any two ciphertexts can be 
tested to determine whether they are encrypted from the same plaintext. Indeed, any practical system needs to 
provide a solution to revoke compromised users. However, these existing CL-PKEET schemes do not address 
the revocation problem, and the related research is scant. Therefore, the aim of this article is to propose the first 
revocable CL-PKEET scheme called RCL-PKEET which can effectively remove illegal users from the system 
while maintaining the effectiveness of existing CL-PKEET schemes in encryption, decryption, and equality 
testing processes. Additionally, we formally demonstrate the security of the proposed scheme under the bilin-
ear Diffie-Hellman assumption.
KEYWORDS: Revocable, certificateless, equality test, public key encryption, bilinear pairing.

1. Introduction
The 1970s saw new directions in cryptography called 
the public key cryptography (PKC) presented by Dif-
fie and Hellman [10]. However, there exists a certifi-
cate management problem in PKC systems. To over-

come the drawback of using certificates, Shamir [31] 
introduced a new notion called identity-based public 
key cryptography (ID-PKC) which eliminates the 
requirement of certificates since each user’s public 
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key is generated by her/his identities. Since ID-PKC 
systems have the key escrow problem, Al-Riyami and 
Paterson [1] presented the concept of certificateless 
public key cryptography (CL-PKC). A CL-PKC sys-
tem has a KGC that is only responsible for produc-
ing each user’s partial secret key. Each user takes the 
partial secret key and combines it with a secret value 
chosen by herself/himself to produce a full secret key. 
Obviously, the KGC cannot obtain the full secret key 
of any user due to the lack of secret value for each user.
Indeed, PKC or CL-PKC has also been applied to 
cloud computing since there exist the potential risks 
of privacy disclosure that the private data could be 
leaked to cloud servers. In order to protect private 
data and search encrypted data on the cloud, Yang et 
al. [42] introduced a new concept of the public key en-
cryption with equality test (PKEET), which supports 
comparing whether two encrypted data (ciphertexts) 
are encrypted from the same message (plaintext). Un-
til 2018, Qu et al. [28] proposed a mechanism called 
certificateless public key encryption with equality 
test (CL-PKEET) to ensure the confidentiality of 
private data and provide equality test of different ci-
phertexts. An important issue in all types of PKC is to 
offer a revocation mechanism to revoke compromised 
users (revoked users). Until now, these existing CL-
PKEET schemes do not address the revocation prob-
lem, and the related research is scant. Therefore, the 
aim of this article is to propose the first revocable CL-
PKEET scheme called RCL-PKEET.

1.1. Related Work
The PKC directions cause extensive discussions of 
the applications of cryptography such as the public 
key signature [12, 31], the public key encryption [28, 
30], and the key agreement in public key systems 
[17, 42]. A fact we all know that PKC requires certif-
icates as a link between each user’s identity and her/
his public key. Typically, public key infrastructures 
(PKI) are used to manage and maintain certificates. 
However, it takes a lot of resources to build PKI which 
includes many roles and complex policies. To over-
come the drawback of using certificates, Shamir [32] 
introduced a new notion called identity-based public 
key cryptography (ID-PKC). Based on the new notion, 
Boneh and Franklin [5] employed bilinear pairings to 
present the first practical identity (ID)-based encryp-
tion (IBE) scheme. Afterward, related schemes such 

as ID-based signature [7-8, 16], hierarchical ID-based 
encryption [20, 25], ID-based broadcast encryption 
[9, 23], ID-based authentication [19, 22] have been 
studied and published. However, ID-PKC inheres in 
key escrow problem since the key generation center 
(KGC), a major role in ID-PKC, is used to produce 
each user’s secret key in the sense that the KGC keeps 
the secret keys of all the users. In 2003, Al-Riyami 
and Paterson [1] presented the concept of CL-PKC to 
overcome the key escrow problem while eliminating 
the certificate requirement. After that, there has been 
a dramatic proliferation of research concerned with 
CL-PKC such as certificateless public key signature 
[2, 40], certificateless public key encryption [41, 46], 
certificateless public key agreement [24, 36]. 
To protect private data and search encrypted data 
on the cloud, a number of studies [3-4, 15, 38-39] 
of searching the encrypted data, namely public key 
encryption with keyword search (PEKS), were pro-
posed. Unfortunately, the PEKS is only suitable for 
a user to search his/her encrypted data in the sense 
that PEKS cannot apply to multiple users’ scenarios. 
To offer the search of encrypted data for multiple us-
ers, Yang et al. [43] introduced a new concept of the 
public key encryption with equality test (PKEET) 
which supports to compare whether two encrypted 
data (ciphertexts) are encrypted from the same mes-
sage (plaintext). But PKEET still has the drawback 
of using certificates, Ma [26] combined the benefits 
of PKEET and ID-PKC to present a new mechanism 
called the identity-based public key encryption with 
equality test (ID-PKEET), which eliminates the 
requirement of certificates. As already mentioned 
above, ID-PKC appears the key escrow problem, and 
so does ID-PKEET. Based on the concept of CL-PKC, 
a mechanism called certificateless public key encryp-
tion with equality test (CL-PKEET) was proposed by 
Qu et al. [29] to ensure the confidentiality of private 
data and provide equality test of different ciphertexts. 
The mechanism, eliminating the requirement of cer-
tificates, does not have the key escrow problem and 
is suitable for cloud applications where users can-
not only protect personal private data but also enjoy 
cloud services which test the equality of different 
ciphertexts. Two currently popular applications are 
Internet of Vehicles (IoV) and Industrial Internet of 
Things (IIoT). For the applications, two related liter-
atures, namely CL-PKEET toward IoV [45] and CL-
PKEET in IIoT [13], have been proposed.
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All types of PKC need to offer a revocation mechanism 
to revoke compromised users (revoked users) such as 
PKC with revocation mechanism [44], ID-PKC with 
revocation mechanism [18, 35], CL-PKC with revoca-
tion mechanism [11, 34]. A revocation solution in tra-
ditional PKC is the certificate revocation list [14], but 
it is not suitable for ID-PKC or CL-PKC, since they do 
not have certificates. Boneh and Franklin [5] proposed 
a suggestion of revocation on an ID-PKC where every 
valid user can get a new secret key for each time peri-
od by secret channels, and a revoked user cannot get 
a new secret key. However, the solution is inefficient 
for multiple users since the cost of establishing secret 
channels is increased linearly with the number of us-
ers. Indeed, CL-PKC can adopt the solution to achieve 
a revocable CL-PKC (RCL-PKC), but the problem of 
inefficiency still exists. Tsai and Tseng [37] presented 
an efficient revocation method that uses public chan-
nels to revoke compromised users. Ma et al. [27] hired 
the efficient revocation method to propose revocable 
certificateless public key encryption with an out-
sourced semi-trusted cloud revocation agent.

1.2. Motivation
In fact, users can also be revoked in the existing ID-
PKEET [26] and CL-PKEETs [13, 29, 45]. In these 
constructions, the KGC transmits secret keys to users 
through secure channels. The KGC can realize revo-
cation by resending new secret keys to non-revoked 
users. As a result, the user who has not received the 
new secret key is the revoked user. However, such re-
vocation requires a secure channel, and the establish-
ment of this channel requires encryption and decryp-
tion procedures. In order to improve the efficiency of 
revoking users, we must remove the way of revoking 
users through secure channels. Therefore, we attempt 
to propose a new mechanism to revoke users through 
open channels.

1.3. Contribution and Organization
Until now, these existing CL-PKEET schemes do not 
address the revocation problem, and the related re-
search is scant. Therefore, the aim of this article is to 
propose the first revocable CL-PKEET scheme called 
RCL-PKEET which can effectively remove illegal us-
ers from the system, while maintaining the effective-
ness of existing CL-PKEET schemes in encryption, 
decryption, and equality testing processes. Addi-

tionally, we formally demonstrate the security of the 
proposed scheme under the bilinear Diffie-Hellman 
assumption.
The organization of this article is as follows. In Sec-
tion 2, we give some preliminaries. In Section 3, we 
define the framework and security notions of RCL-
PKEET. A concrete RCL-PKEET scheme is present-
ed in Section 4. Section 5 analyzes the security of the 
RCL-PKEET scheme. We compare the performance 
with other existing schemes and draw a conclusion in 
Sections 6 and 7, respectively.

2. Preliminaries
In this section, we briefly describe the bilinear pair-
ings and the bilinear Diffie-Hellman assumption 
which are used to construct our concrete scheme and 
analyze the security later. Let G1, G2, GT be three mul-
tiplicative cyclic groups of large prime order q and two 
generators P Î G1 and Q Î G2. There is an asymmetric 
bilinear pairings e: G1 × G2 → GT satisfying three con-
ditions as follows:
 _ Bilinear: for any a, b Î Zq

*, e(Pa, Qb) = e(P, Q)ab.
 _ Non-degenerate: e(P, Q) ≠ 1.
 _ Computable: the asymmetric bilinear pairings e is 

computable efficiently.

The bilinear Diffie-Hellman (BDH) assumption in the 
symmetric bilinear groups [5] was first presented in 
2001. Boyen et al. [6] extended the BDH assumption 
from the symmetric bilinear groups to the asymmet-
ric ones.
Bilinear Diffie-Hellman problem: let 𝒢 = (q, G1, G2, GT, 
e) defined as above, P Î G1, Q Î G2 be two generators, 
and a, b, c Î Zq

* be random numbers. Given (P, Pa, Pc, Q, 
Qa, Qb) Î × , compute e(P, Q)abc Î GT.
Definition  1. (Bilinear Diffie-Hellman assump-
tion). Given an instance of bilinear Diffie-Hellman 
problem, no probabilistic polynomial time (PPT) ad-
versary A computes e(P, Q)abc with non-negligible ad-
vantage which is defined as
Pr[A(P, Pa, Pc, Q, Qa, Qb) = e(P, Q)abc] < ϵ.
Note that the BDH assumption is based on solving the 
discrete logarithm problem which is to compute a by 
giving P Î G1 and Pa, where a is a random value chosen 
in Zq

*. 
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3. Framework and Security Notions 
of RCL-PKEET
3.1. Framework
This subsection formalizes the RCL-PKEET frame-
work which is identical to CL-PKEET proposed by 
Qu et al. [29] except that it adds ExtractTimeUpdate-
Key algorithm. The proposed RCL-PKEET compris-
es three entities, namely the key generation center 
(KGC), the cloud server (CS) and users (senders and 
receivers), which are depicted in Figure 1. The KGC 
performs two tasks. One is responsible for creating 
a partial secret key PSK for each user, and the other 
for calculating the time update key TUK for each time 
period. Then, the PSK and the TUK are respective-
ly issued via a secure channel and a public channel 
to each user. Each user selects a secret value SV and 
generates a full secret key FSK using SV, PSK and 
TUK, where the FSK is used to decrypt the associat-
ed ciphertext and produce the trapdoor TD. The TD 
of each user is transmitted to the CS, and then the CS 
can use it to compare whether the two ciphertexts are 
encrypted from the same plaintext. In the following, 

we first present the framework of RCL-PKEET which 
consists of ten algorithms:
 _ Setup(λ). Take a security parameter λ as input, and 

output system public parameters PP and a master 
secret key msk. This algorithm is run by a KGC to 
initially set up the system of RCL-PKEET.

 _ ExtractPartialSecretKey(PP, ID, msk). Take the 
public parameters PP, a user’s identity ID Î {0, 1}* 

and the master secret key msk as input, and output 
the user’s partial secret key PSK. This algorithm is 
run by the KGC once for the user and returns the 
PSK to the user via a secure channel.

 _ ExtractTimeUpdateKey(PP, ID, t, msk). Take the 
public parameters PP, a user’s identity ID Î {0, 1}*, 
a time period t and the master secret key msk as 
input, and output the user’s time update key TUK. 
This algorithm is run by the KGC and returns the 
TUK to the user via a public channel.

 _ SetSecretValue(PP). Take the public parameters 
PP as input, and output a secret value SV. This 
algorithm is run by the user.

 _ ExtractFullSecretKey(PP, PSK, TUK, SV). Take 
the public parameters PP, a user’s partial secret key 

 
 

 

Figure 1  

The framework of RCL-PKEET 

Before defining the security notions of RCL-PKEET, 
we discuss the types of adversaries. Four types of 
adversaries have been formally defined in CL-
PKEET [29]. In addition to these four types, the 
types of adversaries of RCL-PKEET include the 
other two types named revoked users with and 
without the trapdoor. The six types of adversaries 
are detailed in the following way. 

• Type-1 adversary: it is an outsider who is not a 
member in the system, but the adversary can 
replace the user’s public key PK and obtain any 
user’s time update key TUK from a public 
channel. 

• Type-2 adversary: it is a malicious KGC who has 
the master secret key msk. The adversary can 
compute any user’s partial secret key PSK and 
time update key TUK. 

• Type-3 adversary: it was a member in the system, 
but now has been revoked by KGC. However, 
she/he still keeps own partial secret key PSK but 
cannot obtain the current time update key TUK 
from KGC. 

• Type-4 adversary: besides the type-1 adversary’s 
abilities, the type-4 adversary possesses the ability 
to obtain the trapdoor. 

• Type-5 adversary: besides the type-2 adversary’s 
abilities, the type-5 adversary possesses the ability 
to obtain the trapdoor. 

• Type-6 adversary: besides the type-3 
adversary’s abilities, the type-6 adversary 
possesses the ability to obtain the trapdoor. 

Then, we define two new security games, 
namely GIND-CCA and GOW-CCA, to model our 
security notions. The two games GIND-CCA and 
GOW-CCA satisfy the IND-CCA and OW-CCA 
security notions, respectively. Assume that A 
is the adversary and B is the challenger in the 
security games. To simplify our description of 
security games, we present seven queries in 
advance before playing the security games. A 
may issue a number of queries many times to 
B as follows: 

• Partial secret key query(ID): B runs 
ExtractPartialSecretKey algorithm on ID, 
and forwards the resulting partial secret key 
PSK to A. 

• Time update key query(ID, t): B runs 
ExtractTimeUpdateKey algorithm on (ID, t), 
and forwards the resulting time update key 
TUK to A. 

• Full secret key query(ID, t): B runs 
ExtractFullSecretKey algorithm on (ID, t), 
and forwards the resulting full secret key 
FSK to A. 

• Public key query(ID): B runs ExtractPublicKey 
algorithm on ID, and forwards the resulting 
public key PK to A. 

Figure 1 
The framework of RCL-PKEET
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PSK, the user’s time update key TUK, and the user’s 
secret value SV as input, and output the user’s full 
secret key FSK. This algorithm is run by the user 
who can use the FSK to decrypt the associated 
ciphertext C or generate a trapdoor TD.

 _ ExtractPublicKey(PP, SV). Take the public 
parameters PP and a user’s secret value SV as 
input, and output the user’s public key PK. This 
algorithm is run by the user, and anyone can use the 
PK to generate the ciphertext C.

 _ Encryption(PP, ID, t, PK, M). Take the public 
parameters PP, a user’s identity ID Î {0, 1}*, a time 
period t, the user’s public key PK and a message 
M as input, and output a ciphertext C or an error 
symbol ⊥ to denote encryption failure. This 
algorithm is run by a sender.

 _ Decryption(PP, FSK, C). Take the public parameters 
PP, a user’s full secret key FSK, and a ciphertext C 
as input, and output a corresponding message M 
or an error symbol ⊥ to denote decryption failure. 
This algorithm is run by a receiver.

 _ Authorization(PP, FSK). Take the public 
parameters PP and a user’s full secret key FSK 
as input, and output the user’s trapdoor TD. This 
algorithm is run by the user who can authorize the 
cloud server to test ciphertexts with TD.

 _ Test(PP, Cζ, TDζ, Cη, TDη). Take the public 
parameters PP, two tuples (Cζ, TDζ), (Cη, TDη) as 
input, and output 1 if Cζ and Cη are encrypted from 
the same message. Otherwise, output 0. Here, the 
ciphertext Cζ and the trapdoor TDζ are from the 
user ζ, and the ciphertext Cη and the trapdoor TDη 
are from the user η. This algorithm is run by a cloud 
server who has the trapdoors.

3.2. Security Notions
Before defining the security notions of RCL-PKEET, 
we discuss the types of adversaries. Four types of ad-
versaries have been formally defined in CL-PKEET 
[29]. In addition to these four types, the types of ad-
versaries of RCL-PKEET include the other two types 
named revoked users with and without the trapdoor. 
The six types of adversaries are detailed in the follow-
ing way.
 _ Type-1 adversary: it is an outsider who is not a 

member in the system, but the adversary can 
replace the user’s public key PK and obtain any 

user’s time update key TUK from a public channel.
 _ Type-2 adversary: it is a malicious KGC who has 

the master secret key msk. The adversary can 
compute any user’s partial secret key PSK and time 
update key TUK.

 _ Type-3 adversary: it was a member in the system, 
but now has been revoked by KGC. However, she/
he still keeps own partial secret key PSK but cannot 
obtain the current time update key TUK from KGC.

 _ Type-4 adversary: besides the type-1 adversary’s 
abilities, the type-4 adversary possesses the ability 
to obtain the trapdoor.

 _ Type-5 adversary: besides the type-2 adversary’s 
abilities, the type-5 adversary possesses the ability 
to obtain the trapdoor.

 _ Type-6 adversary: besides the type-3 adversary’s 
abilities, the type-6 adversary possesses the ability 
to obtain the trapdoor.

Then, we define two new security games, namely  
GIND-CCA and GOW-CCA, to model our security notions. 
The two games GIND-CCA and GOW-CCA satisfy the IND-
CCA and OW-CCA security notions, respectively. As-
sume that A is the adversary and B is the challenger 
in the security games. To simplify our description of 
security games, we present seven queries in advance 
before playing the security games. A may issue a num-
ber of queries many times to B as follows:
 _ Partial secret key query(ID): B runs 

ExtractPartialSecretKey algorithm on ID, and 
forwards the resulting partial secret key PSK to A.

 _ Time update key query(ID, t): B runs 
ExtractTimeUpdateKey algorithm on (ID, t), and 
forwards the resulting time update key TUK to A.

 _ Full secret key query(ID, t): B runs 
ExtractFullSecretKey algorithm on (ID, t), and 
forwards the resulting full secret key FSK to A.

 _ Public key query(ID): B runs ExtractPublicKey 
algorithm on ID, and forwards the resulting public 
key PK to A.

 _ Replace public key query(ID, PK′): after receiving 
this query with (ID, PK′) from A, B replaces the 
public key of user ID with PK′.

 _ Decryption query(ID, t, C): B runs Decryption 
algorithm on (ID, t, C), and forwards the resulting 
message M to A.

 _ Authorization query(ID, t): B runs Authorization 
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algorithm on (ID, t), and forwards the resulting 
trapdoor TD to A.

We say that a RCL-PKEET scheme has the security of 
indistinguishability under chosen ciphertext attack 
(IND-CCA) if any PPT adversary A has no advantage 
in following security game GIND-CCA with a challenger 
B. Define (λ) as A’s advantage which is neg-
ligible. Note that the adversary includes the type-1, 
type-2 and type-3.
1 Setup: B executes the Setup(λ) algorithm to gener-

ate the public parameters PP and the master secret 
key msk. Then PP is given to A. If A is the type-2 
adversary, B gives the master key msk to A. Other-
wise, the master key msk is kept by B.

2 Phase 1: A may issue the Partial secret key query, 
Time update key query, Full secret key query, Pub-
lic key query, Replace public key query, Decryption 
query, and Authorization query as mentioned above 
for many times. A restriction is that A should not 
issue the Full secret key query if the public key with 
the same identity ID has been replaced. Note that, 
if A is the type-2 adversary, A can compute the par-
tial secret keys and time update keys by himself/
herself without issuing Partial secret key query and 
Time update key query. However, the type-2 adver-
sary cannot issue the Replace public key query.

3 Challenge: A submits two messages M0
*, M1

*, a time 
period t*, and an identity ID* to B. Three restric-
tions are given as the following:

 _ If A is type-1 adversary, ID* and t* must not be 
issued in the Partial secret key query, Full secret 
key query, Authorization query and Decryption 
query.

 _ If A is type-2 adversary, ID* and t* must not be 
issued in the Full secret key query, Authorization 
query and Decryption query.

 _ If A is type-3 adversary, ID* and t* must not be 
issued in the Time update key query, Full secret 
key query, Authorization query and Decryption 
query.

B picks a random bit ḃ ∈ {0, 1}, and then runs the En-
cryption(PP, ID*, t*, PK*, Mḃ

*) algorithm to compute 
C* as the challenge ciphertext. If C* is invalid, outputs 
with failure symbol ⊥. Otherwise, B sends C* to A.
4 Phase 2: A issues queries under the restrictions 

which are given above and B responds as in Phase 1.

5 Guess: A submits a guess ḃ′ ∈ {0, 1}. A wins this 
game if ḃ = ḃ′. We define that the advantage of A is 

(λ) = | Pr[ḃ = ḃ′] – 1/2 |.
We say that a RCL-PKEET scheme is one-way secure 
against the chosen ciphertext attack (OW-CCA) if any 
PPT adversary A has no advantage in following secu-
rity game GOW-CCA with a challenger B. Define 
(λ) as A’s advantage which is negligible. Note that the 
adversary includes the type-4, type-5 and type-6.
1 Setup: B executes the Setup(λ) algorithm to gener-

ate the public parameters PP and the master secret 
key msk. Then PP is given to A. If A is the type-5 ad-
versary, B gives the master key msk to A. Otherwise, 
the master key msk is kept by B.

2 Phase 1: A may issue the Partial secret key query, 
Time update key query, Full secret key query, Pub-
lic key query, Replace public key query, Decryption 
query, and Authorization query as mentioned above 
for many times. A restriction is that A should not 
issue the Full secret key query if the public key with 
the same identity ID has been replaced. Note that, 
if A is the type-5 adversary, A can compute the par-
tial secret keys and time update keys by himself/
herself without issuing Partial secret key query and 
Time update key query. However, the type-5 adver-
sary cannot issue the Replace public key query.

3 Challenge: A submits an identity ID*, and a time 
period t* to B. Three restrictions are given as the 
following:

 _ If A is type-4 adversary, ID* and t* must not be 
issued in the Partial secret key query, Full secret 
key query and Decryption query.

 _ If A is type-5 adversary, ID* and t* must not be 
issued in the Full secret key query and Decryption 
query.

 _ If A is type-6 adversary, ID* and t* must not be 
issued in the Time update key query, Full secret 
key query and Decryption query.

B picks a random message M*, and then runs the En-
cryption(PP, ID*, t*, PK*, M*) algorithm to compute 
C*as the challenge ciphertext. Then B sends C* to A.
1 Phase 2: A issues queries under the restrictions 

which are given above and B responds as in Phase 1.
2 Guess: A submits a guess M′. A wins this game 

if M *  = M′. We define that the advantage of A is 
(λ) = Pr[M* = M′].
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4. The RCL-PKEET Scheme
The concrete RCL-PKEET scheme is composed of 
ten algorithms and the details are presented as fol-
lows.
 _ Setup(λ). Take a security parameter λ as input 

and generate 𝒢 = (q, G1, G2, GT, e) as mentioned in 
section 2. Select two generators P ∈ G1, Q ∈ G2 and 
a master secret key msk = s ∈ Zq

*, and then calculate 
Ppub = Ps. Pick eight hash functions H1: {0, 1}* → G2, 
H2: {0, 1}* → G2, H3: {0, 1}* → G2, H4: {0, 1}* → G2, H5: 
GT ×  → {0, 1}λ+l, H6: {0, 1}λ → G2, H7: {0, 1}λ+l → Zq

*, 
H8: GT → G2. Output public parameters PP = (𝒢, P, Q, 
Ppub, H1, H2, H3, H4, H5, H6, H7, H8).

 _ ExtractPartialSecretKey(PP, ID, msk). Take public 
parameters PP, an identity ID and the master 
secret key msk as input. Output a partial secret 
key PSK = (PSK1, PSK2) = (H1(ID)msk, H2(ID)msk) = 
(H1(ID)s, H2(ID)s).

 _ ExtractTimeUpdateKey(PP, ID, t, msk). Take 
public parameters PP, an identity ID, a time period 
t and the master secret key msk as input. Output a 
time update key TUK = (TUK1, TUK2) = (H3(ID, t)
msk, H4(ID, t)msk) = (H3(ID, t)s, H4(ID, t)s).

 _ SetSecretValue(PP). Take public parameters PP 
as input. Then, select a random value x ∈ Zq

* and 
output secret value SV = x.

 _ ExtractFullSecretKey(PP, PSK, TUK, SV). Take 
public parameters PP, a partial secret key PSK, 
a time update key TUK and a secret value SV as 
input. Output a full secret key FSK = (FSK1, FSK2) 
= ((PSK1∙TUK1)SV, (PSK2∙TUK2)SV) = ((PSK1∙TUK1)x, 
(PSK2∙TUK2)x).

 _ ExtractPublicKey(PP, SV). Take public parameters 
PP and a secret value SV as input. Output a public 
key PK = (PK1, PK2) = (Ppub

SV, QSV) = (Ppub
 x, Qx).

 _ Encryption(PP, ID, t, PK, M). Take public 
parameters PP, an identity ID, a time period t, the 
public key PK and a message M as input, where M 
∈ {0, 1}λ, and PK = (PK1, PK2).

 _ Check whether e(PK1, Q) = e(Ppub, PK2) holds. If 
not holds, the algorithm aborts with failure.

 _ Choose k ∈ {0, 1}l and use the message M to 
calculate R = H7(M, k).

 _ Randomly pick α ∈ Zq
* and set a ciphertext C by 

computing (C1, C2, C3, C4) as follows: 

 _ C1 = PR, C2 = Pα, C3 = H5(e(PK1, H1(ID)∙H3(ID, 
t))α, C1, C2)⊕(M || k), C4 = H6(M)R∙H8(e(PK1, 
H2(ID)∙H4(ID, t))α).

 _ Decryption(PP, FSK, C). Take public parameters 
PP, a full secret key FSK, and a ciphertext C as 
input.
 ▪ Obtain M′ || k′ by computing C3⊕H5(e(C2, FSK1), 

C1, C2).
 ▪ Compute R′ = H7(M′, k′).
 ▪ Check if C1 =  and C4 = H6 ∙H8(e(C2, 

FSK2)) both hold, return M; otherwise, output 
failed.

 _ Authorization(PP, FSK). Take public parameters 
PP and a full secret key FSK as input. Output a 
trapdoor TD = FSK2.

 _ Test(PP, Cζ, TDζ, Cη, TDη). Take public parameters 
PP, two ciphertext Cζ, Cη and two trapdoor TDζ, TDη 
as input, where Cζ = (Cζ1, Cζ2, Cζ3, Cζ4), Cη = (Cη1, Cη2, 
Cη3, Cη4).
 ▪ Compute Tζ and Tη as below.

 
 

 

B picks a random message M*, and then runs the 
Encryption(PP, ID*, t*, PK*, M*) algorithm to 
compute C*as the challenge ciphertext. Then B 
sends C* to A. 

4. Phase 2: A issues queries under the restrictions 
which are given above and B responds as in 
Phase 1. 

5. Guess: A submits a guess M′. A wins this game if 
M* = M′. We define that the advantage of A is 

(λ) = Pr[M* = M′]. 

4. The RCL-PKEET Scheme 
The concrete RCL-PKEET scheme is composed of 
ten algorithms and the details are presented as 
follows. 

• Setup(λ). Take a security parameter λ as input and 
generate 𝒢𝒢𝒢𝒢 = (q, G1, G2, GT, e) as mentioned in 
section 2. Select two generators P ∈ G1, Q ∈ G2 and 
a master secret key msk = s ∈ Zq*, and then calculate 
Ppub = Ps. Pick eight hash functions H1: {0, 1}* → G2, 
H2: {0, 1}* → G2, H3: {0, 1}* → G2, H4: {0, 1}* → G2, H5: 
GT ×  → {0, 1}λ+l, H6: {0, 1}λ → G2, H7: {0, 1}λ+l → 
Zq*, H8: GT → G2. Output public parameters PP = 
(𝒢𝒢𝒢𝒢, P, Q, Ppub, H1, H2, H3, H4, H5, H6, H7, H8). 

• ExtractPartialSecretKey(PP, ID, msk). Take public 
parameters PP, an identity ID and the master 
secret key msk as input. Output a partial secret key 
PSK = (PSK1, PSK2) = (H1(ID)msk, H2(ID)msk) = 
(H1(ID)s, H2(ID)s). 

• ExtractTimeUpdateKey(PP, ID, t, msk). Take 
public parameters PP, an identity ID, a time period 
t and the master secret key msk as input. Output a 
time update key TUK = (TUK1, TUK2) = (H3(ID, 
t)msk, H4(ID, t)msk) = (H3(ID, t)s, H4(ID, t)s). 

• SetSecretValue(PP). Take public parameters PP as 
input. Then, select a random value x ∈ Zq* and 
output secret value SV = x. 

• ExtractFullSecretKey(PP, PSK, TUK, SV). Take 
public parameters PP, a partial secret key PSK, a 
time update key TUK and a secret value SV as 
input. Output a full secret key FSK = (FSK1, FSK2) 
= ((PSK1·TUK1)SV, (PSK2·TUK2)SV) = ((PSK1·TUK1)x, 
(PSK2·TUK2)x). 

• ExtractPublicKey(PP, SV). Take public parameters 
PP and a secret value SV as input. Output a public 
key PK = (PK1, PK2) = (PpubSV, QSV) = (Ppub x, Qx). 

• Encryption(PP, ID, t, PK, M). Take public 
parameters PP, an identity ID, a time period t, the 
public key PK and a message M as input, where M 
∈ {0, 1}λ, and PK = (PK1, PK2). 

 Check whether e(PK1, Q) = e(Ppub, PK2) 
holds. If not holds, the algorithm aborts 
with failure. 

 Choose k ∈ {0, 1}l and use the message M 
to calculate R = H7(M, k). 

 Randomly pick α ∈ Zq* and set a 
ciphertext C by computing (C1, C2, C3, C4) 
as follows:  

C1 = PR, C2 = Pα, C3 = H5(e(PK1, 
H1(ID)·H3(ID, t))α, C1, C2)⊕(M || k), C4 = 
H6(M)R·H8(e(PK1, H2(ID)·H4(ID, t))α). 

• Decryption(PP, FSK, C). Take public 
parameters PP, a full secret key FSK, and a 
ciphertext C as input. 

 Obtain M′ || k′ by computing C3⊕H5(e(C2, 
FSK1), C1, C2). 

 Compute R′ = H7(M′, k′). 

 Check if C1 =  and C4 = H6 ·H8(e(C2, 
FSK2)) both hold, return M; otherwise, 
output failed. 

• Authorization(PP, FSK). Take public 
parameters PP and a full secret key FSK as 
input. Output a trapdoor TD = FSK2. 

• Test(PP, Cζ, TDζ, Cη, TDη). Take public 
parameters PP, two ciphertext Cζ, Cη and two 
trapdoor TDζ, TDη as input, where Cζ = (Cζ1, 
Cζ2, Cζ3, Cζ4), Cη = (Cη1, Cη2, Cη3, Cη4). 

 Compute Tζ and Tη as below. 

− Tζ =  Cζ4

H8(e(Cζ2, TDζ))
 

= H6(Mζ)
Rζ·H8(e(PKζ1, H2(IDζ)·H4(IDζ, tζ))

αζ)
H8(e(P

αζ, (PSKζ2·TUKζ2)
xζ))

 

= 
H6(Mζ)

Rζ·H8(e(Ppub
xζ, H2(IDζ)·H4(IDζ, tζ))

αζ)

H8(e(P
αζ, H2(IDζ)

s
·H4(IDζ, tζ)

s
)

xζ))
 

= H6(Mζ)
Rζ·H8(e(P

s·xζ, H2(IDζ)·H4(IDζ, tζ))
αζ)

H8(e(P
s·xζ, H2(IDζ)·H4(IDζ, tζ))

αζ)
 

= H6(Mζ)H7(Mζ, kζ) 

− Tη = Cη4

H8(e(Cη2, TDη))
 

    = H6(Mη)
Rη·H8(e(PKη1, H2(IDη)·H4(IDη, tη))

αη)
H8(e(P

αη, (PSKη2·TUKη2)
xη))

 

    = 
H6(Mη)

Rη·H8(e(Ppub
xη, H2(IDη)·H4(IDη, tη))

αη)

H8(e(P
αη, H2(IDη)

s
·H4(IDη, tη)

s
)

xη))
 

    = H6(Mη)
Rη·H8(e(P

s·xη, H2(IDη)·H4(IDη, tη))
αη)

H8(e(P
s·xη, H2(IDη)·H4(IDη, tη))

αη)
 

    = H6(Mη)H7(Mη, kη) 

 Calculate e(Cζ1, Tη) and e(Cη1, Tζ) as below. 

− e(Cζ1, Tη) = e(PH7(Mζ, kζ), H6(Mη)H7(Mη, kη)) 

                = e(P,  H6(Mη))H7(Mζ, kζ)·H7(Mη, kη) 

 
 

 

B picks a random message M*, and then runs the 
Encryption(PP, ID*, t*, PK*, M*) algorithm to 
compute C*as the challenge ciphertext. Then B 
sends C* to A. 

4. Phase 2: A issues queries under the restrictions 
which are given above and B responds as in 
Phase 1. 

5. Guess: A submits a guess M′. A wins this game if 
M* = M′. We define that the advantage of A is 

(λ) = Pr[M* = M′]. 

4. The RCL-PKEET Scheme 
The concrete RCL-PKEET scheme is composed of 
ten algorithms and the details are presented as 
follows. 

• Setup(λ). Take a security parameter λ as input and 
generate 𝒢𝒢𝒢𝒢 = (q, G1, G2, GT, e) as mentioned in 
section 2. Select two generators P ∈ G1, Q ∈ G2 and 
a master secret key msk = s ∈ Zq*, and then calculate 
Ppub = Ps. Pick eight hash functions H1: {0, 1}* → G2, 
H2: {0, 1}* → G2, H3: {0, 1}* → G2, H4: {0, 1}* → G2, H5: 
GT ×  → {0, 1}λ+l, H6: {0, 1}λ → G2, H7: {0, 1}λ+l → 
Zq*, H8: GT → G2. Output public parameters PP = 
(𝒢𝒢𝒢𝒢, P, Q, Ppub, H1, H2, H3, H4, H5, H6, H7, H8). 

• ExtractPartialSecretKey(PP, ID, msk). Take public 
parameters PP, an identity ID and the master 
secret key msk as input. Output a partial secret key 
PSK = (PSK1, PSK2) = (H1(ID)msk, H2(ID)msk) = 
(H1(ID)s, H2(ID)s). 

• ExtractTimeUpdateKey(PP, ID, t, msk). Take 
public parameters PP, an identity ID, a time period 
t and the master secret key msk as input. Output a 
time update key TUK = (TUK1, TUK2) = (H3(ID, 
t)msk, H4(ID, t)msk) = (H3(ID, t)s, H4(ID, t)s). 

• SetSecretValue(PP). Take public parameters PP as 
input. Then, select a random value x ∈ Zq* and 
output secret value SV = x. 

• ExtractFullSecretKey(PP, PSK, TUK, SV). Take 
public parameters PP, a partial secret key PSK, a 
time update key TUK and a secret value SV as 
input. Output a full secret key FSK = (FSK1, FSK2) 
= ((PSK1·TUK1)SV, (PSK2·TUK2)SV) = ((PSK1·TUK1)x, 
(PSK2·TUK2)x). 

• ExtractPublicKey(PP, SV). Take public parameters 
PP and a secret value SV as input. Output a public 
key PK = (PK1, PK2) = (PpubSV, QSV) = (Ppub x, Qx). 

• Encryption(PP, ID, t, PK, M). Take public 
parameters PP, an identity ID, a time period t, the 
public key PK and a message M as input, where M 
∈ {0, 1}λ, and PK = (PK1, PK2). 

 Check whether e(PK1, Q) = e(Ppub, PK2) 
holds. If not holds, the algorithm aborts 
with failure. 

 Choose k ∈ {0, 1}l and use the message M 
to calculate R = H7(M, k). 

 Randomly pick α ∈ Zq* and set a 
ciphertext C by computing (C1, C2, C3, C4) 
as follows:  

C1 = PR, C2 = Pα, C3 = H5(e(PK1, 
H1(ID)·H3(ID, t))α, C1, C2)⊕(M || k), C4 = 
H6(M)R·H8(e(PK1, H2(ID)·H4(ID, t))α). 

• Decryption(PP, FSK, C). Take public 
parameters PP, a full secret key FSK, and a 
ciphertext C as input. 

 Obtain M′ || k′ by computing C3⊕H5(e(C2, 
FSK1), C1, C2). 

 Compute R′ = H7(M′, k′). 

 Check if C1 =  and C4 = H6 ·H8(e(C2, 
FSK2)) both hold, return M; otherwise, 
output failed. 

• Authorization(PP, FSK). Take public 
parameters PP and a full secret key FSK as 
input. Output a trapdoor TD = FSK2. 

• Test(PP, Cζ, TDζ, Cη, TDη). Take public 
parameters PP, two ciphertext Cζ, Cη and two 
trapdoor TDζ, TDη as input, where Cζ = (Cζ1, 
Cζ2, Cζ3, Cζ4), Cη = (Cη1, Cη2, Cη3, Cη4). 

 Compute Tζ and Tη as below. 

− Tζ =  Cζ4

H8(e(Cζ2, TDζ))
 

= H6(Mζ)
Rζ·H8(e(PKζ1, H2(IDζ)·H4(IDζ, tζ))

αζ)
H8(e(P

αζ, (PSKζ2·TUKζ2)
xζ))

 

= 
H6(Mζ)

Rζ·H8(e(Ppub
xζ, H2(IDζ)·H4(IDζ, tζ))

αζ)

H8(e(P
αζ, H2(IDζ)

s
·H4(IDζ, tζ)

s
)

xζ))
 

= H6(Mζ)
Rζ·H8(e(P

s·xζ, H2(IDζ)·H4(IDζ, tζ))
αζ)

H8(e(P
s·xζ, H2(IDζ)·H4(IDζ, tζ))

αζ)
 

= H6(Mζ)H7(Mζ, kζ) 

− Tη = Cη4

H8(e(Cη2, TDη))
 

    = H6(Mη)
Rη·H8(e(PKη1, H2(IDη)·H4(IDη, tη))

αη)
H8(e(P

αη, (PSKη2·TUKη2)
xη))

 

    = 
H6(Mη)

Rη·H8(e(Ppub
xη, H2(IDη)·H4(IDη, tη))

αη)

H8(e(P
αη, H2(IDη)

s
·H4(IDη, tη)

s
)

xη))
 

    = H6(Mη)
Rη·H8(e(P

s·xη, H2(IDη)·H4(IDη, tη))
αη)

H8(e(P
s·xη, H2(IDη)·H4(IDη, tη))

αη)
 

    = H6(Mη)H7(Mη, kη) 

 Calculate e(Cζ1, Tη) and e(Cη1, Tζ) as below. 

− e(Cζ1, Tη) = e(PH7(Mζ, kζ), H6(Mη)H7(Mη, kη)) 

                = e(P,  H6(Mη))H7(Mζ, kζ)·H7(Mη, kη) 

 _ Calculate e(Cζ1, Tη) and e(Cη1, Tζ) as below.

         

 
 

 

B picks a random message M*, and then runs the 
Encryption(PP, ID*, t*, PK*, M*) algorithm to 
compute C*as the challenge ciphertext. Then B 
sends C* to A. 

4. Phase 2: A issues queries under the restrictions 
which are given above and B responds as in 
Phase 1. 

5. Guess: A submits a guess M′. A wins this game if 
M* = M′. We define that the advantage of A is 

(λ) = Pr[M* = M′]. 

4. The RCL-PKEET Scheme 
The concrete RCL-PKEET scheme is composed of 
ten algorithms and the details are presented as 
follows. 

• Setup(λ). Take a security parameter λ as input and 
generate 𝒢𝒢𝒢𝒢 = (q, G1, G2, GT, e) as mentioned in 
section 2. Select two generators P ∈ G1, Q ∈ G2 and 
a master secret key msk = s ∈ Zq*, and then calculate 
Ppub = Ps. Pick eight hash functions H1: {0, 1}* → G2, 
H2: {0, 1}* → G2, H3: {0, 1}* → G2, H4: {0, 1}* → G2, H5: 
GT ×  → {0, 1}λ+l, H6: {0, 1}λ → G2, H7: {0, 1}λ+l → 
Zq*, H8: GT → G2. Output public parameters PP = 
(𝒢𝒢𝒢𝒢, P, Q, Ppub, H1, H2, H3, H4, H5, H6, H7, H8). 

• ExtractPartialSecretKey(PP, ID, msk). Take public 
parameters PP, an identity ID and the master 
secret key msk as input. Output a partial secret key 
PSK = (PSK1, PSK2) = (H1(ID)msk, H2(ID)msk) = 
(H1(ID)s, H2(ID)s). 

• ExtractTimeUpdateKey(PP, ID, t, msk). Take 
public parameters PP, an identity ID, a time period 
t and the master secret key msk as input. Output a 
time update key TUK = (TUK1, TUK2) = (H3(ID, 
t)msk, H4(ID, t)msk) = (H3(ID, t)s, H4(ID, t)s). 

• SetSecretValue(PP). Take public parameters PP as 
input. Then, select a random value x ∈ Zq* and 
output secret value SV = x. 

• ExtractFullSecretKey(PP, PSK, TUK, SV). Take 
public parameters PP, a partial secret key PSK, a 
time update key TUK and a secret value SV as 
input. Output a full secret key FSK = (FSK1, FSK2) 
= ((PSK1·TUK1)SV, (PSK2·TUK2)SV) = ((PSK1·TUK1)x, 
(PSK2·TUK2)x). 

• ExtractPublicKey(PP, SV). Take public parameters 
PP and a secret value SV as input. Output a public 
key PK = (PK1, PK2) = (PpubSV, QSV) = (Ppub x, Qx). 

• Encryption(PP, ID, t, PK, M). Take public 
parameters PP, an identity ID, a time period t, the 
public key PK and a message M as input, where M 
∈ {0, 1}λ, and PK = (PK1, PK2). 

 Check whether e(PK1, Q) = e(Ppub, PK2) 
holds. If not holds, the algorithm aborts 
with failure. 

 Choose k ∈ {0, 1}l and use the message M 
to calculate R = H7(M, k). 

 Randomly pick α ∈ Zq* and set a 
ciphertext C by computing (C1, C2, C3, C4) 
as follows:  

C1 = PR, C2 = Pα, C3 = H5(e(PK1, 
H1(ID)·H3(ID, t))α, C1, C2)⊕(M || k), C4 = 
H6(M)R·H8(e(PK1, H2(ID)·H4(ID, t))α). 

• Decryption(PP, FSK, C). Take public 
parameters PP, a full secret key FSK, and a 
ciphertext C as input. 

 Obtain M′ || k′ by computing C3⊕H5(e(C2, 
FSK1), C1, C2). 

 Compute R′ = H7(M′, k′). 

 Check if C1 =  and C4 = H6 ·H8(e(C2, 
FSK2)) both hold, return M; otherwise, 
output failed. 

• Authorization(PP, FSK). Take public 
parameters PP and a full secret key FSK as 
input. Output a trapdoor TD = FSK2. 

• Test(PP, Cζ, TDζ, Cη, TDη). Take public 
parameters PP, two ciphertext Cζ, Cη and two 
trapdoor TDζ, TDη as input, where Cζ = (Cζ1, 
Cζ2, Cζ3, Cζ4), Cη = (Cη1, Cη2, Cη3, Cη4). 

 Compute Tζ and Tη as below. 

− Tζ =  Cζ4

H8(e(Cζ2, TDζ))
 

= H6(Mζ)
Rζ·H8(e(PKζ1, H2(IDζ)·H4(IDζ, tζ))

αζ)
H8(e(P

αζ, (PSKζ2·TUKζ2)
xζ))

 

= 
H6(Mζ)

Rζ·H8(e(Ppub
xζ, H2(IDζ)·H4(IDζ, tζ))
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H8(e(P
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s
)
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Rζ·H8(e(P

s·xζ, H2(IDζ)·H4(IDζ, tζ))
αζ)

H8(e(P
s·xζ, H2(IDζ)·H4(IDζ, tζ))

αζ)
 

= H6(Mζ)H7(Mζ, kζ) 

− Tη = Cη4

H8(e(Cη2, TDη))
 

    = H6(Mη)
Rη·H8(e(PKη1, H2(IDη)·H4(IDη, tη))

αη)
H8(e(P

αη, (PSKη2·TUKη2)
xη))

 

    = 
H6(Mη)

Rη·H8(e(Ppub
xη, H2(IDη)·H4(IDη, tη))

αη)

H8(e(P
αη, H2(IDη)

s
·H4(IDη, tη)

s
)

xη))
 

    = H6(Mη)
Rη·H8(e(P

s·xη, H2(IDη)·H4(IDη, tη))
αη)

H8(e(P
s·xη, H2(IDη)·H4(IDη, tη))

αη)
 

    = H6(Mη)H7(Mη, kη) 

 Calculate e(Cζ1, Tη) and e(Cη1, Tζ) as below. 

− e(Cζ1, Tη) = e(PH7(Mζ, kζ), H6(Mη)H7(Mη, kη)) 

                = e(P,  H6(Mη))H7(Mζ, kζ)·H7(Mη, kη) 

         

  

− e(Cη1, Tζ) = e(PH7(Mη, kη), H6(Mζ)H7(Mζ, kζ)) 

                = e(P,  H6(Mζ))H7(Mζ, kζ)·H7(Mη, kη) 

− Check e(Cζ1, Tη) = e(Cη1, Tζ). If it holds, 
output 1; otherwise 0.  

In the following, we state the rationality of the 
proposed RCL-PKEET. We first discuss the user 
revocation processes, and then prove that the 
revoked user cannot decrypt the associated 
ciphertext. The full secret key FSK of each user 
contains PSK = (PSK1, PSK2), TUK = (TUK1, TUK2) 
and SV, since FSK = (FSK1, FSK2) = ((PSK1·TUK1)SV, 
(PSK2·TUK2)SV). Among these keys, only TUK 
includes the current time period t due to TUK = 
(TUK1, TUK2) = (H3(ID, t)msk, H4(ID, t)msk) = (H3(ID, t)s, 
H4(ID, t)s). As a result, TUK is used to revoke a user 
when stopping sending it to the user. Next, we 
prove that only non-revoked user with the current 
FSK can decrypt the associated ciphertext. 

− According to the above Encryption algorithm, 
the ciphertext C = (C1, C2, C3, C4), where 

C1 = PR, C2 = Pα, C3 = H5(e(PK1, H1(ID)·H3(ID, t))α, 
C1, C2)⊕ (M || k) and C4 = H6(M)R·H8(e(PK1, 
H2(ID)·H4(ID, t))α). 

− Non-revoked user with FSK = (FSK1, FSK2) can 
obatin M by computing  

C3⊕H5(e(C2, FSK1), C1, C2) 

   = H5(e(PK1, H1(ID)·H3(ID, t))α, C1, C2)⊕(M||k) 

             ⊕H5(e(C2, FSK1), C1, C2) 

   = H5(e(PpubSV, H1(ID)·H3(ID, t))α, C1, C2)⊕(M||k) 

             ⊕H5(e(Pα, (PSK1·TUK1)SV), C1, C2) 

   = H5(e(PpubSV, H1(ID)·H3(ID, t))α, C1, C2)⊕(M||k) 

             ⊕H5(e(Pα, (H1(ID)s·H3(ID, t)s)SV), C1, C2) 

   = H5(e(PpubSV, H1(ID)·H3(ID, t))α, C1, C2)⊕(M||k) 

             ⊕H5(e(Ps·SV, (H1(ID)·H3(ID, t))α), C1, C2) 

= H5(e(PpubSV, H1(ID)·H3(ID, t))α, C1, C2)⊕(M||k) 

       ⊕H5(e(PpubSV, H1(ID)·H3(ID, t))α, C1, C2) 

= M||k 

 

5. Security Proof 

In this section, we propose a formal security proof 
for RCL-PKEET by using the technique [33]. Based 
on the assumed hard BDH problem, we give seven 

theorems to prove the security of the proposed 
RCL-PKEET scheme. 

Theorem 1. Assume that there exists PPT Type-1 
adversary A1 against IND-CCA security for the 
proposed scheme in the random oracle model. Then, 
A1 has the advantage ϵ to break the scheme. By the 
ϵ from A1, we construct that a challenger B solves 
the BDH assumption with the advantage ϵ′ and ϵ′ 
≥ (1/qH5

) [ϵ /(e(qPSK + qFSK + qAuth + 1)) – qD/q – 
qH8

/q]. Suppose that the eight hash functions Hi (1 
≤ i ≤ 8) are random oracles and then A1 can issue 
random oracle queries qHi

 (1 ≤ i ≤ 8). Moreover, A1 

also can issue Partial secret key queries qPSK, Time 
update key queries qTUK, Full secret key queries qFSK, 
Public key queries qPK, Replace public key queries 
qRPK, Decryption queries qD and Authorization 
queries qAuth to the challenger B. 

Proof. Assume that (𝒢𝒢𝒢𝒢, P, Pa, Pc, Q, Qa, Qb) is an 
instance of the BDH problem where 𝒢𝒢𝒢𝒢 = (q, G1, 
G2, GT, e), and B would like to calculate the 
BDH solution e(P, Q)abc. B acts as a challenger 
and interacts with the Type-1 adversary A1 to 
calculate e(P, Q)abc in the following GIND-CCA 
game: 

1. Setup: B sets Ppub = Pa and selects eight 
collision-resistant hash functions Hi (1 ≤ i ≤ 
8) as random oracles. Then B outputs the 
public parameters PP to A1, where PP = (𝒢𝒢𝒢𝒢, 
P, Q, Ppub, H1, H2, H3, H4, H5, H6, H7, H8). To 
keep the consistency between the random 
oracle queries and the corresponding 
responses, B needs to maintain the lists LH1, 
LH2, …, LH8, LKey as below, which are empty 
initially and the details of elements in the 
lists will be introduced later: 

− LH1 with items of the forms [IDi, μi, cn], 

− LH2 with items of the forms [IDi, νi, cn], 

− LH3 with items of the forms [IDi, ti, ηi, cn], 

− LH4 with items of the forms [IDi, ti, ζi, cn], 

− LH5 with items of the forms [W, C1, C2, ω], 

− LH6 with items of the forms [M, R], 

− LH7 with items of the forms [M, k, γ], 

− LH8 with items of the forms [N, S], 

− LKey with items of the forms [IDi, ti, xi, 
PSKi, TUKi, FSKi, PKi, cn]. 

Note that B maintains the list LKey by the 
answer to the Public key query. 

2. Phase 1: A1 launches a series of queries to B, 
and then B returns the corresponding 
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–  Check e(Cζ1, Tη) = e(Cη1, Tζ). If it holds, output 
     1; otherwise 0. 

In the following, we state the rationality of the pro-
posed RCL-PKEET. We first discuss the user revo-
cation processes, and then prove that the revoked 
user cannot decrypt the associated ciphertext. The 
full secret key FSK of each user contains PSK =  
(PSK1, PSK2), TUK = (TUK1, TUK2) and SV, since FSK = 
(FSK1, FSK2) = ((PSK1∙TUK1)SV, (PSK2∙TUK2)SV). Among 
these keys, only TUK includes the current time period t 
due to TUK = (TUK1, TUK2) = (H3(ID, t)msk, H4(ID, t)msk) 
= (H3(ID, t)s, H4(ID, t)s). As a result, TUK is used to re-
voke a user when stopping sending it to the user. Next, 
we prove that only non-revoked user with the current 
FSK can decrypt the associated ciphertext.
 _ According to the above Encryption algorithm, the 

ciphertext C = (C1, C2, C3, C4), where
 _ C1 = PR, C2 = Pα, C3 = H5(e(PK1, H1(ID) ∙ H3(ID, t)) α, 

C1, C2)⊕(M || k) and C4 = H6(M)R∙H8(e(PK1, 
H2(ID)∙H4(ID, t))α).

 _ Non-revoked user with FSK = (FSK1, FSK2) can 
obatin M by computing 
C3⊕H5(e(C2, FSK1), C1, C2)
   = H5(e(PK1, H1(ID)∙H3(ID, t))α, C1, C2)⊕(M||k)
             ⊕H5(e(C2, FSK1), C1, C2)
   = H5(e(Ppub

SV, H1(ID)∙H3(ID, t))α, C1, C2)⊕(M||k)
             ⊕H5(e(Pα, (PSK1∙TUK1)SV), C1, C2)
   = H5(e(Ppub

SV, H1(ID)∙H3(ID, t))α, C1, C2)⊕(M||k)
             ⊕H5(e(Pα, (H1(ID)s∙H3(ID, t)s)SV), C1, C2)
   = H5(e(Ppub

SV, H1(ID)∙H3(ID, t))α, C1, C2)⊕(M||k)
             ⊕H5(e(Ps∙SV, (H1(ID)∙H3(ID, t))α), C1, C2)
= H5(e(Ppub

SV, H1(ID)∙H3(ID, t))α, C1, C2)⊕(M||k)
       ⊕H5(e(Ppub

SV, H1(ID)∙H3(ID, t))α, C1, C2)
= M||k

5. Security Proof
In this section, we propose a formal security proof 
for RCL-PKEET by using the technique [33]. Based 
on the assumed hard BDH problem, we give seven 
theorems to prove the security of the proposed RCL-
PKEET scheme.
Theorem 1. Assume that there exists PPT Type-1 ad-
versary A1 against IND-CCA security for the proposed 

scheme in the random oracle model. Then, A1 has the 
advantage ϵ to break the scheme. By the ϵ from A1, we 
construct that a challenger B solves the BDH assump-
tion with the advantage ϵ′ and ϵ′ ≥ (1/qH5) [Î/(e(qPSK + 
qFSK + qAuth + 1)) – qD/q – qH8/q]. Suppose that the eight 
hash functions Hi (1 ≤ i ≤ 8) are random oracles and 
then A1 can issue random oracle queries qHi

(1 ≤ i ≤ 8). 
Moreover, A1 also can issue Partial secret key queries 
qPSK, Time update key queries qTUK, Full secret key que-
ries qFSK, Public key queries qPK, Replace public key 
queries qRPK, Decryption queries qD and Authorization 
queries qAuth to the challenger B.
Proof. Assume that (𝒢, P, Pa, Pc, Q, Qa, Qb) is an in-
stance of the BDH problem where 𝒢 = (q, G1, G2, GT, e), 
and B would like to calculate the BDH solution e(P, Q)
abc. B acts as a challenger and interacts with the Type-
1 adversary A1 to calculate e(P, Q)abc in the following 
GIND-CCA game:
1 Setup: B sets Ppub = Pa and selects eight collision-re-

sistant hash functions Hi (1 ≤ i ≤ 8) as random or-
acles. Then B outputs the public parameters PP to 
A1, where PP = (𝒢, P, Q, Ppub, H1, H2, H3, H4, H5, H6, H7, 
H8). To keep the consistency between the random 
oracle queries and the corresponding responses, 
B needs to maintain the lists LH1, LH2, …, LH8, LKey as 
below, which are empty initially and the details of 
elements in the lists will be introduced later:

 _ LH1 with items of the forms [IDi, μi, cn],
 _ LH2 with items of the forms [IDi, νi, cn],
 _ LH3 with items of the forms [IDi, ti, ηi, cn],
 _ LH4 with items of the forms [IDi, ti, ζi, cn],
 _ LH5 with items of the forms [W, C1, C2, ω],
 _ LH6 with items of the forms [M, R],
 _ LH7 with items of the forms [M, k, γ],
 _ LH8 with items of the forms [N, S],
 _ LKey with items of the forms [IDi, ti, xi, PSKi, 

TUKi, FSKi, PKi, cn].

Note that B maintains the list LKey by the answer to the 
Public key query.
2 Phase 1: A1 launches a series of queries to B, and 

then B returns the corresponding answers as fol-
lows.

 _ H1 query(IDi): by completing the following steps, B 
can answer this query.
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 ▪ If IDi exists in LH1, B searches the tuple [IDi, μi, 
cn] by IDi. Upon obtaining μi and cn from LH1, 
compute:

 _ If cn = 0, B returns Qμi) to A1.
 _ If cn = 1, B returns Qbμi to A1.

 ▪ Otherwise B picks a time period ti at random and 
makes Public key query on (IDi, ti) to generate μi, 
cn and store them in LH1. Then repeat the above 
step to return Qμi or Qbμi.

 _ H2 query(IDi): by completing the following steps, B 
can answer this query.
 ▪ If IDi exists in LH2, B searches the tuple [IDi, νi, 

cn] by IDi. Upon obtaining νi and cn from LH2, 
compute:

 _ If cn = 0, B returns Qvi to A1.
 _ If cn = 1, B returns Qbvi to A1.

 ▪ Otherwise B picks a time period ti at random and 
makes Public key query on (IDi, ti) to generate νi, 
cn and store them in LH2. Then repeat the above 
step to return Qvi or Qbvi.

 _ H3 query(IDi, ti): by completing the following steps, 
B can answer this query.
 ▪ If (IDi, ti) exists in LH3, B searches the tuple [IDi, 

ti, ηi, cn] by (IDi, ti). Upon obtaining ηi and cn 
from LH3, compute Qηi as the answer to A1.

 ▪ Otherwise, B sends a Public key query to (IDi, 
ti). to generate ηi, cn and store them in LH3. Then 
repeat the above step to return Qηi.

 _ H4 query(IDi, ti): by completing the following steps, 
B can answer this query.
 ▪ If (IDi, ti) exists in LH4, B searches the tuple [IDi, 

ti, ζi, cn] by (IDi, ti). Upon obtaining ζi and cn from 
LH4, compute Qζi as the answer to A1.

 ▪ Otherwise, B sends a Public key query to (IDi, 
ti) to generate ζi, cn and store them in LH4. Then 
repeat the above step to return Qζi.

 _ H5 query(W, C1, C2): by completing the following 
steps, B can answer this query.
 ▪ If (W, C1, C2) exists in LH5, B searches the tuple 

[W, C1, C2, ω] by (W, C1, C2), and returns ω to A1.
 ▪ Otherwise B randomly selects ω ∈ {0, 1}λ+l as the 

answer to A1 and stores [W, C1, C2, ω] into LH5.
 _ H6 query(M): by completing the following steps, B 

can answer this query.

 ▪ If M exists in LH6, B searches the tuple [M, R] by 
M, and returns R to A1.

 ▪ Otherwise B randomly selects R ∈ G2 as the 
answer to A1 and stores [M, R] into LH6.

 _ H7 query(M, k): by completing the following steps, 
B can answer this query.
 ▪ If (M, k) exists in LH7, B searches the tuple  

[M, k, γ] by (M, k), and returns γ to A1.
 ▪ Otherwise B randomly selects γ ∈ Zq

* as the 
answer to A1 and stores [M, k, γ] into LH7.

 _ H8 query(N): by completing the following steps, B 
can answer this query.
 ▪ If N exists in LH8, B searches the tuple [N, S] by N, 

and returns S to A1.
 ▪ Otherwise B randomly selects S ∈ G2 as the 

answer to A1 and stores [N, S] into LH8.
 _ Public key query(IDi, ti): after receiving this query 

on (IDi, ti), B randomly selects μi, νi, ηi, ζi ∈ Zq
*, cn ∈ 

{0, 1} with Pr[cn = 0] = τ, and then adds four tuples 
[IDi, μi, cn], [IDi, νi, cn], [IDi, ti, ηi, cn], [IDi, ti, ζi, cn] 
into LH1, LH2, LH3, LH4 respectively.
 ▪ If cn = 0, B executes the SetSecretValue(PP) 

algorithm to get the secret value xi, then  
computes PSKi = (PSKi,1, PSK i,2) = (Qaμi, Qaνi), 
TUKi = (TUKi,1, TUKi,2) = (Qaηi, Qaζi), FSKi = 
(FSKi,1, FSKi,2) = ((PSKi,1 ∙ TUKi,1)Xi, (PSKi,2 ∙ 
TUKi,2)Xi ) and PKi = (PKi,1, PKi,2) = (Ppub

Xi, QXi), adds 
an tuple [IDi, ti, xi, PSKi, TUKi, FSKi, PKi, 0] into 
LKey, and returns PKi to A1.

 ▪ Otherwise, B executes the SetSecretValue(PP) 
algorithm to get the secret value xi, then 
computes PK = (PK1, PK2) = (Ppub

Xi, QXi), TUKi = 
(TUKi,1, TUKi,2) = (Qaηi, Qaζi) adds an tuple [IDi, ti, 
xi, −, TUKi, −, PKi, 1] into LKey, and returns PKi to 
A1.

 _ Partial secret key query(IDi): by completing the 
following steps, B can answer this query.
 ▪ If IDi exists in LKey, B searches the tuple [IDi, ti, xi, 

PSKi, TUKi, FSKi, PKi, cn] by IDi, and execute the 
task as the following:

 _ If cn = 0, B returns PSKi to A1.
 _ If cn = 1, B aborts the game.

 ▪ Otherwise B picks a time period ti at random and 
makes Public key query on (IDi, ti) to generate 
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PSKi, cn. Then repeat the above step to return 
PSKi or abort the game.

 _ Time update key query(IDi, ti): by completing the 
following steps, B can answer this query.
 ▪ If (IDi, ti) exists in LKey, B searches the tuple [IDi, 

ti, xi, PSKi, TUKi, FSKi, PKi, cn] by (IDi, ti), and 
returns TUKi to A1.

 ▪ Otherwise, B sends a Public key query to (IDi, ti) 
to generate TUKi and returns TUKi to A1.

 _ Full secret key query(IDi, ti): by completing the 
following steps, B can answer this query.
 ▪ If (IDi, ti) exists in LKey, B searches the tuple [IDi, 

ti, xi, PSKi, TUKi, FSKi, PKi, cn] by (IDi, ti), and 
execute the task as the following:

 _ If cn = 0, B returns FSKi to A1.
 _ If cn = 1, B aborts the game.

 ▪ Otherwise B picks a time period ti at random and 
makes Public key query on (IDi, ti) to generate 
FSKi, cn. Then repeat the above step to return 
FSKi or abort the game.

 _ Replace public key query(IDi, PKi′): after receiving 
this query on (IDi, PKi′), B replaces the existing PKi 
of the corresponding IDi with PKi′.
 ▪ If it satisfies e(PKi,1′, Q) = e(Ppub, PKi,2′), B keeps 

the change.
 ▪ Otherwise B returns ⊥ to A1.

 _ Decryption query(IDi, ti, C): after receiving this 
query on (IDi, ti, C) where C = (C1, C2, C3, C4), B 
performs the following tasks.
 ▪ If (IDi, ti) exists in LKey, B searches the tuple [IDi, 

ti, xi, PSKi, TUKi, FSKi, PKi, cn] by (IDi, ti), and 
execute the task as the following:

 _ If cn = 0, and the public key has not been 
replaced by A1, B uses FSKi from the tuple 
[IDi, ti, xi, PSKi, TUKi, FSKi, PKi, 0] in LKey 
to execute the Decryption(PP, FSKi, C) 
algorithm and returns the output to A1.

 _ If cn = 1, B searches the tuple [W, C1, C2, ω] in 
LH5 by C1, C2, and calculates M′ || k′ = C3⊕ω. 
Next, (M′, k′) is used to search the tuple [M, 
k, γ] in LH7. After obtaining γ, compute the Pγ. 
Then retrieve the tuple [M, R] in LH6 by M′ 
to get R. If find the S in the tuple [N, S] in LH8 
such that C4 = R∙S holds, B will check whether 
C1 = Pγ holds. When both C1 = Pγ and C4 = R∙S 

holds, return M′ to A1. B returns ⊥ to A1 if B 
cannot search the tuple in LH5.

 ▪ Otherwise, B sends a Public key query to (IDi, ti) 
to generate FSKi, cn. Then repeat the above step 
to return M.

 _ Authorization query(IDi, ti): by completing the 
following steps, B can answer this query.

 _ If (IDi, ti) exists in LKey, B searches the tuple [IDi, ti, 
xi, PSKi, TUKi, FSKi, PKi, cn] by (IDi, ti), and:

 _ If cn = 0, B returns FSKi,2 to A1, where FSKi = 
(FSKi,1, FSKi,2).

 _ If cn = 1, B aborts the game.
 ▪ Otherwise, B sends a Public key query to (IDi, ti) 

to generate FSKi, cn. Then repeat the above step 
to return FSKi,2 or abort the game.

3 Challenge: A1 sends an identity ID∗, a time period 
t* and two different messages M0

*, M1
* ∈ {0, 1}λ to B 

for challenge. B uses (ID∗, t*) as an input to produce 
Public key query and get the tuple [ID*, t*, x*, PSK*, 
TUK*, FSK*, PK*, cn] from LKey.

 _ If cn = 0, B aborts the game.
 _ If cn = 1, B performs the following tasks:

 ▪ Select ḃ ∈ {0, 1}, k ∈ {0, 1}l, C3
* ∈ {0, 1}λ+l and C4

* ∈ 
G2 at random.

 ▪ Set C2
* = Pc.

 ▪ Obtain γ by H7 query(Mḃ
*, k) and set C1

* = Pγ.
 ▪ Return C* = (C1

*, C2
*, C3

*, C4
*) to A1.

Based on the above construction, H5(e(P, Q)abcx*μ*∙e(Pac, 
Q)x*η*, C1

*, C2
*) = (Mḃ

* || k)⊕C3
* and H8(e(P, Q)abcx*ν*∙ 

e(Pa, Q)cx*ζ*) = C4
* / (H6(Mḃ

*)R), where Qbμ* = H1(ID*) and 
Qbν* = H2(ID*).
4 Phase 2: A1 launches a series of queries to B as in 

Phase 1.
5 Guess: eventually, A1 outputs ḃ′ ∈ {0, 1} as the guess 

bit. If ḃ′ = ḃ, A1 wins the game; otherwise loses the 
game. B chooses a random tuple [σ*, C1

*, C2
*, θ] from 

LH5 and outputs (σ*/e(P ac, Q)x*η*)(x*μ*)–1= e(P, Q)abc) as 
the solution to the BDH instance.

Analysis. We need to evaluate the simulation of the 
random oracles first. It is clear that H1, H2, H3, H4, H6, 
and H7 simulations are perfect due to their construction. 
AskH5

* is defined as the event that H5(e(P, Q)abcx*μ*∙e(Pac, 
Q)x*η*, C1

*, C2
*) has been issued by A1, AskH8

* is defined as 
the event that H8(e(P, Q)abcx*ν*∙e(Pa, Q)cx*ζ*) has been issued 
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by A1. We say that the simulation of H5 is perfect if AskH5
* 

does not happen and the simulation of H8 is perfect if 
AskH8

* does not happen too. Now we assess the simula-
tion of the decryption oracle. DecErr indicates an event 
in the valid ciphertext, and B cannot decrypt it exactly 
during the emulation and we get Pr[DecErr] ≤ qD/q.
Next, define Abort as the event that the emulation is 
aborted by B, and define Evt = (AskH5

* ∨ AskH8
* ∨ De-

cErr)|¬Abort. B guess ḃ with the advantage ≤ 1/2 if Evt 
does not occur due to the randomness of the outputs 
of H5 and H8. So Pr[ḃ = ḃ′ |¬ Evt] ≤ 1/2, we obtain

Pr[ḃ = ḃ′] = Pr[ḃ = ḃ′| Evt]Pr[Evt] + Pr[ḃ = ḃ′|¬ 
Evt]Pr[¬Evt]
                 ≤ Pr[Evt] + (1/2) Pr[¬Evt]
                 = Pr[Evt] + (1/2) (1–Pr[Evt])
                 = (1/2)Pr[Evt] + 1/2. 

(1)

According to (1) and the sense of ϵ, the following equa-
tion can be obtained.

ϵ = Pr[ḃ = ḃ′] – 1/2
≤ Pr[Evt]
≤ (Pr[AskH5

*] + Pr[AskH8
*] + Pr[DecErr])  

/ Pr[¬Abort]. 

(2)

According to (2), we have:
Pr[AskH5

*] ≥ ϵ Pr[¬Abort]–Pr[DecErr]–Pr[AskH8
*].

Since Pr[¬Abort] = τqPSK + qFSK+qAuth) (1 − τ), we can obtain 
Pr[¬Abort] ≥ 1/ e(qPSK + qFSK + qAuth + 1) when τ = 1 – 1/( qPSK 

+ qFSK + qAuth + 1). We then have:

Pr[AskH5
*] ≥ ϵ/e(qPSK+qFSK+qAuth+1)–qD/q–qh8

/q. (3)

If AskH5
* occurs, A1 will distinguish the real one 

during the simulation and the challenge ciphertext 
C* is invalid. Then H5(e(P, Q)abcx*μ*∙e(Pac, Q)x*η*, C1

*, C2
*) 

has been added in the LH5. B can pick the right bit from 
the LH5 and wins the game. According to (3), the BDH 
problem can be solved by B with the following advan-
tage
ϵ′ ≥ (1/ qh5

)Pr[AskH5
*]

    ≥ (1/qh5
)[ϵ/e(qPSK+qFSK+qAuth+1)–qD/q– qh8

/q].  
Theorem 2. Assume that there exists PPT Type-2 ad-
versary A2 against IND-CCA security for the proposed 
scheme in the random oracle model. Then, A2 has the 
advantage ϵ to break the scheme. By the ϵ from A2, we 

construct that a challenger B solves the BDH assump-
tion with the advantage ϵ′ and ϵ′ ≥ (1/qh5

) [ϵ/(e(qFSK + 
qAuth + 1)) – qD/q – qh8

/q]. Suppose that the eight hash 
functions Hi (1 ≤ i ≤ 8) are random oracles and then A2 

can issue random oracle queries qhi
(1 ≤ i ≤ 8). Moreover, 

A2 also can issue Full secret key queries qFSK, Public key 
queries qPK, Decryption queries qD and Authorization 
queries qAuth to challenger B. Note that A2 is a malicious 
KGC so A2 cannot issue Partial secret key queries qPSK, 
Time update key queries qTUK, Replace public key que-
ries qRPK.
Proof. Assume that (𝒢, P, Pa, Pc, Q, Qa, Qb) is an in-
stance of the BDH problem where 𝒢 = (q, G1, G2, GT, e), 
and B would like to calculate the BDH solution e(P, Q)
abc. B acts as a challenger and interacts with the Type-
2 adversary A2 to calculate e(P, Q)abc in the following 
GIND-CCA game:
1 Setup: B picks the master secret key s ∈ Zq

* at 
random and sets Ppub = Ps. Then select eight colli-
sion-resistant hash functions Hi (1 ≤ i ≤ 8) as ran-
dom oracles. Then B outputs the master secret key 
s and the public parameters PP to A2, where PP = (𝒢, 
P, Q, Ppub, H1, H2, H3, H4, H5, H6, H7, H8). To keep the 
consistency between the random oracle queries 
and the corresponding responses, B needs to main-
tain the lists LH1, LH2, …, LH8, LKey, which are similar 
to the proof of Theorem 1.

 _ H1-H8 queries: the queries are identical to the proof 
of Theorem 1.

 _ Public key query(IDi, ti): after receiving this query 
on (IDi, ti), B randomly selects μi, νi, ηi, ζi ∈ Zq

*, cn ∈ 
{0, 1} with Pr[cn = 0] = τ, and then adds four tuples 
[IDi, μi, cn], [IDi, νi, cn], [IDi, ti, ηi, cn], [IDi, ti, ζi, cn] 
into LH1, LH2, LH3, LH4 respectively.
 ▪ If cn = 0, B executes the SetSecretValue(PP) 

algorithm to get the secret value xi, then  
computes PSKi = (PSKi,1, PSK i,2) = (Qsμi, Qsνi), 
TUKi = (TUKi,1, TUKi,2) = (Qsηi, Qsζi), FSKi = 
(FSKi,1, FSKi,2) = ((PSKi,1∙ TUKi,1)Xi, (PSKi,2 ∙ 
TUKi,2)Xi) and PKi = (PKi,1, PKi,2) = (Ppub

Xi, QXi), adds 
an tuple [IDi, ti, xi, PSKi, TUKi, FSKi, PKi, 0] into 
LKey, and returns PKi to A2.

 ▪ Otherwise, B selects xi′∈ Zq
* at random, then 

computes PSKi = (PSKi,1, PSK i,2) = (Qbsμi, Qbsνi), 
TUKi = (TUKi,1, TUKi,2) = (Qsηi, Qsζi) and PKi = 
(PKi,1, PKi,2) = (Ppab

axi′, Qaxi′) adds an tuple [IDi, ti, 
xi′, PSKi, TUKi, −, PKi, 1] into LKey, and returns 
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PKi to A2. Here, the secret value xi is seen as axi′ 
implicitly.

 _ Full secret key query(IDi, ti): the query is identical 
to the proof of Theorem 1.

 _ Decryption query(IDi, ti, C): the query is identical to 
the proof of Theorem 1.

 _ Authorization query(IDi, ti): the query is identical 
to the proof of Theorem 1.

2 Phase 1: A2 launches a series of queries to B, and 
then B returns the corresponding answers as fol-
lows.

3 Challenge: A2 sends an identity ID∗, a time period 
t* and two different messages M0

*, M1
* ∈ {0, 1}λ to B 

for challenge. B uses (ID∗, t*) as an input to produce 
Public key query and get the tuple [ID*, t*, x*, PSK*, 
TUK*, FSK*, PK*, cn] from LKey.

 _ If cn = 0, B aborts the game.
 _ If cn = 1, B performs the following tasks:

 ▪ Select ḃ ∈ {0, 1}, k ∈ {0, 1}l, C3
* ∈ {0, 1}λ+l and C4

* ∈ 
G2 at random.

 ▪ Set C2
* = Pc.

 ▪ Obtain γ by H7 query(Mḃ
*, k) and set C1

* = Pγ.
 ▪ Return C* = (C1

*, C2
*, C3

*, C4
*) to A2.

Based on the above construction, H5(e(P, Q)abcx*μ*s∙e(Pac, 
Q)x*η*s, C1

*, C2
*) = (Mḃ

* || k)⊕C3
* and H8(e(P, Q)abcx*ν*s∙e(Pa, 

Q)cx*ζ*s) = C4
* / (H6(Mḃ

*)R), where Qbμ* = H1(ID*) and Qbν* 
= H2(ID*).
4 Phase 2: A2 launches a series of queries to B as in 

Phase 1.
5 Guess: eventually, A2 outputs ḃ′ ∈ {0, 1} as the guess 

bit. If ḃ′ = ḃ, A2 wins the game; otherwise loses the 
game. B chooses a random tuple [σ*, C1

*, C2
*, θ] from 

LH5 and outputs (σ*/e(P ac, Q)x*η*s)(x*μ*s)–1= e(P, Q)abc) as 
the solution to the BDH instance.

Analysis. We need to evaluate the simulation of the 
random oracles first. It is clear that H1, H2, H3, H4, 
H6, and H7 simulations are perfect due to their con-
struction. AskH5

* is defined as the event that H5(e(P, 
Q)abcx*μ*s∙e(Pac, Q)x*η*s, C1

*, C2
*) has been issued by A1, 

AskH8
* is defined as the event that H8(e(P, Q)abcx*ν*s∙ 

e(Pa, Q)cx*ζ*s) has been issued by A1. We say that the 
simulation of H5 is perfect if AskH5

* does not happen 
and the simulation of H8 is perfect if AskH8

* does not 
happen too. Now we assess the simulation of the de-
cryption oracle. DecErr indicates an event in the valid 

ciphertext, and B cannot decrypt it exactly during the 
emulation and we get Pr[DecErr] ≤ qD/q.
Next, define Abort as the event that the emulation is 
aborted by B, and define Evt = (AskH5

* ∨ AskH8
* ∨ De-

cErr)|¬Abort. B guess ḃ with the advantage ≤ 1/2 if 
Evt does not occur due to the randomness of the out-
puts of H5 and H8. So Pr[ḃ = ḃ′ |¬ Evt] ≤ 1/2, we obtain
Pr[ḃ = ḃ′] = Pr[ḃ = ḃ′| Evt]Pr[Evt] + Pr[ḃ = ḃ′|¬ 

Evt]Pr[¬Evt]
                 ≤ Pr[Evt] + (1/2) Pr[¬Evt]
                 = Pr[Evt] + (1/2) (1–Pr[Evt])
                 = (1/2)Pr[Evt] + 1/2.

(4)

According to (4) and the sense of ϵ, the following 
equation can be obtained.

ϵ = Pr[ḃ = ḃ′] – 1/2
           ≤ Pr[Evt]
           ≤ (Pr[AskH5

*] + Pr[AskH8
*] + Pr[DecErr])

 / Pr[¬Abort].

(5)

According to (5), we have:
Pr[AskH5

*] ≥ ϵ Pr[¬Abort] – Pr[DecErr] 
– Pr[AskH8

*].
Since Pr[¬Abort] = τqFSK + qAuth(1 − τ), we can obtain 
Pr[¬Abort] ≥ 1/e(qFSK + qAuth + 1) when τ = 1 – 1/(qFSK + 
qAuth + 1). We then have:

Pr[AskH5
*] ≥ ϵ/e(qFSK+qAuth+1)–qD/q– qh8

/q. (6)

If AskH5
* occurs, A2 will distinguish the real one during 

the simulation and the challenge ciphertext C* is inval-
id. Then H5(e(P, Q)abcx*μ*s∙e(Pac, Q)x*η*s, C1

*, C2
*) has been 

added in the LH5. B can pick the right bit from the LH5 
and wins the game. According to (6), the BDH problem 
can be solved by B with the following advantage
ϵ′ ≥ (1/qh5

)Pr[AskH5
*]

        ≥ (1/qh5
)[ϵ/e(qFSK+qAuth+1)–qD/q– qh8

/q]. 
Theorem 3. Assume that there exists PPT Type-3 ad-
versary A3 against IND-CCA security for the proposed 
scheme in the random oracle model. Then, A3 has the 
advantage ϵ to break the scheme. By the ϵ from A3, we 
construct that a challenger B solves the BDH assump-
tion with the advantage ϵ′ and ϵ′ ≥ (1/qh5

) [ϵ/(e(qTUK + 
qFSK + qAuth + 1)) – qD/q – qh8

/q]. Suppose that the eight 
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hash functions Hi (1 ≤ i ≤ 8) are random oracles and 
then A3 can issue random oracle queries  (1 ≤ i ≤ 
8). Moreover, A3 also can issue Partial secret key que-
ries qPSK, Time update key queries qTUK, Full secret key 
queries qFSK, Public key queries qPK, Replace public key 
queries qRPK, Decryption queries qD and Authorization 
queries qAuth to challenger B.
Proof. Assume that (𝒢, P, Pa, Pc, Q, Qa, Qb) is an in-
stance of the BDH problem where 𝒢 = (q, G1, G2, GT, e), 
and B would like to calculate the BDH solution e(P, Q)
abc. B acts as a challenger and interacts with the Type-
3 adversary A3 to calculate e(P, Q)abc in the following 
GIND-CCA game:
1 Setup: B sets Ppub = Pa and selects eight collision-re-

sistant hash functions Hi (1 ≤ i ≤ 8) as random or-
acles. Then B outputs the public parameters PP to 
A3, where PP = (𝒢, P, Q, Ppub, H1, H2, H3, H4, H5, H6, H7, 
H8). To keep the consistency between the random 
oracle queries and the corresponding responses, 
B needs to maintain the lists LH1, LH2, …, LH8, LKey, 
which are similar to the proof of Theorem 1.

2 Phase 1: A3 launches a series of queries to B, and 
then B returns the corresponding answers as fol-
lows.

 _ H1 query(IDi): by completing the following steps, B 
can answer this query.
 ▪ If IDi exists in LH1, B searches the tuple [IDi, μi, 

cn] by IDi. Upon obtaining μi and cn from LH1, 
compute Qμi as the answer to A3.

 ▪ Otherwise B picks a time period ti at random and 
makes Public key query on (IDi, ti) to generate μi, 
cn and store them in LH1. Then repeat the above 
step to return Qμi.

 _ H2 query(IDi): by completing the following steps, B 
can answer this query.
 ▪ If IDi exists in LH2, B searches the tuple [IDi, νi, 

cn] by IDi. Upon obtaining νi and cn from LH2, 
compute Qνi  as the answer to A3.

 ▪ Otherwise B picks a time period ti at random and 
makes Public key query on (IDi, ti) to generate νi, 
cn and store them in LH2. Then repeat the above 
step to returnQνi.

 _ H3 query(IDi, ti): by completing the following steps, 
B can answer this query.
 ▪ If (IDi, ti) exists in LH3, B searches the tuple [IDi, 

ti, ηi, cn] by (IDi, ti). Upon obtaining ηi and cn 

from LH3, compute:
 _ If cn = 0, B returns Qηi to A3.
 _ If cn = 1, B returns Qbηi to A3.

 ▪ Otherwise, B sends a Public key query to (IDi, 
ti) to generate νi, cn and store them in LH3. Then 
repeat the above step to return Qηi or Qbηi.

 _ H4 query(IDi, ti): by completing the following steps, 
B can answer this query.
 ▪ If (IDi, ti) exists in LH4, B searches the tuple [IDi, 

ti, ζi, cn] by (IDi, ti). Upon obtaining ζi and cn from 
LH4, compute:

 _ If cn = 0, B returns Qζi to A3.
 _ If cn = 1, B returns Qbζi to A3.

 ▪ Otherwise, B sends a Public key query to (IDi, 
ti) to generate ζi, cn and store them in LH4. Then 
repeat the above step to return Qζi or Qbζi.

 _ H5-H8 queries: the query is identical to the proof of 
Theorem 1.

 _ Public key query(IDi, ti): after receiving this query 
on (IDi, ti), B randomly selects μi, νi, ηi, ζi ∈ Zq

*, cn ∈ 
{0, 1} with Pr[cn = 0] = τ, and then adds four tuples 
[IDi, μi, cn], [IDi, νi, cn], [IDi, ti, ηi, cn], [IDi, ti, ζi, cn] 
into LH1, LH2, LH3, LH4 respectively.
 ▪ If cn = 0, B executes the SetSecretValue(PP) 

algorithm to get the secret value xi, then  
computes PSKi = (PSKi,1, PSK i,2) = (Qaμi, Qaνi), 
TUKi = (TUKi,1, TUKi,2) = (Qaηi, Qaζi) , FSKi = 
(FSKi,1, FSKi,2) = ((PSKi,1 ∙ TUKi,1)Xi, (PSKi,2 ∙ 
TUKi,2)Xi ) and PKi = (PKi,1, PKi,2) = (Ppub

Xi, QXi) adds 
an tuple [IDi, ti, xi, PSKi, TUKi, FSKi, PKi, 0] into 
LKey, and returns PKi to A3.

 ▪ Otherwise, B executes the SetSecretValue(PP) 
algorithm to get the secret value xi, then 
computes PK = (PK1, PK2) = (Ppub

Xi, QXi),  
PSKi = (PSKi,1, PSK i,2) = (Qaμi, Qaνi) adds an tuple 
[IDi, ti, xi, PSKi, −, −, PKi, 1] into LKey, and returns 
PKi to A3.

 _ Partial secret key query(IDi) : by completing the 
following steps, B can answer this query.
 ▪ IDi exists in LKey, B searches the tuple [IDi, ti, xi, 

PSKi, TUKi, FSKi, PKi, cn] by IDi, and returns 
PSKi to A3.

 ▪ Otherwise B picks a time period ti at random and 
makes Public key query on (IDi, ti) to generate 
PSKi and returns PSKi to A3.
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 _ Time update key query(IDi, ti): by completing the 
following steps, B can answer this query.
 ▪ If (IDi, ti) exists in LKey, B searches the tuple [IDi, 

ti, xi, PSKi, TUKi, FSKi, PKi, cn] by (IDi, ti), and 
execute the task as the following:

 _ If cn = 0, B returns TUKi to A3.
 _ If cn = 1, B aborts the game.

 ▪ Otherwise, B sends a Public key query to (IDi, ti) 
to generate PSKi, cn. Then repeat the above step 
to return TUKi or abort the game.

 _ Full secret key query(IDi, ti): the query is identical 
to the proof of Theorem 1.

 _ Replace public key query(IDi, PKi′): the query is 
identical to the proof of Theorem 1.

 _ Decryption query(IDi, ti, C): the query is identical to 
the proof of Theorem 1.

 _ Authorization query(IDi, ti): the query is identical 
to the proof of Theorem 1.

3 Challenge: A3 sends an identity ID∗, a time period t* 
and two different messages M0

*, M1
* ∈ {0, 1}λ to B for 

challenge. B usess (ID∗, t*) as an input to produce 
Public key query and get the tuple [ID*, t*, x*, PSK*, 
TUK*, FSK*, PK*, cn] from LKey.

 _ If cn = 0, B aborts the game.
 _ If cn = 1, B performs the following tasks:

 ▪ Select ḃ ∈ {0, 1}, k ∈ {0, 1}l, C3
* ∈ {0, 1}λ+l and C4

* ∈ 
G2 at random.

 ▪ Set C2
* = Pc.

 ▪ Obtain γ by H7 query(Mḃ
*, k) and set C1

* = Pγ.
 ▪ Return C* = (C1

*, C2
*, C3

*, C4
*) to A3.

Based on the above construction, H5(e(Pac, Q)x*μ*∙ 
e(P, Q)abcx*η*, C1

*, C2
*) = (Mḃ

* || k)⊕C3
* and H8(e(Pac, 

Q)x*ν*∙e(P, Q)abcx*ζ*) = C4
* / (H6(Mḃ

*)R), where Qbη* = 
H3(ID*) and Qbζ* = H4(ID*).
4 Phase 2: A3 launches a series of queries to B as in 

Phase 1.
5 Guess: eventually, A3 outputs ḃ′ ∈ {0, 1} as the guess 

bit. If ḃ′ = ḃ, A3 wins the game; otherwise loses the 
game. B chooses a random tuple [σ*, C1

*, C2
*, θ] from 

LH5 and outputs (σ*/e(P ac, Q)x*μ*)(x*η*)–1 =e(P, Q)abc) as 
the solution to the BDH instance.

Analysis. We need to evaluate the simulation of 
the random oracles first. It is clear that H1, H2, H3, 
H4, H6, and H7 simulations are perfect due to their 

construction. AskH5
* is defined as the event that  

H5(e(Pac, Q)x*μ*∙e(P, Q)abcx*η*, C1
*, C2

*) has been is-
sued by A3, AskH8

* is defined as the event that  
H8(e(Pac, Q)x*ν*∙e(P, Q)abcx*ζ*) has been issued by A3. We 
say that the simulation of H5 is perfect if AskH5

* does 
not happen and the simulation of H8 is perfect if AskH8

* 
does not happen too. Now we assess the simulation of 
the decryption oracle. DecErr indicates an event in the 
valid ciphertext, and B cannot decrypt it exactly during 
the emulation and we get Pr[DecErr] ≤ qD/q.
Next, define Abort as the event that the emulation is 
aborted by B, and define Evt = (AskH5

* ∨ AskH8
* ∨ De-

cErr)|¬Abort. B guess ḃ with the advantage ≤ 1/2 if Evt 
does not occur due to the randomness of the outputs 
of H5 and H8. So Pr[ḃ = ḃ′ |¬ Evt] ≤ 1/2, we obtain

Pr[ḃ = ḃ′] = Pr[ḃ = ḃ′| Evt]Pr[Evt] + Pr[ḃ = ḃ′|¬ 
Evt]Pr[¬Evt]
                ≤ Pr[Evt] + (1/2) Pr[¬Evt]
                = Pr[Evt] + (1/2) (1–Pr[Evt])
                = (1/2)Pr[Evt] + 1/2.    

(7)

According to (7) and the sense of ϵ, the following 
equation can be obtained.

ϵ = Pr[ḃ = ḃ′] – 1/2
≤ Pr[Evt]
≤ (Pr[AskH5

*] + Pr[AskH8
*] + Pr[DecErr]) 

/ Pr[¬Abort].     

(8)

According to (8), we have:
Pr[AskH5

*] ≥ ϵ Pr[¬Abort] – Pr[DecErr] 
–  Pr[AskH8

*].             
Since Pr[¬Abort] = τqTUK +qFSK + qAuth (1 − τ), we can obtain 
Pr[¬Abort] ≥ 1/e(qTUK + qFSK + qAuth + 1) when τ = 1 – 1/
(qTUK + qFSK + qAuth + 1). We then have:

Pr[AskH5
*]≥ϵ/e(qTUK+qful+qAuth+1)–qD/q– qh8

/q. (9)

If AskH5
* occurs, A3 will distinguish the real one during 

the simulation and the challenge ciphertext C* is inval-
id. Then H5(e(Pac, Q)x*μ*∙e(P, Q)abcx*η*, C1

*, C2
*) has been 

added in the LH5. B can pick the right bit from the LH5 
and wins the game. According to (9), the BDH problem 
can be solved by B with the following advantage
ϵ′ ≥ (1/qh5

)Pr[AskH5
*]

≥ (1/qh5
) [ϵ/e(qTUK+qFSK+qAuth+1) – qD/q – qh8

/q]. 
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Theorem 4. Assume that there exists PPT Type-4 ad-
versary A4 against OW-CCA security for the proposed 
scheme in the random oracle model. Then, A4 has the 
advantage ϵ to break the scheme. By the ϵ from A4, we 
construct that a challenger B solves the BDH assump-
tion with the advantage ϵ′ and ϵ′ ≥ (1/qh5

) [(ϵ – 1/2λ)/
(e(qPSK + qFSK + 1)] – qD/q. Suppose that the eight hash 
functions Hi (1 ≤ i ≤ 8) are random oracles and then A4 

can issue random oracle queries qHi
(1 ≤ i ≤ 8). More-

over, A4 also can issue Partial secret key queries qPSK, 
Time update key queries qTUK, Full secret key queries 
qFSK, Public key queries qPK, Replace public key queries 
qRPK, Decryption queries qD and Authorization queries 
qAuth to challenger B.
Proof. Assume that (𝒢, P, Pa, Pc, Q, Qa, Qb) is an in-
stance of the BDH problem where 𝒢 = (q, G1, G2, GT, e), 
and B would like to calculate the BDH solution e(P, Q)
abc. B acts as a challenger and interacts with the Type-
4 adversary A4 to calculate e(P, Q)abc in the following 
GOW-CCA game:
1 Setup: B sets Ppub = Pa and selects eight collision-re-

sistant hash functions Hi (1 ≤ i ≤ 8) as random or-
acles. Then B outputs the public parameters PP to 
A4, where PP = (𝒢, P, Q, Ppub, H1, H2, H3, H4, H5, H6, H7, 
H8). To keep the consistency between the random 
oracle queries and the corresponding responses, 
B needs to maintain the lists LH1, LH2, …, LH8, LKey, 
which are similar to the proof of Theorem 1.

2 Phase 1: A4 launches a series of queries to B, and 
then B returns the corresponding answers as fol-
lows.

 _ H1 query(IDi): the query is identical to the proof of 
Theorem 1.

 _ H2 query(IDi): after receiving this query on IDi, B 
does the following.
 ▪ If IDi exists in LH2, B searches the tuple [IDi, νi, 

cn] by IDi. Upon obtaining νi and cn from LH2, 
compute Qνi as the answer to A4.

 ▪ Otherwise B picks a time period ti at random and 
makes Public key query on (IDi, ti) to generate νi, 
cn and store them in LH2. Then repeat the above 
step to return Qνi.

 _ H3-H8 queries: the queries are identical to the proof 
of Theorem 1.

 _ Public key query(IDi, ti): the query is identical to the 
proof of Theorem 1.

 _ Partial secret key query(IDi) : the query is identical 
to the proof of Theorem 1.

 _ Time update key query(IDi, ti): the query is identical 
to the proof of Theorem 1.

 _ Full secret key query(IDi, ti): the query is identical 
to the proof of Theorem 1.

 _ Replace public key query(IDi, PKi′): the query is 
identical to the proof of Theorem 1.

 _ Decryption query(IDi, ti, C): after receiving this 
query on (IDi, ti, C) where C = (C1, C2, C3, C4), B 
performs the following tasks.
 ▪ If (IDi, ti) exists in LKey, B searches the tuple [IDi, 

ti, xi, PSKi, TUKi, FSKi, PKi, cn] by (IDi, ti), and 
execute the task as the following:

 _ If cn = 0, and the public key has not been 
replaced by A4, B uses FSKi from the tuple 
[IDi, ti, xi, PSKi, TUKi, FSKi, PKi, 0] in LKey 
to execute the Decryption(PP, FSKi, C) 
algorithm and returns the output to A4.

 _ If cn = 1, B searches the tuple [W, C1, C2, ω] in 
LH5 by C1, C2, and calculates M′ || k′ = C3⊕ω. 
Next, (M′, k′) is used to search the tuple [M, 
k, γ] in LH7. After obtaining γ, compute the P γ. 
Then retrieve the tuple [IDi, νi, cn] in LH2 by 
IDi and research the tuple [IDi, ti, ζi, cn] in LH4 
by (IDi, ti) to compute FSK2∙TUK2 = Qa(νi+ζi)xi. If 
find the S in the tuple [e(C2, Qa(νi+ζi)xi), S] in LH8 
such that C4 = R∙S holds, B will check whether 
C1 = P γ holds. When both C1 = P γ and C4 = R∙S 
holds, return M′ to A4. B returns ⊥ to A4 if B 
cannot search the tuple in LH5.

 ▪ Otherwise, B sends a Public key query to (IDi, ti) 
to generate FSKi, cn. Then repeat the above step 
to return M.

 _ Authorization query(IDi, ti): by completing the 
following steps, B can answer this query.
 ▪ If (IDi, ti) exists in LKey, B searches the tuple [IDi, 

ti, xi, PSKi, TUKi, FSKi, PKi, cn] by (IDi, ti), and 
returns FSKi,2 to A4, where FSKi = (FSKi,1, FSKi,2).

 ▪ Otherwise B retrieves the tuple [IDi, νi, cn] in 
LH2 by IDi to compute FSKi,2 = Qaνixi and returns 
FSKi,2 to A4.

3 Challenge: A4 sends an identity ID*, a time period t* 
to B for challenge. B selects M* ∈ {0, 1}λ at random 
and uses (ID*, t*) as an input to produce Public key 
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query and get the tuple [ID*, t*, x*, PSK*, TUK*, FSK*, 
PK*, cn] from LKey.

 _ If cn = 0, B aborts the game.
 _ If cn = 1, B performs the following tasks:

 ▪ Select k ∈ {0, 1}l, C3
* ∈ {0, 1}λ+l at random.

 ▪ Set C2
* = Pc.

 ▪ Obtain γ by H7 query(M*, k) and set C1
* = Pγ.

 ▪ Obtain R and S by H6 query(M*)γ and H8 
query(e(C2

*, Qa(ν*i + ζ*i )x*i )), respectively.
 ▪ Set C4

* = R∙S.
 ▪ Return C* = (C1

*, C2
*, C3

*, C4
*) to A4.

Based on the above construction, H5(e(P, Q)abcx*μ*∙e(Pac, 
Q)x*η*, C1

*, C2
*) = (M* || k)⊕C3

*, where Qbμ* = H1(ID*).
4 Phase 2: A4 launches a series of queries to B as in 

Phase 1.
5 Guess: eventually, A4 outputs M′ ∈ {0, 1}λ as the 

guess bit. If M′ = M, A4 wins the game; otherwise 
loses the game. B chooses a random tuple [σ*, C1

*, 
C2

*, θ] from LH5 and outputs (σ*/e(P ac, Q)x*η*)(x*μ*)–1 = 
e(P, Q)abc) as the solution to the BDH instance.

Analysis. We need to evaluate the simulation of the 
random oracles first. It is clear that H1, H2, H3, H4, H6, 
H7 and H8 simulations are perfect due to their con-
struction. AskH5

* is defined as the event that H5(e(P, 
Q)abcx*μ*∙e(Pac, Q)x*η*, C1

*, C2
*) has been issued by A4. We 

say that the simulation of H5 is perfect if AskH5
* does 

not happen. Now we assess the simulation of the de-
cryption oracle. DecErr indicates an event in the valid 
ciphertext, and B cannot decrypt it exactly during the 
emulation and we get Pr[DecErr] ≤ qD/q.
Next, define Abort as the event that the emulation 
is aborted by B, and define Evt = (AskH5

* ∨ 
DecErr)|¬Abort. B guess M with the advantage ≤ 1/2λ 
if Evt does not occur due to the randomness of the 
outputs of H5. So Pr[M = M′ |¬ Evt] ≤ 1/2λ, we obtain

Pr[M = M′] = Pr[M = M′| Evt]Pr[Evt] 
                       + Pr[M = M′|¬ Evt]Pr[¬Evt]
                    ≤ Pr[Evt] + (1/2λ) Pr[¬Evt]
                    = Pr[Evt] + (1/2λ) (1–Pr[Evt])
                    = (1−1/2λ)Pr[Evt] + (1/2λ).

(10)

According to (10) and the sense of ϵ, the following 
equation can be obtained.

   ϵ = Pr[M = M′]
     ≤ (1–1/2λ)Pr[Evt] + (1/2λ)
     ≤ (1–1/2λ) (Pr[AskH5

*] + Pr[DecErr]) 
         / Pr[¬Abort] + (1/2λ).

(11

According to (11), we have:

Pr[AskH5
*] ≥ [(ϵ – 1/2λ)/(1–1/2λ)]Pr[¬Abort]

 – Pr[DecErr]
Since Pr[¬Abort] = τqPSK + qFSK(1 − τ), we can obtain 
Pr[¬Abort] ≥ 1/e(qPSK + qFSK + 1) when τ = 1 – 1/( qPSK + 
qFSK + 1). We then have:
Pr[AskH5

*]≥[(ϵ–1/2λ)/e(qPSK+qFSK+1)]–qD/q.     (12)
If AskH5

* occurs, A4 will distinguish the real one during 
the simulation and the challenge ciphertext C* is inval-
id. Then H5(e(P, Q)abcx*μ*∙e(Pac, Q)x*η*, C1

*, C2
*) has been 

added in the LH5. B can pick the right bit from the LH5 
and wins the game. According to (12), the BDH prob-
lem can be solved by B with the following advantage
ϵ′ ≥ (1/qh5

)Pr[AskH5
*]

≥ (1/qh5
) [(ϵ – 1/2λ)/e(qPSK + qFSK + 1)] – qD/q. 

Theorem 5. Assume that there exists PPT Type-5 ad-
versary A5 against OW-CCA security for the proposed 
scheme in the random oracle model. Then, A5 has the 
advantage ϵ to break the scheme. By the ϵ from A5, we 
construct that an algorithm challenger B solves the 
BDH assumption with the advantage ϵ′ and ϵ′ ≥ (1/qh5

) 
[(ϵ – 1/2λ)/(e(qFSK + 1)] – qD/q. Suppose that the eight 
hash functions Hi (1 ≤ i ≤ 8) are random oracles and 
then A5 can issue random oracle queries qHi

(1 ≤ i ≤ 8). 
Moreover, A5 also can issue Full secret key queries qFSK, 
Public key queries qPK, Decryption queries qD and Au-
thorization queries qAuth to challenger B. Note that A5 
is a malicious KGC so A5 cannot issue Partial secret 
key queries qPSK, Time update key queries qTUK, Replace 
public key queries qRPK.
Proof. Assume that (𝒢, P, Pa, Pc, Q, Qa, Qb) is an in-
stance of the BDH problem where 𝒢 = (q, G1, G2, GT, e), 
and B would like to calculate the BDH solution e(P, Q)
abc. B acts as a challenger and interacts with the Type-
5 adversary A5 to calculate e(P, Q)abc in the following 
GOW-CCA game:
1 Setup: B picks the master secret key s ∈ Zq

* at 
random and sets Ppub = Ps. Then select eight colli-
sion-resistant hash functions Hi (1 ≤ i ≤ 8) as ran-
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dom oracles. Then B outputs the master secret key 
s and the public parameters PP to A5, where PP = (𝒢, 
P, Q, Ppub, H1, H2, H3, H4, H5, H6, H7, H8). To keep the 
consistency between the random oracle queries 
and the corresponding responses, B needs to main-
tain the lists LH1, LH2, …, LH8, LKey, which are similar 
to the proof of Theorem 1.

2 Phase 1: A4 launches a series of queries to B, and 
then B returns the corresponding answers as fol-
lows.

 _ H1 query(IDi): the query is identical to the proof of 
Theorem 1.

 _ H2 query(IDi): the query is identical to the proof of 
Theorem 4.

 _ H3-H8 queries: the queries are identical to the proof 
of Theorem 1.

 _ Public key query(IDi, ti): the query is identical to the 
proof of Theorem 1.

 _ Public key query(IDi, ti): after receiving this query 
on (IDi, ti), B randomly selects μi, νi, ηi, ζi ∈ Zq

*, cn ∈ 
{0, 1} with Pr[cn = 0] = τ, and then adds four tuples 
[IDi, μi, cn], [IDi, νi, cn], [IDi, ti, ηi, cn], [IDi, ti, ζi, cn] 
into LH1, LH2, LH3, LH4 respectively.
 ▪ If cn = 0, B executes the SetSecretValue(PP) 

algorithm to get the secret value xi, then  
computes PSKi = (PSKi,1, PSK i,2) = (Qsμi, Qsνi), 
TUKi = (TUKi,1, TUKi,2) = (Qsηi, Qsζi) , FSKi = 
(FSKi,1, FSKi,2) = ((PSKi,1 ∙ TUKi,1)Xi, (PSKi,2 ∙ 
TUKi,2)Xi ) and PKi = (PKi,1, PKi,2) = (Ppub

Xi, QXi), adds 
an tuple [IDi, ti, xi, PSKi, TUKi, FSKi, PKi, 0] into 
LKey, and returns PKi to A5.

 ▪ Otherwise, B selects xi′∈ Zq
* at random, then 

computes PSKi = (PSKi,1, PSK i,2) = (Qbsμi, Qsνi), 
TUKi = (TUKi,1, TUKi,2) = (Qsηi, Qsζi) and PKi = 
(PKi,1, PKi,2) = (Ppub

axi′, Qaxi′) adds an tuple [IDi, ti, 
xi′, PSKi, TUKi, −, PKi, 1] into LKey, and returns 
PKi to A5. Here, the secret value xi is seen as axi′ 
implicitly.

 _ Full secret key query(IDi, ti): the query is identical 
to the proof of Theorem 1.

 _ Decryption query(IDi, ti, C): the query is identical to 
the proof of Theorem 4.

 _ Authorization query(IDi, ti): the query is identical 
to the proof of Theorem 4.

3 Challenge: A5 sends an identity ID*, a time period t* 
to B for challenge. B selects M* ∈ {0, 1}λ at random 

and uses (ID*, t*) as an input to produce Public key 
query and get the tuple [ID*, t*, x*, PSK*, TUK*, FSK*, 
PK*, cn] from LKey.

 _ If cn = 0, B aborts the game.
 _ If cn = 1, B performs the following tasks:

 ▪ Select k ∈ {0, 1}l, C3
* ∈ {0, 1}λ+l at random.

 ▪ Set C2
* = Pc.

 ▪ Obtain γ by H7 query(M*, k) and set C1
* = Pγ.

 ▪ Obtain R and S by H6 query(M*)γ and H8 
query(e(C2

*, Qa(ν*i + ζ *i)x*i )) respectively.
 ▪ Set C4

* = R∙S.
 ▪ Return C* = (C1

*, C2
*, C3

*, C4
*) to A5.

Based on the above construction, H5(e(P, Q)abcx*μ*s∙e(Pac, 
Q)x*η*s, C1

*, C2
*) = (M* || k)⊕C3

*, where Qbμ* = H1(ID*).
4 Phase 2: A5 launches a series of queries to B as in 

Phase 1.
5 Guess: eventually, A5 outputs M′ ∈ {0, 1}λ as the 

guess bit. If M′ = M, A5 wins the game; otherwise 
loses the game. B chooses a random tuple [σ*, C1

*, 
C2

*, θ] from LH5 and outputs (σ*/e(P ac, Q)x*η*s)(x*μ*s)–1 

=e(P, Q)abc) as the solution to the BDH instance.
Analysis. We need to evaluate the simulation of the 
random oracles first. It is clear that H1, H2, H3, H4, H6, 
H7 and H8 simulations are perfect due to their con-
struction. AskH5

* is defined as the event that H5(e(P, 
Q)abcx*μ*s∙e(Pac, Q)x*η*s, C1

*, C2
*) has been issued by A5. We 

say that the simulation of H5 is perfect if AskH5
* does 

not happen. Now we assess the simulation of the de-
cryption oracle. DecErr indicates an event in the valid 
ciphertext, and B cannot decrypt it exactly during the 
emulation and we get Pr[DecErr] ≤ qD/q.
Next, define Abort as the event that the emulation 
is aborted by B, and define Evt = (AskH5

* ∨ DecEr-
r)|¬Abort. B guess M with the advantage ≤ 1/2λ if Evt 
does not occur due to the randomness of the outputs 
of H5. So Pr[M = M′ |¬ Evt] ≤ 1/2λ, we obtain

  Pr[M = M′] = Pr[M = M′| Evt]Pr[Evt] 
+ Pr[M = M′|¬ Evt]Pr[¬Evt]
≤ Pr[Evt] + (1/2λ) Pr[¬Evt]
= Pr[Evt] + (1/2λ) (1–Pr[Evt)
= (1–1/2λ)Pr[Evt] + (1/2λ).

(13)

According to (13) and the sense of ϵ, the following 
equation can be obtained.
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ϵ = Pr[M = M′]
≤ (1–1/2λ)Pr[Evt] + (1/2λ)
≤ (1–1/2λ) (Pr[AskH5

*] + Pr[DecErr])
 / Pr[¬Abort] + (1/2λ).

(14)

According to (14), we have:
Pr[AskH5

*] ≥ [(ϵ – 1/2λ)/(1−1/2λ)]Pr[¬Abort] 
– Pr[DecErr]
Since Pr[¬Abort] = τqFSK(1 − τ), we can obtain Pr[¬Abort] 
≥ 1/e(qFSK + 1) when τ = 1 – 1/( qFSK + 1). We then have:

Pr[AskH5
*]≥[(ϵ–1/2λ)/e(qFSK+1)]–qD/q. (14)

If AskH5
* occurs, A5 will distinguish the real one 

during the simulation and the challenge ciphertext C* 
is invalid. Then H5(e(P, Q)abcx*μ*s∙e(Pac, Q)x*η*s, C1

*, C2
*) 

has been added in the LH5. B can pick the right bit from 
the LH5 and wins the game. According to (15), the BDH 
problem can be solved by B with the following advan-
tage
ϵ′ ≥ (1/qh5

)Pr[AskH5
*]

       ≥ (1/qh5
) [(ϵ – 1/2λ)/e(qFSK + 1)] – qD/q.  

Theorem 6. Assume that there exists PPT Type-6 ad-
versary A6 against OW-CCA security for the proposed 
scheme in the random oracle model. Then, A6 has the 
advantage ϵ to break the scheme. By the ϵ from A6, we 
construct that a challenger B solves the BDH assump-
tion with the advantage ϵ′ and ϵ′ ≥ (1/qh5

) [(ϵ –1/2λ)/
(e(qTUK + qFSK + 1)] – qD/q. Suppose that the eight hash 
functions Hi (1 ≤ i ≤ 8) are random oracles and then A6 

can issue random oracle queries qHi
(1 ≤ i ≤ 8). More-

over, A6 also can issue Partial secret key queries qPSK, 
Time update key queries qTUK, Full secret key queries 
qFSK, Public key queries qPK, Replace public key queries 
qRPK, Decryption queries qD and Authorization queries 
qAuth to challenger B. 
Proof. Assume that (𝒢, P, Pa, Pc, Q, Qa, Qb) is an in-
stance of the BDH problem where 𝒢 = (q, G1, G2, GT, e), 
and B would like to calculate the BDH solution e(P, Q)
abc. B acts as a challenger and interacts with the Type-
6 adversary A6 to calculate e(P, Q)abc in the following 
GOW-CCA game:
1 Setup: B sets Ppub = Pa and selects eight collision-re-

sistant hash functions Hi (1 ≤ i ≤ 8) as random or-
acles. Then B outputs the public parameters PP to 
A6, where PP = (𝒢, P, Q, Ppub, H1, H2, H3, H4, H5, H6, H7, 

H8). To keep the consistency between the random 
oracle queries and the corresponding responses, 
B needs to maintain the lists LH1, LH2, …, LH8, LKey, 
which are similar to the proof of Theorem 1.

2 Phase 1: A6 launches a series of queries to B, and 
then B returns the corresponding answers as fol-
lows.

 _ H1-H3 queries(IDi): the queries are identical to the 
proof of Theorem 3.

 _ H4-H8 queries: the queries are identical to the proof 
of Theorem 1.

 _ Public key query(IDi, ti): the query is identical to the 
proof of Theorem 3.

 _ Partial secret key query(IDi) : the query is identical 
to the proof of Theorem 3.

 _ Time update key query(IDi, ti): the query is identical 
to the proof of Theorem 3.

 _ Full secret key query(IDi, ti): the query is identical 
to the proof of Theorem 1.

 _ Replace public key query(IDi, PKi′): the query is 
identical to the proof of Theorem 1.

 _ Decryption query(IDi, ti, C): the query is identical to 
the proof of Theorem 4.

 _ Authorization query(IDi, ti): the query is identical 
to the proof of Theorem 4.

3 Challenge: A6 sends an identity ID*, a time period t* 
to B for challenge. B selects M* ∈ {0, 1}λ at random 
and uses (ID*, t*) as an input to produce Public key 
query and get the tuple [ID*, t*, x*, PSK*, TUK*, FSK*, 
PK*, cn] from LKey.

 _ If cn = 0, B aborts the game.
 _ If cn = 1, B performs the following tasks:

 ▪ Select k ∈ {0, 1}l, C3
* ∈ {0, 1}λ+l at random.

 ▪ Set C2
* = Pc.

 ▪ Obtain γ by H7 query(M*, k) and set C1
* = Pγ.

 ▪ Obtain R and S by H6 query(M*)γ and H8 
query(e(C2

*, Qa(ν*i + ζ *i)x*i )) respectively.
 ▪ Set C4

* = R∙S.
 ▪ Return C* = (C1

*, C2
*, C3

*, C4
*) to A6.

Based on the above construction, H5(e(P, Q)x*μ*∙e(Pac, 
Q)abcx*η*, C1

*, C2
*) = (M* || k)⊕C3

*, where Qbη* = H3(ID*).
4 Phase 2: A6 launches a series of queries to B as in 

Phase 1.
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5 Guess: eventually, A6 outputs M′ ∈ {0, 1}λ as the 
guess bit. If M′ = M, A6 wins the game; otherwise 
loses the game. B chooses a random tuple [σ*, C1

*, 
C2

*, θ] from LH5 and outputs (σ*/e(P ac, Q)x*μ*)(x*η*)–1 

=e(P, Q)abc) as the solution to the BDH instance.
Analysis. We need to evaluate the simulation of the 
random oracles first. It is clear that H1, H2, H3, H4, H6, 
H7 and H8 simulations are perfect due to their con-
struction. AskH5

* is defined as the event that H5(e(P, 
Q)x*μ*∙e(Pac, Q)abcx*η*, C1

*, C2
*) has been issued by A6. We 

say that the simulation of H5 is perfect if AskH5
* does 

not happen. Now we assess the simulation of the de-
cryption oracle. DecErr indicates an event in the valid 
ciphertext, and B cannot decrypt it exactly during the 
emulation and we get Pr[DecErr] ≤ qD/q.
Next, define Abort as the event that the emulation 
is aborted by B, and define Evt = (AskH5

* ∨ DecEr-
r)|¬Abort. B guess M with the advantage ≤ 1/2λ if Evt 
does not occur due to the randomness of the outputs 
of H5. So Pr[M = M′ |¬Evt] ≤ 1/2λ, we obtain

Pr[M = M′] = Pr[M = M′| Evt]Pr[Evt] 
+ Pr[M = M′|¬ Evt]Pr[¬Evt]
≤ Pr[Evt] + (1/2λ) Pr[¬Evt]
= Pr[Evt] + (1/2λ) (1−Pr[Evt])
= (1–1/2λ)Pr[Evt] + (1/2λ).

(16)

According to (16) and the sense of ϵ, the following 
equations can be obtained.

ϵ = Pr[M = M′]
≤ (1–1/2λ)Pr[Evt] + (1/2λ)
≤ (1–1/2λ) (Pr[AskH5

*] 
+ Pr[DecErr]) / Pr[¬Abort] + (1/2λ).

(17)

According to (17), we have:
Pr[AskH5

*] ≥ [(ϵ – 1/2λ)/(1−1/2λ)]Pr[¬Abort] 
– Pr[DecErr]
Since Pr[¬Abort] = τqTUK + qFSK(1 − τ), we can obtain 
Pr[¬Abort] ≥ 1/e(qTUK + qFSK + 1) when τ = 1 – 1/(qTUK + 
qFSK + 1). We then have:

Pr[AskH5
*]≥[(ϵ–1/2λ)/e(qTUK+qFSK+1)]–qD/q. (18)

If AskH5
* occurs, A6 will distinguish the real one during 

the simulation and the challenge ciphertext C* is inval-
id. Then H5(e(P, Q)x*μ*∙e(Pac, Q)abcx*η*, C1

*, C2
*) has been 

added in the LH5. B can pick the right bit from the LH5 
and wins the game. According to (18), the BDH prob-
lem can be solved by B with the following advantage
ϵ′ ≥ (1/qh5

)Pr[AskH5
*]

    ≥ (1/qh5
) [(ϵ – 1/2λ)/e(qTUK + qFSK + 1)] – qD/q. 

Theorem 7. Assume that there exists PPT adversary A 
(all types adversary) against the security of brute force 
attacks for the proposed scheme. Then, A has the negli-
gible advantage to break the scheme. 
Proof. As mentioned in Section 4 (The RCL-PKEET 
scheme), the master secret key is msk = s ∈ Zq

* and the 
public parameters is PP = (𝒢, P, Q, Ppub, H1, H2, H3, H4, 
H5, H6, H7, H8). We can ensure that the PPT adversary A 
cannot break the system to obtain the master secret key 
from the public parameters, since only Ppub and msk are 
related and Ppub = Ps. Calculating msk = s from Ppub and P 
is a problem of discrete logarithm that the PPT adver-
sary A cannot solve in the polynomial time. In fact, the 
user’s partial secret key PSK and time update key TUK 
are also designed based on the discrete logarithm prob-
lem, where PSK = (PSK1, PSK2) = (H1(ID)msk, H2(ID)msk) 
= (H1(ID)s, H2(ID)s) and TUK = (TUK1, TUK2) = (H3(ID, 
t)msk, H4(ID, t)msk) = (H3(ID, t)s, H4(ID, t)s). Therefore, we 
believe that the proposed scheme can withstand brute 
force attacks.  

6. Comparsions
In this section, the computation cost, the communi-
cation cost and functionalities of our proposed RCL-
PKEET scheme, the existing IBEET scheme [26], CL-
PKEET schemes [13, 29, 45] and RCL-PKE scheme 
[37] are compared. For the computation cost in the 
procedures of encryption, decryption and equality test 
and communication cost in piublic key, ciphertext and 
trapdoor, we first define several notations as below.
 _ Tpair: the cost of computing a bilinear pairing.
 _ Texp: the cost of computing an exponentiation.
 _ Thash: the cost of computing a hash function.
 _ |G1|: the size of a point in G1.
 _ |G2|: the size of a point in G2.
 _ |Zq|: the bit length in Zq.
 _ |PK|: the bit length of public key.
 _ |CT|: the bit length of ciphertext.

|TD|: the bit length of trapdoor.
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Table 1 lists the cost of Tpair, Texp and Thash in the sim-
ulation experiences [21] where the CPU is Intel Core 
i7-8550U with 1.80 Ghz processor. In addition, Fq, G1 
and G2 are selective parameters, where Fq is a finite 
field composed of the sets of integers {0, 1, …, q − 1}, q 
∈ {0, 1}256 is a prime number and G1, G2 are groups of 
order 224 bits prime number over Fq.

Table 1
The cost of Tpair, Texp and Thash

Tpair Texp Thash

The executing time 7.8351 ms 0.4746 ms 0.0126 ms

Table 2 compares our RCL-PKEET scheme with oth-
er existing schemes in terms of encryption, decryp-
tion, equality test and three functionalities. Although 
our scheme may be slower than the existing IBEET 
scheme in the procedures of encryption and decryp-
tion, our scheme possesses the ability to solve the key 
escrow problem and provide the efficient revocation 
mechanism. Similarly, the overall efficiency of the 
existing RCL-PKE scheme is better than that of our 
RCL-PKEET scheme. However, our RCL-PKEET 
scheme has the functionality of the equality test but 

Table 2
Comparison between our proposed scheme and other existing schemes

Schemes Encryption Decryption Equality test
With

 equality 
test

Without
key escrow 

problem

With
revocation 

mechanism

IBEET [26] 2Tpair+6Texp+3Thash 
(18.5556ms)

2Tpair+2Texp+2Thash 
(16.6446ms)

4Tpair+2Texp+2Thash

(32.3148ms) Yes No No

CL-PKEET [29] 4Tpair+5Texp+6Thash 
(33.7890ms)

2Tpair+2Texp+4Thash 
(16.6698ms)

4Tpair+2Thash

(31.3656ms) Yes Yes No

CL-PKEET [45] 2Tpair+5Texp+8Thash

(18.144ms)
2Tpair+2Texp+4Thash

(16.6698ms)
4Tpair+2Thash

(31.3656ms) Yes Yes No

CL-PKEET [13] 4Tpair+5Texp+6Thash

(33.789ms)
2Tpair+2Texp+2Thash

(16.6446ms)
4Tpair+2Thash

(31.3656ms) Yes Yes No

RCL-PKE [37] Tpair+3Texp+5Thash 
(9.3219ms)

Tpair+2Texp+3Thash 
(8.8221ms) - No Yes Yes

Our RCL-
PKEET

4Tpair+5Texp+8Thash 
(33.8142ms)

2Tpair+2Texp+4Thash 
(16.6698ms)

4Tpair+2Thash

(31.3656ms) Yes Yes Yes

Table 3
Comparison of communication cost

|PK| |CT| |TD|

IBEET [26] |G1| 4|G1|+|Zq| |G1|

CL-PKEET [29] |G1|+|G2| 2|G1|+|G2|+|Zq| |G2|

CL-PKEET [45] 2|G1| 3|G1|+2|Zq| |G1|

CL-PKEET [13] 3|G1| 3|G1|+|Zq| |G1|

RCL-PKE [37] |G1| |G1|+2|Zq| -

Our RCL-
PKEET |G1|+|G2| 2|G1|+|G2|+|Zq| |G2|

the existing RCL-PKE scheme does not. Compared 
with the existing CL-PKEET schemes, our RCL-
PKEET scheme provides the efficient revocation 
mechanism while retaining the performance in the 
procedures of encryption, decryption and equality 
test. Obviously, our RCL-PKEET scheme solves key 
escrow problem and possesses the functionalities of 
equality test and revocation mechanism.
Table 3 compares our RCL-PKEET scheme with oth-
er existing schemes in terms of the bit length of public 
key, ciphertext and trapdoor. Obviously, the commu-
nication cost of our scheme is close to other existing 
schemes.
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7. Conclusions
In this article, we defined the framework of RCL-
PKEET and formalized two security models which 
include six types of adversaries. Based on the frame-
work, we presented the first RCL-PKEET scheme 
which possesses an efficient revocation mechanism. 
In addition, we demonstrated the proposed scheme 
is provably secure under the BDH assumption. Com-
pared with the existing CL-PKEET scheme, the pro-

posed scheme can efficiently revoke compromised 
users from the system while retaining the perfor-
mance in the procedures of encryption, decryption 
and equality test.
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