
Information Technology and Control 2022/4/51738

Automatic Repair of
Java Programs Weighted
Fusion Similarity via
Genetic Programming

ITC 4/51
Information Technology
and Control
Vol. 51 / No. 4 / 2022
pp. 738-756
DOI 10.5755/j01.itc.51.4.30515

Automatic Repair of Java Programs Weighted Fusion
Similarity via Genetic Programming

Received 2022/01/16 Accepted after revision 2022/05/26

 http://dx.doi.org/10.5755/j01.itc.51.4.30515

HOW TO CITE: Cao, H., He, Z., Meng, Y., Chu, Y. (2022). Automatic Repair of Java Programs Weighted Fusion Similarity via Genetic
Programming. Information Technology and Control, 51(4), 738-756. http://dx.doi.org/10.5755/j01.itc.51.4.30515

Corresponding author: yonghechu@163.com

Heling Cao
College of Information Science and Engineering, Henan International Joint Laboratory of Grain Information
Processing; Henan University of Technology; zhengzhou 450001; China; e-mails: caohl@haut.edu.cn

Zhenghao He, Yangxia Meng, Yonghe Chu
College of Information Science and Engineering; Henan University of Technology; zhengzhou 450001; China;
e-mails: hezhenghao24@163.com, myx_ziqiboya@163.com, yonghechu@163.com

Recently, automated program repair techniques have been proven to be useful in the process of software devel-
opment. However, how to reduce the large search space and the random of ingredient selection is still a chal-
lenging problem. In this paper, we propose a repair approach for buggy program based on weighted fusion sim-
ilarity and genetic programming. Firstly, the list of modification points is generated by selecting modification
points from the suspicious statements. Secondly, the buggy repair ingredient is selected according to the value
of the weighted fusion similarity, and the repair ingredient is applied to the corresponding modification points
according to the selected operator. Finally, we use the test case execution information to prioritize the test cas-
es to improve individual verification efficiency. We have implemented our approach as a tool called WSGRe-
pair. We evaluate WSGRepair in Defects4J and compare with other program repair techniques. Experimental
results show that our approach improve the success rate of buggy program repair by 28.6%, 64%, 29%, 64% and
112% compared with the GenProg, CapGen, SimFix, jKali and jMutRepair.

KEYWORDS: automated program repair, code similarity, genetic programming, test case prioritization.

739Information Technology and Control 2022/4/51

1. Introduction
Automated program repair is designed to reduce
the effort of repair bugs by automatically generating
patches. One popular automatic patch generation
aims to generate and verify candidate patches until a
patch passed all the given test cases. The patch gener-
ation of automated program repair techniques is of-
ten described as an exploration of their patch search
space. The problem is challenging because the space
is usually huge, and contains a lot of plausible patches
(incorrect patches still pass the test case). Test cases
cannot distinguish between correct and plausible but
incorrect patches. The automated program repair ap-
proach requires not only locating the correct patch-
es from a huge space, but also avoiding patches that
seem reasonable but are incorrect. Since 2009, auto-
matic program repair had become a popular research
area, attracted researchers from a wide range of com-
munities including software engineering, artificial in-
telligence and formal verification. Le Goues et al. [11,
13, 26] was the first to apply genetic programming to
automatic program repair. GenProg [13] uses genetic
algorithms to realize the recombination of existing
code fragments by defining the crossover and mu-
tation operations of code fragments. Ji et al. [5] pro-
posed to generate patches by reusing code fragments
in the project that are similar to the buggy location.
Jiang et al. [7] proposed an automatic repair method
SimFix. SimFix extracts the abstract search space S1
from the existing patches, extracts the similar code
from the bug source programs to form the search
space S2, and obtains the patches from the intersec-
tion of these two search spaces. Wen et al. [27] pro-
posed an automatic repair method CapGen. CapGen
extracts the contextual environment information of
the abstract syntax tree nodes at a fine-grained level
(e.g. expressions), and selects repair operators and re-
pair ingredients for the buggy program based on the
contextual environment information.
The above automatic program repair approaches
have proven useful. However, some obvious problems
were found in the search space and the random of
ingredient selection. Automatic patch generation is
often described as a search problem for the patch can-
didate space, which has two main issues: one is the
size of the search space, and the other is navigation.
The existing automatic patch generation techniques

search too large a space and the random nature of re-
pair ingredient selection makes it possible for these
techniques to produce meaningless patches. Test cas-
es cannot distinguish between correct and plausible
patches. Automatic program repair methods need not
only to locate correct patches from a large space, but
also to avoid plausible patches.
In order to reduce the search space, the candidate
patch search efficiency is accelerated and the prob-
lem of too random ingredient selection is solved. In
this paper, we propose a repair method combining
weighted fusion similarity and genetic programming.
Firstly, fault localization techniques are used to lo-
cate the buggy statements. Secondly, we use weighted
fusion similarity and genetic programming to select
the repair ingredient. Finally, test case prioritization
techniques are used to speed up patch generation rate.
We have implemented our approach as an automated
program repair tool called WSGRepair, and evaluated
it on the Defects4J benchmark [8].
The main contributions of this paper can be summa-
rized as follows:
 _ An automated program repair approach is

based on weighted fusion similarity and genetic
programming.

 _ A new fitness function is designed to better guide
the individual evolutionary process.

 _ We conduct experimental study on 224 real world
bugs in Defects4J to show the effectiveness of our
approach.

The remainder of this paper is organized as follows.
Section 2 provides the background of based repair.
Section 3 presents our approach and its detailed
description. Section 4 illustrates the experimental
study and its data analysis. Section 5 discusses the
threats to validity. Section 6 presents related work
and Section 7 draws conclusions and discusses some
potential future work.

2. Background
2.1. Automatic Program Repair
Automatic program repair can successfully complete
the automatic repair of some of these bugs, thus it

Information Technology and Control 2022/4/51740

effectively reducing debugging time for developer
program. Therefore, automatic program repair has
gradually become a hot research topic in the field
of software maintenance and has made some prog-
ress in research. Different kinds of techniques can
be used, such as genetic programming search in
GenProg [13] and SMT based program synthesis in
SemFix [19]. DirectFix [18] has optimized the patch
generation process compared to SemFix. DirectFix
does not strictly follow the locate results, but rather
prioritizes the simpler candidate statements for re-
pair. Weimer et al. [25] propose an adaptive repair
method based on program equivalence. One of the
mainstream approaches is the test case-based auto-
matic program repair approach, which evaluates the
quality of the generated patches through a set of test
cases. This approach is subdivided into three phases:
fault localization phase, patch generation phase and
patch verification phase. The fault localization phase
is the basis of automatic program repair, and its goal
is to identify as accurately as possible the statements
that may contain bugs. The patch generation phase
generally modifies the buggy statements through
predefined modification operations. The code mod-
ification operations can be considered when setting
up the repair program own code, generation of open
source projects etc. The patch evaluation phase eval-
uates the generated candidate patches until a patch
is found that allows all test cases to pass, and then
finalizes it with the help of manual analysis by the
developers.
Prophet [16] learns a patch ranking model using ma-
chine learning algorithm based on existing patch-
es. Saha et al. [23] used a Prophet-like approach to
guide the repair process through predefined patch
templates while applying a machine learning mod-
el to rank the candidate repair patches. Xiong et al.
[30] proposed a high-precision conditional state-
ment synthesis technique for conditional statement
repair in Java language. Long et al. [15] designed the
automatic repair technique Genesis for null point-
ers (NPE), array out-of-bounds (OOB), and strong
type conversion (CC) defects in the Java language.
Although the existing search-based APR techniques
are effective, they still have limitations in terms of
poor bug program repair success rates and long bug
program repair times due to an overly simplistic ap-
proach to the selection of bug program repair ingre-

dient. For example, incorrect patches are generated
before the correct patch or budget timeout due to the
generation of reasonable patches.

2.2. Genetic Programming
Genetic programming [10] is derived from genetic
algorithms and is a different manifestation of genet-
ic algorithms, which are essentially extensions of ge-
netic algorithms to programming problems. The main
process of genetic programming is basically the same
as that of genetic. The main processes of genetic pro-
gramming are basically the same as those of genetic
algorithms, but there are significant differences in the
individual manifestations. Individuals in genetic pro-
gramming are generally represented as a program in
the form of an abstract syntax tree, rather than a bina-
ry bit string as in a genetic algorithm. Each node in the
abstract syntax tree each node in the abstract syntax
tree corresponds to a statement or control flow struc-
ture in the program, and crossovers and mutations are
performed on the corresponding nodes.

2.3. Code Similarity
Many existing techniques dedicate to the identifi-
cation of the differences between two code snippets
and the generation of the transformations from one
to the other. Levenshtein distance is a typical repre-
sentation of edit distance that can be used to calculate
the similarity calculation between two strings and
is commonly used in natural language processing to
calculate the similarity between two texts. The algo-
rithm represents the minimum number of operations
required to transform two strings into each other by
inserting, deleting and replacing a character in the
string. The smaller the edit distance between the
strings, the higher the similarity between them. The
larger the edit distance, the lower the similarity val-
ue between them. Because when solving the mini-
mum edit distance between two strings, the problem
has the overlapping nature of sub-problems and the
characteristics of optimal sub-structure. In line with
the basic idea of dynamic programming, this method
adopts the dynamic programming algorithm of edit
distance to solve the problem.
The Dice coefficient is calculated as the ratio of 2
times the intersection of the two sets to the sum of the
two sets. The Dice coefficient and its derivatives can
also be used in the field of object detection and image

741Information Technology and Control 2022/4/51

segmentation. The range of the Dice coefficient is 0 to
1. The closer the value is to 1, the closer the two are,
and the better the model effect is.

2 X Y
SimDice

X Y
∩

=
+

. (1)

In Equation (1), ∩ represents the intersection of set
X and set Y, X Y∩ represents the number of identi-
cal elements of sets X and Y, X and Y represents the
size of sets X and Y.

3. Approach
We propose weighted fusion similarity and genetic
programming. Firstly, the fault localization technique
is used to locate the suspicious statements and select
the eligible suspicious statements as the modification
point. Secondly, repair ingredient is selected based on
weighted fusion similarity values, and evolutionary
repair of the buggy program is performed based on ge-
netic programming. Finally, prioritize test cases ac-
cording to test case execution information to improve
individual verification efficiency. The above steps are
repeated until either a program individual passes all

Figure 1
The overall workflow of the proposed approach

test cases or the program iteration termination con-
dition is met.
Figure 1 shows an overview of our approach. This
method divides the whole process into three phases:
fault localization, patch generation and patch verifi-
cation.
1 Fault Localization. This method uses the fault lo-

calization technique Ochiai to localization and an-
alyze the bug source program, and its suspicious
value is calculated as described in Equation (2).

()()
(() ())

ef

f ef ep

n sOchiai s
n n s n s

=
× +

. (2)

In Equation (2), s represents the program entity,
nep(s) and nef(s) represent the number of success-
ful test cases and the number of failed test cases
covering the program entity s, respectively, and nf

represents the number of all failed test cases of the
program entity s.

2 Patch generation. Firstly, the program evolution
repair process is targeted to select repair ingre-
dients, and the repair ingredients are selected ac-
cording to the weighted fusion in the ingredient
selection. Secondly, the operators required for the

Information Technology and Control 2022/4/51742

buggy program evolution are further subdivided
into four operators: insert before statement, insert
after statement, modify and delete. Finally, the ad-
aptation degree function equation is used to calcu-
late the population in accordance with the fitness
of an individual, which is an important condition
to constrain the evolution of an individual. The
calculation is shown in Equation (3). According to
the mutation, crossover, selection and other oper-
ations in genetic programming for the evolution of
bug programs, the lower the fitness value, the high-
er the probability that an individual is selected to
enter the next generation of evolution. The above
program evolution process is repeated until a patch
can meet the program statute requirements or
reach the program iteration termination condition.

*
exeNumfitness(i)=

totalNum tatalSim
. (3)

In Equation (3), ()fitness i represents the fitness
value of the ith sub-individual, exeNum represents
the total number of test cases executed when the
individual finishes verification, totalNum rep-
resents the total number of test cases matched
with the bug program, totalSim represents the mod-
ification point in the individual and the size of the
total similarity between materials.

3 Patch verification. After the candidate patches are
generated by the program evolution, the test cases
need to be run repeatedly to verify the validity of
the candidate patches. In this method, in order to
improve the efficiency of patch verification, a test
case prioritization technique based on error recog-
nition capability is adopted.

3.1. Fault Localization
This method uses the fault localization technique
Ochiai to localization and analyze the bug source
program, and the Ochiai suspicious value is calcu-
lated as described in Equation (2). A series of suspi-
cious statements are obtained after fault localization,
and according to the minimum suspicious value and
maximum number of modification points set by the
program. The modification statements are selected
to generate a list of modification points, and the list
of modification points is the suspicious space when
the individual evolves. The modification points are

selected according to the size of the suspicious value
weight of the suspicion statements, and their weights
are calculated as shown in Equation (4).

1

() i
n

j
j

SW i
S

=

=

∑
,

(4)

where i denotes the location information of the suspi-
cious statements, Si and Sj denote the suspicious val-
ue of the suspicious statements, and W(i) denotes the
weight value of the suspicious statements. The mag-
nitude of the weight value of the suspicious utterance
is used as a constraint for selecting the modification
point when selecting the modification point.

3.2. Patch Generation
Weighted fusion similarity focuses on ingredient
selection using code similarity, and repair of buggy
program using code similarity is mainly based on two
theories: redundancy theory and plastic surgery con-
jecture. These two theories coincide in stating that
there may be correct patches in the buggy program
that can repair the buggy program. Based on these two
theories, we adopt a weighted fusion similarity calcu-
lation to select program statements that are similar
to the buggy statements as the ingredient needed for
repair in order to make the ingredient selection meth-
od more appropriate and the program repair more ef-
ficient.
However, in this paper, the weighted fusion similarity
mainly refers to combination of the similarity of the
textual features and that of the contextual environ-
ment features at the modification points. The contex-
tual environment features include the characteristics
of the variables, the characteristics of the names,
return value types, and parameters of the methods
containing in the ingredient and modification points.
After obtaining the text feature similarity and the
context feature of the modification point, a weighted
fusion is obtained, which is an important constraint
for ingredient selection to guide the ingredient selec-
tion process.
When calculating the similarity of text features be-
tween program segments, a strict distinction is made
between system identifier similarity and user-defined
identifier similarity. The system identifier similarity

743Information Technology and Control 2022/4/51

and user-defined similarity are calculated separately
from the Levenshtein distance. The text feature simi-
larity between program segments is the weighted sum
of the system identifier similarity and the user-de-
fined identifier similarity, as shown in Equation (5).

1 2* *simEdit s simSystem s simUser= + , (5)

where simEdit denotes the text feature similarity, s1
denotes the weight of the system identifier similari-
ty, s2 denotes the user-defined identifier similarity
weight. The simSystem denotes the calculated system
identifier similarity, and simUser denotes the calcu-
lated user-defined identifier similarity. In this Equa-
tion, the weight coefficient satisfies s1 + s2 =1.
To obtain the contextual environment features of the
modification point and the repair ingredient, it is nec-
essary to extract the method features of the method
in which the repair ingredient and the modification
point are located, as well as the variable features
contained in the modification point statement and
the repair ingredient. The method features contain
the return value type of the method, the name of the
method, and the parameters passed in the method.
The variable features contain the type of the variable
and the name of the variable. After obtaining the con-
textual environment features, the method features
and variable features are put into the set, and then
the similarity of method features and the similarity
of variable features between the ingredient and the
modification point are calculated separately using the
Dice similarity coefficient.
Assuming that the similarity feature of a material and
the program text of the modification point is sim1, the
feature attribute is sim2, and the variable attribute
feature is sim3, the similarity between the material
and the modification point is shown in Equation (6).

1 1 2 2 3 3* * *totalSim w sim w sim w sim= + +
(6)

, (6)

where totalSim is the total similarity value, sim1
represents the similarity of program text features
between ingredients and modification points, sim2

represents the similarity of method features between
ingredients and modification points, sim3 represents
the similarity of variable features between ingredi-
ents and modification points, and w1, w2 and w3 are the
weight coefficients of text features, method features,

and variable features respectively. Among them, w1,
w2 and w3 satisfy w1+w2+w3=1.
After obtaining the similarity values of ingredients
and modification points, the total similarity value is
set to the ingredients and the ingredient space is re-
constructed according to the total similarity value
size. When the repair ingredient is selected for the
modification point, it is preferred according to the
similarity weight size of the repair ingredient.

3.3. Patch Generation
When repair a buggy program, the large number of
candidate patches may have to be verified and the test
case set executed multiple times before the correct
patch for the buggy program is found. In the previous
program automatic repair, the execution of test cas-
es was random, so a situation arose where some test
cases in the test case set might be executed multiple
times over. Random execution of test cases is not only
inefficient in validation, but also causes waste of com-
puting resources and prolongs test case execution
time.
To address the inefficiency of the long execution time
of test cases in existing repair techniques. We use a
test case prioritization technique to prioritize test
cases by recording the execution information of test
cases at the time of individual validation. The can-
didate patch and test case mapping relationship is
shown in Figure 2, where CP is the set of candidate
patches generated during individual validation, T is
the set of test cases, and cpn is the correct patch that
passes all test cases. During the validation process,
the following two phenomena were observed.
1 There is a partial overlap of test cases executed in

the n-1 candidate patches before the correct patch
cpn is found.

2 Since individual validation ends the validation
process for that individual when a test case valida-
tion failure is encountered, there is a case of partial
execution of test cases in the test case set at this
time.

Given the above two phenomena, in Figure 2, the di-
rected line segment indicates the test cases that the
patch has been executed, and patch cpn is the cor-
rect patch that passed all test cases. From Figure 2, it
can be seen that the number of times each test case
is executed before the correct patch is found is dif-

Information Technology and Control 2022/4/51744

Figure 2
Mapping between patch candidates and test cases

ferent, reflecting the different bug recognition capa-
bilities of the test cases. Our uses test case prioritiza-
tion techniques based on bug recognition capability
to rank test cases in descending order according to
their number of executions and priority the test cases
with the highest number of executions during verifi-
cation. For each execution of a test case, the marker
recording the number of executions of that test case
is added by one, and test cases with the same number
of executions are randomly selected for verification.
After each candidate patch is verified, the test cases
are sorted in descending order according to the num-
ber of times they were executed. If a candidate patch
passes the validation of all test cases, the candidate
patch is considered to be a valid patch.

3.4. WSGRepair
Algorithm 1 depicts the overall flow of the system.
According to Algorithm 1, the buggy program repair
tool WSGRepair is implemented in Java program-
ming language by combining weighted fusion simi-
larity and genetic programming. Given a bug source
program P and its corresponding test case set T. In
(lines 1-2) of this algorithm, a sequence of suspicious
statements is located using the fault localization tool
to derive a sequence of suspicious statements, and ac-
cording to the minimum suspicious value minSus set
by the program and the maximum modification. Lines
3 to 4 indicate the initialization operation of the pop-
ulation and the setting of the fitness function of the
initial population, in which each individual has the
same value of the fitness function. Lines 6 to 19 of the
algorithm indicate the specific process of individual

cp1

cp2

cp3

cpj

cpn

..
....

..
....

t1

t2

t3

tg

tm

..
....

..
....

CCPP TT

Algorithm 1: WSGRepair repair algorithm

Input: P // buggy program
T // Test case sets
OperatorSpace // Operator space
popSize // Population size
IngredientSpace // Ingredient Space
Output: cp // Valid patches through all test cases
begin
1 SusList ← FaultLocalization(T,P)
2 ModList ← GetSusSpace(SusList,minSus,maxMod)
3 Pop ← InitPopulation(popSize)
4 InitFitness(Pop)
5 for i ← 1 to maxMut do
6 parent ← URSelect(Pop,Fitness)
7 modPoint ← WRSelect(ModList)
8 Op ← URSelect(OperatorSpace)
9 if canApplyOp(Op,modPoint) then
10 if opNeedIngredients(Op) then
11 newIngredientSpace←resetIngSpace

(IngredientSpace,modPoint)
12 fixIngredient←WRSelect(newIngredientSpace)
13 child←generateNewVariant(parent,modPoint,

Op, fixIngredient)
14 else
15 Child ← generateNewVariant(parent,mod-

Point,Op)
16 Offsprings add child
17 end for
18 for i ← 1 to maxCrossover do
19 parent ← URSelect(Pop)
20 child ← URSelect(Offsprings)
21 modPoint ← selectModLine(child)
22 NewChild ← Crossover(parent,child,modPoint)
23 Offsprings add Newchild
24 end for
25 exeNum ← Validation(T,Offsprings)
26 T’ ← testCasePariority(T)
27 Similarity ← totalSim(child)
28 Fitness ← fitFunction(exeNum, Similarity, Off-
springs)
29 Pop←WRSelect(PopSize,Offsprings,parents,Fitness)
30 until ∃cp Î Offsprings passed all the testcases
31 return cp
end

745Information Technology and Control 2022/4/51

variation in the population. Lines 20 to 26 of the al-
gorithm describe the specific implementation of the
crossover of individuals in the population. Lines 27
to 31 represent the specific process of individual val-
idation and selection. Lines 6 to 31 of the algorithm
are repeated until an individual meets the statute re-
quirement of passing the entire test case set or reach-
es the maximum loop termination condition set by
the repair program.

4 Experimental Study
4.1. Experimental Setup and Design
We implement the tool WSGRepair in Java with the
code parsing tool Spoon [20] and the fault localization
tool GZoltar [22], running on Ubuntu 18.04 LTS, 2.40
GHz Intel(R) CPU, and 8G of running memory.
Referring to the experimental setup of existing repair
techniques, the maximum running time of the program
set by this method is 120 minutes. In the fault localiza-
tion phase, the minimum suspicious threshold set is
0.5, the maximum number of modification points set is
50, the maximum number of iterations of the program
and the number of individuals per generation of the
population is 10. The maximum number of variants is
1.5 times of the number of individuals per generation
of the population, and the crossover probability is 0.2
times of the number of individuals per generation of
the population. Therefore, at most 10×1.5 + 10×0.2×2
= 19 individuals are generated per generation, and the
whole repair process generates at most 19×10 = 190
candidate patches. For the similarity weight coeffi-
cients in WSGRepair, s1 and s2 are 1/3 and 2/3 in Equa-
tion (5), respectively. The similarity weights w1, w2 and
w3 are taken as 1/3 each in Equation (6).
To apply to the real world, automatic repair meth-
ods need execute fast. This runtime is acceptable to
us. When automated repair methods can synthesize
a patch suitable for testing, it is often found within a
few minutes. During the 20.6 days of our experiment,
this meant that we spent a lot of time on unfixed bugs
which were not fixed due to timeouts. We found that
increasing the runtime of each program not only can’t
improve the repair efficiency but also wastes a plenty
of time. Therefore, we choose the most running time
of 120 minutes.

When the number of iterations is too large, a large
number of candidate patches will be generated, and it
will take a long time to find the correct patch in the
search space. A patch that passes the test case can be
found in a short time in the search space. Too many
iterations will lead to too long search time, and ex-
panding the number of candidate patches often does
not increase the number of correct patches. Too many
iterations will lead to too long search time, and ex-
panding the number of candidate patches often does
not increase the number of correct patches. There-
fore, 10 generations are the most suitable for our re-
peated experiments, because it is acceptable for us to
do a complete experiment in 20.6 days.

4.2. Research Questions
Our evaluation aims to answer the following research
questions:
RQ1: How performance does WSGRepair fix real
world bugs?
In order to evaluate the performance of WSGRepair
on Defects4J, we mainly verify the repair effect of
the defect repair method from the following three as-
pects: (1) the number of successful repairs of the bug
program; (2) the number of candidate patches gener-
ated when the bug program is successfully repaired
Number of NCP (Number of Candidate Patches); (3)
The times for the buggy program to be successfully
repaired.
RQ2: Can WSGRepair outperform the compared ap-
proaches?
To investigate the difference in repair performance
between WSGRepair and other types of repair meth-
ods, we selected popular methods for comparison,
WSGRepair achieves better performance than the
compared approaches.
RQ3: What repair actions does WSGRepair use to fix
bugs?
The repair actions of WSGRepair are deeply studied
in order to generate program patches, and the specif-
ic defect types repaired by WSGRepair can be judged
through the repair actions.

4.3. Defects4J Dataset
Researchers have integrated bug database of different
sizes for different programming languages. In order
to test the effectiveness of the proposed repair tech-

Information Technology and Control 2022/4/51746

nique, the Defects4J, a mature set of bug database for
large real projects, was selected as the experimental
dataset after comparing the different features among
the bug database. Real program buggy are provided in
the Defects4J test set, which is a scalable bug data-
base. Defects4J by Just et al. [8] is a bug database that
consists of 357 real world bugs from five widely-used
open-source Java projects. In addition, each program
has a comprehensive test suite, and each bug can be
reproduced with accompanying test cases. At least
one of these provided test cases is capable of trigger-
ing a bug. Currently, Defects4J is respected by a wide
range of researchers in software engineering, and is
widely used in the fields of fault localization and bug
repair.
The version of Defects4J selected for this experiment
is 1.4.0, which collects one more Mockito project than
the initial version of the dataset, which consists of
38 bug programs. Since the test cases of two projects,
Closure Compiler and Mockito, do not conform to the
standard JUnit organization, they are excluded from
this experiment. This, the experimental projects in
this experiment are JFreeChart, Commons Math,
Joda-Time, and Commons Lang, with a total of 224
bugs. Table 1 gives the details of the four bug items in
the Defects4J test set used.

Table 1
Details of the experiment benchmark

Subject Project Bugs KLOC Test Cases

JFreeChart Chart 26 96 2,205

Commons
Math Math 106 85 3,602

Joda-Time Time 27 28 4,130

Commons
Lang Lang 65 22 2,245

Total - 224 231 12182

4.4. Experimental Evaluation
RQ1: What performance does WSGRepair do to fix
real world bugs?
Referring to existing repair techniques [7, 27], the re-
pair effectiveness of the repair method was verified
in three main aspects: (1) The number of success-
ful repairs of the buggy program. (2) The Number of

Candidate Patches (NCP) generated when the buggy
program was successfully repaired. (3) The times for
the buggy program to be successfully repaired. In or-
der to further demonstrate the repair effectiveness of
this repair method at multiple levels, the classic re-
pair tool GenProg was selected as the comparison ex-
periment for this experiment to reproduce the repair
process of GenProg and record the repair information
during the repair process for comparison.
This section uses a real-world example from our ex-
periments. Figure 3 shows a bug in the Defects4J
benchmark, Math20. Note that in this article, a line
of code that begins with “+” indicates a newly added
correct code, and a line that begins with “-” indicates
a buggy code to be deleted.

Figure 3
Fragment program with the buggy and the corresponding
correct code in WSGRepair

Figure 3 shows an example of a bug caused by the
return statement on line 921. To fix it, the developer
modified the original return expression and added
a return statement. This motivates us to search for
similar code through code structure features as well
as code context features, extract repair components,
and use them for mutation operators, such as expres-
sion level. At the same time, GenProg does not fix this
bug because the GenProg search space is too large.
GenProg mutation operators are all random, and ran-
domness will cause the search space of the program
to be too large. However, enlargement of the search
space does not necessarily improve the probability of
correct patches. Therefore, we use the code similarity
to greatly reduce the search space and improve the re-
pair success rate.
Table 2 shows the comparison between WSGRepair
and GenProg on the four major items of Chart, Math,
Lang, and Time. GenProg can successfully repair 28
bugs in the Defects4J dataset, with a success rate of

747Information Technology and Control 2022/4/51

Table 2
Comparison with GenProg on Defects4J

Project bugs WSGRepair GenProg

Chart 26
C1,C3,C5,C7,C12,C13,C15,C19,C25 C1,C3,C5,C7,C13,C15,C25

å=9 å=7

Math 106

M2,M5,M7,M8,M20,M28,M32,M40,M44,M49,
M50,M53,M60,M64,M70,M71,M73,M78,M80,

M81,M82,M84,M85,M95

M2,M5, M8,M28,M40,M49,M50,M53,
M60,M70,M71,M73,M78,M80,M81,M82,

M84,M85,M95

å=24 å=19

Lang 65
L7,L10 -

å=2 å=0

Time 27
T7 T4,T11

å=1 å=2

Total 224 36 28

Precision - 16.07% 12.50%

Figure 4
Venn diagram comparing WSGRepair and GenProg restoration

Chart(C)-12,19
Math(M)-
7,20,32,44,64
Lang(L)-7,10
Time(T)-7

Chart(C)-1,3,5,7,13,15,25
Math(M)-
2,5,8,28,40,49,50,53,60,70,7
1,73,78,80,81,82,84,85,95

Time(T)-4,11

WSGRepair GenProg

and NCP details for the methods WSGRepair and

12.50%, while WSGRepair can successfully repair 36
bugs, with a success rate of 16.07%. Compared with
GenProg, the repair accuracy of WSGRepair is im-
proved by 28.6%, which is mainly because the weight-
ed fusion similarity measure developed in WSGRe-
pair can select repair ingredients more accurately.
Thereby speeding up the program patch search pro-
cess, improve the program repair efficiency. In con-
trast, there is no corresponding ingredient selection
strategy in GenProg, which fails to better select bug

repair ingredients, resulting in its failure to generate
effective patches for bug programs within the speci-
fied repair time or number of program evolutions.
Figure 4 shows the comparison Venn diagram of bug
program repair of WSGRepair and GenProg. From
Figure 4, we can visually see that on the Chart proj-
ect, WSGRepair can repair two bug programs C12
and C19 that GenProg failed to repair. On the Math
project, WSGRepair can repair M7, M20, M32, M44,
and M64 that GenProg failed to repair, totaling five

Information Technology and Control 2022/4/51748

bug programs. On the Lang project, WSGRepair can
repair two bug programs L7 and L10 that GenProg
failed to repair. On the Time project, WSGRepair can
repair the bug program T7, while GenProg can repair
two bug programs T4 and T11.
Table 3 collects specific verification times, run times,
and NCP details for the methods WSGRepair and
GenProg on the 26 bug programs that can be repaired
by both. For the specific runs, the data collected for

each buggy program are averaged over 10 runs in or-
der to reduce the effect of chance.
As seen in Table 3, the minimum time taken by Gen-
Prog to successfully repair a buggy program was 15.8
minutes and the maximum time was 118.4 minutes,
while the minimum time taken by WSGRepair to suc-
cessfully repair a buggy program was 5.9 minutes and
the maximum time was 63.4 minutes. The total time
taken by GenProg to repair these 26 buggy programs

Table 3
Detailed performance comparison with GenProg

Project Bug
ID Approach NCP

Valida-
tion time

(min)

Total
time

(min)

Chart
C1

GenProg 20 15.6 23.2

WSGRepair 11 7.3 14.3

C3
GenProg 58 17.3 32.3

WSGRepair 50 11.3 20.7

C5
GenProg 40 10.4 19.2

WSGRepair 9 2.2 10.7

C7
GenProg 38 10.7 15.8

WSGRepair 21 2.1 5.9

C13
GenProg 34 23.8 37.8

WSGRepair 15 9.1 15.8

C15
GenProg 46 11.3 25.3

WSGRepair 28 1.25 9.4

C25
GenProg 35 18.5 36.7

WSGRepair 16 8.2 23.5

Math
M2

GenProg 42 45.6 63.4

WSGRepair 12 11.4 23.4

M5
GenProg 63 58.2 68.3

WSGRepair 19 12.7 23.7

M8
GenProg 25 44.8 80.6

WSGRepair 14 11.2 22.8

M28
GenProg 53 66.2 89.1

WSGRepair 24 12.3 20.7

M40
GenProg 54 78.3 89.4

WSGRepair 40 31.5 63.4

M49
GenProg 43 90.2 100.4

WSGRepair 22 37.1 50.8

Project Bug
ID Approach NCP

Valida-
tion time

(min)

Total
time

(min)

M50
GenProg 20 21.5 43.6

WSGRepair 19 13.7 21.3

M53
GenProg 64 77.2 117.3

WSGRepair 41 11.9 31.8

M60
GenProg 42 37.4 50.9

WSGRepair 20 11.7 22.3

M70
GenProg 38 18.3 23.8

WSGRepair 17 4 11.5

M71
GenProg 64 28.9 42.7

WSGRepair 26 10.4 21.5

M73
GenProg 54 24.2 40.2

WSGRepair 17 9.2 25.8

M78
GenProg 120 82.7 118.4

WSGRepair 57 17.3 30.8

M80
GenProg 27 17.8 23.8

WSGRepair 16 3.6 11.8

M81
GenProg 19 20.2 34.1

WSGRepair 11 2.1 12.2

M82
GenProg 128 27.3 33.5

WSGRepair 45 4.1 6.8

M84
GenProg 125 90.1 106.5

WSGRepair 66 16.8 32.5

M85
GenProg 30 13.8 26.3

WSGRepair 27 11.5 20.1

M95
GenProg 87 21.8 27.1

WSGRepair 31 3.5 13.5

749Information Technology and Control 2022/4/51

was 1369.7 minutes, with an average. The total time
spent by GenProg to repair these 26 buggy programs
was 1369.7 minutes, with an average time of 52.7 min-
utes, while the total time spent by WSGRepair was
567 minutes, with an average time of 21.8 minutes.
Compared with GenProg, the total time required for
repair by WSGRepair is reduced by 58.6% and the av-
erage time taken is reduced by 58.6%, indicating that
WSGRepair has a more obvious superiority in terms
of time efficiency of buggy program repair.
In terms of the number of candidate patches gener-
ated NCP, the smaller the NCP value, the fewer at-
tempts the buggy repair method has to make to find
the correct repair patch. The 53 candidate patches
are generated on average for each buggy program re-
paired by GenProg, while only 26 candidate patch-
es are generated on average for one buggy program
repaired by WSGRepair, which is 50.9% less than
GenProg. This indicates that WSGRepair can repair
buggy program after fewer program evolution times.
Analyzing the data in Table 3, we can see that the total
time span of GenProg to repair the buggy program is
106.2 minutes, and the maximum difference in NCP
is 109. The total time span of WsGRepair to repair
the buggy program is 57.5 minutes, and the maximum
gap of NCP is 57. The repair time and NCP values of
each buggy program in Table 3 show that the difficulty
of repairing each buggy program is different and the
time efficiency is also very different.
In order to visually compare the bug repair efficiency
as well as to further explore the variability between
different buggy program, a line graph of the total
time spent on bug repair for both repair methods was
drawn, as shown in Figure 5, with the x-axis repre-
senting the buggy program that can be repaired and
the y-axis representing the total time spent on bug
repair (in minutes). According to Figure 5, it can be
visualized that the total time taken by WSGRepair to
repair buggy program is much less than the total time
required by GenProg, which indicates that WSGRe-
pair has a great efficiency gain in terms of time effi-
ciency of repairing buggy program.
Figure 6 is a histogram of the NCP comparison of the
number of candidate patches, with the x-axis repre-
senting the buggy program and the y-axis represent-
ing the number of candidate patches generated by re-
pairing that buggy program. As can be seen in Figure
6, for each different buggy program, the NCP values

Figure 5
Run time comparison with GenProg

Figure 6

0

20

40

60

80

100

120

C1 C5 C1
3

C2
5

M
5

M
28

M
49

M
53

M
70

M
73

M
80

M
82

M
85

Running
time/min WSGRepair GenProg

Figure 6 is a histogram of the NCP comparison of the

0

20

40

60

80

100

120

140

C1 C5 C13 C25 M5 M28M49M53M70M73M80M82M85

NCP
WSGRepair GenProg

Figure 6
Comparison with GenProg NCP numbers

generated by the repair are different, and the repair
efficiency improved by WSGRepair on each buggy
program relative to GenProg is also different. Even for
the same program, such as C1 to C25 and M2 to M95,
the time taken to repair these bug programs and the
number of program evolution repair are different, all
with different degrees of data fluctuation. This is be-
cause each buggy program contains different types of
bugs, the difficulty of repair, especially the bug items
in the dataset Defects4J originated from the actual
development, the size of the project and the project
development time are different. For example, Math
project development time up to 11 years. These fac-
tors lead to the actual repair of bug items when the
difficulty of repair is also very different, repair dif-

Information Technology and Control 2022/4/51750

Figure 7
Comparison with GenProg candidate patch validation time

ferent buggy program required the cost of repair dif-
ferent buggy program also varies. On the other hand,
this also shows that in the actual industrial program
bug repair, the repair law of automatic repair of buggy
program is not obvious, and the difficulty of program
repair cannot be clearly judged.
In order to improve the candidate patch verification
efficiency, a test case prioritization technique based
on the buggy identification capability is adopted in
the verification process. To further show the efficien-
cy improvement effect, Figure 7 shows the compari-
son of the average verification time for each individ-
ual program, with the x-axis representing the buggy
program and the y-axis representing the average ver-
ification time of the buggy program (in minutes).
According to Figure 7, it is obvious that the average
verification time of WSGRepair when verifying indi-
viduals is smaller than that of GenProg, which indi-
cates that the adopted test case sequencing technique
can improve the efficiency of individual verification.
Combined with the detailed data of individual ver-
ification in Table 3. The total verification time per
buggy program repair by GenProg is 37.4 minutes on
average, and the average verification time per candi-
date patch is 0.78 minutes. While the total verification
time per buggy program repair by WSGRepair is 10.7
minutes on average, and the average verification time
per candidate patch is 0.46 minutes. Compared with
GenProg, the total verification time of WSGRepair
can save 71.4% and the average verification efficien-
cy can be improved by 41%, which shows that the test
case prioritization technique adopted by WSGRepair
can indeed speed up patch verification and improve
individual verification efficiency.

Table 4
Comparisons with existing tools on Defects4J

project bugs WSGRepair CapGen SimFix jKali jMutRepair

Chart 26 9 4 4 6 4

Math 106 24 16 14 14 11

Lang 65 2 5 9 0 1

Time 27 1 0 1 2 1

Total 224 36 25 28 22 17

Precision - 16.07% 11.16% 12.50% 9.80% 7.59%

In order to improve the candidate patch verification

0

0.5

1

1.5

2

2.5

C1 C5 C13 C25 M5 M28M49M53M70M73M80M82M85

Average
patch

validation
time/min

WSGRepair GenProg

RQ2: Can WSGRepair outperform the compared ap-
proaches?
We compare WSGRepair with four automatic pro-
gram repair approaches. SimFix [7], CapGen [27],
jKali [17] and jMutRepair [17], which have been eval-
uated on the Defects4J benchmark within our knowl-
edge.
Table 4 shows the comparison results. The baselines
results are directly extracted from existing literature
[7, 17, 27]. Compared with these techniques, WSGRe-
pair outperforms all of them in terms of the number of
correctly repaired bugs and precision.
The number of repairs on the four major projects of
Lang and Time is compared. From the table, we can
see that WSGRepair can successfully repair 36 bug
programs, CapGen can successfully repair 25 bug

751Information Technology and Control 2022/4/51

programs, SimFix can successfully repair 28 bug
programs, jKali can successfully repair 22 bug pro-
grams, and jMutRepair can successfully repair 17
bug programs. WSGRepair repair 11, 8, 14, and 19
more than CapGen, SimFix, jKali, and jMutRepair.
Our approach is improving the success rate of buggy
program repair by 28.6%, 64%, 29%, 64% and 112%
compared with the GenProg, CapGen, SimFix, jKali
and jMutRepair. The main reason why WSGRepair
repair outperforms these four repair methods is that
not only the similarity between the material and the
modified point program fragment is taken into ac-
count, but also the similarity measure between the
contextual environment information is introduced. It
is able to find the repair more precisely materials and
improve the repair efficiency.
RQ3: What repair actions does WSGRepair use to fix
bugs?
In this research problem, the repair actions of WS-
GRepair are deeply studied. The type of repair oper-
ation is selected by WSGRepair to generate program
patches. The specific defect types repaired by WS-
GRepair can be judged through the repair actions. We
manually analyzed the 36 correct patches generated
by WSGRepair on Defects4J and counted the differ-
ent repair actions to generate the correct patches.
It can be seen from Table 5 that WSGRepair uses 17
types of repair actions. The use of multiple repair ac-
tions has proven that WSGRepair can repair many
different types of bugs, therefore WSGReapir can be
applied to the industrial scenarios in the future.
The above results illustrate that WSGRepair can re-
pair many types of bugs. It can be seen from Table 6
that WSGRepair repairs more bug types than Cap-
Gen, SimFix, jKali and jMutRepair.
The experiment results show that WSGReapir can
repair different types of bugs. Our method will yield
decent performance if it applies to C, C++ and python
languages, because Java language has many similari-
ties with the language types of the three languages C,
C++ and python.
We take the program with the buggy program and its
current test suites as input. There is at least one failed
test case that makes the program fail. The output is
zero for the automatic program repair method, or
the output is one patch or multiple patches. The au-
tomatic program repair consists of two parts: how to

Table 5
Description of Repair actions

Repair Actions Number of times
repair operations

Assignment
modification 6

addition 10

Conditional
Expression

modification 5

removal 1

expansion 2

Conditional
Branch addition 4

Method Call

modification 2

removal 5

addition 3

Loop addition 1

Variable

addition 2

modification 5

removal 1

Return
Expression

addition 1

modification 6

Object
Instantiation

modification 2

addition 2

Table 6
Number of repair actions compared to other repair methods

Repair Actions Total number of repair types

WSGRepair 17

CapGen 12

SimFix 14

jKali 10

jMutRepair 9

find the location of the bug and how to generate the
code segment for the bug. To address the repair prob-
lem, we treat the buggy program and its code chang-
es at a potential location as an individual, and treat
all such individuals as a huge search space. When we
look for individuals which can fix bugs in the search
space, we make changes to the code fragments (such
as additions, deletions, or modifications to the code),

Information Technology and Control 2022/4/51752

generate patches after the changes, and finally verify
whether the generated patches pass the test suites.
Passing the test suites is an important indicator to
measure the executable after we repair the source
code, because the number of candidate patches gen-
erated is large, and other bugs may be introduced.

5. Threats to Validity
In this work, we on Defects4J evaluated our ap-
proach in repair 36 real world bugs, a threat to our
work being that the number of bugs was not large
enough nor representative. In addition to Defects4J
we also use IntroClassJava for validation to miti-
gate the threat of WSGRepair generality. The reason
we choose the Java language. 1.Using the same data
set is convenient for comparison and verification of
different methods. 2.The ease of use of the dataset.
However, a single dataset may cause the automatic
repair method to face the problem of overfitting and
affect the objective evaluation of its effect. There-
fore, in future research, different datasets should
be utilized. We will generalize to datasets in other
languages in our follow-up work. Le Goues et al. [12]
propose a C language IntroClass dataset. IntroClass-
Java is the Java language version of the IntroClass
dataset, by Durieux and Monperrus [2] using script
automation to convert C/C++ language programs
to Java programs by manually defining conversion
rules. On the other hand, our job is to evaluate actu-
al bugs in large Java programs, and we note that it is
possible to collect more bugs in the real world, but it
requires more human effort.
WSGRepair performs a weighted fusion of feature
similarity using program fragment features and con-
textual environment features between ingredient and
modification points. The technique searches for simi-
lar code at the statement level, combines the relevant
variables in the buggy statement and the contextual
environment features of the method it is in to select
the repair ingredient. Evolution of buggy program
using genetic programming to find valid patches that
pass all test cases. To accelerate patch verification
and improve patch verification efficiency, test cases
are prioritize using a test case prioritization tech-
nique based on bug recognition capabilities.

6. Related Work
In order to reduce the time and labor cost of the re-
pair process, the automatic program repair method
has been developed. This method automatically gen-
erates patches to repair buggy in the program based
on a given program problem. Le Goues et al. [11,13,26]
was the first to apply genetic programming to the re-
pair of buggy program and proposed GenProg, a repair
tool based on redundancy theory and plastic surgery
conjectures. GenProg applies genetic programming
to mutate existing source code for patch generation.
However, GenProg does not select the repair ingredi-
ent based on the attribute characteristics of the cur-
rent modified location. We use a weighted fusion sim-
ilarity metric to select repair ingredients for the point
to improve the repair success rate. In 2016, a study by
Yokoyamaet et al. [31] and others indicated that using
code similarity can effectively reduce the size of the
search space and accelerate the repair process. Sim-
Fix [7], CapGen [27], LSRepair [14] and DeepRepair
[28] have implemented corresponding repair tools
based on the above theory and demonstrated the ef-
fectiveness of the proposed method on the dataset
Defects4J [8].
For the genetic programming class of bug repair meth-
ods, a fine-grained fitness function was proposed by
de Souza et al. [1], who suggested the use of intermedi-
ate program states. However, this technique involves
inspecting the source code and the collection and use
of checkpoints introduces additional overhead. The
fitness function proposed by Jang et al. [4], which
records the number of modification points touched
by a test case in addition to the failed test cases, is a
more lightweight approach than de Souze et al. [1] ap-
proach, but it does not take into account the test case
output results. In the study by Petke et al. [21], a two-
stage adaptation function was proposed. First, the
usual Boolean fitness assessment is used to compare
program mutants, preferentially selecting the pro-
gram individual that passes more test cases. However,
when two program individuals have the same Boolean
fitness, a more fine-grained calculation of the fitness
function is used based on the distance between the in-
dividuals expected and actual output. WSGRepair use
the test case execution information to determine the
program repair status, if there is a child individual can
pass all the test cases, then the child individual will be

753Information Technology and Control 2022/4/51

Table 6
Comparison between automatic repair methods

Automatic repair
method Language Characteristic

CapGen Java CapGen not only increases the number of correct patches in the search space, but also
solves the problem of further expanding the search space.

DeepRepair Java

White et al. proposed an automatic program repair technology (DeepRepair) to infer code
similarity by deep learning. DeepRepair can sort code fragments according to the similarity
of suspicious elements, and convert statements by mapping identifiers outside the range to
similar identifiers within the range.

Genpat Java
Jiang proposed a program conversion method, called GENPAT. GENPAT infers program
transformation through the statistical information of code context and large code corpus,
it can be used in system editing and program repair.

SimFix Java
SimFix extracts an abstract search space from existing patches. Then extracts similar
codes from buggy source programs to form a specific candidate patch search space. Finally,
SimFix obtains the program patch by the intersection of the above two search spaces.

LSRepair Java LSRepair utilizes three similar code search strategies on the code repository in meth-
od-level granularity to search for repair ingredients.

PraPR JVM
bytecode

PraPR repaired buggy code on the basis of bytecode, implementing the first bytecode-lev-
el repair tool. Experimental results show that bytecode-mutation-based program repair
techniques have good prospects for repair applications.

considered as the repair patch of the bug program,
complete the repair task, stop the repair and output
the program patch.
Many existing techniques are dedicated to identify-
ing the differences between two codes and consid-
ering the characteristics between the codes. White
et al. [28] proposed DeepRepair, an automatic repair
technique that uses deep learning to reason about
code similarity. The technique can sort code frag-
ments based on similarity to suspicious elements and
can transform statements to in-range similar identi-
fiers by mapping out-of-range identifiers. The repair
method ssFix proposed by Xin et al. [29] searches for
code similar to the buggy code from the code base
as the ingredient for repairing the patch. Wang et al.
[24] also proposed the repair tool CRSearcher based
on the basic idea of reusing similar code. CRSearch-
er extends the code search to other projects, applies
token-based code similarity measures, and does not
require similar code to be necessarily different from
buggy code. Jiang et al. [7] proposed SimFix which ex-
tracts an abstract search space from existing patches
and similar code from bug source programs to form a
concrete candidate patch search space, and obtains

program patches from the intersection of these two
search spaces. Subsequently, Jiang et al. [6] proposed
another program transformation method GENPAT,
which inferred program transformations based on
code context and statistical information from a large
corpus of code, and could be used for both system ed-
iting and application to program repair. WSGRepair
determines the similarity between program frag-
ments with the help of the program’s attribute char-
acteristics in order to select the repair ingredients
needed for the repair.
Wen et al. [27] proposed CapGen, a context-aware
technique for automatic repair of software defects,
which increases the number of correct patches in
the search space and also solves the problem of fur-
ther expansion of the search space due to the use of
finer granularity, making it more difficult to search.
The problem of further expanding the search space
and increasing the search difficulty due to the use of
finer granularity. Kim et al. [9] extracted abstract syn-
tax tree changes from manually written patches and
contextual environments, and only locations with the
same contextual environment changes were made to
filter out invalid change locations. In selecting the In-

Information Technology and Control 2022/4/51754

gredients, WSGRepair mainly consider the method
characteristics of the location of the bug statement
and the property characteristics of the variables con-
tained in the bug statement, while taking into account
the semantic characteristics contained in the pro-
gram statement itself. Unlike the approach of bug re-
pair using contextual environment, Ghanbari et al. [3]
repaired buggy program on the basis of bytecode, im-
plementing the first bytecode-level repair tool PraPR.
PraPR experimental results show that bytecode-mu-
tation-based program repair techniques have good
prospects for repair applications. Table 7 lists com-
parison between the repair in the automatic repair
method and the types of languages supported.

7. Conclusion
In this paper, we propose a novel automatic program
repair approach, which is based on weighted fusion
similarity with genetic programming. WSGRepair
can find the correct repair ingredient faster and im-
prove the efficiency of buggy program repair by com-
bining the ingredient with the environmental charac-
teristics of the modification point. At the same time, in

order to speed up the efficiency of patch verification,
when verifying a single program, test cases are prior-
itized using the test case prioritization technique. We
conducted a large-scale experimental study of 224
real world bugs on the Defects4J benchmark. We find
out that the systems under consideration can synthe-
size patch for 36 out of 224 bugs.
There is still a lot of work to be done to fully utilize the
advantages and potential of automatic program repair
technology in the software maintenance process. For
example, our future work includes refine the repair
granularity and expand ingredient space to enhance
its performance on real world bugs. Therefore, in fu-
ture work, we will collect AST changes and their AST
contexts from human-written patches to provide a
rich resource for patch generation.

Acknowledgements
This work was partially supported by Cultivation
Programme for Young Backbone Teachers in Henan
University of Technology, Key scientific research
project of colleges and universities in Henan Prov-
ince (No.22A520024), Major Public Welfare Project
of Henan Province (No.201300311200) and National
Natural Science Foundation of China (Nos. 61602154,
61340037, 62206087).

References
1. de Souza, E. F., Goues, C. L., Camilo-Junior, C. G. A

Novel Fitness Function for Automated Program Re-
pair Based on Source Code Checkpoints. Proceedings
of Proceedings of the Genetic and Evolutionary Com-
putation Conference, 2018, 1443-1450. https://doi.
org/10.1145/3205455.3205566

2. Durieux, T., Monperrus, M., IntroClassJava: A Bench-
mark of 297 Small and Buggy Java Programs. [Research
Report] hal-01272126, Universite Lille 1. 2016, Univer-
site Lille 1, 2016.

3. Ghanbari, A., Zhang, L., PraPR: Practical Program Re-
pair Via Bytecode Mutation. Proceedings of 2019 34th
IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 2019, 1118-1121.
https://doi.org/10.1109/ASE.2019.00116

4. Jang, Y., Phung, Q N., Lee, E., Improving the Efficien-
cy of Search-Based Auto Program Repair by Adequate
Modification Point. Proceedings of International
Conference on Ubiquitous Information Management

and Communication. Springer, Cham, 2019, 694-710.
https://doi.org/10.1007/978-3-030-19063-7_56

5. Ji, T., Chen, L., Mao, X., et al. Automated Program Re-
pair by Using Similar Code Containing Fix Ingredients.
Proceedings of 2016 IEEE 40th Annual Computer
Software and Applications Conference (COMPSAC).
IEEE, 2016, 1: 197-202. https://doi.org/10.1109/COM-
PSAC.2016.69

6. Jiang, J., Ren, L., Xiong, Y., et al. Inferring Program
Transformations from Singular Examples Via Big
Code. Proceedings of 2019 34th IEEE/ACM Interna-
tional Conference on Automated Software Engineering
(ASE). IEEE, 2019: 255-266. https://doi.org/10.1109/
ASE.2019.00033

7. Jiang, J., Xiong, Y., Zhang, H., et al. Shaping Program
Repair Space with Existing Patches and Similar Code.
Proceedings of 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2018,
298-309. https://doi.org/10.1145/3213846.3213871

755Information Technology and Control 2022/4/51

8. Just, R., Jalali, D., Ernst, M D., Defects4J: A Database
Of Existing Faults to Enable Controlled Testing Studies
for Java Programs. Proceedings of 2014 International
Symposium on Software Testing and Analysis. 2014:
437-440. https://doi.org/10.1145/2610384.2628055

9. Kim, J., Kim, S., Automatic Patch Generation with
Context-Based Change Application. Empirical Soft-
ware Engineering, 2019, 24(6), 4071-4106. https://doi.
org/10.1007/s10664-019-09742-5

10. Koza, J. R. Genetic Programming as a Means for Pro-
gramming Computers by Natural Selection. Statis-
tics and computing, 1994, 4(2), 87-112. https://doi.
org/10.1007/BF00175355

11. Le Goues, C., Dewey-Vogt, M., Forrest, S., et al. A Sys-
tematic Study of Automated Program Repair: Fixing
55 out of 105 Bugs for $8 Each. Proceedings of 2012
34th International Conference on Software Engineer-
ing (ICSE). IEEE, 2012, 3-13. https://doi.org/10.1109/
ICSE.2012.6227211

12. Le Goues, C., Holtschulte, N., Smith, E. K., et al. The
ManyBugs and IntroClass Benchmarks for Automat-
ed Repair of C Programs. IEEE Transactions on Soft-
ware Engineering, 2015, 41(12): 1236-1256. https://doi.
org/10.1109/TSE.2015.2454513

13. Le Goues, C., Nguyen, T V., Forrest, S., et al. Genprog: A
Generic Method for Automatic Software Repair. IEEE
Transactions on Software Engineering, 2011, 38(1), 54-
72. https://doi.org/10.1109/TSE.2011.104

14. Liu, K., Koyuncu, A., Kim, K., et al. LSRepair: Live Search
of Fix Ingredients for Automated Program Repair Pro-
ceedings of 2018 25th Asia-Pacific Software Engineer-
ing Conference (APSEC), IEEE, 2018, 658-662. https://
doi.org/10.1109/APSEC.2018.00085

15. Long, F., Amidon, P., Rinard, M. Automatic Infer-
ence of Code Transforms for Patch Generation. Pro-
ceedings of 2017 11th Joint Meeting on Foundations
of Software Engineering, 2017, 727-739. https://doi.
org/10.1145/3106237.3106253

16. Long, F., Rinard, M. Automatic Patch Generation by
Learning Correct Code. Proceedings of 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, 2016, 298-312. https://doi.
org/10.1145/2837614.2837617

17. Martinez, M., Monperrus, M. Astor: A Program Re-
pair Library for Java. Proceedings of International
Symposium on Software Testing and Analysis, Saa-
rbrücken Germany. CM, 2016, 441-444. https://doi.
org/10.1145/2931037.2948705

18. Mechtaev, S., Yi, J., Roychoudhury, A., Directfix: Look-
ing for Simple Program Repairs. Proceedings of 2015
IEEE/ACM 37th IEEE International Conference on
Software Engineering. IEEE, 2015, 1, 448-458. https://
doi.org/10.1109/ICSE.2015.63

19. Nguyen, H D T., Qi, D., Roychoudhury A, et al. Semfix:
Program Repair Via Semantic Analysis. Proceedings
of 2013 35th International Conference on Software
Engineering (ICSE). IEEE, 2013, 772-781. https://doi.
org/10.1109/ICSE.2013.6606623

20. Pawlak, R., Monperrus, M., Petitprez, N., et al. Spoon: A
Library for Implementing Analyses and Transforma-
tions of Java Source Code. Software: Practice and Expe-
rience, 2016, 46(9): 1155-1179. https://doi.org/10.1002/
spe.2346

21. Petke, J., Blot, A. Refining Fitness Functions in
Test-based Program Repair. Proceedings of IEEE/
ACM 42nd International Conference on Software
Engineering Workshops, 2020, 13-14. https://doi.
org/10.1145/3387940.3392180

22. Riboira, A., Abreu, R. The GZoltar Project: A Graphical
Debugger Interface. Proceedings of International Aca-
demic and Industrial Conference on Practice and Re-
search Techniques. Springer, Berlin, Heidelberg, 2010,
215-218. https://doi.org/10.1007/978-3-642-15585-
7_25

23. Saha, R. K., Lyu, Y., Yoshida, H., et al. Elixir: Effective
Object-oriented Program Repair. Proceedings of 2017
32nd IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE). IEEE, 2017, 648-
659. https://doi.org/10.1109/ASE.2017.8115675

24. Wang, Y., Chen, Y., Shen, B., et al. CRSearcher: Search-
ing Code Database for Repairing Bugs. Proceedings of
9th Asia-Pacific Symposium on Internetware, 2017, 1-6.
https://doi.org/10.1145/3131704.3131720

25. Weimer, W., Fry, Z P., Forrest, S., Leveraging Program
Equivalence for Adaptive Program Repair: Models and
First Results. Proceedings of 2013 28th IEEE/ACM
International Conference on Automated Software
Engineering (ASE). IEEE, 2013, 356-366. https://doi.
org/10.1109/ASE.2013.6693094

26. Weimer, W., Nguyen, T V., Le Goues, C., et al. Automat-
ically Finding Patches Using Genetic Programming.
Proceedings of 2009 IEEE 31st International Confer-
ence on Software Engineering. IEEE, 2009, 364-374.
https://doi.org/10.1109/ICSE.2009.5070536

27. Wen, M., Chen, J., Wum R., et al. Context-aware Patch
Generation for Better Automated Program Repair. Pro-

Information Technology and Control 2022/4/51756

ceedings of 2018 IEEE/ACM 40th International Con-
ference on Software Engineering (ICSE). IEEE, 2018,
1-11. https://doi.org/10.1145/3180155.3180233

28. White, M., Tufano, M., Martinez, M., et al. Sorting
and Transforming Program Repair Ingredients Via
Deep Learning Code Similarities. Proceedings of 2019
IEEE 26th International Conference on Software
Analysis, Evolution and Reengineering (SANER).
IEEE, 2019, 479-490. https://doi.org/10.1109/SAN-
ER.2019.8668043

29. Xin, Q., Reiss, S. P., Leveraging Syntax-related Code for
Automated Program Repair. Proceedings of 2017 32nd
IEEE/ACM International Conference on Automated

Software Engineering (ASE). IEEE, 2017: 660-670.27.
https://doi.org/10.1109/ASE.2017.8115676

30. Xiong, Y., Wang, J., Yan, R., et al. Precise Condition Syn-
thesis for Program Repair. Proceedings of 2017 IEEE/
ACM 39th International Conference on Software En-
gineering (ICSE). IEEE, 2017: 416-426. https://doi.
org/10.1109/ICSE.2017.45

31. Yokoyama, H., Higo, Y., Hotta, K., et al. Toward Im-
proving Ability To Repair Bugs Automatically: A Patch
Candidate Location Mechanism Using Code Simi-
larity. Proceedings of 31st Annual ACM Symposium
on Applied Computing, 2016, 1364-1370. https://doi.
org/10.1145/2851613.2851770

This article is an Open Access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

