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The main issue when dealing with the non-adaptive scalar quantizers is their sensitivity to variance-mismatch, the 
effect that occurs when the data variance differs from the one used for the quantizer design. In this paper, we consid-
er the influence of that effect in low-rate (2-bit) uniform scalar quantization (USQ) of Laplacian source and also we 
propose adequate measure to suppress it. Particularly, the approach we propose represents the upgraded version of 
the previous approaches used to improve performance of the single quantizer. It is based on dual-mode quantization 
that combines two 2-bit USQs (with adequately chosen parameters) to process input data, selected by applying the 
special rule. Analysis conducted in theoretical domain has shown that the proposed approach is less sensitive to 
variance-mismatch, making the dual-mode USQ more efficient in terms of robustness than the single USQ. Also, a 
gain is achieved compared to other 2-bit quantizer solutions. Experimental results are also provided for quantization 
of weights of the multi-layer perceptron (MLP) neural network, where good matching with the theoretical results is 
observed. Due to these achievements, we believe that the solution we propose can be a good choice for compression 
of non-stationary data modeled by Laplacian distribution, such as neural network parameters.
KEYWORDS: Scalar quantization, Laplacian source, neural network compression, SQNR.
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1. Introduction
Uniform scalar quantization (USQ) is extensively 
used in multiple data processing applications. The 
main attribute of USQ is the simplicity accompanied 
with the performance competitive to a more complex 
non-uniform quantization [10]. An extensive amount 
of research is dedicated to this topic, where different 
aspects were considered during the analysis and valu-
able conclusions were derived [9, 15−17]. That indeed 
helped to promote the USQ as an excellent candidate 
for various practical resource-constrained applica-
tions, such as speech coding [18] or neural network 
(NN) compression [1−3, 23]. 
Scalar quantizers are mostly designed for certain data 
source, whereby the Laplacian source is a frequently 
used one. This is because the Laplacian probability 
density function statistically models various real data 
such as speech [7, 10], image [10] or weights of a neu-
ral network [2]. Therefore, development of quantizers 
for the Laplacian source is significant from the prac-
tical point of view. In addition, quantizers are often 
designed for one variance value (usually the unit one) 
and applied to data with variance different from the 
designed one, which leads to mismatch in variance 
which further may cause a serious performance deg-
radation [10, 13, 14]. Therefore, robust quantizers are 
preferred in a variance-mismatch scenario, that is, 
the ones that are able to suppress mismatch effect as 
high as possible and accordingly to provide satisfacto-
ry performance in the desired range of variances [10].
A typical practical example of the occurrence of vari-
ance-mismatch can be found in NN compression, 
as the statistical properties of NN parameters (e.g. 
weights) can change. Namely, NN compression is an 
active research area where scalar quantization (espe-
cially uniform scalar quantization) plays an import-
ant role. The application of quantization technique 
assumes using a lower bit-length representation for 
NN parameters (weights, activations, etc.) instead 
of commonly used 32-bit floating point format (full 
precision). In this way, quantized (compressed) NN 
is obtained. On the other hand, quantized NN should 
offer competitive performance with respect to full 
precision NN and should also be as simple as possi-
ble, which further enables easier implementation on 
the devices with limited power or memory, e.g. edge 
devices. Hence, it is of special importance to develop 

an efficient quantization scheme, because it can sig-
nificantly contribute to the performance of quantized 
NN. Most of the available quantization schemes are 
based on fixed-length coding, where different code-
words length are employed including > 8 bits [23], 
8 bits [1], 4 bits [3], 2 bits [4, 5, 20, 21, 26] or even 1 
bit [8, 22, 27, 28]. It was reported that quantized NN 
provides a negligible decreasing of performance with 
respect to full precision NN when high bit lengths (≥ 
8 bits) have been employed, where compression ra-
tio ≤ 4 times was achieved. On the other hand, much 
higher compression ratios have been observed in the 
case of lower bit lengths (up to 16 times in case of 2 
bits) at the cost of a certain performance degradation 
of quantized NN. Based on the previously achieved 
results, it is clear that low-rate (low-level) quantiz-
ers are very important in NN compression. However, 
most existing low-rate solutions are not properly de-
signed in terms of NN parameter statistics (e.g. statis-
tic of weights), which may be one of the main reasons 
for the degradation of quantized NN performance. 
Therefore, during quantizer design, it is preferred to 
take into account the actual statistical distribution of 
NN parameters, which is done in this paper. 
This paper proposes a non-adaptive 2-bit (N = 4 levels) 
USQ intended for NN compression. Specifically, we in-
vestigate the variance-mismatch effect in case of 2-bit 
USQ and propose an adequate measure to deal with it. 
Note also that the practical significance of 2-bit quan-
tizers is large, as they have already been successively 
applied in several data processing applications such as 
speech coding [18, 19], image coding [11, 29] or, as men-
tioned, NN compression [4, 5, 20, 21, 26]. Regarding 
the implementation in NN compression, it was shown 
in [4, 5, 26] that 2-bit USQ can enable a good trade-off 
between performance and size of NN. Namely, USQ 
models have been used in papers [4, 5, 26], which are 
designed using different approaches and further adapt-
ed to the statistics of input data (usually weights), en-
abling a high level of robustness. Recall that adaptation 
requires the estimation of some additional parameters 
(e.g. mean and variance) from the input data, which are 
used to fit the quantizer codebook. Robust non-adap-
tive quantizers are often used as alternative to adaptive 
quantizers, where aforementioned additional steps can 
be avoided at the expense of some performance degra-
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dation. Note that such solutions may be adequate for 
NN compression, since NNs are more robust to change 
in data quality than e.g. speech, where adaptive solu-
tions are more preferable, as shown in [18, 19]. A 2-bit 
quantizer model for NN weights, which is non-adap-
tive and non-uniform one (based on logarithmic com-
pression function) with increased robustness property 
was proposed in [20].
The quantization approach presented here, used to in-
crease the robustness (that is, to reduce the sensitivity 
to variance-mismatch) of the non-adaptive 2-bit USQ, 
actually upgrades the approach from [20] introduced 
to enhance performance of the single quantizer. Name-
ly, the approach used in [20] is also related to Laplacian 
source and is based on scaling the quantizer key pa-
rameter, which resulted in increased performance in 
the variance range of interest. In this paper, we exploit 
the benefit offered by scaling, but in contrast to [20] we 
use two quantizers (the one with the scaled parame-
ters and the one with the initial parameter settings) to 
cover the entire variance range. Since two 2-bit USQs 
(with different parameter settings) are at disposal, the 
resulting quantizer is named dual-mode USQ. The 
introduced dual-mode USQ divides input data into 
segments called blocks (block-by-block processing), 
and then to quantize the current block it selects one 
of two USQs depending on the estimated statistical 
characteristic of the block. In that case, 1 extra bit is 
needed per each block to identify USQ used for that 
block, slightly increasing the bit rate with respect to 
the single USQ. On the other hand, data are more accu-
rate quantized using block-by-block data processing. 
The usefulness of mentioned data processing logic has 
been indicated in [6], where the gain in performance 
of quantized NN, obtained with block-by-block data 
quantization, was reported. Note that dual-mode sca-
lar quantizers have already been proposed for Lapla-
cian source, but for high bit rates and non-uniform 
quantizers [24, 25]. Namely, these solutions combined 
two adaptive quantizers with unequal support regions 
and equal number of quantization levels (restricted 
and unrestricted ones) for short data blocks (preferred 
for speech), favoring a more frequent utilization of the 
restricted quantizer to outperform single unrestricted 
quantizer. Instead of searching the content of a block as 
in [24, 25], in this papers selection among the two USQs 
is done based on the estimated block variance. The 
idea originates from [21], but few progressive steps are 
performed in this paper. We change a heuristically de-

termined step size value (key parameter) of the initial 
2-bit USQ by the one which is obtained by maximiza-
tion of performance for the particular variance, further 
we determine the best value for scaling factor (used to 
scale the initial step size) and also we propose an iter-
ative rule for determining the best switching threshold 
of the dual-mode USQ. 
Let us emphasize that the proposed 2-bit dual-mode 
USQ uses the same initial 2-bit USQ as the adaptive 
model in [26], whereby the adaptive model from [26] 
is equivalent to a switching scheme using 232 different 
2-bit USQs (as the data variance is quantized using 32 
bits). Due to utilization of smaller number of USQs (2 
vs. 232 USQs), our proposal is expected to offer qual-
ity of quantized data being between that of single 
non-adaptive and adaptive 2-bit USQ. However, our 
proposal reqiures fewer extra bits per block com-
pared to [26] (only 1 vs. 32 bits), making it more effi-
cient in terms of overall bit rate. For the 2-bit adaptive 
quantizers in [4, 5] the same complexity and bit rate 
requirements can be observed as for the one in [26]. 
In this paper the quantizers from [4, 5] are used as 
the baselines for performance comparison. However, 
references [4, 5] did not provide the quantizer-related 
analysis from the viewpoint of signal processing that 
should reveal their actual performance, which is very 
important. From that reason, here, we calculate their 
performances in the case of Laplacian PDF. 
In brief, this paper contributes with the following:
 _ We propose a scalar quantization solution based 

on dual-mode USQ, which combines two non-
adaptive 2-bit USQs with adequately selected 
parameters. It upgrades existing approaches used 
to improve the performance of single non-adaptive 
quantizer.

 _ We design quantizer for NN weights compression 
by taking into consideration statistics of NN 
weights, in contrast to the available quantizer 
solutions that are suboptimal in that context.

 _ This type of quantizer, to the best of the author’s 
knowledge, has not been proposed so far by other 
researchers for NN compression. 

 _ The quantizer model we propose can be viewed as 
a compromise solution achieved between a non-
adaptive 2-bit USQ whose robustness is not at 
the satisfactory level and a highly robust but more 
complex adaptive 2-bit USQ [26].
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 _ We verify theoretical results with experimental 
ones, obtained by quantizing the weights of trained 
MLP NN intended for image classification. 

2. Theoretical Model of Non-adaptive 
2-bit USQ

2.1. Description and Design of 2-bit USQ
The input-output characteristic of 2-bit USQ (N = 4 
quantization levels) is depicted in Figure 1, where Δ 
denotes the step size. Actually, Δ is a key parameter of 
USQ, whereas the interval [-2Δ, 2Δ] defines the sup-
port region.
If data to be quantized have probability density func-
tion (PDF) with infinite support, then, the quantiza-

Figure 1 
Input-output characteristic of the 2-bit USQ
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In Figure 2, we depict SQNR as a function of Δ. It can 
be observed that Δ = Δopt = 1.087 maximizes SQNR 
(SQNR (Δ = Δopt) = 7.07 dB) [26]. For comparison pur-
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2.2. A 2-bit USQ in Variance-mismatch Scenario 

Let us now consider the performance of the 
designed 2-bit USQ under variance-mismatch 
condition, that is, under condition that 2-bit USQ 
quantizes the Laplacian data having variance 
different from the designed one (σ2 ≠ σref2 = 1). Using 
PDF defined with (2), for distortion is obtained [21, 
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SQNR of the 2-bit single USQ for Δ = Δopt and                  
Δ = c∙Δopt (c = 0.42) in a wide dynamic range of the input 
data variances. 
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In Figure 3, we plot the SQNR (Equation (8)) 
versus σdB for 2-bit USQ (Δ = Δopt), where we 
assume the range [-15, 10] around the reference 
variance. It is obvious that a variance-
mismatch significantly affects the performance, 
as SQNR is degraded. Namely, SQNR rapidly 
decreases when moving further away from the 
designed (i.e. reference) variance. This 
indicates that the robustness enhancement is 
required. 

One efficient way to improve the performance 
of single USQ in the established variance range 
is to use the approach proposed in [20], which 
has already been successfully applied in case of 
non-uniform quantization. Particularly, it 
assumes scaling of the initial step size, Δ = 
c∙Δopt, where c is a real constant determined 
such that average SQNR (SQNRav) in a given 
range of width 25 dB is maximal, where: 
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and where m = 2500 denotes the number of 
variances taken into account. 

Figure 4 shows SQNRav in dependence on c, 
where we can see that c = copt = 0.42 gives a 
maximum.  

 
Figure 4 

Dependence of SQNRav on constant c. 
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according to designing method from [5] is sub-opti-
mal choice, as the loss in SQNR of about 4 dB is ob-
served. 
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In Figure 3, we plot the SQNR (Equation (8)) versus 
σdB for 2-bit USQ (Δ = Δopt), where we assume the range 
[-15, 10] around the reference variance. It is obvious 
that a variance-mismatch significantly affects the 
performance, as SQNR is degraded. Namely, SQNR 
rapidly decreases when moving further away from the 
designed (i.e. reference) variance. This indicates that 
the robustness enhancement is required.
One efficient way to improve the performance of sin-
gle USQ in the established variance range is to use the 
approach proposed in [20], which has already been 
successfully applied in case of non-uniform quantiza-
tion. Particularly, it assumes scaling of the initial step 
size, Δ = c∙Δopt, where c is a real constant determined 
such that average SQNR (SQNRav) in a given range of 
width 25 dB is maximal, where:
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and where m = 2500 denotes the number of variances 
taken into account.
Figure 4 shows SQNRav in dependence on c, where we 
can see that c = copt = 0.42 gives a maximum. 
The SQNR curve in case of scaled step size value, Δ 
= copt∙Δopt can be found in Figure 3, showing evident 
improvement compared to initial case, as negative 
SQNR values are avoided. In addition, observe that 
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2.2. A 2-bit USQ in Variance-mismatch Scenario 

Let us now consider the performance of the 
designed 2-bit USQ under variance-mismatch 
condition, that is, under condition that 2-bit USQ 
quantizes the Laplacian data having variance 
different from the designed one (σ2 ≠ σref2 = 1). Using 
PDF defined with (2), for distortion is obtained [21, 
26]:  
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Since the variance σ2 can change in a wide range 
around the reference variance (σref2 =1) it is usual to 
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In Figure 3, we plot the SQNR (Equation (8)) 
versus σdB for 2-bit USQ (Δ = Δopt), where we 
assume the range [-15, 10] around the reference 
variance. It is obvious that a variance-
mismatch significantly affects the performance, 
as SQNR is degraded. Namely, SQNR rapidly 
decreases when moving further away from the 
designed (i.e. reference) variance. This 
indicates that the robustness enhancement is 
required. 

One efficient way to improve the performance 
of single USQ in the established variance range 
is to use the approach proposed in [20], which 
has already been successfully applied in case of 
non-uniform quantization. Particularly, it 
assumes scaling of the initial step size, Δ = 
c∙Δopt, where c is a real constant determined 
such that average SQNR (SQNRav) in a given 
range of width 25 dB is maximal, where: 
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and where m = 2500 denotes the number of 
variances taken into account. 

Figure 4 shows SQNRav in dependence on c, 
where we can see that c = copt = 0.42 gives a 
maximum.  

 
Figure 4 

Dependence of SQNRav on constant c. 
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scaling causes a shifting of the SQNR curve obtained 
for initial step size (Δ = Δopt). The amount of shifting 
can exactly be defined using the following lemma. 
Lemma 1. The SQNR curves of the 2-bit USQ ob-
tained for step sizes Δ and c∙Δ are shifted for cdB, i.e. 
it holds:

opt optdB dB dBSQNR ( , ) SQNR ( , )c cσ σ⋅∆ = − ∆ . (10)

Proof of Lemma 1. Based on (8), we have that:
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and substituting them into (11) results in:
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The SQNR curve in case of scaled step size value,    
Δ = copt∙Δopt can be found in Figure 3, showing 
evident improvement compared to initial case, as 
negative SQNR values are avoided. In addition, 
observe that scaling causes a shifting of the SQNR 
curve obtained for initial step size (Δ = Δopt). The 
amount of shifting can exactly be defined using the 
following lemma.  

Lemma 1. The SQNR curves of the 2-bit USQ 
obtained for step sizes Δ and c∙Δ are shifted for cdB, 
i.e. it holds: 

opt optdB dB dBSQNR ( , ) SQNR ( , )c c     ,
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Proof of Lemma 1. Based on (8), we have that: 
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which proves the lemma  

Alternatively, the shifting can be determined as 
follows. First, it is necessary to find, in case of 
both Δ and c∙Δ, the variance in which the 
SQNR has maximum. Then, the shifting in log 
domain can simply be found as the difference 
between these two variances. The following 
lemma specifies these variances (in the linear 
domain).   

Lemma 2. The variance (σ2 = σd2) in which the 2-
bit USQ defined by Δ reaches a maximum of 
the SQNR can be determined according to the 
following iterative rule: 

      
1

d d 1
d

1 22 2 2 exp
2

i i
i

 






              
.

                                      (15) 

Proof of Lemma 2. Let us introduce the 
function S:  
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Alternatively, the shifting can be determined as follows. 
First, it is necessary to find, in case of both Δ and c∙Δ, 
the variance in which the SQNR has maximum. Then, 
the shifting in log domain can simply be found as the 
difference between these two variances. The following 
lemma specifies these variances (in the linear domain).  
Lemma 2. The variance (σ2 = σd

2) in which the 2-bit 
USQ defined by Δ reaches a maximum of the SQNR 
can be determined according to the following itera-
tive rule:

( ) ( )( ) ( )
1

d d 1
d

1 22 2 2 exp
2

i i
i

σ σ
σ

−

−

  ∆  = ∆ − − ∆ −     
. (15)

Proof of Lemma 2. Let us introduce the function S: 

( )
2 2

2

2 1 21 exp
24

S
D
σ
σ σ σσ

  ∆ ∆ ∆ = = + −  − −      
. (16)

By differentiating S with respect to σ we obtain:

( )
2

2 2

22 2 2 2 exp

1 24 4 2 exp
2

S
σ σ

σ

σ
σ σ

σ

 ∆ ∆ − − − ∆ − 
∂   =
∂    ∆  + ∆ − ∆ − −        

.
(17)

From the condition 
d

| 0S
σ σσ =

∂
=

∂
, we arrive to the fol-

lowing:

( )
d

dd

2 2exp
2 2 2

σ
σσ

 ∆ − ∆ = − 
− ∆   

. (18)

Based on (18), we can express σd as:

( )d d
d

1 22 2 2 exp
2

σ σ
σ

  ∆ = ∆ − − ∆ −      
. (19)



631Information Technology and Control 2022/4/51

The equation (19) can be solved iteratively, thus con-
cluding the proof. 

Figure 5
The iterative process for determination of σd defined by 
(15) in case when Δ = 0.42∙Δopt
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In order to show the efficiency as well as the 
correctess of the iterative process defined with (15), 
in Figure 5 we show σd over different iterations for 
one specific step size value Δ = 0.42∙Δopt (Δopt = 1.087), 
where the initial value was set to σd(0) = Δ. We can 
see that σd after only few iterations takes the value 
0.42 and then saturates, showing the efficiency of 
the iterative process (15). The outcome of procces 
(15), σd = 0.42 = copt (σd2 = 0.1764 (-7.53 dB)) is in 
accordance with Figure 3 and Lemma 1, proving its 
correctness.  

To summarize, by scaling the initial step size           
(Δ = Δopt) with properly chosen constant value we 
indeed improve the performance of single 2-bit USQ 
in the observed variance range. However, in this 
paper, we want to upgrade the approach from [20], 
with a goal to provide further performance 
enhancement. Particularly, we propose quantization 
based on switching between two 2-bit-USQs with 
unequal support regions (the one with the scaled 
parameters and the one with the initial parameter 
settings), resulting in the dual-mode USQ. In this 
way, the complexity of the method is slightly 
increased compared to single USQ, and it is much 
simpler compared to the adaptive models reported 
in [4, 5, 26]. A detailed description is given in the 
next section. 

 

3. Theoretical Model of a 2-bit 
Dual-Mode USQ 

In this section, we propose a dual-mode USQ, which 

improves the performance of the single USQ in 
a wide dynamic range of data variances. Dual-
mode USQ is composed of two 2-bit USQs 
denoted with Q1 (defined with Δ1= c∙Δopt, c = 
0.42) and Q2 (defined with Δ2 = Δopt) having 
unequal support regions (2Δ1 < 2Δ2), whereby 
the switching among them, based on data 
variance classification, is adopted from [21]. 
Namely, data variance of block is classified 
into one of two possible variance ranges (an 
adequate USQ is associated to each range) by 
comparing data variance with the threshold 
between ranges, denoted with σt2. Based on the 
starting assumption that Δ2 = Δopt, it is evident 
form Figure 3 that Q2 is more appropriate (due 
to better SQNR scores) for data with the 
variance greater than σt2. The following lemma 
defines σt2. 

Lemma 3. For a dual-mode USQ composed of 
two 2-bit USQs defined with the corresponding 
step sizes Δ1 and Δ2 (Δ1 < Δ2), σt can be 
determined iteratively using: 
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From (22), after some mathematical 
manipulations, σt can be expressed as: 
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In order to show the efficiency as well as the cor-
rectess of the iterative process defined with (15), in 
Figure 5 we show σd over different iterations for one 
specific step size value Δ = 0.42∙Δopt (Δopt = 1.087), 
where the initial value was set to σd

(0) = Δ. We can see 
that σd after only few iterations takes the value 0.42 
and then saturates, showing the efficiency of the it-
erative process (15). The outcome of procces (15),  
σd = 0.42 = copt (σd

2 = 0.1764 (-7.53 dB)) is in accordance 
with Figure 3 and Lemma 1, proving its correctness. 
To summarize, by scaling the initial step size (Δ = 
Δopt) with properly chosen constant value we indeed 
improve the performance of single 2-bit USQ in the 
observed variance range. However, in this paper, we 
want to upgrade the approach from [20], with a goal 
to provide further performance enhancement. Par-
ticularly, we propose quantization based on switch-
ing between two 2-bit-USQs with unequal support 
regions (the one with the scaled parameters and the 
one with the initial parameter settings), resulting in 
the dual-mode USQ. In this way, the complexity of the 
method is slightly increased compared to single USQ, 
and it is much simpler compared to the adaptive mod-
els reported in [4, 5, 26]. A detailed description is giv-
en in the next section.

3. Theoretical Model of a 2-bit  
Dual-Mode USQ
In this section, we propose a dual-mode USQ, which 
improves the performance of the single USQ in a wide 
dynamic range of data variances. Dual-mode USQ is 
composed of two 2-bit USQs denoted with Q1 (de-
fined with Δ1= c∙Δopt, c = 0.42) and Q2 (defined with 
Δ2 = Δopt) having unequal support regions (2Δ1 < 2Δ2), 
whereby the switching among them, based on data 
variance classification, is adopted from [21]. Name-
ly, data variance of block is classified into one of two 
possible variance ranges (an adequate USQ is associ-
ated to each range) by comparing data variance with 
the threshold between ranges, denoted with σt

2. Based 
on the starting assumption that Δ2 = Δopt, it is evident 
form Figure 3 that Q2 is more appropriate (due to bet-
ter SQNR scores) for data with the variance greater 
than σt

2. The following lemma defines σt
2.

Lemma 3. For a dual-mode USQ composed of two 
2-bit USQs defined with the corresponding step siz-
es Δ1 and Δ2 (Δ1 < Δ2), σt can be determined iteratively 
using:

( )

( ) ( )

2 2
2 1

2 1
2 1 2 11 1

.
2 22 2 2 exp exp

i
t

i i
t t

σ

σ σ− −

∆ − ∆
=

     ∆ ∆     ∆ − ∆ + ∆ − − ∆ −             
(20)

Proof of Lemma 3. In order to provide the highest 
possible SQNR of the dual-mode USQ composed of Q1 
(defined with Δ1) and Q2 (defined with Δ2), σt

2 has to be 
determined as the variance where the SQNR curves 
of Q1 and Q2 intersect, that is, by equaling correspond-
ing SQNRs (see Figure 3). SQNRs of Q1 and Q2 can be 
found using (6). From the condition:
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For Δ1 = 0.42∙Δopt and Δ2 = Δopt, when the iterative method 
(20) is initialized with σt

(0) = (Δ1 + Δ2)/2, the results pre-
sented in Figure 6 show fast convergence of the itera-
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For Δ1 = 0.42∙Δopt and Δ2 = Δopt, when the iterative 
method (20) is initialized with σt(0) = (Δ1 + Δ2)/2, the 
results presented in Figure 6 show fast convergence 
of the iterative method. The obtained value              
σt = 0.6821 (σt2 = 0.4653 (-3.32 dB)) matches the result 
in Figure 3 (see σt2). 

Figure 7 shows a block diagram of the 
proposed dual-mode USQ operating in a block-
by-block manner. The following steps describe 
the operating principle of encoder (Figure 7-a)): 

1. Buffering. The input data is stored in the 
buffer forming the block, with a capacity of 
M samples. 

a) b)

  

Figure 6 

The iterative process for determination of the switching 
threshold σt2 defined by (20) in the case when Δ1 = 
0.42∙Δopt and Δ2 = Δopt. 

 

 

0 2 4 6 8 10 12 14 16 18 20
0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

 

 

 t

No. of iterations

 
1
 = 0.42

 opt
, 

 2
 = 

opt

 

 
Figure 7 

Block diagram of the 2-bit dual-mode USQ: a) encoder; b) decoder. 

BUFFER

ENCODER 2 
(Q2) 

ENCODER 1 
(Q1 ) 

VARIANCE 
ESTIMATOR 1-bit SQ0

I

J

x

 
а) 

1-bit ISQ0
J

DECODER 2 
(IQ2) 

DECODER 1 
(IQ1) 

I y

 
b)

 

For Δ1 = 0.42∙Δopt and Δ2 = Δopt, when the iterative 
method (20) is initialized with σt(0) = (Δ1 + Δ2)/2, the 
results presented in Figure 6 show fast convergence 
of the iterative method. The obtained value              
σt = 0.6821 (σt2 = 0.4653 (-3.32 dB)) matches the result 
in Figure 3 (see σt2). 

Figure 7 shows a block diagram of the 
proposed dual-mode USQ operating in a block-
by-block manner. The following steps describe 
the operating principle of encoder (Figure 7-a)): 

1. Buffering. The input data is stored in the 
buffer forming the block, with a capacity of 
M samples. 

  

Figure 6 

The iterative process for determination of the switching 
threshold σt2 defined by (20) in the case when Δ1 = 
0.42∙Δopt and Δ2 = Δopt. 

 

 

0 2 4 6 8 10 12 14 16 18 20
0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

 

 

 t

No. of iterations

 
1
 = 0.42

 opt
, 

 2
 = 

opt

 

 
Figure 7 

Block diagram of the 2-bit dual-mode USQ: a) encoder; b) decoder. 

BUFFER

ENCODER 2 
(Q2) 

ENCODER 1 
(Q1 ) 

VARIANCE 
ESTIMATOR 1-bit SQ0

I

J

x

 
а) 

1-bit ISQ0
J

DECODER 2 
(IQ2) 

DECODER 1 
(IQ1) 

I y

 
b)

 

For Δ1 = 0.42∙Δopt and Δ2 = Δopt, when the iterative 
method (20) is initialized with σt(0) = (Δ1 + Δ2)/2, the 
results presented in Figure 6 show fast convergence 
of the iterative method. The obtained value              
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(-3.32 dB)) matches the result in Figure 3 (see σt
2).

Figure 7 shows a block diagram of the proposed du-
al-mode USQ operating in a block-by-block manner. 
The following steps describe the operating principle 
of encoder (Figure 7(a)):
1 Buffering. The input data is stored in the buffer 

forming the block, with a capacity of M samples.
2 Variance estimation. The variance of the buffered 

block, σ2, is estimated as follows [10, 21, 26]:
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3 Switching. For the current block, the choice of one 
of two disposable USQs is based on the following 
comparison: if σ2 ≤ σt

2 switch to Q1, otherwise to Q2. 
Information about the employed quantizer is repre-
sented with 1 bit, and it denotes the side information 
that should be stored per each block. As Figure 7(a) 
shows, the side information can be obtained by quan-
tizing estimated variance of the block using the 1-bit 
asymmetric scalar quantizer (1-bit SQ0) as follows:
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5 Encoding (quantization). Each data sample with-
in the block x(n), n = 1, ..., M, is encoded (quantized) 
with the chosen USQ, resulting in sequence of M 
codewords of length 2 bits (see index I).
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The decoder is shown in Figure 7(b). Index J is decod-
ed using the inverse 1-bit SQ0 (1-bit ISQ0) and used to 
select inverse USQ for decoding of sequence I. After 
that, the sequence (or index) I is decoded by using the 
selected inverse USQ providing in that manner the re-
construction of the samples within the current data 
block, xq(n) = y(n), n = 1, …, M. 
Finally, let us define bit rate R and SQNR of the con-
sidered dual-mode USQ. Thus, the bit rate is given by:

 
 

 

2. Variance estimation. The variance of the 
buffered block, σ2, is estimated as follows [10, 
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employed quantizer is represented with 1 bit, 
and it denotes the side information that should 
be stored per each block. As Figure 7-a) shows, 
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4. Encoding (quantization). Each data sample 
within the block x(n), n = 1, ..., M, is encoded 
(quantized) with the chosen USQ, resulting in 
sequence of M codewords of length 2 bits (see 
index I). 

The decoder is shown in Figure 7(b). Index J is 
decoded using the inverse 1-bit SQ0 (1-bit ISQ0) and 
used to select inverse USQ for decoding of sequence 
I. After that, the sequence (or index) I is decoded by 
using the selected inverse USQ providing in that 
manner the reconstruction of the samples within the 
current data block,   xq(n) = y(n), n = 1, …, M.   

Finally, let us define bit rate R and SQNR of the 
considered dual-mode USQ. Thus, the bit rate is 
given by: 
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while SQNR can be evaluated by using [21]: 
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In Figure 8, we show SQNR for the proposed dual-
mode USQ and single 2-bit USQ (Δ = c∙Δopt, c = 0.42) 
over the same variance range as in Figure 3. We can 
notice evident improvement in performance 
(SQNR) compared to scaling-based approach. 

Figure 8 also shows that SQNR of dual-mode 
USQ for two values of the input variance 
reaches a maximum.  
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SQNR of the 2-bit dual-mode USQ (Δ1 = 0.42∙Δopt 

and    Δ2 = Δopt) and single 2-bit USQ (Δ = 0.42∙Δopt) 
in a wide dynamic range of input data variances. 
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Table 1 

SQNRav of the proposed 2-bit dual-mode USQ (Δ1 = 
0.42∙Δopt and Δ2 =Δopt) and single 2-bit USQs with            
Δ = 0.42∙Δopt and Δ = Δopt. 
Dual-mode USQ 

(Δ1 = 0.42∙Δopt,  
Δ2 = Δopt) 

USQ  
(Δ = 0.42∙Δopt) 

USQ  
(Δ = Δopt) 

5.55 dB 4.21 dB 2.6 dB 

To measure the achieved performance gain of 
the dual-mode USQ over the single USQ in the 
observed range of variances, we calculated the 
average SQNR as given in Table 1. It can be 
noted that the proposed dual-mode USQ 
improves average SQNR for 1.34 dB with 
respect to USQ with Δ = c∙Δopt (c = 0.42), while 
the gain of 2.8 dB is observed with respect to 
initial USQ (Δ = Δopt). Based on these 
achievements, we can conclude that the dual-
mode USQ proposed in this paper is a better 
candidate for applications where data variance 
tends to change (e.g. quantization of the 
weights of NN) than the single 2-bit USQ. Let 
us emphasize that the performance gain is 
achieved with slightly increased bit rate of 1/M 
bits/data sample (see eq. (26)). Typically, 
selection of M depends on concrete 
application.  

(26)
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In Figure 8, we show SQNR for the proposed du-
al-mode USQ and single 2-bit USQ (Δ = c∙Δopt, c = 0.42) 
over the same variance range as in Figure 3. We can 
notice evident improvement in performance (SQNR) 
compared to scaling-based approach. Figure 8 also 
shows that SQNR of dual-mode USQ for two values of 
the input variance reaches a maximum. 
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within the block x(n), n = 1, ..., M, is encoded 
(quantized) with the chosen USQ, resulting in 
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index I). 
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decoded using the inverse 1-bit SQ0 (1-bit ISQ0) and 
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I. After that, the sequence (or index) I is decoded by 
using the selected inverse USQ providing in that 
manner the reconstruction of the samples within the 
current data block,   xq(n) = y(n), n = 1, …, M.   
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In Figure 8, we show SQNR for the proposed dual-
mode USQ and single 2-bit USQ (Δ = c∙Δopt, c = 0.42) 
over the same variance range as in Figure 3. We can 
notice evident improvement in performance 
(SQNR) compared to scaling-based approach. 

Figure 8 also shows that SQNR of dual-mode 
USQ for two values of the input variance 
reaches a maximum.  

Figure 8 

SQNR of the 2-bit dual-mode USQ (Δ1 = 0.42∙Δopt 

and    Δ2 = Δopt) and single 2-bit USQ (Δ = 0.42∙Δopt) 
in a wide dynamic range of input data variances. 
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Table 1 

SQNRav of the proposed 2-bit dual-mode USQ (Δ1 = 
0.42∙Δopt and Δ2 =Δopt) and single 2-bit USQs with            
Δ = 0.42∙Δopt and Δ = Δopt. 
Dual-mode USQ 

(Δ1 = 0.42∙Δopt,  
Δ2 = Δopt) 

USQ  
(Δ = 0.42∙Δopt) 

USQ  
(Δ = Δopt) 

5.55 dB 4.21 dB 2.6 dB 

To measure the achieved performance gain of 
the dual-mode USQ over the single USQ in the 
observed range of variances, we calculated the 
average SQNR as given in Table 1. It can be 
noted that the proposed dual-mode USQ 
improves average SQNR for 1.34 dB with 
respect to USQ with Δ = c∙Δopt (c = 0.42), while 
the gain of 2.8 dB is observed with respect to 
initial USQ (Δ = Δopt). Based on these 
achievements, we can conclude that the dual-
mode USQ proposed in this paper is a better 
candidate for applications where data variance 
tends to change (e.g. quantization of the 
weights of NN) than the single 2-bit USQ. Let 
us emphasize that the performance gain is 
achieved with slightly increased bit rate of 1/M 
bits/data sample (see eq. (26)). Typically, 
selection of M depends on concrete 
application.  

To measure the achieved performance gain of the du-
al-mode USQ over the single USQ in the observed 
range of variances, we calculated the average SQNR as 
given in Table 1. It can be noted that the proposed du-
al-mode USQ improves average SQNR for 1.34 dB with 
respect to USQ with Δ = c∙Δopt (c = 0.42), while the gain 
of 2.8 dB is observed with respect to initial USQ (Δ = 
Δopt). Based on these achievements, we can conclude 
that the dual-mode USQ proposed in this paper is a 
better candidate for applications where data variance 
tends to change (e.g. quantization of the weights of NN) 
than the single 2-bit USQ. Let us emphasize that the 
performance gain is achieved with slightly increased 
bit rate of 1/M bits/data sample (see eq. (26)). Typical-
ly, selection of M depends on concrete application. 

4. Results and Discussion 
In this Section, we present, discuss and compare the 
performances (in both the theoretical and experimen-
tal domain) of the proposed 2-bit dual-mode USQ and 
some other known 2-bit quantizers used as baselines. 
Obviously, the goal is to point out the advantages that 
can be achieved in quantization of non-stationary 
data by using this simple quantization approach we 
propose in this paper.
As baseline quantization models, we consider two 
adaptive USQs developed in [4, 5], as well as non-adap-
tive 2-bit non-uniform logaritmic scalar quantizer 
introduced in [20]. These models are selected as they 
have already proved the efficiency in processing NN 
weights. In this manner, we will demonstrate that our 
quantization model is suitable for application in NN 
compression.
Note that relation between the step size and the de-
signed-for variance of the quantizer given in [5] has 
already been mentioned in Section 1 (see Figure 2). As 
that quantizer is adaptive, it holds that Δ[5](σ) = σ∙Δ[5]

Dual-mode USQ
(Δ1 = 0.42∙Δopt, Δ2 = Δopt)

USQ 
(Δ = 0.42∙Δopt)

USQ 
(Δ = Δopt)

5.55 dB 4.21 dB 2.6 dB

Table 1
SQNRav of the proposed 2-bit dual-mode USQ (Δ1 = 0.42∙Δopt 
and Δ2 =Δopt) and single 2-bit USQs with Δ = 0.42∙Δopt and  
Δ = Δopt
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(σref) = 2∙c1∙σ/3. For its performance evaluation (in the 
theoretical domain) expression (6) holds, which gives:  
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pointing out that SQNR is independent on σ. On the 
other hand, quantizer from [4] is adaptive uniform 
quantizer having step size Δ[4](σ) = σ∙β, β = c1 = 3.2 
(quantization levels are defined as {- σ∙β, 0, 0, σ∙β}). 
Distortion in this case is specified by: 
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whereas SQNR is defined as:
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also pointing out that SQNR is independent on σ. Re-
garding the 2-bit logarithmic quantizer from [20], it 
was designed using the following parameters: μ = 255 
and xmax = 4.318.
The SQNR dependence on data variance for the pro-
posed dual-mode USQ and the considered baseline 
quantizers [4, 5, 20] is provided in Figure 9, while 
their average SQNRs are listed in Table 2. By observ-
ing Figure 9, we can see that our proposal is better 
than the 2-bit quantizer from [20], as the SQNR curve 
corresponding to the quantizer from [20] is over-
reached in the entire variance range. The same con-
clusion can be drawn for quantizers from [4, 5]. Fur-
thermore, in Table 2 we report the significant gains in 
average SQNR of about 2.8 dB, 2.4 dB, and 3.85 dB in 
comparison to the invoked 2-bit baselines [4, 5, 20], 
respectively. 

Figure 9
SQNR of the 2-bit dual-mode USQ (Δ1 = 0.42∙Δopt and Δ2 = Δopt) 
and baseline quantizers in a wide dynamic range of input data 
variances
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also pointing out that SQNR is independent on 
σ. Regarding the 2-bit logarithmic quantizer 

from [20], it was designed using the following 
parameters:      μ = 255 and xmax = 4.318. 
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SQNR of the 2-bit dual-mode USQ (Δ1 = 0.42∙Δopt 

and Δ2 = Δopt) and baseline quantizers in a wide 
dynamic range of input data variances. 
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Table 2 

SQNRav of the proposed 2-bit dual-mode USQ (Δ1 = 
0.42∙Δopt and Δ2 = Δopt) and baseline 2-bit 
quantizers.  

Dual-mode 
USQ  

(Δ1=0.42∙Δopt, 
Δ2 = Δopt) 

2-bit USQ 
[4] 

2-bit USQ 
[5] 

2-bit 
[20] 

5.55 dB 2.77 dB 3.17 dB 1.70 dB 

 

The SQNR dependence on data variance for 
the proposed dual-mode USQ and the 
considered baseline quantizers [4, 5, 20] is 
provided in Figure 9, while their average 
SQNRs are listed in Table 2. By observing 
Figure 9, we can see that our proposal is better 
than the 2-bit quantizer from [20], as the SQNR 
curve corresponding to the quantizer from  [20] 
is overreached in the entire variance range. The 
same conclusion can be drawn for quantizers 
from [4, 5]. Furthermore, in Table 2 we report 
the significant gains in average SQNR of about 
2.8 dB, 2.4 dB, and 3.85 dB in comparison to the 
invoked 2-bit baselines [4, 5, 20], respectively.  

The theoretical results are supported by 
experimental ones, obtained in quantization of 
weights of the MLP neural network with one 

Table 2
SQNRav of the proposed 2-bit dual-mode USQ (Δ1 = 0.42∙Δopt 
and Δ2 = Δopt) and baseline 2-bit quantizers 

Dual-mode USQ  
(Δ1=0.42∙Δopt, Δ2 = Δopt)

2-bit USQ 
[4]

2-bit USQ 
[5]

2-bit 
[20]

5.55 dB 2.77 dB 3.17 dB 1.70 dB

The theoretical results are supported by experimen-
tal ones, obtained in quantization of weights of the 
MLP neural network with one hidden layer [30], be-
ing used for image classification task. 
MLP is trained and tested on MNIST database [12] 
with 60000 gray-scaled images of handwritten digits 
used for network training and 10000 images for test-
ing with the size 28 x 28 pixels. The input network lay-
er is composed of 784 nodes that correspond to 28x28 
pixels image size, 128 nodes in the hidden layer and 10 
nodes in the output layer that correspond to 10 class-
es (digits). We use the following hyperparameter set-
tings: regularization rate = 0.01, learning rate = 0.0005 
and batch size = 128. 
As indicated in [21], the weights of such trained MLP 
have the distribution that is roughly Laplacian, with 
parameters: zero-mean and variance σw

2 = 0.01 (σw,dB = 
10∙log10 (σw

2) = -20 dB). It is also worth emphasiz-
ing that the uncompressed weights are available in 
a matrix form of dimensions 784×128. To obtain a 
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quantized matrix, we fully apply the steps described 
in the previous Section 3, whereas the processing 
is done row-wise (that is, channel-wise), implying 
that M = 128. For baseline quantizers [4, 5], for each 
row (block) the variance is estimated (see (24)) and 
further used to adapt their parameters. In the case 
of non-adaptive quantizer form [20], the matrix of 
weights is processed sample by sample. To measure 
the quantizer efficiency on real data the experimental 
value of SQNR is evaluated as [21, 26]:
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where wi are the original and wi
q are the quantized 

network weights and W is total number of weigths.

the performance in the wide variance range. We can see 
that experimental SQNR values (obtained using (31)) 
verify the theoretical results shown in Figure 9. Table 
3 sumarizes the overall bit rate required for all consid-
ered quantizers. It can bee seen that our model reqires a 
slightly increased bit rate for 1/128 bits (1 bit per block 
size) compared to the quantizer in [20], but the rate is 
lower than that required for adaptive baselines [4, 5] 
that use 32 bits to quantize side information (i.e. block 
variance) per each block. To summarize, in addition 
to the increased SQNR value within the wide variance 
range, our solution is less demanding in terms of bit rate 
compared with adaptive baselines. This makes the pro-
posed dual-mode USQ adequate for weights processing 
and accordingly adequate for NN compression. 

Figure 10
SQNRex of the 2-bit dual-mode USQ (Δ1 = 0.42∙Δopt and Δ2 = Δopt) 
and considered baselines in a wide dynamic range of weights 
variances 
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where wi are the original and wiq are the quantized 
network weights and W is total number of weigths. 

 
Figure 10 

SQNRex of the 2-bit dual-mode USQ (Δ1 = 0.42∙Δopt and    
Δ2 = Δopt) and considered baselines in a wide dynamic 
range of weights variances. 
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Experimental results are presented in Figure 
10. They show the dependence of SQNRex on 
the weights’ variance for the dual-mode USQ 
and the corresponding baselines (same settings 
as in Figure 9). By multiplying the matrix of 
trained weights (the original, uncompressed 
weight matrix) with the appropriate constant k 
we obtain the matrix of weights with variances 
σ2 = k2∙σw2 (σdB = 20∙log10 (k∙σw)), which allows us 
to analyze the performance in the wide 
variance range. We can see that experimental 
SQNR values (obtained using (31)) verify the 
theoretical results shown in Figure 9. Table 3 
sumarizes the overall bit rate required for all 
considered quantizers. It can bee seen that our 
model reqires a slightly increased bit rate for 
1/128 bits (1 bit per block size) compared to the 
quantizer in [20], but the rate is lower than that 
required for adaptive baselines [4, 5] that use 
32 bits to quantize side information (i.e. block 
variance) per each block. To summarize, in 
addition to the increased SQNR value within 
the wide variance range, our solution is less 
demanding in terms of bit rate compared with 
adaptive baselines. This makes the proposed 
dual-mode USQ adequate for weights 
processing and accordingly adequate for NN 
compression.  

 

Table 3 

Bit rate in bits/data sample of the proposed 2-bit 
dual-mode USQ (Δ1 = 0.42∙Δopt and Δ2 =Δopt) and 
baseline 2-bit quantizers. 

Dual-mode 
USQ  

(Δ1=0.42∙Δopt, 
Δ2 = Δopt) 

2-bit USQ 
[4] 

2-bit USQ 
[5] 

2-bit 
[20] 

Experimental results are presented in Figure 10. They 
show the dependence of SQNRex on the weights’ vari-
ance for the dual-mode USQ and the corresponding 
baselines (same settings as in Figure 9). By multiply-
ing the matrix of trained weights (the original, uncom-
pressed weight matrix) with the appropriate constant 
k we obtain the matrix of weights with variances σ2 = 
k2∙σw

2 (σdB = 20∙log10 (k∙σw)), which allows us to analyze 

Dual-mode USQ  
(Δ1=0.42∙Δopt, Δ2 = Δopt)

2-bit USQ 
[4]

2-bit USQ 
[5]

2-bit 
[20]

2.00775 bits 2.25 bits 2.25 bits 2 bits

Figure 11 depicts the SQNR values per each channel 
(784 channels in total) achieved by the proposed and 
baseline quantizers, in the case when the weights ma-
trix has variance 0 dB (k = 10).

Table 3
Bit rate in bits/data sample of the proposed 2-bit dual-mode 
USQ (Δ1 = 0.42∙Δopt and Δ2 =Δopt) and baseline 2-bit quantizers

Figure 11
The SQNR values per channels (784 channels in total) 
attained by the proposed dual-mode USQ and the considered 
baselines, for the case when the weights variance is 0 dB
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Figure 11 depicts the SQNR values per each 
channel (784 channels in total) achieved by the 
proposed and baseline quantizers, in the case 
when the weights matrix has variance 0 dB (k = 10). 
 

Figure 11 

The SQNR values per channels (784 channels in total) 
attained by the proposed dual-mode USQ and the 
considered baselines, for the case when the weights 
variance is 0 dB. 
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5. Conclusion 
Quantization and compression of non-stationary 
data with the Laplacian distribution by using low 
rate USQ are considered in this paper. We propose a 
2-bit dual-mode USQ, which operates by switching 
between two non-adaptive 2-bit USQs depending on 
the estimated variance of the buffered data. The idea 
originates from [21], but few progressive steps are 
performed in this paper. We change a heuristically 
determined step value of the initial 2-bit USQ by the 
one which is obtained by maximizing the 
performance for the particular variance. Further, we 
determine the best value for scaling factor (used to 
scale the initial step size) and finally we propose an 
iterative rule for determining the optimal variance 
threshold used to compare variances during USQ 
selection. Apart this, we determine the relation 
between SQNR dependences on variance for USQs 
whose step sizes are linearly proportional. 
Specifically, we prove that by multiplying the step 
size of USQ with a constant c, the dependence of the 
SQNR on the variance is shifted for 20∙log10c. Owing 

to that the performance analysis of the dual-
mode USQ is performed in a more convenient 
manner. The proposed dual-mode USQ 
improves average SQNR of the single 2-bit 
USQ with slightly increased bit rate for 1/M 
bits/data samples. Moreover, we record the 
significant gain in average SQNR of about 2.8 
dB and 2.4 dB with respect to the adaptive 2-bit 
USQs given in [4] and [5]. Finally, the 
quantization model we propose is 
characterized by a reduced complexity and 
lower bit rate in comparison with the 
corresponding adaptive quantizers. Based on 
these achievements, we can conclude that the 
quantization model we propose is suitable for 
quantization of data modeled with Laplacian 
distribution whose variance tends to change. In 
particular, it can be suitable for applications 
when the compression rate is of greater interest 
than the high data quality. The theoretical 
results are verified by experimental ones, 
obtained in quantization of weights of a real 
NN. In that way, possibility of dual-mode 2-bit 
USQ implementation in NN compression is 
indicated. In our further research the influence 
of 2-bit quantization on NN performance will 
be studied.  
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5. Conclusion
Quantization and compression of non-stationary 
data with the Laplacian distribution by using low 
rate USQ are considered in this paper. We propose a 
2-bit dual-mode USQ, which operates by switching 
between two non-adaptive 2-bit USQs depending 
on the estimated variance of the buffered data. The 
idea originates from [21], but few progressive steps 
are performed in this paper. We change a heuristi-
cally determined step value of the initial 2-bit USQ 
by the one which is obtained by maximizing the per-
formance for the particular variance. Further, we 
determine the best value for scaling factor (used to 
scale the initial step size) and finally we propose an 
iterative rule for determining the optimal variance 
threshold used to compare variances during USQ se-
lection. Apart this, we determine the relation between 
SQNR dependences on variance for USQs whose step 
sizes are linearly proportional. Specifically, we prove 
that by multiplying the step size of USQ with a con-
stant c, the dependence of the SQNR on the variance 
is shifted for 20∙log10c. Owing to that the performance 
analysis of the dual-mode USQ is performed in a more 
convenient manner. The proposed dual-mode USQ 
improves average SQNR of the single 2-bit USQ with 

slightly increased bit rate for 1/M bits/data samples. 
Moreover, we record the significant gain in average 
SQNR of about 2.8 dB and 2.4 dB with respect to the 
adaptive 2-bit USQs given in [4] and [5]. Finally, the 
quantization model we propose is characterized by a 
reduced complexity and lower bit rate in comparison 
with the corresponding adaptive quantizers. Based on 
these achievements, we can conclude that the quanti-
zation model we propose is suitable for quantization 
of data modeled with Laplacian distribution whose 
variance tends to change. In particular, it can be suit-
able for applications when the compression rate is of 
greater interest than the high data quality. The theo-
retical results are verified by experimental ones, ob-
tained in quantization of weights of a real NN. In that 
way, possibility of dual-mode 2-bit USQ implementa-
tion in NN compression is indicated. In our further 
research the influence of 2-bit quantization on NN 
performance will be studied. 
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