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The queue length and the load rate should be monitored to overcome the problem of router congestion due 
to the increase in network utilization and achieve a high-speed transmission. Previous active queue manage-
ment methods manage the queued packets in the router buffer to maintain high network performance. Howev-
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1. Introduction
Active queue management (AQM) methods are 
mechanisms used to monitor, control, and manage 
the queued packets at the router buffer. Accordingly, 
these methods are crucial to the network performance 
and quality of services (QoS). Random early detection 
(RED) method [16] was proposed to overcome the 
problem with firm and nonprediction-based method 
for queue management, the drop-tail (DT), which is 
an early approach for queue management [4]. RED 
has two important features, namely, 1) early detection 
and 2) random dropping. The early detection mech-
anism is achieved by monitoring the queue length at 
the router buffer and averaging the length over time of 
the so-called average queue length (AQL). AQL is cal-
culated with each packet arrival as a weighted average 
of the instance queue time (IQL) and the previously 
calculated value of the AQL. Random dropping is 
achieved when RED calculates a dropping probability 
(Dp) based on the value of the AQL. The value of Dp is 
used for random packet dropping. With the increase 
of the value of Dp, the chance of packet dropping in-
creases and vice versa. Besides, RED also implement-
ed firm dropping under high load traffic [3]. 
Monitoring indicators, such as the AQL, affect the 
AQM methods’ performance, because they are the 
basis for calculating the Dp. An example of the rela-
tionship between the AQL and the Dp value is given in 
Figure 1, which is similar to the relationship embod-

ied in the effective RED (ERED) method [1]. Apart 
from AQL, other monitoring indicators have been 
used in the existing AQM. A definition of the existing 
monitoring indicators is given in Table 1. 
AQL and IQL have been used extensively in various 
methods. AQL has been used in RED, ERED, and 
fuzzy gentle RED (FGRED). IQL indicator has also 
been used by the stability RED (SRED) [31] and sta-
bilized virtual buffer (SVB) [13], in addition to, RED 
and ERED. However, these methods used joint moni-
toring indicators rather than using AQL or IQL inde-
pendently. 
Various examples of using multiple monitoring indi-
cators are presented in the existing AQM methods, 
such as using IQL and AQL jointly in ERED [1], using 
AQL and delay jointly in FGRED [10], using arrival 
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was proposed to overcome the problem with firm 
and nonprediction-based method for queue 
management, the drop-tail (DT), which is an early 
approach for queue management [4]. RED has two 
important features, namely, 1) early detection and 
2) random dropping. The early detection 
mechanism is achieved by monitoring the queue 
length at the router buffer and averaging the length 
over time of the so-called average queue length 
(AQL). AQL is calculated with each packet arrival 
as a weighted average of the instance queue time 
(IQL) and the previously calculated value of the 
AQL. Random dropping is achieved when RED 
calculates a dropping probability (Dp) based on 
the value of the AQL. The value of Dp is used for 
random packet dropping. With the increase of the 
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Table 1 

Summary of the Existing Indicators 
Indicator Abb. Description  
Average 
Queue Length 

AQL Average queue length over a 
time frame 

Instance 
Queue Length 

IQL The instance queue length at a 
specific time 

The 
difference in 
Queue Length 

∆Q The difference in the queue 
length between two subsequent 
time slots 

Packet Loss PL Estimated packet loss at a 
specific time due to buffer 
saturation  

Arrival Rate AR Estimated arrival rate at a 
specific time  

Average 
Arrival Rate 

AAR Average arrival rate over a time 
frame 

Load Rate LR Estimated load rate at a specific 
time  
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rate and IQL jointly in random exponential marking 
(REM) [22], rate-based AQM (REAQM) [39], SVB 
[13], stable rate-based AQM (RAQM) [38] and robust 
active queue management (RaQ) [35]. 

Accordingly, all the congestion signs should be 
wrapped into the monitoring indicators, managed by 
an algorithm that randomly drops packets to avoid 
loss and delay. In this paper, a fuzzy comprehensive 
RED (FCRED) is proposed to deal with the gap in net-
work monitoring and congestion control at the router 
buffer. For clarification, the problem investigated in 
this paper and the contributions are summarized in 
Table 2. The FCRED is built by using three indica-
tors, which monitor the router’s arrival, departure, 
and queue length. These indicators are the integrated 
incoming flow and the integrated departing flow. The 
indicators are calculated and then used as inputs for 
the fuzzy system, which produces the Dp. 

Table 1
Summary of the Existing Indicators

Table 2
Purpose of the FCRED

Indicator Abb. Description 

Average  
Queue Length AQL Average queue length over a 

time frame

Instance 
Queue Length IQL The instance queue length at a 

specific time

The difference 
in Queue 
Length

∆Q
The difference in the queue 
length between two subsequent 
time slots

Packet Loss PL
Estimated packet loss at a 
specific time due to buffer 
saturation 

Arrival Rate AR Estimated arrival rate at a 
specific time 

Average 
Arrival Rate AAR Average arrival rate over a time 

frame

Load Rate LR Estimated load rate at a specific 
time 

Average Load 
Rate

ALR Average load rate over a time 
frame

The AQM methods are operated in multiple cas-
es controlled by if-else, similar to RED, GRED, and 
ARED. Other AQM methods utilize a fuzzy system to 
manage the cases and convert the problem into a fuzzy 
inference process. The inference process eases the 
crisp decision made in the previous group of meth-
ods [40]. The advantage of the decision fuzziness, the 
fuzzy-based AQM methods enable an easy extension 
into many cases and straightforwardly use multiple 
indicators. Various fuzzy-based methods have been 
proposed [42, 45]. These methods have solved the pa-
rameterization problem, added more flexibility to the 
developed methods, and enhanced the results under 
certain traffic conditions. However, the problem of 
the fuzzy-based methods is inherited from the non-
fuzzy methods, which is the inability to optimize the 
network performance using comprehensive conges-
tion indicators [41].

Item Description 

Research 
Gap

Lack of comprehensive indicators with a 
suitable controlling process that optimizes 
the queue management at the router buffer 
to optimize the network performance. 

Goal 

Identify an integrated indicator, build up a 
framework that wraps these indicators, and 
use the fuzzy inference process to predict 
congestion and false congestion for opti-
mizing network performance in terms of 
loss, delay, and dropping rate. 

Methodology 

Identify the indicators through three ele-
ments, queue length, arrival, and departure 
rate, over a time frame and use them as in-
put to a fuzzy inference process with suit-
able fuzzy rules. 

2. Previous Work
AQM methods are either crisp-based or fuzzy-based 
[3]. The crisp-based methods use a set of parameters 
in their crisp form to calculate the Dp value. An if-else 
mechanism with multiple cases controls the drop-
ping. An example of the control cases for the GRED 
[15] is given in Figure 2(a). The fuzzy-based methods 
use fuzzy inference processes to calculate the Dp. A 
fuzzy version of the GRED (FGRED) method that is 
demonstrated in Figure 2(a) is illustrated in Figure 
2(b) [10]. 
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Fuzzy-based methods required fuzzification, rule 
evaluation, integration, and defuzzification process. 
These processes are standardized regardless of the 
input and output variables [42]. Existing fuzzy-based 
methods differ in the input variables, the rules utilized, 
and the membership functions. The input variables 
of the fuzzy-based methods are determined by the 
method's goal, similar to the monitoring indicators in 
the crisp-based methods. These inputs are commonly 
represented as mapped from the crisp-based meth-
od into fuzzy variables. An example of such mapping 
is mapping AQL used in RED into IQL and ∆Q input 
variables in the fuzzy-RED (FRED) [32]. 
The existing fuzzy-based methods can be classified 
into queue-based, traffic-based, and hybrid-based. 
Queue methods utilize a variation of queue length 
indicators, such as AQL, Q, and ∆Q. FRED, fuzzy ex-
plicit marking (FEM) [12], and fuzzy BLUE (FB) [42] 
use the same indicators, which are IQL and ∆Q. The 
differences between these methods imply the fuzzifi-
cation function and the rules utilized, which are com-
monly established through trial and error approach 
[8]. The advantage of FEM and FB is reducing packet 
loss. However, unnecessary packet dropping when 
light or false congestion appears is the disadvantage 
of these methods. 
Fuzzy controller RED (FConRED) [36] use the differ-
ence between queue length and the target length and 
the change in this difference as input to a fuzzy system. 
The output of the FConRED is a value for the chang-
es in Dp. Accordingly, FConRED follows an adaptive 
mechanism in which the value of the Dp is increased/
decreased with each packet arrival rather than calcu-
lating a new value of Dp. The using of adaptive mech-
anism was first introduced by the BLUE method [14]. 
The using of adaptive Dp reduces packet loss and im-
proves dropping in stable network statues. However, 
unnecessary packet dropping and loss occur when us-
ing adaptive Dp in common bursty networks.
Fuzzy ERED [20] is a fuzzy version of the robust 
ERED proposed by Abbasov and Korukoglu in 2009 
[1]. FGRED [10] and fuzzy logic-based RED (FLRED) 
[6] use AQL with delay. FConRED [2] use AQL with 
loss. Another method uses fuzzy RED with AQL, 
∆Q, and delay [28]. The goal of these adaptive-based 
methods was to reduce packet loss. However, the slow 
adaptation of such adaptive technique leads to loss 
and unnecessary drop in bursty networks. 

Figure 2
Controlled Cases in AQM Methods
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As different indicators are utilized, different member-
ship functions and rules are required. Different func-
tions and rules lead to a different output even with the 
same inputs, justifying the use of trial and error ap-
proach for setting up the fuzzy system components—
even the indicators, which can be similar in the name or 
maybe different [26]. The differences are embodied in 
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how these indicators are calculated and updated. Esti-
mated loss and estimated delay, commonly used by cur-
rent methods, differ in the definition and calculation [5].
Traffic-based methods utilize a variation of traffic load 
indicators, such as AR and LR. However, these indica-
tors are combined with delay and loss rather than us-
ing these variations [9]. Although, various non-fuzzy 
based methods, such as adaptive virtual queue (AVQ) 
[21], stable AVQ (SAVQ) [24], EAVQ [43], LUBA [7], 
SVB [13], RAQM [38], RaQ[35], PI [18] and Yellow 
[25], were proposed using such indicators, fuzzy-
based methods that used such indicators are rare. 
Among these methods, fuzzy logic based AQM (Fuzzy-
AQM) [30] utilizes AR and arrival factors related to 
the queue occupation. Traffic-based methods reduce 
unnecessary packet dropping by monitoring the traf-
fic status and avoiding false congestion. However, traf-
fic-based methods lead to packet loss and increased 
delay with the occurrence of sudden congestion. 
Hybrid-based methods combine the queue-based and 
load-based attributes. Hybrid-based methods, such as 
REM [22] and REAQM [39], are proposed to obtain 
the advantages of the two approaches. However, the 
problem with these methods is how the indicators are 
combined, leadings to unnecessary packet dropping. 
The fuzzy-based AQM methods are developed based 
on the Mamdani model [27]. The other model, Taka-
gi–Sugeno–Kang [23], is not used because it requires 
training data and is characterized by its low interpret-
ability compared with the Mamdani model. Given the 
problem of implementing an AQM based on explicit 
knowledge rather than training samples, the AQM 
model is best described by using the Mamdani model. 
The Mamdani model consists of four main compo-
nents: fuzzifier, inference, defuzzifier, and rule-based, 
as illustrated in Figure 3. 

Bio-inspired optimization algorithms have been used 
for the parameter optimization problem. Accordingly, 
ant colony optimization is used for tuning the propor-
tional integral derivative (PID) method [11]. Particle 
swarm optimization is used to optimize the fuzzy ver-
sion of the PID method [19]. Similarly, the genetic al-
gorithm [34] and grey wolf [33] are used for tuning the 
AQM parameters. The advantages of these methods are 
not related to performance. Optimization is used to op-
timize the parameter setting, commonly implemented 
through trial and error, but, with more human labor. 
The trial and error produce similar or better results be-
cause optimization might be stuck in local optima.
In summary, existing fuzzy AQM methods can be 
characterized as follows: 1) Fuzzy-based models cre-
ate more flexibility in queue management than the 
non-fuzzy methods and ease the problem of param-
eterization. 2) The existing fuzzy-based AQM meth-
ods use the Mamdani model to implement the fuzzy 
system because explicit knowledge can be developed. 
3) The existing fuzzy-based AQM methods focused 
on the queue-related indicators combined with de-
lay and loss to overcome the shortage in monitoring 
and evaluating the network traffic. 4) Limitations are 
found in loss and dropping rate, which can be referred 
back to the utilized indicators because the controlling 
mechanism is adjusted to fit with the utilized indica-
tor. Accordingly, explicitly integrated indicators, such 
as those related to queue and load-based, should be 
considered. Thus, a new mechanism is required to use 
multiple congestion indicators efficiently.

3. Proposed Work
The objectives of this paper are as follows: 1) to pro-
pose and identify integrated indicators, 2) to create 
a model that wraps these indicators, and 3) to utilize 
the fuzzy inference process to calculate Dp. These 
objectives are covered by a set of processing stages, 
which will be discussed in the following subsections. 
The proposed method is built in three steps, as illus-
trated in Figure 4. These steps are as follows: 1) Iden-
tify the indicators by using the network parameters, 
which will be maintained during the execution of 
the proposed method. 2) Building the fuzzy system, 
which operates on the indicators identified in the pre-
vious step. The components of the fuzzy system are 
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wolf [33] are used for tuning the AQM parameters. 
The advantages of these methods are not related to 
performance. Optimization is used to optimize the 
parameter setting, commonly implemented 
through trial and error, but, with more human 
labor. The trial and error produce similar or better 
results because optimization might be stuck in 
local optima.    

In summary, existing fuzzy AQM methods can be 
characterized as follows: 1) Fuzzy-based models 
create more flexibility in queue management than 
the non-fuzzy methods and ease the problem of 
parameterization. 2) The existing fuzzy-based 
AQM methods use the Mamdani model to 
implement the fuzzy system because explicit 
knowledge can be developed. 3) The existing 
fuzzy-based AQM methods focused on the queue-
related indicators combined with delay and loss to 
overcome the shortage in monitoring and 
evaluating the network traffic. 4) Limitations are 
found in loss and dropping rate, which can be 

referred back to the utilized indicators because the 
controlling mechanism is adjusted to fit with the 
utilized indicator. Accordingly, explicitly 
integrated indicators, such as those related to 
queue and load-based, should be considered. Thus, 
a new mechanism is required to use multiple 
congestion indicators efficiently. 

  
3. Proposed Work 
The objectives of this paper are as follows: 1) to 
propose and identify integrated indicators, 2) to 
create a model that wraps these indicators, and 3) 
to utilize the fuzzy inference process to calculate 
Dp. These objectives are covered by a set of 
processing stages, which will be discussed in the 
following subsections.  

The proposed method is built in three steps, as 
illustrated in Figure 4. These steps are as follows: 
1) Identify the indicators by using the network 
parameters, which will be maintained during the 
execution of the proposed method. 2) Building the 
fuzzy system, which operates on the indicators 
identified in the previous step. The components of 
the fuzzy system are the fuzzy sets, the 
membership functions, the rules, and the output 
aggregation approach. The rules are built through 
trial and error approach to avoid the drawback of 
the optimization algorithms. 3) The simulation 
settings and parameters are identified concerning 
the related work in the domain.   
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calculated. Three criteria are identified to create 
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the fuzzy sets, the membership functions, the rules, 
and the output aggregation approach. The rules are 
built through trial and error approach to avoid the 
drawback of the optimization algorithms. 3) The sim-
ulation settings and parameters are identified con-
cerning the related work in the domain.

where WAVt is the weighted average value at time t, 
Valt is the instance value value at time t, and w is the 
weight. The weight value is calculated as a portion of 
the buffer capacity, rather than a fixed value, as given 
in Equation 2. The WMA value is influenced by a time 
frame with a period length equal to the queue capacity.

w = 1 / Capacity. (2)

All the values are normalized in the range of [0-1], 
which is influenced by normalizing the instance value 
to the same range. Accordingly, the instance queue is 
calculated as a portion of the capacity similar to the 
weight calculation in Equation 2. Given that these 
values are calculated with each network event (ar-
rival or departure or both), the values of the instance 
arrival and departure will have the value of {0,1}. As 
such, the values of the indicators are calculated as giv-
en in Equation 3, Equation 4, and Equation 5.

AQLt = (Qt / Capacity) * w + AQLt–1 (1 – w) (3)

AARt = ARt* w + AARt–1 (1 – w), (4)

ADRt = DRt* w + ADRt–1 (1 – w), (5)

where AQLt is the average queue length at time t, AARt 
is the average arrival rate at time t, ADRt is the aver-
age departure rate at time t, Qt is the instance queue 
value, ARt is the instance arrival rate value, DRt is the 
instance departure rate value, and w is the unified 
weight. Overall, the list of utilized indicators and their 
characteristics that fulfill the criteria mentioned 
above are given in Table 3.
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3.1. Indicators
As a first step, the indicators are identified and calcu-
lated. Three criteria are identified to create integrated 
indicators and wrap them in a fuzzy system. This pro-
cess is performed to control the process of identifying 
and utilizing these indicators, which are as follows:
1 The indicators shall be representative and demon-

strate the queue's status and the network collectively.  
2 The indicators shall be compatible to capture dif-

ferent aspects within identical parameters and for-
mulations. 

3 The indicators shall be standardized accordance 
with the covered time frame and the value range.

Accordingly, three average-based indicators are 
identified: queue-related, arrival-related, and de-
parture-related. These indicators are calculated as a 
weighted moving average (WMA) over the current and 
the previously calculated value with identical weight 
values for all the indicators. These indicators are cal-
culated with identical form, as defined in Equation 1.

WAVt = Valt* w + WAVt–1 * (1 – w), (1)
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Table 3
Proposed Indicators in the FCRED
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3.2. Fuzzification in the Fuzzy Model
Two components should be identified to implement 
the fuzzification step, the linguistic set, and the mem-
bership function. Commonly utilized linguistic sets 
in the existing AQM methods consist of three, four, 
or five terms. Given that the proposed method covers 
all aspects of the monitoring criteria, large variability 
is not required. Accordingly, the linguistic sets in the 
proposed FCRED are unified with three terms as fol-
lows {low, moderate, high} for the input variables. For 
the output variables, Dp, the set is established with 
more regular variability to give more flexibility to the 
responding action. Thus, the output set is consists 
of seven terms {term1, …, term7}, where term1 is the 
lowest, whereas term7 is the highest in value. The lin-
guistic set of the output variable and its membership 
function is not used in the fuzzification step. Howev-
er, it is related to the identification of the input vari-
ables and is established in this step. 
The membership function determines the bound-
aries of each term in each set. In FCRED, the mem-
bership function is set to equal ranges for the input 
variables following the equal space approach [23]. 

For the output variable, the first three terms are set to 
occupy 0.05 of the space and the rest occupy the rest 
of the space, to avoid unnecessary dropping. Thus, 
for the input variables, as illustrated in Figure 5, the 
boundaries of the functions are defined as: low (0, 0, 
0.3, 0.4), moderate (0.3, 0.4, 0.6, 0.7) and high (0.6, 0.7, 
1.0, 1.0). The boundaries of output variable are defined 
as: term1 (0, 0, 0.02, 0.03), term2 (0.02, 0.03, 0.03, 0.04), 
term3 (0.03, 0.04, 0.04, 0.05), term4 (0.05, 0.1, 0.3, 0.35), 
term5 (0.3, 0.35, 0.55, 0.6), term6 (0.55, 0.6, 0.8, 0.85), 
and term7 (0.8, 0.85, 1.0, 1.0). 
Given the linguistic sets and the membership func-
tion, the fuzzification transfers each crisp input into 
terms with confidence values. The boundaries of each 
term are identified with the points (x1, y1, x2, y2) (Fig-
ure 5). The fuzzification function resulted in all the 
terms with membership degrees greater than zero on 
the basis of Equation 6.
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Given the linguistic sets and the membership 
function, the fuzzification transfers each crisp 
input into terms with confidence values. The 
boundaries of each term are identified with the 
points (x1, y1, x2, y2) (Figure 5). The fuzzification 
function resulted in all the terms with membership 
degrees greater than zero on the basis of Equation 
6.   
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3.3. Rule Evaluation in the Fuzzy 
Model 
In the rule evaluation, the inputs are the linguistic 
terms of the input variables with confidence degree 
as calculated in Equation 6. The output is a 

linguistic term(s) from the output set with a 
confidence value. Thus, the first step is to create the 
rules by which the input and output are combined. 
The set of rules is created in IF-THEN form. 
Twenty-seven different possible rules are found, 
with each input sets  consisting of three terms (i.e., 
3*3*3). The list of rules is formed in a table (Table 
4).  
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The AND operation is used to produce the 
confidence value of the output term. As such, the 
confidence value of the output term of each rule is 
the minimum confidence value of the input terms, 
as calculated in Equation 7.    

( ) max( ( ), ( ), ( ))F A B Cm x y zµ µ µ µ= ,             (7) 

where μA (x) is the confidence value for the term 
associated with the first input variable, μB(y) is the 
confidence value for the term associated with the 
second input variable, μC(z) is the confidence value 
for the term associated with the third input 
variable, and μF(m) is the confidence value for the 
term associated with the output variable. 

3.4. Aggregation in the Fuzzy 
Model 
The output of rule-evaluation may include one or 
more redundant terms. A term presented as an 
output of different rules may be associated with a 
different confidence value. The redundancy is 
cleared by maintaining a single-term presentation 
with an aggregated confidence value. The 
aggregated value is produced by using the  AND 
operation between the confidence values of the 
underlying term, which produce the minimum 
confidence value among all, as calculated in 
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Given the linguistic sets and the membership 
function, the fuzzification transfers each crisp 
input into terms with confidence values. The 
boundaries of each term are identified with the 
points (x1, y1, x2, y2) (Figure 5). The fuzzification 
function resulted in all the terms with membership 
degrees greater than zero on the basis of Equation 
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Given the linguistic sets and the membership 
function, the fuzzification transfers each crisp 
input into terms with confidence values. The 
boundaries of each term are identified with the 
points (x1, y1, x2, y2) (Figure 5). The fuzzification 
function resulted in all the terms with membership 
degrees greater than zero on the basis of Equation 
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input variable, μC(z) is the confidence value for the 
term associated with the third input variable, and 
μF(m) is the confidence value for the term associated 
with the output variable.

Table 4
Proposed Rule-based in the FCRED

Table 5
Parameter Settings

4. Simulation and Measurements
The simulation process is conducted by using the 
JAVA programming language and a single router. The 
simulation uses an edge and single buffered rout-
er with small buffer size to evaluate the proposed 
method under critical circumstances. The buffer 
is simulated as First-In-First-Out (FIFO) queuing 
model [17, 20]. The network is monitored by using a 
discrete-time queue similar to the previous work [10, 
37, 44]. Compared with the continuous-time model, 
the discrete model accurately calculates and evalu-
ates the performance by analyzing the network sta-
tuses and the AQM responses. In such a model, the 
running time is divided into an equal period, called a 
slot. The slot is characterized by having a packet ar-
rival or departure or both of them. The running sim-
ulation consists of a 2 million time slot and the first 
40% of which is used for the warm-up period to reach 
a steady-state, in which no performance is calculated. 
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3.4. Aggregation in the Fuzzy Model
The output of rule-evaluation may include one or 
more redundant terms. A term presented as an output 
of different rules may be associated with a different 
confidence value. The redundancy is cleared by main-
taining a single-term presentation with an aggregated 
confidence value. The aggregated value is produced 
by using the  AND operation between the confidence 
values of the underlying term, which produce the 
minimum confidence value among all, as calculated 
in Equation 8.

μFA(t) = max(μF1(t), μF2(t)), (8)

where μF1(t) and μF2(t)are the first and second confi-
dence values for the redundant term t, respectively, 
and μFA(t) is the produced confidence value for the re-
dundant term t.

3.5. Defuzzification in the Fuzzy Model  
The defuzzification step produces a crisp value by 
converting the terms and their confidence using de-
fuzzification calculation. The center of gravity (COG) 
method is used with the input terms because it has 
similar capabilities to crisp averaging values [29]. 
COG is given in Equation 9.
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4. Simulation and Measurements 
The simulation process is conducted by using the 
JAVA programming language and a single router. 
The simulation uses an edge and single buffered 
router with small buffer size to evaluate the 
proposed method under critical circumstances. 
The buffer is simulated as First-In-First-Out (FIFO) 
queuing model [17, 20]. The network is monitored 
by using a discrete-time queue similar to the 
previous work [10, 37, 44]. Compared with the 
continuous-time model, the discrete model 
accurately calculates and evaluates the 
performance by analyzing the network statuses 
and the AQM responses. In such a model, the 
running time is divided into an equal period, called 
a slot. The slot is characterized by having a packet 
arrival or departure or both of them. The running 
simulation consists of a 2 million time slot and the 
first 40% of which is used for the warm-up period 
to reach a steady-state, in which no performance is 
calculated. The arrival (α)  and departure (β) rates 
are controlled with probabilities, which are 
changed in accordance with the required 
circumstances. As such, if the departure (β)  rate is 
set to be 0.5 and the arrival rate (α)  is set to any 
value in the range [0.5-1.0], then congestion 
circumstances will be enforced because the arrival 
(α) is higher than the departure (β) and vice versa. 
Accordingly, the arrival rate is set to values in the 

range of [0.30-0.95], and the departure is set to 0.5. 

Table 5 list the parameters and the values utilized 
in the simulation. The evaluation of the proposed 
method is implemented on the basis of a set of 
performance measures, loss, dropping, delay, and 
throughput in packets per slot (PPS) manner, as 
summarized in Table 6.  

Table 5 

Parameter Settings  
Par. Discussion Utilized 

Value(s) 
α Indicate the probability of packet 

arrival at each time slot. No packet 
arrival occurs at value 0, and the 
value 1 indicates certain arrival at 
each time slot. The value range (0-1) 
indicates a different probability for 
packet arrival. The higher the value, 
the more packet arrival occurs. 

[0.30-0.95] 

β Indicate the probability of packet 
departure at each time slot. No 
packet departe occurs at value 0, 
and the value 1 indicates a certain 
packet departure at each time slot. 
The value range (0-1) indicates a 
different probability for packet 
departure. The higher the value, the 
more packet departure occurs. 

0.5 

weights The weighted parameters of the 
compared methods, as utilized in 
literature  [10, 37, 44]. These 
parameters are used for RED, 
ERED, and BLUE. 

Dmax =0.1, 
MinThr = 3, 
MaxThr= 9 
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Indicate the probability of pack-
et arrival at each time slot. No 
packet arrival occurs at value 
0, and the value 1 indicates cer-
tain arrival at each time slot. 
The value range (0-1) indicates 
a different probability for packet 
arrival. The higher the value, the 
more packet arrival occurs.

[0.30-0.95]

β

Indicate the probability of pack-
et departure at each time slot. 
No packet departe occurs at val-
ue 0, and the value 1 indicates a 
certain packet departure at each 
time slot. The value range (0-1) 
indicates a different probability 
for packet departure. The higher 
the value, the more packet de-
parture occurs.

0.5

weights

The weighted parameters of the 
compared methods, as utilized 
in literature [10, 37, 44]. These 
parameters are used for RED, 
ERED, and BLUE.

Dmax =0.1, 
MinThr = 3, 
MaxThr= 9
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The arrival (α) and departure (β) rates are controlled 
with probabilities, which are changed in accordance 
with the required circumstances. As such, if the de-
parture (β) rate is set to be 0.5 and the arrival rate 
(α) is set to any value in the range [0.5-1.0], then con-
gestion circumstances will be enforced because the 
arrival (α) is higher than the departure (β) and vice 
versa. Accordingly, the arrival rate is set to values in 
the range of [0.30-0.95], and the departure is set to 0.5.
Table 5 list the parameters and the values utilized in the 
simulation. The evaluation of the proposed method is 
implemented on the basis of a set of performance mea-
sures, loss, dropping, delay, and throughput in packets 
per slot (PPS) manner, as summarized in Table 6. 

has been used as the core for all the subsequent AQM 
methods. ERED [1] improved the performance of RED 
in term of packet dropping. BLUE [14] is the first and 
the core for the adaptive approach for Dp calculation. 
Accordingly, these methods are used as the baseline 
for AQM comparison in the literature [20]. The pro-
posed method is compared with related fuzzy-based 
AQM methods, which are FRED [36], FERED [20], 
FGRED [10], FBLUE [42] and FLRED [6], which have 
reported improvements over the core methods. 
The results of the proposed and compared methods in 
terms of packet loss are illustrated in Figure 6, with 
varying arrival rates (α) and a departure rate (β) equal 
to 0.5. The results are provided at different arrival 
rates to distinguish between low and high traffic, re-
sulting in different scenarios ranging from non-con-
gestion to heavy congestion. The proposed method 
and BLUE lose no packets, which outperform RED 
(0.01 loss) and ERED (0.21 loss) in congested and 
heavily congested statuses. In non-congested status, 
all compared methods perform equally (zero loss). In 
a light congestion state, with α equal to 0.5 and β equal 
to 0.5, the RED starts to lose packets (0.02 loss), and 
ERED starts losing packets at α equal to 0.65 and β 
equal to 0.5 (0.01 loss). By contrast, FCRED and BLUE 
lost no packets at different α values. 
Figure 7 illustrates the packet dropping of the pro-
posed and compared methods with varying arrival 
rates and a departure rate (β) equal to 0.5. The results 
are provided at different arrival rates to distinguish 
between low, high, and extremely high traffics and 
non-congestion to heavy congestion statuses. The 
proposed method (with average dropping equal to 
0.21) outperforms the BLUE (with average dropping 
equal to 0.28), which has comparable performance to 
the proposed method in terms of loss. RED performs 
equally with the FCRED in dropping, and ERED has 
a better dropping rate (with average dropping equal 
to 0.15), resulting in a massive loss for ERED, as illus-
trated in Figure 6. 
Figure 8 illustrates the delay of the proposed and com-
pared methods with varying arrival rates and a de-
parture rate (β) equal to 0.5. BLUE outperforms the 
compared methods in congested and heavy congested 
statuses in terms of delay with an average of 7.18 com-
pared with 14.76, 16.74, and 21.96 for RED, FCRED, and 
ERED, respectively. In non-congested status, all com-
pared methods perform equally with slight variation. 
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Model   
The defuzzification step produces a crisp value by 
converting the terms and their confidence using 
defuzzification calculation. The center of gravity 
(COG) method is used with the input terms 
because it has similar capabilities to crisp 
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4. Simulation and Measurements 
The simulation process is conducted by using the 
JAVA programming language and a single router. 
The simulation uses an edge and single buffered 
router with small buffer size to evaluate the 
proposed method under critical circumstances. 
The buffer is simulated as First-In-First-Out (FIFO) 
queuing model [17, 20]. The network is monitored 
by using a discrete-time queue similar to the 
previous work [10, 37, 44]. Compared with the 
continuous-time model, the discrete model 
accurately calculates and evaluates the 
performance by analyzing the network statuses 
and the AQM responses. In such a model, the 
running time is divided into an equal period, called 
a slot. The slot is characterized by having a packet 
arrival or departure or both of them. The running 
simulation consists of a 2 million time slot and the 
first 40% of which is used for the warm-up period 
to reach a steady-state, in which no performance is 
calculated. The arrival (α)  and departure (β) rates 
are controlled with probabilities, which are 
changed in accordance with the required 
circumstances. As such, if the departure (β)  rate is 
set to be 0.5 and the arrival rate (α)  is set to any 
value in the range [0.5-1.0], then congestion 
circumstances will be enforced because the arrival 
(α) is higher than the departure (β) and vice versa. 
Accordingly, the arrival rate is set to values in the 

range of [0.30-0.95], and the departure is set to 0.5. 

Table 5 list the parameters and the values utilized 
in the simulation. The evaluation of the proposed 
method is implemented on the basis of a set of 
performance measures, loss, dropping, delay, and 
throughput in packets per slot (PPS) manner, as 
summarized in Table 6.  

Table 5 

Parameter Settings  
Par. Discussion Utilized 

Value(s) 
α Indicate the probability of packet 

arrival at each time slot. No packet 
arrival occurs at value 0, and the 
value 1 indicates certain arrival at 
each time slot. The value range (0-1) 
indicates a different probability for 
packet arrival. The higher the value, 
the more packet arrival occurs. 

[0.30-0.95] 

β Indicate the probability of packet 
departure at each time slot. No 
packet departe occurs at value 0, 
and the value 1 indicates a certain 
packet departure at each time slot. 
The value range (0-1) indicates a 
different probability for packet 
departure. The higher the value, the 
more packet departure occurs. 

0.5 

weights The weighted parameters of the 
compared methods, as utilized in 
literature  [10, 37, 44]. These 
parameters are used for RED, 
ERED, and BLUE. 

Dmax =0.1, 
MinThr = 3, 
MaxThr= 9 
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where μF1 (t) and μF2 (t) are the first and second 
confidence values for the redundant term t, 
respectively, and μFA(t) is the produced confidence 
value for the redundant term t. 

3.5. Defuzzification in the Fuzzy 
Model   
The defuzzification step produces a crisp value by 
converting the terms and their confidence using 
defuzzification calculation. The center of gravity 
(COG) method is used with the input terms 
because it has similar capabilities to crisp 
averaging values [29]. COG is given in Equation 9. 
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4. Simulation and Measurements 
The simulation process is conducted by using the 
JAVA programming language and a single router. 
The simulation uses an edge and single buffered 
router with small buffer size to evaluate the 
proposed method under critical circumstances. 
The buffer is simulated as First-In-First-Out (FIFO) 
queuing model [17, 20]. The network is monitored 
by using a discrete-time queue similar to the 
previous work [10, 37, 44]. Compared with the 
continuous-time model, the discrete model 
accurately calculates and evaluates the 
performance by analyzing the network statuses 
and the AQM responses. In such a model, the 
running time is divided into an equal period, called 
a slot. The slot is characterized by having a packet 
arrival or departure or both of them. The running 
simulation consists of a 2 million time slot and the 
first 40% of which is used for the warm-up period 
to reach a steady-state, in which no performance is 
calculated. The arrival (α)  and departure (β) rates 
are controlled with probabilities, which are 
changed in accordance with the required 
circumstances. As such, if the departure (β)  rate is 
set to be 0.5 and the arrival rate (α)  is set to any 
value in the range [0.5-1.0], then congestion 
circumstances will be enforced because the arrival 
(α) is higher than the departure (β) and vice versa. 
Accordingly, the arrival rate is set to values in the 

range of [0.30-0.95], and the departure is set to 0.5. 

Table 5 list the parameters and the values utilized 
in the simulation. The evaluation of the proposed 
method is implemented on the basis of a set of 
performance measures, loss, dropping, delay, and 
throughput in packets per slot (PPS) manner, as 
summarized in Table 6.  
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α Indicate the probability of packet 

arrival at each time slot. No packet 
arrival occurs at value 0, and the 
value 1 indicates certain arrival at 
each time slot. The value range (0-1) 
indicates a different probability for 
packet arrival. The higher the value, 
the more packet arrival occurs. 
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β Indicate the probability of packet 
departure at each time slot. No 
packet departe occurs at value 0, 
and the value 1 indicates a certain 
packet departure at each time slot. 
The value range (0-1) indicates a 
different probability for packet 
departure. The higher the value, the 
more packet departure occurs. 

0.5 

weights The weighted parameters of the 
compared methods, as utilized in 
literature  [10, 37, 44]. These 
parameters are used for RED, 
ERED, and BLUE. 
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5. Results  
The proposed method is compared with the core 
AQM methods, which are RED [16], ERED [1] and 
BLUE [14]. RED [16] is the first AQM method, 
which has been used as the core for all the 
subsequent AQM methods. ERED [1] improved 
the performance of RED in term of packet 
dropping. BLUE [14] is the first and the core for the 
adaptive approach for Dp calculation. 
Accordingly, these methods are used as the 
baseline for AQM comparison in the literature [20]. 
The proposed method is compared with related 
fuzzy-based AQM methods, which are FRED [36], 
FERED [20], FGRED [10], FBLUE [42] and FLRED 
[6], which have reported improvements over the 
core methods.  

The results of the proposed and compared 
methods in terms of packet loss are illustrated in 
Figure 6, with varying arrival rates (α) and a 
departure rate (β) equal to 0.5. The results are 
provided at different arrival rates to distinguish 
between low and high traffic, resulting in different 
scenarios ranging from non-congestion to heavy 
congestion. The proposed method and BLUE lose 
no packets, which outperform RED (0.01 loss) and 
ERED (0.21 loss) in congested and heavily 
congested statuses. In non-congested status, all 
compared methods perform equally (zero loss). In 
a light congestion state, with α equal to 0.5 and β 
equal to 0.5, the RED starts to lose packets (0.02 
loss), and ERED starts losing packets at α equal to 
0.65 and β equal to 0.5 (0.01 loss). By contrast, 
FCRED and BLUE lost no packets at different α 
values.  

Figure 7 illustrates the packet dropping of the 
proposed and compared methods with varying 
arrival rates and a departure rate (β) equal to 0.5. 
The results are provided at different arrival rates to 
distinguish between low, high, and extremely high 

traffics and non-congestion to heavy congestion 
statuses. The proposed method (with average 
dropping equal to 0.21) outperforms the BLUE 
(with average dropping equal to 0.28), which has 
comparable performance to the proposed method 
in terms of loss. RED performs equally with the 
FCRED in dropping, and ERED has a better 
dropping rate (with average dropping equal to 
0.15), resulting in a massive loss for ERED, as 
illustrated in Figure 6.  

Figure 8 illustrates the delay of the proposed and 
compared methods with varying arrival rates and 
a departure rate (β) equal to 0.5. BLUE outperforms 
the compared methods in congested and heavy 
congested statuses in terms of delay with an 
average of 7.18 compared with 14.76, 16.74, and 
21.96 for RED, FCRED, and ERED, respectively. In 
non-congested status, all compared methods 
perform equally with slight variation.  

Figure 9 illustrates the throughput of the proposed 
and compared methods with varying arrival rates 
and a departure rate (β) equal to 0.5. The results 
show a throughput of 0.79, 0.79, 0.78 and 0.72, for 
FCRED, ERED, RED, and BLUE, respectively. The 
proposed method outperforms the BLUE and RED, 
ERED performs equally with the FCRED in terms 
of throughput, and FCRED is better than ERED in 
terms of delay and loss, as illustrated in Figure 6, 
Figure 7, and Figure 8. The proposed method 
outperforms the compared methods in congested 
and heavy congested statuses in terms of 
throughput. In non-congested status, all compared 
methods perform equally with slight variation. In 
such a scenario, the RED and BLUE result in less 
throughput than the proposed method, and 
FCRED results in better delay and loss than ERED. 

The second set of results is obtained with varying 
arrival rate and a departure rate equal to 0.3. 
Compared with the first set, congestion is expected 
with a lower arrival rate with the decrease in the 
departure rate. The results of the proposed and 
compared methods in terms of packet loss are 
illustrated in Figure 10, separated by vertical lines 
to separate between low, high, and extremely high 
traffic. Figure 11, Figure 12, and Figure 13 illustrate 
the dropping, delay, and throughput, respectively. 
The results of the second set of experiments 
confirm the findings of the first set.  

A comparison of the proposed FCRED with recent 
fuzzy-based methods is given in Table 7. FCRED 
and FERED outperform the other compared 
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5. Results  
The proposed method is compared with the core 
AQM methods, which are RED [16], ERED [1] and 
BLUE [14]. RED [16] is the first AQM method, 
which has been used as the core for all the 
subsequent AQM methods. ERED [1] improved 
the performance of RED in term of packet 
dropping. BLUE [14] is the first and the core for the 
adaptive approach for Dp calculation. 
Accordingly, these methods are used as the 
baseline for AQM comparison in the literature [20]. 
The proposed method is compared with related 
fuzzy-based AQM methods, which are FRED [36], 
FERED [20], FGRED [10], FBLUE [42] and FLRED 
[6], which have reported improvements over the 
core methods.  

The results of the proposed and compared 
methods in terms of packet loss are illustrated in 
Figure 6, with varying arrival rates (α) and a 
departure rate (β) equal to 0.5. The results are 
provided at different arrival rates to distinguish 
between low and high traffic, resulting in different 
scenarios ranging from non-congestion to heavy 
congestion. The proposed method and BLUE lose 
no packets, which outperform RED (0.01 loss) and 
ERED (0.21 loss) in congested and heavily 
congested statuses. In non-congested status, all 
compared methods perform equally (zero loss). In 
a light congestion state, with α equal to 0.5 and β 
equal to 0.5, the RED starts to lose packets (0.02 
loss), and ERED starts losing packets at α equal to 
0.65 and β equal to 0.5 (0.01 loss). By contrast, 
FCRED and BLUE lost no packets at different α 
values.  

Figure 7 illustrates the packet dropping of the 
proposed and compared methods with varying 
arrival rates and a departure rate (β) equal to 0.5. 
The results are provided at different arrival rates to 
distinguish between low, high, and extremely high 

traffics and non-congestion to heavy congestion 
statuses. The proposed method (with average 
dropping equal to 0.21) outperforms the BLUE 
(with average dropping equal to 0.28), which has 
comparable performance to the proposed method 
in terms of loss. RED performs equally with the 
FCRED in dropping, and ERED has a better 
dropping rate (with average dropping equal to 
0.15), resulting in a massive loss for ERED, as 
illustrated in Figure 6.  

Figure 8 illustrates the delay of the proposed and 
compared methods with varying arrival rates and 
a departure rate (β) equal to 0.5. BLUE outperforms 
the compared methods in congested and heavy 
congested statuses in terms of delay with an 
average of 7.18 compared with 14.76, 16.74, and 
21.96 for RED, FCRED, and ERED, respectively. In 
non-congested status, all compared methods 
perform equally with slight variation.  

Figure 9 illustrates the throughput of the proposed 
and compared methods with varying arrival rates 
and a departure rate (β) equal to 0.5. The results 
show a throughput of 0.79, 0.79, 0.78 and 0.72, for 
FCRED, ERED, RED, and BLUE, respectively. The 
proposed method outperforms the BLUE and RED, 
ERED performs equally with the FCRED in terms 
of throughput, and FCRED is better than ERED in 
terms of delay and loss, as illustrated in Figure 6, 
Figure 7, and Figure 8. The proposed method 
outperforms the compared methods in congested 
and heavy congested statuses in terms of 
throughput. In non-congested status, all compared 
methods perform equally with slight variation. In 
such a scenario, the RED and BLUE result in less 
throughput than the proposed method, and 
FCRED results in better delay and loss than ERED. 

The second set of results is obtained with varying 
arrival rate and a departure rate equal to 0.3. 
Compared with the first set, congestion is expected 
with a lower arrival rate with the decrease in the 
departure rate. The results of the proposed and 
compared methods in terms of packet loss are 
illustrated in Figure 10, separated by vertical lines 
to separate between low, high, and extremely high 
traffic. Figure 11, Figure 12, and Figure 13 illustrate 
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The results of the second set of experiments 
confirm the findings of the first set.  

A comparison of the proposed FCRED with recent 
fuzzy-based methods is given in Table 7. FCRED 
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Figure 6
Packet Loss –based Comparison at β=0.5

Figure 7
Packet Dropping–based Comparison at β=0.5

Figure 8
Delay–based Comparison at β=0.5

methods. However, FCRED drops less packets 
compared with FERED and improves the network 
performance. A time comparison is given in Table 
8. The proposed method consumes more time 
compared with RED, ERED, and BLUE, which are 
crisp-based. The proposed method outperforms  

the other fuzzy-based methods, except for FBLUE.  
Although, FBLUE consumes more time, FCRED 
produces better results, as given in Table 7. 
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methods. However, FCRED drops less packets 
compared with FERED and improves the network 
performance. A time comparison is given in Table 
8. The proposed method consumes more time 
compared with RED, ERED, and BLUE, which are 
crisp-based. The proposed method outperforms  

the other fuzzy-based methods, except for FBLUE.  
Although, FBLUE consumes more time, FCRED 
produces better results, as given in Table 7. 
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Figure 9
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Delay–based Comparison at β=0.3 
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Figure 12
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Figure 13
Throughput–based Comparison at β=0.3

 
 

 
 

Figure 13  

Throughput–based Comparison at β=0.3 

 
 

Table 7 

0.00

0.20

0.40

0.60

0.80

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 AVG

DR
O

P 
(%

)

Arrival Rate (α)

Packet Dropping @ β=0.3

RED

ERED

BLUE

FCRED

0
10
20
30
40
50
60
70
80

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 AVG

DE
LA

Y 
(%

)

Arrival Rate (α)

Delay @ β=0.3

RED

ERED

BLUE

FCRED

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 AVG

TH
RO

U
GH

PU
T 

(%
)

Arrival Rate (α)

Throughput @ β=0.3

RED

ERED

BLUE

FCRED

 
Figure 12 

Delay–based Comparison at β=0.3 

 
 

 

 
 

Table 7 

0.00

0.20

0.40

0.60

0.80

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 AVG

DR
O

P 
(%

)

Arrival Rate (α)

Packet Dropping @ β=0.3

RED

ERED

BLUE

FCRED

0
10
20
30
40
50
60
70
80

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 AVG

DE
LA

Y 
(%

)

Arrival Rate (α)

Delay @ β=0.3

RED

ERED

BLUE

FCRED

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 AVG

TH
RO

U
GH

PU
T 

(%
)

Arrival Rate (α)

Throughput @ β=0.3

RED

ERED

BLUE

FCRED

Figure 9 illustrates the throughput of the proposed 
and compared methods with varying arrival rates 
and a departure rate (β) equal to 0.5. The results show 
a throughput of 0.79, 0.79, 0.78 and 0.72, for FCRED, 
ERED, RED, and BLUE, respectively. The proposed 
method outperforms the BLUE and RED, ERED per-
forms equally with the FCRED in terms of through-
put, and FCRED is better than ERED in terms of delay 
and loss, as illustrated in Figure 6, Figure 7, and Figure 
8. The proposed method outperforms the compared 
methods in congested and heavy congested statuses 
in terms of throughput. In non-congested status, all 
compared methods perform equally with slight vari-
ation. In such a scenario, the RED and BLUE result 
in less throughput than the proposed method, and 

FCRED results in better delay and loss than ERED.
The second set of results is obtained with varying ar-
rival rate and a departure rate equal to 0.3. Compared 
with the first set, congestion is expected with a lower 
arrival rate with the decrease in the departure rate. 
The results of the proposed and compared methods in 
terms of packet loss are illustrated in Figure 10, sepa-
rated by vertical lines to separate between low, high, 
and extremely high traffic. Figure 11, Figure 12, and 
Figure 13 illustrate the dropping, delay, and through-
put, respectively. The results of the second set of ex-
periments confirm the findings of the first set. 
A comparison of the proposed FCRED with recent 
fuzzy-based methods is given in Table 7. FCRED and 
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FERED outperform the other compared methods. 
However, FCRED drops less packets compared with 
FERED and improves the network performance. A 
time comparison is given in Table 8. The proposed 
method consumes more time compared with RED, 

ERED, and BLUE, which are crisp-based. The pro-
posed method outperforms the other fuzzy-based 
methods, except for FBLUE. Although, FBLUE con-
sumes more time, FCRED produces better results, as 
given in Table 7.

α Measure FRED FERED FGRED FBLUE FLRED FCRED

0.3

Loss 0 0 0 0 0 0

Drop 0 0 0 0.04 0 0.02

Drop & Loss 0 0 0 0 0 0.02

Delay 3.90 3.92 3.90 3.5 3.90 3.43

0.5

Loss 0.03 0 0.03 0.03 0.03 0

Drop 0.06 0.06 0.04 0.03 0.04 0.06

Drop & Loss 0.09 0.06 0.07 0.06 0.07 0.06

Delay 24.24 21.66 23.7 16.5 21.32 11.73

0.9

Loss 0.12 0 0.24 0.42 0.18 0

Drop 0.44 0.53 0.20 0.02 0.26 0.44

Drop & Loss 0.56 0.53 0.44 0.44 0.44 0.44

Delay 28.32 28.25 39.7 39.0 28.23 24.39

Table 7
Results of the proposed FCRED method with Fuzzy-methods

Table 8
Time comparison of the proposed FCRED method and the 
existing methods

Method Time (In Millisecond)

RED 121

ERED 92

BLUE 93.75

FRED 7658

FERED 7652

FGRED 7560

FBLUE 5520

FLRED 7476.25

FCRED 6501.23

6. Conclusion
This paper proposes a fuzzy-based AQM method 
based on network analysis, inferencing, and simple 
and comprehensive indicators. The contributions of 
FCRED can be summarized as follows: 1) identify a 
set of criteria for the AQM indicators and use them 
for collecting the comprehensive indicators. 2) De-
veloping a fuzzy-based model to use these indicators 
for actively managing the queue at the router buf-
fer. Accordingly, FCRED outperforms the existing 
methods in terms of packet loss, dropping, delay, and 
throughput. Future work will use other indicators 
that fit the set of criteria as determined in this paper. 
As given in the results, FCRED reduces loss to zero, 
and dropping is reduced from 0.28 to 0.21, a 25% re-
duction compared with BLUE, which achieves the 
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steadiest results among the compared methods. Com-
pared with recent fuzzy-based methods, the proposed 
FCRED and FERED outperform the other compared 
methods. FCRED drops less packets compared with 
FERED and improves the network performance.
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