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The prevalence of heart disease is increasing at a rapid rate due to changes in food habits and lifestyle of people 
all over the world. Early prediction and diagnosis of this fatal disease is a highly excruciating task. Nowadays, the 
ensemble learning approaches are preferred owing to their effectiveness in performance when compared to the 
performance of a single classification algorithm. In this work, a Dual-Layer Stacking Ensemble (DLSE) technique 
and a Deep Heterogeneous Ensemble (DHE) technique to classify heart disease are proposed. The DLSE uses sev-
eral heterogeneous classifiers to form an ensemble that is efficient as well as diverse. The proposed framework 
consists of two layers with the first layer consisting of three different base learning algorithms Naïve Bayes (NB), 
Decision Tree (DT), and Support Vector Machine (SVM). The second layer comprises of three different classifi-
ers, Extremely Randomized Trees (ERT), Ada Boost Classifier (ABC) and Random Forest (RF). The second layer 
utilizes the results from the first layer to provide a diverse input for the three classifiers. Finally, the outcomes 
are fed to the meta-classifier Gradient Boosted Trees (GBT) to generate the final prediction. The DHE uses three 
deep learning models Convolutional Neural Networks with Bidirectional Long Short-Term Memory (CNN BiL-
STM), Artificial Neural Network (ANN) and Recurrent Neural Network (RNN) with RF, ERT and GBT as the 
meta-learners. The performance of the proposed methods is compared with traditional state-of-the-art classifiers 
as well as existing ensemble learning and deep learning methods. The experimental outcomes show that the pro-
posed DLSE and DHE methods perform exceptionally in terms of accuracy, precision and recall measures.
KEYWORDS: Deep Learning, Ensemble Techniques, Heart Disease, Machine Learning, Multiple Classifiers, 
Stacking Ensemble.
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1. Introduction
The World Health Organization (WHO) has stated 
that nearly 31% of annual deaths occur because of 
heart disease [58]. The WHO has also estimated that 
more than 75% of those deaths occur in middle- and 
low-income countries [57]. This increase in heart dis-
ease is mainly based on the factors such as years of 
alcohol abuse, smoking, unhealthy food habits, stress, 
lack of physical activities etc. The changes in the en-
vironment such as increase in the level of air pollu-
tion, variations in the temperature also play a factor 
for prevalence of heart disease. It has been estimated 
that over 54 million people in India suffer from heart 
related ailments. The recent Coronavirus Disease 
2019 (COVID-19) outbreak has raised concern over 
substantial increase in heart related ailments. The 
COVID-19 pandemic has increased the risk of severe 
infection in people with underlying heart disease or 
heart related problems. Therefore, there is a need for 
proper classification methodology not only for detect-
ing heart disease but also for predicting the possibili-
ty of heart disease in future. 
Machine learning [25] has been used extensively 
by researchers to classify and predict heart dis-
ease. Recent technology advancements in parallel 
processing [12], Graphical Processing Unit (GPU) 
technology [60] have urged many researchers to uti-
lize this power to process the data more effective-
ly. Ensemble methods [46] are always known to be 
highly effective in solving classification problems 
and are the most preferred techniques in the recent 
days. Ensemble techniques [17] rely on a collection 
of classifiers rather than focusing on the perfor-
mance of a single classifier. These approaches build 
a meta-model based on the results of several diverse 
classifiers. This meta-model is then used to provide 
the final prediction outcome for the problem. A wide 
variety of machine learning algorithms have been 
developed over the recent years for solving classifi-
cation and regression problems in real world. Most 
of the algorithms often deal with increasing the ac-
curacy of classification and prediction. 
Many researches were carried out in search of an al-
gorithm that provides high accuracy. The ensemble 
approaches also fall into this category. Some of the en-
semble techniques deal with model fusion, selection 
of the base learners dynamically, combination of same 

or different base learners, bagging, applying voting 
scheme, stacked generalization among others. In this 
modern era, deep learning models have been success-
fully applied for classification and prediction tasks as 
they automate the process of feature extraction using 
the hierarchical feature learning approach. 

2. Related Work
The ensemble approaches have proven to be more ef-
fective when compared to the performance of a sin-
gle classifier. Some of the recent works in ensemble 
approaches are discussed in this section. Bashir et. 
al [7] discussed an ensemble approach using bagging 
for diagnosing heart disease. The approach used a 
multi-objective voting scheme for the final prediction 
result. Al-Barazanchi et. al [1] developed a bagging 
model for diagnosing neuromuscular disorders. The 
technique used a Decision Tree as the base learner 
and a voting mechanism was used to obtain the final 
prediction. Nilashi et. al [35] proposed an adaptive 
neuro-fuzzy ensemble model for predicting hepati-
tis disease. This model used a Self-Organizing Map 
(SOM) for clustering the data. The major drawback in 
this method is the computational time that is needed 
for diagnosing the disease. 
Atallah and Al-Mousa [5] developed an ensemble 
method using the majority voting scheme. Four clas-
sifiers were used and the predictions were combined 
using hard voting method. This approach is just a 
combination of four basic classifiers using voting 
scheme and the performance was limited. Ani et. al 
[3] proposed a rotation forest-based ensemble tech-
nique for disease diagnosis. This technique used 
RF as the base learner. A two-tier classification en-
semble for detecting coronary heart disease was ex-
plored by Tama et. al [53]. This technique used RF, 
Gradient Boosting Machine (GBM) and Extreme 
Gradient Boosting Machine (XGBoost) as separate 
homogeneous ensembles. Yekkala and Dixit [63] 
designed a Genetic Algorithm (GA) based ensemble 
for classifying heart disease. This technique used 
GA for selecting the attributes for classification. 
But this model was validated on only a single data-
set. Brunese et. al [11] provided an ensemble learn-
ing method for detecting brain cancer. This method 



Information Technology and Control 2022/1/51160

used a weighted soft voting technique for generating 
the prediction. 
A hybrid ensemble for detecting heart disease was 
designed by Zhenya and Zhang [67]. This ensemble 
used five heterogeneous classifiers and used Relief 
algorithm for dimensionality reduction. This meth-
od was tested using the statlog dataset from the UCI 
data repository. A swarm-based RF algorithm was 
contributed by Asadi et. al [4]. This technique used a 
multi-objective particle swarm optimization (MOP-
SO) combined with the RF algorithm for diagnosing 
heart disease. This research suggested the genera-
tion of diverse feature sets rather than the traditional 
bootstrapping of the samples.
An intelligent ensemble method for detecting coro-
nary artery disease was contributed by Sapra et. al 
[48]. This approach focused on the cost-effectiveness 
and rapid prediction of heart disease. Marak et. al 
[31] proposed a semi-supervised ensemble for cancer 
diagnosis from gene expression data. This method 
combined the merits of semi-supervised learning and 
ensemble learning. The model was validated on eight 
gene expression datasets.
Baccouche et. al [6] proposed a deep learning en-
semble model using Bidirectional Long Short-Term 
Memory (BiLSTM) and Bidirectional Gated Recur-
rent Unit (BiGRU) model with CNN for the prediction 
of heart disease. But this technique did not use the 
benchmark datasets to validate the proposed model.  
Ali et. al [2] proposed a deep learning-based ensemble 
model along with feature fusion for predicting heart 
disease. This approach used conditional probability 
and information gain for feature weight and feature 
elimination respectively.
Rath et. al [42] developed a deep learning method for 
predicting heart disease from the imbalanced ECG 
samples. This method used Generative Adversarial 
Network (GAN) model for dealing with the imbal-
anced samples and used an ensemble of LSTM and 
GAN for classification. Chen et. al [13] designed a 
Local Feature based LSTM (LF-LSTM) and a deep 
learning ensemble for detecting heart rate variability 
and acceleration. Plawiak et. al [38] proposed a deep 
ensemble method using genetic algorithm for cardiac 
arrhythmia detection using ECG signals. This meth-
od fused normalization, hamming window, cross-val-
idation for constructing the layers of deep ensemble.

It can be seen from the related works that the ensem-
ble learning can be either homogeneous or hetero-
geneous. The former will have a single base learn-
ing algorithm and the latter will have different base 
learning algorithms. The choice of the base learner 
is directly proportional to the effectiveness of the 
ensemble. This paves the way to carry out extensive 
research in the area of ensemble classification. More-
over, it can be seen that the deep ensemble models 
provide a higher performance by utilizing the merits 
of both ensemble and deep learning models. In this re-
search, a dual layer stacking ensemble that uses three 
different base learning algorithms in each layer and a 
deep heterogeneous ensemble are proposed and are 
applied to diagnose heart disease. 

3. The Proposed Ensemble 
Methodologies
3.1. Dual Layer Stacking Ensemble (DLSE)
The proposed DLSE approach involves two layers of 
base learners and a final meta-learner to provide the 
final prediction. The Enhanced Evolutionary Feature 
Selection (EEFS) [40] algorithm is used to select the 
best feature set from the input training set. The best 
training set is then subjected to k-fold Cross Valida-
tion (CV) and is split into K disjoint subsets of equal 
size and one set from the K subsets is selected as the 
validation set. Once the K training sets are construct-
ed the base learners in layer- 1 are trained and validat-
ed. We have used three classifiers NB, DT and SVM as 
the base learners in layer- 1. The prediction results of 
all the three classifiers are recorded and all the lay-
er-1 predictions are then combined with the original 
training set and a new training set is given as input to 
layer-2 by combining the training set with the predic-
tion matrix generated in layer-1.
Layer-1 can be considered as the feature generator 
for layer-2. This new training set is again subjected to 
k-fold CV and it results in K disjoint subsets of same 
size. Once again one subset is chosen at random as the 
validation set. Now the base learners in layer-2 are 
trained and validated. In layer-2 we have chosen en-
semble classifiers ERT, ABC and RF as base learning 
algorithms. The second layer uses ensemble classifi-
ers instead of traditional classifiers because the en-
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semble-based classifiers always provide a better per-
formance than the traditional classifiers [20, 22, 45, 
47]. All layer-2 predictions are then used to train the 

meta-classifier GBT. The meta-learner then provides 
the final prediction. The flow diagram of the proposed 
DLSE technique is shown in Figure 1.

Figure 1
Flow diagram of the proposed DLSE Method

  

is tournament with all the other parameters remaining 
in their default values. The solver for LDA is set as 
Singular Value Decomposition (SVD) and the 
remaining parameters are set with their default values. 
 
Table 1 

                 EEFS algorithm hyperparameters setting  
 

Algorithm Hyperparameters Setting 

EEFS 

population_size = 50 
max_generations = 100 
crossover probability = 0.8  
mutation probability = 0.1 
solver = ‘svd’ 
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Algorithm 1 
Pseudocode of proposed DLSE  
 

Algorithm 
Input:  1 2 t m n metaS= s ,s , …… s ,K=10, C , C , C  

Output:  Prediction result  p̂  
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Algorithm

Input: { }1 2 t m n metaS= s ,s , …… s ,K=10, C , C , C
Output:  Prediction result  p̂

Begin
          [ ]bestS s = apply EEFS algorithm on S  to select  
          the best features. 
         Split [ ]bestS s   into [ ] [ ]train testS s , S s

          [ ] [ ]
yields

k
train traincross_validation(K,S s )  S s→

          [ ] [ ] ( )
r

 
 k
valid trainS s  S s ,    r=rand 1, K  ←

//Layer -1
          for each i  in  mC :
                Train a base learner iC  on [ ]k

trainS s  
                

 

 

Begin 
           bestS s = apply EEFS algorithm on S  to select  
          the best features.  
         Split  bestS s   into    train testS s , S s  

             
yields

k
train traincross_validation(K,S s )  S s  

               
r

 
 k
valid trainS s  S s ,    r=rand 1, K    

//Layer -1proposed 
          for each i  in  mC : 

 Train a base learner iC  on  k
trainS s   

                  
i

 
'
vS s    Apply iC  on   

validS s  

          end for 
          Construct the prediction matrix 

                  
k1 k2 km

 
' ' ' '
v v v vS s {S s , S s …… S s }  

//Layer -2 

        
yields

 ' k
train v traincross_validation(k,S s S s )  S s   

               
r

 
' k
valid trainS s  S s ,    r=rand 1, k  

          for each i  in  nC : 

                 Train a base learner iC  on  k
trainS s  

                   
i

 
''
vS s   Apply iC  on  

 

'
validS s  

          end for 
          Construct the prediction matrix 

                  
k1 k2 km

 
'' '' ' ''
v v v vS s {S s , S' s …… S s }  

//Meta-Classifier 
          Train metaC  based on   ''

vS s   

//Testing phase 
          for i=1 to m and j = 1 to n do: 
                Apply testS [s]  on layer-1 base learners to  
                obtain prediction set 

    
 

'
c 1 i 2 i m tS s  C (s ),C (s ), …… C (s )  

                Apply    '
test cS s  S s  on layer-2 base  

                learners to obtain prediction set 

    
 

'' ' ' '
C 1 i 2 i n tS s  C (s ),C (s ), …… C (s )  

          end for    
          Apply meta C  to perform classification on  

    ' ''
c CS s S s  

          Return the final prediction ip  
End 

 

3.1.2. Layer-1 Base Learners 
The first layer of the proposed DLSE method consists 
of three simple classifiers. Three state-of-the-art 
classifiers NB [62], DT [27] and SVM [19, 64] have 
been used as base learning algorithms in layer-1. The 
Nave Bayes classification algorithm is well-known 

[29]. It estimates the conditional probability of each 
class given the observation and chooses the class with 
the highest posterior probability as the correct answer 
[50, 59]. It is employed in layer-1 because it requires 
the least amount of storage space to hold the 
probabilities in both the training and classification 
stages, making it a good fit for the high-dimensional 
datasets utilized in our research. SVM is based on 
statistical learning theory, which has since been 
improved by a number of other researchers. In SVM, 
kernel functions are used to map training samples in 
high-dimensional space in a nonlinear way [56]. For 
mapping and optimizing the separation between data 
points, several kernel functions such as polynomial, 
Gaussian, and sigmoid are utilized. SVM's 
advantages, such as its success in high-dimensional 
spaces and flexibility in kernel function selection, 
have made it appealing for a variety of applications, 
including disease prediction, speech recognition, and 
text categorization. The DT classifier uses a tree-like 
graph and does not require any domain expertise. It 
creates conditional probabilities for research analysis 
and selects the optimal option for traversing from root 
to leaf, indicating distinct class separation [49]. It can 
be used in the medical industry to classify and forecast 
diseases. Moreover, the combination of  NB, SVM and 
DT have proven to be very effective in classification 
[8, 9, 26]. Hence we have chosen the three classifiers 
for layer-1 of DLSE. The parameter setting for each of 
the algorithm is described in Table 2. 
 
Table 2 
DLSE Layer-1 base learner hyperparameters setting 
 

Algorithm Hyperparameters Setting 

NB - 

DT 

criterion = ‘gain_ratio’  
max_depth = 10 
min_split_size = 4 
minimal_gain = 0.01 

SVM 
kernel=’dot’ 
max iterations =100000 
convergence_epsilon = 0.001 

The DT algorithm uses gain ratio as the criterion for 
selecting the attributes to split the tree and the 
maximum depth is set as 10 with the minimum split 
size being set as 4. The gain ratio RatioG  measure is 
given by Equation (1), 
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End

Algorithm 1
Pseudocode of proposed DLSE 

The pseudocode of the proposed Dual-Layer Stack-
ing Ensemble (DLSE) method is shown in Algorithm 
1 and the working principle is discussed. The data-
set { }1 2 tS= s ,s , …… s  along with the layer-1 base 
learners mC , the layer-2 base learners nC , and the 
meta-learner  metaC  are provided as the input. Fea-
ture selection is applied on the dataset S  to extract 
only the useful and important features. The feature 
selection of the data is performed by the GA-LDA 
[40] algorithm. The GA-LDA algorithm selects the 
best features [ ]bestS s  from the given input dataset S.  
The data is then split into training set [ ]trainS s  and 
testing set [ ]testS s   by applying the 80-20 rule. Then 
k-fold CV is applied. 
We have chosen the value of K=10  for validating the 
data. The CV yields K  disjoint subsets [ ]k

train S s  with 
same size. The validation set [ ] 

validS s   is chosen ran-
domly from the training set [ ]k

trainS s . The training 
set [ ]k

train S s  is used for training the base learners mC  
in layer-1. After training the validation set [ ] 

validS s  
is applied on the layer-1 base learners to obtain the 
prediction result [ ]

i

'
vS s  and a prediction matrix 

[ ]'
vS s  is constructed by repeating the procedure K 

times. Then the results are fed to the second layer. 
The second layer combines the training set [ ] 

trainS s  
generated in layer-1 with the prediction matrix 

[ ]'
vS s . This is done to ensure the learnings of lay-

er-1 are propagated to layer-2. Again k-fold CV with 
K=10  is applied to form the new training set The 

CV yields another K  disjoint subsets of same size 
[ ]k

trainS s .′  The validation set [ ]'
validS s  is chosen ran-

domly from the training set [ ]k
trainS s′ . The training 

set [ ]k
train S s′  is used for training the base learners nC  

in layer-2. 
After training, the validation set [ ]'

validS s  is applied 
on the layer-2 base learners to obtain the prediction 
result [ ]

i

''
vS s  and this step is repeated k  times to con-

struct the prediction matrix [ ]''
vS s . The meta-learn-

er metaC  is trained using the prediction matrix [ ]''
vS s  

constructed from layer-2. In the testing-phase, the 
test data [ ]testS s  is applied to each of the layer-1 and 
layer-2 base learners mC  and nC   and the prediction 
set [ ]'

cS s  and [ ]''
CS s  are constructed. Then the me-

ta-learner is provided with the union of [ ]'
cS s  and 

[ ]''
CS s  to perform classification and the final predic-

tion p̂  is returned.
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Table 1
EEFS algorithm hyperparameters setting

Algorithm Hyperparameters Setting

EEFS

population_size = 50
max_generations = 100
crossover probability = 0.8 
mutation probability = 0.1
solver = ‘svd’

3.1.1. Feature Selection Using EEFS
The dataset is feature selected using EEFS algorithm. 
EEFS is an evolutionary feature selection algorithm 
that utilizes the advantages of both GA and LDA. This 
algorithm treats each individual in a population as a 
binary string that encodes a feature subset. There-
fore, for a dataset S of F features, it will be represented 
as an F-bit binary string. The '1' bits in the F-bit bina-
ry string correspond to the features that are selected 
and the '0' bits correspond to the features that are not 
selected. Table 1 shows the hyperparameters setting 
for EEFS algorithm.

The population size is set as 50 with maximum gen-
erations being assigned a value of 100. The crossover 
probability and mutation probability are set as 0.8 and 
0.1 respectively. The selection scheme used is tourna-
ment with all the other parameters remaining in their 
default values. The solver for LDA is set as Singular 
Value Decomposition (SVD) and the remaining pa-
rameters are set with their default values.

3.1.2. Layer-1 Base Learners
The first layer of the proposed DLSE method con-
sists of three simple classifiers. Three state-of-
the-art classifiers NB [62], DT [27] and SVM [19, 
64] have been used as base learning algorithms in 
layer-1. The Nave Bayes classification algorithm 
is well-known [29]. It estimates the conditional 
probability of each class given the observation and 
chooses the class with the highest posterior proba-
bility as the correct answer [50, 59]. It is employed 
in layer-1 because it requires the least amount of 
storage space to hold the probabilities in both the 
training and classification stages, making it a good 
fit for the high-dimensional datasets utilized in our 
research. SVM is based on statistical learning  the-
ory, which has since been improved by a number 
of other researchers. In SVM, kernel functions are 

used to map training samples in high-dimensional 
space in a nonlinear way [56]. For mapping and op-
timizing the separation between data points, several 
kernel functions such as polynomial, Gaussian, and 
sigmoid are utilized. SVM's advantages, such as its 
success in high-dimensional spaces and flexibility 
in kernel function selection, have made it appealing 
for a variety of applications, including disease pre-
diction, speech recognition, and text categorization. 
The DT classifier uses a tree-like graph and does not 
require any domain expertise. It creates condition-
al probabilities for research analysis and selects the 
optimal option for traversing from root to leaf, indi-
cating distinct class separation [49]. It can be used 
in the medical industry to classify and forecast dis-
eases. Moreover, the combination of NB, SVM and 
DT have proven to be very effective in classification 
[8, 9, 26]. Hence we have chosen the three classifiers 
for layer-1 of DLSE. The parameter setting for each 
of the algorithm is described in Table 2.

Table 2
DLSE Layer-1 base learner hyperparameters setting

Algorithm Hyperparameters Setting

NB -

DT

criterion = ‘gain_ratio’ 
max_depth = 10
min_split_size = 4
minimal_gain = 0.01

SVM
kernel=’dot’
max iterations =100000
convergence_epsilon = 0.001

The DT algorithm uses gain ratio as the criterion for 
selecting the attributes to split the tree and the max-
imum depth is set as 10 with the minimum split size 
being set as 4. The gain ratio RatioG  measure is given 
by Equation (1),
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where, id  is the attribute in training set S . ( ) ,iH d S  
is the entropy measure for the attribute id  in the set 

.S  ( ),Gain iI d S  is the information gain for the attri-
bute id  in the set S  and is given by Equation (2),
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The SVM uses dot kernel with a maximum iteration of 
100000 along with the convergence epsilon value 
0.001. The rest of the parameters of all the base 
learners remain in their default values.  
 

3.1.3. Layer-2 Base Learners 
In layer-2 three ensemble classifiers ERT [37], ABC 
[21] and RF [41] are used as base learning algorithms. 
Two of the most popular averaging methods are RF 
and ERTs.  Before looking for the best features and 
split spots, it goes through two independent 
randomized algorithms. To begin, RF randomly 
selects a fixed number from the training set, similar to 
bagging [24]. Each decision tree is then grown using a 
randomly selected subset of input features. RF lowers 
variance and avoids overfitting by combining the two 
randomized techniques.  
ERT is similar to RF. The bagging approach, on the 
other hand, is not employed when assigning training 
samples to each base learner. Instead, each base 
student is given the same set of training materials. 
Furthermore, the input feature and its splitting value 
are picked at random for the building of base learners, 
whereas RF looks for the highest discriminative 
thresholds. ABC allows predictors to be learned in a 
sequential manner. Iterative training is used to change 
weights for each observation and each base learner, 
lowering both variation and bias [15]. Moreover, the 
combination of these classifiers are proven to be 
effective [65] and hence we have chosen these three 
classifiers for layer-2 of DLSE. The parameter setting 
for the layer-2 base learners is shown in Table 3. The 
ERT classifier uses a random subset just like RF but 
the random thresholds are set for each candidate 
feature and the best among the random thresholds is 
selected as the splitting criteria. The ERT uses 
averaging to minimize over-fitting and to maximize 
accuracy. 
 
Table 3 
DLSE Layer-2 base learner hyperparameters setting 
 

Algorithm Hyperparameters Setting 

ERT 

n_estimators = 200 
criterion = ‘gini’ 
max_depth = 10 
min_samples_split=2 

ABC 
base_estimator = ‘Decision Tree’ 
n_estimators = 200 
learning_rate = 1 

RF 

n_estimators = 200 
criterion = ‘gini’ 
max_depth = 10 
min_samples_split=2 

 
The ABC uses a decision tree as the base estimator 
with a learning rate of 1. All the learners are 
configured with 200 estimators and the other 
parameters remain with default values. The RF uses 
gini index as the criterion for split with a maximum 
depth of 10. The gini index IndexG  is given by 
Equation (4), 

 
c 2

Index gg=1
                  G =1- D  ,                       (4)  

where,  
gD is the proportion of samples that belongs to 

the class c  for a particular tree node. 
 

3.1.4. Meta-Learner 
The GBT [34, 39] classifier is used as the meta-
learner. The meta-learner is a regressor that allows 
optimization of least squares regression loss function 

cL . At each stage of the regressor a regression tree is 
fit based on the negative gradient of the loss function

c L . The cL  is given by Equation (5), the negative 
gradient of the loss function cL . The cL  is given by 
Equation (5), 
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where, c L  is the loss for c th ensemble, ip  is the 
prediction for input ie , c-1E  corresponds to the 
previous ensemble.  T  corresponds to the estimators 
used in the ensemble. A newly constructed tree cT  is 
fit accordingly to minimize the loss cL  given by 
previous ensemble c-1E  as shown in Equations (6)-
(7).  
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The SVM uses dot kernel with a maximum iteration of 
100000 along with the convergence epsilon value 
0.001. The rest of the parameters of all the base 
learners remain in their default values.  
 

3.1.3. Layer-2 Base Learners 
In layer-2 three ensemble classifiers ERT [37], ABC 
[21] and RF [41] are used as base learning algorithms. 
Two of the most popular averaging methods are RF 
and ERTs.  Before looking for the best features and 
split spots, it goes through two independent 
randomized algorithms. To begin, RF randomly 
selects a fixed number from the training set, similar to 
bagging [24]. Each decision tree is then grown using a 
randomly selected subset of input features. RF lowers 
variance and avoids overfitting by combining the two 
randomized techniques.  
ERT is similar to RF. The bagging approach, on the 
other hand, is not employed when assigning training 
samples to each base learner. Instead, each base 
student is given the same set of training materials. 
Furthermore, the input feature and its splitting value 
are picked at random for the building of base learners, 
whereas RF looks for the highest discriminative 
thresholds. ABC allows predictors to be learned in a 
sequential manner. Iterative training is used to change 
weights for each observation and each base learner, 
lowering both variation and bias [15]. Moreover, the 
combination of these classifiers are proven to be 
effective [65] and hence we have chosen these three 
classifiers for layer-2 of DLSE. The parameter setting 
for the layer-2 base learners is shown in Table 3. The 
ERT classifier uses a random subset just like RF but 
the random thresholds are set for each candidate 
feature and the best among the random thresholds is 
selected as the splitting criteria. The ERT uses 
averaging to minimize over-fitting and to maximize 
accuracy. 
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ABC 
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n_estimators = 200 
learning_rate = 1 
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min_samples_split=2 

 
The ABC uses a decision tree as the base estimator 
with a learning rate of 1. All the learners are 
configured with 200 estimators and the other 
parameters remain with default values. The RF uses 
gini index as the criterion for split with a maximum 
depth of 10. The gini index IndexG  is given by 
Equation (4), 
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The SVM uses dot kernel with a maximum iteration of 
100000 along with the convergence epsilon value 
0.001. The rest of the parameters of all the base 
learners remain in their default values.  
 

3.1.3. Layer-2 Base Learners 
In layer-2 three ensemble classifiers ERT [37], ABC 
[21] and RF [41] are used as base learning algorithms. 
Two of the most popular averaging methods are RF 
and ERTs.  Before looking for the best features and 
split spots, it goes through two independent 
randomized algorithms. To begin, RF randomly 
selects a fixed number from the training set, similar to 
bagging [24]. Each decision tree is then grown using a 
randomly selected subset of input features. RF lowers 
variance and avoids overfitting by combining the two 
randomized techniques.  
ERT is similar to RF. The bagging approach, on the 
other hand, is not employed when assigning training 
samples to each base learner. Instead, each base 
student is given the same set of training materials. 
Furthermore, the input feature and its splitting value 
are picked at random for the building of base learners, 
whereas RF looks for the highest discriminative 
thresholds. ABC allows predictors to be learned in a 
sequential manner. Iterative training is used to change 
weights for each observation and each base learner, 
lowering both variation and bias [15]. Moreover, the 
combination of these classifiers are proven to be 
effective [65] and hence we have chosen these three 
classifiers for layer-2 of DLSE. The parameter setting 
for the layer-2 base learners is shown in Table 3. The 
ERT classifier uses a random subset just like RF but 
the random thresholds are set for each candidate 
feature and the best among the random thresholds is 
selected as the splitting criteria. The ERT uses 
averaging to minimize over-fitting and to maximize 
accuracy. 
 
Table 3 
DLSE Layer-2 base learner hyperparameters setting 
 

Algorithm Hyperparameters Setting 

ERT 

n_estimators = 200 
criterion = ‘gini’ 
max_depth = 10 
min_samples_split=2 

ABC 
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RF 

n_estimators = 200 
criterion = ‘gini’ 
max_depth = 10 
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The ABC uses a decision tree as the base estimator 
with a learning rate of 1. All the learners are 
configured with 200 estimators and the other 
parameters remain with default values. The RF uses 
gini index as the criterion for split with a maximum 
depth of 10. The gini index IndexG  is given by 
Equation (4), 

 
c 2

Index gg=1
                  G =1- D  ,                       (4)  

where,  
gD is the proportion of samples that belongs to 

the class c  for a particular tree node. 
 

3.1.4. Meta-Learner 
The GBT [34, 39] classifier is used as the meta-
learner. The meta-learner is a regressor that allows 
optimization of least squares regression loss function 

cL . At each stage of the regressor a regression tree is 
fit based on the negative gradient of the loss function

c L . The cL  is given by Equation (5), the negative 
gradient of the loss function cL . The cL  is given by 
Equation (5), 

    
n

c i c-1 i i
i=1

  L = l p ,E e  + T e  ,                       (5)    

where, c L  is the loss for c th ensemble, ip  is the 
prediction for input ie , c-1E  corresponds to the 
previous ensemble.  T  corresponds to the estimators 
used in the ensemble. A newly constructed tree cT  is 
fit accordingly to minimize the loss cL  given by 
previous ensemble c-1E  as shown in Equations (6)-
(7).  

 c CT
                        T =arg min L  .                            (6)  

By using Equation (5), we can rewrite Equation (6) as, 

     
n

c i c-1 i iT
i=1

           T = arg min l p ,E e  + T e .     (7)    

Table 4 
DLSE meta-learner hyperparameters setting 
 

(3)

The SVM uses dot kernel with a maximum iteration 
of 100000 along with the convergence epsilon value 
0.001. The rest of the parameters of all the base learn-
ers remain in their default values. 

3.1.3. Layer-2 Base Learners
In layer-2 three ensemble classifiers ERT [37], ABC 
[21] and RF [41] are used as base learning algorithms. 
Two of the most popular averaging methods are RF 
and ERTs.   Before looking for the best features and 
split spots, it goes through two independent random-
ized algorithms. To begin, RF randomly selects a fixed 
number from the training set, similar to bagging [24]. 
Each decision tree is then grown using a randomly 
selected subset of input features. RF lowers variance 
and avoids overfitting by combining the two random-
ized techniques. 
ERT is  similar  to RF. The bagging approach, on the 
other hand, is not employed when assigning train-
ing samples to each base learner. Instead, each base 
student is given the same set of training materials. 
Furthermore, the input feature and its splitting value 
are picked at random for the building of base learn-
ers, whereas RF looks for the highest discrimina-
tive thresholds. ABC  allows predictors to be learned 
in a sequential manner. Iterative training is used to 
change weights for each observation and each base 
learner, lowering both variation and bias [15]. More-
over, the combination of these classifiers are proven 
to be effective [65] and hence we have chosen these 
three classifiers for layer-2 of DLSE. The parame-
ter setting for the layer-2 base learners is shown in  

Table 3. The ERT classifier uses a random subset just 
like RF but the random thresholds are set for each 
candidate feature and the best among the random 
thresholds is selected as the splitting criteria. The 
ERT uses averaging to minimize over-fitting and to 
maximize accuracy.

Table 3
DLSE Layer-2 base learner hyperparameters setting

Algorithm Hyperparameters Setting

ERT

n_estimators = 200
criterion = ‘gini’
max_depth = 10
min_samples_split=2

ABC
base_estimator = ‘Decision Tree’
n_estimators = 200
learning_rate = 1

RF

n_estimators = 200
criterion = ‘gini’
max_depth = 10
min_samples_split=2

The ABC uses a decision tree as the base estimator 
with a learning rate of 1. All the learners are config-
ured with 200 estimators and the other parameters 
remain with default values. The RF uses gini index 
as the criterion for split with a maximum depth of 10. 
The gini index IndexG  is given by Equation (4),
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where,  
gD is the proportion of samples that belongs 

to the class c  for a particular tree node.

3.1.4. Meta-Learner
The GBT [34, 39] classifier is used as the meta-learn-
er. The meta-learner is a regressor that allows optimi-
zation of least squares regression loss function cL . At 
each stage of the regressor a regression tree is fit based 
on the negative gradient of the loss function c L . The cL  
is given by Equation (5), the negative gradient of the 
loss function cL . The cL  is given by Equation (5),
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where, c L  is the loss for c th ensemble, ip  is the pre-
diction for input ie , c-1E  corresponds to the previous 
ensemble. T  corresponds to the estimators used in 
the ensemble. A newly constructed tree cT  is fit ac-
cordingly to minimize the loss cL  given by previous 
ensemble c-1E  as shown in Equations (6)-(7). 

c CT
                        T =arg min L  .                            (6) (6)

By using Equation (5), we can rewrite Equation (6) as,
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Table 4
DLSE meta-learner hyperparameters setting

Algorithm Hyperparameters Setting

GBT

n_estimators = 200
criterion = ‘friedman_mse’
max_depth = 10
learning_rate = 0.01

The parameter setting for the meta-learner is shown 
in Table 4. The number of estimators is set as 200 and 
the maximum depth is set to 10 with the learning rate 
of 0.01. The criterion for measuring the quality of the 
split used is the Friedman mean squared error fmse  R  
and is given by Equation (8),
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1 2
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n + n (8)

where, 1 2n ,n  are the number of examples in each sub 
node and ( )x n  corresponds to the mean output of the 
n th sub node. The final prediction 
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3.1.2. Layer-1 Base Learners 
The first layer of the proposed DLSE method consists 
of three simple classifiers. Three state-of-the-art 
classifiers NB [62], DT [27] and SVM [19, 64] have 
been used as base learning algorithms in layer-1. The 
Nave Bayes classification algorithm is well-known 

[29]. It estimates the conditional probability of each 
class given the observation and chooses the class with 
the highest posterior probability as the correct answer 
[50, 59]. It is employed in layer-1 because it requires 
the least amount of storage space to hold the 
probabilities in both the training and classification 
stages, making it a good fit for the high-dimensional 
datasets utilized in our research. SVM is based on 
statistical learning theory, which has since been 
improved by a number of other researchers. In SVM, 
kernel functions are used to map training samples in 
high-dimensional space in a nonlinear way [56]. For 
mapping and optimizing the separation between data 
points, several kernel functions such as polynomial, 
Gaussian, and sigmoid are utilized. SVM's 
advantages, such as its success in high-dimensional 
spaces and flexibility in kernel function selection, 
have made it appealing for a variety of applications, 
including disease prediction, speech recognition, and 
text categorization. The DT classifier uses a tree-like 
graph and does not require any domain expertise. It 
creates conditional probabilities for research analysis 
and selects the optimal option for traversing from root 
to leaf, indicating distinct class separation [49]. It can 
be used in the medical industry to classify and forecast 
diseases. Moreover, the combination of  NB, SVM and 
DT have proven to be very effective in classification 
[8, 9, 26]. Hence we have chosen the three classifiers 
for layer-1 of DLSE. The parameter setting for each of 
the algorithm is described in Table 2. 
 
Table 2 
DLSE Layer-1 base learner hyperparameters setting 
 

Algorithm Hyperparameters Setting 

NB - 

DT 

criterion = ‘gain_ratio’  
max_depth = 10 
min_split_size = 4 
minimal_gain = 0.01 

SVM 
kernel=’dot’ 
max iterations =100000 
convergence_epsilon = 0.001 

The DT algorithm uses gain ratio as the criterion for 
selecting the attributes to split the tree and the 
maximum depth is set as 10 with the minimum split 
size being set as 4. The gain ratio RatioG  measure is 
given by Equation (1), 
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where, id  is the attribute in training set S .   ,iH d S  
is the entropy measure for the attribute id  in the set 

.S   ,Gain iI d S  is the information gain for the 
attribute id  in the set S  and is given by Equation (2), 

 

 for the given in-
put ie  is given by Equation (9),

 

 

Algorithm Hyperparameters Setting 

GBT 

n_estimators = 200 
criterion = ‘friedman_mse’ 
max_depth = 10 
learning_rate = 0.01 

The parameter setting for the meta-learner is shown in 
Table 4. The number of estimators is set as 200 and 
the maximum depth is set to 10 with the learning rate 
of 0.01. The criterion for measuring the quality of the 
split used is the Friedman mean squared error fmse  R  
and is given by Equation (8), 
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where, 1 2n ,n  are the number of examples in each sub 
node and  x n  corresponds to the mean output of the 

n th sub node. The final prediction ip  for the given 
input ie  is given by Equation (9), 
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where, C  corresponds to the number of estimators 
n_estimators parameter and cT  are the estimators also 
called as weak learners. The meta-learner uses a fixed 
size of weak learners. 
 

3.2. Deep Heterogeneous Ensemble (DHE) 
The pseudocode of the proposed DHE algorithm is 
shown in Algorithm 2. The proposed DHE technique 
involves one layer of base learners and two layers of 
meta-learners to provide the final prediction. The first 
layer consists of three deep learning models CNN 
BiLSTM, ANN and RNN. The reason for selecting the 
base learners are deep learning models is from the fact 
that the deep learning models perform extremely well 
when the data and the feature sets are higher and also 
removes the need for manual feature extraction. The 
large dataset is split into training set Utrain and testing 
set Utest. The training set Utrain subjected to 10-fold CV 
to generate the K training sets Utrain

k . One training set 
is chosen at random as the validation set . 
 
Algorithm 2 
Pseudocode of Deep Heterogeneous Ensemble (DHE) 
 

Algorithm 
Input:  1 2 t m meta metaU= u ,u , …… u ,K=10, B , L1 ,  L2  lim

x
 

Output:  Prediction result  r̂  
Begin 
        Split the dataset U into train testU , U  

         
yields

k
train traincross_validation(K,U )  U  

         Randomly select a validation set k
validU  

         for each j  in  mB : 

                Train the base learner jB on training set k
trainU  

                Validate the trained base learner jB using k
validU  

                Record the predictions of 
predictions

j pB  B   

          end for 
// Level-1 Meta-Learners 
           for each l  in metaL1 : 

                  Train the meta-learner lL1  based on the  

                   prediction matrix pB  

                   Record the predictions of 
predictions

l pL1  M   

            end for 
// Level-2 Meta-Learner 
            Train the meta-learner metaL2  based on the  

             prediction matrix pM  

            Return the final prediction r̂  
End 

 
The base learners CNN BiLSTM, ANN and RNN are 
trained and validated using Utrain

k  and  
respectively. The predicitons of each base learner is 
recorder to form the base learner prediction matrix Bp. 
This prediction matrix is then used to train the Level-
1 meta learners of DHE. The RF and ERT algorithms 
are chosen as the level-1 meta learners. These two 
level-1 meta-learners are trained using the base learner 
prediction matrix Bp. Then the second level 
predictions are stored to form the level-1 meta learners 
prediction matrix Mp. This matrix is then fed as the 
input to the level-2 meta learner GBT. The level-2 
meta learner is trained based on the predictions from 
Level-1 meta learner and the final prediction r̂  is 
returned as the output. The process flow of DHE is 
shown in Figure 2. 
 
 
Figure 2 
Flow diagram of the proposed DHE Method 
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meta-learners to provide the final prediction. The 
first layer consists of three deep learning models CNN 
BiLSTM, ANN and RNN. The reason for selecting the 
base learners are deep learning models is from the fact 
that the deep learning models perform extremely well 
when the data and the feature sets are higher and also 
removes the need for manual feature extraction. The 
large dataset is split into training set Utrain and testing 
set Utest. The training set Utrain subjected to 10-fold CV 
to generate the K training sets Utrain

k . One training set 
is chosen at random as the validation set .
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Output:  Prediction result  r̂
Begin
        Split the dataset U  into train testU , U

         
yields

k
train traincross_validation(K,U )  U→

         Randomly select a validation set k
validU

         for each j  in  mB :

                Train the base learner jB on training set k
trainU

                Validate the trained base learner jB using k
validU

                Record the predictions of 
predictions

j pB  B→  
          end for
// Level-1 Meta-Learners
           for each l  in metaL1 :

                  Train the meta-learner lL1  based on the  
                   prediction matrix pB
                   Record the predictions of 

predictions

l pL1  M→  
            end for
// Level-2 Meta-Learner
            Train the meta-learner metaL2  based on the 
             prediction matrix pM
            Return the final prediction r̂
End
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The base learners CNN BiLSTM, ANN and RNN 
are trained and validated using Utrain

k  and  re-
spectively. The predicitons of each base learner is 
recorder to form the base learner prediction matrix 
Bp. This prediction matrix is then used to train the 
Level-1 meta learners of DHE. The RF and ERT algo-
rithms are chosen as the level-1 meta learners. These 
two level-1 meta-learners are trained using the base 
learner prediction matrix Bp. Then the second level 
predictions are stored to form the level-1 meta learn-
ers prediction matrix Mp. This matrix is then fed as 
the input to the level-2 meta learner GBT. The lev-
el-2 meta learner is trained based on the predictions 
from Level-1 meta learner and the final prediction r̂  
is returned as the output. The process flow of DHE is 
shown in Figure 2.

Figure 2
Flow diagram of the proposed DHE Method

3.2.1. Base Learners
The data is trained using three base learners CNN 
BiLSTM [43], ANN [55] and RNN [68]. The CNN 
BiLSTM is a hybrid bidirectional LSTM and CNN 
architecture. The CNN BiLSTM comprises of 8 con-
volutional layers, 4 dropout layers, 4 dense layers, 3 
max pooling layers and 1 normalisation layer. The 
ANN consists of 4 dense layers, 3 dropout layers and 
1 normalisation layer. Finally the RNN comprises of 
3 dense layers, 2 dropout layers and 1 normalisation 
layer.
The proposed DHE method uses deep learning mod-
els as base learners and these base learners consist 
of a number of hyper parameters such as optimizer, 
learning rate, number of epochs and so on. Five hyper 
parameters are selected based on their effect on the 
performance of the deep learning models. The hyper 
parameters setting for all the base learners is shown 
in Table 5. In all the three models the activation func-
tion was selected as ReLU, the Rectified Linear Unit 
function. ReLU is one of the most widely used activa-
tion function which allows the deep learning models 
to be trained easily. The next important parameter 
is the number of epochs used to train the model. The 
epoch determine the number of times a training sam-
ple is selected in order to update the weights. This 
parameter will lead to over-fitting of the model on 
the training data set and hence needs to be optimised. 
The CNN BiLSTM model tend to be stable after 50 
epochs and the ANN and RNN models were stable af-
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The data is trained using three base learners CNN 
BiLSTM [43], ANN [55] and RNN  [68]. The CNN 
BiLSTM is a hybrid bidirectional LSTM and CNN 
architecture. The CNN BiLSTM comprises of 8 
convolutional layers, 4 dropout layers, 4 dense layers, 
3 max pooling layers and 1 normalisation layer. The 
ANN consists of 4 dense layers, 3 dropout layers and 
1 normalisation layer. Finally the RNN comprises of 3 
dense layers, 2 dropout layers and 1 normalisation 
layer. 
The proposed DHE method uses deep learning models 
as base learners and these base learners consist of a 
number of hyper parameters such as optimizer, 
learning rate, number of epochs and so on. Five hyper 
parameters are selected based on their effect on the 
performance of the deep learning models. The hyper 
parameters setting for all the base learners is shown in 
Table 5. In all the three models the activation function 
was selected as ReLU, the Rectified Linear Unit 
function. ReLU is one of the most widely used 
activation function which allows the deep learning 
models to be trained easily. The next important 
parameter is the number of epochs used to train the 
model. The epoch determine the number of times a 
training sample is selected in order to update the 
weights. This parameter will lead to over-fitting of the 
model on the training data set and hence needs to be 
optimised. The CNN BiLSTM model tend to be stable 
after 50 epochs and the ANN and RNN models were 
stable after 60 epochs. Another parameter that helps to 
avoid over-fitting problem is the dropout rate. This 
parameter ensures the generalisation of the model. The 
dropout layer allows a fraction of input units to be 
dropped during training. It ranges between 0 and 1. 

 
Table 5 
DHE base learner hyperparameters setting 
 

Algorithm Hyperparameters Setting 

CNN BiLSTM 

activation function = ’relu’ dropout 
rate = 0.2  
optimizer = ’Nadam’ 
learning rate = 0.7  
number of epochs = 50 

ANN 

activation function = ’relu’ dropout 
rate = 0.2  
optimizer = ’Nadam’ 
learning rate = 0.7 
number of epochs = 60 

RNN 

activation function = ’relu’ dropout 
rate = 0.3  
optimizer = ’Nadam’ 
learning rate = 0.7  
number of epochs = 60 recurrent 
dropout = 0.3 

 
In all the three models the activation function was 
selected as ReLU, the Rectified Linear Unit function. 
ReLU is one of the most widely used activation 
function which allows the deep learning models to be 
trained easily. The next important parameter is the 
number of epochs used to train the model. The epoch 
determine the number of times a training sample is 
selected in order to update the weights. This parameter 
will lead to over-fitting of the model on the training 
data set and hence needs to be optimised. The CNN 
BiLSTM model tend to be stable after 50 epochs and 
the ANN and RNN models were stable after 60 
epochs. Another parameter that helps to avoid over-
fitting problem is the dropout rate. This parameter 
ensures the generalisation of the model. The dropout 
layer allows a fraction of input units to be dropped 
during training. The CNN BiLSTM model and ANN 
model showed highest performance for the dropout 
rate of 0.2 and the RNN model showed better 
performance for dropout rate 0.3. In order to reduce 
the loss function of the deep learning models an 
optimizer is used. All the three models performed 
extremely well for the optmizer ’Nadam’ which is an 
Adam optimizer with Nesterov momentum. Finally 
the learning rate is another parameter that determines 
the optimization weights of the optimization 
algorithm. The learning rate for ’Nadam’ optimization 
algorithm was varied and all the three deep learning 
algorithms showed stable performance for the learning 
rate of 0.7. 

3.2.2. Level-1 and Level-2 Meta Learners 
The level-1 meta learners used in DHE are RF and 
ERT. Both RF and ERT are tree based ensemble 
classifiers. The RF fits a several number of decision 
trees on different sub-samples of data. This method 
uses averaging to avoid over-fitting of data. The ERT 
works similar to the RF but uses random samples. The 
hyper parameter settings for both the meta learners is 
shown in Table 6. 

Table 5
DHE base learner hyperparameters setting

Algorithm Hyperparameters Setting

CNN BiLSTM

activation function = ’relu’ dropout rate = 0.2 
optimizer = ’Nadam’
learning rate = 0.7 
number of epochs = 50

ANN

activation function = ’relu’ dropout rate = 0.2 
optimizer = ’Nadam’
learning rate = 0.7
number of epochs = 60

RNN

activation function = ’relu’ dropout rate = 0.3 
optimizer = ’Nadam’
learning rate = 0.7 
number of epochs = 60 recurrent dropout = 0.3
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ter 60 epochs. Another parameter that helps to avoid 
over-fitting problem is the dropout rate. This parame-
ter ensures the generalisation of the model. The drop-
out layer allows a fraction of input units to be dropped 
during training. It ranges between 0 and 1.
In all the three models the activation function was 
selected as ReLU, the Rectified Linear Unit func-
tion. ReLU is one of the most widely used activation 
function which allows the deep learning models to be 
trained easily. The next important parameter is the 
number of epochs used to train the model. The ep-
och determine the number of times a training sample 
is selected in order to update the weights. This pa-
rameter will lead to over-fitting of the model on the 
training data set and hence needs to be optimised. 
The CNN BiLSTM model tend to be stable after 50 
epochs and the ANN and RNN models were stable af-
ter 60 epochs. Another parameter that helps to avoid 
over-fitting problem is the dropout rate. This parame-
ter ensures the generalisation of the model. The drop-
out layer allows a fraction of input units to be dropped 
during training. The CNN BiLSTM model and ANN 
model showed highest performance for the dropout 
rate of 0.2 and the RNN model showed better perfor-
mance for dropout rate 0.3. In order to reduce the loss 
function of the deep learning models an optimizer is 
used. All the three models performed extremely well 
for the optmizer ’Nadam’ which is an Adam optimizer 
with Nesterov momentum. Finally the learning rate is 
another parameter that determines the optimization 
weights of the optimization algorithm. The learning 
rate for ’Nadam’ optimization algorithm was varied 
and all the three deep learning algorithms showed 
stable performance for the learning rate of 0.7.

3.2.2. Level-1 and Level-2 Meta Learners
The level-1 meta learners used in DHE are RF and 
ERT. Both RF and ERT are tree based ensemble clas-
sifiers. The RF fits a several number of decision trees 
on different sub-samples of data. This method uses 
averaging to avoid over-fitting of data. The ERT works 
similar to the RF but uses random samples. The hy-
per parameter settings for both the meta learners is 
shown in Table 6.
The level-2 meta learner is a single meta estimator 
GBT. The GBT uses a regression tree based on a loss 
function shown in Equation (5). The parameter set-
ting for GBT is shown in Table 7.

4. Performance Evaluation
The experiment is performed using a computer with 
Intel Core i7 processor having 16 gigabytes of Ran-
dom-Access Memory (RAM) with a clock speed of 
2.71 GHz and an NVIDIA GEFORCE RTX 2070 GPU. 
Five datasets are used to evaluate the proposed DLSE 
method out of which three datasets are from the Uni-
versity of California, Irvine data repository, the fourth 
dataset is from the ricco data repository and the last 
dataset is taken from the National Health and Nu-
trition Examination Survey (NHANES) repository. 
The datasets used to evaluate the proposed DLSE 
method are described in Table 8. Since the proposed 
DHE uses deep learning models it is evaluated using 
three larger datasets with more number of features 
and data samples. The three datasets used to evaluate 
the proposed DHE are MIT-BIH Arrhythmia Dataset, 
The PTB Diagnostic ECG Dataset and Longitudinal 
EHR dataset. The datasets used to evaluate the pro-
posed DHE method are described in Table 9.
The performance of the model is evaluated using the 
traditional performance metrics precision, accuracy 
and recall. The efficiency of the proposed DLSE and 
DHE methods are measured using a confusion ma-

Table 6
DHE Level-1 Meta Learners hyperparameters setting

Algorithm Hyperparameters Setting

ERT

n estimators = 300
criterion = ’gini’
max depth = 10
min samples split = 5

RF

n estimators = 300
criterion = ’gini’
max depth = 10
min samples split = 5

Table 7
DHE Level-2 Meta Learners hyperparameters setting

Algorithm Hyperparameters Setting

GBT

n estimators = 300
criterion = ’friedman mse’
max depth = 10
learning rate = 0.7
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trix. Here, nT  represents the True Negative, pT  corre-
sponds to the True Positive, pF  and nF  represent the 
False Positive and False Negative values respectively. 
Based on these values the performance metrics are 
given by,
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Algorithm Hyperparameters Setting 

ERT 

n estimators = 300 
criterion = ’gini’ 
max depth = 10 
min samples split = 5 

RF 

n estimators = 300 
criterion = ’gini’ 
max depth = 10 
min samples split = 5 

 
The level-2 meta learner is a single meta estimator 
GBT. The GBT uses a regression tree based on a loss 
function shown in Equation (5). The parameter setting 
for GBT is shown in Table 7. 
 
Table 7 
DHE Level-2 Meta Learners hyperparameters setting 
 

Algorithm Hyperparameters Setting 

GBT 

n estimators = 300 
criterion = ’friedman mse’ 
max depth = 10 
learning rate = 0.7 

 

4. Performance Evaluation 
The experiment is performed using a computer with 
Intel Core i7 processor having 16 gigabytes of 
Random-Access Memory (RAM) with a clock speed 
of 2.71 GHz and an NVIDIA GEFORCE RTX 2070 
GPU. Five datasets are used to evaluate the proposed 
DLSE method out of which three datasets are from the 
University of California, Irvine data repository, the 
fourth dataset is from the ricco data repository and the 
last dataset is taken from the National Health and 
Nutrition Examination Survey (NHANES) repository. 
The datasets used to evaluate the proposed DLSE 
method are described in Table 8. Since the proposed 
DHE uses deep learning models it is evaluated using 
three larger datasets with more number of features and 
data samples. The three datasets used to evaluate the 
proposed DHE are MIT-BIH Arrhythmia Dataset, The 
PTB Diagnostic ECG Dataset and Longitudinal EHR 
dataset. The datasets used to evaluate the proposed 
DHE method are described in Table 9. 
The performance of the model is evaluated using the 
traditional performance metrics precision, accuracy 
and recall. The efficiency of the proposed DLSE and 
DHE methods are measured using a confusion matrix. 
Here, nT  represents the True Negative, pT  
corresponds to the True Positive, pF  and nF  
represent the False Positive and False Negative values 
respectively. Based on these values the performance 

metrics are given by, 
Table 8 
Datasets used for evaluation of DLSE method 
 

Dataset 
Name 

No. of 
Instances 

No. of 
Attributes 

No. of 
Classes 

Statlog 
Dataset [36] 270 14 2 

SPECTF 
Dataset [30] 267 45 2 

SPECT 
Dataset [14] 267 23 2 

Eric Heart 
Dataset [44] 209 8 2 

NHANES 
coronary 
heart 
disease 
Dataset [10] 

37709 51 2 

 
Table 9 
Datasets used for evaluation of DHE method 
 

Dataset 
Name 

No. of 
Instances 

No. of 
Attributes 

No. of 
Classes 

MIT-BIH 
Arrhythmia 
Dataset [32] 

109446 188 5 

PTB 
Diagnostic 
ECG 
Dataset [18] 

14552 188 2 

EHR dataset 
[66] 109490 89 2 
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The proposed DLSE and DHE models are validated 
using k-fold cross validation. For this research the 
value of k is chosen as 10 making it 10-fold cross 
validation to estimate the performance of DLSE and 
DHE. The cross validation is applied on both the 
layers of DLSE. 
 

4.1. ANOVA statistics 
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Table 6 
DHE Level-1 Meta Learners hyperparameters setting 
 

Algorithm Hyperparameters Setting 

ERT 

n estimators = 300 
criterion = ’gini’ 
max depth = 10 
min samples split = 5 

RF 

n estimators = 300 
criterion = ’gini’ 
max depth = 10 
min samples split = 5 

 
The level-2 meta learner is a single meta estimator 
GBT. The GBT uses a regression tree based on a loss 
function shown in Equation (5). The parameter setting 
for GBT is shown in Table 7. 
 
Table 7 
DHE Level-2 Meta Learners hyperparameters setting 
 

Algorithm Hyperparameters Setting 

GBT 

n estimators = 300 
criterion = ’friedman mse’ 
max depth = 10 
learning rate = 0.7 

 

4. Performance Evaluation 
The experiment is performed using a computer with 
Intel Core i7 processor having 16 gigabytes of 
Random-Access Memory (RAM) with a clock speed 
of 2.71 GHz and an NVIDIA GEFORCE RTX 2070 
GPU. Five datasets are used to evaluate the proposed 
DLSE method out of which three datasets are from the 
University of California, Irvine data repository, the 
fourth dataset is from the ricco data repository and the 
last dataset is taken from the National Health and 
Nutrition Examination Survey (NHANES) repository. 
The datasets used to evaluate the proposed DLSE 
method are described in Table 8. Since the proposed 
DHE uses deep learning models it is evaluated using 
three larger datasets with more number of features and 
data samples. The three datasets used to evaluate the 
proposed DHE are MIT-BIH Arrhythmia Dataset, The 
PTB Diagnostic ECG Dataset and Longitudinal EHR 
dataset. The datasets used to evaluate the proposed 
DHE method are described in Table 9. 
The performance of the model is evaluated using the 
traditional performance metrics precision, accuracy 
and recall. The efficiency of the proposed DLSE and 
DHE methods are measured using a confusion matrix. 
Here, nT  represents the True Negative, pT  
corresponds to the True Positive, pF  and nF  
represent the False Positive and False Negative values 
respectively. Based on these values the performance 

metrics are given by, 
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The proposed DLSE and DHE models are validated 
using k-fold cross validation. For this research the 
value of k is chosen as 10 making it 10-fold cross 
validation to estimate the performance of DLSE and 
DHE. The cross validation is applied on both the 
layers of DLSE. 
 

4.1. ANOVA statistics 
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Table 6 
DHE Level-1 Meta Learners hyperparameters setting 
 

Algorithm Hyperparameters Setting 

ERT 

n estimators = 300 
criterion = ’gini’ 
max depth = 10 
min samples split = 5 

RF 

n estimators = 300 
criterion = ’gini’ 
max depth = 10 
min samples split = 5 

 
The level-2 meta learner is a single meta estimator 
GBT. The GBT uses a regression tree based on a loss 
function shown in Equation (5). The parameter setting 
for GBT is shown in Table 7. 
 
Table 7 
DHE Level-2 Meta Learners hyperparameters setting 
 

Algorithm Hyperparameters Setting 

GBT 

n estimators = 300 
criterion = ’friedman mse’ 
max depth = 10 
learning rate = 0.7 

 

4. Performance Evaluation 
The experiment is performed using a computer with 
Intel Core i7 processor having 16 gigabytes of 
Random-Access Memory (RAM) with a clock speed 
of 2.71 GHz and an NVIDIA GEFORCE RTX 2070 
GPU. Five datasets are used to evaluate the proposed 
DLSE method out of which three datasets are from the 
University of California, Irvine data repository, the 
fourth dataset is from the ricco data repository and the 
last dataset is taken from the National Health and 
Nutrition Examination Survey (NHANES) repository. 
The datasets used to evaluate the proposed DLSE 
method are described in Table 8. Since the proposed 
DHE uses deep learning models it is evaluated using 
three larger datasets with more number of features and 
data samples. The three datasets used to evaluate the 
proposed DHE are MIT-BIH Arrhythmia Dataset, The 
PTB Diagnostic ECG Dataset and Longitudinal EHR 
dataset. The datasets used to evaluate the proposed 
DHE method are described in Table 9. 
The performance of the model is evaluated using the 
traditional performance metrics precision, accuracy 
and recall. The efficiency of the proposed DLSE and 
DHE methods are measured using a confusion matrix. 
Here, nT  represents the True Negative, pT  
corresponds to the True Positive, pF  and nF  
represent the False Positive and False Negative values 
respectively. Based on these values the performance 

metrics are given by, 
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Attributes 
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Dataset [36] 270 14 2 

SPECTF 
Dataset [30] 267 45 2 

SPECT 
Dataset [14] 267 23 2 

Eric Heart 
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heart 
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37709 51 2 
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The proposed DLSE and DHE models are validated 
using k-fold cross validation. For this research the 
value of k is chosen as 10 making it 10-fold cross 
validation to estimate the performance of DLSE and 
DHE. The cross validation is applied on both the 
layers of DLSE. 
 

4.1. ANOVA statistics 

(12)

The proposed DLSE and DHE models are validat-
ed using k-fold cross validation. For this research 
the value of k is chosen as 10 making it 10-fold cross 
validation to estimate the performance of DLSE and 
DHE. The cross validation is applied on both the lay-
ers of DLSE.

Table 8
Datasets used for evaluation of DLSE method

Dataset Name No. of 
Instances

No. of 
Attributes

No. of 
Classes

Statlog Dataset [36] 270 14 2

SPECTF Dataset [30] 267 45 2

SPECT Dataset [14] 267 23 2

Eric Heart Dataset [44] 209 8 2

NHANES coronary heart 
disease Dataset [10] 37709 51 2

Table 9
Datasets used for evaluation of DHE method

Dataset Name No. of 
Instances

No. of 
Attributes

No. of 
Classes

MIT-BIH Arrhythmia 
Dataset [32] 109446 188 5

PTB Diagnostic ECG 
Dataset [18] 14552 188 2

EHR dataset [66] 109490 89 2

4.1. ANOVA Statistics
The statistical significance of the model is analysed by 
the ANalysis Of Variance (ANOVA) statistics. ANOVA 
Statistics is a statistical test that is used to determine 
the difference between group means and their vari-
ances, such as differences within and across groups. 
On the same data sets, the F -test is employed to mea-
sure the overall deviation pattern. The F-test results 
indicate which model best matches the supplied data 
set. The F-test, which is represented by the ANOVA 
F-test, is also used to determine whether the expect-
ed values of provided data sets differ from the values 
predicted by other classifiers. The value of F is roughly 
1 if the null hypothesis is correct, but a large value of 
F causes the null hypothesis to be rejected. ANOVA 
condenses all of the data into a single number, F, and 
assigns a single p to the null hypothesis. The F-test 
statistics are calculated using the following formula:
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The spread of a group of values/distribution is 
determined by its variability. There are two sorts of 
variability: between-group and within-group. The 
collaboration between the examples defines between-
group variability, which is indicated by SS(BG) for 
sum of squares between groups. If the 
instances/samples have modest distances between 
them, the value of SS(BG) is small, and hence the 
grand mean is small. The differences within individual 
samples define within-group variability, which is 
expressed by SS(WG), which is the sum of squares 
within groups. Because each sample is considered 
independently, there is no interaction between them. 
In the context of healthcare data, a within group 
indicates a single group of persons from many 
groupings. It can be a group of healthy people (class= 
0) or patients with cardiac disease (class= 1). Thus, in 
this context, within group will indicate variability of 
attribute values within a group of heart disease 
patients or variability of attribute values within a 
group of healthy people. Between groups, on the other 
hand, depict multiple kinds of people from a same 
medical data collection. As an example, patients from 
both classes, those with and without heart disease, will 
be represented in the between group. In ANOVA 
statistics, the SS, df, MS, F, Fcritical, and p-value are 
determined. The sum of squares (SS) is determined 
across groups using SS(BG) variability and within 
groups using SS(WG) variability using the formulas:  

      2
                                          14SS BG n x X    
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where x is the total values,   X is the mean of values, 
SD is the standard deviation, and n is one of many 
sample sizes. The variable df stands for "degree of 
freedom," which refers to the number of values in a 
data collection that are free to vary. Chi-square and 
hypothesis-testing statistics are widely employed with 
it. The degree(s) of freedom for the provided data set 
are used to determine the validity of the null 

hypothesis. Based on a number of variables and 
samples for the provided dataset, the degree of 
freedom can then be used to determine if a null 
hypothesis can be rejected. For both between-group 
and within-group comparisons, the df is calculated 
separately. The number of groups minus one equals 
the "between-group" degree of freedom, which is 
computed using the formula: 

                          1  .                                 16fd m   

The number of groups is denoted by the letter m. The 
number of groups multiplied by the number of 
instances within each group, minus one, equals the 
degree of freedom "within-group." The following 
formula is used to compute it: 

                           1  ,                             17fd m N   

where N signifies the number of samples inside each 
group and m is the number of groupings. MS stands 
for mean square, and it is determined for the MS(BG) 
group and the MS(WG) group. By dividing the SS(BG) 
by its degrees of freedom, the MS(B) is determined. 
By dividing the SS(WG) by the degrees of freedom, 
the MS(WG) is determined. The Fcritical value is a 
function of the numerator degree of freedom, 
denominator degree of freedom, and significance level 
α=0.05. The null hypothesis for ANOVA asserts that 
all groups have the same average value of the 
dependent variable (mean). It is always preferable to 
have an F value that is bigger than the Fcritical value, 
since if this value is significant enough, we can reject 
the null hypothesis in favor of the assumption that the 
classifiers we are comparing truly differ. ANOVA has 
long been a popular method for reviewing and 
interpreting medical data in the medical field. The 
importance of experimental data can also be 
determined using the p-value. The likelihood of 
finding a mean difference between groups given that 
the null hypothesis is true is defined as the p-value. A 
lower p-value, for example, p < 0.05, denotes a strong 
presumption against the null hypothesis and more 
significant results. For hypothesis tests, the p-value is 
particularly useful for weighing the strength of the 
evidence. A significant p-value suggests that there is 
insufficient evidence to reject the null hypothesis, 
which can never be rejected. The sample findings are 
usually observed at a significant level (threshold 
value), which is usually 0.05. However, the bayesian 
inference approach [16] suggests that this range of 
values may be optimistic, and thus establishes a new 
range in which p < 0.001 denotes an algorithm's 
extreme significance level. By assuming that the null 
hypothesis is true, the p-value represents the chance of 
selecting a sample/value from a particular test dataset 
that is equal to or larger than observed test data sets. 
A p-value of 0.05 means that given the null hypothesis 
is true, there is only a 5% chance of drawing the 
sample being tested. The lower the p value, the more 
likely the null hypothesis will be rejected. 
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The spread of a group of values/distribution is de-
termined by its variability. There are two sorts of 
variability: between-group and within-group. The 
collaboration between the examples defines be-
tween-group variability, which is indicated by SS(BG) 
for sum of squares between groups. If the instances/
samples have modest distances between them, the 
value of SS(BG) is small, and hence the grand mean is 
small. The differences within individual samples de-
fine within-group variability, which is expressed by 
SS(WG), which is the sum of squares within groups. 
Because each sample is considered independently, 
there is no interaction between them. In the context 
of healthcare data, a within group indicates a sin-
gle group of persons from many groupings. It can be 
a group of healthy people (class= 0) or patients with 
cardiac disease (class= 1). Thus, in this context, with-
in group will indicate variability of attribute values 
within a group of heart disease patients or variability 
of attribute values within a group of healthy people. 
Between groups, on the other hand, depict multiple 
kinds of people from a same medical data collection. 
As an example, patients from both classes, those 
with and without heart disease, will be represented 
in the between group. In ANOVA statistics, the SS, df, 
MS, F, Fcritical, and p-value are determined. The sum 
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of squares (SS) is determined across groups using 
SS(BG) variability and within groups using SS(WG) 
variability using the formulas: 

  

The statistical significance of the model is analysed by 
the ANalysis Of Variance (ANOVA) statistics. 
ANOVA Statistics is a statistical test that is used to 
determine the difference between group means and 
their variances, such as differences within and across 
groups. On the same data sets, the F -test is employed 
to measure the overall deviation pattern. The F-test 
results indicate which model best matches the 
supplied data set. The F-test, which is represented by 
the ANOVA F-test, is also used to determine whether 
the expected values of provided data sets differ from 
the values predicted by other classifiers. The value of 
F is roughly 1 if the null hypothesis is correct, but a 
large value of F causes the null hypothesis to be 
rejected. ANOVA condenses all of the data into a 
single number, F, and assigns a single p to the null 
hypothesis. The F-test statistics are calculated using 
the following formula: 
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instances/samples have modest distances between 
them, the value of SS(BG) is small, and hence the 
grand mean is small. The differences within individual 
samples define within-group variability, which is 
expressed by SS(WG), which is the sum of squares 
within groups. Because each sample is considered 
independently, there is no interaction between them. 
In the context of healthcare data, a within group 
indicates a single group of persons from many 
groupings. It can be a group of healthy people (class= 
0) or patients with cardiac disease (class= 1). Thus, in 
this context, within group will indicate variability of 
attribute values within a group of heart disease 
patients or variability of attribute values within a 
group of healthy people. Between groups, on the other 
hand, depict multiple kinds of people from a same 
medical data collection. As an example, patients from 
both classes, those with and without heart disease, will 
be represented in the between group. In ANOVA 
statistics, the SS, df, MS, F, Fcritical, and p-value are 
determined. The sum of squares (SS) is determined 
across groups using SS(BG) variability and within 
groups using SS(WG) variability using the formulas:  
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where x is the total values,   X is the mean of values, 
SD is the standard deviation, and n is one of many 
sample sizes. The variable df stands for "degree of 
freedom," which refers to the number of values in a 
data collection that are free to vary. Chi-square and 
hypothesis-testing statistics are widely employed with 
it. The degree(s) of freedom for the provided data set 
are used to determine the validity of the null 

hypothesis. Based on a number of variables and 
samples for the provided dataset, the degree of 
freedom can then be used to determine if a null 
hypothesis can be rejected. For both between-group 
and within-group comparisons, the df is calculated 
separately. The number of groups minus one equals 
the "between-group" degree of freedom, which is 
computed using the formula: 
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The number of groups is denoted by the letter m. The 
number of groups multiplied by the number of 
instances within each group, minus one, equals the 
degree of freedom "within-group." The following 
formula is used to compute it: 
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where N signifies the number of samples inside each 
group and m is the number of groupings. MS stands 
for mean square, and it is determined for the MS(BG) 
group and the MS(WG) group. By dividing the SS(BG) 
by its degrees of freedom, the MS(B) is determined. 
By dividing the SS(WG) by the degrees of freedom, 
the MS(WG) is determined. The Fcritical value is a 
function of the numerator degree of freedom, 
denominator degree of freedom, and significance level 
α=0.05. The null hypothesis for ANOVA asserts that 
all groups have the same average value of the 
dependent variable (mean). It is always preferable to 
have an F value that is bigger than the Fcritical value, 
since if this value is significant enough, we can reject 
the null hypothesis in favor of the assumption that the 
classifiers we are comparing truly differ. ANOVA has 
long been a popular method for reviewing and 
interpreting medical data in the medical field. The 
importance of experimental data can also be 
determined using the p-value. The likelihood of 
finding a mean difference between groups given that 
the null hypothesis is true is defined as the p-value. A 
lower p-value, for example, p < 0.05, denotes a strong 
presumption against the null hypothesis and more 
significant results. For hypothesis tests, the p-value is 
particularly useful for weighing the strength of the 
evidence. A significant p-value suggests that there is 
insufficient evidence to reject the null hypothesis, 
which can never be rejected. The sample findings are 
usually observed at a significant level (threshold 
value), which is usually 0.05. However, the bayesian 
inference approach [16] suggests that this range of 
values may be optimistic, and thus establishes a new 
range in which p < 0.001 denotes an algorithm's 
extreme significance level. By assuming that the null 
hypothesis is true, the p-value represents the chance of 
selecting a sample/value from a particular test dataset 
that is equal to or larger than observed test data sets. 
A p-value of 0.05 means that given the null hypothesis 
is true, there is only a 5% chance of drawing the 
sample being tested. The lower the p value, the more 
likely the null hypothesis will be rejected. 
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The statistical significance of the model is analysed by 
the ANalysis Of Variance (ANOVA) statistics. 
ANOVA Statistics is a statistical test that is used to 
determine the difference between group means and 
their variances, such as differences within and across 
groups. On the same data sets, the F -test is employed 
to measure the overall deviation pattern. The F-test 
results indicate which model best matches the 
supplied data set. The F-test, which is represented by 
the ANOVA F-test, is also used to determine whether 
the expected values of provided data sets differ from 
the values predicted by other classifiers. The value of 
F is roughly 1 if the null hypothesis is correct, but a 
large value of F causes the null hypothesis to be 
rejected. ANOVA condenses all of the data into a 
single number, F, and assigns a single p to the null 
hypothesis. The F-test statistics are calculated using 
the following formula: 
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The spread of a group of values/distribution is 
determined by its variability. There are two sorts of 
variability: between-group and within-group. The 
collaboration between the examples defines between-
group variability, which is indicated by SS(BG) for 
sum of squares between groups. If the 
instances/samples have modest distances between 
them, the value of SS(BG) is small, and hence the 
grand mean is small. The differences within individual 
samples define within-group variability, which is 
expressed by SS(WG), which is the sum of squares 
within groups. Because each sample is considered 
independently, there is no interaction between them. 
In the context of healthcare data, a within group 
indicates a single group of persons from many 
groupings. It can be a group of healthy people (class= 
0) or patients with cardiac disease (class= 1). Thus, in 
this context, within group will indicate variability of 
attribute values within a group of heart disease 
patients or variability of attribute values within a 
group of healthy people. Between groups, on the other 
hand, depict multiple kinds of people from a same 
medical data collection. As an example, patients from 
both classes, those with and without heart disease, will 
be represented in the between group. In ANOVA 
statistics, the SS, df, MS, F, Fcritical, and p-value are 
determined. The sum of squares (SS) is determined 
across groups using SS(BG) variability and within 
groups using SS(WG) variability using the formulas:  
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where x is the total values,   X is the mean of values, 
SD is the standard deviation, and n is one of many 
sample sizes. The variable df stands for "degree of 
freedom," which refers to the number of values in a 
data collection that are free to vary. Chi-square and 
hypothesis-testing statistics are widely employed with 
it. The degree(s) of freedom for the provided data set 
are used to determine the validity of the null 

hypothesis. Based on a number of variables and 
samples for the provided dataset, the degree of 
freedom can then be used to determine if a null 
hypothesis can be rejected. For both between-group 
and within-group comparisons, the df is calculated 
separately. The number of groups minus one equals 
the "between-group" degree of freedom, which is 
computed using the formula: 

                          1  .                                 16fd m   

The number of groups is denoted by the letter m. The 
number of groups multiplied by the number of 
instances within each group, minus one, equals the 
degree of freedom "within-group." The following 
formula is used to compute it: 
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where N signifies the number of samples inside each 
group and m is the number of groupings. MS stands 
for mean square, and it is determined for the MS(BG) 
group and the MS(WG) group. By dividing the SS(BG) 
by its degrees of freedom, the MS(B) is determined. 
By dividing the SS(WG) by the degrees of freedom, 
the MS(WG) is determined. The Fcritical value is a 
function of the numerator degree of freedom, 
denominator degree of freedom, and significance level 
α=0.05. The null hypothesis for ANOVA asserts that 
all groups have the same average value of the 
dependent variable (mean). It is always preferable to 
have an F value that is bigger than the Fcritical value, 
since if this value is significant enough, we can reject 
the null hypothesis in favor of the assumption that the 
classifiers we are comparing truly differ. ANOVA has 
long been a popular method for reviewing and 
interpreting medical data in the medical field. The 
importance of experimental data can also be 
determined using the p-value. The likelihood of 
finding a mean difference between groups given that 
the null hypothesis is true is defined as the p-value. A 
lower p-value, for example, p < 0.05, denotes a strong 
presumption against the null hypothesis and more 
significant results. For hypothesis tests, the p-value is 
particularly useful for weighing the strength of the 
evidence. A significant p-value suggests that there is 
insufficient evidence to reject the null hypothesis, 
which can never be rejected. The sample findings are 
usually observed at a significant level (threshold 
value), which is usually 0.05. However, the bayesian 
inference approach [16] suggests that this range of 
values may be optimistic, and thus establishes a new 
range in which p < 0.001 denotes an algorithm's 
extreme significance level. By assuming that the null 
hypothesis is true, the p-value represents the chance of 
selecting a sample/value from a particular test dataset 
that is equal to or larger than observed test data sets. 
A p-value of 0.05 means that given the null hypothesis 
is true, there is only a 5% chance of drawing the 
sample being tested. The lower the p value, the more 
likely the null hypothesis will be rejected. 
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where x is the total values,   X  is the mean of values, SD 
is the standard deviation, and n is one of many sample 
sizes. The variable df stands for "degree of freedom," 
which refers to the number of values in a data col-
lection that are free to vary. Chi-square and hypoth-
esis-testing statistics are widely employed with it. 
The degree(s) of freedom for the provided data set are 
used to determine the validity of the null hypothesis. 
Based on a number of variables and samples for the 
provided dataset, the degree of freedom can then be 
used to determine if a null hypothesis can be rejected. 
For both between-group and within-group compar-
isons, the df is calculated separately. The number of 
groups minus one equals the "between-group" degree 
of freedom, which is computed using the formula:

  

The statistical significance of the model is analysed by 
the ANalysis Of Variance (ANOVA) statistics. 
ANOVA Statistics is a statistical test that is used to 
determine the difference between group means and 
their variances, such as differences within and across 
groups. On the same data sets, the F -test is employed 
to measure the overall deviation pattern. The F-test 
results indicate which model best matches the 
supplied data set. The F-test, which is represented by 
the ANOVA F-test, is also used to determine whether 
the expected values of provided data sets differ from 
the values predicted by other classifiers. The value of 
F is roughly 1 if the null hypothesis is correct, but a 
large value of F causes the null hypothesis to be 
rejected. ANOVA condenses all of the data into a 
single number, F, and assigns a single p to the null 
hypothesis. The F-test statistics are calculated using 
the following formula: 
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them, the value of SS(BG) is small, and hence the 
grand mean is small. The differences within individual 
samples define within-group variability, which is 
expressed by SS(WG), which is the sum of squares 
within groups. Because each sample is considered 
independently, there is no interaction between them. 
In the context of healthcare data, a within group 
indicates a single group of persons from many 
groupings. It can be a group of healthy people (class= 
0) or patients with cardiac disease (class= 1). Thus, in 
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attribute values within a group of heart disease 
patients or variability of attribute values within a 
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where x is the total values,   X is the mean of values, 
SD is the standard deviation, and n is one of many 
sample sizes. The variable df stands for "degree of 
freedom," which refers to the number of values in a 
data collection that are free to vary. Chi-square and 
hypothesis-testing statistics are widely employed with 
it. The degree(s) of freedom for the provided data set 
are used to determine the validity of the null 

hypothesis. Based on a number of variables and 
samples for the provided dataset, the degree of 
freedom can then be used to determine if a null 
hypothesis can be rejected. For both between-group 
and within-group comparisons, the df is calculated 
separately. The number of groups minus one equals 
the "between-group" degree of freedom, which is 
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The number of groups is denoted by the letter m. The 
number of groups multiplied by the number of 
instances within each group, minus one, equals the 
degree of freedom "within-group." The following 
formula is used to compute it: 
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where N signifies the number of samples inside each 
group and m is the number of groupings. MS stands 
for mean square, and it is determined for the MS(BG) 
group and the MS(WG) group. By dividing the SS(BG) 
by its degrees of freedom, the MS(B) is determined. 
By dividing the SS(WG) by the degrees of freedom, 
the MS(WG) is determined. The Fcritical value is a 
function of the numerator degree of freedom, 
denominator degree of freedom, and significance level 
α=0.05. The null hypothesis for ANOVA asserts that 
all groups have the same average value of the 
dependent variable (mean). It is always preferable to 
have an F value that is bigger than the Fcritical value, 
since if this value is significant enough, we can reject 
the null hypothesis in favor of the assumption that the 
classifiers we are comparing truly differ. ANOVA has 
long been a popular method for reviewing and 
interpreting medical data in the medical field. The 
importance of experimental data can also be 
determined using the p-value. The likelihood of 
finding a mean difference between groups given that 
the null hypothesis is true is defined as the p-value. A 
lower p-value, for example, p < 0.05, denotes a strong 
presumption against the null hypothesis and more 
significant results. For hypothesis tests, the p-value is 
particularly useful for weighing the strength of the 
evidence. A significant p-value suggests that there is 
insufficient evidence to reject the null hypothesis, 
which can never be rejected. The sample findings are 
usually observed at a significant level (threshold 
value), which is usually 0.05. However, the bayesian 
inference approach [16] suggests that this range of 
values may be optimistic, and thus establishes a new 
range in which p < 0.001 denotes an algorithm's 
extreme significance level. By assuming that the null 
hypothesis is true, the p-value represents the chance of 
selecting a sample/value from a particular test dataset 
that is equal to or larger than observed test data sets. 
A p-value of 0.05 means that given the null hypothesis 
is true, there is only a 5% chance of drawing the 
sample being tested. The lower the p value, the more 
likely the null hypothesis will be rejected. 
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The number of groups is denoted by the letter m. 
The number of groups multiplied by the number of 
instances within each group, minus one, equals the 
degree of freedom "within-group." The following for-
mula is used to compute it:

  

The statistical significance of the model is analysed by 
the ANalysis Of Variance (ANOVA) statistics. 
ANOVA Statistics is a statistical test that is used to 
determine the difference between group means and 
their variances, such as differences within and across 
groups. On the same data sets, the F -test is employed 
to measure the overall deviation pattern. The F-test 
results indicate which model best matches the 
supplied data set. The F-test, which is represented by 
the ANOVA F-test, is also used to determine whether 
the expected values of provided data sets differ from 
the values predicted by other classifiers. The value of 
F is roughly 1 if the null hypothesis is correct, but a 
large value of F causes the null hypothesis to be 
rejected. ANOVA condenses all of the data into a 
single number, F, and assigns a single p to the null 
hypothesis. The F-test statistics are calculated using 
the following formula: 
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The spread of a group of values/distribution is 
determined by its variability. There are two sorts of 
variability: between-group and within-group. The 
collaboration between the examples defines between-
group variability, which is indicated by SS(BG) for 
sum of squares between groups. If the 
instances/samples have modest distances between 
them, the value of SS(BG) is small, and hence the 
grand mean is small. The differences within individual 
samples define within-group variability, which is 
expressed by SS(WG), which is the sum of squares 
within groups. Because each sample is considered 
independently, there is no interaction between them. 
In the context of healthcare data, a within group 
indicates a single group of persons from many 
groupings. It can be a group of healthy people (class= 
0) or patients with cardiac disease (class= 1). Thus, in 
this context, within group will indicate variability of 
attribute values within a group of heart disease 
patients or variability of attribute values within a 
group of healthy people. Between groups, on the other 
hand, depict multiple kinds of people from a same 
medical data collection. As an example, patients from 
both classes, those with and without heart disease, will 
be represented in the between group. In ANOVA 
statistics, the SS, df, MS, F, Fcritical, and p-value are 
determined. The sum of squares (SS) is determined 
across groups using SS(BG) variability and within 
groups using SS(WG) variability using the formulas:  

      2
                                          14SS BG n x X    
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where x is the total values,   X is the mean of values, 
SD is the standard deviation, and n is one of many 
sample sizes. The variable df stands for "degree of 
freedom," which refers to the number of values in a 
data collection that are free to vary. Chi-square and 
hypothesis-testing statistics are widely employed with 
it. The degree(s) of freedom for the provided data set 
are used to determine the validity of the null 

hypothesis. Based on a number of variables and 
samples for the provided dataset, the degree of 
freedom can then be used to determine if a null 
hypothesis can be rejected. For both between-group 
and within-group comparisons, the df is calculated 
separately. The number of groups minus one equals 
the "between-group" degree of freedom, which is 
computed using the formula: 

                          1  .                                 16fd m   

The number of groups is denoted by the letter m. The 
number of groups multiplied by the number of 
instances within each group, minus one, equals the 
degree of freedom "within-group." The following 
formula is used to compute it: 

                           1  ,                             17fd m N   

where N signifies the number of samples inside each 
group and m is the number of groupings. MS stands 
for mean square, and it is determined for the MS(BG) 
group and the MS(WG) group. By dividing the SS(BG) 
by its degrees of freedom, the MS(B) is determined. 
By dividing the SS(WG) by the degrees of freedom, 
the MS(WG) is determined. The Fcritical value is a 
function of the numerator degree of freedom, 
denominator degree of freedom, and significance level 
α=0.05. The null hypothesis for ANOVA asserts that 
all groups have the same average value of the 
dependent variable (mean). It is always preferable to 
have an F value that is bigger than the Fcritical value, 
since if this value is significant enough, we can reject 
the null hypothesis in favor of the assumption that the 
classifiers we are comparing truly differ. ANOVA has 
long been a popular method for reviewing and 
interpreting medical data in the medical field. The 
importance of experimental data can also be 
determined using the p-value. The likelihood of 
finding a mean difference between groups given that 
the null hypothesis is true is defined as the p-value. A 
lower p-value, for example, p < 0.05, denotes a strong 
presumption against the null hypothesis and more 
significant results. For hypothesis tests, the p-value is 
particularly useful for weighing the strength of the 
evidence. A significant p-value suggests that there is 
insufficient evidence to reject the null hypothesis, 
which can never be rejected. The sample findings are 
usually observed at a significant level (threshold 
value), which is usually 0.05. However, the bayesian 
inference approach [16] suggests that this range of 
values may be optimistic, and thus establishes a new 
range in which p < 0.001 denotes an algorithm's 
extreme significance level. By assuming that the null 
hypothesis is true, the p-value represents the chance of 
selecting a sample/value from a particular test dataset 
that is equal to or larger than observed test data sets. 
A p-value of 0.05 means that given the null hypothesis 
is true, there is only a 5% chance of drawing the 
sample being tested. The lower the p value, the more 
likely the null hypothesis will be rejected. 
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where N signifies the number of samples inside each 
group and m is the number of groupings. MS stands 
for mean square, and it is determined for the MS(BG) 
group and the MS(WG) group. By dividing the SS(BG) 
by its degrees of freedom, the MS(B) is determined. 
By dividing the SS(WG) by the degrees of freedom, the 
MS(WG) is determined. The Fcritical value is a function 
of the numerator degree of freedom, denominator 
degree of freedom, and significance level α=0.05. The 
null hypothesis for ANOVA asserts that all groups 
have the same average value of the dependent vari-
able (mean). It is always preferable to have an F value 
that is bigger than the Fcritical value, since if this value 
is significant enough, we can reject the null hypothe-

sis in favor of the assumption that the classifiers we 
are comparing truly differ. ANOVA has long been a 
popular method for reviewing and interpreting med-
ical data in the medical field. The importance of ex-
perimental data can also be determined using the 
p-value. The likelihood of finding a mean difference 
between groups given that the null hypothesis is true 
is defined as the p-value. A lower p-value, for exam-
ple, p < 0.05, denotes a strong presumption against 
the null hypothesis and more significant results. For 
hypothesis tests, the p-value is particularly useful for 
weighing the strength of the evidence. A significant 
p-value suggests that there is insufficient evidence 
to reject the null hypothesis, which can never be re-
jected. The sample findings are usually observed at 
a significant level (threshold value), which is usually 
0.05. However, the bayesian inference approach [16] 
suggests that this range of values may be optimistic, 
and thus establishes a new range in which p < 0.001 
denotes an algorithm's extreme significance level. By 
assuming that the null hypothesis is true, the p-val-
ue represents the chance of selecting a sample/value 
from a particular test dataset that is equal to or larger 
than observed test data sets. A p-value of 0.05 means 
that given the null hypothesis is true, there is only a 
5% chance of drawing the sample being tested. The 
lower the p value, the more likely the null hypothesis 
will be rejected.

5. Results and Discussion
5.1. Evaluation of the Proposed DLSE Method
The proposed DLSE method is evaluated with tradi-
tional single classifiers and also with the existing en-
semble techniques and the results are tabulated. We 
have also compared the DLSE method with a single 
layer ensemble method comprising of all the classifi-
ers used in both layer-1 and layer-2 (NB, DT, SVM, LR, 
ERT, ABC and RF) of the proposed DLSE approach. 
In the proposed DLSE method, feature selection is 
applied on the dataset before applying the training 
set to layer-1. As mentioned before, the evolutionary 
feature selection algorithm EEFS is used for feature 
selection. The set of features selected using EEFS are 
shown in Table 10. The training set with selected fea-
tures is then passed as input to the layer-1 of DLSE.
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5.1.1. Evaluation with Single Classifiers
The performance of DLSE approach with single 
classifiers is shown in Table 11. It can be seen that 
for the Statlog dataset the accuracy of the pro-
posed DLSE method is 94.21% which is the highest 
among all the other classifiers. Though the accu-
racy of NB, SVM and LR for the Statlog dataset is 
over 80%, the DLSE method performs better than 
these approaches. DT shows poor performance 
with accuracy of 75.19%. The precision and recall 
measure of DLSE for Statlog dataset is 95.21% and 
96.08% respectively and are higher than all the oth-
er classifiers. The accuracy of NB, DT, SVM and 
LR for SPECTF dataset is 72.23%, 76.49%, 82.54% 
and 85.09% respectively. For this dataset also the 
proposed DLSE technique has achieved the high-
est accuracy of 92.34%. The proposed method also 
achieves highest precision value of 91.43% and 
recall value of 92.12% for the SPECTF dataset. 
The accuracy of the proposed method is 89.80% 
for SPECT dataset. NB obtains the lowest accu-
racy of 47.98% for the SPECT dataset. The preci-

sion rate of the proposed method is 88.49% which 
is higher than the precision rates of NB (63.60%), 
DT (80.40%), SVM (69.38%) and LR (81.26%). The 
recall rate of the proposed technique is 81.99% for 
the SPECT dataset which is greater than the recall 
rates of NB (66.69%), DT (73.91%), SVM (78.92%) 
and LR (75.00%). The accuracy of NB, DT, SVM and 
LR for the Eric dataset is 78.02%, 76.57%, 78.98% 
and 78.98% respectively. For the Eric dataset also 
the proposed DLSE approach achieves the high-
est accuracy, precision and recall measures of 
85.04%, 85.94% and 85.86% respectively. All the 
other approaches have precision and recall rates 
below 85%. The accuracy of the proposed method 
for NHANES dataset is 95.17%. This is the highest 
accuracy among the other approaches as the accu-
racy rate is almost 10% higher than the accuracy of 
NB (81.94%), DT (79.78%), SVM (85.80%) and LR 
(85.83%). The single classifiers have produced very 
poor precision and recall measures when compared 
to the proposed DLSE approach. The precision and 
recall rate of the proposed method is 89.66% and 

Table 11
Evaluation of the proposed DLSE method with single classifiers

Dataset Performance
Metrics

Classification Techniques

NB DT SVM LR DLSE
(proposed)

Statlog

Accuracy 82.96% 75.19% 82.96% 84.81% 94.21%

Precision 83.56% 75.77% 84.81% 86.12% 95.21%

Recall 82.58% 75.50% 81.92% 84.50% 96.08%

SPECTF

Accuracy 72.23% 76.49% 82.54% 85.09% 92.34%

Precision 74.15% 70.51% 78.62% 82.57% 91.43%

Recall 79.94% 67.17% 78.64% 81.50% 92.12%

SPECT

Accuracy 47.98% 85.00% 71.54% 85.74% 89.80%

Precision 63.60% 80.40% 69.38% 81.26% 88.49%

Recall 66.69% 73.91% 78.92% 75.00% 81.99%

Eric

Accuracy 78.02% 76.57% 78.98% 78.98% 85.04%

Precision 78.52% 78.29% 81.02% 80.89% 85.94%

Recall 77.10% 77.23% 77.51% 77.64% 85.86%

NHANES

Accuracy 81.94% 79.78% 85.80% 85.83% 95.17%

Precision 58.66% 47.91% 47.91% 57.92% 89.66%

Recall 63.07% 49.98% 49.99% 50.23% 85.43%
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Table 12 
Evaluation of the proposed DLSE method with other ensemble techniques

Dataset Performance
Metrics

Classification Techniques

Bagging AdaBoost RF GBT DLSE
(proposed)

Statlog

Accuracy 82.59% 82.96% 80.74% 82.96% 94.21%

Precision 83.28% 84.00% 81.60% 84.34% 95.21%

Recall 82.25% 82.67% 80.42% 82.42% 96.08%

SPECTF

Accuracy 72.51% 72.23% 85.93% 83.69% 92.34%

Precision 74.01% 74.15% 84.15% 80.40% 91.43%

Recall 79.84% 79.94% 79.75% 79.50% 92.12%

SPECT

Accuracy 56.17% 71.99% 85.36% 83.85% 89.80%

Precision 63.60% 44.05% 79.88% 65.53% 88.49%

Recall 66.69% 53.18% 74.16% 65.97% 81.99%

Eric

Accuracy 78.02% 77.55% 74.19% 78.02% 85.04%

Precision 78.80% 78.43% 76.56% 80.92% 85.94%

Recall 76.99% 76.96% 74.14% 76.48% 85.86%

NHANES

Accuracy 81.95% 82.93% 83.80% 82.68% 95.17%

Precision 58.74% 57.37% 47.91% 56.83% 89.66%

Recall 63.19% 57.86% 49.99% 57.86% 85.43%

85.43% respectively. It can be seen that for all the 
datasets the proposed DLSE method outperforms 
all the single classifiers in terms of accuracy, preci-
sion and recall measures.

5.1.2. Evaluation with Other Ensemble Techniques
The results of the evaluation of the proposed DLSE 
method with the state-of-the-art ensemble tech-
niques is shown in Table 12. We have compared the 
proposed method with Bagging ensemble with DT as 
the base learner, AdaBoost with DT as the base learn-
er, RF and GBT methods. For the Statlog dataset, the 
accuracy of Bagging ensemble is 82.59%. AdaBoost 
and GBT both obtained an accuracy of 82.96% and 
RF achieved an accuracy of 80.74%. DLSE method 
achieved the highest accuracy of 94.21%. The preci-
sion and recall rates for Bagging ensemble is 83.28% 
and 82.25% respectively whereas for AdaBoost it is 
84.00% and 82.67%, for RF it is 81.60% and 80.42% 
and for GBT it is 84.34% and 82.42%. DLSE obtained 
the highest precision rate of 95.21% and recall of 
96.08%. The accuracy of the proposed DLSE method 

is 92.34% for the SPECTF dataset. This is the high-
est accuracy when compared to Bagging (72.51%), 
AdaBoost (72.23%), RF (85.93%) and GBT (83.61%). 
Though precision rates of Bagging, AdaBoost, RF and 
GBT are 74.01%, 74.15%, 84.15% and 80.40% respec-
tively the proposed method obtained the precision 
rate of 91.43% which is almost 17% higher than Bag-
ging and AdaBoost, 7% higher than RF and 11% higher 
than GBT. The recall measure of DLSE is 92.12% and 
all the other ensembles obtained less than 80% recall 
rate. For the SPECT dataset, Bagging produced the 
lowest accuracy of 56.17% followed by AdaBoost with 
71.99%, GBT with 83.85% and RF with 85.36%. The 
proposed DLSE method produced the highest accura-
cy of 89.80%. The precision and recall rate of DLSE is 
88.49% and 81.99% which is the highest among all the 
other ensembles. AdaBoost produced the lowest pre-
cision and recall value of 44.05% and 53.18% respec-
tively. DLSE obtained an accuracy of 85.04% for the 
Eric heart dataset. The other ensemble approaches 
achieved less than 80% accuracy. The precision and 
recall value of DLSE is 85.94% and 85.86% which is 
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again higher than all the other ensembles. Finally, for 
the NHANES dataset our proposed method achieved 
highest accuracy of 95.17% compared to Bagging 
(81.95%), AdaBoost (82.93%), RF (83.80%) and GBT 
(82.68%). The precision value of DLSE is 89.66% and 
all the other ensembles obtained a precision value 
less than 60%. The recall measure of DLSE is 85.43% 
which is again the highest value when compared to 
the rest of the ensembles as the recall value is 63.19% 
for Bagging, 57.86% for both AdaBoost and GBT and 
49.99% for RF. In general, though the ensemble meth-
ods have better accuracy rates than that of the single 
classifiers, the proposed DLSE method outperforms 
them all in terms of accuracy, precision and recall.

5.1.3. Evaluation of Single-Layer and Dual-Layer 
Classification
We have also evaluated the proposed DLSE method 
with a single layered stacking ensemble using all the 
six base learners (NB, DT, SVM, LR, ERT, ABC and RF) 
with the meta-learner being GBT. The results are tabu-
lated and are shown in Table 13. It can be seen that the 
DLSE method performs better than a single-layered 
ensemble of base learners in terms of all the perfor-
mance metrics namely accuracy, precision and recall 
for all the datasets. The main advantage of using an en-
semble of dual-layers is that it provides more flexibil-
ity than a single-layer ensemble. Since there are more 

than one layer, we can use different classifiers in each 
layer resulting in a more refined classification. There 
is also a possibility for splitting an imbalanced classi-
fication problem in two relatively balanced problems. 
The dual-layer ensemble is also scalable for training 
and classifying hierarchically and can be applied to 
large medical datasets. The hierarchical classification 
always results in a better performance and quality 
classification than a simple flat structure. Moreover, 
the empirical evaluation shows that the dual-layered 
arrangement of classifiers outperforms the single-lay-
ered arrangement of classifiers.

5.2. Evaluation of the Proposed DHE Method

The proposed DHE method is evaluated against oth-
er popular ensemble techniques such as Boosting, 
Bagging, Stacking and the results are tabulated. It 
can be seen from Table 14 that the proposed DHE 
method outperforms the state-of-the-art ensemble 
techniques in terms of accuracy, precision and recall 
measures. The accuracy of the proposed DHE method 
for the MIT-BIH dataset is 99.50% which is the high-
est when compared to Bagging (92.31%), AdaBoost 
(88.48%) and Stacking (90.72%). The precision and 
recall measure for the DHE is 98.41% and 98.27% re-
spectively which is also higher than the other ensem-
ble models under consideration. The proposed DHE 

Table 13
Comparison of the Single-Layer ensemble with DLSE

Dataset Classication Techniques
Performance Metrics

Accuracy Precision Recall

Statlog
Stacking (Single-Layer) 81.62% 80.32% 79.59%

DLSE (proposed) 94.21% 95.21% 96.08%

SPECTF
Stacking (Single-Layer) 87.53% 80.24% 77.28%

DLSE (proposed) 92.34% 91.43% 92.12%

SPECT
Stacking (Single-Layer) 84.08% 71.34% 68.79%

DLSE (proposed) 89.80% 88.49% 81.99%

Eric
Stacking (Single-Layer) 79.42% 80.56% 75.84%

DLSE (proposed) 85.04% 85.94% 85.86%

NHANES
Stacking (Single-Layer) 89.88% 76.37% 77.86%

DLSE (proposed) 95.17% 89.66% 85.43%
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Table 14
Evaluation of the proposed DHE method with other ensemble techniques

Dataset Performance
Metrics

Classification Techniques

Bagging AdaBoost Stacking DHE 
(proposed)

MIT-BIH Arrhythmia 
Dataset

Accuracy 92.31% 88.48% 90.72% 99.50%

Precision 93.56% 82.31% 84.79% 98.41%

Recall 90.15% 83.66% 82.37% 98.27%

PTB Diagnostic ECG 
Dataset

Accuracy 86.23% 86.57% 88.24% 99.87%

Precision 84.17% 80.52% 82.76% 99.31%

Recall 83.42% 82.92% 85.26% 99.01%

EHR Dataset

Accuracy 81.45% 84.79% 88.72% 98.03%

Precision 79.92% 80.17% 83.63% 96.03%

Recall 79.65% 79.18% 81.29% 96.13%

method achieves the highest accuracy of 99.87% for 
the PTB Diagnostic ECG dataset. The other ensemble 
techniques achieved accuracy rates below 90%. The 
precision value of DHE for the PTB dataset is 99.31% 
outlasting Bagging (84.17%), AdaBoost (80.52%) and 
Stacking (82.76%) by a very large margin. The recall 
measure is also 99.01% for the proposed DHE model 
which is higher than all the other ensemble models 
in comparison. Finally, for the EHR dataset the Bag-
ging, AdaBoost and Stacking ensembles achieved an 
accuracy of 81.45%, 84.79% and 88.72% respectively. 
For this dataset also the proposed DHE achieved the 
highest accuracy of 98.03%. The precision and recall 
values of DHE for EHR dataset is 96.03% and 96.13% 
respectively which is again higher than that of Bag-
ging (79.92%, 79.65%), AdaBoost (80.17%, 79.18%) 
and Stacking (83.63%, 81.29%).

5.3. Analysis of Statistical Significance 
The statistical significance of the proposed models is 
discussed in this section. For a 95% confidence inter-
val, we determined the p-value. The results show that 
the p-value is significantly lower than the selected 
threshold of 0.05. It also rejects the null hypothesis, 
implying that the proposed ensemble classifier out-
performs competing classifiers across all datasets. 
The SS, df, MS are determined and F, Fcritical and p-val-
ue are calculated and tabulated. Table 15 provide the 
findings of ANOVA statistics of DHE for MIT-BIH 

Arrhythmia dataset, PTB Diagnostic ECG dataset and 
EHR Dataset. Table 16 provide the findings of ANO-
VA statistics of DLSE method for Statlog, SPECTF, 
SPECT, Eric and NHANES datasets. The suggested 
framework's results are statistically significant, ac-
cording to ANOVA statistics. Table 15 and 16 present 
the ANOVA statistics of the proposed ensemble clas-
sifiers versus each individual classifier. Each individ-
ual classifier is compared to the proposed ensemble 
classifier, and "between-groups" and "within-groups" 
variables are calculated. The results show that F val-
ue is greater than Fcritical for all classifiers, indicating 
that the proposed ensemble classifiers perform well. 
Furthermore, each classifier's p-value is less than 
0.001, indicating that the results for heart disease pre-
diction are strongly significant.

5.4. Evaluation of the Proposed Methods with 
Existing Approaches
The proposed DLSE method was evaluated against 
the existing ensemble approaches in the literature 
and the results are tabulated. Table 17 shows the com-
parison of accuracy of the proposed DLSE method 
with existing approaches. It can be seen that the pro-
posed DLSE method obtained the highest accuracy 
for all the datasets used in the research. The proposed 
DHE method was evaluated against the existing deep 
ensemble techniques and the results are presented in 
Table 18. It can be seen that the proposed DHE meth-
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Table 15
ANOVA statistics for the proposed DHE method against individual classifiers

ANOVA  
Statistics

Classification Techniques

CNN BiLSTM ANN RNN ERT RF GBT

MIT-BIH Arrhythmia Dataset

F 12.8025317 11.8100722 11.3633191 12.760754 10.9567079 11.4193088

Fcritical 3.8415013 3.8415013 3.8415013 3.8415013 3.8415013 3.8415013

p-value 0.0003 0.0006 0.0007 0.0004 0.0009 0.0007

PTB Diagnostic ECG Dataset

F 15.05950311 15.1201337 11.186152 12.6743265 13.796277 13.3274772

Fcritical 3.841778376 3.84177838 3.8417784 3.84177838 3.8417784 3.84177838

p-value 0.0001 0.0001 0.0008 0.0004 0.0002 0.0003

EHR Dataset

F 13.2963584 15.8097743 14.4670931 12.6601178 14.1753736 13.4516309

Fcritical 3.84150129 3.84150129 3.84150129 3.84150129 3.84150129 3.84150129

p-value 0.0003 0.0001 0.0001 0.0004 0.0002 0.0002

Table 16
ANOVA statistics for the proposed DLSE method against individual classifiers

ANOVA  
Statistics

Classification Techniques

NB DT SVM ERT ABC RF GBT

Statlog Dataset

F 11.27924891 16.066406 16.397871 11.9736035 12.553568 12.4630172 13.362426

Fcritical 3.858801272 3.85880127 3.8588013 3.85880127 3.8588013 3.85880127 3.8588013

p-value 0.0008 0.0001 0.0001 0.0006 0.0004 0.0005 0.0003

SPECTF Dataset

F 13.40314133 12.5224623 11.314488 15.4826697 12.232314 15.1067280 13.362426

Fcritical 3.858997525 3.85899752 3.8589975 3.85899752 3.8589975 3.85899752 3.8588013

p-value 0.0003 0.0004 0.0008 0.0001 0.0005 0.0001 0.0003

SPECT Dataset

F 11.2707005 14.12799 12.2920171 14.8763209 11.90416 14.9268953 15.9066631

Fcritical 3.85899752 3.8589975 3.85899752 3.85899752 3.8589975 3.85899752 3.85899753

p-value 0.0008 0.0002 0.0005 0.0001 0.0006 0.0001 0.0001

Eric Dataset

F 11.2248489 11.086864 11.4072125 11.367459 14.456157 11.3591665 11.2424261

Fcritical 3.86390928 3.8639093 3.86390928 3.86390928 3.8639093 3.86390928 3.86390928

p-value 0.0009 0.0009 0.0008 0.0008 0.0002 0.0008 0.0009

NHANES Dataset

F 15.47247609 12.8866827 15.245849 14.4109847 14.181137 15.2955087 16.129520

Fcritical 3.841582128 3.84158213 3.8415821 3.84158213 3.8415821 3.84158213 3.8415821

p-value 0.0001 0.0003 0.0001 0.0001 0.0002 0.0001 0.0001
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od has obtained the highest accuracy for all the three 
datasets considered in this research. Overall, the re-
sults clearly portray the effectiveness of both DLSE 
and DHE methods in diagnosing heart disease.

6. Conclusion and Future Work
Ensemble techniques are in existence for over a de-
cade and have been used in the domain of machine 
learning for classification and prediction. These ap-
proaches play a significant part in medical diagnosis 
for prediction and classification of diseases. In this 
work, dual-layer deep ensemble techniques namely, 
DLSE and DHE for heart disease classification and 
prediction were proposed. The proposed DLSE model 
was applied to five heart disease datasets and the re-
sults were analyzed. The proposed method was com-
pared with both traditional single classifiers NB, DT, 
SVM and LR and also with state-of-the-art ensemble 
methods Bagging, AdaBoost, RF and GBT. The empir-

Table 17
Comparison of accuracy of the proposed DLSE method with existing approaches

S. No. Classification Techniques
Accuracy

Statlog 
Dataset

SPECTF 
Dataset

SPECT 
Dataset

Eric  
Dataset

NHANES 
Dataset

1. Heterogeneous ensemble [28] 85.36% 80.14% 79.24% 74.85% 82.94%

2. Fog computing-based Ensemble [33] 86.45% 83.65% 82.58% 77.45% 81.47%

3. Hybrid Recommender System [23] 88.74% 80.94% 83.34% 80.07% 86.47%

4. Hybrid Ensemble [40] 93.65% 82.81% 84.95% 81.21% 83.32%

5. DLSE (proposed) 94.21% 92.34% 89.80% 85.04% 95.17%

Table 18
Comparison of accuracy of the proposed DHE method with existing deep ensemble approaches

S. No. Classification Techniques
Accuracy

MIT-BIH Arrhythmia 
Dataset

PTB Diagnostic ECG 
Dataset EHR Dataset

1. Ensemble of Neural Predictors [51] 91.36% 90.25% 91.23%

2. Deep RNN [54] 93.62% 93.15% 92.05%

3. Neural Networks Ensemble [61] 92.68% 94.36% 92.45%

4. Optimal Stacked Ensemble [52] 95.32% 94.69% 95.84%

5. DHE (proposed) 99.50% 99.87% 98.03%

ical analysis shows that the proposed DLSE method 
excels in terms of accuracy, precision and recall. Also, 
the proposed DLSE was compared with a single-lay-
er stacking ensemble comprising of all the machine 
learning approaches used in layer-1 and layer-2 of 
DLSE and the results further prove that the proposed 
dual-layered ensemble approach has higher accuracy 
than the traditional machine learning methods. The 
proposed DLSE method achieved the highest accu-
racy of 94.21% for Statlog dataset, 92.34% for SPEC-
TF dataset, 89.80% for SPECT dataset and 85.04% 
for the Eric heart dataset. The highest overall accu-
racy achieved using DLSE method is 95.17% for the 
NHANES dataset. This strengthens the fact that hier-
archical classification always results in a better per-
formance and classification quality than a simple flat 
structure. The proposed DHE method was compared 
with other ensemble techniques Bagging, AdaBoost 
and Stacking. The performance evaluation shows that 
the proposed DHE method outperforms all the other 
ensemble methods by achieving an accuracy rate of 



Information Technology and Control 2022/1/51176

99.50% for the MIT-BIH Arrhythmia dataset, 99.87% 
for the PTB Diagnostic ECG dataset and 98.03% for 
the EHR dataset respectively. It can also be seen that 
the proposed DHE method is well-suited for larger 
datasets with a greater number of features. This also 
manifests the fact that the proposed DHE utilizes 
the merits of both deep learning and ensemble tech-
niques. Moreover, at a 95% confidence interval, the 
F value and p-value derived from ANOVA statistics 
suggest that the results are statistically significant for 
all data sets. A major limitation of the proposed ap-
proaches is the time taken for training. The training 
time was not taken into account in the experiment. 

Ensemble classifiers require more training time than 
individual classifiers. Overall, when compared to in-
dividual classifiers and earlier research, the suggested 
ensemble achieved much superior results, suggesting 
that it may be employed as a viable alternative tool in 
medical decision-making for heart disease detection.
In future, the proposed DLSE and DHE methods can 
be applied in classification and prediction of different 
diseases such as cancer and diabetes. Measures to re-
duce the training time of DLSE and DHE by applying 
parallel processing can be investigated. Furthermore, 
increasing the number of layers in the proposed meth-
od and analyzing the performance can also be explored.
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