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Electrical impedance tomography (EIT) can provide the system structure and functional imaging ability need-
ed to map the distribution of and changes in plant root zones in a non-invasive, low-cost, safe, fast, and simple 
manner. Multi-frequency EIT solves the problem that single-frequency EIT can only carry impedance infor-
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1. Introduction
The main function of a plant’s root zone is to absorb 
water and nutrients. The complete root zone of a plant 
includes both the root system and the soil, and the soil 
provides the water and nutrients necessary for growth 
of the root system. Therefore, monitoring of dynamic 
changes in the root zone is very helpful in efforts to 
increase crop yields, especially in arid areas. Electri-
cal impedance tomography (EIT) is used to measure 
electrical conductivity (resistivity) distributions. The 
array electrode that is placed on the surface of the ob-
ject to be tested is used to inject a specific excitation 
current into the object. Using the corresponding mea-
sured surface voltage information, an image of the 
impedance distribution and its changes within the 
measured domain can then be reconstructed. EIT is a 
nondestructive imaging method. The EIT system re-
quired is small in size, low in cost, and does not require 
a strictly controlled working environment; the system 
can perform measurements multiple times and can be 
used repeatedly, which means that it has very broad 
application prospects in numerous fields [15].
In 1983, Barber and Brown of the University of Shef-
field in the UK proposed the applied potential tomog-
raphy imaging technique, which laid a solid founda-
tion for the future development of EIT [1]. Barber and 
Brown then led the research team that developed the 
Sheffield Mark I EIT system [4]. In 1995, the same 
research team upgraded the Mark I EIT system and 
developed the Mark II EIT real-time data acquisition 
system for use in clinical medicine [17]. Since then, 

researchers in the USA and the UK have successive-
ly developed EIT imaging systems for breast cancer 
detection and heart failure monitoring applications 
that have made major contributions to biomedicine. 
In 2016, a low-cost and portable EIT imaging sys-
tem was also developed for cancer detection [29]. In 
2018, Witkowaska-Wrobel et al. applied EIT to an 
animal model of epilepsy to prove that the onset and 
location of epilepsy are both predictable; their work 
had important guiding significance for preoperative 
evaluation of human epilepsy patients [36]. In 2019, 
Hannan et al. reconstructed images of the impedance 
changes caused by the rapid electrical activity that 
occurs during depolarization of imaging neurons, 
providing an approach that can improve judgment of 
the location of onset of certain diseases. This discov-
ery is likely to contribute greatly to the development 
of clinical and in vivo EIT methods [12]. In 2019, Bar-
rett et al. applied EIT technology to evaluation of the 
work of breathing performed by patients with chron-
ic obstructive pulmonary disease (COPD) who were 
suffering acute exacerbations. During the evaluation 
process, this technique was of considerable help in 
the treatment of COPD, and the pain of the patients 
was reduced greatly [3]. In 2020, Inany et al. used EIT 
to acquire images safely and effectively for analysis 
of the connection between the distribution of venti-
lation methods and the levels of oxygenation damage 
occurring in critically ill children [13]. In 2021, Moon 
et al. used EIT to predict the dynamic changes in lung 

mation corresponding to a single given excitation frequency. However, performing EIT at multiple frequencies 
simultaneously remains challenging. To address this problem, a mixed signal in which multiple frequencies are 
superimposed is injected into the object to be measured. Essentially, the aim of this approach is to separate the 
measured mixed voltage signals and thus acquire electrical impedance information simultaneously and quick-
ly at various frequencies. Because the measured signal is a multi-frequency signal, decomposing this signal af-
fects the imaging accuracy directly. To acquire more accurate data, the variational mode decomposition (VMD) 
method is used to decompose the measured multi-frequency signal. Accurate amplitude and phase information 
can be obtained simultaneously via multi-frequency excitation, and these data are then used to reconstruct the 
electrical impedance distribution. Results show that the proposed method can achieve the expected imaging 
effect. Use of the VMD method to process the multi-frequency signal data is more accurate and gives a better 
imaging effect than previous methods. The proposed method can be applied to multi-frequency electrical im-
pedance imaging in practice.
KEYWORDS: Electrical impedance tomography, multi-frequency EIT, variational mode decomposition, digi-
tal quadrature demodulation, plant root zone.
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ventilation occurring during spontaneous breath 
tests in patients with diaphragmatic dysfunction [21]. 
Additionally, in 2021, Redi et al. performed a simula-
tion study to investigate the feasibility of use of EIT 
as a low-cost, non-invasive technology for hyperther-
mia treatment monitoring and assessed the method’s 
adaptability [27].
Early EIT was a single-frequency imaging process, 
i.e., a single signal frequency was used as the exci-
tation signal. Although this imaging mode required a 
simple hardware structure, it could only display the 
impedance and carry limited information at a specific 
frequency. Since then, multi-frequency EIT (MFEIT) 
technology has emerged. To acquire the electrical im-
pedance information of the measurement object more 
accurately and more comprehensively, and also to 
make the imaging effect more accurate, a time-shar-
ing multi-frequency EIT method known as frequen-
cy-sweep [30] EIT was proposed [40]. This imaging 
method was able to reconstruct the impedance dis-
tribution at several frequencies and thus obtained 
more information. However, a great deal of time is 
required to perform this process by frequency sweep-
ing. As a result, the measured organism may change 
considerably during the measurement process, which 
may then cause unacceptable error levels in the final 
imaging results. To enable accurate imaging and re-
duce these errors, the multi-frequency simultaneous 
(MFS) method, i.e., mixed-frequency EIT, was pro-
posed [11]. By using mixed signals superimposed on 
multiple frequencies to perform excitation and then 
separating the measured mixed signals, the electrical 
impedance information can be obtained at different 
frequencies simultaneously. After demodulation, the 
amplitude and phase information required for im-
aging can then be obtained. In 2007, an EIT system 
called KHU Mark 1 was used to perform imaging of 
the human brain and could provide excitation within 
the frequency range from 10 Hz to 500 kHz [23]. The 
authors then upgraded their previous system to de-
velop the KHU Mark 2, which was a completely par-
allel multi-frequency EIT system. Although the Mark 
2 system structure was more flexible and its data ac-
quisition speed was faster than that of the first gener-
ation system, it was still unable to achieve long-term 
real-time monitoring of the electrical impedance im-
aging process, i.e., it could only present the electrical 

impedance distribution at a specific point [22]. In 
2016, Jehl and Holder added a conductivity Jacobian 
matrix for electrode movement to the EIT algorithm, 
and verified that the resulting algorithm could be used 
in multi-frequency EIT for electrode model correc-
tion; in addition, they realized the use of EIT technol-
ogy to distinguish hemorrhagic disease from ischemic 
stroke [19]. In 2017, Weigand and Kemna integrated 
the spatial analysis capabilities of the multi-frequen-
cy EIT technique with the diagnostic potential of 
electrical impedance spectroscopy. Use of a swept 
multi-frequency EIT approach to characterize and 
monitor crop root systems has considerable poten-
tial for various root structure and functional imaging 
applications [35]. In 2018, Santos et al. demonstrat-
ed that multi-frequency EIT can be used to monitor, 
discover, and distinguish pathologies related to acute 
respiratory distress syndrome (ARDS) [31]. Because 
of the rapid evolution of the flow models used in 
high-pressure and high-temperature flow devices, 
high-speed and non-invasive imaging techniques are 
required. In 2019, Darnajou et al. introduced the theo-
ry of a 16-electrode simultaneous EIT system and es-
tablished this system based on a field-programmable 
gate array. The signal was successfully received from 
the experimental setup at a frame rate of 1953 fps, 
which verified the feasibility of performing simulta-
neous multi-frequency excitation and measurement 
processes in EIT [20]. Virtual experiment procedures 
are important for development of new imaging hard-
ware or new imaging algorithms for EIT research, and 
are essential for construction of accurate EIT models. 
In 2020, Gelidi et al. designed a chest conductor mod-
el for multi-frequency EIT and verified the accuracy 
of their model through EIT image reconstructions in 
virtual experiments [11]. In 2021, Ain and others suc-
cessfully constructed a multi-frequency EIT system 
for use by biologists that included oscillators, buffers, 
a voltage-controlled current source, a multiplexer-de-
multiplexer, and a differential amplifier based on an 
Arduino Mega. Their system was tested successful-
ly, producing images of conductors, insulators, and 
animal organs, to ensure its suitability for use in the 
biomedical field [1]. Multi-frequency EIT technology 
can resolve the problems of insufficient electrical im-
pedance information acquisition and long measure-
ment times, which lead to large errors, and can basi-
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cally fulfil specific EIT functions in medical and other 
fields. The measured multi-frequency signal must be 
separated into independent waveform components at 
a given frequency for imaging. The multi-frequency 
EIT system must then achieve effective blind signal 
separation. The system design required to achieve 
this function is more complex than that of a sin-
gle-frequency EIT system. Therefore, the develop-
ment of a synchronous multi-frequency EIT system 
that can realize the required function and output an 
accurately separated multi-frequency measurement 
signal can promote the development of EIT technol-
ogy overall, and will be of major significance for all 
fields that require application of EIT technology. The 
purpose of the work in this paper is to study the ac-
quisition, separation, and processing of the detection 
signal in the multi-frequency EIT system, and to ul-
timately realize simultaneous multi-frequency EIT 
imaging of the plant root zone. The main innovation 
proposed in this paper is application of the variation-
al mode decomposition (VMD) algorithm to the EIT 
system. The VMD algorithm can enable rapid imag-
ing of the root zone and obtain the results at multiple 
frequencies simultaneously. The contributions made 
by the work in this article are as follows. The VMD al-
gorithm separates measured multi-frequency signals 
and obtains their amplitude and phase information 
before imaging, thus realizing high-speed multi-fre-
quency imaging. In addition, the separation process 
of the digital orthogonal separation algorithm was 
also studied in this research and the method was ap-
plied to EIT signal processing. Finally, the separation 
effects and the final imaging results obtained from 
the VMD algorithm and the digital orthogonal sepa-
ration algorithm were compared. The results prove 
that VMD offers more advantages in terms of signal 
decomposition.

2. Related Works
The signals that are acquired or generated in real life 
are not often simple single-frequency signals; usual-
ly, a signal is composed of multiple single-frequency 
signals that are superimposed upon or even coupled 
to each other. In many cases, these mixed signals 
cannot be processed directly. It is then necessary to 

perform blind signal separation of the mixed signal 
first, and subsequently process the multiple separat-
ed signal components using a single-frequency signal 
processing flow. To ensure the validity and accuracy 
of the results obtained, it is necessary to find an algo-
rithm that can separate the mixed signals accurately. 
As early as the 1980s, Herault and Jutten proposed a 
new algorithm for this purpose. This algorithm could 
separate independent source signals successfully in 
the linear mixed model; this work represents the be-
ginning of blind signal separation (BSS) theory [14]. 
BSS is the process applied when the characteristics 
of the source signal and the transmission channel 
are unknown and the source signal components are 
output from a known sensor. Since then, research-
ers have gradually developed the BSS algorithm fur-
ther, and have constantly improved the theory and 
the application method. In 2017, Langkam and Deb 
proposed a double estimation method for use in BSS. 
This method can estimate the state and parameters 
of the dynamic system simultaneously when there 
are only noisy data available. The method adopted 
the framework of the dual extended Kalman filter, in 
which two independent filters run at the same time, 
to achieve basic signal separation [16]. Because of 
the large numbers of calculations required and the 
slow calculation speed of the time-domain algorithm, 
Wang et al. converted the time-domain convolution 
operation into a frequency-domain product operation 
in 2017. This change improved the efficiency of BSS 
algorithms [33]. In 2018, Oliveira et al. proposed the 
use of multi-resolution analysis in the three resolu-
tion ranks of the wavelet transform, and then sepa-
rated the source signal using the AMUSE algorithm 
with different resolution ranks. The results were 
better than those obtained when using the original 
AMUSE method alone to estimate the signal [24]. In 
2019, Chua and Klejin proposed a low-delay method 
for BSS. Because the long analysis window used in 
the traditional method will involve a long calculation 
delay, it cannot be used in real-time systems. Howev-
er, the method proposed by Chua and Klejin reduced 
the calculation delay while also retaining good sep-
aration properties [6]. In 2020, Lu et al. proposed an 
online BSS method with an adaptive step size based 
on an isometric adaptive separation method to find 
a valid equilibrium between the convergence rate 
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and the steady-state error of online BSS; this meth-
od demonstrated high estimation precision [18]. In 
2021, because the vibration signal of the composite 
fault of a rotary mechanical machine acquired in the 
field had a complex noise source, Feng et al. addressed 
this problem by proposing a wavelet package analysis 
and fast independent component analysis extraction 
method for the source fault signal [9]. As the research 
progress discussed above indicates, various methods 
for signal separation have been proposed, and later 
generations of researchers have improved the BSS al-
gorithm on the basis of the previous studies. This has 
made the BSS algorithm increasingly accurate and it 
is thus being gradually applied to the speech recogni-
tion and mechanical failure analysis fields.
The VMD algorithm is a BSS method that was pro-
posed by Dragomiretskiy and Zosso in 2014. This 
algorithm can decompose and estimate the signal, 
and can determine the center frequency of each 
component of the signal by searching iteratively for 
the optimal solution to the variational model during 
the process of acquisition of the decomposed com-
ponents, thus realizing effective separation of each 
of the signal components adaptively [7]. In 2017, An 
et al. proposed a gear malfunction diagnosis meth-
od based on the VMD algorithm. Their method used 
VMD to decompose complex multi-frequency sig-
nals into several simple components and analyzed 
the signal components obtained through an envelope 
demodulation process; the method can be applied 
effectively to gear malfunction diagnosis [28]. In 
2018, Yadav et al. proposed a speech parameteriza-
tion method for automatic speech recognition based 
on the VMD algorithm. The researchers used VMD 
to decompose the short-term amplitude spectrum 
that they had acquired into several components and 
then smoothed them. The front-end acoustic func-
tion that was obtained after the final processing step 
showed increased resistance to both environmental 
noise and pitch changes [37]. In 2019, Pandey and 
Seeja used VMD as a characteristic collection tech-
nology and a deep neural network as a classifier to 
propose a topic-independent emotion identifica-
tion technology for electroencephalography (EEG) 
signals. This technology can identify the common 
EEG patterns that have nothing to do with specific 
emotions or with the individual. When compared 

with the traditional technology level available at that 
time, this combined VMD and deep neural network 
technology performed better in emotion recognition 
applications where the EEG signals are independent 
of specific objects [25]. In 2020, Zhang et al. used the 
VMD algorithm to decompose a source signal into a 
given number of components K. These components 
were then arranged in descending order of frequency. 
After the feature mode matrix was constructed, the 
microseismic signals and blasting vibration signals 
in the source signals could be distinguished, i.e., the 
method could identify microseismic events accurate-
ly [39]. In 2021, Kaur et al. used VMD to decompose 
a signal into several components during the process 
of suppression of the noise in an EEG signal of de-
pression. They then used the discrete wavelet trans-
form and the wavelet packet transform to reduce the 
noise of the artificial components, rather than use 
detrended fluctuation analysis as the basis of a mode 
to shield these artificial components entirely. Back-
ground artifact pollution reduces the effectiveness of 
almost all neural engineering applications based on 
EEG. However, use of this artifact removal system in 
combination with VMD technology can provide clini-
cians with a good processing method that can help to 
avoid delays in the signal diagnosis of depression [5]. 
The research discussed above shows that since the 
VMD algorithm was initially proposed, it has been 
improved continuously and has been applied to fields 
including industry, nature, and medicine. The above 
also provides feasible indications of ways to apply the 
VMD algorithm to agricultural EIT research in this 
study.

3. Methods
The principle of the approach in this research is to use 
a synthetic signal produced by superimposing sine 
waves at multiple frequencies to act as an excitation 
signal to excite the measurement electrodes. The 
multi-frequency measurement signals are then col-
lected, and the measured signals are separated using 
the VMD method. Finally, the amplitude and phase 
are extracted for each signal component and the sig-
nal is then imaged. The experimental process is illus-
trated in Figure 1.
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Figure 1
Experimental process

Figure 2
EIT system structure

 
 

 

 

 

3.1. Experimental Environment and Data 
Acquisition
In this study, a 32-electrode EIT device was used. 
The overall system hardware structure includes si-
nusoidal signal generators, voltage-controlled cur-
rent sources, channel switching circuits, electrodes, 
signal amplifiers, analog demodulation, filtering, and 
analog-to-digital (A/D) signal acquisition modules. A 
digital synthesis chip is used to generate a sine signal. 
A voltage-controlled current source then converts 
the sinusoidal signal into an excitation signal, and 
injects this signal sequentially into the measurement 
container through the channel selection circuit. The 
measurement circuit uses a serial design. The mea-
surement signal is amplified differentially using the 
preamplifier and is then input into a demodulation 
circuit composed of a multiplier and a low-pass filter. 

The demodulated signal is subsequently collected by 
the A/D module, and the collected voltage value is fi-
nally sent to the upper computer through the RS485 
bus communication protocol. The control signal in 
this circuit is then transmitted by the single-chip mi-
crocomputer after it receives the required command 
from the upper computer to ensure the correct time 
difference between the excitation and measurement 
processes. The hardware design structure of this sys-
tem is illustrated in Figure 2.

 

 

The electrode conductivity used in the simulation 
is 4.032×106 S/m. The conductivity of the internal 
cylindrical medium is 2 S/m, and its relative permit-
tivity is 5. The parameters of plexiglass are used for 
the periphery, where the conductivity is zero and the 
relative permittivity is 3.7. In the experiment, uniform 
salt water was used as the test medium, and plant tis-
sue (carrot) was used as the test object. The carrot 
had a diameter of 69 mm and a height of 120 mm; it 
was located on the line of electrode nos. 1 and 17, and 
its center was located 92.5 mm away from the center 
of the generic plexiglass barrel. In accordance with 
a previous method used to obtain sensitive frequen-
cies [32] and the growth conditions of the soil and the 
crops of interest [34], we set signals with frequen-
cies of 30 kHz, 50 kHz, and 70 kHz to excite the pure 
salt water medium and the medium containing the 
measured object, where the excitation current was 8 
mAp-p. A carrot was selected as the object to be test-
ed in the experiment because the boundary voltage 
needs to vary by a specific level to verify the imaging 
capabilities of the system; the use of a larger biolog-
ical object for testing can ensure that the boundary 
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voltage will change sufficiently. The carrot, as a large 
biological object, can thus ensure that the change in 
the boundary voltage is large enough. 
The EIT system contains 32 electrodes in each layer, 
and uses adjacent excitation and adjacent measure-
ment methods for signal excitation and acquisition, 
respectively. As shown in Figure 3, electrode No. 1 was 
excited, and all other electrodes with the exception of 
electrode No. 1 were measuring electrodes. The volt-
ages between pairs of adjacent measuring electrodes 
were measured from electrode No. 2 up to electrode 
No. 32. This means that when electrode no. 1 was ex-
cited, a total of 29 sets of voltage values between elec-
trode No. 2 and No. 3, No. 3 and No. 4, ..., and No. 31 and 
No. 32 were measured. Similarly, when measuring 
electrode No. i, then the voltages between electrode 
No. i+1, No. i+2, No. i+3..., were measured. A total of 
32×29=928 measurements were thus required.

commenced, and data were saved for each excitation 
position that was measured. The saved data were the 
original A/D signal measurement data, and these A/D 
signal data represented the average values from eight 
measurements. There were two data in each group. 
Here, the 16-bit A/D converter (ADC) used the stan-
dard internal voltage of 2.4 V. After conversion, the 
two measured values become voltage values, they 
respectively represent the 90° reference voltage val-
ue VI(t) and the 0° reference voltage value VR(t). The 
equations for calculation of the signal phase and am-
plitude, represented by φ and As, respectively, are giv-
en as follows:
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where the amplitudes Aref and Aref90 were known, and 
from which 928 groups of amplitudes and phases can 
be obtained. The three Excel spreadsheet correspond 
to the frequencies of 30 kHz, 50 kHz, and 70 kHz, re-
spectively. Because the frequency, amplitude, and 
phase parameters were all known, a sinusoidal wave-
form given by V(t) = Asin(ωt + φ) can then be deter-
mined. The multi-frequency signal can thus simulate 
the multi-frequency measurement signals that were 
collected directly from the experimental device under 
the multi-frequency excitation conditions.

3.2. Multi-Frequency Signal Separation
Because the excitation signal is a multi-frequency-su-
perimposed signal, the measured signal thus also con-
tains multiple frequencies. Therefore, it is necessary 
to decompose this multi-frequency measurement sig-
nal, separate it into multiple single-frequency signals, 
and then image them separately. In this way, the am-
plitude and phase information at multiple frequen-
cies can be obtained at the same time, thereby great-
ly improving the imaging speed. This paper used the 
VMD method to separate the multi-frequency signals, 
then also used the digital orthogonal decomposition 
method to separate the same measurement signals, 
and finally compared the separation processes and 
imaging effects of the two decomposition methods.

Figure 3
Electrode diagram  

 

After the system was powered on, the control board 
closed all channels by default. First, the measure-
ment system had to be connected through the serial 
port to set both the serial port number and the baud 
rate. Then, the excitation parameters were set; this 
mainly involved setting the frequency and amplitude 
of the excitation signal and the control board number. 
Finally, the incentive mode was selected. After all 
settings were completed, the measurement process 
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3.2.1. Variational Mode Decomposition  
(VMD) Method
The VMD algorithm [8] was used in this work for de-
composition of the collected multi-frequency mea-
surement signals. This algorithm can decompose a 
multi-frequency signal into multiple single-frequency 
signals. The principle of the algorithm is to find the 
optimal solution for the variational model through an 
iterative process, enabling calculation of the center 
frequency and bandwidth for each component, and fi-
nally realizing frequency domain division of the signal 
and effective separation of each of the components.
The basis function can be obtained by using the VMD 
algorithm, i.e., the update formula for each signal 
component, which is expressed as
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where ûħ(ω) represents the basis function obtained by 
decomposition, i.e., the single-frequency signal com-
ponent. Here, f̂ (ω) is the representation of the signal 
to be separated in the frequency domain, where λ̂ is 
updated using the gradient descent method as follows:
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where ωħ is the center frequency of each signal compo-
nent. The update formula for the center frequency is 
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After the amplitude and phase information is ob-
tained from the separated single-frequency signal, 
imaging can then be performed.
Because the measurement table has 29 rows and 32×2 
columns, it is difficult to process. Therefore, the table 
is first changed into a 928×2 format, where each row 
represents the amplitude and phase of a single wave-
form. Then, after the waveforms corresponding to the 
number of rows in the table under the three excitation 
frequencies were added, 928 multi-frequency wave-
forms were obtained.

After the input parameters were set, the VMD function 
was used to separate the 928 multi-frequency signals. 
After the VMD separation process, 928×3  ·  ûħ(ω), i.e., 
the separated single-frequency signal, was obtained. 
First, ûħ(ω) was decomposed into a DC component and a 
group of sine waves with different amplitudes, frequen-
cies, and phases using a Fourier transform approach. 
Because the frequency was known, the sine wave could 
be described fully using the two characteristic ampli-
tude and phase values at this time. Although the am-
plitudes and phases of all sampled signals could be ob-
tained, the signal components that were decomposed 
by the VMD method were not necessarily arranged in 
order of frequency. Therefore, it was also necessary to 
add a sorting statement to sort the signal components 
by frequency, and the obtained amplitudes and phases 
were then divided into the table under each frequency 
according to the frequency used for imaging.

3.2.2. Digital Orthogonal Decomposition Method
For comparison, the number of samples in a period 
was set to be the least common multiple of the num-
ber of samples in a period for each frequency compo-
nent during the parameter setting process, and the 
orthogonal decomposition function was then used 
directly to separate the 928 multi-frequency signals.
The sampling result for a signal with K frequency 
components is given by:
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where Aħ represents the amplitude of the ħ th fre-
quency component. In addition, φħ represents the 
phase of the ħ th frequency component. Nħ represents 
the number of samples of the ħ th frequency compo-
nent in a period. Nc is taken to be the least common 
multiple of N1, N2, N3,..., NK, and then, according to the 
quadrature demodulation formula:
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where Iħ is the real part of the ħ th frequency compo-
nent sampling result S(n). Qħ is the imaginary part of 
the ħ th frequency component sampling result S(n). 
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When the real and imaginary components are known, 
the amplitude and phase of each frequency compo-
nent can be found as follows.
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After separation was performed using this algorithm, 
the amplitude and phase information of the 928×3 
single-frequency signals could be obtained directly. 
After the amplitude and phase data were classified 
according to their frequencies, they were then sum-
marized in a table using the imaging data format of 
the Electrical Impedance and Diffuse Optical Tomog-
raphy Reconstruction Software (EIDORS), and they 
were then suitable for use in imaging applications.

3.3. Imaging
In this study, the open-source software package 
EIDORS 3.10 was used for imaging analysis of the 
measured voltage data. EIDORS is an open-source 
software suite for use in EIT and diffuse optical to-
mography (DOT) image reconstruction. The soft-
ware is used specifically to model and solve forward 
and inverse problems. EIDORS contains four main 
elements: the data, the image, the forward problem 
model, and the inverse problem model. The data are 
obtained from each measuring electrode after each 
excitation. The image is then reconstructed by pro-
cessing the measured data. The forward problem 
must first be divided into a finite element method 
(FEM) model of the measurement domain, and then 
the size, position, and excitation mode (current ex-
citation/voltage acquisition mode) should be set for 
each electrode; finally, the function for solution of the 
forward problem model, the contact impedance, the 
solver, and the Jacobian parameters should all be set. 
The inverse problem model includes all information 
required to perform imaging, and its data contain the 
model of the forward problem. The parameters that 
must be set in the inverse problem include the solver, 
the hyper parameters, the Jacobian parameters, and 
the reconstruction method (time difference imaging).
The imaging steps involved in the process of electrical 
impedance imaging of carrots are specified in Figure 4. 

Figure 4
Imaging steps

  

 

 
4. Results

4.1. Simulation Experiment

In the simulation experiment, a circular target with 
a radius of 10 mm was placed within the field to be 
measured. The target conductivity was 2 S/m, the 
background conductivity was 1 S/m, the number of 
electrodes was 32, and the excitation mode used was 
adjacent excitation. By modifying the electrical con-
ductivity values to be 2 S/m, 3 S/m, and 4 S/m, three 
data sets were obtained and were simulated as the 
measured data at three frequencies. Each single-fre-
quency signal was determined by using the simulated 
amplitude and phase data, and these signals were then 
superimposed. The superimposed multi-frequency 
signal was then separated using both the VMD meth-
od and the digital orthogonal decomposition algo-
rithm. The separated signals were classified and im-
aged based on their corresponding frequencies. Here, 
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the imaging results for the real and imaginary compo-
nents of the amplitude obtained by the VMD method 
and the digital orthogonal decomposition method 
were compared with the original imaging results ob-
tained under single-frequency excitation. Among 
these results, the imaging process for the real part is 
resistance imaging, which reflects the nonbiological 
tissues. The imaging process for the imaginary part 
is reactance imaging, which reflects the biological tis-
sues. Amplitude imaging has the characteristic that 

it can be used for imaging of both the real and imagi-
nary components, but the amplitude is a single value 
without a phase angle, which means that the complex 
impedance should be used.
As shown in Table 1, the amplitude image determined 
from the original data was compared with the imag-
es obtained from the data when processed using the 
VMD method and the digital orthogonal decompo-
sition method. The units of the imitated color bar  
are S/m.

Table 1
Amplitude imaging results comparison

Original VMD Digital orthogonality

30 kHz
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As shown in Table 2, the real component image from 
the original data was compared with the correspond-
ing images obtained from the data processed using the 
VMD method and the digital orthogonal decomposition 
method. The units for the imitated color bar are S/m.
As shown in Table 3, the imaginary component image 
from the original data was also compared with the 
corresponding images obtained from the data pro-
cessed using the VMD method and the digital orthog-
onal decomposition method. The units for the imitat-
ed color bar are S/m.
Comparison of the imaging results in the three tables 
shows that the images formed using the simulation 
data at the three frequencies when separated using 

the VMD method and the digital orthogonal decom-
position method were almost the same as those from 
the imaging results of the single-frequency simula-
tion. However, comparison of the subtle differences in 
image color and position showed that the VMD image 
was closer to the original image. The results show that 
these two methods can both perform BSS very well 
and that they ultimately completed the imaging tasks, 
but the VMD method showed a slightly better effect.
The following five evaluation indicators were used in 
this study.
The amplitude response (AR) is used to represent the 
ratio of the pixel amplitude in the image to be mea-
sured to the pixel amplitude in the reconstructed im-

Table 2
Real part imaging results comparison

Original VMD Digital orthogonality

30 kHz
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Table 3
Imaginary part imaging results comparison

Original VMD Digital orthogonality

30 kHz

50 kHz

70 kHz

age. A smaller change in AR indicates a better recon-
struction effect.
The position error (PE) is used to reflect the deviation 
of the reconstructed image position relative to the ac-
tual position of the object to be measured. A smaller 
and more stable parameter value in this case indi-
cates a better reconstruction effect.
The resolution (RES) is used to measure the size of 
the reconstructed image of the object to be measured 
as a part of the area to be measured. A more uniform 
and smaller resolution means that the shape of the 
conductivity distribution of the object to be measured 
can be represented more accurately.

The shape deformation (SD) is a proportional param-
eter. When the object to be measured is close to the 
edge of the area to be measured, strange deformation 
artifacts will then appear. The SD is used to measure 
the proportion of the quarter amplitude group that 
cannot match a circle with the same area. A more uni-
form and smaller value indicates a better reconstruc-
tion effect in this case. 
The ring (RNG) indicates whether or not the area 
with opposite signs surrounding the main area to be 
measured can be displayed in the reconstructed im-
age. A more uniform and smaller RNG value indicates 
a better reconstruction effect.
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Table 5
Comparison of evaluation indexes for each method at 50 kHz

Table 6
Comparison of evaluation indexes for each method at 70 kHz

50 kHz Original VMD Digital orthogonality

AR 1031.21037 1026.01406 1031.20386

PE 58.56205 58.56205 58.56205

RES 0.45960 0.45960 0.45960

SD 0.03211 0.03211 0.03211

RNG 0.13291 0.13291 0.13291

70 kHz Original VMD Digital orthogonality

AR 1296.22918 1289.67802 1296.10275

PE 58.57162 58.57162 58.57162

RES 0.46031 0.46031 0.46031

SD 0.03048 0.03048 0.03048

RNG 0.13175 0.13175 0.13175

Table 4
Comparison of evaluation indexes for each method at 30 kHz

30 kHz Original VMD Digital orthogonality

AR 578.18149 576.29715 578.21823

PE 58.75239 58.75239 58.75239

RES 0.45960 0.45960 0.45960

SD 0.03058 0.03058 0.03058

RNG 0.13747 0.13747 0.13747

In the simulation experiment, the evaluation indexes 
of the original single-frequency imaging process and 
the imaging processes after the separation of the two 
methods were obtained. Tables 4-6 contain the values 
of the AR, PE, RES, SD, and RNG that were obtained 
under 30 kHz, 50 kHz, and 70 kHz excitation, respec-
tively, for single-frequency excitation imaging and for 
imaging after separation by the VMD method and the 
digital orthogonal decomposition method. These five 
indicators were then compared. 

Comparison of the five evaluation indicators from the 
simulation experiment results presented in the Ta-
bles 4-6 above shows that four of the indicators, i.e., 
PE, RES, SD, and RNG, were completely consistent. 
However, the AR from the VMD method was smaller 
at all three frequencies. It is thus obvious that the ra-
tio of the pixel amplitude of the original image to that 
of the reconstructed image is small, and the imaging 
error is thus small.
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In conclusion, in the simulation experiments, the 
VMD algorithm was able to realize accurate sepa-
ration of the multi-frequency measurement signals 
completely. The process accuracy was high, and bet-
ter imaging results can thus be obtained using this 
algorithm. These results were reproducible and the 
imaging remained stable. The VMD algorithm can 
complete the imaging process at more than three 
frequencies within the single-frequency excitation 
process time to obtain a frequency image. Use of this 
algorithm shortened the imaging time greatly and 
improved the imaging efficiency. Comparison with 
the digital orthogonal decomposition method shows 
that in the high-frequency excitation case, the dig-
ital orthogonal decomposition method required an 
increased number of sampling points, which took a 
longer time to process. Additionally, its separation ef-
fect was worse than that of the VMD algorithm, and 
the final imaging result was not as accurate as that ob-
tained when using the VMD method. The VMD meth-
od was also relatively stable at high frequencies.

4.2. Actual Measurement Experiment
In the experiment, a potassium chloride solution 
with a concentration of 2.012 mM was used as the 
measurement medium. A conductivity meter (DDSJ-
308A, Inesa Instrument, China) was used to measure 
the background conductivity. The conductivity of the 
pure brine was 227 μS/cm.
Plant tissue (carrot tissue) was used as the object to 
be measured in the experiment. The carrot used had a 
diameter of 69 mm and a height of 120 mm. The carrot 
was located near electrode nos. 16 and 17, and its cir-
cular center was located 92.5 mm from the center of 
the plexiglass barrel. Signals at 30 kHz, 50 kHz, and 70 
kHz were used to measure the pure saline medium and 
the medium that contained the substance to be mea-
sured. The experimental system is shown in Figure 5.
The data measured under excitation were used to 
perform imaging, and the results of amplitude imag-
ing, real part imaging, and imaginary part imaging for 
single-frequency excitation were obtained. Then, the 
data measured for the three frequencies were sort-
ed out and superimposed. The VMD method and the 
digital orthogonal decomposition method were then 
used to decompose the superimposed original data, 
and the imaging results obtained after decomposition 
by these two methods were compared with the results 

Figure 5
Carrots are located near electrode No. 16 and No. 17 at a 
distance of approximately 1 cm in a plexiglass tube containing 
a pure KCl solution with conductivity of 227 μS/cm

  

 

of direct imaging using the original data. The images 
that were compared included the amplitude, real part, 
and imaginary part imaging results.
As shown in Table 7, the amplitude image from the 
original data was compared with the images from the 
data processed using the VMD method and the digital 
orthogonal decomposition method. The units for the 
imitated color bar are S/m.
As shown in Table 8, the real part image from the 
original data was compared with the images from the 
data processed using the VMD method and the digital 
orthogonal decomposition method. The units for the 
imitated color bar are S/m.
As shown in Table 9, the imaginary part image from 
the original data was compared with the images from 
the data processed using the VMD method and the 
digital orthogonal decomposition method. The units 
for the imitated color bar are S/m.
Comparison of these three tables shows that both the 
VMD method and the digital orthogonal decomposi-
tion method can separate the multi-frequency signals 
accurately. In addition, the imaging results obtained 
were also very close to the single-frequency raw data 
imaging results. When assessed from the perspec-
tives of the amplitude, real part, and imaginary part 
imaging results, there were almost no differences 
between the two decomposition methods. As shown 
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Table 7
Amplitude imaging results comparison

Original VMD Digital orthogonality

30 kHz

      

50 kHz

      

70 kHz

  
    

in Tables 7 and 8, the VMD separation effect in the 
actual measurement experiment at the appropriate 
frequency in a noncentral location was similar to the 
digital orthogonal decomposition effect.
In the actual measurement experiment, the evalua-
tion indexes for the original single-frequency imaging 
method and for the imaging method after separation 
of the central location were obtained. Tables 10-12 
present the values of the AR, PE, RES, SD, and RNG 
that were obtained under excitation at 30 kHz, 50 
kHz, and 70 kHz, respectively, for single-frequency 

excitation imaging and for imaging after separation 
by the VMD method and the digital orthogonal de-
composition method. These five indicators are then 
compared.Comparison of the five evaluation indica-
tors presented in these tables shows that there were 
only small differences among the three indexes for 
the PE, RES, and SD. However, the AR and RNG val-
ues for the VMD images were much smaller. Obvious-
ly, the reconstruction effect obtained when using the 
VMD algorithm was slightly better, and the imaging 
error obtained was small.
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Table 8
Real part imaging results comparison

Original VMD Digital orthogonality

30 kHz

   

50 kHz

   

70 kHz

   

In summary, both the VMD algorithm and the digital 
orthogonal decomposition algorithm can satisfy the 
requirements for accurate separation of multi-fre-
quency measurement signals in both simulation ex-
periments and actual experiments, and both methods 
can provide good imaging effects. Both methods can 
complete the imaging process at three frequencies 
within the time required for single-frequency exci-
tation to obtain a single-frequency image. The im-
aging time was greatly shortened and the imaging 

efficiency was greatly improved by both approach-
es. However, although the two methods can achieve 
the same goals from an imaging viewpoint, the VMD 
method is significantly better than the digital orthog-
onal decomposition method from a data accuracy 
viewpoint in terms of parameters such as the AR and 
RNG. Additionally, at higher frequencies, the effect of 
the orthogonal decomposition approach is better in 
terms of the numbers obtained, but the VMD method 
is faster.
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Table 10
Comparison of evaluation indexes for each method at 30 kHz

30 kHz Original VMD Digital orthogonality

AR 1758.17658 1750.86668 1758.18526

PE 74.51585 74.51585 74.51585

RES 0.67485 0.67485 0.67485

SD 0.15319 0.15319 0.15319

RNG 0.07480 0.07474 0.07480

Table 9
Imaginary part imaging results comparison

Original VMD Digital orthogonality

30 kHz

      

50 kHz

      

70 kHz
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Table 11
Comparison of evaluation indexes for each method at 50 kHz

Table 12
Comparison of evaluation indexes for each method at 70 kHz

50 kHz Original VMD Digital orthogonality

AR 1371.28071 1362.38903 1371.22294

PE 54.79191 54.84551 54.79191

RES 0.60119 0.60146 0.60119

SD 0.16085 0.16160 0.16085

RNG 0.14560 0.14557 0.14560

70 kHz Original VMD Digital orthogonality

AR 1000.11379 996.02919 999.99052

PE 78.61844 78.67443 78.61844

RES 0.50321 0.50354 0.50321

SD 0.39158 0.39235 0.39158

RNG 0.22512 0.22463 0.22513

5. Discussion
The five evaluation criteria and the final imaging re-
sults presented above verify that the VMD method 
has a good decomposition effect on the three-fre-
quency mixed signals, and the amplitude and phase 
errors obtained were within 0.0005. In this study, in 
addition to verifying that use of the VMD method is 
feasible, the digital orthogonal decomposition meth-
od was also used to decompose the multi-frequency 
measurement signals under the same conditions. 
Comparison of the amplitude and phase data from 
the two methods, along with the separated amplitude, 
real part, and imaginary part imaging results obtained 
at each given frequency, shows that the performance 
of the VMD method is better than that of the digital 
orthogonal decomposition method, which has been 
used widely in the multi-frequency EIT imaging field 
in existing paper [38].

The results indicate that the imaging performance of 
the VMD method is almost consistent with that of the 
direct imaging method under single-frequency exci-
tation at 30 kHz, 50 kHz, and 70 kHz. In particular, 
when the number of mixed excitation signals is high 
or the excitation signal frequency is high, the advan-
tages of the VMD method become more obvious, and 
the imaging effect is better.
We used the VMD method to achieve separation of 
synchronous multi-frequency signals and provide 
a more mature simultaneous multi-frequency EIT 
technology. We were able to acquire three or more im-
ages at different frequencies within the time taken for 
the single frequency EIT system to produce one image 
at a single frequency. The proposed approach not only 
greatly enhances the imaging speed, but also avoids 
the errors caused by the different electrical impedance 
distributions that occur in plants at different times.
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The results verified that the VMD algorithm can ex-
tract the amplitude and phase data for each signal 
component at each frequency rapidly. Comparison 
with the original data also confirmed that the separa-
tion effect was good and that the imaging speed was 
extremely fast. Comparison of the amplitude imag-
ing, real part, and imaginary part imaging results for 
tuberous roots, e.g., carrots, indicates that the VMD 
method can be applied to synchronous multi-fre-
quency EIT in the root zones of tuberous root crops to 
achieve multi-frequency simultaneous rapid imaging 
of these zones.
Although the VMD results are very accurate, the sep-
aration speed of the method is still not fast enough to 
date. At present, it is only possible to generate images 
at multiple frequencies simultaneously, and real-time 
detection results cannot be guaranteed. In future re-
search, through optimization of the VMD algorithm, 
we will aim to enhance the separation speed without 
affecting the decomposition effect. In addition, we be-
lieve that parallel computing methods can be used to 
improve process efficiency [26]. Therefore, it will be 
worthwhile to develop these approaches in our future 
research.

6. Conclusions and Future Work
In this paper, the VMD method was applied to the 
multi-frequency signal separation step in a multi-fre-
quency EIT system for plant root zone measurement. 
The results of this study show that the VMD method 
can separate the multi-frequency measurement signal 
measured at the electrode effectively after a multi-fre-
quency signal was excited. Additionally, electrical im-
pedance images at three or more frequencies can be 

obtained within the time required to acquire one im-
age in a single-frequency system, thus enabling real-
ization of high-speed multi-frequency imaging in the 
root zone. In addition, this research also compared the 
separation effects of the VMD method and digital or-
thogonal decomposition on multi-frequency signals, 
and verified that these two methods were both effec-
tive. However, the separation effect of the VMD meth-
od was observed to be better than that of the digital 
orthogonal decomposition approach. 
In addition to the acceleration effect of the VMD 
method, the experiments and optimization processes 
can be continued in future work to enable more accu-
rate separation of the multi-frequency measurement 
signals and thus provide better imaging effects. At the 
same time, more excitation signals at different fre-
quencies can be supplied to the electrodes, and elec-
trical impedance information can be obtained simul-
taneously at more frequencies in a short time period.
In future work, we will expand the various data sets 
used in this work and improve the algorithm to in-
crease its decomposition speed. Efforts will also be 
made to achieve rapid simultaneous imaging under 
excitation at multiple frequencies in short times, and 
to test the effectiveness and accuracy of the improved 
algorithm further. It will also be useful to expand and 
improve the amplitude and phase data that can be 
separated by the VMD method by performing exper-
iments on different crop categories.
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