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Wireless rechargeable sensor networks have been applied to all aspects of the real world today. Though sensors 
can collect energy from the environment, the energy collection cannot support sensors to work continuously as 
usual. Energy scheduling problems have to be solved. In this paper, we study the energy allocation problem of 
a rechargeable sensor network that can monitor multiple random events. It is assumed that each event follows 
a Poisson process, the energy received by the sensor is random, and each sensor has a chance to be assigned to 
detect one or more events. In the paper, we also introduce multi-objective nonlinear programming to solve the 
problems of nonlinearity and energy. Two algorithms are also proposed to obtain the programming’s Pareto 
optimal solution. At last, we conduct a number of practical simulations to verify our results.
KEYWORDS: Rechargeable sensor network, Multiple events, Pareto optimal, Nonlinear programming, Algo-
rithms, Cybernetics.1. 
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1. Introduction
Wireless sensor network (WSN) is one of the hot-
spots in the field of information, which is widely used 
technically in real life. WSN can be deployed in various 
spaces including the most hazardous working envi-
ronment, and plays a positive role in agricultural pro-
duction assistance, eco-environmental monitoring, 
and military. The sensor node can be used to replace 
part of the staff for tasks in a hazardous environment. 
WSN's energy scheduling is still an important issue. 
In this paper, we study a rechargeable wireless sensor 
network. Due to the special application environment 
of certain sensors, the maintenance cost of the sensor 
network is very expensive, requiring the sensors to 
collect energy from the environment and be self-suf-
ficient. However, the energy collection is sufficient to 
support the continuous work of the sensor in most cas-
es. In this case, we should dispatch the sensor network 
and get the best sensor network scheduling strategy.
We assume that each event follows a Poisson process. 
Multiple rechargeable sensors are randomly deployed 
in the area. Taking the variety of the geographical en-
vironment into consideration, each sensor can be as-
signed to detect one or more events.
As the ambient energy changes with time, the energy 
received by the sensor is also random. Our objective is 
to dispatch the energy of the network so that the qual-
ity of monitoring (QoM) can be maximized.
Our contributions are summarized as follows:
1 We consider an energy distribution problem for a 

rechargeable sensor network where multiple sto-
chastic events are monitored.

2 The problem of nonlinearity and energy con-
straints are discussed, and multi-objective non-
linear programming is introduced to solve this 
problem. Considering the relation between energy 
and detection rates, we propose two heuristic algo-
rithms which are proven to be optimal methods.

3 We conduct several simulations to verify our re-
sults, especially the iterations in our proposed 
algorithms and the differences among several de-
ployments of the sensors and events.

2. Related Work
First, we discuss the general wireless sensor network 
problem. A network coverage algorithm was studied 
by Li et al. [9] based on evidence theory, which calcu-

lates the direction of movement of the wireless sensor 
node and moves the wireless sensor node to an area 
with low perception probability. Singh et al. [18] pro-
posed a sleep scheduling algorithm, namely, EC-CKN 
to balance the energy consumption and extended net-
work life. Nguyen et al. [13] studied a more general tar-
get coverage and network connection problem, termed 
the Maximum Weighted Target Coverage and Sensor 
Connectivity with Limited Mobile Sensors (TAR-CC) 
problem. To solve the sub-problems of the TAR-CC, 
an approximate algorithm is proposed, i.e., the weight-
ed-maximum-coverage-based algorithm (WMC BA) 
which is used as the basis to propose the Steiner-tree-
based algorithm for the TAR-CC problem.
In this paper, we study the rechargeable wireless sen-
sor network. Hung et al. [6] studied a distributed col-
laboration algorithm suitable for partially recharge-
able mobile wireless sensor networks. The algorithm 
considers not only the energy consumption of the 
mobile node but also the resident energy of the mobile 
node. Besides, it cooperates with neighbors to extend 
the life cycle of environmental monitoring. Han et al. 
[5] introduced wireless mobile chargers to supple-
ment energy for nodes to solve the problem of energy 
limitation in wireless sensor networks fundamentally. 
A joint energy supplement and data acquisition algo-
rithm for WRSNs is proposed. Deng et al. [2] studied 
the problem of maximizing network utility in a stat-
ic route rechargeable sensor network with link and 
battery capacity constraints, and proposed a method 
named decouple spatiotem- porally-coupled con-
straint algorithm. Zhu et al. [26] proposed a new type 
of routing tree, namely, event detection tree to achieve 
energy-efficient composite event detection, thereby 
achieving a tradeoff between them to minimize the 
overall energy consumption. Zou et al. [27] proposed 
an optimal reader power for balanced energy charging 
and transmission collision. Wang et al. [22] presented 
an Improved Cuckoo Search (ICS) algorithm which 
redefines its step factor based on the traditional cuck-
oo search algorithm (CS). It then uses the mutation 
factor to change the nesting position of the host bird 
to update the nest position before utilizing ICS to find 
those available to maximize the reception of the sen-
sor node’s power, and the best solution to minimize the 
number of charger nodes. Han et al. [4] proposed a grid 
joint routing and charging algorithm for industrial 
wireless charging sensor networks.
We focus on the dynamic activation of the sensor. 
Yin et al. [24] studied the performance of a simple 
threshold activation strategy, and the optimal thresh-



285Information Technology and Control 2022/2/51

old strategy can be used to achieve at least 3/4 opti-
mization of the situations in which the sensor cov-
erage area is completely overlapped. Rout et al. [17] 
proposed a handover algorithm based on the Markov 
decision process to find the best handover strategy 
for sensor nodes. While reducing energy consump-
tion in the network, it also uses real-time sensor flow 
patterns to analyze energy consumption. Zhang et al. 
[25] considered the data sensing and data transmis-
sion, optimized the network utility data acquisition, 
and designed the dynamic sensing and routing data 
acquisition optimization algorithm. Liu et al. [10] 
proposed two reasonable charging strategies  and  a 
variable-step size adaptive algorithm to optimize the 
entire wireless  rechargeable  sensor  network. Liu et 
al.  [11] aimed to jointly optimize the number of dead 
sensors and energy efficiency in this multi-node, they 
also proposed a multi-node temporal-spatial par-
tial-charging algorithm (MTSPC) to solve the con-
flict between minimizing the number of dead zone 
sensors and energy efficiency due to partial charging 
mechanisms. Malebary [12] introduced the optimi-
zation (WMCEO) algorithm to achieve enhanced 
energy efficiency and network life by optimizing the 
movement trajectory and charging time of WMC at 
each stay position. Tang et al. [19] proposed an opti-
mization algorithm for both the charging process and 
routing process. To balance the network energy of the 
charging part, the charging efficiency of the node is 
balanced by dynamically planning the location of the 
charging point, and the charging time is allocated ac-
cording to the energy consumption rate of the node. 
Jiang et al. [8] studied the use of mobile chargers with 
wireless rechargeable sensors to achieve maximum 
coverage for on-demand scheduling. Ren et al. [15] 
considered to detect single-event problems and used 
dynamic control theory to monitor events after the 
update process. Wu et al. [23] introduced the concept 
of virtual time in Heterogeneous Wireless Recharge-
able Sensor Network (HWRSN), and then proposed 
a new online charging algorithm named VTMT. Ge 
et al. [3] developed a new dynamic event-triggered 
transmission scheme (ETS) to schedule the trans-
mission of each sensor’s local measurement. Tomar 
et al. [20] studied a wireless and rechargeable sensor 
network with multiple chargers, and used fuzzy logic 
mixing various network attributes to formulate a new 
W RSNs on-demand charging scheduling  strategy. 
Wang et al. [21] designed a time-varying filter so that 
both H∞ requirements and the variance constraints 
are guaranteed over a given finite-horizon against 

the random parameter matrices. Ouyang et al. [14] 
proposed an important differential charging sched-
uling (IDCS) strategy based on matroid theory to im-
prove charging utility and reduce data loss.

3. Problem Formulation
Multiple rechargeable sensors are deployed ran-
domly in a situation for detecting important events. 
We use Si, i = 1, 2, ..., N to denote each sensor and Ij,  
j = 1, 2, ..., M to denote events. Owing to the geographical 
environment effect, when event Ij is in Si' s sensor cov-
erage area, we say Ij can be monitored by Si (see Figure 
1). Since environmental energy changes over time (e.g., 
from solar irradiation, vibration), so does the number 
of energy arrivals. Consequently, as presented in Jaggi 
et al. [7], each sensor’s recharge process is modelled as 
a Poisson process: in each time slot, sensor Si will re-
ceive units of energy with probability 0<qi⩽1. Then, the 
recharge rate of Si is qic. The sensor expends a charge 
of δ>c energy when it is in an active state and no ener-
gy when it is in a dormant state in each time slot. For 
event Ij, we use a Poisson process with parameter λj to 
denote its randomness. When sensor Si spent 0<αi,j<1 
ratio energy on event Ij, the total power cost by all sen-
sors on this event is ∑Si∈ΛIj

αi, jqic, where ΛIj = {Si | sensor 
Si can detect event Ij}. Let α = {αi,j, i = 1, ..., M, j = 1, ..., N}. 
We call α the network’s energy distribution strategy. 
From Ren et al. [16], we can calculate that the capture 
probability for Ij under α is
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where 
iS

  denote all the events that can be 

detected by sensor iS , i  is the weight for event 

iI . 

The solution for Problem 1, denoted as * , is an 
optimal strategy that maximizes the weighted 
objective ( )NetD  . From Deb [1], *  is a Pareto 
optimal solution. That is, there does not exist 
another solution  such that *( ) ( )
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for all events and *( ) ( )
j jI ID D    for at least 
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(Algorithm 1) based on the above discussion. The 
principle is that each sensor gives the energy to the 
event with the largest weight at first. If this sensor 
has redundant energy, it gives the rest to the event 
with the second-largest weight. The procedure 
goes on until all the energy is assigned. 
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. However, when there exists 

one event whose weight is larger than Ic0
 and the de-

tective rate is less than 1, the energy must be given to 
this event firstly for the reason that the gain from this 
event is greater than Ic0

. What’s more, if the chain con-
tains a loop, e.g., Ic0

 = Icm
 when energy is transferred,  

αcm,cm
 ← αcm,cm

 – de /(qcm
c), αc1,c0

 ← αc1,c0
 + de /(qc1

c). After 
these two operations, the energy input to Ic0

 is not 
changed. Thus, the chain we want to find should not 
contain loops.
Now, we propose an energy allocation algorithm (Al-
gorithm 1) based on the above discussion. The prin-
ciple is that each sensor gives the energy to the event 
with the largest weight at first. If this sensor has re-
dundant energy, it gives the rest to the event with the 
second-largest weight. The procedure goes on until 
all the energy is assigned.
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Algorithm 1. Energy Allocation Algorithm.

1:  Input: All sensors and events’ parameters
2:  The topology of the sensors and events;
3:  Each sensor’s parameter qi, c, δ, i = 1,..., N;
4:  Each event’s occurrence probability pj and
5:  its weight γj, j = 1,..., M.
6:  Function INCREASE, which is given in the 
7:  Appendix A.
8:  Output: The energy allocation policy 
9:  α* = {α*

i,j , i = 1,..., N, j = 1,..., M}.
10:  Assume α(0) is a feasible solution and 
11:  ∑j∈ΩSi

α(0)
i, j = 1, ∀Si.

12:  Assume γj1
 ≥ γj2

... ≥ γjM

13:      for k=1 → M do
14:        α(k) = INCREASE(Ijk, α(k–1))
15:      end for
16:        α* = α(M).

Algorithm 1 is illustrated in the following steps:
Step 1. Initially, we know the parameters of each sen-
sor (qi, c, δ), and the probability of each event pj weight 
of each event γj( j = 1,..., M).
Step 2. Assume that each event weight obeys the fol-
lowing inequality: γj1

 ≥ γj2
... ≥ γjM

 and α(0) is a feasible 
solution.
Step 3. In each energy distribution strategy of α, 
the INCREASE function (see Appendix A) is called, 
which is mainly to traverse all events and sensors to 
find whether the weight is greater than the current 
weight. If γd < γjk

 not exist, it will provide energy for 
the current sensor event. Otherwise, it will find all 
the chains whose weight is greater than the current 
value and provide energy for these events through 
T(Chain(r)

d,y, α).
We can prove the optimality of Algorithm 1.
Theorem 1. The allocation policy α* derived from Al-
gorithm 1 is an optimal solution for Problem 1.
Proof. Proof by contradiction. Assume that there exists 
policy α' such that DNet(α') > DNet(α*). Without loss of 
generality. Assume that γ1 ≥ γ2 ≥ ... ≥ γM. From the stric-
tures of DNet(α') and DNet(α*), we know there exists one 
event Ij such that 1 ≥ DIj

(α') > DIj
(α*). Then DIj

(α*) < 1.

Among all the sensors in ΛIj
, some of them can detect 

events whose weights are larger than Ij and the others 
are less than Ij. Let Senj = {Si|Si ∈ ΩIj

} and Eve = {Ii|Ii ∈ 
ΩSi

, Si ∈ Senj, Ii ≠ Ij}. Then the events in the set Eve can 
be divided into two parts: Evelow = {Ii|γi < γj, Ii ∈ Eve}, 
Evehig = {Ii| γi > γj, Ii ∈ Eve} . We discuss the proof in the 
following three cases.
First, Eve = Evelow, Evehig = ∅. As is shown in Fig-
ure 2(a), Sj ∈ Senj, Ij– ∈ Evelow. From Algorithm 1, all 
the energy in Sj is given to Ij and none to Ij–. Thus,  
DIj

(α') > DIj
(α*) is impossible.

Second, Eve = Evehig, Evelow = ∅, i.e., as is shown in Fig-
ure 2(b), Sj ∈ Senj, Ij+ ∈ Evehig. From Algorithm 1, all the 
energy in Sj is assigned to Ij+. When DIj+

(α*) = 1, extra 
energy is given to Ij. Assume that all the sensors in 
Senj give e energy to Ij. Then DIj

(α*) = e/δ.
To α', assume DIj

(α') = e'/δ, e = e' + ε, e, e', ε>0. Since this 
ε is from Senj which will give energy to Eve, we have 
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where Equation (2) is determined by Algorithm 1, and 

Equation (3) is derived by *
, ,(  
 

j
t t j t jt Sen
q c   

) 0   j ,   j j . Then, it is impossible that 
*( ) ( )Net NetD D   . 

At last, ,     low higEve Eve  (see Figure 2(c)). 
Each sensor which belongs to jSen , will connect 

jI   or jI  . According to Algorithm 1, sensors in 

jSen will not give energy to lowEve . Note that 
*( ) 1 NetD . *( ) ( )

j jI ID D    means that 

higEve  receive more energy under policy *  than 
 . Analogous to the previous case, we have
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D D D




          
*( ) 0

jj
j II Eve
D




   . Then, it is wrong for 
*( ) ( )Net NetD D   . In conclusion, the policy *

calculated by Algorithm 1 is optimal. The proof is 
completed. 

Figure 2 
Illustration for theorem 1 

 
 

5. Constrained Problem 
From Theorem 1, the disadvantage of Problem 1 
is that, it cannot guarantee that all the events can 
receive energy. Some events with high weights 
will receive enough energy, however, the events 
with low weights may have no energy and cannot 
be monitored by any sensor. To avoid this extreme 
scenario, we introduce j  to denote event jI ’s 
lower bound. Then, we have the next problem 

Problem 2 

1

,
1

,

,

(4)

max ( ) ( ),

. . ( )                                                        

      1,  1,  2,  ,  

      0,   
      0


  

 















 

 





 

j

j

i

M

Net j I
j

I j

M

i j
j

i j j S

i j

D D

s t D

i N

if I

 

where 0 1 j . Inequality (4) is the new added 

, where εj+ =

 

 

Theorem 1 The allocation policy *  derived from 
Algorithm 1 is an optimal solution for Problem 1. 
Proof   Proof by contradiction. Assume that there exists 
policy   such that *( ) ( )Net NetD D   . Without loss 
of generality. Assume that 1 2 M     . From the 
strictures of ( )NetD   and *( )NetD  , we know there 
exists one event jI  such that *1 ( ) ( )

j jI ID D   . 

Then *( ) 1
jI

D   . 

Among all the sensors in 
jI

 , some of them can detect 
events whose weights are larger than jI and the others 
are less than jI . Let { | }

jj i i ISen S S   and 

{ | ,  ,  }   
ii i S i j i jEve I I S Sen I I . Then the events 

in the set Eve can be divided into two parts:
{ | , },  { | ,low i i j i hig i i j iEve I I Eve Eve I I          

}Eve . We discuss the proof in the following three cases. 

First, Eve = lowEve , higEve    As is shown in Figure 
2(a), j jS Sen , j lowI Eve  . From Algorithm 1, all the 
energy in jS  is given to jI  and none to jI  . Thus,  

*( ) ( )
j jI ID D    is impossible. 

Second, higEve Eve , lowEve   , i.e., as is shown in 
Figure 2(b), j jS Sen , j higI Eve  . From Algorithm 1, 
all the energy in jS  is assigned to jI  . When  

*( ) 1
jI

D 


 , extra energy is given to jI . Assume that 
all the sensors in jSen  give e  energy to jI . Then 

*( ) /
jI

D e  . 

To  , assume ( ) /
jI

D e   , ,  ,  ,  0    e e e e . 
Since this   is from jSen  which will give energy to 

,Eve  we have  



 

j
jI Eve

, where j   
*
, ,( ) 0 .

j
t t j t jt Sen
q c  

     i.e., the extra energy jI    

received under * . Then 
* *

*

*
, ,

,

  ( ) ( ) ( ) ( )

/ ( ( ) ( ))

/ min{1, / } min{1, / }

/ min{1,

j j j j
j j

j j
j

j j j

j I j I j I j I
I Eve I Eve

j j I I
I Eve

j j t t j t t j
I Eve t Sen t Sen

j j t t j

D D D D

D D

qc qc

qc

 

 

 





 
 




  
  

 

   

  

 
    

 

 

 



  

       

     

       

    

 

 

*
,

*
, ,

*
, ,

/ } /                    (2)

/ /                                                  (3)

/ /

j j j

j j

j j

t t j
I Eve t Sen t Sen

j j t t j t j
Eve t Sen

j j t t j t j
t Sen

qc

qc

qc








  

  
 

 
 

 
  

 
  

  

  

 






  

      

           

= / /
0

Eve

j je 




    

 

where Equation (2) is determined by Algorithm 1, and 

Equation (3) is derived by *
, ,(  
 

j
t t j t jt Sen
q c   

) 0   j ,   j j . Then, it is impossible that 
*( ) ( )Net NetD D   . 

At last, ,     low higEve Eve  (see Figure 2(c)). 
Each sensor which belongs to jSen , will connect 

jI   or jI  . According to Algorithm 1, sensors in 

jSen will not give energy to lowEve . Note that 
*( ) 1 NetD . *( ) ( )

j jI ID D    means that 

higEve  receive more energy under policy *  than 
 . Analogous to the previous case, we have

*( ) ( ) ( )
j j jj

j I j I j II Eve
D D D




          
*( ) 0

jj
j II Eve
D




   . Then, it is wrong for 
*( ) ( )Net NetD D   . In conclusion, the policy *

calculated by Algorithm 1 is optimal. The proof is 
completed. 

Figure 2 
Illustration for theorem 1 

 
 

5. Constrained Problem 
From Theorem 1, the disadvantage of Problem 1 
is that, it cannot guarantee that all the events can 
receive energy. Some events with high weights 
will receive enough energy, however, the events 
with low weights may have no energy and cannot 
be monitored by any sensor. To avoid this extreme 
scenario, we introduce j  to denote event jI ’s 
lower bound. Then, we have the next problem 

Problem 2 

1

,
1

,

,

(4)

max ( ) ( ),

. . ( )                                                        

      1,  1,  2,  ,  

      0,   
      0


  

 















 

 





 

j

j

i

M

Net j I
j

I j

M

i j
j

i j j S

i j

D D

s t D

i N

if I

 

where 0 1 j . Inequality (4) is the new added 

 i.e., the 
extra energy Ij received under α*. Then

 

 

Theorem 1 The allocation policy *  derived from 
Algorithm 1 is an optimal solution for Problem 1. 
Proof   Proof by contradiction. Assume that there exists 
policy   such that *( ) ( )Net NetD D   . Without loss 
of generality. Assume that 1 2 M     . From the 
strictures of ( )NetD   and *( )NetD  , we know there 
exists one event jI  such that *1 ( ) ( )

j jI ID D   . 

Then *( ) 1
jI

D   . 

Among all the sensors in 
jI

 , some of them can detect 
events whose weights are larger than jI and the others 
are less than jI . Let { | }

jj i i ISen S S   and 

{ | ,  ,  }   
ii i S i j i jEve I I S Sen I I . Then the events 

in the set Eve can be divided into two parts:
{ | , },  { | ,low i i j i hig i i j iEve I I Eve Eve I I          

}Eve . We discuss the proof in the following three cases. 

First, Eve = lowEve , higEve    As is shown in Figure 
2(a), j jS Sen , j lowI Eve  . From Algorithm 1, all the 
energy in jS  is given to jI  and none to jI  . Thus,  

*( ) ( )
j jI ID D    is impossible. 

Second, higEve Eve , lowEve   , i.e., as is shown in 
Figure 2(b), j jS Sen , j higI Eve  . From Algorithm 1, 
all the energy in jS  is assigned to jI  . When  

*( ) 1
jI

D 


 , extra energy is given to jI . Assume that 
all the sensors in jSen  give e  energy to jI . Then 

*( ) /
jI

D e  . 

To  , assume ( ) /
jI

D e   , ,  ,  ,  0    e e e e . 
Since this   is from jSen  which will give energy to 

,Eve  we have  



 

j
jI Eve

, where j   
*
, ,( ) 0 .

j
t t j t jt Sen
q c  

     i.e., the extra energy jI    

received under * . Then 
* *

*

*
, ,

,

  ( ) ( ) ( ) ( )

/ ( ( ) ( ))

/ min{1, / } min{1, / }

/ min{1,

j j j j
j j

j j
j

j j j

j I j I j I j I
I Eve I Eve

j j I I
I Eve

j j t t j t t j
I Eve t Sen t Sen

j j t t j

D D D D

D D

qc qc

qc

 

 

 





 
 




  
  

 

   

  

 
    

 

 

 



  

       

     

       

    

 

 

*
,

*
, ,

*
, ,

/ } /                    (2)

/ /                                                  (3)

/ /

j j j

j j

j j

t t j
I Eve t Sen t Sen

j j t t j t j
Eve t Sen

j j t t j t j
t Sen

qc

qc

qc








  

  
 

 
 

 
  

 
  

  

  

 






  

      

           

= / /
0

Eve

j je 




    

 

where Equation (2) is determined by Algorithm 1, and 

Equation (3) is derived by *
, ,(  
 

j
t t j t jt Sen
q c   

) 0   j ,   j j . Then, it is impossible that 
*( ) ( )Net NetD D   . 

At last, ,     low higEve Eve  (see Figure 2(c)). 
Each sensor which belongs to jSen , will connect 

jI   or jI  . According to Algorithm 1, sensors in 

jSen will not give energy to lowEve . Note that 
*( ) 1 NetD . *( ) ( )

j jI ID D    means that 

higEve  receive more energy under policy *  than 
 . Analogous to the previous case, we have

*( ) ( ) ( )
j j jj

j I j I j II Eve
D D D




          
*( ) 0

jj
j II Eve
D




   . Then, it is wrong for 
*( ) ( )Net NetD D   . In conclusion, the policy *

calculated by Algorithm 1 is optimal. The proof is 
completed. 

Figure 2 
Illustration for theorem 1 

 
 

5. Constrained Problem 
From Theorem 1, the disadvantage of Problem 1 
is that, it cannot guarantee that all the events can 
receive energy. Some events with high weights 
will receive enough energy, however, the events 
with low weights may have no energy and cannot 
be monitored by any sensor. To avoid this extreme 
scenario, we introduce j  to denote event jI ’s 
lower bound. Then, we have the next problem 

Problem 2 

1

,
1

,

,

(4)

max ( ) ( ),

. . ( )                                                        

      1,  1,  2,  ,  

      0,   
      0


  

 















 

 





 

j

j

i

M

Net j I
j

I j

M

i j
j

i j j S

i j

D D

s t D

i N

if I

 

where 0 1 j . Inequality (4) is the new added 

(2)

 

 

Theorem 1 The allocation policy *  derived from 
Algorithm 1 is an optimal solution for Problem 1. 
Proof   Proof by contradiction. Assume that there exists 
policy   such that *( ) ( )Net NetD D   . Without loss 
of generality. Assume that 1 2 M     . From the 
strictures of ( )NetD   and *( )NetD  , we know there 
exists one event jI  such that *1 ( ) ( )

j jI ID D   . 

Then *( ) 1
jI

D   . 

Among all the sensors in 
jI

 , some of them can detect 
events whose weights are larger than jI and the others 
are less than jI . Let { | }

jj i i ISen S S   and 

{ | ,  ,  }   
ii i S i j i jEve I I S Sen I I . Then the events 

in the set Eve can be divided into two parts:
{ | , },  { | ,low i i j i hig i i j iEve I I Eve Eve I I          

}Eve . We discuss the proof in the following three cases. 

First, Eve = lowEve , higEve    As is shown in Figure 
2(a), j jS Sen , j lowI Eve  . From Algorithm 1, all the 
energy in jS  is given to jI  and none to jI  . Thus,  

*( ) ( )
j jI ID D    is impossible. 

Second, higEve Eve , lowEve   , i.e., as is shown in 
Figure 2(b), j jS Sen , j higI Eve  . From Algorithm 1, 
all the energy in jS  is assigned to jI  . When  

*( ) 1
jI

D 


 , extra energy is given to jI . Assume that 
all the sensors in jSen  give e  energy to jI . Then 

*( ) /
jI

D e  . 

To  , assume ( ) /
jI

D e   , ,  ,  ,  0    e e e e . 
Since this   is from jSen  which will give energy to 

,Eve  we have  



 

j
jI Eve

, where j   
*
, ,( ) 0 .

j
t t j t jt Sen
q c  

     i.e., the extra energy jI    

received under * . Then 
* *

*

*
, ,

,

  ( ) ( ) ( ) ( )

/ ( ( ) ( ))

/ min{1, / } min{1, / }

/ min{1,

j j j j
j j

j j
j

j j j

j I j I j I j I
I Eve I Eve

j j I I
I Eve

j j t t j t t j
I Eve t Sen t Sen

j j t t j

D D D D

D D

qc qc

qc

 

 

 





 
 




  
  

 

   

  

 
    

 

 

 



  

       

     

       

    

 

 

*
,

*
, ,

*
, ,

/ } /                    (2)

/ /                                                  (3)

/ /

j j j

j j

j j

t t j
I Eve t Sen t Sen

j j t t j t j
Eve t Sen

j j t t j t j
t Sen

qc

qc

qc








  

  
 

 
 

 
  

 
  

  

  

 






  

      

           

= / /
0

Eve

j je 




    

 

where Equation (2) is determined by Algorithm 1, and 

Equation (3) is derived by *
, ,(  
 

j
t t j t jt Sen
q c   

) 0   j ,   j j . Then, it is impossible that 
*( ) ( )Net NetD D   . 

At last, ,     low higEve Eve  (see Figure 2(c)). 
Each sensor which belongs to jSen , will connect 

jI   or jI  . According to Algorithm 1, sensors in 

jSen will not give energy to lowEve . Note that 
*( ) 1 NetD . *( ) ( )

j jI ID D    means that 

higEve  receive more energy under policy *  than 
 . Analogous to the previous case, we have

*( ) ( ) ( )
j j jj

j I j I j II Eve
D D D




          
*( ) 0

jj
j II Eve
D




   . Then, it is wrong for 
*( ) ( )Net NetD D   . In conclusion, the policy *

calculated by Algorithm 1 is optimal. The proof is 
completed. 

Figure 2 
Illustration for theorem 1 

 
 

5. Constrained Problem 
From Theorem 1, the disadvantage of Problem 1 
is that, it cannot guarantee that all the events can 
receive energy. Some events with high weights 
will receive enough energy, however, the events 
with low weights may have no energy and cannot 
be monitored by any sensor. To avoid this extreme 
scenario, we introduce j  to denote event jI ’s 
lower bound. Then, we have the next problem 

Problem 2 

1

,
1

,

,

(4)

max ( ) ( ),

. . ( )                                                        

      1,  1,  2,  ,  

      0,   
      0


  

 















 

 





 

j

j

i

M

Net j I
j

I j

M

i j
j

i j j S

i j

D D

s t D

i N

if I

 

where 0 1 j . Inequality (4) is the new added 

(3)

where Equation (2) is determined by Algorithm 1, and 
Equation (3) is derived by ∑t∈Senj

qtc(α't, j+ – α*t, j+) = –εj+ ≤ 0,  
γj+ > γj. Then, it is impossible that DNet(α') > DNet(α*).
At last, Evelow = ∅, Evehig = ∅ (see Figure 2(c)). Each 
sensor which belongs to Senj, will connect Ij+ or Ij–. 
According to Algorithm 1, sensors in Senj will not give 
energy to Evelow. Note that DNet(α*) < 1. DIj

(α') > DIj
(α*) 

means that Evehig receive more energy under policy 
α* than α'. Analogous to the previous case, we have 
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γj  DIj
(α') + ∑Ij+∈Eveγj+DIj+

(α') – γjDIj
(α*) – ∑Ij+∈Eveγj+DIj+

(α*) < 0. 
Then, it is wrong for DNet(α') > DNet(α*). In conclusion, 
the policy α* calculated by Algorithm 1 is optimal. The 
proof is completed.

5. Constrained Problem
From Theorem 1, the disadvantage of Problem 1 is 
that, it cannot guarantee that all the events can re-
ceive energy. Some events with high weights will re-
ceive enough energy, however, the events with low 
weights may have no energy and cannot be monitored 
by any sensor. To avoid this extreme scenario, we in-
troduce ηj to denote event Ij’s lower bound. Then, we 
have the next problem
Problem 2
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where 0 1 j . Inequality (4) is the new added 
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where 0 ≤ ηj ≤ 1. Inequality (4) is the new added con-
straint. This denotes that the capture probability of 
event Ij must be larger than ηj. By a simple analysis, we 
can know that the solution of Problem 2 is also a Pareto 
optimal. Next, we present an energy-constrained alloca-
tion algorithm (Algorithm 2) to solve the new problem. 
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where 0 1 j . Inequality (4) is the new added 

Algorithm  2. Energy-Constrained Allocation 
Algorithm.

1:  Input: All sensors and events’ parameters
2:  The topology of the sensors and events;
3:  Each sensor’s parameter qi, c, δ, i = 1,..., N;
4:  Each event’s occurrence probability pj and its
5:  weight γj, j = 1,..., M;
6:  Each event’s constraint η = {ηj, j = 1,..., M}.
7:  Function CHECK, which is given in the 
8:  AppendixA.
9:  Output: The energy allocation policy 
10:  α* = {α*i, j, i = 1,..., N, j = 1,..., M}.
11:  Execute Algorithm 1.
12:  Assume γj1

 ≥ γj2
... ≥ γjM 

.
13:  Call function CHECK(η).

Algorithm 2 is illustrated in the following steps:
Step 1. Same as the step 1 of Algorithm 1, we know qi, 
c, δ, pj, γj(j = 1,..., M). The difference is that we intro-
duce each event’s constraint η = {ηj, j = 1,..., M}. 
Step 2. Execute Algorithm 1 that allocates energy to 
the higher-weighted ones.
Step 3. Assume that each weight obeys the following 
inequality: γj1

 ≥ γj2
... ≥ γjM

.
Step 4. After executing Algorithm 1, we need to tra-
verse the M events through the CHECK function 
(see Appendix A) to find DIjk

(α) < ηIjk
 that does not 

meet the constraint condition. Then we find the set 
whose weight is greater than the current event, that is  
IGW = {Ix1

, Ix2
,..., IxQ

 | γxi
 ≥ γjk

, Dxi
(α) > ηxi

, i = 1,..., Q}.
Step 5. Through the SEARCHWEIGHT function (see 
Appendix A), we find the high-weight event chain. 
Through the Tc(Chain(r)

d,xy
, α) function(see Appendix 

A), energy is transferred from high-weight events to 
low-weight events until DIjk

(α) ≥ ηIjk
 meets.

Algorithm 2 is based on Algorithm 1. The principle 
of it is to use Algorithm 1 at first and then check each 
event’s detective rate. If one event (e.g., Ij) does not 
satisfy the constraint, we must extract energy from 
other events to fill up this gap. Since Algorithm 1 has 
given energy to events with the highest weights, the 
extracted energy must be from events whose weights 
are higher than Ij, until DIj

(α) = ηj. Similar to Theorem 
1, we can also prove the optimality of Algorithm 2.
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Theorem 2. The allocation policy α* derived from Al-
gorithm 2 is an optimal solution for Problem 2.

6. Simulation
In this section, we assess the performance of the 
proposed power allocation algorithms. Where δ rep-
resents the energy consumption of the sensor, and B 
refers to the capacity of the sensor that is scaled by 
energy unit. The values of B and δ are both dependent 
on the hardware’s settings. Thus, it is assumed that 
the duration of the time slot is 60 seconds, the voltage 
is 3.3V, the working current is 3.3mA, the data packet 
transmission current is 20mA and the battery capac-
ity is 100J (3V, 9.26mAh). In this case, unless other-
wise stated, we use the following settings: the sensors 
and events are deployed as shown in Figure 1; the 
battery capacity of each sensor is B=1000 and costs  
δ = 4 energy when it is active; each sensor can receive 
c = 3 energy with the probability q = 0.5 at each slot 
where q is related to the location of the sensor or the 
weather, e.g., sensor is blocked by leaves or clouds. We 
assume that the probability of each event is 0.3, and 
simulate the algorithm for several times to show the 
final average effect. 
First verify Algorithm 1. Assume that the distribu-
tion of sensors and events is shown in Figure 1. The 
probability of receiving the energy of each sensor is:  
q1 = 0.7, q2 = 0.8, q3 = 0.5, q4 = 0.8, q5 = 0.5, q6 = 0.8, q7 = 0.7. 
The weight of each event is 0.05, 0.025, 0.125, 0.175, 
0.05, 0.025, 0.225, 0.15, 0.075, 0.1. After the initializa-
tion, the value of α1,1, α2,2, α3,5, α4,3, α5,9, α6,8, α7,7 is 1, sepa-
rately, other values are 0. Then the iteration is execut-
ed by Algorithm 1. Starting from the highest weight 
event I7, the first iteration gets the chain I7 – S4 – I3 
which means that sensor S4 can detect I7, I3. Obvious-
ly, the weight of I7 is the highest among the events that 
the sensor S4 can detect. So I7 should be allocated first. 
It should be noted that initially all energy is assigned 
to I3 (α4,3 is 1). Therefore, I7 will be allocated all ener-
gy from I3 through S4. I4 – S4 – I7 can be obtained after 
I7 get allocated. Considering the third highest weight 
event I8, it does not need to be reassigned because it 
is the only event under S6. Similarly, I2 does not need 
to be reassigned. For event I3, it can be detected by 
S4 or S1. The reason why I3 can no longer get energy 
from S4 is that the weight of I3 is lower than I7 and I4, 

the chain of I3 – S1 – I1 can be obtained. According to 
the event weight, we need to allocate I10. In fact, the 
energy required for I10 can only be dispatched from 
I9, and then we can get the energy transmission chain 
I10 – S5 – I9. For the remaining events I5 and I6, it does 
not need to be adjusted under S3, because I5 is higher 
than I6 in weight. It can be seen that the Algorithm 1 
can improve energy efficiency. After a total of 4 itera-
tions (see Table 2), we get the optimal energy alloca-
tion scheme: α1,3 = 1, α2,2 = 1, α3,5 = 1, α4,4 = 0.2, α4,7 = 0.79,  
α5,10 = 1, α6,8 = 1, α7,7 = 1, other values are 0.
Next we use three different cases to calculate α, and 
the results are recorded in Figures.

Iteration No Chain Found DNet(α) after iteration

1 I7 – S4 – I3 0.40

2 I4 – S4 – I7 0.43

3 I3 – S1 – I1 0.46

4 I10 – S5 – I9 0.47

Table 2
Iterations by Algorithm 1

 _ Assume that the weight of each event is γ(1) = 0.05, 
0.025, 0.125, 0.175, 0.05, 0.025, 0.225, 0.15, 0.075, 
0.1. We use Algorithm 1 to calculate. The networks 
energy distribution of each sensor is shown in 
Figure 3. Event I7 has the largest weight. Thus both 

Figure 3
The networks energy distribution in Case 1
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and 4I , the chain of 3 1 1I S I   can be obtained. 
According to the event weight, we need to allocate 10I . 
In fact, the energy required for 10I  can only be 
dispatched from 9I , and then we can get the energy 
transmission chain 10 5 9I S I  . For the remaining 
events 5I  and 6I , it does not need to be adjusted under 
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1 , other values are 0. 

Next we use three different cases to calculate  , and the 
results are recorded in Figures. 

Table 2  
Iterations by Algorithm 1 

Iteration 
No 

Chain Found ( )NetD   after 
iteration 

1 7 4 3I S I   0.40 

2 
4 4 7I S I    0.43 

3 3 1 1I S I   0.46 

4 10 5 9I S I   0.47 

 Assume that the weight of each event is (1)  0.05, 
0.025, 0.125, 0.175, 0.05, 0.025, 0.225, 0.15, 0.075, 0.1. 
We use Algorithm 1 to calculate. The networks energy 
distribution of each sensor is shown in Figure 3. Event  

7I  has the largest weight. Thus both 4S  and 7S  assign all 
their energy to 7I . The simulation result is in agreement 
with the theoretical results. 
 Assume that the weight of each event is (2)  0.05, 
0.025, 0.125, 0.175, 0.05, 0.025, 0.075, 0.15, 0.0225, 0.1. 
We also use Algorithm 1 to calculate it. The networks 
energy distribution is shown in Figure 4. In contrast to 
Figure 3, here, the weight of 9I  is the largest, thus 5S  
and 7S  allocate all the energy to 9I  in order to increase  

NetD . 

 Assume that the weights of the events coincide with 
(1) , while the constraint of 

5
0.4ID  , 

6
0.1ID   is 

added. We use Algorithm 2 to calculate it. The networks 
energy distribution is shown in Figure 5. In order to 
satisfy the constraint, the sensors 3S  and 4S  reallocate 
the energy. It can be clearly seen that, for 3S , energy has 
to be redistributed to 5I , 6I . While for 4S , 5I  does not 
meet the requirements of constraint condition, therefore, 
we need to find an event with the lowest weight among 

all the events that have higher weight than 5I  in 
terms of energy transmission. 
Different detection rates obtained for each event 
are shown in Figure 6. The probabilities of events 

1 2 3 8,  ,  ,  I I I I  in three cases remain unchanged. 7I   
greatly reduces the weight in Case 2, then its 
detection rate goes down to 0. In contrast, the 
weight of 9I  is increased in Case 2 with a 
detection rate of 0.9. 10I  can only be detected by 

5S , however, 5S  allocates all energy to 9I  in Case 
2, so that the detection rate of 10I  is reduced to 0. 
Event 4I  is more complex. It can only be detected 
by 4S . In all three cases, its weight remains the 
same, but the detection rate is very different. In 
Case 1, 4S  allocates the remaining energy to 7I  
and 4I . In Case 2, the weight of 7I  is lower than 

4I , 4S  allocates all of the energy to 4I . In Case 3, 
in order to satisfy the constraint 

5
0.4ID  , 4S  

assigns energy to 5I  and 7I . Then, the detection 
rate of 4I  is 0. 

Figure 3  
The networks energy distribution in Case 1 

 
Figure 4  
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S4 and S7 assign all their energy to I7. The simulation 
result is in agreement with the theoretical results.

 _ Assume that the weight of each event is γ(2) = 0.05, 
0.025, 0.125, 0.175, 0.05, 0.025, 0.075, 0.15, 0.0225, 
0.1. We also use Algorithm 1 to calculate it. The 
networks energy distribution is shown in Figure 4. 
In contrast to Figure 3, here, the weight of I9 is the 
largest, thus S5 and S7 allocate all the energy to I9 in 
order to increase DNet.

Figure 5
The networks energy distribution in Case 3
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7. Conclusion 
In order to solve the problem of sensor energy allocation, 
we consider the energy unconstrained cases as well as 
constrained cases. To improve ( )NetD   when energy is 
not constrained, we propose Algorithm 1, which assigns 
sensor energy priority to events with higher weights. 
Additional energy is assigned to lighter events. We also 
demonstrate the algorithm’s optimality. In the case of 
energy constraints, we propose Algorithm 2 based on 
Algorithm 1 to find a Pareto optimal solution. Finally, 
the optimality of the two algorithms is simulated by 
several cases.  In future, the method proposed in this 
paper can also be applied to other network architectures, 
such as cluster networks and heterogeneous networks. In 
addition, authors also want to study the safety and fault 
issues with sensor networks. 
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We also use Algorithm 1 to calculate it. The networks 
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Figure 3, here, the weight of 9I  is the largest, thus 5S  
and 7S  allocate all the energy to 9I  in order to increase  

NetD . 
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(1) , while the constraint of 
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6
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added. We use Algorithm 2 to calculate it. The networks 
energy distribution is shown in Figure 5. In order to 
satisfy the constraint, the sensors 3S  and 4S  reallocate 
the energy. It can be clearly seen that, for 3S , energy has 
to be redistributed to 5I , 6I . While for 4S , 5I  does not 
meet the requirements of constraint condition, therefore, 
we need to find an event with the lowest weight among 

all the events that have higher weight than 5I  in 
terms of energy transmission. 
Different detection rates obtained for each event 
are shown in Figure 6. The probabilities of events 

1 2 3 8,  ,  ,  I I I I  in three cases remain unchanged. 7I   
greatly reduces the weight in Case 2, then its 
detection rate goes down to 0. In contrast, the 
weight of 9I  is increased in Case 2 with a 
detection rate of 0.9. 10I  can only be detected by 

5S , however, 5S  allocates all energy to 9I  in Case 
2, so that the detection rate of 10I  is reduced to 0. 
Event 4I  is more complex. It can only be detected 
by 4S . In all three cases, its weight remains the 
same, but the detection rate is very different. In 
Case 1, 4S  allocates the remaining energy to 7I  
and 4I . In Case 2, the weight of 7I  is lower than 

4I , 4S  allocates all of the energy to 4I . In Case 3, 
in order to satisfy the constraint 
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0.4ID  , 4S  

assigns energy to 5I  and 7I . Then, the detection 
rate of 4I  is 0. 
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 _ Assume that the weights of the events coincide with 
γ(1), while the constraint of DI5

 ≥ 0.4, DI6
 ≥ 0.1 is added. 

We use Algorithm 2 to calculate it. The networks 
energy distribution is shown in Figure 5. In order to 
satisfy the constraint, the sensors S3 and S4 reallocate 
the energy. It can be clearly seen that, for S3, energy 
has to be redistributed to I5, I6. While for S4, I5 does 
not meet the requirements of constraint condition, 
therefore, we need to find an event with the lowest 
weight among all the events that have higher weight 
than I5 in terms of energy transmission.

Different detection rates obtained for each event are 
shown in Figure 6. The probabilities of events I1, I2, I3, 
I8 in three cases remain unchanged. I7 greatly reduces 
the weight in Case 2, then its detection rate goes down 
to 0. In contrast, the weight of I9 is increased in Case 
2 with a detection rate of 0.9. I10 can only be detected 

by S5, however, S5 allocates all energy to I9 in Case 2, 
so that the detection rate of I10 is reduced to 0. Event 
I4 is more complex. It can only be detected by S4. In all 
three cases, its weight remains the same, but the de-
tection rate is very different. In Case 1, S4 allocates the 
remaining energy to I7 and I4. In Case 2, the weight of 
I7 is lower than I4, S4 allocates all of the energy to I4. 
In Case 3, in order to satisfy the constraint DI5

 ≥ 0.4, 
S4 assigns energy to I5 and I7. Then, the detection rate 
of I4 is 0.
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7. Conclusion
In order to solve the problem of sensor energy alloca-
tion, we consider the energy unconstrained cases as 
well as constrained cases. To improve DNet(α) when 
energy is not constrained, we propose Algorithm 1, 
which assigns sensor energy priority to events with 
higher weights. Additional energy is assigned to light-
er events. We also demonstrate the algorithm’s opti-
mality. In the case of energy constraints, we propose 
Algorithm 2 based on Algorithm 1 to find a Pareto 
optimal solution. Finally, the optimality of the two 
algorithms is simulated by several cases. In future, 
the method proposed in this paper can also be ap-
plied to other network architectures, such as cluster 
networks and heterogeneous networks. In addition, 
authors also want to study the safety and fault issues 
with sensor networks.

Appendix A

Functions for Algorithm 1
1:  function INCREASE (Ijk

, α)
2: for all Si ∈ ΩIjk

 do
3:     for all Id ∈ ΩSi

 do
4:     if γd < γjk

 then 
5:     αi,jk

 ← αi,jk
 + αi,d

6:     αi,d = 0
7:     else if γd > γjk 

then
8:   Let set
9:   IGW = {Ix | γx ≥ γjk

, ∑St∈ΩIx
qtcαt,x ≥ δ}

10:   IFE = {Iy | Iy ∈ IGW, ∑St∈ΩIy
qtcαt,y > δ};

11: Find all the chains from Id to Iy ∈ IFE;
12: The r-th chain is Chain(r)

d,y = (Ic0
, Sc1

, Ic1
,

13: Sc2
,..., Scm

, Icm
), where Ic0

 = Ijk
, Sc1

 = Si,
14: Ic1

 = Id, Icm
 = Iy, Ict–1

, Ict
 ∈ ΩSct

, Ict
 ∈ IGW,

15: t = 1,..., m, and there is no loop in the chain; 
16:        For each chain, call function T(Chain(r)

d,y, α).
17:  end if
18:     end for
19:  end for
20:    end function

21:  function T(Chain(r)
d,y, α)

22:  In the Chain(r)
d,y, let

23:  Pow(r) = ∑Si∈ΩIcm

qicαi,cm
 – δ.

24: Pow(r) ← max{e|0 < e ≤ Pow(r),
25:  αct,ct  

– e/(qtc) ≥ 0, t = 1,..., m}.
26:  for t = m → 1 do
27:       αct,ct

 ← αct,ct
 – Pow(r)/(qct

 c)
28:       αct,ct–1

 ← αct,ct–1
 + Pow(r)/(qct

 c)
29:  end for
30:  end function

Functions for Algorithm 2
1:  function CHECK (η)
2: for k = 1 → M do
3:     if DIjk

(α) < ηjk
 then

4:       for all Si ∈ ΩIjk
 do

5:   for all Id ∈ ΩSi
 And γd > γjk

 do
6:   Let set IGW = {Ix1

, Ix2
,..., IxQ

| 
7:  γxi

 ≥ γjk
, Dxi

(α) > ηxi
, i = 1,..., Q}.

8:  Assume γx1
 ≤ γx2

 ≤ ... γxQ

9:       if SEARCHWEIGHT()=1 then
10:   goto 2
11:       end if
12:    end for
13:       end for
14:     end if
15:  end for
16:  end function
17:  function SEARCHWEIGHT
18:  for y = 1 → Q do
19:         Find all the chains from Id to Ixy

:
20:  Chain(r)

d,xy
, r = 1,..., W;

21:         The r-th chain is Chain(r)
d,xy

 = 
22:  (Ic0

, Sc1
, Ic1

, Sc2
,..., Scm

, Icm
), where 

23:  Ic0
 = Ijk

, Sc1
 = Si, Ic1

 = Id, Icm
 = Ixy

,
24:  Ict–1

, Ict
 ∈ ΩSct

, Ict
 ∈ IGW, t = 1,..., m,

25:  and there is no loop in the chain;
26:          for all r = 1 → W do
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27:   For the r-th chain, call function 
28:  Tc(Chain(r)

d,xy
, α).

29:      if DIjk
(α) ≥ ηjk

 then
30:    return 1
31:      end if
32:  end for
33:  end for
34:  end function
35:  function Tc(Chain(r)

d,xy
, α)

36:  In the Chain(r)
d,xy

, let e1 = ∑Si∈ΩIcm

qicαi,cm

37:      –ηcm
δ, e2 = ηc0

δ – ∑Si∈ΩIc0

qicαi,c0
.

38: Pow(r) ← min{e1, e2}

39: Pow(r) ← max{e|0 < e ≤ Pow(r),
40: αct,ct  

– e/(qtc) ≥ 0, t = 1,..., m}.
41: for t = m → 1 do
42:         αct,ct

 ← αct,ct
 – Pow(r)/(qct

c)
43:         αct,ct–1

 ← αct,ct–1
 + Pow(r)/(qct

c)
44:  end for
45:  end function
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