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The vehicle routing problem with time windows (VRPTW) as one of the most known combinatorial opera-
tions (CO) problem is considered to be a tough issue in practice and the main challenge of that is to find the 
approximate solutions within a reasonable time. In recent years, reinforcement learning (RL) based methods 
have gained increasing attention in many CO problems, such as the vehicle routing problems (VRP), due to 
their enormous potential to efficiently generate high-quality solutions. However, neglecting the information 
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between the constraints and the solutions makes previous approaches performance unideal in some strongly 
constrained problems, like VRPTW. We present the constraint-aware policy optimization (CPO) for VRPTW 
that can let the agent learn the constraints as a representation of the whole environment to improve the gener-
alization of RL methods. Extensive experiments on both the Solomon benchmark and the generated datasets 
demonstrate that our approach significantly outperforms other competition methods.
KEYWORDS: Deep reinforcement Learning, Pointer network, Vehicle routing Problem, Gradient methods, 
Kullback-Leibler divergence, Constrained Markov Decision Processes.

1. Introduction
The vehicle routing problem (VRP), as an enduring 
problem of operations research, has been studied for 
decades due to its wide application in various fields, 
like logistics, transportation, and manufacturing [6]. 
Such problem aims to find the optimal routes for avail-
able vehicles to travel in order to satisfy the demands 
of customers under certain constraints [16]. Many 
exact, approximate, and heuristic methods have been 
proposed, some of them are state-of-the-art [7, 8, 25, 
30]. With the development of deep neural networks, 
deep reinforcement learning (DRL)-based methods, 
as a kind of heuristic method, have gained attention 
due to their enormous potential to efficiently generate 
high-quality solutions [3, 13, 23].
The DRL-based method is to solve the VRP by train-
ing a neural network (NN) model that can map be-
tween the state space and the optimal solution. The 
model consists of many components, the most repre-
sentative of which is the representation learning and 
reinforcement learning (RL). Representation learn-
ing can exact the efficient feature vectors from the 
raw data, while RL is to train the whole NN without 
the optimal solutions as the labels. Recent research 
mainly focuses on the improvement of representation 
learning to advance performance. Vinyals et al. [31] 
presents the pointer network that first treats each op-
tion element as a pointer and employs the recurrent 
neural networks (RNN) to represent the dynamic 
changes of the features. Bello et al. [3] introduces the 
attention mechanism to put weights on the different 
features vectors to improve the probabilities of the 
pointing mechanism. Nazari et al. [23] and Kool et al. 
[15] design a method with novel attention mechanism 
respectively that outperforms the state of the art. 
However, the previous work lacks further research on 
constraints, especially its impact on reinforcement 

learning. Because reinforcement learning is a way of 
learning through trial-and-error exploration [3, 13, 
15, 23], the quality of trained policy is greatly affected 
by the exploration strategy under constraints that de-
fine the boundary of the solution space [26, 28]. When 
using reinforcement learning to train neural network 
models, these methods only mask the solutions that 
do not satisfy the constraints through ‘mask’, and do 
not consider how to make the agent aware of the ex-
istence of constraints in a certain state. The neglect 
of information contained in constraints makes them 
difficult to find the optimal solutions. Intuitively, as 
constraints become more complex, the awareness of 
constraints becomes more necessary.
The VRP with time windows (VRPTW), as a variant 
of VRP with complex time window constraints, has 
been widely studied and is (𝒩𝒫)-hard to solve. In 
such problem, a fleet of identical vehicles serve mul-
tiple customers along optimal routes subject to the 
following constraints: (1) each vehicle can only start 
from, end at, and acquire items from the depot; (2) 
each vehicle must visit customers within a specified 
time interval (time window); (3) total demands of 
customers served by a single vehicle cannot exceed its 
capacity; and (4) all demands must be satisfied. The 
objective is to minimize the sum distance of all tours. 
The existence of mass complex constraints limits the 
performance of previous methods, so it is necessary 
to improve the learning process of RL.
To investigate these problems, we present con-
straint-aware policy optimization (CPO) to impose 
on our agent to learn the probability distribution 
of constraints. A method based on Kullback-Lei-
bler (KL) divergence is constructed to calculate 
the distance of probability distribution between 
the constraint and the policy, which can obtain the 
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gradient to guide learning. Our work comprises four 
main steps. 1) To formally represent the VRPTW 
in a sequential decision process for RL, we convert 
the constrained route planning problem to a de-
terministic constrained Markov decision process  
(DCMDP), to which we extend the original policy 
gradient method. 2) To guide the policy to learn the 
features of constraints, a constraint-aware training 
scheme is proposed, which can enhance our meth-
od’s performance, including a predictive part to pre-
dict the current constraints according to the state 
information, and an inference part to make deci-
sions according to the constraints. 3) To alleviate the 
sparse reward problem, we use successor represen-
tation (SR) as an indicator to guide the choice of ac-
tions. 4) An RL training framework for the VRPTW 
and experiments on the Solomon benchmark and the 
generated datasets show that our method outper-
forms other competition algorithms.
The remainder of this paper is organized as follows. 
Section 2 provides an overview of related works. Sec-
tion 3 discuss the basic ideas of the deterministic 
constrained Markov decision process, VRPTW, and 
successor representation. Three key components of 
the CPO are presented in Section 4. In order to verify 
our method, the experiments are shown in Section 5. 
In Section 6, we present the conclusion.

2. Related Work
Our work is closely related to integral linear pro-
gramming, heuristic approaches of the VRP, learn-
ing-based routing, and constrained RL.

2.1. Integral Linear Programming and 
Heuristic Approaches

These approaches are commonly used to solve the 
VRP and its variants, and are formulated as mixed in-
teger linear programming (MILP) problems.
Branch and bound is one of the most famous exact 
algorithms for the VRPTW. It represents candidate 
solutions as a tree, and prunes solutions that are be-
yond the slack upper bound [30]. This approach can 
find the optimal solutions, but it becomes intractable 
as the number of decision objects increases. Con-

versely, heuristic approaches, such as genetic and 
ant colony algorithms, prefer scalability to optimali-
ty, and thus can find approximate solutions of large-
scale problems in a relatively short time. However, 
heuristic algorithms are sensitive to parameters and 
weak in robustness. All the above methods are de-
signed to solve problems case-by-case. They have to 
search solutions anew when they face a new instance, 
which is time-consuming. That is the major obstacle 
of these methods in practice.

2.2. Learning-Based Routing
Learning-based routing approaches are common due 
to their efficient solutions and stable performance. 
Their methods are based on either supervised learn-
ing (SL) or RL. Introduced by Hopfield et al. [12], 
SL-based methods aim to leverage neural networks 
to find solutions in a supervised manner. Since they 
require expert guidance, SL methods are intractable 
in environments where traditional methods cannot 
work [13, 17]. RL-based methods attempt to find ap-
proximate solutions through trial and error [3, 13, 15, 
23]. While capable of good performance, they do not 
work well when the constraints become intricate. Our 
method is different in that we attempt to enhance the 
performance through a constraint-awareness learn-
ing scheme and an indicator to guide our policy to 
learn from constraints.

2.3. Constrained Reinforcement Learning
Constrained RL is a trending topic because in re-
al-world agents are strictly restricted to avoid dan-
gerous actions [1, 4, 32]. Widely used methods include 
expert-guided action intervention [32], Lagrangian 
relaxation [29], and probability guided exploration 
[4]. We take motivation from them, but VRP con-
straints are deterministic to the environment (as dis-
cussed in the next section). We leverage these prop-
erties to develop a training scheme that makes our 
method more robust and stable.

3. Background
We discuss the basic ideas of the deterministic con-
strained Markov decision process (MDP), VRPTW, 
and successor representation.
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3.1. DCMDP
A deterministic constrained Markov decision process 
can be formulated as a tuple ⟨ S, A, R, p, T, C ⟩, where 𝑆 
is a set of states, 𝐴 is a set of actions, and 𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡+1) 
is a transition function. Different from the standard 
MDP method, a set of constraints 𝐶 is represented in 
deterministic constrained MDP, which varies by the 
environment (load constraints in VRP, and load and 
time- window constraints in VRPTW). Let 𝑐𝑖

t: 𝑆 → 
{0,1} indicate the constraint for action 𝑖 at step 𝑡; 𝑐𝑖

t = 0 
means that the constraint exists, and 𝑐𝑖

t = 1 means that 
the constraint non-exists. 𝑟 : 𝑆 × 𝐴 × 𝑆 → 𝑅 is the reward 
function. The goal of RL is to find a policy π: 𝑆 × 𝐶 → 𝐴
that maximizes the expected return 𝑅 = ∑𝑇

t=1 γ𝑡-1 𝑟𝑡 in the  
trajectory τ ≔ (𝑠1, 𝑐1, 𝑎1 … , 𝑠𝑇, 𝑐𝑇, 𝑎𝑇) within 𝑇 steps. γ is 
a discount factor.
The DCMDP is a special case of a constrained MDP 
[2]whose constraints are deterministic, meaning that 
𝑝(𝑐𝑡|𝑠𝑡) = 1 ( 𝑝(𝑐𝑡|𝑠𝑡) = 1 indicates that the relationship 
between constraints and the environment is certain; 
hence, learning the constraints implies learning the 
environment as well) and is known to the agent before 
taking action. This property leads to a different solver 
from Altman et al. [2].

3.2. VRPTW
For VRP, suppose there exist a depot and |𝑁| − 1 cus-
tomers in different locations, for |𝑁| total nodes, 
where 𝑁 is the set of nodes. The depot is a special 
node at which vehicles must start, end, and collect 
items. For any nodes 𝑖, 𝑗, we have 𝑑𝑖,𝑗 > 0, ∀𝑖, 𝑗 ∈ 𝑁,  
𝑖 ≠ 𝑗, where 𝑑𝑖,𝑗 is the distance between nodes 𝑖 and 𝑗. 
The vehicle sends items to customers and should re-
turn to the depot when its residual carrying capacity 
cannot satisfy any customer demand. Given enough 
vehicles having the same capability 𝑙 and starting 
from the depot, our goal (objective) is to satisfy all 
the customers' demands with the shortest path. The 
environment and goal of the VRPTW are similar to 
those of the VRP except that each customer owns 
its individual available time wi (or time windows). 
Moreover, we assume that all vehicles have the same 
velocity 𝑣 and must arrive within a customer's time 
window.
VRP are often represented as MILP. However, MILP 
does not fit the RL form well (since RL is always rep-

resented as a Markov decision process) and to put it 
in the RL framework requires a transformation. It has 
been proved that a traveling salesman problem (TSP) 
can be transformed to an MDP [3]. To strengthen this 
conclusion, we provide a lemma.
Lemma 1. Standard VRP and VRPTW problems can 
be converted to DCMDP.
Proof 1. Through giant-tour representation [10], the 
VRP and VRPTW can be treated as a special form of 
the TSP (i.e., in some states, some actions are restrict-
ed and cannot be chosen). According to Bello et al. [3], 
the TSP can be transformed to an MDP. Thus, we can 
conclude that the VRP and VRPTW can be formed as 
a DCMDP.
Remark. Lemma 1 reveals the interesting phenome-
na that we can formulate VRP as a DCMDP and repre-
sent the load and time windows as constraints.
The trajectory probability of the total process for the 
DCMDP is
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always represented as a Markov decision process) 
and to put it in the RL framework requires a 
transformation. It has been proved that a traveling 
salesman problem (TSP) can be transformed to an 
MDP [3]. To strengthen this conclusion, we 
provide a lemma. 

Lemma 1 Standard VRP and VRPTW problems 
can be converted to DCMDP. 

Proof 1 Through giant-tour representation [10], the 
VRP and VRPTW can be treated as a special form 
of the TSP (i.e., in some states, some actions are 
restricted and cannot be chosen). According to 
Bello et al. [3], the TSP can be transformed to an 
MDP. Thus, we can conclude that the VRP and 
VRPTW can be formed as a DCMDP. 

Remark. Lemma 1 reveals the interesting 
phenomena that we can formulate VRP as a 
DCMDP and represent the load and time windows 
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The trajectory probability of the total process for 
the DCMDP is 

𝑝𝑝(τ) = 𝑝𝑝(𝑠𝑠1, 𝑐𝑐1, 𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡 … , 𝑠𝑠𝑇𝑇, 𝑐𝑐𝑇𝑇, 𝑎𝑎𝑇𝑇|θ)

= 𝑝𝑝(𝑠𝑠1) � π(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; θ)𝑝𝑝(𝑠𝑠𝑡𝑡�1|𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡)𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)
𝑇𝑇

𝑡𝑡�1

, 

（1） 

where 𝜃𝜃 represents the weights of the policy, 𝑠𝑠𝑇𝑇�1 
is the terminal state, and 𝑝𝑝(𝒔𝒔𝑻𝑻�𝟏𝟏|𝒔𝒔𝑻𝑻, 𝒂𝒂𝑻𝑻) = 1. This 
trajectory is based on the probability graph model 
shown in figure 1. Specifically, for the VRP, 𝒄𝒄 
means the load constraints, while for the VRPTW, 
𝒄𝒄 means the constraints of both the load and time 
windows of customers. Our goal is to find an 

(1)

where 𝜃 represents the weights of the policy, 𝑠𝑇+1 is 
the terminal state, and 𝑝(𝒔𝑻+𝟏|𝒔𝑻, 𝒂𝑻) = 1. This trajec-
tory is based on the probability graph model shown 
in figure 1. Specifically, for the VRP, 𝒄 means the load 
constraints, while for the VRPTW, 𝒄 means the con-
straints of both the load and time windows of custom-
ers. Our goal is to find an optimal policy 𝜋∗ that maxi-
mizes the total reward 𝑅.

3.3. Successor Representation
Introduced to describe cognitive phenomena in the 
human brain, successor representation (SR) focus-
es on the extraction of important states to aid train-
ing [20]. We leverage SR as a behavior indicator, re-
garding states that may lead to a lower total reward 
as ill-famed, and using SR as a behavior indicator to 
avoid actions to those states. For example, in the VRP, 
we might not be willing to let our vehicle return too 
soon to the depot; the ill-famed state is the situation 
in which the agent is at the depot without having de-
pleted its load.
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4. Methodology
Our methodology has three parts: first, we give the 
policy gradient for the DCMDP to formally represent 
a simple solver for VRP; then, a constraint-awareness 
module is represented to diminish actions against 
constraints; finally, an SR-based method is designed 
to address the sparse reward problem.

4.1. Policy Gradient in DCMDP
A policy gradient for the DCMDP must be built to 
train our policy function. The trajectory probability 
𝑝(𝜏)reveals the rollout process. Taking logarithms on 
both sides, we have
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3.3. Successor Representation 
Introduced to describe cognitive phenomena in the 
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those states. For example, in the VRP, we might not 
be willing to let our vehicle return too soon to the 
depot; the ill-famed state is the situation in which 
the agent is at the depot without having depleted its 
load. 

Figure 1  
The rollout processes. A vehicle starts from the depot and must deliver items to customers (represented as 𝑁𝑁1 …𝑁𝑁4 ). For example, 
in the first step, nodes 1 and 3 are banned for some reason (the arrow from constraint to action is black). Thus, actions can only be 
chosen in 𝑎𝑎1 and 𝑎𝑎4 . Under the greedy strategy, the vehicle chooses the action with the maximum probability. This continues from 
step 1 to T, forming the rollout trajectory. 
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To generalize, we take the expectation of trajectories, and 
with Jensen‘s inequality [24], the expectation can be 
formed as 

log𝐸𝐸τ∼𝑝𝑝(⋅) 𝑝𝑝(τ) ≥ 𝐸𝐸τ∼𝑝𝑝(⋅) �log 𝑝𝑝 (𝑠𝑠1) +

∑ log 𝜋𝜋 (𝒂𝒂𝒕𝒕|𝒔𝒔𝒕𝒕, 𝒄𝒄𝒕𝒕; 𝜃𝜃)𝑇𝑇
𝑡𝑡�1 + log 𝑝𝑝 (𝑠𝑠𝑡𝑡�1|𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) + log 𝑝𝑝 (𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�.  

                                                                               （3）  

The right side of the equation is the lower bound of the 
𝑙𝑙𝑙𝑙𝑙𝑙  form of the expectation of trajectories. With   

reinforcement learning [28], the function 
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However, this form of policy gradient may lead to 
high variance, which restricts the ability to 
generalize. To reduce the variance, we define the 
baseline function 𝑏𝑏(𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡) : 𝐶𝐶 × 𝑆𝑆 → 𝑅𝑅 , which we 
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𝑏𝑏(𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡)  is similar to the baseline methods in 
standard variance reduction RL. Differently, we 
extend the baseline function with constraints as 
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However, 𝑏𝑏(𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡)  is for the one-step baseline 
function. To extend it to the trajectory form, we can 
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gradient for DCMDP: 
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be formed as
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𝑙𝑜𝑔 form of the expectation of trajectories. With rein-
forcement learning [28], the function 𝐸τ∼𝑝(⋅)(log  𝑝(τ)
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optimal policy 𝜋𝜋∗ that maximizes the total reward 𝑅𝑅. 

3.3. Successor Representation 
Introduced to describe cognitive phenomena in the 
human brain, successor representation (SR) focuses on 
the extraction of important states to aid training [20]. We 
leverage SR as a behavior indicator, regarding states that 

may lead to a lower total reward as ill-famed, and 
using SR as a behavior indicator to avoid actions to 
those states. For example, in the VRP, we might not 
be willing to let our vehicle return too soon to the 
depot; the ill-famed state is the situation in which 
the agent is at the depot without having depleted its 
load. 

Figure 1  
The rollout processes. A vehicle starts from the depot and must deliver items to customers (represented as 𝑁𝑁1 …𝑁𝑁4 ). For example, 
in the first step, nodes 1 and 3 are banned for some reason (the arrow from constraint to action is black). Thus, actions can only be 
chosen in 𝑎𝑎1 and 𝑎𝑎4 . Under the greedy strategy, the vehicle chooses the action with the maximum probability. This continues from 
step 1 to T, forming the rollout trajectory. 

 

4. Methodology 
Our methodology has three parts: first, we give the policy 
gradient for the DCMDP to formally represent a simple 
solver for VRP; then, a constraint-awareness module is 
represented to diminish actions against constraints; 
finally, an SR-based method is designed to address the 
sparse reward problem. 

4.1. Policy Gradient in DCMDP 
A policy gradient for the DCMDP must be built to train 
our policy function. The trajectory probability 𝑝𝑝(𝜏𝜏) 
reveals the rollout process. Taking logarithms on both 
sides, we have 
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Figure 1 
The rollout processes. A vehicle starts from the depot and must deliver items to customers (represented as N1 … N4). For 
example, in the first step, nodes 1 and 3 are banned for some reason (the arrow from constraint to action is black). Thus, 
actions can only be chosen in a1 and a4. Under the greedy strategy, the vehicle chooses the action with the maximum 
probability. This continues from step 1 to T, forming the rollout trajectory
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leverage SR as a behavior indicator, regarding states that 

may lead to a lower total reward as ill-famed, and 
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𝑙𝑙𝑙𝑙𝑙𝑙  form of the expectation of trajectories. With   

reinforcement learning [28], the function 
𝐸𝐸τ∼𝑝𝑝(⋅)�log 𝑝𝑝 (τ)𝑅𝑅(τ)� can be written as 

𝐸𝐸τ∼𝑝𝑝(⋅) ��log 𝑝𝑝 (𝑠𝑠1) + ∑ log 𝜋𝜋 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃)𝑇𝑇
𝑡𝑡�1 +

log 𝑝𝑝 (𝑠𝑠𝑡𝑡�1|𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) + log 𝑝𝑝 (𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� 𝑅𝑅(τ)�             （4） 

However, this form of policy gradient may lead to 
high variance, which restricts the ability to 
generalize. To reduce the variance, we define the 
baseline function 𝑏𝑏(𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡) : 𝐶𝐶 × 𝑆𝑆 → 𝑅𝑅 , which we 
show in Equation (5) is unbiased: 

∇θ𝐸𝐸
π�𝑎𝑎𝑡𝑡�𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; θ�

�𝑏𝑏(𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡) log π (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; θ)� =

𝑏𝑏(𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡)
�
�θ ∫π(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; θ)d 𝑎𝑎𝑡𝑡 = 0                         (5) 

𝑏𝑏(𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡)  is similar to the baseline methods in 
standard variance reduction RL. Differently, we 
extend the baseline function with constraints as 
input. 

However, 𝑏𝑏(𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡)  is for the one-step baseline 
function. To extend it to the trajectory form, we can 
simply sum them up as 𝑏𝑏�(κ) = ∑ 𝑏𝑏(𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡)𝑇𝑇

𝑡𝑡�1 , or 
build a neural network to represent it as 𝑏𝑏�(κ; λ) , 
where \lambda denotes the weights for the neural 
network and κ = [𝑠𝑠1, 𝑐𝑐1, 𝑠𝑠2, 𝑐𝑐2 … 𝑠𝑠𝑇𝑇, 𝑐𝑐𝑇𝑇] is the vector 
of whole states and constraints for a trajectory. 
Since 𝑝𝑝(𝑠𝑠𝑡𝑡�1|𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) and 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) are irrelevant to θ, 
based on the analysis above, we have the policy 
gradient for DCMDP: 
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work to represent it as �̂� (κ; λ), where \lambda denotes 
the weights for the neural network and κ = [𝑠1, 𝑐1, 𝑠2, 
𝑐2 … 𝑠𝑇, 𝑐𝑇] is the vector of whole states and constraints 
for a trajectory. Since 𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) and 𝑝(𝑐𝑡|𝑠𝑡) are ir-
relevant to θ, based on the analysis above, we have the 
policy gradient for DCMDP:

 

 

∇θ𝐸𝐸τ∼𝑝𝑝(⋅) �∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃) �𝑅𝑅 − 𝑏𝑏�(𝜅𝜅)�𝑇𝑇
𝑡𝑡�1 �             (6) 

4.2. Constraint-awareness Policy Optimization 
Equation (6) provides a way to update the policy 
function. However, to only use the constraints as input 
might still not be enough to find information in the 
constraints (e.g., the relationship between environment 
and constraints). To further capture this information, we 
design a method to learn the constraints. 

First, we notice that the relationship between constraints, 
environment, and actions can be represented as 
π(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = ∑ π�𝑎𝑎𝑡𝑡�𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡

𝑖𝑖�𝑝𝑝�𝑐𝑐𝑡𝑡
𝑖𝑖�𝑠𝑠𝑡𝑡�𝑐𝑐𝑡𝑡

𝑖𝑖 , where 𝑖𝑖 is the index of 
the constraint at time 𝑡𝑡 . This indicates that if trained 
properly, the policy π can implicitly learn the constraints. 
We assume there exists a strategy π(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) that can find 
the best action under state 𝑠𝑠𝑡𝑡. Regarding the constraints 
as the hidden variables, we have: 

log π (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = log ∫ 𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)𝑑𝑑𝑐𝑐𝑡𝑡 ≥ 𝐸𝐸𝑃𝑃�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡� log 𝑝𝑝�𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�
𝑝𝑝�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�

                                              

(7) 

𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� ≤ 𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡) ∥
𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�.                                                                       (8) 

Equations (7) and (8) are the form of the evidence lower 
bound. From information theory [33], we have 

log π (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = 𝐸𝐸𝑐𝑐𝑡𝑡∼𝑃𝑃�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡� log 𝑝𝑝�𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�
𝑝𝑝�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�

−

𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�                                       （9） 

Thus, to maximize log 𝑝𝑝 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)  is equivalent to 
minimizing DKL�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�. 

Notice also that for VRP, the relationship between 
constraints and the environment is deterministic, 
meaning that 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = 1 , as mentioned above. 
Moreover, 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) has the same dimension with action, 
and for each constraint 𝑖𝑖 at time 𝑡𝑡, 𝑐𝑐𝑡𝑡

𝑖𝑖 = 1 means that the 
constraint takes no effect. With those conditions, we have 

𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = π(𝑎𝑎𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡)𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) 

s.t.         𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = 1; 𝑐𝑐𝑡𝑡
𝑖𝑖 ∈ {0,1}, ∀𝑖𝑖.                           (10) 

Thus, the KL term can be simplified to 

min 𝐷𝐷𝐾𝐾𝐾𝐾 �𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)|𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� =
min 𝐷𝐷𝐾𝐾𝐾𝐾 (π(𝑎𝑎𝑡𝑡|𝑐𝑐}𝑡𝑡, 𝑠𝑠𝑡𝑡)|𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) .                                   (11) 

We leverage the max entropy strategy to induce 
exploration [21]. We combine constraint-awareness and 
the max entropy strategy and rewrite 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) in vector 

form as 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = �1�𝑐𝑐𝑡𝑡
𝑖𝑖 �1�

�𝐶𝐶𝑡𝑡
0�

�
𝑖𝑖�1

𝑁𝑁
， where 𝐶𝐶𝑡𝑡

1  is a set of 

constraints that are one (constraints take effect) at time 
step 𝑡𝑡  and [⋅]𝑖𝑖�1

𝑁𝑁  is a vector with 𝑁𝑁 elements. 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) =

�1�𝑐𝑐𝑡𝑡
𝑖𝑖 �1�

�𝐶𝐶𝑡𝑡
1�

�
𝑖𝑖�1

𝑁𝑁
 indicates that when node constraint of node 𝑖𝑖 

exists: 𝑐𝑐𝑡𝑡
𝑖𝑖 = 0. In this condition, the probability to choose 

action to that node is zero. We also average all available 
actions and minimize the distance between 𝑝𝑝�  and 𝑝𝑝 
through the KL term with a policy to encourage 

exploration. 

Constraint-awareness policy optimization (CPO) 
can be formulated as follow: 

∇θ𝐸𝐸τ∼p(⋅) �∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃) �𝑅𝑅 − 𝑏𝑏�(𝜅𝜅)�𝑇𝑇
𝑡𝑡�1 −

β ∑ 𝐾𝐾𝐾𝐾�π(𝑠𝑠𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡; θ) ∥ 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�𝑇𝑇
𝑡𝑡�1 � ,               (12) 

where β  is a positive parameter to balance the 
objective function and KL term. 

Remark. Because of the deterministic constraints 
in VRPs, through learning the constraints, agents 
can implicitly learn the dynamic functions of the 
environment, and hence can know the results of 
choosing a certain action, especially worse actions. 
Thus, our method is also called implicit CPO 
(ICPO). 

4.3. Behavior Indicator 
There is still one issue. The rewards are always 
sparse for VRP [23], that is, agents can only access 
the final reward at the last step, resulting in a bad 
credit assignment problem [11]. Hence, to make 
accurate credit assignments is crucial. A property 
of VRP is that there exist such actions that the more 
you choose the lower the expected rewards is. To 
leverage this property, we choose SR as the tool to 
indicate these bad behaviors. 

Recall the general form of the reward function: 𝑅𝑅 =
∑ 𝑟𝑟(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡)𝑇𝑇

𝑡𝑡�1 . Due to the nature of VRP, the reward 
is only available at the end of an episode: 𝑅𝑅 =
𝑟𝑟(𝑠𝑠𝑇𝑇, 𝑎𝑎𝑇𝑇). To mitigate the sparse reward, we take the 
ill-famed states into consideration and rewrite the 
total reward as 𝑅𝑅� = ∑ −1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆��𝑇𝑇

𝑡𝑡�1 + 𝑅𝑅, where 𝑆𝑆� is 
a set of ill-famed states and 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆� means that the 
state into time 𝑡𝑡 , 𝑠𝑠𝑡𝑡  is the ill-famed state. As 
mentioned above, an ill-famed state is one that may 
lead to low total reward. We add a negative term 
because we want these states to appear as little as 
possible. Now the ill-famed state term 1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆�� 
can be trained by SR as 

𝑉𝑉(𝑠𝑠) = −𝐸𝐸�∑ γ𝑡𝑡1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆��𝑇𝑇
𝑡𝑡�1 �𝑠𝑠0 = 𝑠𝑠� = −1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆�� +

γ𝐸𝐸�𝑉𝑉(𝑠𝑠𝑡𝑡�1)� .                                         (13) 

The right-hand side and it has the same recursive 
format as temporal difference [28]. 

With the help of SR, agents will take possible bad 
behaviors into account to make better decisions. 
ICPO with SR is expressed as follow: 

∇θ𝐸𝐸τ∼𝑝𝑝�(τ)�∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃)𝑇𝑇
𝑡𝑡�1 �α𝑉𝑉(𝑠𝑠𝑡𝑡) + 𝑅𝑅 −

{κ)� � − β ∑ KL�π(𝑎𝑎𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡; θ) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�𝑇𝑇
𝑡𝑡�1 �,   (14) 

where α is a positive hyperparameter to control the 
influence of successors. 

Remark. 1) We emphasize that SR can be extended 
in the opposite way. That is, we can maximize 
consideration of actions that are encouraged. The 
formulation is the same, but with a positive signal. 

(6)

4.2. Constraint-awareness Policy 
Optimization
Equation (6) provides a way to update the policy func-
tion. However, to only use the constraints as input 
might still not be enough to find information in the 
constraints (e.g., the relationship between environ-
ment and constraints). To further capture this infor-
mation, we design a method to learn the constraints.
First, we notice that the relationship between con-
straints, environment, and actions can be represent-
ed as π(𝑎𝑡|𝑠𝑡) = ∑𝑐𝑖

t
 π(𝑎𝑡|𝑠𝑡, 𝑐𝑖

t)𝑝(𝑐𝑖
t|𝑠𝑡), where i is the in-

dex of the constraint at time t. This indicates that if 
trained properly, the policy π can implicitly learn the 
constraints. We assume there exists a strategy π(𝑎𝑡|𝑠𝑡) 
that can find the best action under state 𝑠𝑡. Regarding 
the constraints as the hidden variables, we have:

logπ(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)=log∫𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)𝑑𝑑𝑐𝑐𝑡𝑡 ≥𝐸𝐸𝑃𝑃�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡� log
𝑝𝑝�𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�
𝑝𝑝�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�

(7)

 

 

∇θ𝐸𝐸τ∼𝑝𝑝(⋅) �∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃) �𝑅𝑅 − 𝑏𝑏�(𝜅𝜅)�𝑇𝑇
𝑡𝑡�1 �             (6) 

4.2. Constraint-awareness Policy Optimization 
Equation (6) provides a way to update the policy 
function. However, to only use the constraints as input 
might still not be enough to find information in the 
constraints (e.g., the relationship between environment 
and constraints). To further capture this information, we 
design a method to learn the constraints. 

First, we notice that the relationship between constraints, 
environment, and actions can be represented as 
π(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = ∑ π�𝑎𝑎𝑡𝑡�𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡

𝑖𝑖�𝑝𝑝�𝑐𝑐𝑡𝑡
𝑖𝑖�𝑠𝑠𝑡𝑡�𝑐𝑐𝑡𝑡

𝑖𝑖 , where 𝑖𝑖 is the index of 
the constraint at time 𝑡𝑡 . This indicates that if trained 
properly, the policy π can implicitly learn the constraints. 
We assume there exists a strategy π(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) that can find 
the best action under state 𝑠𝑠𝑡𝑡. Regarding the constraints 
as the hidden variables, we have: 

log π (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = log ∫ 𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)𝑑𝑑𝑐𝑐𝑡𝑡 ≥ 𝐸𝐸𝑃𝑃�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡� log 𝑝𝑝�𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�
𝑝𝑝�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�

                                              

(7) 

𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� ≤ 𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡) ∥
𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�.                                                                       (8) 

Equations (7) and (8) are the form of the evidence lower 
bound. From information theory [33], we have 

log π (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = 𝐸𝐸𝑐𝑐𝑡𝑡∼𝑃𝑃�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡� log 𝑝𝑝�𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�
𝑝𝑝�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�

−

𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�                                       （9） 

Thus, to maximize log 𝑝𝑝 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)  is equivalent to 
minimizing DKL�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�. 

Notice also that for VRP, the relationship between 
constraints and the environment is deterministic, 
meaning that 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = 1 , as mentioned above. 
Moreover, 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) has the same dimension with action, 
and for each constraint 𝑖𝑖 at time 𝑡𝑡, 𝑐𝑐𝑡𝑡

𝑖𝑖 = 1 means that the 
constraint takes no effect. With those conditions, we have 

𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = π(𝑎𝑎𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡)𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) 

s.t.         𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = 1; 𝑐𝑐𝑡𝑡
𝑖𝑖 ∈ {0,1}, ∀𝑖𝑖.                           (10) 

Thus, the KL term can be simplified to 

min 𝐷𝐷𝐾𝐾𝐾𝐾 �𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)|𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� =
min 𝐷𝐷𝐾𝐾𝐾𝐾 (π(𝑎𝑎𝑡𝑡|𝑐𝑐}𝑡𝑡, 𝑠𝑠𝑡𝑡)|𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) .                                   (11) 

We leverage the max entropy strategy to induce 
exploration [21]. We combine constraint-awareness and 
the max entropy strategy and rewrite 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) in vector 

form as 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = �1�𝑐𝑐𝑡𝑡
𝑖𝑖 �1�

�𝐶𝐶𝑡𝑡
0�

�
𝑖𝑖�1

𝑁𝑁
， where 𝐶𝐶𝑡𝑡

1  is a set of 

constraints that are one (constraints take effect) at time 
step 𝑡𝑡  and [⋅]𝑖𝑖�1

𝑁𝑁  is a vector with 𝑁𝑁 elements. 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) =

�1�𝑐𝑐𝑡𝑡
𝑖𝑖 �1�

�𝐶𝐶𝑡𝑡
1�

�
𝑖𝑖�1

𝑁𝑁
 indicates that when node constraint of node 𝑖𝑖 

exists: 𝑐𝑐𝑡𝑡
𝑖𝑖 = 0. In this condition, the probability to choose 

action to that node is zero. We also average all available 
actions and minimize the distance between 𝑝𝑝�  and 𝑝𝑝 
through the KL term with a policy to encourage 

exploration. 

Constraint-awareness policy optimization (CPO) 
can be formulated as follow: 

∇θ𝐸𝐸τ∼p(⋅) �∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃) �𝑅𝑅 − 𝑏𝑏�(𝜅𝜅)�𝑇𝑇
𝑡𝑡�1 −

β ∑ 𝐾𝐾𝐾𝐾�π(𝑠𝑠𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡; θ) ∥ 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�𝑇𝑇
𝑡𝑡�1 � ,               (12) 

where β  is a positive parameter to balance the 
objective function and KL term. 

Remark. Because of the deterministic constraints 
in VRPs, through learning the constraints, agents 
can implicitly learn the dynamic functions of the 
environment, and hence can know the results of 
choosing a certain action, especially worse actions. 
Thus, our method is also called implicit CPO 
(ICPO). 

4.3. Behavior Indicator 
There is still one issue. The rewards are always 
sparse for VRP [23], that is, agents can only access 
the final reward at the last step, resulting in a bad 
credit assignment problem [11]. Hence, to make 
accurate credit assignments is crucial. A property 
of VRP is that there exist such actions that the more 
you choose the lower the expected rewards is. To 
leverage this property, we choose SR as the tool to 
indicate these bad behaviors. 

Recall the general form of the reward function: 𝑅𝑅 =
∑ 𝑟𝑟(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡)𝑇𝑇

𝑡𝑡�1 . Due to the nature of VRP, the reward 
is only available at the end of an episode: 𝑅𝑅 =
𝑟𝑟(𝑠𝑠𝑇𝑇, 𝑎𝑎𝑇𝑇). To mitigate the sparse reward, we take the 
ill-famed states into consideration and rewrite the 
total reward as 𝑅𝑅� = ∑ −1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆��𝑇𝑇

𝑡𝑡�1 + 𝑅𝑅, where 𝑆𝑆� is 
a set of ill-famed states and 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆� means that the 
state into time 𝑡𝑡 , 𝑠𝑠𝑡𝑡  is the ill-famed state. As 
mentioned above, an ill-famed state is one that may 
lead to low total reward. We add a negative term 
because we want these states to appear as little as 
possible. Now the ill-famed state term 1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆�� 
can be trained by SR as 

𝑉𝑉(𝑠𝑠) = −𝐸𝐸�∑ γ𝑡𝑡1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆��𝑇𝑇
𝑡𝑡�1 �𝑠𝑠0 = 𝑠𝑠� = −1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆�� +

γ𝐸𝐸�𝑉𝑉(𝑠𝑠𝑡𝑡�1)� .                                         (13) 

The right-hand side and it has the same recursive 
format as temporal difference [28]. 

With the help of SR, agents will take possible bad 
behaviors into account to make better decisions. 
ICPO with SR is expressed as follow: 

∇θ𝐸𝐸τ∼𝑝𝑝�(τ)�∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃)𝑇𝑇
𝑡𝑡�1 �α𝑉𝑉(𝑠𝑠𝑡𝑡) + 𝑅𝑅 −

{κ)� � − β ∑ KL�π(𝑎𝑎𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡; θ) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�𝑇𝑇
𝑡𝑡�1 �,   (14) 

where α is a positive hyperparameter to control the 
influence of successors. 

Remark. 1) We emphasize that SR can be extended 
in the opposite way. That is, we can maximize 
consideration of actions that are encouraged. The 
formulation is the same, but with a positive signal. 

(8)

Equations (7) and (8) are the form of the evidence 
lower bound. From information theory [33], we have

 

 

∇θ𝐸𝐸τ∼𝑝𝑝(⋅) �∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃) �𝑅𝑅 − 𝑏𝑏�(𝜅𝜅)�𝑇𝑇
𝑡𝑡�1 �             (6) 

4.2. Constraint-awareness Policy Optimization 
Equation (6) provides a way to update the policy 
function. However, to only use the constraints as input 
might still not be enough to find information in the 
constraints (e.g., the relationship between environment 
and constraints). To further capture this information, we 
design a method to learn the constraints. 

First, we notice that the relationship between constraints, 
environment, and actions can be represented as 
π(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = ∑ π�𝑎𝑎𝑡𝑡�𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡

𝑖𝑖�𝑝𝑝�𝑐𝑐𝑡𝑡
𝑖𝑖�𝑠𝑠𝑡𝑡�𝑐𝑐𝑡𝑡

𝑖𝑖 , where 𝑖𝑖 is the index of 
the constraint at time 𝑡𝑡 . This indicates that if trained 
properly, the policy π can implicitly learn the constraints. 
We assume there exists a strategy π(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) that can find 
the best action under state 𝑠𝑠𝑡𝑡. Regarding the constraints 
as the hidden variables, we have: 

log π (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = log ∫ 𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)𝑑𝑑𝑐𝑐𝑡𝑡 ≥ 𝐸𝐸𝑃𝑃�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡� log 𝑝𝑝�𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�
𝑝𝑝�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�

                                              

(7) 

𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� ≤ 𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡) ∥
𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�.                                                                       (8) 

Equations (7) and (8) are the form of the evidence lower 
bound. From information theory [33], we have 

log π (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = 𝐸𝐸𝑐𝑐𝑡𝑡∼𝑃𝑃�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡� log 𝑝𝑝�𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�
𝑝𝑝�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�

−

𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�                                       （9） 

Thus, to maximize log 𝑝𝑝 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)  is equivalent to 
minimizing DKL�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�. 

Notice also that for VRP, the relationship between 
constraints and the environment is deterministic, 
meaning that 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = 1 , as mentioned above. 
Moreover, 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) has the same dimension with action, 
and for each constraint 𝑖𝑖 at time 𝑡𝑡, 𝑐𝑐𝑡𝑡

𝑖𝑖 = 1 means that the 
constraint takes no effect. With those conditions, we have 

𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = π(𝑎𝑎𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡)𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) 

s.t.         𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = 1; 𝑐𝑐𝑡𝑡
𝑖𝑖 ∈ {0,1}, ∀𝑖𝑖.                           (10) 

Thus, the KL term can be simplified to 

min 𝐷𝐷𝐾𝐾𝐾𝐾 �𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)|𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� =
min 𝐷𝐷𝐾𝐾𝐾𝐾 (π(𝑎𝑎𝑡𝑡|𝑐𝑐}𝑡𝑡, 𝑠𝑠𝑡𝑡)|𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) .                                   (11) 

We leverage the max entropy strategy to induce 
exploration [21]. We combine constraint-awareness and 
the max entropy strategy and rewrite 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) in vector 

form as 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = �1�𝑐𝑐𝑡𝑡
𝑖𝑖 �1�

�𝐶𝐶𝑡𝑡
0�

�
𝑖𝑖�1

𝑁𝑁
， where 𝐶𝐶𝑡𝑡

1  is a set of 

constraints that are one (constraints take effect) at time 
step 𝑡𝑡  and [⋅]𝑖𝑖�1

𝑁𝑁  is a vector with 𝑁𝑁 elements. 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) =

�1�𝑐𝑐𝑡𝑡
𝑖𝑖 �1�

�𝐶𝐶𝑡𝑡
1�

�
𝑖𝑖�1

𝑁𝑁
 indicates that when node constraint of node 𝑖𝑖 

exists: 𝑐𝑐𝑡𝑡
𝑖𝑖 = 0. In this condition, the probability to choose 

action to that node is zero. We also average all available 
actions and minimize the distance between 𝑝𝑝�  and 𝑝𝑝 
through the KL term with a policy to encourage 

exploration. 

Constraint-awareness policy optimization (CPO) 
can be formulated as follow: 

∇θ𝐸𝐸τ∼p(⋅) �∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃) �𝑅𝑅 − 𝑏𝑏�(𝜅𝜅)�𝑇𝑇
𝑡𝑡�1 −

β ∑ 𝐾𝐾𝐾𝐾�π(𝑠𝑠𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡; θ) ∥ 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�𝑇𝑇
𝑡𝑡�1 � ,               (12) 

where β  is a positive parameter to balance the 
objective function and KL term. 

Remark. Because of the deterministic constraints 
in VRPs, through learning the constraints, agents 
can implicitly learn the dynamic functions of the 
environment, and hence can know the results of 
choosing a certain action, especially worse actions. 
Thus, our method is also called implicit CPO 
(ICPO). 

4.3. Behavior Indicator 
There is still one issue. The rewards are always 
sparse for VRP [23], that is, agents can only access 
the final reward at the last step, resulting in a bad 
credit assignment problem [11]. Hence, to make 
accurate credit assignments is crucial. A property 
of VRP is that there exist such actions that the more 
you choose the lower the expected rewards is. To 
leverage this property, we choose SR as the tool to 
indicate these bad behaviors. 

Recall the general form of the reward function: 𝑅𝑅 =
∑ 𝑟𝑟(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡)𝑇𝑇

𝑡𝑡�1 . Due to the nature of VRP, the reward 
is only available at the end of an episode: 𝑅𝑅 =
𝑟𝑟(𝑠𝑠𝑇𝑇, 𝑎𝑎𝑇𝑇). To mitigate the sparse reward, we take the 
ill-famed states into consideration and rewrite the 
total reward as 𝑅𝑅� = ∑ −1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆��𝑇𝑇

𝑡𝑡�1 + 𝑅𝑅, where 𝑆𝑆� is 
a set of ill-famed states and 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆� means that the 
state into time 𝑡𝑡 , 𝑠𝑠𝑡𝑡  is the ill-famed state. As 
mentioned above, an ill-famed state is one that may 
lead to low total reward. We add a negative term 
because we want these states to appear as little as 
possible. Now the ill-famed state term 1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆�� 
can be trained by SR as 

𝑉𝑉(𝑠𝑠) = −𝐸𝐸�∑ γ𝑡𝑡1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆��𝑇𝑇
𝑡𝑡�1 �𝑠𝑠0 = 𝑠𝑠� = −1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆�� +

γ𝐸𝐸�𝑉𝑉(𝑠𝑠𝑡𝑡�1)� .                                         (13) 

The right-hand side and it has the same recursive 
format as temporal difference [28]. 

With the help of SR, agents will take possible bad 
behaviors into account to make better decisions. 
ICPO with SR is expressed as follow: 

∇θ𝐸𝐸τ∼𝑝𝑝�(τ)�∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃)𝑇𝑇
𝑡𝑡�1 �α𝑉𝑉(𝑠𝑠𝑡𝑡) + 𝑅𝑅 −

{κ)� � − β ∑ KL�π(𝑎𝑎𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡; θ) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�𝑇𝑇
𝑡𝑡�1 �,   (14) 

where α is a positive hyperparameter to control the 
influence of successors. 

Remark. 1) We emphasize that SR can be extended 
in the opposite way. That is, we can maximize 
consideration of actions that are encouraged. The 
formulation is the same, but with a positive signal. 

(9)

Thus, to maximize log 𝑝 (𝑎𝑡|𝑠𝑡) is equivalent to mini-
mizing DKL(𝑝(𝑎𝑡, 𝑐𝑡|𝑠𝑡) ∥ 𝑝(𝑐𝑡|𝑠𝑡)).
Notice also that for VRP, the relationship between con-
straints and the environment is deterministic, mean-
ing that 𝑝(𝑐𝑡|𝑠𝑡) = 1 , as mentioned above. Moreover, 
𝑝(𝑐𝑡|𝑠𝑡) has the same dimension with action, and for 
each constraint i at time t, 𝑐𝑖

t = 1 means that the con-
straint takes no effect. With those conditions, we have

 

 

∇θ𝐸𝐸τ∼𝑝𝑝(⋅) �∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃) �𝑅𝑅 − 𝑏𝑏�(𝜅𝜅)�𝑇𝑇
𝑡𝑡�1 �             (6) 

4.2. Constraint-awareness Policy Optimization 
Equation (6) provides a way to update the policy 
function. However, to only use the constraints as input 
might still not be enough to find information in the 
constraints (e.g., the relationship between environment 
and constraints). To further capture this information, we 
design a method to learn the constraints. 

First, we notice that the relationship between constraints, 
environment, and actions can be represented as 
π(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = ∑ π�𝑎𝑎𝑡𝑡�𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡

𝑖𝑖�𝑝𝑝�𝑐𝑐𝑡𝑡
𝑖𝑖�𝑠𝑠𝑡𝑡�𝑐𝑐𝑡𝑡

𝑖𝑖 , where 𝑖𝑖 is the index of 
the constraint at time 𝑡𝑡 . This indicates that if trained 
properly, the policy π can implicitly learn the constraints. 
We assume there exists a strategy π(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) that can find 
the best action under state 𝑠𝑠𝑡𝑡. Regarding the constraints 
as the hidden variables, we have: 

log π (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = log ∫ 𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)𝑑𝑑𝑐𝑐𝑡𝑡 ≥ 𝐸𝐸𝑃𝑃�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡� log 𝑝𝑝�𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�
𝑝𝑝�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�

                                              

(7) 

𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� ≤ 𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡) ∥
𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�.                                                                       (8) 

Equations (7) and (8) are the form of the evidence lower 
bound. From information theory [33], we have 

log π (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = 𝐸𝐸𝑐𝑐𝑡𝑡∼𝑃𝑃�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡� log 𝑝𝑝�𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�
𝑝𝑝�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�

−

𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�                                       （9） 

Thus, to maximize log 𝑝𝑝 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)  is equivalent to 
minimizing DKL�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�. 

Notice also that for VRP, the relationship between 
constraints and the environment is deterministic, 
meaning that 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = 1 , as mentioned above. 
Moreover, 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) has the same dimension with action, 
and for each constraint 𝑖𝑖 at time 𝑡𝑡, 𝑐𝑐𝑡𝑡

𝑖𝑖 = 1 means that the 
constraint takes no effect. With those conditions, we have 

𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = π(𝑎𝑎𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡)𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) 

s.t.         𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = 1; 𝑐𝑐𝑡𝑡
𝑖𝑖 ∈ {0,1}, ∀𝑖𝑖.                           (10) 

Thus, the KL term can be simplified to 

min 𝐷𝐷𝐾𝐾𝐾𝐾 �𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)|𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� =
min 𝐷𝐷𝐾𝐾𝐾𝐾 (π(𝑎𝑎𝑡𝑡|𝑐𝑐}𝑡𝑡, 𝑠𝑠𝑡𝑡)|𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) .                                   (11) 

We leverage the max entropy strategy to induce 
exploration [21]. We combine constraint-awareness and 
the max entropy strategy and rewrite 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) in vector 

form as 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = �1�𝑐𝑐𝑡𝑡
𝑖𝑖 �1�

�𝐶𝐶𝑡𝑡
0�

�
𝑖𝑖�1

𝑁𝑁
， where 𝐶𝐶𝑡𝑡

1  is a set of 

constraints that are one (constraints take effect) at time 
step 𝑡𝑡  and [⋅]𝑖𝑖�1

𝑁𝑁  is a vector with 𝑁𝑁 elements. 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) =

�1�𝑐𝑐𝑡𝑡
𝑖𝑖 �1�

�𝐶𝐶𝑡𝑡
1�

�
𝑖𝑖�1

𝑁𝑁
 indicates that when node constraint of node 𝑖𝑖 

exists: 𝑐𝑐𝑡𝑡
𝑖𝑖 = 0. In this condition, the probability to choose 

action to that node is zero. We also average all available 
actions and minimize the distance between 𝑝𝑝�  and 𝑝𝑝 
through the KL term with a policy to encourage 

exploration. 

Constraint-awareness policy optimization (CPO) 
can be formulated as follow: 

∇θ𝐸𝐸τ∼p(⋅) �∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃) �𝑅𝑅 − 𝑏𝑏�(𝜅𝜅)�𝑇𝑇
𝑡𝑡�1 −

β ∑ 𝐾𝐾𝐾𝐾�π(𝑠𝑠𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡; θ) ∥ 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�𝑇𝑇
𝑡𝑡�1 � ,               (12) 

where β  is a positive parameter to balance the 
objective function and KL term. 

Remark. Because of the deterministic constraints 
in VRPs, through learning the constraints, agents 
can implicitly learn the dynamic functions of the 
environment, and hence can know the results of 
choosing a certain action, especially worse actions. 
Thus, our method is also called implicit CPO 
(ICPO). 

4.3. Behavior Indicator 
There is still one issue. The rewards are always 
sparse for VRP [23], that is, agents can only access 
the final reward at the last step, resulting in a bad 
credit assignment problem [11]. Hence, to make 
accurate credit assignments is crucial. A property 
of VRP is that there exist such actions that the more 
you choose the lower the expected rewards is. To 
leverage this property, we choose SR as the tool to 
indicate these bad behaviors. 

Recall the general form of the reward function: 𝑅𝑅 =
∑ 𝑟𝑟(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡)𝑇𝑇

𝑡𝑡�1 . Due to the nature of VRP, the reward 
is only available at the end of an episode: 𝑅𝑅 =
𝑟𝑟(𝑠𝑠𝑇𝑇, 𝑎𝑎𝑇𝑇). To mitigate the sparse reward, we take the 
ill-famed states into consideration and rewrite the 
total reward as 𝑅𝑅� = ∑ −1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆��𝑇𝑇

𝑡𝑡�1 + 𝑅𝑅, where 𝑆𝑆� is 
a set of ill-famed states and 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆� means that the 
state into time 𝑡𝑡 , 𝑠𝑠𝑡𝑡  is the ill-famed state. As 
mentioned above, an ill-famed state is one that may 
lead to low total reward. We add a negative term 
because we want these states to appear as little as 
possible. Now the ill-famed state term 1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆�� 
can be trained by SR as 

𝑉𝑉(𝑠𝑠) = −𝐸𝐸�∑ γ𝑡𝑡1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆��𝑇𝑇
𝑡𝑡�1 �𝑠𝑠0 = 𝑠𝑠� = −1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆�� +

γ𝐸𝐸�𝑉𝑉(𝑠𝑠𝑡𝑡�1)� .                                         (13) 

The right-hand side and it has the same recursive 
format as temporal difference [28]. 

With the help of SR, agents will take possible bad 
behaviors into account to make better decisions. 
ICPO with SR is expressed as follow: 

∇θ𝐸𝐸τ∼𝑝𝑝�(τ)�∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃)𝑇𝑇
𝑡𝑡�1 �α𝑉𝑉(𝑠𝑠𝑡𝑡) + 𝑅𝑅 −

{κ)� � − β ∑ KL�π(𝑎𝑎𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡; θ) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�𝑇𝑇
𝑡𝑡�1 �,   (14) 

where α is a positive hyperparameter to control the 
influence of successors. 

Remark. 1) We emphasize that SR can be extended 
in the opposite way. That is, we can maximize 
consideration of actions that are encouraged. The 
formulation is the same, but with a positive signal. 

(10)

Thus, the KL term can be simplified to

 

 

∇θ𝐸𝐸τ∼𝑝𝑝(⋅) �∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃) �𝑅𝑅 − 𝑏𝑏�(𝜅𝜅)�𝑇𝑇
𝑡𝑡�1 �             (6) 

4.2. Constraint-awareness Policy Optimization 
Equation (6) provides a way to update the policy 
function. However, to only use the constraints as input 
might still not be enough to find information in the 
constraints (e.g., the relationship between environment 
and constraints). To further capture this information, we 
design a method to learn the constraints. 

First, we notice that the relationship between constraints, 
environment, and actions can be represented as 
π(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = ∑ π�𝑎𝑎𝑡𝑡�𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡

𝑖𝑖�𝑝𝑝�𝑐𝑐𝑡𝑡
𝑖𝑖�𝑠𝑠𝑡𝑡�𝑐𝑐𝑡𝑡

𝑖𝑖 , where 𝑖𝑖 is the index of 
the constraint at time 𝑡𝑡 . This indicates that if trained 
properly, the policy π can implicitly learn the constraints. 
We assume there exists a strategy π(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) that can find 
the best action under state 𝑠𝑠𝑡𝑡. Regarding the constraints 
as the hidden variables, we have: 

log π (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = log ∫ 𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)𝑑𝑑𝑐𝑐𝑡𝑡 ≥ 𝐸𝐸𝑃𝑃�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡� log 𝑝𝑝�𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�
𝑝𝑝�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�

                                              

(7) 

𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� ≤ 𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡) ∥
𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�.                                                                       (8) 

Equations (7) and (8) are the form of the evidence lower 
bound. From information theory [33], we have 

log π (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = 𝐸𝐸𝑐𝑐𝑡𝑡∼𝑃𝑃�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡� log 𝑝𝑝�𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�
𝑝𝑝�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�

−

𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�                                       （9） 

Thus, to maximize log 𝑝𝑝 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)  is equivalent to 
minimizing DKL�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�. 

Notice also that for VRP, the relationship between 
constraints and the environment is deterministic, 
meaning that 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = 1 , as mentioned above. 
Moreover, 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) has the same dimension with action, 
and for each constraint 𝑖𝑖 at time 𝑡𝑡, 𝑐𝑐𝑡𝑡

𝑖𝑖 = 1 means that the 
constraint takes no effect. With those conditions, we have 

𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = π(𝑎𝑎𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡)𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) 

s.t.         𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = 1; 𝑐𝑐𝑡𝑡
𝑖𝑖 ∈ {0,1}, ∀𝑖𝑖.                           (10) 

Thus, the KL term can be simplified to 

min 𝐷𝐷𝐾𝐾𝐾𝐾 �𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)|𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� =
min 𝐷𝐷𝐾𝐾𝐾𝐾 (π(𝑎𝑎𝑡𝑡|𝑐𝑐}𝑡𝑡, 𝑠𝑠𝑡𝑡)|𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) .                                   (11) 

We leverage the max entropy strategy to induce 
exploration [21]. We combine constraint-awareness and 
the max entropy strategy and rewrite 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) in vector 

form as 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = �1�𝑐𝑐𝑡𝑡
𝑖𝑖 �1�

�𝐶𝐶𝑡𝑡
0�

�
𝑖𝑖�1

𝑁𝑁
， where 𝐶𝐶𝑡𝑡

1  is a set of 

constraints that are one (constraints take effect) at time 
step 𝑡𝑡  and [⋅]𝑖𝑖�1

𝑁𝑁  is a vector with 𝑁𝑁 elements. 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) =

�1�𝑐𝑐𝑡𝑡
𝑖𝑖 �1�

�𝐶𝐶𝑡𝑡
1�

�
𝑖𝑖�1

𝑁𝑁
 indicates that when node constraint of node 𝑖𝑖 

exists: 𝑐𝑐𝑡𝑡
𝑖𝑖 = 0. In this condition, the probability to choose 

action to that node is zero. We also average all available 
actions and minimize the distance between 𝑝𝑝�  and 𝑝𝑝 
through the KL term with a policy to encourage 

exploration. 

Constraint-awareness policy optimization (CPO) 
can be formulated as follow: 

∇θ𝐸𝐸τ∼p(⋅) �∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃) �𝑅𝑅 − 𝑏𝑏�(𝜅𝜅)�𝑇𝑇
𝑡𝑡�1 −

β ∑ 𝐾𝐾𝐾𝐾�π(𝑠𝑠𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡; θ) ∥ 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�𝑇𝑇
𝑡𝑡�1 � ,               (12) 

where β  is a positive parameter to balance the 
objective function and KL term. 

Remark. Because of the deterministic constraints 
in VRPs, through learning the constraints, agents 
can implicitly learn the dynamic functions of the 
environment, and hence can know the results of 
choosing a certain action, especially worse actions. 
Thus, our method is also called implicit CPO 
(ICPO). 

4.3. Behavior Indicator 
There is still one issue. The rewards are always 
sparse for VRP [23], that is, agents can only access 
the final reward at the last step, resulting in a bad 
credit assignment problem [11]. Hence, to make 
accurate credit assignments is crucial. A property 
of VRP is that there exist such actions that the more 
you choose the lower the expected rewards is. To 
leverage this property, we choose SR as the tool to 
indicate these bad behaviors. 

Recall the general form of the reward function: 𝑅𝑅 =
∑ 𝑟𝑟(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡)𝑇𝑇

𝑡𝑡�1 . Due to the nature of VRP, the reward 
is only available at the end of an episode: 𝑅𝑅 =
𝑟𝑟(𝑠𝑠𝑇𝑇, 𝑎𝑎𝑇𝑇). To mitigate the sparse reward, we take the 
ill-famed states into consideration and rewrite the 
total reward as 𝑅𝑅� = ∑ −1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆��𝑇𝑇

𝑡𝑡�1 + 𝑅𝑅, where 𝑆𝑆� is 
a set of ill-famed states and 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆� means that the 
state into time 𝑡𝑡 , 𝑠𝑠𝑡𝑡  is the ill-famed state. As 
mentioned above, an ill-famed state is one that may 
lead to low total reward. We add a negative term 
because we want these states to appear as little as 
possible. Now the ill-famed state term 1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆�� 
can be trained by SR as 

𝑉𝑉(𝑠𝑠) = −𝐸𝐸�∑ γ𝑡𝑡1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆��𝑇𝑇
𝑡𝑡�1 �𝑠𝑠0 = 𝑠𝑠� = −1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆�� +

γ𝐸𝐸�𝑉𝑉(𝑠𝑠𝑡𝑡�1)� .                                         (13) 

The right-hand side and it has the same recursive 
format as temporal difference [28]. 

With the help of SR, agents will take possible bad 
behaviors into account to make better decisions. 
ICPO with SR is expressed as follow: 

∇θ𝐸𝐸τ∼𝑝𝑝�(τ)�∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃)𝑇𝑇
𝑡𝑡�1 �α𝑉𝑉(𝑠𝑠𝑡𝑡) + 𝑅𝑅 −

{κ)� � − β ∑ KL�π(𝑎𝑎𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡; θ) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�𝑇𝑇
𝑡𝑡�1 �,   (14) 

where α is a positive hyperparameter to control the 
influence of successors. 

Remark. 1) We emphasize that SR can be extended 
in the opposite way. That is, we can maximize 
consideration of actions that are encouraged. The 
formulation is the same, but with a positive signal. 

(11)

We leverage the max entropy strategy to induce explo-
ration [21]. We combine constraint-awareness and 
the max entropy strategy and rewrite 𝑝(𝑐𝑡|𝑠𝑡) in vector 

form as 

 

 

∇θ𝐸𝐸τ∼𝑝𝑝(⋅) �∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃) �𝑅𝑅 − 𝑏𝑏�(𝜅𝜅)�𝑇𝑇
𝑡𝑡�1 �             (6) 

4.2. Constraint-awareness Policy Optimization 
Equation (6) provides a way to update the policy 
function. However, to only use the constraints as input 
might still not be enough to find information in the 
constraints (e.g., the relationship between environment 
and constraints). To further capture this information, we 
design a method to learn the constraints. 

First, we notice that the relationship between constraints, 
environment, and actions can be represented as 
π(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = ∑ π�𝑎𝑎𝑡𝑡�𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡

𝑖𝑖�𝑝𝑝�𝑐𝑐𝑡𝑡
𝑖𝑖�𝑠𝑠𝑡𝑡�𝑐𝑐𝑡𝑡

𝑖𝑖 , where 𝑖𝑖 is the index of 
the constraint at time 𝑡𝑡 . This indicates that if trained 
properly, the policy π can implicitly learn the constraints. 
We assume there exists a strategy π(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) that can find 
the best action under state 𝑠𝑠𝑡𝑡. Regarding the constraints 
as the hidden variables, we have: 

log π (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = log ∫ 𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)𝑑𝑑𝑐𝑐𝑡𝑡 ≥ 𝐸𝐸𝑃𝑃�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡� log 𝑝𝑝�𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�
𝑝𝑝�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�

                                              

(7) 

𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� ≤ 𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡) ∥
𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�.                                                                       (8) 

Equations (7) and (8) are the form of the evidence lower 
bound. From information theory [33], we have 

log π (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = 𝐸𝐸𝑐𝑐𝑡𝑡∼𝑃𝑃�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡� log 𝑝𝑝�𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�
𝑝𝑝�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�

−

𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�                                       （9） 

Thus, to maximize log 𝑝𝑝 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)  is equivalent to 
minimizing DKL�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�. 

Notice also that for VRP, the relationship between 
constraints and the environment is deterministic, 
meaning that 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = 1 , as mentioned above. 
Moreover, 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) has the same dimension with action, 
and for each constraint 𝑖𝑖 at time 𝑡𝑡, 𝑐𝑐𝑡𝑡

𝑖𝑖 = 1 means that the 
constraint takes no effect. With those conditions, we have 

𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = π(𝑎𝑎𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡)𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) 

s.t.         𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = 1; 𝑐𝑐𝑡𝑡
𝑖𝑖 ∈ {0,1}, ∀𝑖𝑖.                           (10) 

Thus, the KL term can be simplified to 

min 𝐷𝐷𝐾𝐾𝐾𝐾 �𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)|𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� =
min 𝐷𝐷𝐾𝐾𝐾𝐾 (π(𝑎𝑎𝑡𝑡|𝑐𝑐}𝑡𝑡, 𝑠𝑠𝑡𝑡)|𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) .                                   (11) 

We leverage the max entropy strategy to induce 
exploration [21]. We combine constraint-awareness and 
the max entropy strategy and rewrite 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) in vector 

form as 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = �1�𝑐𝑐𝑡𝑡
𝑖𝑖 �1�

�𝐶𝐶𝑡𝑡
0�

�
𝑖𝑖�1

𝑁𝑁
， where 𝐶𝐶𝑡𝑡

1  is a set of 

constraints that are one (constraints take effect) at time 
step 𝑡𝑡  and [⋅]𝑖𝑖�1

𝑁𝑁  is a vector with 𝑁𝑁 elements. 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) =

�1�𝑐𝑐𝑡𝑡
𝑖𝑖 �1�

�𝐶𝐶𝑡𝑡
1�

�
𝑖𝑖�1

𝑁𝑁
 indicates that when node constraint of node 𝑖𝑖 

exists: 𝑐𝑐𝑡𝑡
𝑖𝑖 = 0. In this condition, the probability to choose 

action to that node is zero. We also average all available 
actions and minimize the distance between 𝑝𝑝�  and 𝑝𝑝 
through the KL term with a policy to encourage 

exploration. 

Constraint-awareness policy optimization (CPO) 
can be formulated as follow: 

∇θ𝐸𝐸τ∼p(⋅) �∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃) �𝑅𝑅 − 𝑏𝑏�(𝜅𝜅)�𝑇𝑇
𝑡𝑡�1 −

β ∑ 𝐾𝐾𝐾𝐾�π(𝑠𝑠𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡; θ) ∥ 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�𝑇𝑇
𝑡𝑡�1 � ,               (12) 

where β  is a positive parameter to balance the 
objective function and KL term. 

Remark. Because of the deterministic constraints 
in VRPs, through learning the constraints, agents 
can implicitly learn the dynamic functions of the 
environment, and hence can know the results of 
choosing a certain action, especially worse actions. 
Thus, our method is also called implicit CPO 
(ICPO). 

4.3. Behavior Indicator 
There is still one issue. The rewards are always 
sparse for VRP [23], that is, agents can only access 
the final reward at the last step, resulting in a bad 
credit assignment problem [11]. Hence, to make 
accurate credit assignments is crucial. A property 
of VRP is that there exist such actions that the more 
you choose the lower the expected rewards is. To 
leverage this property, we choose SR as the tool to 
indicate these bad behaviors. 

Recall the general form of the reward function: 𝑅𝑅 =
∑ 𝑟𝑟(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡)𝑇𝑇

𝑡𝑡�1 . Due to the nature of VRP, the reward 
is only available at the end of an episode: 𝑅𝑅 =
𝑟𝑟(𝑠𝑠𝑇𝑇, 𝑎𝑎𝑇𝑇). To mitigate the sparse reward, we take the 
ill-famed states into consideration and rewrite the 
total reward as 𝑅𝑅� = ∑ −1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆��𝑇𝑇

𝑡𝑡�1 + 𝑅𝑅, where 𝑆𝑆� is 
a set of ill-famed states and 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆� means that the 
state into time 𝑡𝑡 , 𝑠𝑠𝑡𝑡  is the ill-famed state. As 
mentioned above, an ill-famed state is one that may 
lead to low total reward. We add a negative term 
because we want these states to appear as little as 
possible. Now the ill-famed state term 1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆�� 
can be trained by SR as 

𝑉𝑉(𝑠𝑠) = −𝐸𝐸�∑ γ𝑡𝑡1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆��𝑇𝑇
𝑡𝑡�1 �𝑠𝑠0 = 𝑠𝑠� = −1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆�� +

γ𝐸𝐸�𝑉𝑉(𝑠𝑠𝑡𝑡�1)� .                                         (13) 

The right-hand side and it has the same recursive 
format as temporal difference [28]. 

With the help of SR, agents will take possible bad 
behaviors into account to make better decisions. 
ICPO with SR is expressed as follow: 

∇θ𝐸𝐸τ∼𝑝𝑝�(τ)�∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃)𝑇𝑇
𝑡𝑡�1 �α𝑉𝑉(𝑠𝑠𝑡𝑡) + 𝑅𝑅 −

{κ)� � − β ∑ KL�π(𝑎𝑎𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡; θ) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�𝑇𝑇
𝑡𝑡�1 �,   (14) 

where α is a positive hyperparameter to control the 
influence of successors. 

Remark. 1) We emphasize that SR can be extended 
in the opposite way. That is, we can maximize 
consideration of actions that are encouraged. The 
formulation is the same, but with a positive signal. 

 where C1
t is a set of con-

straints that are one (constraints take effect) at time 
step t and 

 

 

∇θ𝐸𝐸τ∼𝑝𝑝(⋅) �∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃) �𝑅𝑅 − 𝑏𝑏�(𝜅𝜅)�𝑇𝑇
𝑡𝑡�1 �             (6) 

4.2. Constraint-awareness Policy Optimization 
Equation (6) provides a way to update the policy 
function. However, to only use the constraints as input 
might still not be enough to find information in the 
constraints (e.g., the relationship between environment 
and constraints). To further capture this information, we 
design a method to learn the constraints. 

First, we notice that the relationship between constraints, 
environment, and actions can be represented as 
π(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = ∑ π�𝑎𝑎𝑡𝑡�𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡

𝑖𝑖�𝑝𝑝�𝑐𝑐𝑡𝑡
𝑖𝑖�𝑠𝑠𝑡𝑡�𝑐𝑐𝑡𝑡

𝑖𝑖 , where 𝑖𝑖 is the index of 
the constraint at time 𝑡𝑡 . This indicates that if trained 
properly, the policy π can implicitly learn the constraints. 
We assume there exists a strategy π(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) that can find 
the best action under state 𝑠𝑠𝑡𝑡. Regarding the constraints 
as the hidden variables, we have: 

log π (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = log ∫ 𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)𝑑𝑑𝑐𝑐𝑡𝑡 ≥ 𝐸𝐸𝑃𝑃�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡� log 𝑝𝑝�𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�
𝑝𝑝�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�

                                              

(7) 

𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� ≤ 𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡) ∥
𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�.                                                                       (8) 

Equations (7) and (8) are the form of the evidence lower 
bound. From information theory [33], we have 

log π (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = 𝐸𝐸𝑐𝑐𝑡𝑡∼𝑃𝑃�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡� log 𝑝𝑝�𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�
𝑝𝑝�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�

−

𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�                                       （9） 

Thus, to maximize log 𝑝𝑝 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)  is equivalent to 
minimizing DKL�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�. 

Notice also that for VRP, the relationship between 
constraints and the environment is deterministic, 
meaning that 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = 1 , as mentioned above. 
Moreover, 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) has the same dimension with action, 
and for each constraint 𝑖𝑖 at time 𝑡𝑡, 𝑐𝑐𝑡𝑡

𝑖𝑖 = 1 means that the 
constraint takes no effect. With those conditions, we have 

𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = π(𝑎𝑎𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡)𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) 

s.t.         𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = 1; 𝑐𝑐𝑡𝑡
𝑖𝑖 ∈ {0,1}, ∀𝑖𝑖.                           (10) 

Thus, the KL term can be simplified to 

min 𝐷𝐷𝐾𝐾𝐾𝐾 �𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)|𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� =
min 𝐷𝐷𝐾𝐾𝐾𝐾 (π(𝑎𝑎𝑡𝑡|𝑐𝑐}𝑡𝑡, 𝑠𝑠𝑡𝑡)|𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) .                                   (11) 

We leverage the max entropy strategy to induce 
exploration [21]. We combine constraint-awareness and 
the max entropy strategy and rewrite 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) in vector 

form as 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = �1�𝑐𝑐𝑡𝑡
𝑖𝑖 �1�

�𝐶𝐶𝑡𝑡
0�

�
𝑖𝑖�1

𝑁𝑁
， where 𝐶𝐶𝑡𝑡

1  is a set of 

constraints that are one (constraints take effect) at time 
step 𝑡𝑡  and [⋅]𝑖𝑖�1

𝑁𝑁  is a vector with 𝑁𝑁 elements. 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) =

�1�𝑐𝑐𝑡𝑡
𝑖𝑖 �1�

�𝐶𝐶𝑡𝑡
1�

�
𝑖𝑖�1

𝑁𝑁
 indicates that when node constraint of node 𝑖𝑖 

exists: 𝑐𝑐𝑡𝑡
𝑖𝑖 = 0. In this condition, the probability to choose 

action to that node is zero. We also average all available 
actions and minimize the distance between 𝑝𝑝�  and 𝑝𝑝 
through the KL term with a policy to encourage 

exploration. 

Constraint-awareness policy optimization (CPO) 
can be formulated as follow: 

∇θ𝐸𝐸τ∼p(⋅) �∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃) �𝑅𝑅 − 𝑏𝑏�(𝜅𝜅)�𝑇𝑇
𝑡𝑡�1 −

β ∑ 𝐾𝐾𝐾𝐾�π(𝑠𝑠𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡; θ) ∥ 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�𝑇𝑇
𝑡𝑡�1 � ,               (12) 

where β  is a positive parameter to balance the 
objective function and KL term. 

Remark. Because of the deterministic constraints 
in VRPs, through learning the constraints, agents 
can implicitly learn the dynamic functions of the 
environment, and hence can know the results of 
choosing a certain action, especially worse actions. 
Thus, our method is also called implicit CPO 
(ICPO). 

4.3. Behavior Indicator 
There is still one issue. The rewards are always 
sparse for VRP [23], that is, agents can only access 
the final reward at the last step, resulting in a bad 
credit assignment problem [11]. Hence, to make 
accurate credit assignments is crucial. A property 
of VRP is that there exist such actions that the more 
you choose the lower the expected rewards is. To 
leverage this property, we choose SR as the tool to 
indicate these bad behaviors. 

Recall the general form of the reward function: 𝑅𝑅 =
∑ 𝑟𝑟(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡)𝑇𝑇

𝑡𝑡�1 . Due to the nature of VRP, the reward 
is only available at the end of an episode: 𝑅𝑅 =
𝑟𝑟(𝑠𝑠𝑇𝑇, 𝑎𝑎𝑇𝑇). To mitigate the sparse reward, we take the 
ill-famed states into consideration and rewrite the 
total reward as 𝑅𝑅� = ∑ −1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆��𝑇𝑇

𝑡𝑡�1 + 𝑅𝑅, where 𝑆𝑆� is 
a set of ill-famed states and 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆� means that the 
state into time 𝑡𝑡 , 𝑠𝑠𝑡𝑡  is the ill-famed state. As 
mentioned above, an ill-famed state is one that may 
lead to low total reward. We add a negative term 
because we want these states to appear as little as 
possible. Now the ill-famed state term 1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆�� 
can be trained by SR as 

𝑉𝑉(𝑠𝑠) = −𝐸𝐸�∑ γ𝑡𝑡1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆��𝑇𝑇
𝑡𝑡�1 �𝑠𝑠0 = 𝑠𝑠� = −1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆�� +

γ𝐸𝐸�𝑉𝑉(𝑠𝑠𝑡𝑡�1)� .                                         (13) 

The right-hand side and it has the same recursive 
format as temporal difference [28]. 

With the help of SR, agents will take possible bad 
behaviors into account to make better decisions. 
ICPO with SR is expressed as follow: 

∇θ𝐸𝐸τ∼𝑝𝑝�(τ)�∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃)𝑇𝑇
𝑡𝑡�1 �α𝑉𝑉(𝑠𝑠𝑡𝑡) + 𝑅𝑅 −

{κ)� � − β ∑ KL�π(𝑎𝑎𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡; θ) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�𝑇𝑇
𝑡𝑡�1 �,   (14) 

where α is a positive hyperparameter to control the 
influence of successors. 

Remark. 1) We emphasize that SR can be extended 
in the opposite way. That is, we can maximize 
consideration of actions that are encouraged. The 
formulation is the same, but with a positive signal. 

 is a vector with N elements. 

 

 

∇θ𝐸𝐸τ∼𝑝𝑝(⋅) �∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃) �𝑅𝑅 − 𝑏𝑏�(𝜅𝜅)�𝑇𝑇
𝑡𝑡�1 �             (6) 

4.2. Constraint-awareness Policy Optimization 
Equation (6) provides a way to update the policy 
function. However, to only use the constraints as input 
might still not be enough to find information in the 
constraints (e.g., the relationship between environment 
and constraints). To further capture this information, we 
design a method to learn the constraints. 

First, we notice that the relationship between constraints, 
environment, and actions can be represented as 
π(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = ∑ π�𝑎𝑎𝑡𝑡�𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡

𝑖𝑖�𝑝𝑝�𝑐𝑐𝑡𝑡
𝑖𝑖�𝑠𝑠𝑡𝑡�𝑐𝑐𝑡𝑡

𝑖𝑖 , where 𝑖𝑖 is the index of 
the constraint at time 𝑡𝑡 . This indicates that if trained 
properly, the policy π can implicitly learn the constraints. 
We assume there exists a strategy π(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) that can find 
the best action under state 𝑠𝑠𝑡𝑡. Regarding the constraints 
as the hidden variables, we have: 

log π (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = log ∫ 𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)𝑑𝑑𝑐𝑐𝑡𝑡 ≥ 𝐸𝐸𝑃𝑃�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡� log 𝑝𝑝�𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�
𝑝𝑝�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�

                                              

(7) 

𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� ≤ 𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡) ∥
𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�.                                                                       (8) 

Equations (7) and (8) are the form of the evidence lower 
bound. From information theory [33], we have 

log π (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = 𝐸𝐸𝑐𝑐𝑡𝑡∼𝑃𝑃�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡� log 𝑝𝑝�𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�
𝑝𝑝�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�

−

𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�                                       （9） 

Thus, to maximize log 𝑝𝑝 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)  is equivalent to 
minimizing DKL�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�. 

Notice also that for VRP, the relationship between 
constraints and the environment is deterministic, 
meaning that 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = 1 , as mentioned above. 
Moreover, 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) has the same dimension with action, 
and for each constraint 𝑖𝑖 at time 𝑡𝑡, 𝑐𝑐𝑡𝑡

𝑖𝑖 = 1 means that the 
constraint takes no effect. With those conditions, we have 

𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = π(𝑎𝑎𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡)𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) 

s.t.         𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = 1; 𝑐𝑐𝑡𝑡
𝑖𝑖 ∈ {0,1}, ∀𝑖𝑖.                           (10) 

Thus, the KL term can be simplified to 

min 𝐷𝐷𝐾𝐾𝐾𝐾 �𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)|𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� =
min 𝐷𝐷𝐾𝐾𝐾𝐾 (π(𝑎𝑎𝑡𝑡|𝑐𝑐}𝑡𝑡, 𝑠𝑠𝑡𝑡)|𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) .                                   (11) 

We leverage the max entropy strategy to induce 
exploration [21]. We combine constraint-awareness and 
the max entropy strategy and rewrite 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) in vector 

form as 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = �1�𝑐𝑐𝑡𝑡
𝑖𝑖 �1�

�𝐶𝐶𝑡𝑡
0�

�
𝑖𝑖�1

𝑁𝑁
， where 𝐶𝐶𝑡𝑡

1  is a set of 

constraints that are one (constraints take effect) at time 
step 𝑡𝑡  and [⋅]𝑖𝑖�1

𝑁𝑁  is a vector with 𝑁𝑁 elements. 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) =

�1�𝑐𝑐𝑡𝑡
𝑖𝑖 �1�

�𝐶𝐶𝑡𝑡
1�

�
𝑖𝑖�1

𝑁𝑁
 indicates that when node constraint of node 𝑖𝑖 

exists: 𝑐𝑐𝑡𝑡
𝑖𝑖 = 0. In this condition, the probability to choose 

action to that node is zero. We also average all available 
actions and minimize the distance between 𝑝𝑝�  and 𝑝𝑝 
through the KL term with a policy to encourage 

exploration. 

Constraint-awareness policy optimization (CPO) 
can be formulated as follow: 

∇θ𝐸𝐸τ∼p(⋅) �∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃) �𝑅𝑅 − 𝑏𝑏�(𝜅𝜅)�𝑇𝑇
𝑡𝑡�1 −

β ∑ 𝐾𝐾𝐾𝐾�π(𝑠𝑠𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡; θ) ∥ 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�𝑇𝑇
𝑡𝑡�1 � ,               (12) 

where β  is a positive parameter to balance the 
objective function and KL term. 

Remark. Because of the deterministic constraints 
in VRPs, through learning the constraints, agents 
can implicitly learn the dynamic functions of the 
environment, and hence can know the results of 
choosing a certain action, especially worse actions. 
Thus, our method is also called implicit CPO 
(ICPO). 

4.3. Behavior Indicator 
There is still one issue. The rewards are always 
sparse for VRP [23], that is, agents can only access 
the final reward at the last step, resulting in a bad 
credit assignment problem [11]. Hence, to make 
accurate credit assignments is crucial. A property 
of VRP is that there exist such actions that the more 
you choose the lower the expected rewards is. To 
leverage this property, we choose SR as the tool to 
indicate these bad behaviors. 

Recall the general form of the reward function: 𝑅𝑅 =
∑ 𝑟𝑟(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡)𝑇𝑇

𝑡𝑡�1 . Due to the nature of VRP, the reward 
is only available at the end of an episode: 𝑅𝑅 =
𝑟𝑟(𝑠𝑠𝑇𝑇, 𝑎𝑎𝑇𝑇). To mitigate the sparse reward, we take the 
ill-famed states into consideration and rewrite the 
total reward as 𝑅𝑅� = ∑ −1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆��𝑇𝑇

𝑡𝑡�1 + 𝑅𝑅, where 𝑆𝑆� is 
a set of ill-famed states and 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆� means that the 
state into time 𝑡𝑡 , 𝑠𝑠𝑡𝑡  is the ill-famed state. As 
mentioned above, an ill-famed state is one that may 
lead to low total reward. We add a negative term 
because we want these states to appear as little as 
possible. Now the ill-famed state term 1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆�� 
can be trained by SR as 

𝑉𝑉(𝑠𝑠) = −𝐸𝐸�∑ γ𝑡𝑡1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆��𝑇𝑇
𝑡𝑡�1 �𝑠𝑠0 = 𝑠𝑠� = −1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆�� +

γ𝐸𝐸�𝑉𝑉(𝑠𝑠𝑡𝑡�1)� .                                         (13) 

The right-hand side and it has the same recursive 
format as temporal difference [28]. 

With the help of SR, agents will take possible bad 
behaviors into account to make better decisions. 
ICPO with SR is expressed as follow: 

∇θ𝐸𝐸τ∼𝑝𝑝�(τ)�∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃)𝑇𝑇
𝑡𝑡�1 �α𝑉𝑉(𝑠𝑠𝑡𝑡) + 𝑅𝑅 −

{κ)� � − β ∑ KL�π(𝑎𝑎𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡; θ) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�𝑇𝑇
𝑡𝑡�1 �,   (14) 

where α is a positive hyperparameter to control the 
influence of successors. 

Remark. 1) We emphasize that SR can be extended 
in the opposite way. That is, we can maximize 
consideration of actions that are encouraged. The 
formulation is the same, but with a positive signal. 

�1�𝑐𝑐𝑡𝑡
𝑖𝑖�1�
�𝐶𝐶𝑡𝑡1�

�
𝑖𝑖�1

𝑁𝑁
 indicates that when node constraint of node 

exists: 𝑖𝑖

 indicates that when node constraint of 

node i exists: 𝑐𝑖
t = 0. In this condition, the probability 

to choose action to that node is zero. We also average 
all available actions and minimize the distance be-
tween p̂ and p through the KL term with a policy to 
encourage exploration.
Constraint-awareness policy optimization (CPO) can 
be formulated as follow:

 

 

∇θ𝐸𝐸τ∼𝑝𝑝(⋅) �∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃) �𝑅𝑅 − 𝑏𝑏�(𝜅𝜅)�𝑇𝑇
𝑡𝑡�1 �             (6) 

4.2. Constraint-awareness Policy Optimization 
Equation (6) provides a way to update the policy 
function. However, to only use the constraints as input 
might still not be enough to find information in the 
constraints (e.g., the relationship between environment 
and constraints). To further capture this information, we 
design a method to learn the constraints. 

First, we notice that the relationship between constraints, 
environment, and actions can be represented as 
π(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = ∑ π�𝑎𝑎𝑡𝑡�𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡

𝑖𝑖�𝑝𝑝�𝑐𝑐𝑡𝑡
𝑖𝑖�𝑠𝑠𝑡𝑡�𝑐𝑐𝑡𝑡

𝑖𝑖 , where 𝑖𝑖 is the index of 
the constraint at time 𝑡𝑡 . This indicates that if trained 
properly, the policy π can implicitly learn the constraints. 
We assume there exists a strategy π(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) that can find 
the best action under state 𝑠𝑠𝑡𝑡. Regarding the constraints 
as the hidden variables, we have: 

log π (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = log ∫ 𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)𝑑𝑑𝑐𝑐𝑡𝑡 ≥ 𝐸𝐸𝑃𝑃�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡� log 𝑝𝑝�𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�
𝑝𝑝�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�

                                              

(7) 

𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� ≤ 𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡) ∥
𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�.                                                                       (8) 

Equations (7) and (8) are the form of the evidence lower 
bound. From information theory [33], we have 

log π (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = 𝐸𝐸𝑐𝑐𝑡𝑡∼𝑃𝑃�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡� log 𝑝𝑝�𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�
𝑝𝑝�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�

−

𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�                                       （9） 

Thus, to maximize log 𝑝𝑝 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)  is equivalent to 
minimizing DKL�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�. 

Notice also that for VRP, the relationship between 
constraints and the environment is deterministic, 
meaning that 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = 1 , as mentioned above. 
Moreover, 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) has the same dimension with action, 
and for each constraint 𝑖𝑖 at time 𝑡𝑡, 𝑐𝑐𝑡𝑡

𝑖𝑖 = 1 means that the 
constraint takes no effect. With those conditions, we have 

𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = π(𝑎𝑎𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡)𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) 

s.t.         𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = 1; 𝑐𝑐𝑡𝑡
𝑖𝑖 ∈ {0,1}, ∀𝑖𝑖.                           (10) 

Thus, the KL term can be simplified to 

min 𝐷𝐷𝐾𝐾𝐾𝐾 �𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)|𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� =
min 𝐷𝐷𝐾𝐾𝐾𝐾 (π(𝑎𝑎𝑡𝑡|𝑐𝑐}𝑡𝑡, 𝑠𝑠𝑡𝑡)|𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) .                                   (11) 

We leverage the max entropy strategy to induce 
exploration [21]. We combine constraint-awareness and 
the max entropy strategy and rewrite 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) in vector 

form as 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = �1�𝑐𝑐𝑡𝑡
𝑖𝑖 �1�

�𝐶𝐶𝑡𝑡
0�

�
𝑖𝑖�1

𝑁𝑁
， where 𝐶𝐶𝑡𝑡

1  is a set of 

constraints that are one (constraints take effect) at time 
step 𝑡𝑡  and [⋅]𝑖𝑖�1

𝑁𝑁  is a vector with 𝑁𝑁 elements. 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) =

�1�𝑐𝑐𝑡𝑡
𝑖𝑖 �1�

�𝐶𝐶𝑡𝑡
1�

�
𝑖𝑖�1

𝑁𝑁
 indicates that when node constraint of node 𝑖𝑖 

exists: 𝑐𝑐𝑡𝑡
𝑖𝑖 = 0. In this condition, the probability to choose 

action to that node is zero. We also average all available 
actions and minimize the distance between 𝑝𝑝�  and 𝑝𝑝 
through the KL term with a policy to encourage 

exploration. 

Constraint-awareness policy optimization (CPO) 
can be formulated as follow: 

∇θ𝐸𝐸τ∼p(⋅) �∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃) �𝑅𝑅 − 𝑏𝑏�(𝜅𝜅)�𝑇𝑇
𝑡𝑡�1 −

β ∑ 𝐾𝐾𝐾𝐾�π(𝑠𝑠𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡; θ) ∥ 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�𝑇𝑇
𝑡𝑡�1 � ,               (12) 

where β  is a positive parameter to balance the 
objective function and KL term. 

Remark. Because of the deterministic constraints 
in VRPs, through learning the constraints, agents 
can implicitly learn the dynamic functions of the 
environment, and hence can know the results of 
choosing a certain action, especially worse actions. 
Thus, our method is also called implicit CPO 
(ICPO). 

4.3. Behavior Indicator 
There is still one issue. The rewards are always 
sparse for VRP [23], that is, agents can only access 
the final reward at the last step, resulting in a bad 
credit assignment problem [11]. Hence, to make 
accurate credit assignments is crucial. A property 
of VRP is that there exist such actions that the more 
you choose the lower the expected rewards is. To 
leverage this property, we choose SR as the tool to 
indicate these bad behaviors. 

Recall the general form of the reward function: 𝑅𝑅 =
∑ 𝑟𝑟(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡)𝑇𝑇

𝑡𝑡�1 . Due to the nature of VRP, the reward 
is only available at the end of an episode: 𝑅𝑅 =
𝑟𝑟(𝑠𝑠𝑇𝑇, 𝑎𝑎𝑇𝑇). To mitigate the sparse reward, we take the 
ill-famed states into consideration and rewrite the 
total reward as 𝑅𝑅� = ∑ −1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆��𝑇𝑇

𝑡𝑡�1 + 𝑅𝑅, where 𝑆𝑆� is 
a set of ill-famed states and 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆� means that the 
state into time 𝑡𝑡 , 𝑠𝑠𝑡𝑡  is the ill-famed state. As 
mentioned above, an ill-famed state is one that may 
lead to low total reward. We add a negative term 
because we want these states to appear as little as 
possible. Now the ill-famed state term 1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆�� 
can be trained by SR as 

𝑉𝑉(𝑠𝑠) = −𝐸𝐸�∑ γ𝑡𝑡1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆��𝑇𝑇
𝑡𝑡�1 �𝑠𝑠0 = 𝑠𝑠� = −1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆�� +

γ𝐸𝐸�𝑉𝑉(𝑠𝑠𝑡𝑡�1)� .                                         (13) 

The right-hand side and it has the same recursive 
format as temporal difference [28]. 

With the help of SR, agents will take possible bad 
behaviors into account to make better decisions. 
ICPO with SR is expressed as follow: 

∇θ𝐸𝐸τ∼𝑝𝑝�(τ)�∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃)𝑇𝑇
𝑡𝑡�1 �α𝑉𝑉(𝑠𝑠𝑡𝑡) + 𝑅𝑅 −

{κ)� � − β ∑ KL�π(𝑎𝑎𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡; θ) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�𝑇𝑇
𝑡𝑡�1 �,   (14) 

where α is a positive hyperparameter to control the 
influence of successors. 

Remark. 1) We emphasize that SR can be extended 
in the opposite way. That is, we can maximize 
consideration of actions that are encouraged. The 
formulation is the same, but with a positive signal. 

(12)

where β is a positive parameter to balance the objec-
tive function and KL term.
Remark. Because of the deterministic constraints in 
VRPs, through learning the constraints, agents can 
implicitly learn the dynamic functions of the envi-
ronment, and hence can know the results of choosing 
a certain action, especially worse actions. Thus, our 
method is also called implicit CPO (ICPO).

4.3. Behavior Indicator
There is still one issue. The rewards are always sparse 
for VRP [23], that is, agents can only access the final 
reward at the last step, resulting in a bad credit assign-
ment problem [11]. Hence, to make accurate credit as-
signments is crucial. A property of VRP is that there 
exist such actions that the more you choose the lower 
the expected rewards is. To leverage this property, we 
choose SR as the tool to indicate these bad behaviors.
Recall the general form of the reward function:  



Information Technology and Control 2022/1/51132

R = ∑𝑇
t =1𝑟(𝑠𝑡, 𝑎𝑡). Due to the nature of VRP, the reward 

is only available at the end of an episode: R = 𝑟(𝑠𝑇, 𝑎𝑇)  
To mitigate the sparse reward, we take the ill-famed 
states into consideration and rewrite the total reward 
as R̂ = ∑𝑇

t=1(𝑠𝑡 ∈ �̂� ) + 𝑅, where �̂� is a set of ill-famed 
states and 𝑠𝑡 ∈ �̂�  means that the state into time t, 𝑠𝑡 is 
the ill-famed state. As mentioned above, an ill-famed 
state is one that may lead to low total reward. We add 
a negative term because we want these states to ap-
pear as little as possible. Now the ill-famed state term  
1(𝑠𝑡 ∈ �̂� ) can be trained by SR as

 

 

∇θ𝐸𝐸τ∼𝑝𝑝(⋅) �∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃) �𝑅𝑅 − 𝑏𝑏�(𝜅𝜅)�𝑇𝑇
𝑡𝑡�1 �             (6) 

4.2. Constraint-awareness Policy Optimization 
Equation (6) provides a way to update the policy 
function. However, to only use the constraints as input 
might still not be enough to find information in the 
constraints (e.g., the relationship between environment 
and constraints). To further capture this information, we 
design a method to learn the constraints. 

First, we notice that the relationship between constraints, 
environment, and actions can be represented as 
π(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = ∑ π�𝑎𝑎𝑡𝑡�𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡

𝑖𝑖�𝑝𝑝�𝑐𝑐𝑡𝑡
𝑖𝑖�𝑠𝑠𝑡𝑡�𝑐𝑐𝑡𝑡

𝑖𝑖 , where 𝑖𝑖 is the index of 
the constraint at time 𝑡𝑡 . This indicates that if trained 
properly, the policy π can implicitly learn the constraints. 
We assume there exists a strategy π(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) that can find 
the best action under state 𝑠𝑠𝑡𝑡. Regarding the constraints 
as the hidden variables, we have: 

log π (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = log ∫ 𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)𝑑𝑑𝑐𝑐𝑡𝑡 ≥ 𝐸𝐸𝑃𝑃�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡� log 𝑝𝑝�𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�
𝑝𝑝�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�

                                              

(7) 

𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� ≤ 𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡) ∥
𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�.                                                                       (8) 

Equations (7) and (8) are the form of the evidence lower 
bound. From information theory [33], we have 

log π (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = 𝐸𝐸𝑐𝑐𝑡𝑡∼𝑃𝑃�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡� log 𝑝𝑝�𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�
𝑝𝑝�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�

−

𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�                                       （9） 

Thus, to maximize log 𝑝𝑝 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)  is equivalent to 
minimizing DKL�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�. 

Notice also that for VRP, the relationship between 
constraints and the environment is deterministic, 
meaning that 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = 1 , as mentioned above. 
Moreover, 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) has the same dimension with action, 
and for each constraint 𝑖𝑖 at time 𝑡𝑡, 𝑐𝑐𝑡𝑡

𝑖𝑖 = 1 means that the 
constraint takes no effect. With those conditions, we have 

𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = π(𝑎𝑎𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡)𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) 

s.t.         𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = 1; 𝑐𝑐𝑡𝑡
𝑖𝑖 ∈ {0,1}, ∀𝑖𝑖.                           (10) 

Thus, the KL term can be simplified to 

min 𝐷𝐷𝐾𝐾𝐾𝐾 �𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)|𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� =
min 𝐷𝐷𝐾𝐾𝐾𝐾 (π(𝑎𝑎𝑡𝑡|𝑐𝑐}𝑡𝑡, 𝑠𝑠𝑡𝑡)|𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) .                                   (11) 

We leverage the max entropy strategy to induce 
exploration [21]. We combine constraint-awareness and 
the max entropy strategy and rewrite 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) in vector 

form as 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = �1�𝑐𝑐𝑡𝑡
𝑖𝑖 �1�

�𝐶𝐶𝑡𝑡
0�

�
𝑖𝑖�1

𝑁𝑁
， where 𝐶𝐶𝑡𝑡

1  is a set of 

constraints that are one (constraints take effect) at time 
step 𝑡𝑡  and [⋅]𝑖𝑖�1

𝑁𝑁  is a vector with 𝑁𝑁 elements. 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) =

�1�𝑐𝑐𝑡𝑡
𝑖𝑖 �1�

�𝐶𝐶𝑡𝑡
1�

�
𝑖𝑖�1

𝑁𝑁
 indicates that when node constraint of node 𝑖𝑖 

exists: 𝑐𝑐𝑡𝑡
𝑖𝑖 = 0. In this condition, the probability to choose 

action to that node is zero. We also average all available 
actions and minimize the distance between 𝑝𝑝�  and 𝑝𝑝 
through the KL term with a policy to encourage 

exploration. 

Constraint-awareness policy optimization (CPO) 
can be formulated as follow: 

∇θ𝐸𝐸τ∼p(⋅) �∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃) �𝑅𝑅 − 𝑏𝑏�(𝜅𝜅)�𝑇𝑇
𝑡𝑡�1 −

β ∑ 𝐾𝐾𝐾𝐾�π(𝑠𝑠𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡; θ) ∥ 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�𝑇𝑇
𝑡𝑡�1 � ,               (12) 

where β  is a positive parameter to balance the 
objective function and KL term. 

Remark. Because of the deterministic constraints 
in VRPs, through learning the constraints, agents 
can implicitly learn the dynamic functions of the 
environment, and hence can know the results of 
choosing a certain action, especially worse actions. 
Thus, our method is also called implicit CPO 
(ICPO). 

4.3. Behavior Indicator 
There is still one issue. The rewards are always 
sparse for VRP [23], that is, agents can only access 
the final reward at the last step, resulting in a bad 
credit assignment problem [11]. Hence, to make 
accurate credit assignments is crucial. A property 
of VRP is that there exist such actions that the more 
you choose the lower the expected rewards is. To 
leverage this property, we choose SR as the tool to 
indicate these bad behaviors. 

Recall the general form of the reward function: 𝑅𝑅 =
∑ 𝑟𝑟(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡)𝑇𝑇

𝑡𝑡�1 . Due to the nature of VRP, the reward 
is only available at the end of an episode: 𝑅𝑅 =
𝑟𝑟(𝑠𝑠𝑇𝑇, 𝑎𝑎𝑇𝑇). To mitigate the sparse reward, we take the 
ill-famed states into consideration and rewrite the 
total reward as 𝑅𝑅� = ∑ −1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆��𝑇𝑇

𝑡𝑡�1 + 𝑅𝑅, where 𝑆𝑆� is 
a set of ill-famed states and 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆� means that the 
state into time 𝑡𝑡 , 𝑠𝑠𝑡𝑡  is the ill-famed state. As 
mentioned above, an ill-famed state is one that may 
lead to low total reward. We add a negative term 
because we want these states to appear as little as 
possible. Now the ill-famed state term 1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆�� 
can be trained by SR as 

𝑉𝑉(𝑠𝑠) = −𝐸𝐸�∑ γ𝑡𝑡1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆��𝑇𝑇
𝑡𝑡�1 �𝑠𝑠0 = 𝑠𝑠� =

−1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆�� + γ𝐸𝐸�𝑉𝑉(𝑠𝑠𝑡𝑡�1)� .                                         

The right-hand side and it has the same recursive 
format as temporal difference [28]. 

With the help of SR, agents will take possible bad 
behaviors into account to make better decisions. 
ICPO with SR is expressed as follow: 

∇θ𝐸𝐸τ∼𝑝𝑝�(τ)�∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃)𝑇𝑇
𝑡𝑡�1 �α𝑉𝑉(𝑠𝑠𝑡𝑡) + 𝑅𝑅 −

{κ)� � − β ∑ KL�π(𝑎𝑎𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡; θ) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�𝑇𝑇
𝑡𝑡�1 �,   (14) 

where α is a positive hyperparameter to control the 
influence of successors. 

Remark. 1) We emphasize that SR can be extended 
in the opposite way. That is, we can maximize 
consideration of actions that are encouraged. The 
formulation is the same, but with a positive signal. 

(13)

The right-hand side and it has the same recursive for-
mat as temporal difference [28].
With the help of SR, agents will take possible bad be-
haviors into account to make better decisions. ICPO 
with SR is expressed as follow:

 

 

∇θ𝐸𝐸τ∼𝑝𝑝(⋅) �∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃) �𝑅𝑅 − 𝑏𝑏�(𝜅𝜅)�𝑇𝑇
𝑡𝑡�1 �             (6) 

4.2. Constraint-awareness Policy Optimization 
Equation (6) provides a way to update the policy 
function. However, to only use the constraints as input 
might still not be enough to find information in the 
constraints (e.g., the relationship between environment 
and constraints). To further capture this information, we 
design a method to learn the constraints. 

First, we notice that the relationship between constraints, 
environment, and actions can be represented as 
π(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = ∑ π�𝑎𝑎𝑡𝑡�𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡

𝑖𝑖�𝑝𝑝�𝑐𝑐𝑡𝑡
𝑖𝑖�𝑠𝑠𝑡𝑡�𝑐𝑐𝑡𝑡

𝑖𝑖 , where 𝑖𝑖 is the index of 
the constraint at time 𝑡𝑡 . This indicates that if trained 
properly, the policy π can implicitly learn the constraints. 
We assume there exists a strategy π(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) that can find 
the best action under state 𝑠𝑠𝑡𝑡. Regarding the constraints 
as the hidden variables, we have: 

log π (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = log ∫ 𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)𝑑𝑑𝑐𝑐𝑡𝑡 ≥ 𝐸𝐸𝑃𝑃�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡� log 𝑝𝑝�𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�
𝑝𝑝�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�

                                              

(7) 

𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� ≤ 𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡) ∥
𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�.                                                                       (8) 

Equations (7) and (8) are the form of the evidence lower 
bound. From information theory [33], we have 

log π (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = 𝐸𝐸𝑐𝑐𝑡𝑡∼𝑃𝑃�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡� log 𝑝𝑝�𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�
𝑝𝑝�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�

−

𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�                                       （9） 

Thus, to maximize log 𝑝𝑝 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)  is equivalent to 
minimizing DKL�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�. 

Notice also that for VRP, the relationship between 
constraints and the environment is deterministic, 
meaning that 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = 1 , as mentioned above. 
Moreover, 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) has the same dimension with action, 
and for each constraint 𝑖𝑖 at time 𝑡𝑡, 𝑐𝑐𝑡𝑡

𝑖𝑖 = 1 means that the 
constraint takes no effect. With those conditions, we have 

𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = π(𝑎𝑎𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡)𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) 

s.t.         𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = 1; 𝑐𝑐𝑡𝑡
𝑖𝑖 ∈ {0,1}, ∀𝑖𝑖.                           (10) 

Thus, the KL term can be simplified to 

min 𝐷𝐷𝐾𝐾𝐾𝐾 �𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)|𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� =
min 𝐷𝐷𝐾𝐾𝐾𝐾 (π(𝑎𝑎𝑡𝑡|𝑐𝑐}𝑡𝑡, 𝑠𝑠𝑡𝑡)|𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) .                                   (11) 

We leverage the max entropy strategy to induce 
exploration [21]. We combine constraint-awareness and 
the max entropy strategy and rewrite 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) in vector 

form as 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = �1�𝑐𝑐𝑡𝑡
𝑖𝑖 �1�

�𝐶𝐶𝑡𝑡
0�

�
𝑖𝑖�1

𝑁𝑁
， where 𝐶𝐶𝑡𝑡

1  is a set of 

constraints that are one (constraints take effect) at time 
step 𝑡𝑡  and [⋅]𝑖𝑖�1

𝑁𝑁  is a vector with 𝑁𝑁 elements. 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) =

�1�𝑐𝑐𝑡𝑡
𝑖𝑖 �1�

�𝐶𝐶𝑡𝑡
1�

�
𝑖𝑖�1

𝑁𝑁
 indicates that when node constraint of node 𝑖𝑖 

exists: 𝑐𝑐𝑡𝑡
𝑖𝑖 = 0. In this condition, the probability to choose 

action to that node is zero. We also average all available 
actions and minimize the distance between 𝑝𝑝�  and 𝑝𝑝 
through the KL term with a policy to encourage 

exploration. 

Constraint-awareness policy optimization (CPO) 
can be formulated as follow: 

∇θ𝐸𝐸τ∼p(⋅) �∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃) �𝑅𝑅 − 𝑏𝑏�(𝜅𝜅)�𝑇𝑇
𝑡𝑡�1 −

β ∑ 𝐾𝐾𝐾𝐾�π(𝑠𝑠𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡; θ) ∥ 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�𝑇𝑇
𝑡𝑡�1 � ,               (12) 

where β  is a positive parameter to balance the 
objective function and KL term. 

Remark. Because of the deterministic constraints 
in VRPs, through learning the constraints, agents 
can implicitly learn the dynamic functions of the 
environment, and hence can know the results of 
choosing a certain action, especially worse actions. 
Thus, our method is also called implicit CPO 
(ICPO). 

4.3. Behavior Indicator 
There is still one issue. The rewards are always 
sparse for VRP [23], that is, agents can only access 
the final reward at the last step, resulting in a bad 
credit assignment problem [11]. Hence, to make 
accurate credit assignments is crucial. A property 
of VRP is that there exist such actions that the more 
you choose the lower the expected rewards is. To 
leverage this property, we choose SR as the tool to 
indicate these bad behaviors. 

Recall the general form of the reward function: 𝑅𝑅 =
∑ 𝑟𝑟(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡)𝑇𝑇

𝑡𝑡�1 . Due to the nature of VRP, the reward 
is only available at the end of an episode: 𝑅𝑅 =
𝑟𝑟(𝑠𝑠𝑇𝑇, 𝑎𝑎𝑇𝑇). To mitigate the sparse reward, we take the 
ill-famed states into consideration and rewrite the 
total reward as 𝑅𝑅� = ∑ −1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆��𝑇𝑇

𝑡𝑡�1 + 𝑅𝑅, where 𝑆𝑆� is 
a set of ill-famed states and 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆� means that the 
state into time 𝑡𝑡 , 𝑠𝑠𝑡𝑡  is the ill-famed state. As 
mentioned above, an ill-famed state is one that may 
lead to low total reward. We add a negative term 
because we want these states to appear as little as 
possible. Now the ill-famed state term 1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆�� 
can be trained by SR as 

𝑉𝑉(𝑠𝑠) = −𝐸𝐸�∑ γ𝑡𝑡1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆��𝑇𝑇
𝑡𝑡�1 �𝑠𝑠0 = 𝑠𝑠� = −1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆�� +

γ𝐸𝐸�𝑉𝑉(𝑠𝑠𝑡𝑡�1)� .                                         

The right-hand side and it has the same recursive 
format as temporal difference [28]. 

With the help of SR, agents will take possible bad 
behaviors into account to make better decisions. 
ICPO with SR is expressed as follow: 

∇θ𝐸𝐸τ∼𝑝𝑝�(τ)�∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃)𝑇𝑇
𝑡𝑡�1 �α𝑉𝑉(𝑠𝑠𝑡𝑡) + 𝑅𝑅 −

{κ)� � − β ∑ KL�π(𝑎𝑎𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡; θ) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�𝑇𝑇
𝑡𝑡�1 �,   

where α is a positive hyperparameter to control the 
influence of successors. 

Remark. 1) We emphasize that SR can be extended 
in the opposite way. That is, we can maximize 
consideration of actions that are encouraged. The 
formulation is the same, but with a positive signal. 

(14)

where α is a positive hyperparameter to control the 
influence of successors.
Remark. 1) We emphasize that SR can be extended in 
the opposite way. That is, we can maximize consider-
ation of actions that are encouraged. The formulation 
is the same, but with a positive signal. 2) SR also acts 
as a regulator to balance human intuition and learn-
ing results.

4.4. Training Method

Loss Functions. We design a policy, baseline func-
tion, and successor value as neural networks with 
parameters θ, λ, and η, respectively. The losses of suc-
cessor value 𝐿𝑉 and baseline function 𝐿𝑏 are

  

2) SR also acts as a regulator to balance human intuition 
and learning results. 

4.4. Training Method 
Loss Functions. We design a policy, baseline function, 
and successor value as neural networks with parameters 
θ, λ, and η, respectively. The losses of successor value 𝐿𝐿𝑉𝑉 
and baseline function 𝐿𝐿𝑏𝑏 are 
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where 𝑧𝑧 is the episode buffer. All the loss functions can 
be estimated through Monte Carlo sampling. The policy 
gradient with constraint-aware module and successor 
representation can be formed as Equation (17). 

∇θ𝐸𝐸τ𝑝𝑝�(τ)�∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃)𝑇𝑇
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The pseudocode can be found in Algorithm 1. 
Algorithm 1 
Implicit Constraint-awareness policy optimization 

Algorithm 
1: Initializing parameters for actor, successor, and 

baseline function θ, λ, and η 
2: Generating training dataset 

3: while not convergence do 

4:     Sample 𝑠𝑠0 from the training dataset 

5:     Initializing the history information 𝑠𝑠0 

6:     Initializing the episode buffer 𝑧𝑧0 

     Rollout Stage 

7:     for 0 to the maximum of nodes do 

8:         Select action 𝑎𝑎𝑡𝑡 ∼ π(𝑠𝑠𝑡𝑡) with Boltzmann 
exploration strategy 

9:         Update the environment with dynamic 
function 

10:         𝑧𝑧𝑡𝑡�1 = 𝑧𝑧𝑡𝑡 ∪ (𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡, 𝑟𝑟𝑡𝑡) 

11:     end for 

     Train Stage 

12: Update θ, λ, and η through Equations (17), 
(15) and (16) respectively 

13: end while 

Network Structure. The policy network structure has 
three parts: decision making, encoder, and attention 
mechanism [3, 23]. The first is used to choose the policy, 
and the second and third to encode the graph and capture 
valuable information. A gated recurrent unit is introduced 
to seize the long-term effects [5]. We leverage the 
attention mechanism output as the input of the successor 

function. For the baseline function, since the state 
and constraints are taken as input, we build the 
model without sharing variables with the policy 
networks. 

For full understanding of our network, we explain 
each structure. Our network structure, shown in 
Figure 2, is mainly built from Nazari et al. and 
Vinyals et al. [23, 31], and we make some 
improvements. Unless otherwise mentioned, the 
activation is ReLU [22].  
Figure 2  

Structure of policy, baseline, and successor networks. 
The structure has three parts: (a) the encoder network 
aims to convert states to embeddings; 𝐸𝐸𝑎𝑎 , 𝐸𝐸𝑠𝑠𝑡𝑡  , and 𝐸𝐸𝑐𝑐𝑡𝑡 
are encoders for action states and constraints, 
respectively; (b) the policy and successor; ℎ𝑡𝑡 is the long-
term hidden state for RNN, and context is useful 
information extracted from the attention model; and (c) 
baseline function. 

 
Objective function. The objective function for 
VRP is to minimize the tour length, but the 
objective function in RL is always represented as 
maximizing the total reward. Therefore, we set the 
total reward in VRP as the negative tour length 

Input. In the VRPTW, we set the current state and 
constraints as input. The state 𝑠𝑠𝑡𝑡  for the VRP 
includes the location of the nodes, remaining load, 
and demand of customers. For VRPTW, since each 
customer has its own time window, we add two 
features to provide extra information: 1) the time 
window of each customer; and 2) the current time. 
Moreover, the previous action is also added as input 
to reveal the current location of the vehicle. The 
input size is 𝑏𝑏𝑎𝑎𝑡𝑡𝑐𝑐ℎ × 2 × |𝑁𝑁|  for the location of 
nodes and the time window. The size for other 
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Attention Mechanism. An attention mechanism 
(AM) captures the internal relationships within a 
graph, where the embedding taken from GRU is 
used as the input embedding. The output of AM is 
a context, which is a 32-dimension vector 
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The setting of AM is similar to luong et al. [19]. 

Decision Making Network. The output of the 
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function in the final layer is softmax). 
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where z is the episode buffer. All the loss functions can 
be estimated through Monte Carlo sampling. The poli-
cy gradient with constraint-aware module and succes-
sor representation can be formed as Equation (17).

  

2) SR also acts as a regulator to balance human intuition 
and learning results. 

4.4. Training Method 
Loss Functions. We design a policy, baseline function, 
and successor value as neural networks with parameters 
θ, λ, and η, respectively. The losses of successor value 𝐿𝐿𝑉𝑉 
and baseline function 𝐿𝐿𝑏𝑏 are 

𝐿𝐿𝑣𝑣 = 𝐸𝐸τ∼𝑧𝑧 ��𝑅𝑅� − 𝑏𝑏�(κ; λ)�
2
�                                    (15) 

𝐿𝐿𝑏𝑏 = 𝐸𝐸𝑠𝑠𝑡𝑡�1,𝑠𝑠𝑡𝑡∼𝑧𝑧 ��1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆�� + γ𝑉𝑉(𝑠𝑠𝑡𝑡�1; η) − 𝑉𝑉(𝑠𝑠𝑡𝑡; η)�
2

�,                                                             

(16) 

where 𝑧𝑧 is the episode buffer. All the loss functions can 
be estimated through Monte Carlo sampling. The policy 
gradient with constraint-aware module and successor 
representation can be formed as Equation (17). 
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The pseudocode can be found in Algorithm 1. 
Algorithm 1 
Implicit Constraint-awareness policy optimization 

Algorithm 
1: Initializing parameters for actor, successor, and 

baseline function θ, λ, and η 
2: Generating training dataset 

3: while not convergence do 

4:     Sample 𝑠𝑠0 from the training dataset 

5:     Initializing the history information 𝑠𝑠0 

6:     Initializing the episode buffer 𝑧𝑧0 

     Rollout Stage 

7:     for 0 to the maximum of nodes do 

8:         Select action 𝑎𝑎𝑡𝑡 ∼ π(𝑠𝑠𝑡𝑡) with Boltzmann 
exploration strategy 

9:         Update the environment with dynamic 
function 
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     Train Stage 

12: Update θ, λ, and η through Equations (17), 
(15) and (16) respectively 

13: end while 

Network Structure. The policy network structure has 
three parts: decision making, encoder, and attention 
mechanism [3, 23]. The first is used to choose the policy, 
and the second and third to encode the graph and capture 
valuable information. A gated recurrent unit is introduced 
to seize the long-term effects [5]. We leverage the 
attention mechanism output as the input of the successor 

function. For the baseline function, since the state 
and constraints are taken as input, we build the 
model without sharing variables with the policy 
networks. 

For full understanding of our network, we explain 
each structure. Our network structure, shown in 
Figure 2, is mainly built from Nazari et al. and 
Vinyals et al. [23, 31], and we make some 
improvements. Unless otherwise mentioned, the 
activation is ReLU [22].  
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information extracted from the attention model; and (c) 
baseline function. 

 
Objective function. The objective function for 
VRP is to minimize the tour length, but the 
objective function in RL is always represented as 
maximizing the total reward. Therefore, we set the 
total reward in VRP as the negative tour length 

Input. In the VRPTW, we set the current state and 
constraints as input. The state 𝑠𝑠𝑡𝑡  for the VRP 
includes the location of the nodes, remaining load, 
and demand of customers. For VRPTW, since each 
customer has its own time window, we add two 
features to provide extra information: 1) the time 
window of each customer; and 2) the current time. 
Moreover, the previous action is also added as input 
to reveal the current location of the vehicle. The 
input size is 𝑏𝑏𝑎𝑎𝑡𝑡𝑐𝑐ℎ × 2 × |𝑁𝑁|  for the location of 
nodes and the time window. The size for other 
features is 𝑏𝑏𝑎𝑎𝑡𝑡𝑐𝑐ℎ × 1 × |𝑁𝑁|. 

Attention Mechanism. An attention mechanism 
(AM) captures the internal relationships within a 
graph, where the embedding taken from GRU is 
used as the input embedding. The output of AM is 
a context, which is a 32-dimension vector 
combining short-term and long-term information. 
The setting of AM is similar to luong et al. [19]. 

Decision Making Network. The output of the 
decision-making network is |𝑁𝑁|, and the input is the 
context from the AM. Softmax is used to generate 
the probability of each action (the activation 
function in the final layer is softmax). 

(17)

The pseudocode can be found in Algorithm 1.
Algorithm 1
Implicit Constraint-awareness policy optimization

Algorithm

1: Initializing parameters for actor, successor, and 
baseline function θ, λ, and η

2: Generating training dataset
3: while not convergence do
4:     Sample 𝑠0 from the training dataset
5:     Initializing the history information 𝑠0

6:     Initializing the episode buffer 𝑧0 
    Rollout Stage

7:     for 0 to the maximum of nodes do
8: Select action 𝑎𝑡 ∼ π(𝑠𝑡) with Boltzmann 

exploration strategy
9: Update the environment with dynamic 

function
10: 𝑧𝑡+1 = 𝑧𝑡 ∪ (𝑠𝑡, 𝑎𝑡, 𝑟𝑡)
11:     end for

    Train Stage
12: Update θ, λ, and η through Equations (17), (15) 

and (16) respectively
13: end while

Network Structure. The policy network structure 
has three parts: decision making, encoder, and atten-
tion mechanism [3, 23]. The first is used to choose the 
policy, and the second and third to encode the graph 
and capture valuable information. A gated recur-
rent unit is introduced to seize the long-term effects 
[5]. We leverage the attention mechanism output as 
the input of the successor function. For the baseline 
function, since the state and constraints are taken as 
input, we build the model without sharing variables 
with the policy networks.
For full understanding of our network, we explain 
each structure. Our network structure, shown in Fig-
ure 2, is mainly built from Nazari et al. and Vinyals et 
al. [23, 31], and we make some improvements. Unless 
otherwise mentioned, the activation is ReLU [22]. 
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Objective function. The objective function for VRP 
is to minimize the tour length, but the objective func-
tion in RL is always represented as maximizing the 
total reward. Therefore, we set the total reward in 
VRP as the negative tour length
Input. In the VRPTW, we set the current state and 
constraints as input. The state 𝑠𝑡 for the VRP includes 
the location of the nodes, remaining load, and demand 
of customers. For VRPTW, since each customer has 
its own time window, we add two features to provide 
extra information: 1) the time window of each cus-
tomer; and 2) the current time. Moreover, the previ-
ous action is also added as input to reveal the current 
location of the vehicle. The input size is 𝑏𝑎𝑡𝑐ℎ × 2 × |𝑁|  
for the location of nodes and the time window. The 
size for other features is 𝑏𝑎𝑡𝑐ℎ × 1 × |𝑁|.
Attention Mechanism. An attention mechanism 
(AM) captures the internal relationships within 
a graph, where the embedding taken from GRU is 
used as the input embedding. The output of AM is a 
context, which is a 32-dimension vector combining 
short-term and long-term information. The setting of 
AM is similar to luong et al. [19].
Decision Making Network. The output of the deci-
sion-making network is |𝑁|, and the input is the con-
text from the AM. Softmax is used to generate the 
probability of each action (the activation function in 
the final layer is softmax).

Successor. A successor is an indicator of possible bad 
behaviors. We take the context as input, and the out-
put dimension is 1 (the successor value is a scalar).
Baseline Function. The baseline function consists 
of three 1 × 1 convolutional neural networks to extract 
state and constraint information. The output dimen-
sion is 1, a scalar.
Action encoder. The action encoder converts the last 
step action to a vector. The output is of size 16.

5. Experiments
To verify the effectiveness of our approach, we con-
ducted extensive experiments on the VRPTW on 
two different datasets: a generated dataset and the 
Solomon benchmark [27]. A well-known dataset for 
VRPTW studies, the Solomon benchmark, contains 
multiple instances in three scales: 25, 50, and 100. 
Like most learning-based methods, our approach re-
quires substantial training data, and its precision ad-
vantage is more reflected in statistics, it is necessary 
to build a generated dataset as the supplement of Sol-
omon benchmark which just has decades instances. 
Based on the following rules, we randomly generated 
100,000 training samples and 1,000 testing samples 
for each scale of the VRPTW1 and compared our ap-
proach to other baselines on two datasets.

5.1. Generated Dataset
The VRPTW is similar to the VRP, but each customer 
has its own time window. We generated 10, 20, 50, and 
100 nodes with random locations and demands [23]. 
Each node was randomly located in a two-dimension-
al discrete coordinate system with range [0,100], and 
its demand had a uniform distribution 𝐷𝑖 ∼ 𝑈(1,10) . 
The capabilities of vehicles were 20, 30, 40, and 50 for 
size 10, 20, 50, and 100, respectively.
Assume that at time step 𝑡, a vehicle with current 
load 𝑙𝑡 is preparing to send items to customer 𝑖, who 
requires ϵ𝑖 items. When ϵ𝑖 ≤ 𝑙𝑡, the vehicle can send 
the item, and the remaining load becomes 𝑙𝑡+1 = ϵ𝑖 − 𝑙𝑡. 
Otherwise, the trade can not be established. More-
over, when no customer can be satisfied, the vehicle is 
forced to return to the depot.

1 The source code can be visited in https://gitee.com/MARL_
Researcher/vrptw-generator.git

Figure 2 
Structure of policy, baseline, and successor networks. The 
structure has three parts: (a) the encoder network aims to 
convert states to embeddings; Ea, EsL, and EcL are encoders 
for action states and constraints, respectively; (b) the 
policy and successor; ht is the long-term hidden state for 
RNN, and context is useful information extracted from the 
attention model; and (c) baseline function
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where 𝑧𝑧 is the episode buffer. All the loss functions can 
be estimated through Monte Carlo sampling. The policy 
gradient with constraint-aware module and successor 
representation can be formed as Equation (17). 
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The pseudocode can be found in Algorithm 1. 
Algorithm 1 
Implicit Constraint-awareness policy optimization 

Algorithm 
1: Initializing parameters for actor, successor, and 

baseline function θ, λ, and η 
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3: while not convergence do 

4:     Sample 𝑠𝑠0 from the training dataset 

5:     Initializing the history information 𝑠𝑠0 
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7:     for 0 to the maximum of nodes do 
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12: Update θ, λ, and η through Equations (17), 
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Network Structure. The policy network structure has 
three parts: decision making, encoder, and attention 
mechanism [3, 23]. The first is used to choose the policy, 
and the second and third to encode the graph and capture 
valuable information. A gated recurrent unit is introduced 
to seize the long-term effects [5]. We leverage the 
attention mechanism output as the input of the successor 

function. For the baseline function, since the state 
and constraints are taken as input, we build the 
model without sharing variables with the policy 
networks. 

For full understanding of our network, we explain 
each structure. Our network structure, shown in 
Figure 2, is mainly built from Nazari et al. and 
Vinyals et al. [23, 31], and we make some 
improvements. Unless otherwise mentioned, the 
activation is ReLU [22].  
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VRP is to minimize the tour length, but the 
objective function in RL is always represented as 
maximizing the total reward. Therefore, we set the 
total reward in VRP as the negative tour length 

Input. In the VRPTW, we set the current state and 
constraints as input. The state 𝑠𝑠𝑡𝑡  for the VRP 
includes the location of the nodes, remaining load, 
and demand of customers. For VRPTW, since each 
customer has its own time window, we add two 
features to provide extra information: 1) the time 
window of each customer; and 2) the current time. 
Moreover, the previous action is also added as input 
to reveal the current location of the vehicle. The 
input size is 𝑏𝑏𝑎𝑎𝑡𝑡𝑐𝑐ℎ × 2 × |𝑁𝑁|  for the location of 
nodes and the time window. The size for other 
features is 𝑏𝑏𝑎𝑎𝑡𝑡𝑐𝑐ℎ × 1 × |𝑁𝑁|. 

Attention Mechanism. An attention mechanism 
(AM) captures the internal relationships within a 
graph, where the embedding taken from GRU is 
used as the input embedding. The output of AM is 
a context, which is a 32-dimension vector 
combining short-term and long-term information. 
The setting of AM is similar to luong et al. [19]. 

Decision Making Network. The output of the 
decision-making network is |𝑁𝑁|, and the input is the 
context from the AM. Softmax is used to generate 
the probability of each action (the activation 
function in the final layer is softmax). 
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The time window is the key difference between the 
VRP and VRPTW. Since the VRPTW must consider 
the time, the time step t no longer reveals the time 
interval. Here, we assume that each step indicates a 
transition to a new step, and we denote the time in-
terval as t̂. We formally illustrate the update of t and t̂ 
below. We assume the velocity of a vehicle is constant; 
hence, time is proportional to distance. To avoid the 
case when a vehicle will never reach some customers, 
the farthest distance from the depot 

 

 

Successor. A successor is an indicator of possible bad 
behaviors. We take the context as input, and the output 
dimension is 1 (the successor value is a scalar). 

Baseline Function. The baseline function consists of 
three 1 × 1 convolutional neural networks to extract state 
and constraint information. The output dimension is 1, a 
scalar. 

Action encoder. The action encoder converts the last step 
action to a vector. The output is of size 16. 

5. Experiments 
To verify the effectiveness of our approach, we 
conducted extensive experiments on the VRPTW on two 
different datasets: a generated dataset and the Solomon 
benchmark [27]. A well-known dataset for VRPTW 
studies, the Solomon benchmark, contains multiple 
instances in three scales: 25, 50, and 100. Like most 
learning-based methods, our approach requires 
substantial training data, and its precision advantage is 
more reflected in statistics, it is necessary to build a 
generated dataset as the supplement of Solomon 
benchmark which just has decades instances. Based on 
the following rules, we randomly generated 100,000 
training samples and 1,000 testing samples for each scale 
of the VRPTW1 and compared our approach to other 
baselines on two datasets. 

5.1. Generated Dataset 
The VRPTW is similar to the VRP, but each customer 
has its own time window. We generated 10, 20, 50, and 
100 nodes with random locations and demands [23]. 
Each node was randomly located in a two-dimensional 
discrete coordinate system with range [0,100], and its 
demand had a uniform distribution 𝐷𝐷𝑖𝑖 ∼ 𝑈𝑈(1,10) . The 
capabilities of vehicles were 20, 30, 40, and 50 for size 
10, 20, 50, and 100, respectively. 

Assume that at time step 𝑡𝑡, a vehicle with current load 𝑙𝑙𝑡𝑡 
is preparing to send items to customer 𝑖𝑖, who requires ϵ𝑖𝑖 
items. When ϵ𝑖𝑖 ≤ 𝑙𝑙𝑡𝑡, the vehicle can send the item, and 
the remaining load becomes 𝑙𝑙𝑡𝑡�1 = ϵ𝑖𝑖 − 𝑙𝑙𝑡𝑡. Otherwise, the 
trade can not be established. Moreover, when no 
customer can be satisfied, the vehicle is forced to return 
to the depot. 

The time window is the key difference between the VRP 
and VRPTW. Since the VRPTW must consider the time, 
the time step 𝑡𝑡 no longer reveals the time interval. Here, 
we assume that each step indicates a transition to a new 
step, and we denote the time interval as �̂�𝑡. We formally 
illustrate the update of 𝑡𝑡  and �̂�𝑡  below. We assume the 
velocity of a vehicle is constant; hence, time is 
proportional to distance. To avoid the case when a 
vehicle will never reach some customers, the farthest 
distance from the depot max

𝑖𝑖
𝑑𝑑0,𝑖𝑖 is smaller than its time 

                                                 
1 The source code can be visited in 
https://gitee.com/MARL_Researcher/vrptw-generator.git 

window 𝑤𝑤𝑖𝑖. 

Dynamic Function and Constraints. After 
distinguishing the time line and time step. we can 
define the transition function. The dynamic 
function and constraints of the VRPTW are based 
on the VRP. Suppose that at time step 𝑡𝑡, a vehicle 
is at location 𝑖𝑖 and decides to go to location 𝑗𝑗 with 
distance 𝑑𝑑𝑖𝑖,𝑗𝑗 . Recall that we set the velocity as a 
constant 𝑣𝑣 . Then the change of time is �̂�𝑡 ← �̂�𝑡 +
𝑑𝑑𝑖𝑖,𝑗𝑗

𝑣𝑣
; 𝑡𝑡 ← 𝑡𝑡 + 1. When the current time �̂�𝑡 is not in the 

range of customer 𝑖𝑖's time window, �̂�𝑡 ∉ 𝑤𝑤𝑖𝑖, the trade 
cannot be established. Similar to VRP, when no 
customer can be satisfied, the vehicle is required to 
return to the depot. 

Reward Setting. Common objective functions of 
the VRPTW include the delivery percentage, total 
tour length, or both [16]. In our experiments, we 
chose the total tour length as our objective function, 
and the total reward was the negative tour length. 

5.2. Experiment Setup 
We trained our model on a single GeForce RTX 
2080, using Adam as the optimizer [14]. For each 
scale of the model, we performed 10 cycles of 
training on a training set containing 100,000 
instances. The model is considered to have 
converged at the end of the training. The training 
time for the VRPTW is 4h, 7h, 11h, and 21h 
respectively, for 10, 20, 50, and 100 nodes, with a 
batch size of 256. Boltzmann exploration was used 
to improve the quality of our method. We used 
beam search (BS), a widely used optimization 
method in natural language processing, as a search 
strategy [13, 15], and γ was 0.95. 

Baseline. To reveal the effectiveness of our 
method, we considered the following baselines: 1. 
The genetic algorithm (GA) was used as the 
heuristic algorithm baseline, which performs well 
in the VRPTW [18]. 2. For the search algorithm, we 
chose the nearest neighbor (NN) [15]. 3. For the RL 
baseline method, we took a state-of-the-art RL 
method as the baseline [23]. 4. We also compared 
Google OR tools [9], a fast and portable software 
suite to solve combinatorial optimization problems, 
including VRP. 

Ablations. We conducted substantial ablation 
studies: 1) ICPO: our complete method. 2) ICPO 
w/o SR: remove the SR from our framework. 3) 
ICPO w/o KL: remove constraint-awareness from 
our framework. 4) Original policy gradient (PG): 
remove KL, SR, and constraints as input (the 
original PG method). 
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Dynamic Function and Constraints. After 
distinguishing the time line and time step. we can 
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function and constraints of the VRPTW are based 
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range of customer 𝑖𝑖's time window, �̂�𝑡 ∉ 𝑤𝑤𝑖𝑖, the trade 
cannot be established. Similar to VRP, when no 
customer can be satisfied, the vehicle is required to 
return to the depot. 

Reward Setting. Common objective functions of 
the VRPTW include the delivery percentage, total 
tour length, or both [16]. In our experiments, we 
chose the total tour length as our objective function, 
and the total reward was the negative tour length. 

5.2. Experiment Setup 
We trained our model on a single GeForce RTX 
2080, using Adam as the optimizer [14]. For each 
scale of the model, we performed 10 cycles of 
training on a training set containing 100,000 
instances. The model is considered to have 
converged at the end of the training. The training 
time for the VRPTW is 4h, 7h, 11h, and 21h 
respectively, for 10, 20, 50, and 100 nodes, with a 
batch size of 256. Boltzmann exploration was used 
to improve the quality of our method. We used 
beam search (BS), a widely used optimization 
method in natural language processing, as a search 
strategy [13, 15], and γ was 0.95. 

Baseline. To reveal the effectiveness of our 
method, we considered the following baselines: 1. 
The genetic algorithm (GA) was used as the 
heuristic algorithm baseline, which performs well 
in the VRPTW [18]. 2. For the search algorithm, we 
chose the nearest neighbor (NN) [15]. 3. For the RL 
baseline method, we took a state-of-the-art RL 
method as the baseline [23]. 4. We also compared 
Google OR tools [9], a fast and portable software 
suite to solve combinatorial optimization problems, 
including VRP. 

Ablations. We conducted substantial ablation 
studies: 1) ICPO: our complete method. 2) ICPO 
w/o SR: remove the SR from our framework. 3) 
ICPO w/o KL: remove constraint-awareness from 
our framework. 4) Original policy gradient (PG): 
remove KL, SR, and constraints as input (the 
original PG method). 

 

. When the current time t̂ is 
not in the range of customer i’s time window, t̂ ∉ 𝑤𝑖, 
the trade cannot be established. Similar to VRP, when 
no customer can be satisfied, the vehicle is required to 
return to the depot.
Reward Setting. Common objective functions of the 
VRPTW include the delivery percentage, total tour 
length, or both [16]. In our experiments, we chose the 
total tour length as our objective function, and the to-
tal reward was the negative tour length.

5.2. Experiment Setup
We trained our model on a single GeForce RTX 2080, 
using Adam as the optimizer [14]. For each scale of 
the model, we performed 10 cycles of training on a 
training set containing 100,000 instances. The mod-
el is considered to have converged at the end of the 
training. The training time for the VRPTW is 4h, 7h, 
11h, and 21h respectively, for 10, 20, 50, and 100 nodes, 
with a batch size of 256. Boltzmann exploration was 
used to improve the quality of our method. We used 
beam search (BS), a widely used optimization method 
in natural language processing, as a search strategy 
[13, 15], and γ was 0.95.
Baseline. To reveal the effectiveness of our method, 
we considered the following baselines: 1. The genetic 
algorithm (GA) was used as the heuristic algorithm 
baseline, which performs well in the VRPTW [18]. 2. 
For the search algorithm, we chose the nearest neigh-

bor (NN) [15]. 3. For the RL baseline method, we took 
a state-of-the-art RL method as the baseline [23]. 4. 
We also compared Google OR tools [9], a fast and por-
table software suite to solve combinatorial optimiza-
tion problems, including VRP.
Ablations. We conducted substantial ablation stud-
ies: 1) ICPO: our complete method. 2) ICPO w/o SR: 
remove the SR from our framework. 3) ICPO w/o KL: 
remove constraint-awareness from our framework. 
4) Original policy gradient (PG): remove KL, SR, and 
constraints as input (the original PG method).

5.3. Results
Performance. Table 1 presents the results of several 
algorithms run on the generated dataset where the ca-
pabilities of vehicles were 20, 30, 40, 50 for size 10, 20, 
50, 100, respectively and each size contains 1000 in-
stances. Every two columns present the mean of total 
distance and total CPU time in a kind of environment 
with different number of nodes. As shown in Table 
1, our approaches dramatically outperformed other 
baselines in most VRPTW environments, and they 
had the fewest outliers. In particular, the genetic algo-
rithm and OR-tools solved the problem of fast deteri-
oration under the large-scale problem. We think this 
is because those methods lack sufficient numbers of 
iterations in a reasonable time.
Moreover, we find that as the size of the VRPTW in-
creases, our method becomes better than RL meth-
od baselines. This is because when the size of the 
VRPTW increases, the constraints more seriously 
disturb the performance of the solver, and without 
considering the constraints, the result will be much 
worse.
Table 2 presents the results for the Solomon bench-
mark. The best known solution is reported by Solo-
mon Dataset [27]. Since this benchmark had insuf-
ficient data to train the neural network models, we 
pre-trained the model on the generated dataset. In 
addition, we employed beam search to improve our 
solutions at rollout. From the results, our approach 
outperformed the RL method.
Runtime. We compared the runtimes of our method 
to baselines, as shown in Figure 3. Due to the great 
disparity of methods (ours only used 14 seconds, 
while OR-tools took about 2 minutes in the VRPTW 
50 to calculate 1000 instances), we took the log2 of 
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Methods
VRPTW 10, Cap 20 VRPTW 20, Cap 30 VRPTW 50, Cap 40 VRPTW 100, Cap 50

Mean Time Mean Time Mean Time Mean Time

GA 5.34 43s 8.76 237s 19.05 1466s 32.61 25681s

NN 6.71 6.83s 10.57 8.83s 19.31 14.43s 29.97 23.72s

OR-tools 5.34 14.61s 8.54 29.18s 17.47 116.85s 28.82 457.77s

RL 5.79 5.38s 9.53 8.96s 17.44 13.88s 26.96 23.28s

ICPO 5.37 5.61s 8.07 9.31s 16.62 14.18s 23.51 24.95s

Table 1
Mean distance and CPU times of compared methods. s means seconds

Table 2
Results for the Solomon benchmark

Methods
Best Known 

Solution RL ICPO ICPO_BS(5)

Veh. Dist. Veh. Dist. Gaps Veh. Dist. Gaps Veh. Dist. Gaps

C1(25) 3 191.3 3 226.9 18.6 3 197.8 3.4 3 191.3 0

C2(25) 2 214.5 2 245.1 14.3 2 224.1 4.5 2 214.5 0

R1(25) 6 530.5 8 629.6 18.7 6 542.6 2.3 6 530.5 0

R2(25) 3 391.4 4 428.3 9.4 3 403.5 3.1 3 391.4 0

RC1(25) 4 461.1 5 507.4 10 5 489.4 6.1 4 461.1 0

RC2(25) 3 338 5 388.1 14.8 3 358.6 6.1 3 338 0

C1(50) 5 362.4 6 425.9 17.5 5 376.7 3.9 5 362.4 0

C2(50) 3 359.8 4 426.6 18.6 4 381.7 6.1 3 371.3 3.2

R1(50) 12 1044 14 1209.7 15.9 13 1128.4 8.1 13 1103.4 5.7

R2(50) 6 791.9 9 1011.4 27.37 8 892.6 12.7 7 849.7 7.3

RC1(50) 8 994 11 1130.3 19.7 10 1073.6 13.7 9 1057.4 6.4

RC2(50) 5 684.8 7 847.6 23.8 6 768.9 12.3 6 730 6.6

C1(100) 10 827.4 12 1104.1 33.5 11 927.6 12.1 10 871.3 5.3

C2(100) 3 585.8 5 691.8 18 4 633.9 8.2 3 608.7 3.9

R1(100) 18 1466.6 21 1820.1 24.1 20 1742.6 18.8 19 1583.4 7.9

R2(100) 3 1191.7 5 1665.7 39.8 4 1354.2 13.6 4 1288.2 8.1

RC1(100) 14 1457.4 19 1977.9 35.7 16 1609.1 10.4 15 1583.7 8.7

RC2(100) 9 1261.8 12 1625.5 28.8 10 1436.9 13.9 9 1317.4 4.4
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GA and OR-Tools to make this figure legible. Howev-
er, the runtimes of these two methods were so long 
that even in log form, the gap was still obvious. Thus, 
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method baselines. This is because when the size of the 
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the performance of the solver, and without considering 
the constraints, the result will be much worse. 
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the neural network models, we pre-trained the model on 
the generated dataset. In addition, we employed beam 
search to improve our solutions at rollout. From the 
results, our approach outperformed the RL method 

Runtime. We compared the runtimes of our method to 
baselines, as shown in Figure 3. Due to the great disparity 
of methods (ours only used 14 seconds, while OR-tools 
took about 2 minutes in the VRPTW 50 to calculate 1000 
instances), we took the log2 of GA and OR-Tools to make 
this figure legible. However, the runtimes of these two 
methods were so long that even in 𝑙𝑙𝑙𝑙𝑙𝑙 form, the gap was 
still obvious. Thus, we used two y-axes: the y-axis on the 
right is for GA and OR-Tools, and that on the left is for 
the others. We can find that our method is in the middle 
among all the methods as regards speed (an acceptable 
running time). Combining Figure 3 and Table 2, we can 
see that although NN is the fastest, its performance is 
worst, hence it is hard to use in practice, while ours can 
maintain a good balance between runtime and solution 
quality. 
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6. Conclusion 
We developed a constraint-awareness RL method 
to capture the information of constraints to improve 
performance. Specifically, we changed the 
VRPTW and the PG method to the DCMDP. To 
capture the constraints, we designed a constraint-
awareness module to reduce the probability of 
actions against the constraints and enhance 
performance. For bad behaviors that could decrease 
the total reward, we leveraged SR as the indicator 
to diminish the occurrence of those actions. We 
designed a VRPTW training scheme, and the 
experiments on the generated datasets and Solomon 
benchmark revealed that our methods outperform 
other competition methods.  

In the future, we will focus on how to implement 
the method in practice and consider situations in 
which agents are competitive. 
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We can find that our method is in the middle among 
all the methods as regards speed (an acceptable run-
ning time). Combining Figure 3 and Table 2, we can 
see that although NN is the fastest, its performance is 
worst, hence it is hard to use in practice, while ours 
can maintain a good balance between runtime and 
solution quality.
Ablations. As shown in Table 1, the complete ver-
sion of ICPO achieved the highest scores of the three 
methods. From the ablation presented in Figure 4, we 
find that ICPO w/o KL is worse than ICPO w/o SR, 
revealing that constraint awareness plays an import-
ant role in getting a good solution, which agrees with 
our theory. Comparing with original PG, the perfor-
mance of our method is dramatically better than that 
of original PG, revealing that ICPO has an advantage 
in VRPTW.

6. Conclusion
We developed a constraint-awareness RL method to 
capture the information of constraints to improve 
performance. Specifically, we changed the VRPTW 
and the PG method to the DCMDP. To capture the con-
straints, we designed a constraint-awareness module 
to reduce the probability of actions against the con-
straints and enhance performance. For bad behaviors 
that could decrease the total reward, we leveraged SR 
as the indicator to diminish the occurrence of those 
actions. We designed a VRPTW training scheme, and 
the experiments on the generated datasets and Solo-
mon benchmark revealed that our methods outper-
form other competition methods. 
In the future, we will focus on how to implement the 
method in practice and consider situations in which 
agents are competitive.
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