
Information Technology and Control 2022/1/51126

Constraint-aware Policy
Optimization to Solve the
Vehicle Routing Problem
with Time Windows

ITC 1/51
Information Technology
and Control
Vol. 51 / No. 1 / 2022
pp. 126-138
DOI 10.5755/j01.itc.51.1.29924

Constraint-aware Policy Optimization to Solve the Vehicle
Routing Problem with Time Windows

Received 2021/10/02 Accepted after revision 2022/01/25

 http://dx.doi.org/10.5755/j01.itc.51.1.29924

HOW TO CITE: Zhang, R., Yu, R., Xia, W. (2022). Constraint-aware Policy Optimization to Solve the Vehicle Routing Problem with Time
Windows. Information Technology and Control, 51(1), 126-138. https://doi.org/10.5755/j01.itc.51.1.29924

Corresponding author: xiawei@hfut.edu.cn

Renchi Zhang
School of Management, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Process
Optimization and Intelligent Decision-making, Ministry of Education, Hefei 230009, China;
e-mail: rczhang@mail.hfut.edu.cn

Runsheng Yu
Department of Computer Science, Hong Kong University of Science and Technology, Clear Water Bay, HKG HKSAR;
e-mail: runshengyu@gmail.com

Wei Xia
School of Management, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Process
Optimization and Intelligent Decision-making, Ministry of Education, Hefei 230009, China;
e-mail: xiawei@hfut.edu.cn

The vehicle routing problem with time windows (VRPTW) as one of the most known combinatorial opera-
tions (CO) problem is considered to be a tough issue in practice and the main challenge of that is to find the
approximate solutions within a reasonable time. In recent years, reinforcement learning (RL) based methods
have gained increasing attention in many CO problems, such as the vehicle routing problems (VRP), due to
their enormous potential to efficiently generate high-quality solutions. However, neglecting the information

127Information Technology and Control 2022/1/51

between the constraints and the solutions makes previous approaches performance unideal in some strongly
constrained problems, like VRPTW. We present the constraint-aware policy optimization (CPO) for VRPTW
that can let the agent learn the constraints as a representation of the whole environment to improve the gener-
alization of RL methods. Extensive experiments on both the Solomon benchmark and the generated datasets
demonstrate that our approach significantly outperforms other competition methods.
KEYWORDS: Deep reinforcement Learning, Pointer network, Vehicle routing Problem, Gradient methods,
Kullback-Leibler divergence, Constrained Markov Decision Processes.

1. Introduction
The vehicle routing problem (VRP), as an enduring
problem of operations research, has been studied for
decades due to its wide application in various fields,
like logistics, transportation, and manufacturing [6].
Such problem aims to find the optimal routes for avail-
able vehicles to travel in order to satisfy the demands
of customers under certain constraints [16]. Many
exact, approximate, and heuristic methods have been
proposed, some of them are state-of-the-art [7, 8, 25,
30]. With the development of deep neural networks,
deep reinforcement learning (DRL)-based methods,
as a kind of heuristic method, have gained attention
due to their enormous potential to efficiently generate
high-quality solutions [3, 13, 23].
The DRL-based method is to solve the VRP by train-
ing a neural network (NN) model that can map be-
tween the state space and the optimal solution. The
model consists of many components, the most repre-
sentative of which is the representation learning and
reinforcement learning (RL). Representation learn-
ing can exact the efficient feature vectors from the
raw data, while RL is to train the whole NN without
the optimal solutions as the labels. Recent research
mainly focuses on the improvement of representation
learning to advance performance. Vinyals et al. [31]
presents the pointer network that first treats each op-
tion element as a pointer and employs the recurrent
neural networks (RNN) to represent the dynamic
changes of the features. Bello et al. [3] introduces the
attention mechanism to put weights on the different
features vectors to improve the probabilities of the
pointing mechanism. Nazari et al. [23] and Kool et al.
[15] design a method with novel attention mechanism
respectively that outperforms the state of the art.
However, the previous work lacks further research on
constraints, especially its impact on reinforcement

learning. Because reinforcement learning is a way of
learning through trial-and-error exploration [3, 13,
15, 23], the quality of trained policy is greatly affected
by the exploration strategy under constraints that de-
fine the boundary of the solution space [26, 28]. When
using reinforcement learning to train neural network
models, these methods only mask the solutions that
do not satisfy the constraints through ‘mask’, and do
not consider how to make the agent aware of the ex-
istence of constraints in a certain state. The neglect
of information contained in constraints makes them
difficult to find the optimal solutions. Intuitively, as
constraints become more complex, the awareness of
constraints becomes more necessary.
The VRP with time windows (VRPTW), as a variant
of VRP with complex time window constraints, has
been widely studied and is (𝒩𝒫)-hard to solve. In
such problem, a fleet of identical vehicles serve mul-
tiple customers along optimal routes subject to the
following constraints: (1) each vehicle can only start
from, end at, and acquire items from the depot; (2)
each vehicle must visit customers within a specified
time interval (time window); (3) total demands of
customers served by a single vehicle cannot exceed its
capacity; and (4) all demands must be satisfied. The
objective is to minimize the sum distance of all tours.
The existence of mass complex constraints limits the
performance of previous methods, so it is necessary
to improve the learning process of RL.
To investigate these problems, we present con-
straint-aware policy optimization (CPO) to impose
on our agent to learn the probability distribution
of constraints. A method based on Kullback-Lei-
bler (KL) divergence is constructed to calculate
the distance of probability distribution between
the constraint and the policy, which can obtain the

Information Technology and Control 2022/1/51128

gradient to guide learning. Our work comprises four
main steps. 1) To formally represent the VRPTW
in a sequential decision process for RL, we convert
the constrained route planning problem to a de-
terministic constrained Markov decision process
(DCMDP), to which we extend the original policy
gradient method. 2) To guide the policy to learn the
features of constraints, a constraint-aware training
scheme is proposed, which can enhance our meth-
od’s performance, including a predictive part to pre-
dict the current constraints according to the state
information, and an inference part to make deci-
sions according to the constraints. 3) To alleviate the
sparse reward problem, we use successor represen-
tation (SR) as an indicator to guide the choice of ac-
tions. 4) An RL training framework for the VRPTW
and experiments on the Solomon benchmark and the
generated datasets show that our method outper-
forms other competition algorithms.
The remainder of this paper is organized as follows.
Section 2 provides an overview of related works. Sec-
tion 3 discuss the basic ideas of the deterministic
constrained Markov decision process, VRPTW, and
successor representation. Three key components of
the CPO are presented in Section 4. In order to verify
our method, the experiments are shown in Section 5.
In Section 6, we present the conclusion.

2. Related Work
Our work is closely related to integral linear pro-
gramming, heuristic approaches of the VRP, learn-
ing-based routing, and constrained RL.

2.1. Integral Linear Programming and
Heuristic Approaches

These approaches are commonly used to solve the
VRP and its variants, and are formulated as mixed in-
teger linear programming (MILP) problems.
Branch and bound is one of the most famous exact
algorithms for the VRPTW. It represents candidate
solutions as a tree, and prunes solutions that are be-
yond the slack upper bound [30]. This approach can
find the optimal solutions, but it becomes intractable
as the number of decision objects increases. Con-

versely, heuristic approaches, such as genetic and
ant colony algorithms, prefer scalability to optimali-
ty, and thus can find approximate solutions of large-
scale problems in a relatively short time. However,
heuristic algorithms are sensitive to parameters and
weak in robustness. All the above methods are de-
signed to solve problems case-by-case. They have to
search solutions anew when they face a new instance,
which is time-consuming. That is the major obstacle
of these methods in practice.

2.2. Learning-Based Routing
Learning-based routing approaches are common due
to their efficient solutions and stable performance.
Their methods are based on either supervised learn-
ing (SL) or RL. Introduced by Hopfield et al. [12],
SL-based methods aim to leverage neural networks
to find solutions in a supervised manner. Since they
require expert guidance, SL methods are intractable
in environments where traditional methods cannot
work [13, 17]. RL-based methods attempt to find ap-
proximate solutions through trial and error [3, 13, 15,
23]. While capable of good performance, they do not
work well when the constraints become intricate. Our
method is different in that we attempt to enhance the
performance through a constraint-awareness learn-
ing scheme and an indicator to guide our policy to
learn from constraints.

2.3. Constrained Reinforcement Learning
Constrained RL is a trending topic because in re-
al-world agents are strictly restricted to avoid dan-
gerous actions [1, 4, 32]. Widely used methods include
expert-guided action intervention [32], Lagrangian
relaxation [29], and probability guided exploration
[4]. We take motivation from them, but VRP con-
straints are deterministic to the environment (as dis-
cussed in the next section). We leverage these prop-
erties to develop a training scheme that makes our
method more robust and stable.

3. Background
We discuss the basic ideas of the deterministic con-
strained Markov decision process (MDP), VRPTW,
and successor representation.

129Information Technology and Control 2022/1/51

3.1. DCMDP
A deterministic constrained Markov decision process
can be formulated as a tuple ⟨ S, A, R, p, T, C ⟩, where 𝑆
is a set of states, 𝐴 is a set of actions, and 𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡+1)
is a transition function. Different from the standard
MDP method, a set of constraints 𝐶 is represented in
deterministic constrained MDP, which varies by the
environment (load constraints in VRP, and load and
time- window constraints in VRPTW). Let 𝑐𝑖

t: 𝑆 →
{0,1} indicate the constraint for action 𝑖 at step 𝑡; 𝑐𝑖

t = 0
means that the constraint exists, and 𝑐𝑖

t = 1 means that
the constraint non-exists. 𝑟 : 𝑆 × 𝐴 × 𝑆 → 𝑅 is the reward
function. The goal of RL is to find a policy π: 𝑆 × 𝐶 → 𝐴
that maximizes the expected return 𝑅 = ∑𝑇

t=1 γ𝑡-1 𝑟𝑡 in the
trajectory τ ≔ (𝑠1, 𝑐1, 𝑎1 … , 𝑠𝑇, 𝑐𝑇, 𝑎𝑇) within 𝑇 steps. γ is
a discount factor.
The DCMDP is a special case of a constrained MDP
[2]whose constraints are deterministic, meaning that
𝑝(𝑐𝑡|𝑠𝑡) = 1 (𝑝(𝑐𝑡|𝑠𝑡) = 1 indicates that the relationship
between constraints and the environment is certain;
hence, learning the constraints implies learning the
environment as well) and is known to the agent before
taking action. This property leads to a different solver
from Altman et al. [2].

3.2. VRPTW
For VRP, suppose there exist a depot and |𝑁| − 1 cus-
tomers in different locations, for |𝑁| total nodes,
where 𝑁 is the set of nodes. The depot is a special
node at which vehicles must start, end, and collect
items. For any nodes 𝑖, 𝑗, we have 𝑑𝑖,𝑗 > 0, ∀𝑖, 𝑗 ∈ 𝑁,
𝑖 ≠ 𝑗, where 𝑑𝑖,𝑗 is the distance between nodes 𝑖 and 𝑗.
The vehicle sends items to customers and should re-
turn to the depot when its residual carrying capacity
cannot satisfy any customer demand. Given enough
vehicles having the same capability 𝑙 and starting
from the depot, our goal (objective) is to satisfy all
the customers' demands with the shortest path. The
environment and goal of the VRPTW are similar to
those of the VRP except that each customer owns
its individual available time wi (or time windows).
Moreover, we assume that all vehicles have the same
velocity 𝑣 and must arrive within a customer's time
window.
VRP are often represented as MILP. However, MILP
does not fit the RL form well (since RL is always rep-

resented as a Markov decision process) and to put it
in the RL framework requires a transformation. It has
been proved that a traveling salesman problem (TSP)
can be transformed to an MDP [3]. To strengthen this
conclusion, we provide a lemma.
Lemma 1. Standard VRP and VRPTW problems can
be converted to DCMDP.
Proof 1. Through giant-tour representation [10], the
VRP and VRPTW can be treated as a special form of
the TSP (i.e., in some states, some actions are restrict-
ed and cannot be chosen). According to Bello et al. [3],
the TSP can be transformed to an MDP. Thus, we can
conclude that the VRP and VRPTW can be formed as
a DCMDP.
Remark. Lemma 1 reveals the interesting phenome-
na that we can formulate VRP as a DCMDP and repre-
sent the load and time windows as constraints.
The trajectory probability of the total process for the
DCMDP is

obstacle of these methods in practice.

2.2. Learning-Based Routing
Learning-based routing approaches are common due to
their efficient solutions and stable performance. Their
methods are based on either supervised learning (SL) or
RL. Introduced by Hopfield et al. [12], SL-based
methods aim to leverage neural networks to find
solutions in a supervised manner. Since they require
expert guidance, SL methods are intractable in
environments where traditional methods cannot work
[13, 17]. RL-based methods attempt to find approximate
solutions through trial and error [3, 13, 15, 23]. While
capable of good performance, they do not work well
when the constraints become intricate. Our method is
different in that we attempt to enhance the performance
through a constraint-awareness learning scheme and an
indicator to guide our policy to learn from constraints.

2.3. Constrained Reinforcement Learning

Constrained RL is a trending topic because in real-world
agents are strictly restricted to avoid dangerous actions
[1, 4, 32]. Widely used methods include expert-guided
action intervention [32], Lagrangian relaxation [29], and
probability guided exploration [4]. We take motivation
from them, but VRP constraints are deterministic to the
environment (as discussed in the next section). We
leverage these properties to develop a training scheme
that makes our method more robust and stable.

3. Background
We discuss the basic ideas of the deterministic
constrained Markov decision process (MDP), VRPTW,
and successor representation.

3.1. DCMDP
A deterministic constrained Markov decision process
can be formulated as a tuple ⟨ S,  A,  R,  p,  T,  C ⟩, where 𝑆𝑆 is
a set of states, 𝐴𝐴 is a set of actions, and 𝑝𝑝(𝑠𝑠𝑡𝑡�1|𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡�1) is
a transition function. Different from the standard MDP
method, a set of constraints 𝐶𝐶 is represented in
deterministic constrained MDP, which varies by the
environment (load constraints in VRP, and load and time-
window constraints in VRPTW). Let 𝑐𝑐𝑡𝑡

𝑖𝑖 : 𝑆𝑆 → {0,1}
indicate the constraint for action 𝑖𝑖 at step 𝑡𝑡; 𝑐𝑐𝑡𝑡

𝑖𝑖 = 0 means
that the constraint exists, and 𝑐𝑐𝑡𝑡

𝑖𝑖 = 1 means that the
constraint non-exists. 𝑟𝑟 : 𝑆𝑆 × 𝐴𝐴 × 𝑆𝑆 → 𝑅𝑅 is the reward
function. The goal of RL is to find a policy π: 𝑆𝑆 × 𝐶𝐶 → 𝐴𝐴
that maximizes the expected return 𝑅𝑅 = ∑ γ𝑡𝑡�1𝑇𝑇

𝑡𝑡�1 𝑟𝑟𝑡𝑡 in the
trajectory τ ≔ (𝑠𝑠1, 𝑐𝑐1, 𝑎𝑎1 … , 𝑠𝑠𝑇𝑇, 𝑐𝑐𝑇𝑇, 𝑎𝑎𝑇𝑇) within 𝑇𝑇 steps. γ is
a discount factor.

The DCMDP is a special case of a constrained MDP
[2]whose constraints are deterministic, meaning that
𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = 1 (𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = 1 indicates that the relationship
between constraints and the environment is certain;
hence, learning the constraints implies learning the
environment as well) and is known to the agent before
taking action. This property leads to a different solver

from Altman et al. [2].

3.2. VRPTW
For VRP, suppose there exist a depot and |𝑁𝑁| − 1
customers in different locations, for |𝑁𝑁| total nodes,
where 𝑁𝑁 is the set of nodes. The depot is a special
node at which vehicles must start, end, and collect
items. For any nodes 𝑖𝑖, 𝑗𝑗, we have 𝑑𝑑𝑖𝑖,𝑗𝑗 > 0, ∀𝑖𝑖, 𝑗𝑗 ∈
𝑁𝑁, 𝑖𝑖 ≠ 𝑗𝑗, where 𝑑𝑑𝑖𝑖,𝑗𝑗 is the distance between nodes 𝑖𝑖
and 𝑗𝑗. The vehicle sends items to customers and
should return to the depot when its residual
carrying capacity cannot satisfy any customer
demand. Given enough vehicles having the same
capability 𝑙𝑙 and starting from the depot, our goal
(objective) is to satisfy all the customers' demands
with the shortest path. The environment and goal of
the VRPTW are similar to those of the VRP except
that each customer owns its individual available
time wi (or time windows). Moreover, we assume
that all vehicles have the same velocity 𝑣𝑣 and must
arrive within a customer's time window.

VRP are often represented as MILP. However,
MILP does not fit the RL form well (since RL is
always represented as a Markov decision process)
and to put it in the RL framework requires a
transformation. It has been proved that a traveling
salesman problem (TSP) can be transformed to an
MDP [3]. To strengthen this conclusion, we
provide a lemma.

Lemma 1 Standard VRP and VRPTW problems
can be converted to DCMDP.

Proof 1 Through giant-tour representation [10], the
VRP and VRPTW can be treated as a special form
of the TSP (i.e., in some states, some actions are
restricted and cannot be chosen). According to
Bello et al. [3], the TSP can be transformed to an
MDP. Thus, we can conclude that the VRP and
VRPTW can be formed as a DCMDP.

Remark. Lemma 1 reveals the interesting
phenomena that we can formulate VRP as a
DCMDP and represent the load and time windows
as constraints.

The trajectory probability of the total process for
the DCMDP is

𝑝𝑝(τ) = 𝑝𝑝(𝑠𝑠1, 𝑐𝑐1, 𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡 … , 𝑠𝑠𝑇𝑇, 𝑐𝑐𝑇𝑇, 𝑎𝑎𝑇𝑇|θ)

= 𝑝𝑝(𝑠𝑠1) � π(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; θ)𝑝𝑝(𝑠𝑠𝑡𝑡�1|𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡)𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)
𝑇𝑇

𝑡𝑡�1

,

（1）

where 𝜃𝜃 represents the weights of the policy, 𝑠𝑠𝑇𝑇�1
is the terminal state, and 𝑝𝑝(𝒔𝒔𝑻𝑻�𝟏𝟏|𝒔𝒔𝑻𝑻, 𝒂𝒂𝑻𝑻) = 1. This
trajectory is based on the probability graph model
shown in figure 1. Specifically, for the VRP, 𝒄𝒄
means the load constraints, while for the VRPTW,
𝒄𝒄 means the constraints of both the load and time
windows of customers. Our goal is to find an

(1)

where 𝜃 represents the weights of the policy, 𝑠𝑇+1 is
the terminal state, and 𝑝(𝒔𝑻+𝟏|𝒔𝑻, 𝒂𝑻) = 1. This trajec-
tory is based on the probability graph model shown
in figure 1. Specifically, for the VRP, 𝒄 means the load
constraints, while for the VRPTW, 𝒄 means the con-
straints of both the load and time windows of custom-
ers. Our goal is to find an optimal policy 𝜋∗ that maxi-
mizes the total reward 𝑅.

3.3. Successor Representation
Introduced to describe cognitive phenomena in the
human brain, successor representation (SR) focus-
es on the extraction of important states to aid train-
ing [20]. We leverage SR as a behavior indicator, re-
garding states that may lead to a lower total reward
as ill-famed, and using SR as a behavior indicator to
avoid actions to those states. For example, in the VRP,
we might not be willing to let our vehicle return too
soon to the depot; the ill-famed state is the situation
in which the agent is at the depot without having de-
pleted its load.

Information Technology and Control 2022/1/51130

4. Methodology
Our methodology has three parts: first, we give the
policy gradient for the DCMDP to formally represent
a simple solver for VRP; then, a constraint-awareness
module is represented to diminish actions against
constraints; finally, an SR-based method is designed
to address the sparse reward problem.

4.1. Policy Gradient in DCMDP
A policy gradient for the DCMDP must be built to
train our policy function. The trajectory probability
𝑝(𝜏)reveals the rollout process. Taking logarithms on
both sides, we have

optimal policy 𝜋𝜋∗ that maximizes the total reward 𝑅𝑅.

3.3. Successor Representation
Introduced to describe cognitive phenomena in the
human brain, successor representation (SR) focuses on
the extraction of important states to aid training [20]. We
leverage SR as a behavior indicator, regarding states that

may lead to a lower total reward as ill-famed, and
using SR as a behavior indicator to avoid actions to
those states. For example, in the VRP, we might not
be willing to let our vehicle return too soon to the
depot; the ill-famed state is the situation in which
the agent is at the depot without having depleted its
load.

Figure 1
The rollout processes. A vehicle starts from the depot and must deliver items to customers (represented as 𝑁𝑁1 …𝑁𝑁4). For example,
in the first step, nodes 1 and 3 are banned for some reason (the arrow from constraint to action is black). Thus, actions can only be
chosen in 𝑎𝑎1 and 𝑎𝑎4 . Under the greedy strategy, the vehicle chooses the action with the maximum probability. This continues from
step 1 to T, forming the rollout trajectory.

4. Methodology
Our methodology has three parts: first, we give the policy
gradient for the DCMDP to formally represent a simple
solver for VRP; then, a constraint-awareness module is
represented to diminish actions against constraints;
finally, an SR-based method is designed to address the
sparse reward problem.

4.1. Policy Gradient in DCMDP
A policy gradient for the DCMDP must be built to train
our policy function. The trajectory probability 𝑝𝑝(𝜏𝜏)
reveals the rollout process. Taking logarithms on both
sides, we have

log 𝑝𝑝 (𝜏𝜏) = log 𝑝𝑝 (𝒔𝒔𝟏𝟏) + ∑ log 𝜋𝜋 (𝒂𝒂𝒕𝒕|𝒔𝒔𝒕𝒕, 𝒄𝒄𝒕𝒕; 𝜃𝜃)𝑇𝑇
𝑡𝑡�1 +

log 𝑝𝑝 (𝒔𝒔𝒕𝒕�𝟏𝟏|𝒔𝒔𝒕𝒕, 𝒂𝒂𝒕𝒕) + log 𝑝𝑝 (𝒄𝒄𝒕𝒕|𝒔𝒔𝒕𝒕) （2）

To generalize, we take the expectation of trajectories, and
with Jensen‘s inequality [24], the expectation can be
formed as

log𝐸𝐸τ∼𝑝𝑝(⋅) 𝑝𝑝(τ) ≥ 𝐸𝐸τ∼𝑝𝑝(⋅) �log 𝑝𝑝 (𝑠𝑠1) +

∑ log 𝜋𝜋 (𝒂𝒂𝒕𝒕|𝒔𝒔𝒕𝒕, 𝒄𝒄𝒕𝒕; 𝜃𝜃)𝑇𝑇
𝑡𝑡�1 + log 𝑝𝑝 (𝑠𝑠𝑡𝑡�1|𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) + log 𝑝𝑝 (𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�.

 （3）

The right side of the equation is the lower bound of the
𝑙𝑙𝑙𝑙𝑙𝑙 form of the expectation of trajectories. With

reinforcement learning [28], the function
𝐸𝐸τ∼𝑝𝑝(⋅)�log 𝑝𝑝 (τ)𝑅𝑅(τ)� can be written as

𝐸𝐸τ∼𝑝𝑝(⋅) ��log 𝑝𝑝 (𝑠𝑠1) + ∑ log 𝜋𝜋 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃)𝑇𝑇
𝑡𝑡�1 +

log 𝑝𝑝 (𝑠𝑠𝑡𝑡�1|𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) + log 𝑝𝑝 (𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� 𝑅𝑅(τ)� （4）

However, this form of policy gradient may lead to
high variance, which restricts the ability to
generalize. To reduce the variance, we define the
baseline function 𝑏𝑏(𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡) : 𝐶𝐶 × 𝑆𝑆 → 𝑅𝑅 , which we
show in Equation (5) is unbiased:

∇θ𝐸𝐸
π�𝑎𝑎𝑡𝑡�𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; θ�

�𝑏𝑏(𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡) log π (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; θ)� =

𝑏𝑏(𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡)
�
�θ ∫π(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; θ)d 𝑎𝑎𝑡𝑡 = 0 (5)

𝑏𝑏(𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡) is similar to the baseline methods in
standard variance reduction RL. Differently, we
extend the baseline function with constraints as
input.

However, 𝑏𝑏(𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡) is for the one-step baseline
function. To extend it to the trajectory form, we can
simply sum them up as 𝑏𝑏�(κ) = ∑ 𝑏𝑏(𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡)𝑇𝑇

𝑡𝑡�1 , or
build a neural network to represent it as 𝑏𝑏�(κ; λ) ,
where \lambda denotes the weights for the neural
network and κ = [𝑠𝑠1, 𝑐𝑐1, 𝑠𝑠2, 𝑐𝑐2 … 𝑠𝑠𝑇𝑇, 𝑐𝑐𝑇𝑇] is the vector
of whole states and constraints for a trajectory.
Since 𝑝𝑝(𝑠𝑠𝑡𝑡�1|𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) and 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) are irrelevant to θ,
based on the analysis above, we have the policy
gradient for DCMDP:

(2)

To generalize, we take the expectation of trajectories,
and with Jensen‘s inequality [24], the expectation can
be formed as

log𝐸𝐸τ∼𝑝𝑝(⋅) 𝑝𝑝(τ) ≥ 𝐸𝐸τ∼𝑝𝑝(⋅) �log 𝑝𝑝 (𝑠𝑠1) +

∑ log 𝜋𝜋 (𝒂𝒂𝒕𝒕|𝒔𝒔𝒕𝒕, 𝒄𝒄𝒕𝒕; 𝜃𝜃)𝑇𝑇
𝑡𝑡�1 +log 𝑝𝑝(𝑠𝑠𝑡𝑡�1|𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡)+log𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�.

（ ）

(3)

The right side of the equation is the lower bound of the

𝑙𝑜𝑔 form of the expectation of trajectories. With rein-
forcement learning [28], the function 𝐸τ∼𝑝(⋅)(log 𝑝(τ)
𝑅(τ)) can be written as

optimal policy 𝜋𝜋∗ that maximizes the total reward 𝑅𝑅.

3.3. Successor Representation
Introduced to describe cognitive phenomena in the
human brain, successor representation (SR) focuses on
the extraction of important states to aid training [20]. We
leverage SR as a behavior indicator, regarding states that

may lead to a lower total reward as ill-famed, and
using SR as a behavior indicator to avoid actions to
those states. For example, in the VRP, we might not
be willing to let our vehicle return too soon to the
depot; the ill-famed state is the situation in which
the agent is at the depot without having depleted its
load.

Figure 1
The rollout processes. A vehicle starts from the depot and must deliver items to customers (represented as 𝑁𝑁1 …𝑁𝑁4). For example,
in the first step, nodes 1 and 3 are banned for some reason (the arrow from constraint to action is black). Thus, actions can only be
chosen in 𝑎𝑎1 and 𝑎𝑎4 . Under the greedy strategy, the vehicle chooses the action with the maximum probability. This continues from
step 1 to T, forming the rollout trajectory.

4. Methodology
Our methodology has three parts: first, we give the policy
gradient for the DCMDP to formally represent a simple
solver for VRP; then, a constraint-awareness module is
represented to diminish actions against constraints;
finally, an SR-based method is designed to address the
sparse reward problem.

4.1. Policy Gradient in DCMDP
A policy gradient for the DCMDP must be built to train
our policy function. The trajectory probability 𝑝𝑝(𝜏𝜏)
reveals the rollout process. Taking logarithms on both
sides, we have

log 𝑝𝑝 (𝜏𝜏) = log 𝑝𝑝 (𝒔𝒔𝟏𝟏) + ∑ log 𝜋𝜋 (𝒂𝒂𝒕𝒕|𝒔𝒔𝒕𝒕, 𝒄𝒄𝒕𝒕; 𝜃𝜃)𝑇𝑇
𝑡𝑡�1 +

log 𝑝𝑝 (𝒔𝒔𝒕𝒕�𝟏𝟏|𝒔𝒔𝒕𝒕, 𝒂𝒂𝒕𝒕) + log 𝑝𝑝 (𝒄𝒄𝒕𝒕|𝒔𝒔𝒕𝒕) （2）

To generalize, we take the expectation of trajectories, and
with Jensen‘s inequality [24], the expectation can be
formed as

log𝐸𝐸τ∼𝑝𝑝(⋅) 𝑝𝑝(τ) ≥ 𝐸𝐸τ∼𝑝𝑝(⋅) �log 𝑝𝑝 (𝑠𝑠1) +

∑ log 𝜋𝜋 (𝒂𝒂𝒕𝒕|𝒔𝒔𝒕𝒕, 𝒄𝒄𝒕𝒕; 𝜃𝜃)𝑇𝑇
𝑡𝑡�1 + log 𝑝𝑝 (𝑠𝑠𝑡𝑡�1|𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) + log 𝑝𝑝 (𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�.

 （3）

The right side of the equation is the lower bound of the
𝑙𝑙𝑙𝑙𝑙𝑙 form of the expectation of trajectories. With

reinforcement learning [28], the function
𝐸𝐸τ∼𝑝𝑝(⋅)�log 𝑝𝑝 (τ)𝑅𝑅(τ)� can be written as

𝐸𝐸τ∼𝑝𝑝(⋅) ��log 𝑝𝑝 (𝑠𝑠1) + ∑ log 𝜋𝜋 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃)𝑇𝑇
𝑡𝑡�1 +

log 𝑝𝑝 (𝑠𝑠𝑡𝑡�1|𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) + log 𝑝𝑝 (𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� 𝑅𝑅(τ)� （4）

However, this form of policy gradient may lead to
high variance, which restricts the ability to
generalize. To reduce the variance, we define the
baseline function 𝑏𝑏(𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡) : 𝐶𝐶 × 𝑆𝑆 → 𝑅𝑅 , which we
show in Equation (5) is unbiased:

∇θ𝐸𝐸
π�𝑎𝑎𝑡𝑡�𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; θ�

�𝑏𝑏(𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡) log π (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; θ)� =

𝑏𝑏(𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡)
�
�θ ∫π(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; θ)d 𝑎𝑎𝑡𝑡 = 0 (5)

𝑏𝑏(𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡) is similar to the baseline methods in
standard variance reduction RL. Differently, we
extend the baseline function with constraints as
input.

However, 𝑏𝑏(𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡) is for the one-step baseline
function. To extend it to the trajectory form, we can
simply sum them up as 𝑏𝑏�(κ) = ∑ 𝑏𝑏(𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡)𝑇𝑇

𝑡𝑡�1 , or
build a neural network to represent it as 𝑏𝑏�(κ; λ) ,
where \lambda denotes the weights for the neural
network and κ = [𝑠𝑠1, 𝑐𝑐1, 𝑠𝑠2, 𝑐𝑐2 … 𝑠𝑠𝑇𝑇, 𝑐𝑐𝑇𝑇] is the vector
of whole states and constraints for a trajectory.
Since 𝑝𝑝(𝑠𝑠𝑡𝑡�1|𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) and 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) are irrelevant to θ,
based on the analysis above, we have the policy
gradient for DCMDP:

(4)

However, this form of policy gradient may lead to high
variance, which restricts the ability to generalize. To
reduce the variance, we define the baseline function
𝑏(𝑠𝑡, 𝑐𝑡) : 𝐶 × 𝑆 → 𝑅 which we show in Equation (5) is
unbiased:

optimal policy 𝜋𝜋∗ that maximizes the total reward 𝑅𝑅.

3.3. Successor Representation
Introduced to describe cognitive phenomena in the
human brain, successor representation (SR) focuses on
the extraction of important states to aid training [20]. We
leverage SR as a behavior indicator, regarding states that

may lead to a lower total reward as ill-famed, and
using SR as a behavior indicator to avoid actions to
those states. For example, in the VRP, we might not
be willing to let our vehicle return too soon to the
depot; the ill-famed state is the situation in which
the agent is at the depot without having depleted its
load.

Figure 1
The rollout processes. A vehicle starts from the depot and must deliver items to customers (represented as 𝑁𝑁1 …𝑁𝑁4). For example,
in the first step, nodes 1 and 3 are banned for some reason (the arrow from constraint to action is black). Thus, actions can only be
chosen in 𝑎𝑎1 and 𝑎𝑎4 . Under the greedy strategy, the vehicle chooses the action with the maximum probability. This continues from
step 1 to T, forming the rollout trajectory.

4. Methodology
Our methodology has three parts: first, we give the policy
gradient for the DCMDP to formally represent a simple
solver for VRP; then, a constraint-awareness module is
represented to diminish actions against constraints;
finally, an SR-based method is designed to address the
sparse reward problem.

4.1. Policy Gradient in DCMDP
A policy gradient for the DCMDP must be built to train
our policy function. The trajectory probability 𝑝𝑝(𝜏𝜏)
reveals the rollout process. Taking logarithms on both
sides, we have

log 𝑝𝑝 (𝜏𝜏) = log 𝑝𝑝 (𝒔𝒔𝟏𝟏) + ∑ log 𝜋𝜋 (𝒂𝒂𝒕𝒕|𝒔𝒔𝒕𝒕, 𝒄𝒄𝒕𝒕; 𝜃𝜃)𝑇𝑇
𝑡𝑡�1 +

log 𝑝𝑝 (𝒔𝒔𝒕𝒕�𝟏𝟏|𝒔𝒔𝒕𝒕, 𝒂𝒂𝒕𝒕) + log 𝑝𝑝 (𝒄𝒄𝒕𝒕|𝒔𝒔𝒕𝒕) （2）

To generalize, we take the expectation of trajectories, and
with Jensen‘s inequality [24], the expectation can be
formed as

log𝐸𝐸τ∼𝑝𝑝(⋅) 𝑝𝑝(τ) ≥ 𝐸𝐸τ∼𝑝𝑝(⋅) �log 𝑝𝑝 (𝑠𝑠1) +

∑ log 𝜋𝜋 (𝒂𝒂𝒕𝒕|𝒔𝒔𝒕𝒕, 𝒄𝒄𝒕𝒕; 𝜃𝜃)𝑇𝑇
𝑡𝑡�1 + log 𝑝𝑝 (𝑠𝑠𝑡𝑡�1|𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) + log 𝑝𝑝 (𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�.

 （3）

The right side of the equation is the lower bound of the
𝑙𝑙𝑙𝑙𝑙𝑙 form of the expectation of trajectories. With

reinforcement learning [28], the function
𝐸𝐸τ∼𝑝𝑝(⋅)�log 𝑝𝑝 (τ)𝑅𝑅(τ)� can be written as

𝐸𝐸τ∼𝑝𝑝(⋅) ��log 𝑝𝑝 (𝑠𝑠1) + ∑ log 𝜋𝜋 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃)𝑇𝑇
𝑡𝑡�1 +

log 𝑝𝑝 (𝑠𝑠𝑡𝑡�1|𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) + log 𝑝𝑝 (𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� 𝑅𝑅(τ)� （4）

However, this form of policy gradient may lead to
high variance, which restricts the ability to
generalize. To reduce the variance, we define the
baseline function 𝑏𝑏(𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡) : 𝐶𝐶 × 𝑆𝑆 → 𝑅𝑅 , which we
show in Equation (5) is unbiased:

∇θ𝐸𝐸
π�𝑎𝑎𝑡𝑡�𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; θ�

�𝑏𝑏(𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡) log π (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; θ)� =

𝑏𝑏(𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡)
�
�θ ∫π(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; θ)d 𝑎𝑎𝑡𝑡 = 0 (5)

𝑏𝑏(𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡) is similar to the baseline methods in
standard variance reduction RL. Differently, we
extend the baseline function with constraints as
input.

However, 𝑏𝑏(𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡) is for the one-step baseline
function. To extend it to the trajectory form, we can
simply sum them up as 𝑏𝑏�(κ) = ∑ 𝑏𝑏(𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡)𝑇𝑇

𝑡𝑡�1 , or
build a neural network to represent it as 𝑏𝑏�(κ; λ) ,
where \lambda denotes the weights for the neural
network and κ = [𝑠𝑠1, 𝑐𝑐1, 𝑠𝑠2, 𝑐𝑐2 … 𝑠𝑠𝑇𝑇, 𝑐𝑐𝑇𝑇] is the vector
of whole states and constraints for a trajectory.
Since 𝑝𝑝(𝑠𝑠𝑡𝑡�1|𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) and 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) are irrelevant to θ,
based on the analysis above, we have the policy
gradient for DCMDP:

(5)

𝑏(𝑠𝑡, 𝑐𝑡) is similar to the baseline methods in standard
variance reduction RL. Differently, we extend the
baseline function with constraints as input.
However, 𝑏(𝑠𝑡, 𝑐𝑡) is for the one-step baseline function.
To extend it to the trajectory form, we can simply sum
them up as �̂�(κ) = ∑𝑇

t = 1 𝑏(𝑠𝑡, 𝑐𝑡), or build a neural net-

Figure 1
The rollout processes. A vehicle starts from the depot and must deliver items to customers (represented as N1 … N4). For
example, in the first step, nodes 1 and 3 are banned for some reason (the arrow from constraint to action is black). Thus,
actions can only be chosen in a1 and a4. Under the greedy strategy, the vehicle chooses the action with the maximum
probability. This continues from step 1 to T, forming the rollout trajectory

optimal policy 𝜋𝜋∗ that maximizes the total reward 𝑅𝑅.

3.3. Successor Representation
Introduced to describe cognitive phenomena in the
human brain, successor representation (SR) focuses on
the extraction of important states to aid training [20]. We
leverage SR as a behavior indicator, regarding states that

may lead to a lower total reward as ill-famed, and
using SR as a behavior indicator to avoid actions to
those states. For example, in the VRP, we might not
be willing to let our vehicle return too soon to the
depot; the ill-famed state is the situation in which
the agent is at the depot without having depleted its
load.

Figure 1
The rollout processes. A vehicle starts from the depot and must deliver items to customers (represented as 𝑁𝑁1 …𝑁𝑁4). For example,
in the first step, nodes 1 and 3 are banned for some reason (the arrow from constraint to action is black). Thus, actions can only be
chosen in 𝑎𝑎1 and 𝑎𝑎4 . Under the greedy strategy, the vehicle chooses the action with the maximum probability. This continues from
step 1 to T, forming the rollout trajectory.

4. Methodology
Our methodology has three parts: first, we give the policy
gradient for the DCMDP to formally represent a simple
solver for VRP; then, a constraint-awareness module is
represented to diminish actions against constraints;
finally, an SR-based method is designed to address the
sparse reward problem.

4.1. Policy Gradient in DCMDP
A policy gradient for the DCMDP must be built to train
our policy function. The trajectory probability 𝑝𝑝(𝜏𝜏)
reveals the rollout process. Taking logarithms on both
sides, we have

log 𝑝𝑝 (𝜏𝜏) = log 𝑝𝑝 (𝒔𝒔𝟏𝟏) + ∑ log 𝜋𝜋 (𝒂𝒂𝒕𝒕|𝒔𝒔𝒕𝒕, 𝒄𝒄𝒕𝒕; 𝜃𝜃)𝑇𝑇
𝑡𝑡�1 +

log 𝑝𝑝 (𝒔𝒔𝒕𝒕�𝟏𝟏|𝒔𝒔𝒕𝒕, 𝒂𝒂𝒕𝒕) + log 𝑝𝑝 (𝒄𝒄𝒕𝒕|𝒔𝒔𝒕𝒕) （2）

To generalize, we take the expectation of trajectories, and
with Jensen‘s inequality [24], the expectation can be
formed as

log𝐸𝐸τ∼𝑝𝑝(⋅) 𝑝𝑝(τ) ≥ 𝐸𝐸τ∼𝑝𝑝(⋅) �log 𝑝𝑝 (𝑠𝑠1) +

∑ log 𝜋𝜋 (𝒂𝒂𝒕𝒕|𝒔𝒔𝒕𝒕, 𝒄𝒄𝒕𝒕; 𝜃𝜃)𝑇𝑇
𝑡𝑡�1 + log 𝑝𝑝 (𝑠𝑠𝑡𝑡�1|𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) + log 𝑝𝑝 (𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�.

 （3）

The right side of the equation is the lower bound of the
𝑙𝑙𝑙𝑙𝑙𝑙 form of the expectation of trajectories. With

reinforcement learning [28], the function
𝐸𝐸τ∼𝑝𝑝(⋅)�log 𝑝𝑝 (τ)𝑅𝑅(τ)� can be written as

𝐸𝐸τ∼𝑝𝑝(⋅) ��log 𝑝𝑝 (𝑠𝑠1) + ∑ log 𝜋𝜋 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃)𝑇𝑇
𝑡𝑡�1 +

log 𝑝𝑝 (𝑠𝑠𝑡𝑡�1|𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) + log 𝑝𝑝 (𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� 𝑅𝑅(τ)� （4）

However, this form of policy gradient may lead to
high variance, which restricts the ability to
generalize. To reduce the variance, we define the
baseline function 𝑏𝑏(𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡) : 𝐶𝐶 × 𝑆𝑆 → 𝑅𝑅 , which we
show in Equation (5) is unbiased:

∇θ𝐸𝐸
π�𝑎𝑎𝑡𝑡�𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; θ�

�𝑏𝑏(𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡) log π (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; θ)� =

𝑏𝑏(𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡)
�
�θ ∫π(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; θ)d 𝑎𝑎𝑡𝑡 = 0 (5)

𝑏𝑏(𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡) is similar to the baseline methods in
standard variance reduction RL. Differently, we
extend the baseline function with constraints as
input.

However, 𝑏𝑏(𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡) is for the one-step baseline
function. To extend it to the trajectory form, we can
simply sum them up as 𝑏𝑏�(κ) = ∑ 𝑏𝑏(𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡)𝑇𝑇

𝑡𝑡�1 , or
build a neural network to represent it as 𝑏𝑏�(κ; λ) ,
where \lambda denotes the weights for the neural
network and κ = [𝑠𝑠1, 𝑐𝑐1, 𝑠𝑠2, 𝑐𝑐2 … 𝑠𝑠𝑇𝑇, 𝑐𝑐𝑇𝑇] is the vector
of whole states and constraints for a trajectory.
Since 𝑝𝑝(𝑠𝑠𝑡𝑡�1|𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) and 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) are irrelevant to θ,
based on the analysis above, we have the policy
gradient for DCMDP:

131Information Technology and Control 2022/1/51

work to represent it as �̂� (κ; λ), where \lambda denotes
the weights for the neural network and κ = [𝑠1, 𝑐1, 𝑠2,
𝑐2 … 𝑠𝑇, 𝑐𝑇] is the vector of whole states and constraints
for a trajectory. Since 𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) and 𝑝(𝑐𝑡|𝑠𝑡) are ir-
relevant to θ, based on the analysis above, we have the
policy gradient for DCMDP:

∇θ𝐸𝐸τ∼𝑝𝑝(⋅) �∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃) �𝑅𝑅 − 𝑏𝑏�(𝜅𝜅)�𝑇𝑇
𝑡𝑡�1 � (6)

4.2. Constraint-awareness Policy Optimization
Equation (6) provides a way to update the policy
function. However, to only use the constraints as input
might still not be enough to find information in the
constraints (e.g., the relationship between environment
and constraints). To further capture this information, we
design a method to learn the constraints.

First, we notice that the relationship between constraints,
environment, and actions can be represented as
π(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = ∑ π�𝑎𝑎𝑡𝑡�𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡

𝑖𝑖�𝑝𝑝�𝑐𝑐𝑡𝑡
𝑖𝑖�𝑠𝑠𝑡𝑡�𝑐𝑐𝑡𝑡

𝑖𝑖 , where 𝑖𝑖 is the index of
the constraint at time 𝑡𝑡 . This indicates that if trained
properly, the policy π can implicitly learn the constraints.
We assume there exists a strategy π(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) that can find
the best action under state 𝑠𝑠𝑡𝑡. Regarding the constraints
as the hidden variables, we have:

log π (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = log ∫ 𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)𝑑𝑑𝑐𝑐𝑡𝑡 ≥ 𝐸𝐸𝑃𝑃�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡� log 𝑝𝑝�𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�
𝑝𝑝�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�

(7)

𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� ≤ 𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡) ∥
𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�. (8)

Equations (7) and (8) are the form of the evidence lower
bound. From information theory [33], we have

log π (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = 𝐸𝐸𝑐𝑐𝑡𝑡∼𝑃𝑃�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡� log 𝑝𝑝�𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�
𝑝𝑝�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�

−

𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� （9）

Thus, to maximize log 𝑝𝑝 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) is equivalent to
minimizing DKL�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�.

Notice also that for VRP, the relationship between
constraints and the environment is deterministic,
meaning that 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = 1 , as mentioned above.
Moreover, 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) has the same dimension with action,
and for each constraint 𝑖𝑖 at time 𝑡𝑡, 𝑐𝑐𝑡𝑡

𝑖𝑖 = 1 means that the
constraint takes no effect. With those conditions, we have

𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = π(𝑎𝑎𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡)𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)

s.t. 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = 1; 𝑐𝑐𝑡𝑡
𝑖𝑖 ∈ {0,1}, ∀𝑖𝑖. (10)

Thus, the KL term can be simplified to

min 𝐷𝐷𝐾𝐾𝐾𝐾 �𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)|𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� =
min 𝐷𝐷𝐾𝐾𝐾𝐾 (π(𝑎𝑎𝑡𝑡|𝑐𝑐}𝑡𝑡, 𝑠𝑠𝑡𝑡)|𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) . (11)

We leverage the max entropy strategy to induce
exploration [21]. We combine constraint-awareness and
the max entropy strategy and rewrite 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) in vector

form as 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = �1�𝑐𝑐𝑡𝑡
𝑖𝑖 �1�

�𝐶𝐶𝑡𝑡
0�

�
𝑖𝑖�1

𝑁𝑁
， where 𝐶𝐶𝑡𝑡

1 is a set of

constraints that are one (constraints take effect) at time
step 𝑡𝑡 and [⋅]𝑖𝑖�1

𝑁𝑁 is a vector with 𝑁𝑁 elements. 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) =

�1�𝑐𝑐𝑡𝑡
𝑖𝑖 �1�

�𝐶𝐶𝑡𝑡
1�

�
𝑖𝑖�1

𝑁𝑁
 indicates that when node constraint of node 𝑖𝑖

exists: 𝑐𝑐𝑡𝑡
𝑖𝑖 = 0. In this condition, the probability to choose

action to that node is zero. We also average all available
actions and minimize the distance between 𝑝𝑝� and 𝑝𝑝
through the KL term with a policy to encourage

exploration.

Constraint-awareness policy optimization (CPO)
can be formulated as follow:

∇θ𝐸𝐸τ∼p(⋅) �∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃) �𝑅𝑅 − 𝑏𝑏�(𝜅𝜅)�𝑇𝑇
𝑡𝑡�1 −

β ∑ 𝐾𝐾𝐾𝐾�π(𝑠𝑠𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡; θ) ∥ 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�𝑇𝑇
𝑡𝑡�1 � , (12)

where β is a positive parameter to balance the
objective function and KL term.

Remark. Because of the deterministic constraints
in VRPs, through learning the constraints, agents
can implicitly learn the dynamic functions of the
environment, and hence can know the results of
choosing a certain action, especially worse actions.
Thus, our method is also called implicit CPO
(ICPO).

4.3. Behavior Indicator
There is still one issue. The rewards are always
sparse for VRP [23], that is, agents can only access
the final reward at the last step, resulting in a bad
credit assignment problem [11]. Hence, to make
accurate credit assignments is crucial. A property
of VRP is that there exist such actions that the more
you choose the lower the expected rewards is. To
leverage this property, we choose SR as the tool to
indicate these bad behaviors.

Recall the general form of the reward function: 𝑅𝑅 =
∑ 𝑟𝑟(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡)𝑇𝑇

𝑡𝑡�1 . Due to the nature of VRP, the reward
is only available at the end of an episode: 𝑅𝑅 =
𝑟𝑟(𝑠𝑠𝑇𝑇, 𝑎𝑎𝑇𝑇). To mitigate the sparse reward, we take the
ill-famed states into consideration and rewrite the
total reward as 𝑅𝑅� = ∑ −1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆��𝑇𝑇

𝑡𝑡�1 + 𝑅𝑅, where 𝑆𝑆� is
a set of ill-famed states and 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆� means that the
state into time 𝑡𝑡 , 𝑠𝑠𝑡𝑡 is the ill-famed state. As
mentioned above, an ill-famed state is one that may
lead to low total reward. We add a negative term
because we want these states to appear as little as
possible. Now the ill-famed state term 1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆��
can be trained by SR as

𝑉𝑉(𝑠𝑠) = −𝐸𝐸�∑ γ𝑡𝑡1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆��𝑇𝑇
𝑡𝑡�1 �𝑠𝑠0 = 𝑠𝑠� = −1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆�� +

γ𝐸𝐸�𝑉𝑉(𝑠𝑠𝑡𝑡�1)� . (13)

The right-hand side and it has the same recursive
format as temporal difference [28].

With the help of SR, agents will take possible bad
behaviors into account to make better decisions.
ICPO with SR is expressed as follow:

∇θ𝐸𝐸τ∼𝑝𝑝�(τ)�∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃)𝑇𝑇
𝑡𝑡�1 �α𝑉𝑉(𝑠𝑠𝑡𝑡) + 𝑅𝑅 −

{κ)� � − β ∑ KL�π(𝑎𝑎𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡; θ) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�𝑇𝑇
𝑡𝑡�1 �, (14)

where α is a positive hyperparameter to control the
influence of successors.

Remark. 1) We emphasize that SR can be extended
in the opposite way. That is, we can maximize
consideration of actions that are encouraged. The
formulation is the same, but with a positive signal.

(6)

4.2. Constraint-awareness Policy
Optimization
Equation (6) provides a way to update the policy func-
tion. However, to only use the constraints as input
might still not be enough to find information in the
constraints (e.g., the relationship between environ-
ment and constraints). To further capture this infor-
mation, we design a method to learn the constraints.
First, we notice that the relationship between con-
straints, environment, and actions can be represent-
ed as π(𝑎𝑡|𝑠𝑡) = ∑𝑐𝑖

t
 π(𝑎𝑡|𝑠𝑡, 𝑐𝑖

t)𝑝(𝑐𝑖
t|𝑠𝑡), where i is the in-

dex of the constraint at time t. This indicates that if
trained properly, the policy π can implicitly learn the
constraints. We assume there exists a strategy π(𝑎𝑡|𝑠𝑡)
that can find the best action under state 𝑠𝑡. Regarding
the constraints as the hidden variables, we have:

logπ(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)=log∫𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)𝑑𝑑𝑐𝑐𝑡𝑡 ≥𝐸𝐸𝑃𝑃�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡� log
𝑝𝑝�𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�
𝑝𝑝�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�

(7)

∇θ𝐸𝐸τ∼𝑝𝑝(⋅) �∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃) �𝑅𝑅 − 𝑏𝑏�(𝜅𝜅)�𝑇𝑇
𝑡𝑡�1 � (6)

4.2. Constraint-awareness Policy Optimization
Equation (6) provides a way to update the policy
function. However, to only use the constraints as input
might still not be enough to find information in the
constraints (e.g., the relationship between environment
and constraints). To further capture this information, we
design a method to learn the constraints.

First, we notice that the relationship between constraints,
environment, and actions can be represented as
π(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = ∑ π�𝑎𝑎𝑡𝑡�𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡

𝑖𝑖�𝑝𝑝�𝑐𝑐𝑡𝑡
𝑖𝑖�𝑠𝑠𝑡𝑡�𝑐𝑐𝑡𝑡

𝑖𝑖 , where 𝑖𝑖 is the index of
the constraint at time 𝑡𝑡 . This indicates that if trained
properly, the policy π can implicitly learn the constraints.
We assume there exists a strategy π(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) that can find
the best action under state 𝑠𝑠𝑡𝑡. Regarding the constraints
as the hidden variables, we have:

log π (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = log ∫ 𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)𝑑𝑑𝑐𝑐𝑡𝑡 ≥ 𝐸𝐸𝑃𝑃�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡� log 𝑝𝑝�𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�
𝑝𝑝�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�

(7)

𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� ≤ 𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡) ∥
𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�. (8)

Equations (7) and (8) are the form of the evidence lower
bound. From information theory [33], we have

log π (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = 𝐸𝐸𝑐𝑐𝑡𝑡∼𝑃𝑃�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡� log 𝑝𝑝�𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�
𝑝𝑝�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�

−

𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� （9）

Thus, to maximize log 𝑝𝑝 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) is equivalent to
minimizing DKL�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�.

Notice also that for VRP, the relationship between
constraints and the environment is deterministic,
meaning that 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = 1 , as mentioned above.
Moreover, 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) has the same dimension with action,
and for each constraint 𝑖𝑖 at time 𝑡𝑡, 𝑐𝑐𝑡𝑡

𝑖𝑖 = 1 means that the
constraint takes no effect. With those conditions, we have

𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = π(𝑎𝑎𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡)𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)

s.t. 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = 1; 𝑐𝑐𝑡𝑡
𝑖𝑖 ∈ {0,1}, ∀𝑖𝑖. (10)

Thus, the KL term can be simplified to

min 𝐷𝐷𝐾𝐾𝐾𝐾 �𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)|𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� =
min 𝐷𝐷𝐾𝐾𝐾𝐾 (π(𝑎𝑎𝑡𝑡|𝑐𝑐}𝑡𝑡, 𝑠𝑠𝑡𝑡)|𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) . (11)

We leverage the max entropy strategy to induce
exploration [21]. We combine constraint-awareness and
the max entropy strategy and rewrite 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) in vector

form as 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = �1�𝑐𝑐𝑡𝑡
𝑖𝑖 �1�

�𝐶𝐶𝑡𝑡
0�

�
𝑖𝑖�1

𝑁𝑁
， where 𝐶𝐶𝑡𝑡

1 is a set of

constraints that are one (constraints take effect) at time
step 𝑡𝑡 and [⋅]𝑖𝑖�1

𝑁𝑁 is a vector with 𝑁𝑁 elements. 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) =

�1�𝑐𝑐𝑡𝑡
𝑖𝑖 �1�

�𝐶𝐶𝑡𝑡
1�

�
𝑖𝑖�1

𝑁𝑁
 indicates that when node constraint of node 𝑖𝑖

exists: 𝑐𝑐𝑡𝑡
𝑖𝑖 = 0. In this condition, the probability to choose

action to that node is zero. We also average all available
actions and minimize the distance between 𝑝𝑝� and 𝑝𝑝
through the KL term with a policy to encourage

exploration.

Constraint-awareness policy optimization (CPO)
can be formulated as follow:

∇θ𝐸𝐸τ∼p(⋅) �∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃) �𝑅𝑅 − 𝑏𝑏�(𝜅𝜅)�𝑇𝑇
𝑡𝑡�1 −

β ∑ 𝐾𝐾𝐾𝐾�π(𝑠𝑠𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡; θ) ∥ 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�𝑇𝑇
𝑡𝑡�1 � , (12)

where β is a positive parameter to balance the
objective function and KL term.

Remark. Because of the deterministic constraints
in VRPs, through learning the constraints, agents
can implicitly learn the dynamic functions of the
environment, and hence can know the results of
choosing a certain action, especially worse actions.
Thus, our method is also called implicit CPO
(ICPO).

4.3. Behavior Indicator
There is still one issue. The rewards are always
sparse for VRP [23], that is, agents can only access
the final reward at the last step, resulting in a bad
credit assignment problem [11]. Hence, to make
accurate credit assignments is crucial. A property
of VRP is that there exist such actions that the more
you choose the lower the expected rewards is. To
leverage this property, we choose SR as the tool to
indicate these bad behaviors.

Recall the general form of the reward function: 𝑅𝑅 =
∑ 𝑟𝑟(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡)𝑇𝑇

𝑡𝑡�1 . Due to the nature of VRP, the reward
is only available at the end of an episode: 𝑅𝑅 =
𝑟𝑟(𝑠𝑠𝑇𝑇, 𝑎𝑎𝑇𝑇). To mitigate the sparse reward, we take the
ill-famed states into consideration and rewrite the
total reward as 𝑅𝑅� = ∑ −1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆��𝑇𝑇

𝑡𝑡�1 + 𝑅𝑅, where 𝑆𝑆� is
a set of ill-famed states and 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆� means that the
state into time 𝑡𝑡 , 𝑠𝑠𝑡𝑡 is the ill-famed state. As
mentioned above, an ill-famed state is one that may
lead to low total reward. We add a negative term
because we want these states to appear as little as
possible. Now the ill-famed state term 1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆��
can be trained by SR as

𝑉𝑉(𝑠𝑠) = −𝐸𝐸�∑ γ𝑡𝑡1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆��𝑇𝑇
𝑡𝑡�1 �𝑠𝑠0 = 𝑠𝑠� = −1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆�� +

γ𝐸𝐸�𝑉𝑉(𝑠𝑠𝑡𝑡�1)� . (13)

The right-hand side and it has the same recursive
format as temporal difference [28].

With the help of SR, agents will take possible bad
behaviors into account to make better decisions.
ICPO with SR is expressed as follow:

∇θ𝐸𝐸τ∼𝑝𝑝�(τ)�∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃)𝑇𝑇
𝑡𝑡�1 �α𝑉𝑉(𝑠𝑠𝑡𝑡) + 𝑅𝑅 −

{κ)� � − β ∑ KL�π(𝑎𝑎𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡; θ) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�𝑇𝑇
𝑡𝑡�1 �, (14)

where α is a positive hyperparameter to control the
influence of successors.

Remark. 1) We emphasize that SR can be extended
in the opposite way. That is, we can maximize
consideration of actions that are encouraged. The
formulation is the same, but with a positive signal.

(8)

Equations (7) and (8) are the form of the evidence
lower bound. From information theory [33], we have

∇θ𝐸𝐸τ∼𝑝𝑝(⋅) �∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃) �𝑅𝑅 − 𝑏𝑏�(𝜅𝜅)�𝑇𝑇
𝑡𝑡�1 � (6)

4.2. Constraint-awareness Policy Optimization
Equation (6) provides a way to update the policy
function. However, to only use the constraints as input
might still not be enough to find information in the
constraints (e.g., the relationship between environment
and constraints). To further capture this information, we
design a method to learn the constraints.

First, we notice that the relationship between constraints,
environment, and actions can be represented as
π(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = ∑ π�𝑎𝑎𝑡𝑡�𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡

𝑖𝑖�𝑝𝑝�𝑐𝑐𝑡𝑡
𝑖𝑖�𝑠𝑠𝑡𝑡�𝑐𝑐𝑡𝑡

𝑖𝑖 , where 𝑖𝑖 is the index of
the constraint at time 𝑡𝑡 . This indicates that if trained
properly, the policy π can implicitly learn the constraints.
We assume there exists a strategy π(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) that can find
the best action under state 𝑠𝑠𝑡𝑡. Regarding the constraints
as the hidden variables, we have:

log π (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = log ∫ 𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)𝑑𝑑𝑐𝑐𝑡𝑡 ≥ 𝐸𝐸𝑃𝑃�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡� log 𝑝𝑝�𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�
𝑝𝑝�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�

(7)

𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� ≤ 𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡) ∥
𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�. (8)

Equations (7) and (8) are the form of the evidence lower
bound. From information theory [33], we have

log π (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = 𝐸𝐸𝑐𝑐𝑡𝑡∼𝑃𝑃�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡� log 𝑝𝑝�𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�
𝑝𝑝�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�

−

𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� （9）

Thus, to maximize log 𝑝𝑝 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) is equivalent to
minimizing DKL�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�.

Notice also that for VRP, the relationship between
constraints and the environment is deterministic,
meaning that 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = 1 , as mentioned above.
Moreover, 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) has the same dimension with action,
and for each constraint 𝑖𝑖 at time 𝑡𝑡, 𝑐𝑐𝑡𝑡

𝑖𝑖 = 1 means that the
constraint takes no effect. With those conditions, we have

𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = π(𝑎𝑎𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡)𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)

s.t. 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = 1; 𝑐𝑐𝑡𝑡
𝑖𝑖 ∈ {0,1}, ∀𝑖𝑖. (10)

Thus, the KL term can be simplified to

min 𝐷𝐷𝐾𝐾𝐾𝐾 �𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)|𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� =
min 𝐷𝐷𝐾𝐾𝐾𝐾 (π(𝑎𝑎𝑡𝑡|𝑐𝑐}𝑡𝑡, 𝑠𝑠𝑡𝑡)|𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) . (11)

We leverage the max entropy strategy to induce
exploration [21]. We combine constraint-awareness and
the max entropy strategy and rewrite 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) in vector

form as 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = �1�𝑐𝑐𝑡𝑡
𝑖𝑖 �1�

�𝐶𝐶𝑡𝑡
0�

�
𝑖𝑖�1

𝑁𝑁
， where 𝐶𝐶𝑡𝑡

1 is a set of

constraints that are one (constraints take effect) at time
step 𝑡𝑡 and [⋅]𝑖𝑖�1

𝑁𝑁 is a vector with 𝑁𝑁 elements. 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) =

�1�𝑐𝑐𝑡𝑡
𝑖𝑖 �1�

�𝐶𝐶𝑡𝑡
1�

�
𝑖𝑖�1

𝑁𝑁
 indicates that when node constraint of node 𝑖𝑖

exists: 𝑐𝑐𝑡𝑡
𝑖𝑖 = 0. In this condition, the probability to choose

action to that node is zero. We also average all available
actions and minimize the distance between 𝑝𝑝� and 𝑝𝑝
through the KL term with a policy to encourage

exploration.

Constraint-awareness policy optimization (CPO)
can be formulated as follow:

∇θ𝐸𝐸τ∼p(⋅) �∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃) �𝑅𝑅 − 𝑏𝑏�(𝜅𝜅)�𝑇𝑇
𝑡𝑡�1 −

β ∑ 𝐾𝐾𝐾𝐾�π(𝑠𝑠𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡; θ) ∥ 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�𝑇𝑇
𝑡𝑡�1 � , (12)

where β is a positive parameter to balance the
objective function and KL term.

Remark. Because of the deterministic constraints
in VRPs, through learning the constraints, agents
can implicitly learn the dynamic functions of the
environment, and hence can know the results of
choosing a certain action, especially worse actions.
Thus, our method is also called implicit CPO
(ICPO).

4.3. Behavior Indicator
There is still one issue. The rewards are always
sparse for VRP [23], that is, agents can only access
the final reward at the last step, resulting in a bad
credit assignment problem [11]. Hence, to make
accurate credit assignments is crucial. A property
of VRP is that there exist such actions that the more
you choose the lower the expected rewards is. To
leverage this property, we choose SR as the tool to
indicate these bad behaviors.

Recall the general form of the reward function: 𝑅𝑅 =
∑ 𝑟𝑟(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡)𝑇𝑇

𝑡𝑡�1 . Due to the nature of VRP, the reward
is only available at the end of an episode: 𝑅𝑅 =
𝑟𝑟(𝑠𝑠𝑇𝑇, 𝑎𝑎𝑇𝑇). To mitigate the sparse reward, we take the
ill-famed states into consideration and rewrite the
total reward as 𝑅𝑅� = ∑ −1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆��𝑇𝑇

𝑡𝑡�1 + 𝑅𝑅, where 𝑆𝑆� is
a set of ill-famed states and 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆� means that the
state into time 𝑡𝑡 , 𝑠𝑠𝑡𝑡 is the ill-famed state. As
mentioned above, an ill-famed state is one that may
lead to low total reward. We add a negative term
because we want these states to appear as little as
possible. Now the ill-famed state term 1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆��
can be trained by SR as

𝑉𝑉(𝑠𝑠) = −𝐸𝐸�∑ γ𝑡𝑡1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆��𝑇𝑇
𝑡𝑡�1 �𝑠𝑠0 = 𝑠𝑠� = −1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆�� +

γ𝐸𝐸�𝑉𝑉(𝑠𝑠𝑡𝑡�1)� . (13)

The right-hand side and it has the same recursive
format as temporal difference [28].

With the help of SR, agents will take possible bad
behaviors into account to make better decisions.
ICPO with SR is expressed as follow:

∇θ𝐸𝐸τ∼𝑝𝑝�(τ)�∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃)𝑇𝑇
𝑡𝑡�1 �α𝑉𝑉(𝑠𝑠𝑡𝑡) + 𝑅𝑅 −

{κ)� � − β ∑ KL�π(𝑎𝑎𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡; θ) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�𝑇𝑇
𝑡𝑡�1 �, (14)

where α is a positive hyperparameter to control the
influence of successors.

Remark. 1) We emphasize that SR can be extended
in the opposite way. That is, we can maximize
consideration of actions that are encouraged. The
formulation is the same, but with a positive signal.

(9)

Thus, to maximize log 𝑝 (𝑎𝑡|𝑠𝑡) is equivalent to mini-
mizing DKL(𝑝(𝑎𝑡, 𝑐𝑡|𝑠𝑡) ∥ 𝑝(𝑐𝑡|𝑠𝑡)).
Notice also that for VRP, the relationship between con-
straints and the environment is deterministic, mean-
ing that 𝑝(𝑐𝑡|𝑠𝑡) = 1 , as mentioned above. Moreover,
𝑝(𝑐𝑡|𝑠𝑡) has the same dimension with action, and for
each constraint i at time t, 𝑐𝑖

t = 1 means that the con-
straint takes no effect. With those conditions, we have

∇θ𝐸𝐸τ∼𝑝𝑝(⋅) �∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃) �𝑅𝑅 − 𝑏𝑏�(𝜅𝜅)�𝑇𝑇
𝑡𝑡�1 � (6)

4.2. Constraint-awareness Policy Optimization
Equation (6) provides a way to update the policy
function. However, to only use the constraints as input
might still not be enough to find information in the
constraints (e.g., the relationship between environment
and constraints). To further capture this information, we
design a method to learn the constraints.

First, we notice that the relationship between constraints,
environment, and actions can be represented as
π(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = ∑ π�𝑎𝑎𝑡𝑡�𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡

𝑖𝑖�𝑝𝑝�𝑐𝑐𝑡𝑡
𝑖𝑖�𝑠𝑠𝑡𝑡�𝑐𝑐𝑡𝑡

𝑖𝑖 , where 𝑖𝑖 is the index of
the constraint at time 𝑡𝑡 . This indicates that if trained
properly, the policy π can implicitly learn the constraints.
We assume there exists a strategy π(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) that can find
the best action under state 𝑠𝑠𝑡𝑡. Regarding the constraints
as the hidden variables, we have:

log π (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = log ∫ 𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)𝑑𝑑𝑐𝑐𝑡𝑡 ≥ 𝐸𝐸𝑃𝑃�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡� log 𝑝𝑝�𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�
𝑝𝑝�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�

(7)

𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� ≤ 𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡) ∥
𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�. (8)

Equations (7) and (8) are the form of the evidence lower
bound. From information theory [33], we have

log π (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = 𝐸𝐸𝑐𝑐𝑡𝑡∼𝑃𝑃�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡� log 𝑝𝑝�𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�
𝑝𝑝�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�

−

𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� （9）

Thus, to maximize log 𝑝𝑝 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) is equivalent to
minimizing DKL�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�.

Notice also that for VRP, the relationship between
constraints and the environment is deterministic,
meaning that 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = 1 , as mentioned above.
Moreover, 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) has the same dimension with action,
and for each constraint 𝑖𝑖 at time 𝑡𝑡, 𝑐𝑐𝑡𝑡

𝑖𝑖 = 1 means that the
constraint takes no effect. With those conditions, we have

𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = π(𝑎𝑎𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡)𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)

s.t. 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = 1; 𝑐𝑐𝑡𝑡
𝑖𝑖 ∈ {0,1}, ∀𝑖𝑖. (10)

Thus, the KL term can be simplified to

min 𝐷𝐷𝐾𝐾𝐾𝐾 �𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)|𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� =
min 𝐷𝐷𝐾𝐾𝐾𝐾 (π(𝑎𝑎𝑡𝑡|𝑐𝑐}𝑡𝑡, 𝑠𝑠𝑡𝑡)|𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) . (11)

We leverage the max entropy strategy to induce
exploration [21]. We combine constraint-awareness and
the max entropy strategy and rewrite 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) in vector

form as 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = �1�𝑐𝑐𝑡𝑡
𝑖𝑖 �1�

�𝐶𝐶𝑡𝑡
0�

�
𝑖𝑖�1

𝑁𝑁
， where 𝐶𝐶𝑡𝑡

1 is a set of

constraints that are one (constraints take effect) at time
step 𝑡𝑡 and [⋅]𝑖𝑖�1

𝑁𝑁 is a vector with 𝑁𝑁 elements. 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) =

�1�𝑐𝑐𝑡𝑡
𝑖𝑖 �1�

�𝐶𝐶𝑡𝑡
1�

�
𝑖𝑖�1

𝑁𝑁
 indicates that when node constraint of node 𝑖𝑖

exists: 𝑐𝑐𝑡𝑡
𝑖𝑖 = 0. In this condition, the probability to choose

action to that node is zero. We also average all available
actions and minimize the distance between 𝑝𝑝� and 𝑝𝑝
through the KL term with a policy to encourage

exploration.

Constraint-awareness policy optimization (CPO)
can be formulated as follow:

∇θ𝐸𝐸τ∼p(⋅) �∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃) �𝑅𝑅 − 𝑏𝑏�(𝜅𝜅)�𝑇𝑇
𝑡𝑡�1 −

β ∑ 𝐾𝐾𝐾𝐾�π(𝑠𝑠𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡; θ) ∥ 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�𝑇𝑇
𝑡𝑡�1 � , (12)

where β is a positive parameter to balance the
objective function and KL term.

Remark. Because of the deterministic constraints
in VRPs, through learning the constraints, agents
can implicitly learn the dynamic functions of the
environment, and hence can know the results of
choosing a certain action, especially worse actions.
Thus, our method is also called implicit CPO
(ICPO).

4.3. Behavior Indicator
There is still one issue. The rewards are always
sparse for VRP [23], that is, agents can only access
the final reward at the last step, resulting in a bad
credit assignment problem [11]. Hence, to make
accurate credit assignments is crucial. A property
of VRP is that there exist such actions that the more
you choose the lower the expected rewards is. To
leverage this property, we choose SR as the tool to
indicate these bad behaviors.

Recall the general form of the reward function: 𝑅𝑅 =
∑ 𝑟𝑟(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡)𝑇𝑇

𝑡𝑡�1 . Due to the nature of VRP, the reward
is only available at the end of an episode: 𝑅𝑅 =
𝑟𝑟(𝑠𝑠𝑇𝑇, 𝑎𝑎𝑇𝑇). To mitigate the sparse reward, we take the
ill-famed states into consideration and rewrite the
total reward as 𝑅𝑅� = ∑ −1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆��𝑇𝑇

𝑡𝑡�1 + 𝑅𝑅, where 𝑆𝑆� is
a set of ill-famed states and 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆� means that the
state into time 𝑡𝑡 , 𝑠𝑠𝑡𝑡 is the ill-famed state. As
mentioned above, an ill-famed state is one that may
lead to low total reward. We add a negative term
because we want these states to appear as little as
possible. Now the ill-famed state term 1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆��
can be trained by SR as

𝑉𝑉(𝑠𝑠) = −𝐸𝐸�∑ γ𝑡𝑡1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆��𝑇𝑇
𝑡𝑡�1 �𝑠𝑠0 = 𝑠𝑠� = −1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆�� +

γ𝐸𝐸�𝑉𝑉(𝑠𝑠𝑡𝑡�1)� . (13)

The right-hand side and it has the same recursive
format as temporal difference [28].

With the help of SR, agents will take possible bad
behaviors into account to make better decisions.
ICPO with SR is expressed as follow:

∇θ𝐸𝐸τ∼𝑝𝑝�(τ)�∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃)𝑇𝑇
𝑡𝑡�1 �α𝑉𝑉(𝑠𝑠𝑡𝑡) + 𝑅𝑅 −

{κ)� � − β ∑ KL�π(𝑎𝑎𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡; θ) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�𝑇𝑇
𝑡𝑡�1 �, (14)

where α is a positive hyperparameter to control the
influence of successors.

Remark. 1) We emphasize that SR can be extended
in the opposite way. That is, we can maximize
consideration of actions that are encouraged. The
formulation is the same, but with a positive signal.

(10)

Thus, the KL term can be simplified to

∇θ𝐸𝐸τ∼𝑝𝑝(⋅) �∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃) �𝑅𝑅 − 𝑏𝑏�(𝜅𝜅)�𝑇𝑇
𝑡𝑡�1 � (6)

4.2. Constraint-awareness Policy Optimization
Equation (6) provides a way to update the policy
function. However, to only use the constraints as input
might still not be enough to find information in the
constraints (e.g., the relationship between environment
and constraints). To further capture this information, we
design a method to learn the constraints.

First, we notice that the relationship between constraints,
environment, and actions can be represented as
π(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = ∑ π�𝑎𝑎𝑡𝑡�𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡

𝑖𝑖�𝑝𝑝�𝑐𝑐𝑡𝑡
𝑖𝑖�𝑠𝑠𝑡𝑡�𝑐𝑐𝑡𝑡

𝑖𝑖 , where 𝑖𝑖 is the index of
the constraint at time 𝑡𝑡 . This indicates that if trained
properly, the policy π can implicitly learn the constraints.
We assume there exists a strategy π(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) that can find
the best action under state 𝑠𝑠𝑡𝑡. Regarding the constraints
as the hidden variables, we have:

log π (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = log ∫ 𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)𝑑𝑑𝑐𝑐𝑡𝑡 ≥ 𝐸𝐸𝑃𝑃�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡� log 𝑝𝑝�𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�
𝑝𝑝�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�

(7)

𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� ≤ 𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡) ∥
𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�. (8)

Equations (7) and (8) are the form of the evidence lower
bound. From information theory [33], we have

log π (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = 𝐸𝐸𝑐𝑐𝑡𝑡∼𝑃𝑃�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡� log 𝑝𝑝�𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�
𝑝𝑝�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�

−

𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� （9）

Thus, to maximize log 𝑝𝑝 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) is equivalent to
minimizing DKL�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�.

Notice also that for VRP, the relationship between
constraints and the environment is deterministic,
meaning that 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = 1 , as mentioned above.
Moreover, 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) has the same dimension with action,
and for each constraint 𝑖𝑖 at time 𝑡𝑡, 𝑐𝑐𝑡𝑡

𝑖𝑖 = 1 means that the
constraint takes no effect. With those conditions, we have

𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = π(𝑎𝑎𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡)𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)

s.t. 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = 1; 𝑐𝑐𝑡𝑡
𝑖𝑖 ∈ {0,1}, ∀𝑖𝑖. (10)

Thus, the KL term can be simplified to

min 𝐷𝐷𝐾𝐾𝐾𝐾 �𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)|𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� =
min 𝐷𝐷𝐾𝐾𝐾𝐾 (π(𝑎𝑎𝑡𝑡|𝑐𝑐}𝑡𝑡, 𝑠𝑠𝑡𝑡)|𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) . (11)

We leverage the max entropy strategy to induce
exploration [21]. We combine constraint-awareness and
the max entropy strategy and rewrite 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) in vector

form as 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = �1�𝑐𝑐𝑡𝑡
𝑖𝑖 �1�

�𝐶𝐶𝑡𝑡
0�

�
𝑖𝑖�1

𝑁𝑁
， where 𝐶𝐶𝑡𝑡

1 is a set of

constraints that are one (constraints take effect) at time
step 𝑡𝑡 and [⋅]𝑖𝑖�1

𝑁𝑁 is a vector with 𝑁𝑁 elements. 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) =

�1�𝑐𝑐𝑡𝑡
𝑖𝑖 �1�

�𝐶𝐶𝑡𝑡
1�

�
𝑖𝑖�1

𝑁𝑁
 indicates that when node constraint of node 𝑖𝑖

exists: 𝑐𝑐𝑡𝑡
𝑖𝑖 = 0. In this condition, the probability to choose

action to that node is zero. We also average all available
actions and minimize the distance between 𝑝𝑝� and 𝑝𝑝
through the KL term with a policy to encourage

exploration.

Constraint-awareness policy optimization (CPO)
can be formulated as follow:

∇θ𝐸𝐸τ∼p(⋅) �∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃) �𝑅𝑅 − 𝑏𝑏�(𝜅𝜅)�𝑇𝑇
𝑡𝑡�1 −

β ∑ 𝐾𝐾𝐾𝐾�π(𝑠𝑠𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡; θ) ∥ 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�𝑇𝑇
𝑡𝑡�1 � , (12)

where β is a positive parameter to balance the
objective function and KL term.

Remark. Because of the deterministic constraints
in VRPs, through learning the constraints, agents
can implicitly learn the dynamic functions of the
environment, and hence can know the results of
choosing a certain action, especially worse actions.
Thus, our method is also called implicit CPO
(ICPO).

4.3. Behavior Indicator
There is still one issue. The rewards are always
sparse for VRP [23], that is, agents can only access
the final reward at the last step, resulting in a bad
credit assignment problem [11]. Hence, to make
accurate credit assignments is crucial. A property
of VRP is that there exist such actions that the more
you choose the lower the expected rewards is. To
leverage this property, we choose SR as the tool to
indicate these bad behaviors.

Recall the general form of the reward function: 𝑅𝑅 =
∑ 𝑟𝑟(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡)𝑇𝑇

𝑡𝑡�1 . Due to the nature of VRP, the reward
is only available at the end of an episode: 𝑅𝑅 =
𝑟𝑟(𝑠𝑠𝑇𝑇, 𝑎𝑎𝑇𝑇). To mitigate the sparse reward, we take the
ill-famed states into consideration and rewrite the
total reward as 𝑅𝑅� = ∑ −1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆��𝑇𝑇

𝑡𝑡�1 + 𝑅𝑅, where 𝑆𝑆� is
a set of ill-famed states and 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆� means that the
state into time 𝑡𝑡 , 𝑠𝑠𝑡𝑡 is the ill-famed state. As
mentioned above, an ill-famed state is one that may
lead to low total reward. We add a negative term
because we want these states to appear as little as
possible. Now the ill-famed state term 1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆��
can be trained by SR as

𝑉𝑉(𝑠𝑠) = −𝐸𝐸�∑ γ𝑡𝑡1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆��𝑇𝑇
𝑡𝑡�1 �𝑠𝑠0 = 𝑠𝑠� = −1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆�� +

γ𝐸𝐸�𝑉𝑉(𝑠𝑠𝑡𝑡�1)� . (13)

The right-hand side and it has the same recursive
format as temporal difference [28].

With the help of SR, agents will take possible bad
behaviors into account to make better decisions.
ICPO with SR is expressed as follow:

∇θ𝐸𝐸τ∼𝑝𝑝�(τ)�∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃)𝑇𝑇
𝑡𝑡�1 �α𝑉𝑉(𝑠𝑠𝑡𝑡) + 𝑅𝑅 −

{κ)� � − β ∑ KL�π(𝑎𝑎𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡; θ) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�𝑇𝑇
𝑡𝑡�1 �, (14)

where α is a positive hyperparameter to control the
influence of successors.

Remark. 1) We emphasize that SR can be extended
in the opposite way. That is, we can maximize
consideration of actions that are encouraged. The
formulation is the same, but with a positive signal.

(11)

We leverage the max entropy strategy to induce explo-
ration [21]. We combine constraint-awareness and
the max entropy strategy and rewrite 𝑝(𝑐𝑡|𝑠𝑡) in vector

form as

∇θ𝐸𝐸τ∼𝑝𝑝(⋅) �∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃) �𝑅𝑅 − 𝑏𝑏�(𝜅𝜅)�𝑇𝑇
𝑡𝑡�1 � (6)

4.2. Constraint-awareness Policy Optimization
Equation (6) provides a way to update the policy
function. However, to only use the constraints as input
might still not be enough to find information in the
constraints (e.g., the relationship between environment
and constraints). To further capture this information, we
design a method to learn the constraints.

First, we notice that the relationship between constraints,
environment, and actions can be represented as
π(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = ∑ π�𝑎𝑎𝑡𝑡�𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡

𝑖𝑖�𝑝𝑝�𝑐𝑐𝑡𝑡
𝑖𝑖�𝑠𝑠𝑡𝑡�𝑐𝑐𝑡𝑡

𝑖𝑖 , where 𝑖𝑖 is the index of
the constraint at time 𝑡𝑡 . This indicates that if trained
properly, the policy π can implicitly learn the constraints.
We assume there exists a strategy π(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) that can find
the best action under state 𝑠𝑠𝑡𝑡. Regarding the constraints
as the hidden variables, we have:

log π (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = log ∫ 𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)𝑑𝑑𝑐𝑐𝑡𝑡 ≥ 𝐸𝐸𝑃𝑃�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡� log 𝑝𝑝�𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�
𝑝𝑝�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�

(7)

𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� ≤ 𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡) ∥
𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�. (8)

Equations (7) and (8) are the form of the evidence lower
bound. From information theory [33], we have

log π (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = 𝐸𝐸𝑐𝑐𝑡𝑡∼𝑃𝑃�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡� log 𝑝𝑝�𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�
𝑝𝑝�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�

−

𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� （9）

Thus, to maximize log 𝑝𝑝 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) is equivalent to
minimizing DKL�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�.

Notice also that for VRP, the relationship between
constraints and the environment is deterministic,
meaning that 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = 1 , as mentioned above.
Moreover, 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) has the same dimension with action,
and for each constraint 𝑖𝑖 at time 𝑡𝑡, 𝑐𝑐𝑡𝑡

𝑖𝑖 = 1 means that the
constraint takes no effect. With those conditions, we have

𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = π(𝑎𝑎𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡)𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)

s.t. 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = 1; 𝑐𝑐𝑡𝑡
𝑖𝑖 ∈ {0,1}, ∀𝑖𝑖. (10)

Thus, the KL term can be simplified to

min 𝐷𝐷𝐾𝐾𝐾𝐾 �𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)|𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� =
min 𝐷𝐷𝐾𝐾𝐾𝐾 (π(𝑎𝑎𝑡𝑡|𝑐𝑐}𝑡𝑡, 𝑠𝑠𝑡𝑡)|𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) . (11)

We leverage the max entropy strategy to induce
exploration [21]. We combine constraint-awareness and
the max entropy strategy and rewrite 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) in vector

form as 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = �1�𝑐𝑐𝑡𝑡
𝑖𝑖 �1�

�𝐶𝐶𝑡𝑡
0�

�
𝑖𝑖�1

𝑁𝑁
， where 𝐶𝐶𝑡𝑡

1 is a set of

constraints that are one (constraints take effect) at time
step 𝑡𝑡 and [⋅]𝑖𝑖�1

𝑁𝑁 is a vector with 𝑁𝑁 elements. 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) =

�1�𝑐𝑐𝑡𝑡
𝑖𝑖 �1�

�𝐶𝐶𝑡𝑡
1�

�
𝑖𝑖�1

𝑁𝑁
 indicates that when node constraint of node 𝑖𝑖

exists: 𝑐𝑐𝑡𝑡
𝑖𝑖 = 0. In this condition, the probability to choose

action to that node is zero. We also average all available
actions and minimize the distance between 𝑝𝑝� and 𝑝𝑝
through the KL term with a policy to encourage

exploration.

Constraint-awareness policy optimization (CPO)
can be formulated as follow:

∇θ𝐸𝐸τ∼p(⋅) �∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃) �𝑅𝑅 − 𝑏𝑏�(𝜅𝜅)�𝑇𝑇
𝑡𝑡�1 −

β ∑ 𝐾𝐾𝐾𝐾�π(𝑠𝑠𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡; θ) ∥ 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�𝑇𝑇
𝑡𝑡�1 � , (12)

where β is a positive parameter to balance the
objective function and KL term.

Remark. Because of the deterministic constraints
in VRPs, through learning the constraints, agents
can implicitly learn the dynamic functions of the
environment, and hence can know the results of
choosing a certain action, especially worse actions.
Thus, our method is also called implicit CPO
(ICPO).

4.3. Behavior Indicator
There is still one issue. The rewards are always
sparse for VRP [23], that is, agents can only access
the final reward at the last step, resulting in a bad
credit assignment problem [11]. Hence, to make
accurate credit assignments is crucial. A property
of VRP is that there exist such actions that the more
you choose the lower the expected rewards is. To
leverage this property, we choose SR as the tool to
indicate these bad behaviors.

Recall the general form of the reward function: 𝑅𝑅 =
∑ 𝑟𝑟(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡)𝑇𝑇

𝑡𝑡�1 . Due to the nature of VRP, the reward
is only available at the end of an episode: 𝑅𝑅 =
𝑟𝑟(𝑠𝑠𝑇𝑇, 𝑎𝑎𝑇𝑇). To mitigate the sparse reward, we take the
ill-famed states into consideration and rewrite the
total reward as 𝑅𝑅� = ∑ −1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆��𝑇𝑇

𝑡𝑡�1 + 𝑅𝑅, where 𝑆𝑆� is
a set of ill-famed states and 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆� means that the
state into time 𝑡𝑡 , 𝑠𝑠𝑡𝑡 is the ill-famed state. As
mentioned above, an ill-famed state is one that may
lead to low total reward. We add a negative term
because we want these states to appear as little as
possible. Now the ill-famed state term 1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆��
can be trained by SR as

𝑉𝑉(𝑠𝑠) = −𝐸𝐸�∑ γ𝑡𝑡1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆��𝑇𝑇
𝑡𝑡�1 �𝑠𝑠0 = 𝑠𝑠� = −1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆�� +

γ𝐸𝐸�𝑉𝑉(𝑠𝑠𝑡𝑡�1)� . (13)

The right-hand side and it has the same recursive
format as temporal difference [28].

With the help of SR, agents will take possible bad
behaviors into account to make better decisions.
ICPO with SR is expressed as follow:

∇θ𝐸𝐸τ∼𝑝𝑝�(τ)�∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃)𝑇𝑇
𝑡𝑡�1 �α𝑉𝑉(𝑠𝑠𝑡𝑡) + 𝑅𝑅 −

{κ)� � − β ∑ KL�π(𝑎𝑎𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡; θ) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�𝑇𝑇
𝑡𝑡�1 �, (14)

where α is a positive hyperparameter to control the
influence of successors.

Remark. 1) We emphasize that SR can be extended
in the opposite way. That is, we can maximize
consideration of actions that are encouraged. The
formulation is the same, but with a positive signal.

 where C1
t is a set of con-

straints that are one (constraints take effect) at time
step t and

∇θ𝐸𝐸τ∼𝑝𝑝(⋅) �∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃) �𝑅𝑅 − 𝑏𝑏�(𝜅𝜅)�𝑇𝑇
𝑡𝑡�1 � (6)

4.2. Constraint-awareness Policy Optimization
Equation (6) provides a way to update the policy
function. However, to only use the constraints as input
might still not be enough to find information in the
constraints (e.g., the relationship between environment
and constraints). To further capture this information, we
design a method to learn the constraints.

First, we notice that the relationship between constraints,
environment, and actions can be represented as
π(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = ∑ π�𝑎𝑎𝑡𝑡�𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡

𝑖𝑖�𝑝𝑝�𝑐𝑐𝑡𝑡
𝑖𝑖�𝑠𝑠𝑡𝑡�𝑐𝑐𝑡𝑡

𝑖𝑖 , where 𝑖𝑖 is the index of
the constraint at time 𝑡𝑡 . This indicates that if trained
properly, the policy π can implicitly learn the constraints.
We assume there exists a strategy π(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) that can find
the best action under state 𝑠𝑠𝑡𝑡. Regarding the constraints
as the hidden variables, we have:

log π (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = log ∫ 𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)𝑑𝑑𝑐𝑐𝑡𝑡 ≥ 𝐸𝐸𝑃𝑃�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡� log 𝑝𝑝�𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�
𝑝𝑝�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�

(7)

𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� ≤ 𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡) ∥
𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�. (8)

Equations (7) and (8) are the form of the evidence lower
bound. From information theory [33], we have

log π (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = 𝐸𝐸𝑐𝑐𝑡𝑡∼𝑃𝑃�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡� log 𝑝𝑝�𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�
𝑝𝑝�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�

−

𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� （9）

Thus, to maximize log 𝑝𝑝 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) is equivalent to
minimizing DKL�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�.

Notice also that for VRP, the relationship between
constraints and the environment is deterministic,
meaning that 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = 1 , as mentioned above.
Moreover, 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) has the same dimension with action,
and for each constraint 𝑖𝑖 at time 𝑡𝑡, 𝑐𝑐𝑡𝑡

𝑖𝑖 = 1 means that the
constraint takes no effect. With those conditions, we have

𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = π(𝑎𝑎𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡)𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)

s.t. 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = 1; 𝑐𝑐𝑡𝑡
𝑖𝑖 ∈ {0,1}, ∀𝑖𝑖. (10)

Thus, the KL term can be simplified to

min 𝐷𝐷𝐾𝐾𝐾𝐾 �𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)|𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� =
min 𝐷𝐷𝐾𝐾𝐾𝐾 (π(𝑎𝑎𝑡𝑡|𝑐𝑐}𝑡𝑡, 𝑠𝑠𝑡𝑡)|𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) . (11)

We leverage the max entropy strategy to induce
exploration [21]. We combine constraint-awareness and
the max entropy strategy and rewrite 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) in vector

form as 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = �1�𝑐𝑐𝑡𝑡
𝑖𝑖 �1�

�𝐶𝐶𝑡𝑡
0�

�
𝑖𝑖�1

𝑁𝑁
， where 𝐶𝐶𝑡𝑡

1 is a set of

constraints that are one (constraints take effect) at time
step 𝑡𝑡 and [⋅]𝑖𝑖�1

𝑁𝑁 is a vector with 𝑁𝑁 elements. 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) =

�1�𝑐𝑐𝑡𝑡
𝑖𝑖 �1�

�𝐶𝐶𝑡𝑡
1�

�
𝑖𝑖�1

𝑁𝑁
 indicates that when node constraint of node 𝑖𝑖

exists: 𝑐𝑐𝑡𝑡
𝑖𝑖 = 0. In this condition, the probability to choose

action to that node is zero. We also average all available
actions and minimize the distance between 𝑝𝑝� and 𝑝𝑝
through the KL term with a policy to encourage

exploration.

Constraint-awareness policy optimization (CPO)
can be formulated as follow:

∇θ𝐸𝐸τ∼p(⋅) �∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃) �𝑅𝑅 − 𝑏𝑏�(𝜅𝜅)�𝑇𝑇
𝑡𝑡�1 −

β ∑ 𝐾𝐾𝐾𝐾�π(𝑠𝑠𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡; θ) ∥ 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�𝑇𝑇
𝑡𝑡�1 � , (12)

where β is a positive parameter to balance the
objective function and KL term.

Remark. Because of the deterministic constraints
in VRPs, through learning the constraints, agents
can implicitly learn the dynamic functions of the
environment, and hence can know the results of
choosing a certain action, especially worse actions.
Thus, our method is also called implicit CPO
(ICPO).

4.3. Behavior Indicator
There is still one issue. The rewards are always
sparse for VRP [23], that is, agents can only access
the final reward at the last step, resulting in a bad
credit assignment problem [11]. Hence, to make
accurate credit assignments is crucial. A property
of VRP is that there exist such actions that the more
you choose the lower the expected rewards is. To
leverage this property, we choose SR as the tool to
indicate these bad behaviors.

Recall the general form of the reward function: 𝑅𝑅 =
∑ 𝑟𝑟(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡)𝑇𝑇

𝑡𝑡�1 . Due to the nature of VRP, the reward
is only available at the end of an episode: 𝑅𝑅 =
𝑟𝑟(𝑠𝑠𝑇𝑇, 𝑎𝑎𝑇𝑇). To mitigate the sparse reward, we take the
ill-famed states into consideration and rewrite the
total reward as 𝑅𝑅� = ∑ −1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆��𝑇𝑇

𝑡𝑡�1 + 𝑅𝑅, where 𝑆𝑆� is
a set of ill-famed states and 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆� means that the
state into time 𝑡𝑡 , 𝑠𝑠𝑡𝑡 is the ill-famed state. As
mentioned above, an ill-famed state is one that may
lead to low total reward. We add a negative term
because we want these states to appear as little as
possible. Now the ill-famed state term 1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆��
can be trained by SR as

𝑉𝑉(𝑠𝑠) = −𝐸𝐸�∑ γ𝑡𝑡1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆��𝑇𝑇
𝑡𝑡�1 �𝑠𝑠0 = 𝑠𝑠� = −1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆�� +

γ𝐸𝐸�𝑉𝑉(𝑠𝑠𝑡𝑡�1)� . (13)

The right-hand side and it has the same recursive
format as temporal difference [28].

With the help of SR, agents will take possible bad
behaviors into account to make better decisions.
ICPO with SR is expressed as follow:

∇θ𝐸𝐸τ∼𝑝𝑝�(τ)�∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃)𝑇𝑇
𝑡𝑡�1 �α𝑉𝑉(𝑠𝑠𝑡𝑡) + 𝑅𝑅 −

{κ)� � − β ∑ KL�π(𝑎𝑎𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡; θ) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�𝑇𝑇
𝑡𝑡�1 �, (14)

where α is a positive hyperparameter to control the
influence of successors.

Remark. 1) We emphasize that SR can be extended
in the opposite way. That is, we can maximize
consideration of actions that are encouraged. The
formulation is the same, but with a positive signal.

 is a vector with N elements.

∇θ𝐸𝐸τ∼𝑝𝑝(⋅) �∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃) �𝑅𝑅 − 𝑏𝑏�(𝜅𝜅)�𝑇𝑇
𝑡𝑡�1 � (6)

4.2. Constraint-awareness Policy Optimization
Equation (6) provides a way to update the policy
function. However, to only use the constraints as input
might still not be enough to find information in the
constraints (e.g., the relationship between environment
and constraints). To further capture this information, we
design a method to learn the constraints.

First, we notice that the relationship between constraints,
environment, and actions can be represented as
π(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = ∑ π�𝑎𝑎𝑡𝑡�𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡

𝑖𝑖�𝑝𝑝�𝑐𝑐𝑡𝑡
𝑖𝑖�𝑠𝑠𝑡𝑡�𝑐𝑐𝑡𝑡

𝑖𝑖 , where 𝑖𝑖 is the index of
the constraint at time 𝑡𝑡 . This indicates that if trained
properly, the policy π can implicitly learn the constraints.
We assume there exists a strategy π(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) that can find
the best action under state 𝑠𝑠𝑡𝑡. Regarding the constraints
as the hidden variables, we have:

log π (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = log ∫ 𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)𝑑𝑑𝑐𝑐𝑡𝑡 ≥ 𝐸𝐸𝑃𝑃�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡� log 𝑝𝑝�𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�
𝑝𝑝�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�

(7)

𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� ≤ 𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡) ∥
𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�. (8)

Equations (7) and (8) are the form of the evidence lower
bound. From information theory [33], we have

log π (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = 𝐸𝐸𝑐𝑐𝑡𝑡∼𝑃𝑃�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡� log 𝑝𝑝�𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�
𝑝𝑝�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�

−

𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� （9）

Thus, to maximize log 𝑝𝑝 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) is equivalent to
minimizing DKL�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�.

Notice also that for VRP, the relationship between
constraints and the environment is deterministic,
meaning that 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = 1 , as mentioned above.
Moreover, 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) has the same dimension with action,
and for each constraint 𝑖𝑖 at time 𝑡𝑡, 𝑐𝑐𝑡𝑡

𝑖𝑖 = 1 means that the
constraint takes no effect. With those conditions, we have

𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = π(𝑎𝑎𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡)𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)

s.t. 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = 1; 𝑐𝑐𝑡𝑡
𝑖𝑖 ∈ {0,1}, ∀𝑖𝑖. (10)

Thus, the KL term can be simplified to

min 𝐷𝐷𝐾𝐾𝐾𝐾 �𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)|𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� =
min 𝐷𝐷𝐾𝐾𝐾𝐾 (π(𝑎𝑎𝑡𝑡|𝑐𝑐}𝑡𝑡, 𝑠𝑠𝑡𝑡)|𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) . (11)

We leverage the max entropy strategy to induce
exploration [21]. We combine constraint-awareness and
the max entropy strategy and rewrite 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) in vector

form as 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = �1�𝑐𝑐𝑡𝑡
𝑖𝑖 �1�

�𝐶𝐶𝑡𝑡
0�

�
𝑖𝑖�1

𝑁𝑁
， where 𝐶𝐶𝑡𝑡

1 is a set of

constraints that are one (constraints take effect) at time
step 𝑡𝑡 and [⋅]𝑖𝑖�1

𝑁𝑁 is a vector with 𝑁𝑁 elements. 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) =

�1�𝑐𝑐𝑡𝑡
𝑖𝑖 �1�

�𝐶𝐶𝑡𝑡
1�

�
𝑖𝑖�1

𝑁𝑁
 indicates that when node constraint of node 𝑖𝑖

exists: 𝑐𝑐𝑡𝑡
𝑖𝑖 = 0. In this condition, the probability to choose

action to that node is zero. We also average all available
actions and minimize the distance between 𝑝𝑝� and 𝑝𝑝
through the KL term with a policy to encourage

exploration.

Constraint-awareness policy optimization (CPO)
can be formulated as follow:

∇θ𝐸𝐸τ∼p(⋅) �∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃) �𝑅𝑅 − 𝑏𝑏�(𝜅𝜅)�𝑇𝑇
𝑡𝑡�1 −

β ∑ 𝐾𝐾𝐾𝐾�π(𝑠𝑠𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡; θ) ∥ 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�𝑇𝑇
𝑡𝑡�1 � , (12)

where β is a positive parameter to balance the
objective function and KL term.

Remark. Because of the deterministic constraints
in VRPs, through learning the constraints, agents
can implicitly learn the dynamic functions of the
environment, and hence can know the results of
choosing a certain action, especially worse actions.
Thus, our method is also called implicit CPO
(ICPO).

4.3. Behavior Indicator
There is still one issue. The rewards are always
sparse for VRP [23], that is, agents can only access
the final reward at the last step, resulting in a bad
credit assignment problem [11]. Hence, to make
accurate credit assignments is crucial. A property
of VRP is that there exist such actions that the more
you choose the lower the expected rewards is. To
leverage this property, we choose SR as the tool to
indicate these bad behaviors.

Recall the general form of the reward function: 𝑅𝑅 =
∑ 𝑟𝑟(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡)𝑇𝑇

𝑡𝑡�1 . Due to the nature of VRP, the reward
is only available at the end of an episode: 𝑅𝑅 =
𝑟𝑟(𝑠𝑠𝑇𝑇, 𝑎𝑎𝑇𝑇). To mitigate the sparse reward, we take the
ill-famed states into consideration and rewrite the
total reward as 𝑅𝑅� = ∑ −1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆��𝑇𝑇

𝑡𝑡�1 + 𝑅𝑅, where 𝑆𝑆� is
a set of ill-famed states and 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆� means that the
state into time 𝑡𝑡 , 𝑠𝑠𝑡𝑡 is the ill-famed state. As
mentioned above, an ill-famed state is one that may
lead to low total reward. We add a negative term
because we want these states to appear as little as
possible. Now the ill-famed state term 1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆��
can be trained by SR as

𝑉𝑉(𝑠𝑠) = −𝐸𝐸�∑ γ𝑡𝑡1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆��𝑇𝑇
𝑡𝑡�1 �𝑠𝑠0 = 𝑠𝑠� = −1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆�� +

γ𝐸𝐸�𝑉𝑉(𝑠𝑠𝑡𝑡�1)� . (13)

The right-hand side and it has the same recursive
format as temporal difference [28].

With the help of SR, agents will take possible bad
behaviors into account to make better decisions.
ICPO with SR is expressed as follow:

∇θ𝐸𝐸τ∼𝑝𝑝�(τ)�∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃)𝑇𝑇
𝑡𝑡�1 �α𝑉𝑉(𝑠𝑠𝑡𝑡) + 𝑅𝑅 −

{κ)� � − β ∑ KL�π(𝑎𝑎𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡; θ) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�𝑇𝑇
𝑡𝑡�1 �, (14)

where α is a positive hyperparameter to control the
influence of successors.

Remark. 1) We emphasize that SR can be extended
in the opposite way. That is, we can maximize
consideration of actions that are encouraged. The
formulation is the same, but with a positive signal.

�1�𝑐𝑐𝑡𝑡
𝑖𝑖�1�
�𝐶𝐶𝑡𝑡1�

�
𝑖𝑖�1

𝑁𝑁
 indicates that when node constraint of node

exists: 𝑖𝑖

 indicates that when node constraint of

node i exists: 𝑐𝑖
t = 0. In this condition, the probability

to choose action to that node is zero. We also average
all available actions and minimize the distance be-
tween p̂ and p through the KL term with a policy to
encourage exploration.
Constraint-awareness policy optimization (CPO) can
be formulated as follow:

∇θ𝐸𝐸τ∼𝑝𝑝(⋅) �∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃) �𝑅𝑅 − 𝑏𝑏�(𝜅𝜅)�𝑇𝑇
𝑡𝑡�1 � (6)

4.2. Constraint-awareness Policy Optimization
Equation (6) provides a way to update the policy
function. However, to only use the constraints as input
might still not be enough to find information in the
constraints (e.g., the relationship between environment
and constraints). To further capture this information, we
design a method to learn the constraints.

First, we notice that the relationship between constraints,
environment, and actions can be represented as
π(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = ∑ π�𝑎𝑎𝑡𝑡�𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡

𝑖𝑖�𝑝𝑝�𝑐𝑐𝑡𝑡
𝑖𝑖�𝑠𝑠𝑡𝑡�𝑐𝑐𝑡𝑡

𝑖𝑖 , where 𝑖𝑖 is the index of
the constraint at time 𝑡𝑡 . This indicates that if trained
properly, the policy π can implicitly learn the constraints.
We assume there exists a strategy π(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) that can find
the best action under state 𝑠𝑠𝑡𝑡. Regarding the constraints
as the hidden variables, we have:

log π (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = log ∫ 𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)𝑑𝑑𝑐𝑐𝑡𝑡 ≥ 𝐸𝐸𝑃𝑃�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡� log 𝑝𝑝�𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�
𝑝𝑝�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�

(7)

𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� ≤ 𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡) ∥
𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�. (8)

Equations (7) and (8) are the form of the evidence lower
bound. From information theory [33], we have

log π (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = 𝐸𝐸𝑐𝑐𝑡𝑡∼𝑃𝑃�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡� log 𝑝𝑝�𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�
𝑝𝑝�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�

−

𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� （9）

Thus, to maximize log 𝑝𝑝 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) is equivalent to
minimizing DKL�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�.

Notice also that for VRP, the relationship between
constraints and the environment is deterministic,
meaning that 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = 1 , as mentioned above.
Moreover, 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) has the same dimension with action,
and for each constraint 𝑖𝑖 at time 𝑡𝑡, 𝑐𝑐𝑡𝑡

𝑖𝑖 = 1 means that the
constraint takes no effect. With those conditions, we have

𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = π(𝑎𝑎𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡)𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)

s.t. 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = 1; 𝑐𝑐𝑡𝑡
𝑖𝑖 ∈ {0,1}, ∀𝑖𝑖. (10)

Thus, the KL term can be simplified to

min 𝐷𝐷𝐾𝐾𝐾𝐾 �𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)|𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� =
min 𝐷𝐷𝐾𝐾𝐾𝐾 (π(𝑎𝑎𝑡𝑡|𝑐𝑐}𝑡𝑡, 𝑠𝑠𝑡𝑡)|𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) . (11)

We leverage the max entropy strategy to induce
exploration [21]. We combine constraint-awareness and
the max entropy strategy and rewrite 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) in vector

form as 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = �1�𝑐𝑐𝑡𝑡
𝑖𝑖 �1�

�𝐶𝐶𝑡𝑡
0�

�
𝑖𝑖�1

𝑁𝑁
， where 𝐶𝐶𝑡𝑡

1 is a set of

constraints that are one (constraints take effect) at time
step 𝑡𝑡 and [⋅]𝑖𝑖�1

𝑁𝑁 is a vector with 𝑁𝑁 elements. 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) =

�1�𝑐𝑐𝑡𝑡
𝑖𝑖 �1�

�𝐶𝐶𝑡𝑡
1�

�
𝑖𝑖�1

𝑁𝑁
 indicates that when node constraint of node 𝑖𝑖

exists: 𝑐𝑐𝑡𝑡
𝑖𝑖 = 0. In this condition, the probability to choose

action to that node is zero. We also average all available
actions and minimize the distance between 𝑝𝑝� and 𝑝𝑝
through the KL term with a policy to encourage

exploration.

Constraint-awareness policy optimization (CPO)
can be formulated as follow:

∇θ𝐸𝐸τ∼p(⋅) �∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃) �𝑅𝑅 − 𝑏𝑏�(𝜅𝜅)�𝑇𝑇
𝑡𝑡�1 −

β ∑ 𝐾𝐾𝐾𝐾�π(𝑠𝑠𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡; θ) ∥ 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�𝑇𝑇
𝑡𝑡�1 � , (12)

where β is a positive parameter to balance the
objective function and KL term.

Remark. Because of the deterministic constraints
in VRPs, through learning the constraints, agents
can implicitly learn the dynamic functions of the
environment, and hence can know the results of
choosing a certain action, especially worse actions.
Thus, our method is also called implicit CPO
(ICPO).

4.3. Behavior Indicator
There is still one issue. The rewards are always
sparse for VRP [23], that is, agents can only access
the final reward at the last step, resulting in a bad
credit assignment problem [11]. Hence, to make
accurate credit assignments is crucial. A property
of VRP is that there exist such actions that the more
you choose the lower the expected rewards is. To
leverage this property, we choose SR as the tool to
indicate these bad behaviors.

Recall the general form of the reward function: 𝑅𝑅 =
∑ 𝑟𝑟(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡)𝑇𝑇

𝑡𝑡�1 . Due to the nature of VRP, the reward
is only available at the end of an episode: 𝑅𝑅 =
𝑟𝑟(𝑠𝑠𝑇𝑇, 𝑎𝑎𝑇𝑇). To mitigate the sparse reward, we take the
ill-famed states into consideration and rewrite the
total reward as 𝑅𝑅� = ∑ −1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆��𝑇𝑇

𝑡𝑡�1 + 𝑅𝑅, where 𝑆𝑆� is
a set of ill-famed states and 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆� means that the
state into time 𝑡𝑡 , 𝑠𝑠𝑡𝑡 is the ill-famed state. As
mentioned above, an ill-famed state is one that may
lead to low total reward. We add a negative term
because we want these states to appear as little as
possible. Now the ill-famed state term 1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆��
can be trained by SR as

𝑉𝑉(𝑠𝑠) = −𝐸𝐸�∑ γ𝑡𝑡1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆��𝑇𝑇
𝑡𝑡�1 �𝑠𝑠0 = 𝑠𝑠� = −1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆�� +

γ𝐸𝐸�𝑉𝑉(𝑠𝑠𝑡𝑡�1)� . (13)

The right-hand side and it has the same recursive
format as temporal difference [28].

With the help of SR, agents will take possible bad
behaviors into account to make better decisions.
ICPO with SR is expressed as follow:

∇θ𝐸𝐸τ∼𝑝𝑝�(τ)�∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃)𝑇𝑇
𝑡𝑡�1 �α𝑉𝑉(𝑠𝑠𝑡𝑡) + 𝑅𝑅 −

{κ)� � − β ∑ KL�π(𝑎𝑎𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡; θ) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�𝑇𝑇
𝑡𝑡�1 �, (14)

where α is a positive hyperparameter to control the
influence of successors.

Remark. 1) We emphasize that SR can be extended
in the opposite way. That is, we can maximize
consideration of actions that are encouraged. The
formulation is the same, but with a positive signal.

(12)

where β is a positive parameter to balance the objec-
tive function and KL term.
Remark. Because of the deterministic constraints in
VRPs, through learning the constraints, agents can
implicitly learn the dynamic functions of the envi-
ronment, and hence can know the results of choosing
a certain action, especially worse actions. Thus, our
method is also called implicit CPO (ICPO).

4.3. Behavior Indicator
There is still one issue. The rewards are always sparse
for VRP [23], that is, agents can only access the final
reward at the last step, resulting in a bad credit assign-
ment problem [11]. Hence, to make accurate credit as-
signments is crucial. A property of VRP is that there
exist such actions that the more you choose the lower
the expected rewards is. To leverage this property, we
choose SR as the tool to indicate these bad behaviors.
Recall the general form of the reward function:

Information Technology and Control 2022/1/51132

R = ∑𝑇
t =1𝑟(𝑠𝑡, 𝑎𝑡). Due to the nature of VRP, the reward

is only available at the end of an episode: R = 𝑟(𝑠𝑇, 𝑎𝑇)
To mitigate the sparse reward, we take the ill-famed
states into consideration and rewrite the total reward
as R̂ = ∑𝑇

t=1(𝑠𝑡 ∈ �̂�) + 𝑅, where �̂� is a set of ill-famed
states and 𝑠𝑡 ∈ �̂� means that the state into time t, 𝑠𝑡 is
the ill-famed state. As mentioned above, an ill-famed
state is one that may lead to low total reward. We add
a negative term because we want these states to ap-
pear as little as possible. Now the ill-famed state term
1(𝑠𝑡 ∈ �̂�) can be trained by SR as

∇θ𝐸𝐸τ∼𝑝𝑝(⋅) �∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃) �𝑅𝑅 − 𝑏𝑏�(𝜅𝜅)�𝑇𝑇
𝑡𝑡�1 � (6)

4.2. Constraint-awareness Policy Optimization
Equation (6) provides a way to update the policy
function. However, to only use the constraints as input
might still not be enough to find information in the
constraints (e.g., the relationship between environment
and constraints). To further capture this information, we
design a method to learn the constraints.

First, we notice that the relationship between constraints,
environment, and actions can be represented as
π(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = ∑ π�𝑎𝑎𝑡𝑡�𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡

𝑖𝑖�𝑝𝑝�𝑐𝑐𝑡𝑡
𝑖𝑖�𝑠𝑠𝑡𝑡�𝑐𝑐𝑡𝑡

𝑖𝑖 , where 𝑖𝑖 is the index of
the constraint at time 𝑡𝑡 . This indicates that if trained
properly, the policy π can implicitly learn the constraints.
We assume there exists a strategy π(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) that can find
the best action under state 𝑠𝑠𝑡𝑡. Regarding the constraints
as the hidden variables, we have:

log π (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = log ∫ 𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)𝑑𝑑𝑐𝑐𝑡𝑡 ≥ 𝐸𝐸𝑃𝑃�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡� log 𝑝𝑝�𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�
𝑝𝑝�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�

(7)

𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� ≤ 𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡) ∥
𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�. (8)

Equations (7) and (8) are the form of the evidence lower
bound. From information theory [33], we have

log π (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = 𝐸𝐸𝑐𝑐𝑡𝑡∼𝑃𝑃�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡� log 𝑝𝑝�𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�
𝑝𝑝�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�

−

𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� （9）

Thus, to maximize log 𝑝𝑝 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) is equivalent to
minimizing DKL�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�.

Notice also that for VRP, the relationship between
constraints and the environment is deterministic,
meaning that 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = 1 , as mentioned above.
Moreover, 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) has the same dimension with action,
and for each constraint 𝑖𝑖 at time 𝑡𝑡, 𝑐𝑐𝑡𝑡

𝑖𝑖 = 1 means that the
constraint takes no effect. With those conditions, we have

𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = π(𝑎𝑎𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡)𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)

s.t. 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = 1; 𝑐𝑐𝑡𝑡
𝑖𝑖 ∈ {0,1}, ∀𝑖𝑖. (10)

Thus, the KL term can be simplified to

min 𝐷𝐷𝐾𝐾𝐾𝐾 �𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)|𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� =
min 𝐷𝐷𝐾𝐾𝐾𝐾 (π(𝑎𝑎𝑡𝑡|𝑐𝑐}𝑡𝑡, 𝑠𝑠𝑡𝑡)|𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) . (11)

We leverage the max entropy strategy to induce
exploration [21]. We combine constraint-awareness and
the max entropy strategy and rewrite 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) in vector

form as 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = �1�𝑐𝑐𝑡𝑡
𝑖𝑖 �1�

�𝐶𝐶𝑡𝑡
0�

�
𝑖𝑖�1

𝑁𝑁
， where 𝐶𝐶𝑡𝑡

1 is a set of

constraints that are one (constraints take effect) at time
step 𝑡𝑡 and [⋅]𝑖𝑖�1

𝑁𝑁 is a vector with 𝑁𝑁 elements. 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) =

�1�𝑐𝑐𝑡𝑡
𝑖𝑖 �1�

�𝐶𝐶𝑡𝑡
1�

�
𝑖𝑖�1

𝑁𝑁
 indicates that when node constraint of node 𝑖𝑖

exists: 𝑐𝑐𝑡𝑡
𝑖𝑖 = 0. In this condition, the probability to choose

action to that node is zero. We also average all available
actions and minimize the distance between 𝑝𝑝� and 𝑝𝑝
through the KL term with a policy to encourage

exploration.

Constraint-awareness policy optimization (CPO)
can be formulated as follow:

∇θ𝐸𝐸τ∼p(⋅) �∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃) �𝑅𝑅 − 𝑏𝑏�(𝜅𝜅)�𝑇𝑇
𝑡𝑡�1 −

β ∑ 𝐾𝐾𝐾𝐾�π(𝑠𝑠𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡; θ) ∥ 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�𝑇𝑇
𝑡𝑡�1 � , (12)

where β is a positive parameter to balance the
objective function and KL term.

Remark. Because of the deterministic constraints
in VRPs, through learning the constraints, agents
can implicitly learn the dynamic functions of the
environment, and hence can know the results of
choosing a certain action, especially worse actions.
Thus, our method is also called implicit CPO
(ICPO).

4.3. Behavior Indicator
There is still one issue. The rewards are always
sparse for VRP [23], that is, agents can only access
the final reward at the last step, resulting in a bad
credit assignment problem [11]. Hence, to make
accurate credit assignments is crucial. A property
of VRP is that there exist such actions that the more
you choose the lower the expected rewards is. To
leverage this property, we choose SR as the tool to
indicate these bad behaviors.

Recall the general form of the reward function: 𝑅𝑅 =
∑ 𝑟𝑟(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡)𝑇𝑇

𝑡𝑡�1 . Due to the nature of VRP, the reward
is only available at the end of an episode: 𝑅𝑅 =
𝑟𝑟(𝑠𝑠𝑇𝑇, 𝑎𝑎𝑇𝑇). To mitigate the sparse reward, we take the
ill-famed states into consideration and rewrite the
total reward as 𝑅𝑅� = ∑ −1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆��𝑇𝑇

𝑡𝑡�1 + 𝑅𝑅, where 𝑆𝑆� is
a set of ill-famed states and 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆� means that the
state into time 𝑡𝑡 , 𝑠𝑠𝑡𝑡 is the ill-famed state. As
mentioned above, an ill-famed state is one that may
lead to low total reward. We add a negative term
because we want these states to appear as little as
possible. Now the ill-famed state term 1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆��
can be trained by SR as

𝑉𝑉(𝑠𝑠) = −𝐸𝐸�∑ γ𝑡𝑡1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆��𝑇𝑇
𝑡𝑡�1 �𝑠𝑠0 = 𝑠𝑠� =

−1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆�� + γ𝐸𝐸�𝑉𝑉(𝑠𝑠𝑡𝑡�1)� .

The right-hand side and it has the same recursive
format as temporal difference [28].

With the help of SR, agents will take possible bad
behaviors into account to make better decisions.
ICPO with SR is expressed as follow:

∇θ𝐸𝐸τ∼𝑝𝑝�(τ)�∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃)𝑇𝑇
𝑡𝑡�1 �α𝑉𝑉(𝑠𝑠𝑡𝑡) + 𝑅𝑅 −

{κ)� � − β ∑ KL�π(𝑎𝑎𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡; θ) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�𝑇𝑇
𝑡𝑡�1 �, (14)

where α is a positive hyperparameter to control the
influence of successors.

Remark. 1) We emphasize that SR can be extended
in the opposite way. That is, we can maximize
consideration of actions that are encouraged. The
formulation is the same, but with a positive signal.

(13)

The right-hand side and it has the same recursive for-
mat as temporal difference [28].
With the help of SR, agents will take possible bad be-
haviors into account to make better decisions. ICPO
with SR is expressed as follow:

∇θ𝐸𝐸τ∼𝑝𝑝(⋅) �∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃) �𝑅𝑅 − 𝑏𝑏�(𝜅𝜅)�𝑇𝑇
𝑡𝑡�1 � (6)

4.2. Constraint-awareness Policy Optimization
Equation (6) provides a way to update the policy
function. However, to only use the constraints as input
might still not be enough to find information in the
constraints (e.g., the relationship between environment
and constraints). To further capture this information, we
design a method to learn the constraints.

First, we notice that the relationship between constraints,
environment, and actions can be represented as
π(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = ∑ π�𝑎𝑎𝑡𝑡�𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡

𝑖𝑖�𝑝𝑝�𝑐𝑐𝑡𝑡
𝑖𝑖�𝑠𝑠𝑡𝑡�𝑐𝑐𝑡𝑡

𝑖𝑖 , where 𝑖𝑖 is the index of
the constraint at time 𝑡𝑡 . This indicates that if trained
properly, the policy π can implicitly learn the constraints.
We assume there exists a strategy π(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) that can find
the best action under state 𝑠𝑠𝑡𝑡. Regarding the constraints
as the hidden variables, we have:

log π (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = log ∫ 𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)𝑑𝑑𝑐𝑐𝑡𝑡 ≥ 𝐸𝐸𝑃𝑃�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡� log 𝑝𝑝�𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�
𝑝𝑝�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�

(7)

𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� ≤ 𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡) ∥
𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�. (8)

Equations (7) and (8) are the form of the evidence lower
bound. From information theory [33], we have

log π (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = 𝐸𝐸𝑐𝑐𝑡𝑡∼𝑃𝑃�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡� log 𝑝𝑝�𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�
𝑝𝑝�𝑐𝑐𝑡𝑡�𝑠𝑠𝑡𝑡�

−

𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� （9）

Thus, to maximize log 𝑝𝑝 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) is equivalent to
minimizing DKL�𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�.

Notice also that for VRP, the relationship between
constraints and the environment is deterministic,
meaning that 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = 1 , as mentioned above.
Moreover, 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) has the same dimension with action,
and for each constraint 𝑖𝑖 at time 𝑡𝑡, 𝑐𝑐𝑡𝑡

𝑖𝑖 = 1 means that the
constraint takes no effect. With those conditions, we have

𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = π(𝑎𝑎𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡)𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)

s.t. 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = 1; 𝑐𝑐𝑡𝑡
𝑖𝑖 ∈ {0,1}, ∀𝑖𝑖. (10)

Thus, the KL term can be simplified to

min 𝐷𝐷𝐾𝐾𝐾𝐾 �𝑝𝑝(𝑎𝑎𝑡𝑡, 𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)|𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)� =
min 𝐷𝐷𝐾𝐾𝐾𝐾 (π(𝑎𝑎𝑡𝑡|𝑐𝑐}𝑡𝑡, 𝑠𝑠𝑡𝑡)|𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) . (11)

We leverage the max entropy strategy to induce
exploration [21]. We combine constraint-awareness and
the max entropy strategy and rewrite 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) in vector

form as 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) = �1�𝑐𝑐𝑡𝑡
𝑖𝑖 �1�

�𝐶𝐶𝑡𝑡
0�

�
𝑖𝑖�1

𝑁𝑁
， where 𝐶𝐶𝑡𝑡

1 is a set of

constraints that are one (constraints take effect) at time
step 𝑡𝑡 and [⋅]𝑖𝑖�1

𝑁𝑁 is a vector with 𝑁𝑁 elements. 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡) =

�1�𝑐𝑐𝑡𝑡
𝑖𝑖 �1�

�𝐶𝐶𝑡𝑡
1�

�
𝑖𝑖�1

𝑁𝑁
 indicates that when node constraint of node 𝑖𝑖

exists: 𝑐𝑐𝑡𝑡
𝑖𝑖 = 0. In this condition, the probability to choose

action to that node is zero. We also average all available
actions and minimize the distance between 𝑝𝑝� and 𝑝𝑝
through the KL term with a policy to encourage

exploration.

Constraint-awareness policy optimization (CPO)
can be formulated as follow:

∇θ𝐸𝐸τ∼p(⋅) �∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃) �𝑅𝑅 − 𝑏𝑏�(𝜅𝜅)�𝑇𝑇
𝑡𝑡�1 −

β ∑ 𝐾𝐾𝐾𝐾�π(𝑠𝑠𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡; θ) ∥ 𝑝𝑝�(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�𝑇𝑇
𝑡𝑡�1 � , (12)

where β is a positive parameter to balance the
objective function and KL term.

Remark. Because of the deterministic constraints
in VRPs, through learning the constraints, agents
can implicitly learn the dynamic functions of the
environment, and hence can know the results of
choosing a certain action, especially worse actions.
Thus, our method is also called implicit CPO
(ICPO).

4.3. Behavior Indicator
There is still one issue. The rewards are always
sparse for VRP [23], that is, agents can only access
the final reward at the last step, resulting in a bad
credit assignment problem [11]. Hence, to make
accurate credit assignments is crucial. A property
of VRP is that there exist such actions that the more
you choose the lower the expected rewards is. To
leverage this property, we choose SR as the tool to
indicate these bad behaviors.

Recall the general form of the reward function: 𝑅𝑅 =
∑ 𝑟𝑟(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡)𝑇𝑇

𝑡𝑡�1 . Due to the nature of VRP, the reward
is only available at the end of an episode: 𝑅𝑅 =
𝑟𝑟(𝑠𝑠𝑇𝑇, 𝑎𝑎𝑇𝑇). To mitigate the sparse reward, we take the
ill-famed states into consideration and rewrite the
total reward as 𝑅𝑅� = ∑ −1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆��𝑇𝑇

𝑡𝑡�1 + 𝑅𝑅, where 𝑆𝑆� is
a set of ill-famed states and 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆� means that the
state into time 𝑡𝑡 , 𝑠𝑠𝑡𝑡 is the ill-famed state. As
mentioned above, an ill-famed state is one that may
lead to low total reward. We add a negative term
because we want these states to appear as little as
possible. Now the ill-famed state term 1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆��
can be trained by SR as

𝑉𝑉(𝑠𝑠) = −𝐸𝐸�∑ γ𝑡𝑡1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆��𝑇𝑇
𝑡𝑡�1 �𝑠𝑠0 = 𝑠𝑠� = −1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆�� +

γ𝐸𝐸�𝑉𝑉(𝑠𝑠𝑡𝑡�1)� .

The right-hand side and it has the same recursive
format as temporal difference [28].

With the help of SR, agents will take possible bad
behaviors into account to make better decisions.
ICPO with SR is expressed as follow:

∇θ𝐸𝐸τ∼𝑝𝑝�(τ)�∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃)𝑇𝑇
𝑡𝑡�1 �α𝑉𝑉(𝑠𝑠𝑡𝑡) + 𝑅𝑅 −

{κ)� � − β ∑ KL�π(𝑎𝑎𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡; θ) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�𝑇𝑇
𝑡𝑡�1 �,

where α is a positive hyperparameter to control the
influence of successors.

Remark. 1) We emphasize that SR can be extended
in the opposite way. That is, we can maximize
consideration of actions that are encouraged. The
formulation is the same, but with a positive signal.

(14)

where α is a positive hyperparameter to control the
influence of successors.
Remark. 1) We emphasize that SR can be extended in
the opposite way. That is, we can maximize consider-
ation of actions that are encouraged. The formulation
is the same, but with a positive signal. 2) SR also acts
as a regulator to balance human intuition and learn-
ing results.

4.4. Training Method

Loss Functions. We design a policy, baseline func-
tion, and successor value as neural networks with
parameters θ, λ, and η, respectively. The losses of suc-
cessor value 𝐿𝑉 and baseline function 𝐿𝑏 are

2) SR also acts as a regulator to balance human intuition
and learning results.

4.4. Training Method
Loss Functions. We design a policy, baseline function,
and successor value as neural networks with parameters
θ, λ, and η, respectively. The losses of successor value 𝐿𝐿𝑉𝑉
and baseline function 𝐿𝐿𝑏𝑏 are

𝐿𝐿𝑣𝑣 = 𝐸𝐸τ∼𝑧𝑧 ��𝑅𝑅� − 𝑏𝑏�(κ; λ)�
2

� (15)

𝐿𝐿𝑏𝑏 = 𝐸𝐸𝑠𝑠𝑡𝑡�1,𝑠𝑠𝑡𝑡∼𝑧𝑧 ��1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆�� + γ𝑉𝑉(𝑠𝑠𝑡𝑡�1; η) − 𝑉𝑉(𝑠𝑠𝑡𝑡; η)�
2
�,

(16)

where 𝑧𝑧 is the episode buffer. All the loss functions can
be estimated through Monte Carlo sampling. The policy
gradient with constraint-aware module and successor
representation can be formed as Equation (17).

∇θ𝐸𝐸τ𝑝𝑝�(τ)�∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃)𝑇𝑇
𝑡𝑡�1 (α𝑉𝑉(𝑠𝑠𝑡𝑡) + 𝑅𝑅 − κ�) −

β ∑ KL𝑇𝑇
𝑡𝑡�1 �π(𝑎𝑎𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡; θ) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�� . (17)

The pseudocode can be found in Algorithm 1.
Algorithm 1
Implicit Constraint-awareness policy optimization

Algorithm
1: Initializing parameters for actor, successor, and

baseline function θ, λ, and η
2: Generating training dataset

3: while not convergence do

4: Sample 𝑠𝑠0 from the training dataset

5: Initializing the history information 𝑠𝑠0

6: Initializing the episode buffer 𝑧𝑧0

 Rollout Stage

7: for 0 to the maximum of nodes do

8: Select action 𝑎𝑎𝑡𝑡 ∼ π(𝑠𝑠𝑡𝑡) with Boltzmann
exploration strategy

9: Update the environment with dynamic
function

10: 𝑧𝑧𝑡𝑡�1 = 𝑧𝑧𝑡𝑡 ∪ (𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡, 𝑟𝑟𝑡𝑡)

11: end for

 Train Stage

12: Update θ, λ, and η through Equations (17),
(15) and (16) respectively

13: end while

Network Structure. The policy network structure has
three parts: decision making, encoder, and attention
mechanism [3, 23]. The first is used to choose the policy,
and the second and third to encode the graph and capture
valuable information. A gated recurrent unit is introduced
to seize the long-term effects [5]. We leverage the
attention mechanism output as the input of the successor

function. For the baseline function, since the state
and constraints are taken as input, we build the
model without sharing variables with the policy
networks.

For full understanding of our network, we explain
each structure. Our network structure, shown in
Figure 2, is mainly built from Nazari et al. and
Vinyals et al. [23, 31], and we make some
improvements. Unless otherwise mentioned, the
activation is ReLU [22].
Figure 2

Structure of policy, baseline, and successor networks.
The structure has three parts: (a) the encoder network
aims to convert states to embeddings; 𝐸𝐸𝑎𝑎 , 𝐸𝐸𝑠𝑠𝑡𝑡 , and 𝐸𝐸𝑐𝑐𝑡𝑡
are encoders for action states and constraints,
respectively; (b) the policy and successor; ℎ𝑡𝑡 is the long-
term hidden state for RNN, and context is useful
information extracted from the attention model; and (c)
baseline function.

Objective function. The objective function for
VRP is to minimize the tour length, but the
objective function in RL is always represented as
maximizing the total reward. Therefore, we set the
total reward in VRP as the negative tour length

Input. In the VRPTW, we set the current state and
constraints as input. The state 𝑠𝑠𝑡𝑡 for the VRP
includes the location of the nodes, remaining load,
and demand of customers. For VRPTW, since each
customer has its own time window, we add two
features to provide extra information: 1) the time
window of each customer; and 2) the current time.
Moreover, the previous action is also added as input
to reveal the current location of the vehicle. The
input size is 𝑏𝑏𝑎𝑎𝑡𝑡𝑐𝑐ℎ × 2 × |𝑁𝑁| for the location of
nodes and the time window. The size for other
features is 𝑏𝑏𝑎𝑎𝑡𝑡𝑐𝑐ℎ × 1 × |𝑁𝑁|.

Attention Mechanism. An attention mechanism
(AM) captures the internal relationships within a
graph, where the embedding taken from GRU is
used as the input embedding. The output of AM is
a context, which is a 32-dimension vector
combining short-term and long-term information.
The setting of AM is similar to luong et al. [19].

Decision Making Network. The output of the
decision-making network is |𝑁𝑁|, and the input is the
context from the AM. Softmax is used to generate
the probability of each action (the activation
function in the final layer is softmax).

(15)

𝐿𝐿𝑏𝑏=𝐸𝐸𝑠𝑠𝑡𝑡�1,𝑠𝑠𝑡𝑡∼𝑧𝑧��1�𝑠𝑠𝑡𝑡∈𝑆𝑆��+γ𝑉𝑉(𝑠𝑠𝑡𝑡�1; η)−𝑉𝑉(𝑠𝑠𝑡𝑡; η)�
2
�, (16)

where z is the episode buffer. All the loss functions can
be estimated through Monte Carlo sampling. The poli-
cy gradient with constraint-aware module and succes-
sor representation can be formed as Equation (17).

2) SR also acts as a regulator to balance human intuition
and learning results.

4.4. Training Method
Loss Functions. We design a policy, baseline function,
and successor value as neural networks with parameters
θ, λ, and η, respectively. The losses of successor value 𝐿𝐿𝑉𝑉
and baseline function 𝐿𝐿𝑏𝑏 are

𝐿𝐿𝑣𝑣 = 𝐸𝐸τ∼𝑧𝑧 ��𝑅𝑅� − 𝑏𝑏�(κ; λ)�
2
� (15)

𝐿𝐿𝑏𝑏 = 𝐸𝐸𝑠𝑠𝑡𝑡�1,𝑠𝑠𝑡𝑡∼𝑧𝑧 ��1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆�� + γ𝑉𝑉(𝑠𝑠𝑡𝑡�1; η) − 𝑉𝑉(𝑠𝑠𝑡𝑡; η)�
2

�,

(16)

where 𝑧𝑧 is the episode buffer. All the loss functions can
be estimated through Monte Carlo sampling. The policy
gradient with constraint-aware module and successor
representation can be formed as Equation (17).

∇θ𝐸𝐸τ𝑝𝑝�(τ)�∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃)𝑇𝑇
𝑡𝑡�1 (α𝑉𝑉(𝑠𝑠𝑡𝑡) + 𝑅𝑅 − κ�) −

β ∑ KL𝑇𝑇
𝑡𝑡�1 �π(𝑎𝑎𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡; θ) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�� . (17)

The pseudocode can be found in Algorithm 1.
Algorithm 1
Implicit Constraint-awareness policy optimization

Algorithm
1: Initializing parameters for actor, successor, and

baseline function θ, λ, and η
2: Generating training dataset

3: while not convergence do

4: Sample 𝑠𝑠0 from the training dataset

5: Initializing the history information 𝑠𝑠0

6: Initializing the episode buffer 𝑧𝑧0

 Rollout Stage

7: for 0 to the maximum of nodes do

8: Select action 𝑎𝑎𝑡𝑡 ∼ π(𝑠𝑠𝑡𝑡) with Boltzmann
exploration strategy

9: Update the environment with dynamic
function

10: 𝑧𝑧𝑡𝑡�1 = 𝑧𝑧𝑡𝑡 ∪ (𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡, 𝑟𝑟𝑡𝑡)

11: end for

 Train Stage

12: Update θ, λ, and η through Equations (17),
(15) and (16) respectively

13: end while

Network Structure. The policy network structure has
three parts: decision making, encoder, and attention
mechanism [3, 23]. The first is used to choose the policy,
and the second and third to encode the graph and capture
valuable information. A gated recurrent unit is introduced
to seize the long-term effects [5]. We leverage the
attention mechanism output as the input of the successor

function. For the baseline function, since the state
and constraints are taken as input, we build the
model without sharing variables with the policy
networks.

For full understanding of our network, we explain
each structure. Our network structure, shown in
Figure 2, is mainly built from Nazari et al. and
Vinyals et al. [23, 31], and we make some
improvements. Unless otherwise mentioned, the
activation is ReLU [22].
Figure 2

Structure of policy, baseline, and successor networks.
The structure has three parts: (a) the encoder network
aims to convert states to embeddings; 𝐸𝐸𝑎𝑎 , 𝐸𝐸𝑠𝑠𝑡𝑡 , and 𝐸𝐸𝑐𝑐𝑡𝑡
are encoders for action states and constraints,
respectively; (b) the policy and successor; ℎ𝑡𝑡 is the long-
term hidden state for RNN, and context is useful
information extracted from the attention model; and (c)
baseline function.

Objective function. The objective function for
VRP is to minimize the tour length, but the
objective function in RL is always represented as
maximizing the total reward. Therefore, we set the
total reward in VRP as the negative tour length

Input. In the VRPTW, we set the current state and
constraints as input. The state 𝑠𝑠𝑡𝑡 for the VRP
includes the location of the nodes, remaining load,
and demand of customers. For VRPTW, since each
customer has its own time window, we add two
features to provide extra information: 1) the time
window of each customer; and 2) the current time.
Moreover, the previous action is also added as input
to reveal the current location of the vehicle. The
input size is 𝑏𝑏𝑎𝑎𝑡𝑡𝑐𝑐ℎ × 2 × |𝑁𝑁| for the location of
nodes and the time window. The size for other
features is 𝑏𝑏𝑎𝑎𝑡𝑡𝑐𝑐ℎ × 1 × |𝑁𝑁|.

Attention Mechanism. An attention mechanism
(AM) captures the internal relationships within a
graph, where the embedding taken from GRU is
used as the input embedding. The output of AM is
a context, which is a 32-dimension vector
combining short-term and long-term information.
The setting of AM is similar to luong et al. [19].

Decision Making Network. The output of the
decision-making network is |𝑁𝑁|, and the input is the
context from the AM. Softmax is used to generate
the probability of each action (the activation
function in the final layer is softmax).

(17)

The pseudocode can be found in Algorithm 1.
Algorithm 1
Implicit Constraint-awareness policy optimization

Algorithm

1: Initializing parameters for actor, successor, and
baseline function θ, λ, and η

2: Generating training dataset
3: while not convergence do
4: Sample 𝑠0 from the training dataset
5: Initializing the history information 𝑠0

6: Initializing the episode buffer 𝑧0
 Rollout Stage

7: for 0 to the maximum of nodes do
8: Select action 𝑎𝑡 ∼ π(𝑠𝑡) with Boltzmann

exploration strategy
9: Update the environment with dynamic

function
10: 𝑧𝑡+1 = 𝑧𝑡 ∪ (𝑠𝑡, 𝑎𝑡, 𝑟𝑡)
11: end for

 Train Stage
12: Update θ, λ, and η through Equations (17), (15)

and (16) respectively
13: end while

Network Structure. The policy network structure
has three parts: decision making, encoder, and atten-
tion mechanism [3, 23]. The first is used to choose the
policy, and the second and third to encode the graph
and capture valuable information. A gated recur-
rent unit is introduced to seize the long-term effects
[5]. We leverage the attention mechanism output as
the input of the successor function. For the baseline
function, since the state and constraints are taken as
input, we build the model without sharing variables
with the policy networks.
For full understanding of our network, we explain
each structure. Our network structure, shown in Fig-
ure 2, is mainly built from Nazari et al. and Vinyals et
al. [23, 31], and we make some improvements. Unless
otherwise mentioned, the activation is ReLU [22].

133Information Technology and Control 2022/1/51

Objective function. The objective function for VRP
is to minimize the tour length, but the objective func-
tion in RL is always represented as maximizing the
total reward. Therefore, we set the total reward in
VRP as the negative tour length
Input. In the VRPTW, we set the current state and
constraints as input. The state 𝑠𝑡 for the VRP includes
the location of the nodes, remaining load, and demand
of customers. For VRPTW, since each customer has
its own time window, we add two features to provide
extra information: 1) the time window of each cus-
tomer; and 2) the current time. Moreover, the previ-
ous action is also added as input to reveal the current
location of the vehicle. The input size is 𝑏𝑎𝑡𝑐ℎ × 2 × |𝑁|
for the location of nodes and the time window. The
size for other features is 𝑏𝑎𝑡𝑐ℎ × 1 × |𝑁|.
Attention Mechanism. An attention mechanism
(AM) captures the internal relationships within
a graph, where the embedding taken from GRU is
used as the input embedding. The output of AM is a
context, which is a 32-dimension vector combining
short-term and long-term information. The setting of
AM is similar to luong et al. [19].
Decision Making Network. The output of the deci-
sion-making network is |𝑁|, and the input is the con-
text from the AM. Softmax is used to generate the
probability of each action (the activation function in
the final layer is softmax).

Successor. A successor is an indicator of possible bad
behaviors. We take the context as input, and the out-
put dimension is 1 (the successor value is a scalar).
Baseline Function. The baseline function consists
of three 1 × 1 convolutional neural networks to extract
state and constraint information. The output dimen-
sion is 1, a scalar.
Action encoder. The action encoder converts the last
step action to a vector. The output is of size 16.

5. Experiments
To verify the effectiveness of our approach, we con-
ducted extensive experiments on the VRPTW on
two different datasets: a generated dataset and the
Solomon benchmark [27]. A well-known dataset for
VRPTW studies, the Solomon benchmark, contains
multiple instances in three scales: 25, 50, and 100.
Like most learning-based methods, our approach re-
quires substantial training data, and its precision ad-
vantage is more reflected in statistics, it is necessary
to build a generated dataset as the supplement of Sol-
omon benchmark which just has decades instances.
Based on the following rules, we randomly generated
100,000 training samples and 1,000 testing samples
for each scale of the VRPTW1 and compared our ap-
proach to other baselines on two datasets.

5.1. Generated Dataset
The VRPTW is similar to the VRP, but each customer
has its own time window. We generated 10, 20, 50, and
100 nodes with random locations and demands [23].
Each node was randomly located in a two-dimension-
al discrete coordinate system with range [0,100], and
its demand had a uniform distribution 𝐷𝑖 ∼ 𝑈(1,10) .
The capabilities of vehicles were 20, 30, 40, and 50 for
size 10, 20, 50, and 100, respectively.
Assume that at time step 𝑡, a vehicle with current
load 𝑙𝑡 is preparing to send items to customer 𝑖, who
requires ϵ𝑖 items. When ϵ𝑖 ≤ 𝑙𝑡, the vehicle can send
the item, and the remaining load becomes 𝑙𝑡+1 = ϵ𝑖 − 𝑙𝑡.
Otherwise, the trade can not be established. More-
over, when no customer can be satisfied, the vehicle is
forced to return to the depot.

1 The source code can be visited in https://gitee.com/MARL_
Researcher/vrptw-generator.git

Figure 2
Structure of policy, baseline, and successor networks. The
structure has three parts: (a) the encoder network aims to
convert states to embeddings; Ea, EsL, and EcL are encoders
for action states and constraints, respectively; (b) the
policy and successor; ht is the long-term hidden state for
RNN, and context is useful information extracted from the
attention model; and (c) baseline function

2) SR also acts as a regulator to balance human intuition
and learning results.

4.4. Training Method
Loss Functions. We design a policy, baseline function,
and successor value as neural networks with parameters
θ, λ, and η, respectively. The losses of successor value 𝐿𝐿𝑉𝑉
and baseline function 𝐿𝐿𝑏𝑏 are

𝐿𝐿𝑣𝑣 = 𝐸𝐸τ∼𝑧𝑧 ��𝑅𝑅� − 𝑏𝑏�(κ; λ)�
2
� (15)

𝐿𝐿𝑏𝑏 = 𝐸𝐸𝑠𝑠𝑡𝑡�1,𝑠𝑠𝑡𝑡∼𝑧𝑧 ��1�𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆�� + γ𝑉𝑉(𝑠𝑠𝑡𝑡�1; η) − 𝑉𝑉(𝑠𝑠𝑡𝑡; η)�
2
�,

(16)

where 𝑧𝑧 is the episode buffer. All the loss functions can
be estimated through Monte Carlo sampling. The policy
gradient with constraint-aware module and successor
representation can be formed as Equation (17).

∇θ𝐸𝐸τ𝑝𝑝�(τ)�∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑐𝑐𝑡𝑡; 𝜃𝜃)𝑇𝑇
𝑡𝑡�1 (α𝑉𝑉(𝑠𝑠𝑡𝑡) + 𝑅𝑅 − κ�) −

β ∑ KL𝑇𝑇
𝑡𝑡�1 �π(𝑎𝑎𝑡𝑡|𝑐𝑐𝑡𝑡, 𝑠𝑠𝑡𝑡; θ) ∥ 𝑝𝑝(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡)�� . (17)

The pseudocode can be found in Algorithm 1.
Algorithm 1
Implicit Constraint-awareness policy optimization

Algorithm
1: Initializing parameters for actor, successor, and

baseline function θ, λ, and η
2: Generating training dataset

3: while not convergence do

4: Sample 𝑠𝑠0 from the training dataset

5: Initializing the history information 𝑠𝑠0

6: Initializing the episode buffer 𝑧𝑧0

 Rollout Stage

7: for 0 to the maximum of nodes do

8: Select action 𝑎𝑎𝑡𝑡 ∼ π(𝑠𝑠𝑡𝑡) with Boltzmann
exploration strategy

9: Update the environment with dynamic
function

10: 𝑧𝑧𝑡𝑡�1 = 𝑧𝑧𝑡𝑡 ∪ (𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡, 𝑟𝑟𝑡𝑡)

11: end for

 Train Stage

12: Update θ, λ, and η through Equations (17),
(15) and (16) respectively

13: end while

Network Structure. The policy network structure has
three parts: decision making, encoder, and attention
mechanism [3, 23]. The first is used to choose the policy,
and the second and third to encode the graph and capture
valuable information. A gated recurrent unit is introduced
to seize the long-term effects [5]. We leverage the
attention mechanism output as the input of the successor

function. For the baseline function, since the state
and constraints are taken as input, we build the
model without sharing variables with the policy
networks.

For full understanding of our network, we explain
each structure. Our network structure, shown in
Figure 2, is mainly built from Nazari et al. and
Vinyals et al. [23, 31], and we make some
improvements. Unless otherwise mentioned, the
activation is ReLU [22].
Figure 2

Structure of policy, baseline, and successor networks.
The structure has three parts: (a) the encoder network
aims to convert states to embeddings; 𝐸𝐸𝑎𝑎 , 𝐸𝐸𝑠𝑠𝑡𝑡 , and 𝐸𝐸𝑐𝑐𝑡𝑡
are encoders for action states and constraints,
respectively; (b) the policy and successor; ℎ𝑡𝑡 is the long-
term hidden state for RNN, and context is useful
information extracted from the attention model; and (c)
baseline function.

Objective function. The objective function for
VRP is to minimize the tour length, but the
objective function in RL is always represented as
maximizing the total reward. Therefore, we set the
total reward in VRP as the negative tour length

Input. In the VRPTW, we set the current state and
constraints as input. The state 𝑠𝑠𝑡𝑡 for the VRP
includes the location of the nodes, remaining load,
and demand of customers. For VRPTW, since each
customer has its own time window, we add two
features to provide extra information: 1) the time
window of each customer; and 2) the current time.
Moreover, the previous action is also added as input
to reveal the current location of the vehicle. The
input size is 𝑏𝑏𝑎𝑎𝑡𝑡𝑐𝑐ℎ × 2 × |𝑁𝑁| for the location of
nodes and the time window. The size for other
features is 𝑏𝑏𝑎𝑎𝑡𝑡𝑐𝑐ℎ × 1 × |𝑁𝑁|.

Attention Mechanism. An attention mechanism
(AM) captures the internal relationships within a
graph, where the embedding taken from GRU is
used as the input embedding. The output of AM is
a context, which is a 32-dimension vector
combining short-term and long-term information.
The setting of AM is similar to luong et al. [19].

Decision Making Network. The output of the
decision-making network is |𝑁𝑁|, and the input is the
context from the AM. Softmax is used to generate
the probability of each action (the activation
function in the final layer is softmax).

Information Technology and Control 2022/1/51134

The time window is the key difference between the
VRP and VRPTW. Since the VRPTW must consider
the time, the time step t no longer reveals the time
interval. Here, we assume that each step indicates a
transition to a new step, and we denote the time in-
terval as t̂. We formally illustrate the update of t and t̂
below. We assume the velocity of a vehicle is constant;
hence, time is proportional to distance. To avoid the
case when a vehicle will never reach some customers,
the farthest distance from the depot

Successor. A successor is an indicator of possible bad
behaviors. We take the context as input, and the output
dimension is 1 (the successor value is a scalar).

Baseline Function. The baseline function consists of
three 1 × 1 convolutional neural networks to extract state
and constraint information. The output dimension is 1, a
scalar.

Action encoder. The action encoder converts the last step
action to a vector. The output is of size 16.

5. Experiments
To verify the effectiveness of our approach, we
conducted extensive experiments on the VRPTW on two
different datasets: a generated dataset and the Solomon
benchmark [27]. A well-known dataset for VRPTW
studies, the Solomon benchmark, contains multiple
instances in three scales: 25, 50, and 100. Like most
learning-based methods, our approach requires
substantial training data, and its precision advantage is
more reflected in statistics, it is necessary to build a
generated dataset as the supplement of Solomon
benchmark which just has decades instances. Based on
the following rules, we randomly generated 100,000
training samples and 1,000 testing samples for each scale
of the VRPTW1 and compared our approach to other
baselines on two datasets.

5.1. Generated Dataset
The VRPTW is similar to the VRP, but each customer
has its own time window. We generated 10, 20, 50, and
100 nodes with random locations and demands [23].
Each node was randomly located in a two-dimensional
discrete coordinate system with range [0,100], and its
demand had a uniform distribution 𝐷𝐷𝑖𝑖 ∼ 𝑈𝑈(1,10) . The
capabilities of vehicles were 20, 30, 40, and 50 for size
10, 20, 50, and 100, respectively.

Assume that at time step 𝑡𝑡, a vehicle with current load 𝑙𝑙𝑡𝑡
is preparing to send items to customer 𝑖𝑖, who requires ϵ𝑖𝑖
items. When ϵ𝑖𝑖 ≤ 𝑙𝑙𝑡𝑡, the vehicle can send the item, and
the remaining load becomes 𝑙𝑙𝑡𝑡�1 = ϵ𝑖𝑖 − 𝑙𝑙𝑡𝑡. Otherwise, the
trade can not be established. Moreover, when no
customer can be satisfied, the vehicle is forced to return
to the depot.

The time window is the key difference between the VRP
and VRPTW. Since the VRPTW must consider the time,
the time step 𝑡𝑡 no longer reveals the time interval. Here,
we assume that each step indicates a transition to a new
step, and we denote the time interval as �̂�𝑡. We formally
illustrate the update of 𝑡𝑡 and �̂�𝑡 below. We assume the
velocity of a vehicle is constant; hence, time is
proportional to distance. To avoid the case when a
vehicle will never reach some customers, the farthest
distance from the depot max

𝑖𝑖
𝑑𝑑0,𝑖𝑖 is smaller than its time

1 The source code can be visited in
https://gitee.com/MARL_Researcher/vrptw-generator.git

window 𝑤𝑤𝑖𝑖.

Dynamic Function and Constraints. After
distinguishing the time line and time step. we can
define the transition function. The dynamic
function and constraints of the VRPTW are based
on the VRP. Suppose that at time step 𝑡𝑡, a vehicle
is at location 𝑖𝑖 and decides to go to location 𝑗𝑗 with
distance 𝑑𝑑𝑖𝑖,𝑗𝑗 . Recall that we set the velocity as a
constant 𝑣𝑣 . Then the change of time is �̂�𝑡 ← �̂�𝑡 +
𝑑𝑑𝑖𝑖,𝑗𝑗

𝑣𝑣
; 𝑡𝑡 ← 𝑡𝑡 + 1. When the current time �̂�𝑡 is not in the

range of customer 𝑖𝑖's time window, �̂�𝑡 ∉ 𝑤𝑤𝑖𝑖, the trade
cannot be established. Similar to VRP, when no
customer can be satisfied, the vehicle is required to
return to the depot.

Reward Setting. Common objective functions of
the VRPTW include the delivery percentage, total
tour length, or both [16]. In our experiments, we
chose the total tour length as our objective function,
and the total reward was the negative tour length.

5.2. Experiment Setup
We trained our model on a single GeForce RTX
2080, using Adam as the optimizer [14]. For each
scale of the model, we performed 10 cycles of
training on a training set containing 100,000
instances. The model is considered to have
converged at the end of the training. The training
time for the VRPTW is 4h, 7h, 11h, and 21h
respectively, for 10, 20, 50, and 100 nodes, with a
batch size of 256. Boltzmann exploration was used
to improve the quality of our method. We used
beam search (BS), a widely used optimization
method in natural language processing, as a search
strategy [13, 15], and γ was 0.95.

Baseline. To reveal the effectiveness of our
method, we considered the following baselines: 1.
The genetic algorithm (GA) was used as the
heuristic algorithm baseline, which performs well
in the VRPTW [18]. 2. For the search algorithm, we
chose the nearest neighbor (NN) [15]. 3. For the RL
baseline method, we took a state-of-the-art RL
method as the baseline [23]. 4. We also compared
Google OR tools [9], a fast and portable software
suite to solve combinatorial optimization problems,
including VRP.

Ablations. We conducted substantial ablation
studies: 1) ICPO: our complete method. 2) ICPO
w/o SR: remove the SR from our framework. 3)
ICPO w/o KL: remove constraint-awareness from
our framework. 4) Original policy gradient (PG):
remove KL, SR, and constraints as input (the
original PG method).

 is smaller
than its time window 𝑤𝑖.
Dynamic Function and Constraints. After distin-
guishing the time line and time step. we can define
the transition function. The dynamic function and
constraints of the VRPTW are based on the VRP. Sup-
pose that at time step t, a vehicle is at location i and
decides to go to location j with distance dij. Recall that
we set the velocity as a constant 𝑣. Then the change of
time is

Successor. A successor is an indicator of possible bad
behaviors. We take the context as input, and the output
dimension is 1 (the successor value is a scalar).

Baseline Function. The baseline function consists of
three 1 × 1 convolutional neural networks to extract state
and constraint information. The output dimension is 1, a
scalar.

Action encoder. The action encoder converts the last step
action to a vector. The output is of size 16.

5. Experiments
To verify the effectiveness of our approach, we
conducted extensive experiments on the VRPTW on two
different datasets: a generated dataset and the Solomon
benchmark [27]. A well-known dataset for VRPTW
studies, the Solomon benchmark, contains multiple
instances in three scales: 25, 50, and 100. Like most
learning-based methods, our approach requires
substantial training data, and its precision advantage is
more reflected in statistics, it is necessary to build a
generated dataset as the supplement of Solomon
benchmark which just has decades instances. Based on
the following rules, we randomly generated 100,000
training samples and 1,000 testing samples for each scale
of the VRPTW1 and compared our approach to other
baselines on two datasets.

5.1. Generated Dataset
The VRPTW is similar to the VRP, but each customer
has its own time window. We generated 10, 20, 50, and
100 nodes with random locations and demands [23].
Each node was randomly located in a two-dimensional
discrete coordinate system with range [0,100], and its
demand had a uniform distribution 𝐷𝐷𝑖𝑖 ∼ 𝑈𝑈(1,10) . The
capabilities of vehicles were 20, 30, 40, and 50 for size
10, 20, 50, and 100, respectively.

Assume that at time step 𝑡𝑡, a vehicle with current load 𝑙𝑙𝑡𝑡
is preparing to send items to customer 𝑖𝑖, who requires ϵ𝑖𝑖
items. When ϵ𝑖𝑖 ≤ 𝑙𝑙𝑡𝑡, the vehicle can send the item, and
the remaining load becomes 𝑙𝑙𝑡𝑡�1 = ϵ𝑖𝑖 − 𝑙𝑙𝑡𝑡. Otherwise, the
trade can not be established. Moreover, when no
customer can be satisfied, the vehicle is forced to return
to the depot.

The time window is the key difference between the VRP
and VRPTW. Since the VRPTW must consider the time,
the time step 𝑡𝑡 no longer reveals the time interval. Here,
we assume that each step indicates a transition to a new
step, and we denote the time interval as �̂�𝑡. We formally
illustrate the update of 𝑡𝑡 and �̂�𝑡 below. We assume the
velocity of a vehicle is constant; hence, time is
proportional to distance. To avoid the case when a
vehicle will never reach some customers, the farthest
distance from the depot max

𝑖𝑖
𝑑𝑑0,𝑖𝑖 is smaller than its time

1 The source code can be visited in
https://gitee.com/MARL_Researcher/vrptw-generator.git

window 𝑤𝑤𝑖𝑖.

Dynamic Function and Constraints. After
distinguishing the time line and time step. we can
define the transition function. The dynamic
function and constraints of the VRPTW are based
on the VRP. Suppose that at time step 𝑡𝑡, a vehicle
is at location 𝑖𝑖 and decides to go to location 𝑗𝑗 with

𝑖𝑖

�̂�𝑡 ← �̂�𝑡 + 𝑑𝑑𝑖𝑖,𝑗𝑗

𝑣𝑣
; 𝑡𝑡 ← 𝑡𝑡 + 1

range of customer 𝑖𝑖's time window, �̂�𝑡 ∉ 𝑤𝑤𝑖𝑖, the trade
cannot be established. Similar to VRP, when no
customer can be satisfied, the vehicle is required to
return to the depot.

Reward Setting. Common objective functions of
the VRPTW include the delivery percentage, total
tour length, or both [16]. In our experiments, we
chose the total tour length as our objective function,
and the total reward was the negative tour length.

5.2. Experiment Setup
We trained our model on a single GeForce RTX
2080, using Adam as the optimizer [14]. For each
scale of the model, we performed 10 cycles of
training on a training set containing 100,000
instances. The model is considered to have
converged at the end of the training. The training
time for the VRPTW is 4h, 7h, 11h, and 21h
respectively, for 10, 20, 50, and 100 nodes, with a
batch size of 256. Boltzmann exploration was used
to improve the quality of our method. We used
beam search (BS), a widely used optimization
method in natural language processing, as a search
strategy [13, 15], and γ was 0.95.

Baseline. To reveal the effectiveness of our
method, we considered the following baselines: 1.
The genetic algorithm (GA) was used as the
heuristic algorithm baseline, which performs well
in the VRPTW [18]. 2. For the search algorithm, we
chose the nearest neighbor (NN) [15]. 3. For the RL
baseline method, we took a state-of-the-art RL
method as the baseline [23]. 4. We also compared
Google OR tools [9], a fast and portable software
suite to solve combinatorial optimization problems,
including VRP.

Ablations. We conducted substantial ablation
studies: 1) ICPO: our complete method. 2) ICPO
w/o SR: remove the SR from our framework. 3)
ICPO w/o KL: remove constraint-awareness from
our framework. 4) Original policy gradient (PG):
remove KL, SR, and constraints as input (the
original PG method).

. When the current time t̂ is
not in the range of customer i’s time window, t̂ ∉ 𝑤𝑖,
the trade cannot be established. Similar to VRP, when
no customer can be satisfied, the vehicle is required to
return to the depot.
Reward Setting. Common objective functions of the
VRPTW include the delivery percentage, total tour
length, or both [16]. In our experiments, we chose the
total tour length as our objective function, and the to-
tal reward was the negative tour length.

5.2. Experiment Setup
We trained our model on a single GeForce RTX 2080,
using Adam as the optimizer [14]. For each scale of
the model, we performed 10 cycles of training on a
training set containing 100,000 instances. The mod-
el is considered to have converged at the end of the
training. The training time for the VRPTW is 4h, 7h,
11h, and 21h respectively, for 10, 20, 50, and 100 nodes,
with a batch size of 256. Boltzmann exploration was
used to improve the quality of our method. We used
beam search (BS), a widely used optimization method
in natural language processing, as a search strategy
[13, 15], and γ was 0.95.
Baseline. To reveal the effectiveness of our method,
we considered the following baselines: 1. The genetic
algorithm (GA) was used as the heuristic algorithm
baseline, which performs well in the VRPTW [18]. 2.
For the search algorithm, we chose the nearest neigh-

bor (NN) [15]. 3. For the RL baseline method, we took
a state-of-the-art RL method as the baseline [23]. 4.
We also compared Google OR tools [9], a fast and por-
table software suite to solve combinatorial optimiza-
tion problems, including VRP.
Ablations. We conducted substantial ablation stud-
ies: 1) ICPO: our complete method. 2) ICPO w/o SR:
remove the SR from our framework. 3) ICPO w/o KL:
remove constraint-awareness from our framework.
4) Original policy gradient (PG): remove KL, SR, and
constraints as input (the original PG method).

5.3. Results
Performance. Table 1 presents the results of several
algorithms run on the generated dataset where the ca-
pabilities of vehicles were 20, 30, 40, 50 for size 10, 20,
50, 100, respectively and each size contains 1000 in-
stances. Every two columns present the mean of total
distance and total CPU time in a kind of environment
with different number of nodes. As shown in Table
1, our approaches dramatically outperformed other
baselines in most VRPTW environments, and they
had the fewest outliers. In particular, the genetic algo-
rithm and OR-tools solved the problem of fast deteri-
oration under the large-scale problem. We think this
is because those methods lack sufficient numbers of
iterations in a reasonable time.
Moreover, we find that as the size of the VRPTW in-
creases, our method becomes better than RL meth-
od baselines. This is because when the size of the
VRPTW increases, the constraints more seriously
disturb the performance of the solver, and without
considering the constraints, the result will be much
worse.
Table 2 presents the results for the Solomon bench-
mark. The best known solution is reported by Solo-
mon Dataset [27]. Since this benchmark had insuf-
ficient data to train the neural network models, we
pre-trained the model on the generated dataset. In
addition, we employed beam search to improve our
solutions at rollout. From the results, our approach
outperformed the RL method.
Runtime. We compared the runtimes of our method
to baselines, as shown in Figure 3. Due to the great
disparity of methods (ours only used 14 seconds,
while OR-tools took about 2 minutes in the VRPTW
50 to calculate 1000 instances), we took the log2 of

135Information Technology and Control 2022/1/51

Methods
VRPTW 10, Cap 20 VRPTW 20, Cap 30 VRPTW 50, Cap 40 VRPTW 100, Cap 50

Mean Time Mean Time Mean Time Mean Time

GA 5.34 43s 8.76 237s 19.05 1466s 32.61 25681s

NN 6.71 6.83s 10.57 8.83s 19.31 14.43s 29.97 23.72s

OR-tools 5.34 14.61s 8.54 29.18s 17.47 116.85s 28.82 457.77s

RL 5.79 5.38s 9.53 8.96s 17.44 13.88s 26.96 23.28s

ICPO 5.37 5.61s 8.07 9.31s 16.62 14.18s 23.51 24.95s

Table 1
Mean distance and CPU times of compared methods. s means seconds

Table 2
Results for the Solomon benchmark

Methods
Best Known

Solution RL ICPO ICPO_BS(5)

Veh. Dist. Veh. Dist. Gaps Veh. Dist. Gaps Veh. Dist. Gaps

C1(25) 3 191.3 3 226.9 18.6 3 197.8 3.4 3 191.3 0

C2(25) 2 214.5 2 245.1 14.3 2 224.1 4.5 2 214.5 0

R1(25) 6 530.5 8 629.6 18.7 6 542.6 2.3 6 530.5 0

R2(25) 3 391.4 4 428.3 9.4 3 403.5 3.1 3 391.4 0

RC1(25) 4 461.1 5 507.4 10 5 489.4 6.1 4 461.1 0

RC2(25) 3 338 5 388.1 14.8 3 358.6 6.1 3 338 0

C1(50) 5 362.4 6 425.9 17.5 5 376.7 3.9 5 362.4 0

C2(50) 3 359.8 4 426.6 18.6 4 381.7 6.1 3 371.3 3.2

R1(50) 12 1044 14 1209.7 15.9 13 1128.4 8.1 13 1103.4 5.7

R2(50) 6 791.9 9 1011.4 27.37 8 892.6 12.7 7 849.7 7.3

RC1(50) 8 994 11 1130.3 19.7 10 1073.6 13.7 9 1057.4 6.4

RC2(50) 5 684.8 7 847.6 23.8 6 768.9 12.3 6 730 6.6

C1(100) 10 827.4 12 1104.1 33.5 11 927.6 12.1 10 871.3 5.3

C2(100) 3 585.8 5 691.8 18 4 633.9 8.2 3 608.7 3.9

R1(100) 18 1466.6 21 1820.1 24.1 20 1742.6 18.8 19 1583.4 7.9

R2(100) 3 1191.7 5 1665.7 39.8 4 1354.2 13.6 4 1288.2 8.1

RC1(100) 14 1457.4 19 1977.9 35.7 16 1609.1 10.4 15 1583.7 8.7

RC2(100) 9 1261.8 12 1625.5 28.8 10 1436.9 13.9 9 1317.4 4.4

Information Technology and Control 2022/1/51136

GA and OR-Tools to make this figure legible. Howev-
er, the runtimes of these two methods were so long
that even in log form, the gap was still obvious. Thus,

Figure 3
Runtime of five methods

method baselines. This is because when the size of the
VRPTW increases, the constraints more seriously disturb
the performance of the solver, and without considering
the constraints, the result will be much worse.

Table 2 presents the results for the Solomon benchmark.
The best known solution is reported by Solomon Dataset
[27]. Since this benchmark had insufficient data to train
the neural network models, we pre-trained the model on
the generated dataset. In addition, we employed beam
search to improve our solutions at rollout. From the
results, our approach outperformed the RL method

Runtime. We compared the runtimes of our method to
baselines, as shown in Figure 3. Due to the great disparity
of methods (ours only used 14 seconds, while OR-tools
took about 2 minutes in the VRPTW 50 to calculate 1000
instances), we took the log2 of GA and OR-Tools to make
this figure legible. However, the runtimes of these two
methods were so long that even in 𝑙𝑙𝑙𝑙𝑙𝑙 form, the gap was
still obvious. Thus, we used two y-axes: the y-axis on the
right is for GA and OR-Tools, and that on the left is for
the others. We can find that our method is in the middle
among all the methods as regards speed (an acceptable
running time). Combining Figure 3 and Table 2, we can
see that although NN is the fastest, its performance is
worst, hence it is hard to use in practice, while ours can
maintain a good balance between runtime and solution
quality.
Figure 3
Runtime of five methods

Ablations. As shown in Table 1, the complete version of
ICPO achieved the highest scores of the three methods.
From the ablation presented in Figure 4, we find that
ICPO w/o KL is worse than ICPO w/o SR, revealing that
constraint awareness plays an important role in getting a
good solution, which agrees with our theory. Comparing
with original PG, the performance of our method is
dramatically better than that of original PG, revealing
that ICPO has an advantage in VRPTW.

Figure 4
Ablation of ICPO

6. Conclusion
We developed a constraint-awareness RL method
to capture the information of constraints to improve
performance. Specifically, we changed the
VRPTW and the PG method to the DCMDP. To
capture the constraints, we designed a constraint-
awareness module to reduce the probability of
actions against the constraints and enhance
performance. For bad behaviors that could decrease
the total reward, we leveraged SR as the indicator
to diminish the occurrence of those actions. We
designed a VRPTW training scheme, and the
experiments on the generated datasets and Solomon
benchmark revealed that our methods outperform
other competition methods.

In the future, we will focus on how to implement
the method in practice and consider situations in
which agents are competitive.

References
1. Achiam, J., Held, D., Tamar, A., Abbeel, P.

Constrained Policy Optimization. Proceedings of the
34th International Conference on Machine Learning-
Volume 70, 2017, https://arxiv.org/abs/1705.10528

2. Altman, E. Constrained Markov Decision Processes.
CRC Press, 1999, ISBN:978-0-8493-0382-1

3. Bello, I., Pham, H., Le, Q.V., Norouzi, M., Bengio,
S. Neural Combinatorial Optimization with
Reinforcement Learning. 5th International
Conference on Learning Representations, 2016,
https://arxiv.org/abs/1611.09940

4. Berkenkamp, F., Turchetta, M., Schoellig, A.,
Krause, A. Safe Model-Based Reinforcement
Learning with Stability Guarantees. Thirty-first
Conference on Neural Information Processing
Systems, 2017, https://arxiv.org/abs/1705.08551

5. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.

Figure 4
Ablation of ICPO

method baselines. This is because when the size of the
VRPTW increases, the constraints more seriously disturb
the performance of the solver, and without considering
the constraints, the result will be much worse.

Table 2 presents the results for the Solomon benchmark.
The best known solution is reported by Solomon Dataset
[27]. Since this benchmark had insufficient data to train
the neural network models, we pre-trained the model on
the generated dataset. In addition, we employed beam
search to improve our solutions at rollout. From the
results, our approach outperformed the RL method

Runtime. We compared the runtimes of our method to
baselines, as shown in Figure 3. Due to the great disparity
of methods (ours only used 14 seconds, while OR-tools
took about 2 minutes in the VRPTW 50 to calculate 1000
instances), we took the log2 of GA and OR-Tools to make
this figure legible. However, the runtimes of these two
methods were so long that even in 𝑙𝑙𝑙𝑙𝑙𝑙 form, the gap was
still obvious. Thus, we used two y-axes: the y-axis on the
right is for GA and OR-Tools, and that on the left is for
the others. We can find that our method is in the middle
among all the methods as regards speed (an acceptable
running time). Combining Figure 3 and Table 2, we can
see that although NN is the fastest, its performance is
worst, hence it is hard to use in practice, while ours can
maintain a good balance between runtime and solution
quality.
Figure 3
Runtime of five methods

Ablations. As shown in Table 1, the complete version of
ICPO achieved the highest scores of the three methods.
From the ablation presented in Figure 4, we find that
ICPO w/o KL is worse than ICPO w/o SR, revealing that
constraint awareness plays an important role in getting a
good solution, which agrees with our theory. Comparing
with original PG, the performance of our method is
dramatically better than that of original PG, revealing
that ICPO has an advantage in VRPTW.

Figure 4
Ablation of ICPO

6. Conclusion
We developed a constraint-awareness RL method
to capture the information of constraints to improve
performance. Specifically, we changed the
VRPTW and the PG method to the DCMDP. To
capture the constraints, we designed a constraint-
awareness module to reduce the probability of
actions against the constraints and enhance
performance. For bad behaviors that could decrease
the total reward, we leveraged SR as the indicator
to diminish the occurrence of those actions. We
designed a VRPTW training scheme, and the
experiments on the generated datasets and Solomon
benchmark revealed that our methods outperform
other competition methods.

In the future, we will focus on how to implement
the method in practice and consider situations in
which agents are competitive.

References
1. Achiam, J., Held, D., Tamar, A., Abbeel, P.

Constrained Policy Optimization. Proceedings of the
34th International Conference on Machine Learning-
Volume 70, 2017, https://arxiv.org/abs/1705.10528

2. Altman, E. Constrained Markov Decision Processes.
CRC Press, 1999, ISBN:978-0-8493-0382-1

3. Bello, I., Pham, H., Le, Q.V., Norouzi, M., Bengio,
S. Neural Combinatorial Optimization with
Reinforcement Learning. 5th International
Conference on Learning Representations, 2016,
https://arxiv.org/abs/1611.09940

4. Berkenkamp, F., Turchetta, M., Schoellig, A.,
Krause, A. Safe Model-Based Reinforcement
Learning with Stability Guarantees. Thirty-first
Conference on Neural Information Processing
Systems, 2017, https://arxiv.org/abs/1705.08551

5. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.

we used two y-axes: the y-axis on the right is for GA
and OR-Tools, and that on the left is for the others.
We can find that our method is in the middle among
all the methods as regards speed (an acceptable run-
ning time). Combining Figure 3 and Table 2, we can
see that although NN is the fastest, its performance is
worst, hence it is hard to use in practice, while ours
can maintain a good balance between runtime and
solution quality.
Ablations. As shown in Table 1, the complete ver-
sion of ICPO achieved the highest scores of the three
methods. From the ablation presented in Figure 4, we
find that ICPO w/o KL is worse than ICPO w/o SR,
revealing that constraint awareness plays an import-
ant role in getting a good solution, which agrees with
our theory. Comparing with original PG, the perfor-
mance of our method is dramatically better than that
of original PG, revealing that ICPO has an advantage
in VRPTW.

6. Conclusion
We developed a constraint-awareness RL method to
capture the information of constraints to improve
performance. Specifically, we changed the VRPTW
and the PG method to the DCMDP. To capture the con-
straints, we designed a constraint-awareness module
to reduce the probability of actions against the con-
straints and enhance performance. For bad behaviors
that could decrease the total reward, we leveraged SR
as the indicator to diminish the occurrence of those
actions. We designed a VRPTW training scheme, and
the experiments on the generated datasets and Solo-
mon benchmark revealed that our methods outper-
form other competition methods.
In the future, we will focus on how to implement the
method in practice and consider situations in which
agents are competitive.

References
1. Achiam, J., Held, D., Tamar, A., Abbeel, P. Constrained

Policy Optimization. Proceedings of the 34th Interna-
tional Conference on Machine Learning-Volume 70,
2017, https://arxiv.org/abs/1705.10528

2. Altman, E. Constrained Markov Decision Processes.
CRC Press, 1999, ISBN:978-0-8493-0382-1

3. Bello, I., Pham, H., Le, Q.V., Norouzi, M., Bengio, S.
Neural Combinatorial Optimization with Reinforce-

137Information Technology and Control 2022/1/51

ment Learning. 5th International Conference on
Learning Representations, 2016, https://arxiv.org/
abs/1611.09940

4. Berkenkamp, F., Turchetta, M., Schoellig, A., Krause, A.
Safe Model-Based Reinforcement Learning with Sta-
bility Guarantees. Thirty-first Conference on Neural
Information Processing Systems, 2017, https://arxiv.
org/abs/1705.08551

5. Chung, J., Gulcehre, C., Cho, K., Bengio, Y. Empirical
Evaluation of Gated Recurrent Neural Networks on Se-
quence Modeling. NIPS 2014 Deep Learning and Rep-
resentation Learning Workshop, 2014, https://arxiv.
org/abs/1412.3555

6. Euchi, J., Zidi, S., Laouamer, L., A Hybrid Approach to
Solve the Vehicle Routing Problem with Time Windows
and Synchronized Visits In-Home Health Care. Arabian
Journal for Science and Engineering, 2020, 45(12), 10637-
10652. https://doi.org/10.1007/s13369-020-04828-5

7. Goel, R., Maini, R. A Hybrid of Ant Colony and Firefly
Algorithms (HAFA) for Solving Vehicle Routing Prob-
lems. Journal of Computational Science, 2018, 2528-37.
https://doi.org/10.1016/j.jocs.2017.12.012

8. Gombolay, M. C., Wilcox, R. J., Shah, J. A. Fast Scheduling
of Robot Teams Performing Tasks With Temporospatial
Constraints. IEEE Transactions on Robotics, 2018, 34(1),
220-239. https://doi.org/10.1109/TRO.2018.2795034
https://doi.org/10.1109/TRO.2018.2795034

9. Google, I., Google’s optimization tools (or-tools). 2018,
https://github.com/google/or-tools

10. Gromicho, J., Hoorn, J. J. van, Kok, A. L., Schutten, J.
M. J. Restricted Dynamic Programming: A Flexible
Framework for Solving Realistic VRPs. Computers &
Operations Research, 2012, 39(5), 902-909. https://doi.
org/10.1016/j.cor.2011.07.002

11. Grzes, M., Kudenko, D. Theoretical and Empirical Anal-
ysis of Reward Shaping in Reinforcement Learning.
2009 International Conference on Machine Learning
and Applications, 2009. https://doi.org/10.1109/ICM-
LA.2009.33

12. Hopfield, J. J., Tank, D.W. “Neural” Computation of Deci-
sions in Optimization Problems. Biological Cybernetics,
1985, 52(3), 141-152. https://doi.org/10.1007/BF00339943

13. Khalil, E., Dai, H., Zhang, Y., Dilkina, B., Song, L. Learn-
ing Combinatorial Optimization Algorithms Over
Graphs. Thirty-first Conference on Neural Infor-
mation Processing Systems, 2017, https://arxiv.org/
abs/1704.01665

14. Kingma, D. P., Ba, J. Adam: A Method for Stochastic
Optimization. the 3rd International Conference for
Learning Representations, 2015, https://arxiv.org/
abs/1412.6980

15. Kool, W., van Hoof, H., Welling, M. Attention, Learn to
Solve Routing Problems! Seventh International Con-
ference for Learning Representations, 2019, https://
arxiv.org/abs/1803.08475

16. Laporte, G. The Vehicle Routing Problem: An Over-
view of Exact and Approximate Algorithms. European
Journal of Operational Research, 1992, 59(3), 345-358.
https://doi.org/10.1016/0377-2217(92)90192-C

17. Li, Z., Chen, Q., Koltun, V. Combinatorial Optimization
with Graph Convolutional Networks and Guided Tree
Search. Proceedings of the 32nd International Confer-
ence on Neural Information Processing Systems, 2018,
https://arxiv.org/abs/1810.10659

18. Li, J., Han, Y., Duan, P., Han, Y., Niu, B., Li, C., Zheng, Z.,
Liu, Y. Meta-Heuristic Algorithm for Solving Vehicle
Routing Problems with Time Windows and Synchro-
nized Visit Constraints in Prefabricated Systems. Jour-
nal of Cleaner Production, 2020, 250119464. https://
doi.org/10.1016/j.jclepro.2019.119464

19. Luong, M.-T., Pham, H., Manning, C. D. Effective Ap-
proaches to Attention-Based Neural Machine Transla-
tion. Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, 2015, https://
doi.org/10.18653/v1/D15-1166

20. Momennejad, I., Russek, E. M., Cheong, J.H., Botvinick,
M. M., Daw, N. D., Gershman, S. J. The Successor Rep-
resentation in Human Reinforcement Learning. Na-
ture Human Behaviour, 2017, 1(9), 680-692. https://doi.
org/10.1038/s41562-017-0180-8

21. Nachum, O., Norouzi, M., Xu, K., Schuurmans, D. Bridg-
ing the Gap Between Value and Policy Based Rein-
forcement Learning. Proceedings of the 31st Interna-
tional Conference on Neural Information Processing
Systems, 2017, https://arxiv.org/abs/1702.08892

22. Nair, V., Hinton, G. E. Rectified Linear Units Improve
Restricted Boltzmann Machines. Proceedings of the
27th International Conference on International Con-
ference on Machine Learning, 2010, https://dl.acm.org/
doi/10.5555/3104322.3104425

23. Nazari, M., Oroojlooy, A., Snyder, L., Takác, M. Rein-
forcement Learning for Solving the Vehicle Routing
Problem. Proceedings of the 32nd International Con-
ference on Neural Information Processing Systems,
2018, https://arxiv.org/abs/1802.04240

Information Technology and Control 2022/1/51138

24. Petz, D. On the Equality in Jensen’s Inequality for Oper-
ator Convex Functions. Integral Equations and Opera-
tor Theory, 1986, 9(5), 744-747. https://doi.org/10.1007/
BF01195811

25. RamachandranPillai, R., Arock, M. An Adaptive Spiking
Neural P System for Solving Vehicle Routing Problems.
Arabian Journal for Science and Engineering, 2020,
45(4), 2513-2529. https://doi.org/10.1007/s13369-019-
04153-6

26. Rousseau, L.-M., Gendreau, M., Pesant, G., Using Con-
straint-Based Operators to Solve the Vehicle Routing
Problem with Time Windows. Journal of Heuristics, 2002,
8(1), 43-58. https://doi.org/10.1023/A:1013661617536

27. Solomon, M. M. Algorithms for the Vehicle Routing and
Scheduling Problems with Time Window Constraints.
Operations Research, 1987, 35(2), 254-265. https://doi.
org/10.1287/opre.35.2.254

28. Sutton, R. S., Barto, A. G., et al. Reinforcement Learn-
ing: An Introduction. MIT press Cambridge, 2018,
ISBN:978-0-262-19398-6

29. Tessler, C., Mankowitz, D. J., Mannor, S. Reward Con-
strained Policy Optimization. Seventh International
Conference on Learning Representations, 2018, https://
arxiv.org/abs/1805.11074v3

30. Toth, P., Vigo, D. Branch-and-Bound Algorithms
for the Capacitated VRP. Society of Industrial and
Applied Mathematics, 2002, 29-51. https://doi.
org/10.1137/1.9780898718515.ch2

31. Vinyals, O., Fortunato, M., Jaitly, N. Pointer Networks.
29th Conference on Neural Information Processing
Systems, 2015, https://arxiv.org/abs/1506.03134

32. Wang, F., Zhou, B., Chen, K., Fan, T., Zhang, X., Li, J.,
Tian, H., Pan, J. Intervention Aided Reinforcement
Learning for Safe and Practical Policy Optimization
in Navigation. Conference on Robot Learning, 2018,
https://arxiv.org/abs/1811.06187v1

33. Zhang, C., Bütepage, J., Kjellström, H., Mandt, S. Advances
in Variational Inference. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2019, 41(8), 2008-
2026. https://doi.org/10.1109/TPAMI.2018.2889774

This article is an Open Access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

