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With the development of three-dimensional sensing technology, the data volume of point cloud grows rap-
idly. Therefore, point cloud is usually down-sampled in advance so as to save memory space and reduce the 
computational complexity for its downstream processing tasks such as classification, segmentation, recon-
struction in learning based point cloud processing. Obviously, the sampled point clouds should be well rep-
resentative and maintain the geometric structure of the original point clouds so that the downstream tasks 
can achieve satisfied performance based on the point clouds sampled from the original ones. Traditional point 
cloud sampling methods such as farthest point sampling and random sampling mainly heuristically select a 
subset of the original point cloud. However, they do not make full use of high-level semantic representation of 
point clouds, are sensitive to outliers. Some of other sampling methods are task oriented. In this paper, a Uni-
versal Point cloud Sampling Network without knowing downstream tasks (denoted as UPSNet) is proposed. It 
consists of three modules. The importance learning module is responsible for learning the mutual information 
between the points of input point cloud and calculating a group of variational importance probabilities to rep-
resent the importance of each point in the input point cloud, based on which a mask is designed to discard the 
points with lower importance so that the number of remaining points is controlled. Then, the regional learning 
module learns from the input point cloud to get the high dimensional space embedding of each region, and the 
global feature of each region are obtained by weighting the high dimensional space embedding with the vari-
ational importance probability. Finally, through the coordinate regression module, the global feature and the 
high dimensional space embedding of each region are cascaded for learning to obtain the sampled point cloud. 
A series of experiments are implemented in which the point cloud classification, segmentation, reconstruction 
and retrieval are performed on the reconstructed point clouds sampled with different point cloud sampling 
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methods. The experimental results show that the proposed UPSNet can provide more reasonable sampling re-
sult of the input point cloud for the downstream tasks of classification, segmentation, reconstruction and re-
trieval, and is superior to the existing sampling methods without knowing the downstream tasks. The proposed 
UPSNet is not oriented to specific downstream tasks, so it has wide applicability.
KEYWORDS: Point cloud, universal point cloud sampling network, variational importance probability, down-
stream tasks.

1. Introduction
With the development of three-dimensional (3D) 
sensing technology, more and more attentions are 
paid to point cloud processing and its applications. 
Point cloud is a set of unordered points in 3D space, 
and each point has 3D coordinate, additionally with 
other attributes including color, normal, etc. Point 
cloud has wide applications in various fields, such 
as autonomous driving [6, 11, 12], surveying and 
mapping, 3D reconstruction [14, 27, 36, 37], virtual 
reality and augmented reality, etc. The original point 
cloud is with huge amount of data, which not only 
requires a lot of memory space, but also leads to the 
increase of computational complexity of subsequent 
point cloud processing. Therefore, point cloud down 
sampling is usually performed in advance before the 
tasks of classification, segmentation, reconstruction, 
retrieval, compression, and so on [13, 28, 34].
Point cloud down sampling can be usually described as 
finding a subset Q of a given 3D unordered point set P, 
where P={Pi|i=1,…,n}, Q={Qi|i=1,…,k}, QÌP. Obviously, 
the point cloud sampling method should retain the 
points that can well reflect the geometric structure of 
the original point cloud as much as possible under the 
constraint of the number of sampling points.
The classical point cloud sampling methods mainly 
include clustering based sampling [2, 33], iterative 
based sampling [20, 30, 32] and formula based sam-
pling [3, 10, 17]. Benhabiles et al. [2] used volume clus-
tering method to generate coarse point cloud, which 
accelerated the sampling speed. Yu et al. [33] used 
local clustering and hierarchical clustering to sample 
point clouds. Yang et al. [30] redefined the mean cur-
vature of points using principal component analysis 
and Fourier transform, and then iteratively deleted 
the points with low mean curvature. Song et al. [20] 
defined the importance of a point by using the nor-
mal vector information and the distance between the 
point and its neighborhood, then deleted the point 

with the least importance, and updated the impor-
tance and normal vector of the other points iterative-
ly. Leal et al. [10] first clustered the points to retain 
the points with high curvature, and then selected a 
reduced set whose density is equivalent to the origi-
nal point set from the remaining points. Qi et al. [17] 
formulated point cloud simplification as a trade-off 
between preserving sharp features and keeping uni-
form density during resampling, and retained the 
sharp and uniform features of the point cloud through 
the graph filter. Dinesh et al. [3] derived a sampling 
objective that maximizes the stability (maximizes 
the smallest eigenvalue λmin(B) of a coefficient ma-
trix B=HTH+μL) of a linear system super-resolving 
a sub-sampled point cloud. The classical point cloud 
down sampling methods usually focus on maintain-
ing geometric structure of the input point clouds, but 
ignore the high-level features of point cloud, hence 
their generalization ability is limited, and the sam-
pled subsets of the input point clouds may be not most 
suitable for the downstream tasks.
In recent years, many learning based methods are 
proposed for point cloud processing. Since the sampled 
points are desired to keep the geometric structure of 
the original point cloud, the procedure of point could 
sampling can be regarded as a kind of feature learning 
in point cloud processing so as to exploit the most 
significant points for feature extraction and transfer 
them to the downstream tasks. Most efforts have 
been made on designing deep learning network to 
learn the features of point cloud directly. Qi et al. [15] 
designed a well-known network, that is, PointNet, to 
directly learn unordered point clouds. It has achieved 
good results in the task of point cloud classification 
and segmentation by learning the features of each 
point individually and using a symmetric max pooling 
function to keep the point’s permutation invariance. 
However, PointNet does not consider the correlation 
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between points and ignores the local features of point 
clouds. In view of this defect, they further designed 
the PointNet++ [16], in which the point cloud subset 
is firstly obtained through farthest point sampling 
(FPS), and then taking the subset as the center point, 
neighborhood points within a certain range are que-
ried in the original point cloud, so that a multi-scale 
spherical neighborhood can be constructed to capture 
multi-level local information of the point cloud. Wang 
et al. [25] designed a dynamic graph CNN (DGCNN) 
by computing the k-nearest neighbors of each point to 
aggregate the features of different levels in each local 
region. Taghanaki et al. [23] proposed the PointMask 
with regularization term to mask irrelevant input 
variables. In recent years, many point cloud learning 
networks have been constructed for other tasks, such 
as point cloud segmentation [21, retrieval [24], regis-
tration [1], reconstruction [22], object recognition [9], 
and so on. Although these networks are designed for 
different tasks, the used sampling strategies are stat-
ic, which are only based on the spatial location of the 
input point cloud, but do not use the high-level repre-
sentations of the point cloud.
Farthest point sampling and random sampling (RS) 
are two popular sampling methods used in learning 
based networks for point cloud processing. They are 
heuristic and able to keep the geometric structure 
of the object by iteratively collecting samples on the 
surface of the object. FPS uses Euclidean distance 
metric to iteratively search for the sampling points, 
and the selected point is that farthest from other un-
selected members in each iteration [16]. Kulikajevas 
et al. [8] proposed a two-tiered deep neural network 
for self-occluding humanoid pose reconstruction, 
in which the clipping network is designed to clip the 
region of interest and down sampling it with FPS 
for the subsequent reconstruction network. Since 
FPS can well cover the whole set of points, several 
methods use it to extract the feature point [35, 38]. 
However, due to the high computational complexity, 
FPS is generally suitable for small-scale point clouds. 
RS does sampling from the probability distributions. 
Hu et al. [7] used RS for semantic segmentation of 
large-scale point clouds. Although RS has excellent 
computing and memory efficiency, it may discard 
key features. Therefore, they designed a local feature 
aggregation module to increase the receptive field for 
each 3D point so as to preserve the geometric details. 

These typical sampling methods are mainly designed 
based on low dimensional Euclidean space, and do 
not make full use of point cloud’s high-level semantic 
representation. Moreover, they are quite sensitive to 
outliers [29], which may degrade the performance of 
the downstream tasks due to inappropriate sampling 
of the input original point clouds.
Some studies have focused on the design of point cloud 
sampling network based on downstream tasks [4, 18, 
39], which are also called as task oriented sampling in 
[18]. Zhu et al. [39] presented a point rank sampling 
method in their shape completion network to rate and 
sample feature points more objectively through local 
outline form. Dovrat et al. [4] proposed a data driven 
point cloud sampling network namely S-Net. They 
firstly used PointNet to obtain the global feature of 
the input point cloud, and then used full connection 
layer regression to generate the sampled subset of the 
input point cloud. By freezing the downstream task 
network, S-Net can generate a sampled subset of the 
input point cloud that is more conducive to network 
learning of the downstream task such as point cloud 
classification, retrieval and reconstruction. Consid-
ering that S-Net directly reconstructs point clouds 
from global features without using the correlation 
between points, Qian et al. [18] explored the local geo-
metric correlation of point cloud from the perspective 
of matrix optimization, and proposed the MOPSNet 
to transform 3D points into high dimensional fea-
ture space and construct a constrained differentiable 
matrix optimization problem with implicit objective 
function. By simulating the problem of matrix opti-
mization, the sampled subset of input point cloud is 
obtained. S-Net and MOPSNet are the task orient-
ed sampling network which is simply described in 
Figure 1 where the red points construct the sampled 
subset Q of the input point cloud P. In such kind of 
methods, the relevant downstream tasks are first 
scheduled, and downstream task network is trained in 
advance, then the trained downstream task network 
is used to feedback and adjust the sampling network, 
so that the generated points (that is, the sampled sub-
set Q of the input point cloud) can better adapt to the 
downstream tasks. However, sometimes downstream 
tasks may be unknown in advance. In such cases, the 
sampling network is desired to adapt to most down-
stream tasks, moreover, it is better to be unsupervised 
and do not need feedback regulation of downstream 
tasks. Therefore, it is necessary to design universal 
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point cloud sampling network independent of down-
stream tasks.
Different from the previous task oriented sampling 
networks, this paper proposes an universal point 
cloud sampling network (called as UPSNet), which 
can sample representative points without knowing 
the downstream tasks in advance and feedback ad-
justment. The main contributions of this paper are as 
follows.
1 An end-to-end universal point cloud sampling 

network namely UPSNet is proposed, which can 
better adapt to the cases of unknown downstream 
tasks and have better versatility.

2 An importance learning module is designed to im-
prove the performance of sampling, it can learn the 
variational importance probability of each point in 
input point cloud through the re-parameterization 
technique. By shielding the points with low impor-
tance probability, the proposed network can learn 
the feature of the points with higher importance 
which is more beneficial to the downstream tasks.

3 To enhance the learning ability of the local fea-
tures of the point cloud in the proposed UPSNet, a 
regional learning mechanism is designed to realize 
the sub-region learning of the point cloud, which 
can learn the high dimension space embedding of 
each region and help the network reconstruct the 
point cloud.

The rest of this paper is organized as follows. Section 
II describes the proposed UPSNet in detail. Section 
III analyzes the experimental results of the proposed 
UPSNet and its performance in point cloud classifi-
cation, segmentation, reconstruction and retrieval. 
Finally, Section IV concludes the paper.

Figure 1
Downstream task oriented sampling network

2. Proposed UPSNet
In this paper, a universal point cloud sampling net-
work (UPSNet) which can be trained independent-
ly of downstream task is proposed. Its framework is 
given in Figure 2. The UPSNet is mainly composed 
of three modules, including importance learning 
module, regional learning module and coordinate 
regression module, as shown in Figure 2(a). First-
ly, the importance of each point in high dimensional 
space is obtained by the importance learning module. 
Then, the high dimensional features of each region 
are learned in the regional learning module. Finally, 
the sampled subset of the input point cloud is recon-
structed in coordinate regression module.

2.1. Importance Learning Module
The purpose of point cloud sampling is to construct 
its representative subset. Because all points in the 
point cloud may have different importance, if all 
points are equally learned, the selected point cloud 
subset may not be representative. Therefore, we ana-
lyze the importance of point to point from the pers-
pective of mutual information, and design the impor-
tance learning module. Let P={Pi|i=1,…,n} denote a 3D 
unordered point set, PiÎRRd. Generally, d=3 is taken as 
the dimension of coordinate of 3D space. The goal is 
to calculate a set of variational importance probabi-
lities J={Ji|i=1,…,n} corresponding to P by optimizing

( ) ( , ; ) ( , ; )L I J I Jω ω β ω= −Q P , (1)

where I(∙) denotes mutual information estimator, ω is 
network parameters, β is a scalar weight, and Q is the 
sampled point cloud of P, QÌP.
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Assuming that J obeys normal distribution, 
J~N(μ, σ2), the mean μ and standard deviation σ of dis-
tribution parameters are obtained by the network le-
arning. We use the re-parameterization technique to 
get J, J=μ+σε, ε~N(0,1). Then, a mask M is designed for 
point screening according to the number of points to 
be sampled, denoted by

ReLU( ( ) )hM J Tσ= − . (2)

Let α be the importance of each point in the point clo-
ud, and the higher the value is, the more important 

Figure 2(a)
Framework of the proposed universal point cloud sampling network (UPSNet)

Figure 2(b)
Framework of the importance learning module in the proposed UPSNet

Framework of the proposed universal point cloud sampling network (UPSNet) 

 
Figure 2(b)

Framework of the importance learning module in the proposed UPSNet 

 
(a) T =0.4 (b) T =0.6  (c) T =0.8 (d) T 0.9

the feature of the point is. The mask operation can be 
used to discard the points whose importance is lower 
than a threshold Th, so that the number of remaining 
points is equal to that of the sampling points. The spe-
cific process of the importance learning module is 
shown in Figure 2(b). Note that the importance α will 
also be used as the weight to get the global feature of 
each region in regional learning module.
As an example, Figure 3 shows the sampling results 
of the mask operation under different thresholds. 
In Figure 3, the red points indicate the remaining 

(a) Th=0.4                                               (b) Th=0.6                                         (c) Th=0.8                                                (d) Th=0.9

Figure 3
Remaining points after mask operation with different thresholds
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points, while the discarded ones are marked in blue. 
In the process of network learning, the network 
is more desired to learn features from the points 
that can represent the contour of the object. From 
Figure 3, it is seen that as the threshold Th increases, 
the number of remaining points decreases, and the 
mask operation tends to select the points that can 
represent the shape of the object, as shown in Fi-
gure 3(d). This is beneficial to describing the glo-
bal feature of the object. In the experiment, the 
threshold Th can be used to determine the number 
of the sampled points from the input point cloud, so 
that the remaining points are just equal to the num-
ber of points we need to sample.

2.2. Regional Learning Module

It is believed that the learning network should not 
only reconstruct the entire point cloud, but also re-
construct the fine-grained components of the point 
cloud. Therefore, it is needed to design the correspon-
ding regional learning module for all local regions.
For the input point set P={Pi|i=1,…,n}, suppose it can be 
segmented to m regions, denoted by R={Ri|i=1,…,m}, 
where the region Ri has totally Ni points, satisfying 
N1+N2+…+Nm=n. By learning the feature mapping 
function f: RR3→RRd and mapping each region to a 
high dimensional space, the corresponding high 
dimensional space embedding F={Fi|i=1,…,m} of each 
region is obtained by multi-layer perceptron (MLP). 
The feature mapping function f is defined by

1 2( ) ( || || ... || )mf MLP=P R R R , (3)

where MLP(∙) is an MLP, and || denotes cascade 
indicating the connection of different regions for 
learning. In this way, each region is connected to faci-
litate the subsequent extraction of weighted features 
of different regions.
Let αi denote the regional weight of the i-th region, 
αi={ j

iα |j=1,…,Ni}, and j
iα be the weight of the j-th 

point in the i-th region which is in fact the importance 
of the point obtained in the importance learning 
module. Then the regional weight α={αi|i=1,…,m} is 
multiplied with the corresponding high dimensional 
space embedding F of each region and the products 
are summed, so as to obtain the weighted feature Gi of 
the i-th region, denoted by

1

iN
j j

i i i
j

G Fα
=

= ⋅∑ , (4)

where j
iF  is feature of the j-th point in the i-th regi-

on and Fi={ j
iF |j=1,…,Ni}, Gi of all regions constitute 

G={Gi |i=1,…,m}. Here, considering that the maximum 
pooling cannot fully represent the features of a regi-
on which is composed of many points, the weighting 
method in Equation (4) is used to obtain the global 
features instead of the maximum pooling. The wei-
ghting method takes into account the features of all 
points and weights the features according to the im-
portance of each point, hence more representative fe-
atures of the local region can be obtained.
Then, for each region Ri, the points whose impor-
tance is greater than the threshold Th are selected, 
and the sampled subset of the input point cloud S={-
Si|i=1,…,m} is obtained, SiÌRi, where the region Si has 
totally Ki points, satisfying K1+K2+…+Km=k and k is the 
total number of sampling points. The global feature G 
is cascaded with the high dimensional space embed-
ding F of each region in the point cloud subset to ob-
tain the final feature T={Ti|i=1,…,m} as follows:

||i i iT F G= . (5)

2.3. Coordinate Regression Module
Through the above two modules, the designed ne-
twork obtains the subset S of point cloud and the 
corresponding final feature T of each point. In 
coordinate regression module, MLP is used to regress 
the point cloud subset S in high dimensional space to 
the 3D spatial coordinate system to get the output of 
the proposed UPSNet. Considering that the genera-
ted point cloud is not necessarily a subset of the in-
put point cloud, the nearest point matching strategy 
in S-Net [34] is adopted in the proposed point cloud 
sampling network to match the generated point cloud 
with the input point cloud to get the final point cloud 
subset.

2.4. Joint Loss Function in the Proposed 
UPSNet
In order to train UPSNet better, joint loss function 
is presented to train UPSNet from end to end. The 
joint loss function consists of reconstruction loss and 
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Kullback Leibler divergence. Based on the features 
of important points learned above, it is hoped that 
the network can reconstruct the point cloud subset 
close to the underlying surface of the point cloud ac-
cording to these features so that the reconstructed 
subset can help the downstream tasks achieve good 
performance.
There are two kinds of reconstruction loss, earth mo-
ver’s distance (EMD) [19] and Chamfer distance (CD) 
[5]. For two point clouds P1 and P2 with the same size, 
their EMD LEMD(P1, P2) is defined by

1 2
1

1 2 2:
( , ) min ( )EMD

x
L x x

φ
φ

→
∈

= −∑P P P
P P , (6)

where ϕ is double mapping. 
EMD is differentiable everywhere, but it is computa-
tionally expensive and limits the size of the input set 
to be consistent. Therefore, the Chamfer distance is 
used as the reconstruction loss in this paper since it 
is more convenient to be calculated and has no requ-
irement for input. The Chamfer distance is the squ-
are distance from each point in one set to its nearest 
neighbor in another set. For two point clouds P and Q 
with different points, their Chamfer distance LCD is 
defined by

2 2

2 2
( , ) min minCD y xx y

L x y x y
∈ ∈

∈ ∈

= − + −∑ ∑Q PP Q
P Q , (7)

where P is the input point cloud and Q is the recons-
tructed point cloud.
In this paper, Kullback Leibler divergence KL is used 
to measure the degree of similarity between the dis-
tribution of variational importance probability J and 
normal distribution. For variational importance pro-
bability J=μ+εσ, it is forced to obey normal distribu-
tion through sampling normal distribution ε~N(0,1), 
where μ and σ are the mean and variance of the distri-
bution. Thus, the divergence loss function LKL betwe-
en two distributions is defined by

( ( | ) || ( ))KLL KL p J P r J= , (8)

where r(J) is the variational approximation of mar-
ginal ( ) ( ) ( | )p J p P p J P dP= ∫ .
Finally, by minimizing the following joint loss functi-
on L, the UPSNet is trained from end to end, and L is 
computed by

CD KLL L L= + . (9)

3. Experimental Results
To verify the effectiveness of the proposed UPSNet, 
a series of experiments including point cloud classi-
fication, segmentation, reconstruction and retriev-
al are performed on the reconstructed point clouds 
sampled with different comparative point cloud 
sampling methods. Random sampling (RS) and far-
thest point sampling (FPS) [16] are compared as the 
classical non-data driven sampling methods. More-
over, in order to compare with S-Net [4], we take its 
module that generates the point cloud as unsupervi-
sed S-Net (USNet). In addition, we also compare the 
sampling performance of the proposed UPSNet with 
that of the UPSNet(v) which does not consider regi-
onal learning, that is, the “Region splitting” in Figure 
2 is omitted.

3.1. Network Training and Datasets
The proposed UPSNet is implemented on Pytorch, 
and GeForce RTX2080Ti GPU is used in the experi-
ments. The input point cloud of the network has 2048 
or 1024 points, while the point cloud reconstructed 
with the sampled subset has 2048/r or 1024/r points 
and r is the sampling rate. The proposed UPSNet uses 
RMSProp solver with the base learning rate of 0.001 
and 400 epochs are trained with the batch size of 16.
ShapeNet [31]: The dataset contains 16881 models 
of 16 categories, and a total of 50 parts are annotated. 
Since the proposed UPSNet network needs regional 
learning, the models whose number of points of the an-
notated parts is less than 100 in the ShapeNet dataset 
are excluded in the experiments. In addition, conside-
ring the small number of some categories of models, we 
perform data augmentation on these categories of mo-
dels through rotating them by 20 degree. Finally, there 
are totally 17897 models, and 80% of them are used as 
training set and the rest 20% as test set.
ModelNet40 [26]: This dataset contains a total of 
12311 3D mesh models of 40 categories. It includes 
9843 training models and 2468 test models. We uni-
formly sample 1024 points from the 3D mesh model 
and normalize them into the unit circle.
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3.2. Test with the Downstream Task of Point 
Cloud Classification
In this subsection, two kinds experiments of point 
cloud classification are performed on ShapeNet da-
taset, and PointNet [15] is used as the benchmark ne-
twork of classification. In Classification 1, the same 
original training set (not sampled) is used to train the 
classification network, and the classification accura-
cy is tested on the reconstructed test sets respectively 
obtained with different sampling methods so as to 
compare the effectiveness of different sampling me-
thods. While in Classification 2, the classification ne-
twork is trained with the reconstructed training sets 
respectively obtained with different sampling me-
thods, and the classification accuracy is tested on the 
same original test set.
Classification 1: The original training set of Shape-
Net dataset (models with 2048 points) is used to train 
the classification network, that is, PointNet, and then 
the original test set (models with 2048 points) is used 
to generate the reconstructed test sets (models with 
2048/r points) with respect to different sampling rate 
r through different sampling methods. Since the re-
constructed point cloud is not necessarily a subset of 
the input data, we use the same matching strategy as 
in S-Net [4] to match the generated point cloud with 
the input point cloud so as to get the matched test set. 
then, the reconstructed test sets (models with 2048/r 
points) generated with different sampling methods 
are put into the trained PointNet respectively to get 
classification results and the corresponding clas-
sification accuracy is calculated to evaluate the 
effectiveness of the different sampling methods. 
The classification accuracy with respect to different 
sampling methods are shown in Table 1, where MA 
(Mean Accuracy of each category) represents the ave-
rage accuracy of each category of point cloud and the 
best results are in bold.
In Table 1, the comparative point cloud sampling me-
thods include random sampling (RS), farthest point 
sampling (FPS) [16], unsupervised S-Net (USNet) 
[4], the proposed UPSNet without regional learning 
module (denoted as UPSNet(v)) and the proposed 
UPSNet. It is seen that with the decrease of the num-
ber of sampling points (called sampling size), the 
classification accuracy of all sampling methods de-
creases. Compared with the sampling size of 1024, the 
classification accuracy of RS, FPS and USNet under 

the sampling size of 64 decreases by about 3%, while 
for UPSNet(v) and UPSNet they decrease by only 
2.5% and 2%. Although UPSNet(v) considers the im-
portance of each point in point cloud, it only utilizes 
the global features but no local features of each re-
gion, so the reconstructed point cloud sampled with 
UPSNet(v) may be farther from the underlying surfa-
ce of the original point cloud compared with UPSNet. 
In contrast, the proposed UPSNet can generate more 
representative point cloud subsets by additionally le-
arning the local features of each region so it achieves 
higher classification accuracy at low sampling size.
Classification 2: In this comparative experiment, 
the classification network PointNet is respectively 
trained with different reconstructed training sets 
(models with 2048/r points) generated by different 
sampling methods, and then tested on the original 
test set (models with 2048 points) of ShapeNet data-
set. The classification accuracy results with respect 
to different sampling methods are shown in Table 2. 
It is seen that when fewer points are sampled with RS, 
FPS and USNet, the classification network cannot le-
arn good global features, so that when the original test 
set of point clouds with 2048 points are input into the 
classification network for testing, the global features 
obtained from the test set cannot well match the glo-
bal features learned from the reconstructed training 
sets, leading to the lower classification accuracy. In 
contrast, the reconstructed training set sampled by 
the proposed UPSNet is more suitable for network le-
arning, especially for large sampling rate r.

Table 1
Classification accuracy with respect to different sampling 
methods on ShapeNet dataset, where the original 
training set (models with 2048 points) is used to train 
the classification network but the reconstructed test sets 
(models with 2048/r points) generated with different 
sampling methods are respectively used for testing (MA: 
Mean Accuracy of each category) unit: %

Point cloud sampling 
method

Sampling size (2048/r)

1024 512 256 128 64

RS 96.2 96.6 96.5 95.3 93.2

FPS 97.1 96.9 96.5 95.4 94.1

USNet 97.2 97.2 96.9 96.1 93.5

UPSNet(v) 97.2 97.1 97.0 96.4 94.7

UPSNet 97.2 97.2 97.1 96.5 95.2



731Information Technology and Control 2022/4/51

Table 2
Classification accuracy with respect to different sampling 
methods on ShapeNet dataset, where the classification 
network is respectively trained with the reconstructed 
training sets (models with 2048/r points) obtained by 
different sampling methods but the same original test set 
(models with 2048 points) is used for testing (MA: Mean 
Accuracy of each category) unit: %

Point cloud sampling 
method

Sampling size (2048/r)

1024 512 256 128 64

RS 97.0 96.9 96.0 93.1 87.1

FPS 97.2 97.2 97.0 96.4 92.7

USNet 97.1 97.1 96.8 96.0 93.4

UPSNet(v) 97.2 97.2 96.8 96.3 93.7

UPSNet 97.2 97.2 96.9 96.7 94.3

Figure 4
Segmentation results of the reconstructed point clouds generated with different sampling methods at the sampling rate r 16

  
 
 

(a) Original point 
cloud (Model I)

(d) Original point 
cloud (Model II)

(b) Label of sampled point clouds obtained with different sampling methods (Model I)

(c) Segmentation results of sampled point clouds obtained with different sampling methods (Model I)

(e) Label of sampled point clouds obtained with different sampling methods (Model II)

(f ) Segmentation results of sampled point clouds obtained with different sampling methods (Model II)  
 

3.3. Test with the Downstream Task of Point 
Cloud Segmentation
3D point cloud segmentation is a challenging fi-
ne-grained recognition task, which needs to unders-
tand the role of each point in its own category. There-
fore, it is necessary to have an effective sampling 
method, which can make the point cloud subset better 
express the characteristics of the input point cloud, 
so that the subsequent segmentation network can se-
gment the point cloud more accurately.
Similar to the experiments of Classification 1, the 
experiments of segmentation task are also carried out 
on ShapeNet dataset. The training set (models with 
2048 points) is used to train the sampling models such 
as the proposed UPSNet, and then the test set (models 
with 2048 points) is used to generate different recons-
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tructed test sets (models with 2048/r points) through 
different sampling methods. The benchmark network 
used for point cloud segmentation is PointNet [15]. 
Firstly, the training set (models with 2048 points) 
of ShapeNet dataset is used to train the PointNet se-
gmentation model, then the reconstructed test sets 
(models with 2048/r points) generated with different 
sampling methods are put into the trained PointNet 
respectively to calculate the segmentation accuracy 
with respect to different sampling methods, so that 
the effectiveness of these sampling methods under 
the task of point cloud segmentation can be evaluated.
The results of segmentation accuracy with respect 
to different sampling methods are shown in Table 3 
where mIoU (mean Intersection over Union) of point 
clouds is used as the index and the best results are in 
bold. It is seen that the point cloud subsets sampled 
by RS and USNet lose their fine-grained informati-
on, resulting in the decline of segmentation accuracy. 
Compared with RS and USNet, the points sampled 
by the heuristic based sampling method FPS are uni-
form and can better retain the geometric structure of 
the original point cloud, so better results are achieved. 
However, the point cloud segmentation using the 
proposed UPSNet(v) or UPSNet for down sampling 
has best segmentation accuracy, and with the increa-
se of the sampling rate r, the performance is improved 
more than other sampling methods. This shows that 
the proposed UPSNet(v) and UPSNet can retain more 
representative points from the original point cloud, so 
they can reconstruct more suitable point cloud sub-
sets for subsequent point cloud segmentation and 
achieve better segmentation results. Moreover, ge-
nerally speaking, the UPSNet with regional learning 
has better performance than the UPSNet(v) without 
regional learning module, which verifies the necessity 
and effectiveness of regional learning.
In addition to quantitative comparison, qualitati-
ve analysis is also done. The segmentation results 
with respect to different sampling methods are vi-
sualized, as shown in Figure 4 where the sampling 
size is 128. Figures 4(a) and 4(d) shows two original 
point clouds in which different colors represent di-
fferent labels (components). Figures 4(b) and 4(e) 
show the sampled point clouds obtained with the 
sampling methods of RS, USNet, FPS, UPSNet(v) 
and UPSNet, respectively, where the color indicates 
the label of each point. Figures 4(c) and 4(f ) show the 

Table 3
Point cloud segmentation accuracy with respect to 
different sampling methods (mIoU: mean Intersection 
over Union) unit: %

Point cloud 
sampling 
method

Sampling size (2048/r)

1024 512 256 128 64

RS 93.33 93.16 92.34 90.57 87.63

FPS 93.52 93.51 93.46 92.64 91.56

USNet 93.50 93.49 93.15 92.13 90.29

UPSNet(v) 93.54 93.52 93.49 92.85 91.76

UPSNet 93.52 93.54 93.50 92.99 92.02

segmentation results by putting the sampled point 
cloud into the PointNet segmentation network, that 
is, the different colors indicate the model’s different 
component predicated by the PointNet. It is seen that 
the sampled results of RS, USNet and UPSNet(v) 
cannot well retain the shape of the input point clouds, 
as shown at the position of the aircraft nose. The 
sampled point clouds obtained by FPS are relatively 
uniform. However, the boundary at the connection 
of components may be blurred, leading to prediction 
errors. In contrast, the proposed UPSNet can achieve 
higher segmentation accuracy even at the connection 
of components on the premise of retaining the shape 
of each component.

3.4. Test with the Downstream Task of Point 
Cloud Reconstruction
Similar to image super-resolution reconstruction, 
point cloud reconstruction aims to reconstruct spar-
se samples into dense samples. When the reconstruc-
tion method is determined, the quality of the dense 
point clouds reconstructed from different sparse 
point clouds is different. Therefore, we can use the 
reconstruction task to evaluate the performance of 
different point cloud sampling methods. In this paper, 
the same evaluation index as in [18], that is, norma-
lized reconstruction error (NRE), is used to normali-
ze the reconstruction loss, which is defined by

( ,AE( ))( , )
( ,AE( ))RE

CDN
CD

=
P QQ P
P P

, (10)

where CD(∙) is the Chamfer distance, P is the in-
put point cloud, Q is the sampled point cloud, 
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AE(∙) denotes the reconstruction network and 
referring to [4, 18] an auto-encoder is adopted as the 
reconstruction network.
In order to better evaluate the performance of the 
sampling methods, we use four categories of models 
including aircraft, chair, lamp and table from Shape-
Net dataset to form four datasets. Taking the aircraft 
as an example, the aircraft dataset is divided into the 
training set and test set at the ratio of 8:2. Then the 
training set is used to train the auto-encoder, where 
the number of points in the input and reconstructed 
point clouds is 2048. The trained auto-encoder is 
used to reconstruct the point clouds in the test set, 
and the Chamfer distance between the original point 
clouds in the test set and the reconstructed ones 
is taken as the denominator of Equation (10). The 

Table 4
Comparison of NRE with respect to different sampling 
methods on ShapeNet dataset

Point cloud sampling 
method

Sampling size (2048/r)

1024 512 256 128 64

RS

aircraft 1.09 1.58 2.33 3.77 6.40

chair 1.11 1.65 2.50 4.10 6.78

lamp 1.08 1.21 1.54 2.15 3.29

table 1.07 1.51 2.17 3.45 5.81

FPS

aircraft 1.00 1.21 1.55 2.26 3.71

chair 1.02 1.20 1.68 2.54 4.35

lamp 1.00 1.06 1.21 1.51 2.16

table 1.01 1.13 1.47 2.13 3.79

USNet

aircraft 1.04 1.27 1.77 2.82 5.06

chair 1.04 1.27 1.78 2.88 5.14

lamp 1.02 1.10 1.29 1.67 2.36

table 1.03 1.24 1.67 2.56 4.45

UPSNet(v)

aircraft 1.01 1.20 1.53 2.23 3.57

chair 1.03 1.21 1.62 2.48 4.11

lamp 1.01 1.03 1.17 1.46 2.03

table 1.01 1.06 1.43 2.03 3.54

UPSNet

aircraft 1.01 1.21 1.51 2.24 3.33

chair 1.01 1.18 1.63 2.41 3.97

lamp 1.00 1.04 1.15 1.43 1.98

table 1.01 1.04 1.40 1.99 3.33

training set is also used to train the down sampling 
model so as to down sample the point clouds in the 
test set. Finally, the point clouds with 2048 points 
are reconstructed from the sampled test point clouds 
by the trained auto-encoder. The Chamfer distance 
between the original point cloud in the test set and 
the point cloud reconstructed with auto-encoder 
from the sampled test point cloud is regarded as the 
molecule of Equation (10). The final NRE results of 
experiments on ShapeNet dataset are shown in Table 
4 where the best results are in bold. The comparative 
sampling methods are also tested on ModelNet40 da-
taset. The experimental procedures are similar to that 
on ShapeNet dataset except that the division of trai-
ning set and test set follows the public dataset itself, 
but not the ratio of 8:2. The experimental results are 
shown in Table 5. Note that ModelNet40 dataset does 
not have segmentation labels, so we only test the UPS-
Net(v) instead of the UPSNet, because UPSNet(v) 
omits regional learning but only has global learning. 
From Tables 4 and 5, it is seen that when the num-
ber of input points is large (large sampling size), the 
difference between the reconstruction errors of all 
sampling methods is small. But when the number of 
points input for reconstruction is gradually reduced, 
the UPSNet(v) and UPSNet show their superiority 
because of the sampled representative points.

Table 5
Comparison of NRE with respect to different sampling 
methods on ModelNet40 dataset

Point cloud sampling 
method

Sampling size (1024/r)

512 256 128 64

RS 1.03 1.20 1.71 2.88

FPS 1.02 1.09 1.28 1.80

USNet 1.02 1.12 1.33 1.94

UPSNet(v) 1.02 1.07 1.24 1.65

We also visualize the reconstruction results of two 
models, as shown in Figure 5. Figures 5(a) and 5(c) 
show the original point clouds where the red points 
indicate the points sampled by different sampling 
methods which are the input of the reconstruction 
network. Figures 5(b) and 5(d) are the point cloud 
reconstructed with the red points in Figures 5(a) and 
5(c), respectively. It is worth noting that due to the 
similarity of some models in the dataset, the point 
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Figure 5
Point cloud reconstruction with respect to different sampling methods

 
 
 
 

(a) The original point cloud and the sampled points obtained with different sampling methods (Model I)

(c) The original point cloud and the sampled points obtained with different sampling methods (Model II)

(b) Point cloud reconstructed with the red sampled points in (a)

(d) Point cloud reconstructed with the red sampled points in (c)

cloud sampled by FPS may be reconstructed with 
similar shape thus lose diversity. For example, both 
model I and model II in Figure 5 are chairs, but their 
backrest are different, one is a hollow backrest and 
the other is a solid backrest. However, both of their 
corresponding point clouds reconstructed by FPS 
are with hollow backrests. This shows that even the 
heuristic based sampling method may not be sui-
table for some subsequent tasks. In contrast, the 
sampled subsets of the input point cloud generated 
by UPSNet(v) and UPSNet are representative, which 
can make the network identify what kind of model it 
should reconstruct and maintain the diversity of the 
reconstructed models.

3.5. Test with the Downstream Task of 3D 
Model Retrieval

Model retrieval is to find similar model for a given 
model in the database. The general approach is to 
design a shape descriptor for each model and retrie-
ve similar models by calculating the cosine distance 
between descriptors. Here, we use the output of the 
penultimate full connection layer of the above used 
classification network as the shape descriptor. Ta-
ble 6 and Table 7 show the experimental results on 
ShapeNet and ModelNet40 datasets, respectively, the 
evaluation index is mAP (mean Average Precision) 
and the best results are in blod. For the same reason 
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as mentioned in subsection 4.4, we only test UPSNe-
t(v) instead of the UPSNet on ModelNet40 dataset in 
this experiment. It is seen that the shape descriptor 
formed from the point clouds sampled by RS, FPS 
and USNet has poor retrieval performance when the 
number of points is small. The UPSNet(v) and UPS-
Net can generate more representative point cloud 

Table 6
Comparison of retrieval performance with respect to 
different sampling methods on ShapeNet dataset (mAP: 
mean Average Precision) unit: %

Point cloud sampling 
method

Sampling size (2048/r)

1024 512 256 128 64

RS 89.4 88.8 87.9 86.9 82.1

FPS 89.3 89.1 89.1 87.8 85.6

USNet 89.3 89.3 89.0 88.2 86.1

UPSNet(v) 89.4 89.2 89.1 88.0 86.1

UPSNet 89.3 89.4 89.0 88.4 86.6

Table 7
Comparison of retrieval performance with respect to 
different sampling methods on ModelNet40 dataset (mAP: 
mean Average Precision) unit: %

Point cloud sampling 
method

Sampling size (1024/r)

512 256 128 64

RS 68.7 58.9 47.5 34.1

FPS 69.4 67.1 58.0 47.0

USNet 68.3 65.6 55.3 50.6

UPSNet(v) 69.5 67.0 60.0 58.6

subsets, so the formed feature descriptor can retain 
the global features of the original point cloud, hence 
better retrieval performance can be achieved.

4. Conclusion
This paper has proposed an universal point cloud 
sampling network (namely UPSNet) which is inde-
pendent of the downstream task, in other words, the 
proposed UPSNet is not oriented to specific down-
stream tasks, so it has wide applicability. By learning 
the mutual information between the input variables, 
the UPSNet can distinguish the important informati-
on and irrelevant information in the input variables, 
and obtain a group of variational importance probabi-
lity. Then, the high dimensional space embedding of 
each region is multiplied by the variational importan-
ce probability to obtain the representative global fe-
atures of each region. Finally, the global features and 
the high dimensional space embedding of each region 
are cascaded for learning and reconstruction, and the 
sampled point cloud is obtained. The experimental 
results show that the proposed UPSNet is superior to 
the commonly used sampling methods independent 
of downstream tasks in the tasks of point cloud classi-
fication, segmentation, reconstruction and retrieval.
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