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Data controllers manage immense data, and occasionally, it is released publically to help the researchers to 
conduct their studies. However, this publically shared data may hold personally identifiable information (PII) 
that can be collected to re-identify a person. Therefore, an effective anonymization mechanism is required to 
anonymize such data before it is released publically. Microaggregation is one of the Statistical Disclosure Con-
trol (SDC) methods that are widely used by many researchers. This method adapts the k-anonymity principle to 
generate k-indistinguishable records in the same clusters to preserve the privacy of the individuals. However, 
in these methods, the size of the clusters is fixed (i.e., k records), and the clusters generated through these meth-
ods may hold non-homogeneous records. By considering these issues, we propose an adaptive size clustering 
technique that aggregates homogeneous records in similar clusters, and the size of the clusters is determined 
after the semantic analysis of the records. To achieve this, we extend the MDAV microaggregation algorithm to 
semantically analyze the unstructured records by relying on the taxonomic databases (i.e., WordNet), and then 
aggregating them in homogeneous clusters. Furthermore, we propose a distance measure that determines the 
extent to which the records differ from each other, and based on this, homogeneous adaptive clusters are con-
structed. In experiments, we measured the cohesiveness of the clusters in order to gauge the homogeneity of 
records. In addition, a method is proposed to measure information loss caused by the redaction method. In ex-
periments, the results show that the proposed mechanism outperforms the existing state-of-the-art solutions.
KEYWORDS: Microaggregation, Anonymization, MDAV, Clusters, Privacy.
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1. Introduction
Due to rapid developments in information technolo-
gy, the users of such technologies are growing day by 
day. As a result, these technologies generate a huge 
amount of data in the form of emails, query logs, so-
cial network activities, medical records, etc (known 
as set-valued data). A set-value data contains a set of 
elements associated with a specific person that is ex-
tracted from the dataset (e.g., name, identity, disease, 
etc). Hence, online data management is turning out 
to be a real concern for data controllers (e.g., search 
engines, hospitals, organizations, etc.). The data con-
trollers occasionally release such data (i) to help the 
researchers in order to improve their methods, (ii) to 
assess their theories or hypotheses [16, 17], and (iii) 
even it is released to the marketing companies to find 
the relevant people to promote their products. 
The publically shared data may hold personally iden-
tifiable information (PII) of individuals, which can 
be collected and analyzed to re-identify a person [18]. 
Therefore, such data can be exploited for unfair pur-
poses, hence, it raises disclosure or privacy risks for 
the individuals [44]. Usually, the datasets that hold 
PII comprise of the following type of key variables [45, 
48]: (i) identifying variables (value of such variables 
identifies a person e.g., name, social security number, 
age, date of birth, etc.), and (ii) sensitive variables 
(as defined by the legislation [15, 19], values of such 
variables may cause legal implications e.g., political 
views, religious views, diseases, etc). The information 
collected from a set of identifying variables can also 
be linked together to re-identify an individual, such 
variables are known as quasi-identifiers (QIs). For 
example, a combination of variables like age, gender, 
and location can re-identify a specific person. Thus, 
publically shared data must be de-identified before it 
is released publically in order to ensure the privacy of 
the individuals. 
In most of the cases, the data being used by the ap-
plications or a specific environment is managed in 
structured (e.g., database records organized in a tab-
ular format) or unstructured format (e.g., web search 
query logs, social network data, medical reports, etc.). 
In structured data, the data analysis is simple, how-
ever, it is a challenging job in unstructured data (i.e., 
set-valued data) due to its volume and diversity in 
the semantics [13]. Hence, the de-identification pro-

cess requires a rigorous analysis of the data in order 
to elicit such variables (i.e., identifying variables and 
sensitive variables).
To achieve the aforementioned objectives, the Sta-
tistical Disclosure Control (SDC) methods [48] are 
proposed to protect data from disclosure risks by ano-
nymizing PII. Researchers [16, 22, 43, 44, 51] extended 
these methods to further improve the redaction tech-
niques. Furthermore, there are a few more methods 
that are to add noise to the data [11, 37], microaggre-
gation [9, 43], and others [48]. Microaggregation is a 
well-known SDC method that has attracted research-
ers’ attention. This method incorporates the principle 
of k-anonymity [40, 47]. K-anonymity principle mini-
mizes disclosure risks by suppressing or generalizing 
key variables (i.e., identifying or sensitive variables), 
such that k records exhibit similar characteristics 
and they are indistinguishable. However, an adver-
sary aware of a person’s background may re-identify 
an individual from k-anonymized records that hold 
similar values. To solve this problem, the principle of 
l-diversity [25] suggests that key variables in records 
should have diverse l-values. Although, the l-diversi-
ty is prone to skewness and similarity attacks [24], 
hence, the t-closeness [24] principle further enhanc-
es the privacy of the l-diversity principle by managing 
the distribution of the data values of the attributes. 
This principle suggests that the distance between the 
sensitive attributes in the equivalence class and the 
entire table should not exceed the t-threshold. 
Researchers have proposed several microaggrega-
tion-based tools/techniques [46]. The microaggrega-
tion based methods aggregate homogeneous records 
in common clusters that exhibit similar character-
istics of data (i.e., each cluster holds at least k simi-
lar records). These records are then replaced by the 
centroid (a record) of the cluster to ensure that the 
records are indistinguishable (so-called record an-
onymization).  However, in such methods, the utility 
of de-identified data has always been a serious con-
cern. In addition, these approaches bear some limita-
tions, which are (i) the dimensionality issues [2] (i.e., 
greater loss of information on large datasets), and (ii) 
it is difficult to identify sensitive variables from the 
unstructured data [13]. Moreover, the privacy issues 
raised by the l-diversity and t-closeness principles 
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also require special attention. A few of the approach-
es based on such principles are discussed in Section 2.
MDAV [10] is a well-known microaggregation-based 
algorithm that partitions the dataset into homoge-
neous clusters. This algorithm requires the following 
to operate (i) a centroid of the dataset, and (ii) a dis-
tance measure that computes the distance between 
the records to assess their similarity. Consequently, 
the records are aggregated in clusters based on their 
distance scores. Initially, the MDAV was proposed for 
numerical datasets that map the univariate in clus-
ters. Later, it was adapted for the categorical datasets 
by various researchers [1, 5, 28]. However, the clusters 
generated through these methods are less cohesive; 
as a result, the utility of the anonymized data is also 
reduced. In addition, the records of the clusters can 
hold some uncommon attributes (e.g., the attributes 
present in one record, but missing in another record); 
hence, the distance that is measured based on such at-
tributes may generate incorrect results. 

1.1. Our Contributions
By considering the limitations discussed in Section 
1, in this paper, we present a novel approach to ano-
nymize unstructured set-valued data. Following are 
the novel contributions:
 _ In this paper, we extend our work [21] and 

improve the existing approaches [5, 28] with 
the following: (i) we propose an extension to 
the MDAV microaggregation method [10] to 
support the unstructured categorical data (i.e., 
improving structured approaches [21, 28]), and 
(ii) we improve the distance measure to consider 
semantically similar and non-similar attributes 
as separate variables within the tuples while 
computing distance between the queries (in 
contrast, [5] treats them as a single record that 
may result in information loss). Semantically 
similar attributes are the attributes that have the 
same semantics that is determined through the 
lexical database from the distance measure (i.e., 
the matching attributes have the least semantic 
distance), whereas, non-semantically similar 
attributes do not have any matching attribute with 
the same semantics (or the taxonomic distance is 
higher). The cardinality of semantically similar 
and non-similar multivariate in distinct records 
are used to assess the level of contrast between the 

matching tuples. In addition, the newly proposed 
semantic distance-based method relies on (i) 
the interrelationship of taxonomic levels of the 
attributes (for example, under the sports category, 
the distance scores are different when we compare 
a football with the soccer and a football with the 
circle), and (ii) the cardinality of the attributes of 
the distinct records. 

 _ The proposed solution relies on an adaptive 
clustering approach (i.e., the size of clusters is 
not fixed). The records are aggregated in similar 
clusters based on their semantic similarity score. 
The clusters generated as a result of this process 
are (i) more cohesive, and (ii) they emit less 
information loss as compared to the fixed and 
variable size clusters [28], which is later proved 
through the experiments.

 _ In addition, we derive metrics to measure 
cohesiveness and information loss of the clusters 
in order to evaluate the effectiveness of our 
proposed model.

The rest of the paper has the following content. Sec-
tion 2 illustrates the state-of-the-art solutions related 
to anonymization. In Section 3, we present our pro-
posed scheme to anonymize set-valued data. More-
over, we evaluate our proposed scheme in Section 4. 
Section 5 illustrates the conclusion and future work.

2. Related Work 
Researchers have significantly contributed to 
de-identify a person by sanitizing the sensitive infor-
mation published in the form of text. For this purpose, 
the symmetrical records are grouped in similar clus-
ters based on their common properties. To achieve 
this, the researchers have proposed several clustering 
techniques [35, 36, 39, 50] that operate in diverse en-
vironments (e.g., big data, cloud, etc.). Chakaravarthy 
et al. [8] proposed a privacy model to protect the infor-
mation published over the internet. In this approach, 
it is assumed that the context terms are associated 
with the entities, and an attacker can re-identify a per-
son through these associated sensitive terms. There-
fore, a document is sanitized by masking the context 
terms that can be used by an adversary to re-identify 
a person. This concept was adopted by Anandan et al. 
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[4], hence, they proposed a model that relies on the 
taxonomic interrelations of the sensitive terms that 
are identified manually. In this model, at least t-plau-
sible documents are generated by sanitizing the sen-
sitive terms through the generalized entities derived 
from the taxonomy. This model helps to generalize 
the sensitive terms of a single record, but it requires 
improvements to quantify the similarity between the 
multiple records in order to fulfill the requirements of 
microaggregation. 
In addition, the research community has also pro-
posed several solutions to anonymize structured and 
unstructured data, few of them are discussed in ac-
cordance with the limitations highlighted in the pre-
vious section (i.e., Section 1). First, we discuss some 
approaches that are used to anonymize structured 
data. Domingo-Ferrer and Soria-Comas [13] exam-
ined the possible ways to use k-anonymity model 
in the big data environment and, based on this, they 
proposed a solution that enhances the capabilities 
of this model by dealing with (i) the issues related to 
the dimensionality of the attributes and (ii) the is-
sues of releasing overlapping anonymized data from 
the multiple sources. To accomplish these objectives, 
the proposed model suggests constructing multiple 
sets of QIs, and, based on these sets, various versions 
of the k-anonymized data are generated. These sets 
are ascertained to hold one element of sensitive at-
tributes. By doing so, it hampers the possibility of ap-
pearing the maximum number of sensitive attributes 
in a single set of QIs; hence, this approach addresses 
the above-mentioned issues. However, this solution 
is constrained to structured data where sensitive at-
tributes are already known or predetermined, and it 
is not suitable for the unstructured set-valued data. 
In another approach, Xu et al. [51] proposed a utili-
ty-based anonymization framework that relies on the 
local recording method [48]. This method is based on 
the quality metrics that measure the utility of numer-
ic and categorical attributes by relying on the taxon-
omy. In this framework, the records are anonymized 
by replacing the value of an attribute with all possible 
leaf nodes of the taxonomic branches; consequently, 
it constructs multiple anonymized records for each 
given attribute. Hence, these records are arranged in 
multiple clusters based on their similarity, and then 
the weighted penalty of each cluster is measured. As 
a result, a cluster that has less weighted penalty is as-

sumed to cause less information loss; as a result, the 
anonymized records of this cluster are released to the 
public. As this approach replaces the values of the re-
cords with the leaf nodes of the taxonomy, thus, it still 
causes information loss or even distorts the informa-
tion. For example, Hepatitis and HIV are two different 
types of leaf nodes that correspond to the common 
ancestor node disease within the taxonomy. Thus, it 
distorts the information if all values of a dataset are 
replaced with any of these leaf nodes. In addition, it 
involves overhead to form clusters and then calculat-
ing their weighted penalty for the release purpose. 
Likewise, Majeed et al. [26] proposed another frame-
work that measures the identity vulnerability of the 
QIs and the diversity of the sensitive attributes (SAs) 
before anonymizing the structured data. To do so, this 
framework relies on the random forest method [7] to 
measure identity vulnerabilities in the data (an arti-
ficial intelligence-based technique to identify sensi-
tive QIs that may reveal information). To achieve this 
objective, this method calculates the vulnerability 
scores of the QIs in order to highlight such QIs that 
require anonymization. Finally, the chosen QIs and 
SAs are anonymized with the generalized data items 
determined from the taxonomic tree. Again, this 
method relies on predetermined attributes (i.e., QIs 
and SAs) that may not be suitable in the unstructured 
set-valued data. 
In addition, researchers have proposed several mod-
els to anonymize unstructured data. Motwani and 
Nabar [29] proposed a mechanism that optimizes the 
k-anonymity model to deal with the anonymity issues 
in the unstructured data (i.e., online query logs). For 
this purpose, they proposed several algorithms that 
achieve the notion of k-anonymity after transform-
ing unstructured data into a structured format. The 
notion of k-anonymity is achieved by adding or delet-
ing the supplementary data items into the records to 
make them indistinguishable. However, the fabrica-
tion of data items distorts the actual records; thus, it 
could lead to inaccurate results during the testing of 
the hypothesis. In another similar approach, Terrovi-
tis et al. [49] proposed an anonymization mechanism 
inspired by the k-anonymity model for the unstruc-
tured attributes. To anonymize data, the proposed al-
gorithms replace the semantically similar data items 
of the records with the generalized node of the taxo-
nomic branch of the lexical database. Moreover, they 
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proposed a metric to measure the information loss 
caused by such generalizations. This approach per-
forms better than the previous approach (i.e., [29]) (in 
terms of data loss), as it anonymizes data items with 
the generalized node that is semantically similar and 
retains the semantics of attributes. 
In another approach, Gardner and Xiong [16] pro-
posed a framework to identify personally identifiable 
information from the unstructured data through the 
existing natural language processing techniques [30], 
which is later linked to the individuals before ano-
nymization. This approach leverages the HIPAA [19] 
rules to consider the sensitive attributes that require 
protection, but it refrains to present any model that 
detects such information from the published data. In 
addition, this approach relies on the Mondrian mul-
tidimensional approach [23] (a k-anonymity based 
approach for multidimensional attributes) to ano-
nymize sensitive information. 
Differential privacy protection [14] is another model 
that relies on a concept to add a small amount of noise 
to the data (i.e., ε) to protect the data records against 
prediction. In a similar approach, Parra-Arnau et al. 
[34] proposed a microaggregation-based model that 
relies on the differential privacy method to limit dis-
closure risks. Moreover, several algorithms are pro-
posed that microaggregate a complete record or a spe-
cific group of attributes within a record to preserve 
privacy. Sánchez et al. [45] proposed another differ-
ential privacy-based method to preserve the privacy 
of the query logs. In this approach, the idea was to 
preserve the semantics of the query logs through the 
differential privacy-based method by preserving the 
cardinality and granularity as the original query logs. 
Differential privacy is a better method than the k-an-
onymity method to protect privacy [45]. However, in 
this paper, we are improving the MDAV approach and, 
in the future, we will study the differential privacy as-
pect in the same model.
To summarize, the state of the art mainly focuses on 
the structured data to anonymize personally identi-
fiable information (PII); however, the solutions that 
operate on the unstructured data are unable to pro-
vide a concrete solution that could identify PII au-
tomatically. Moreover, the anonymization methods 
distort information during the data generalization 
phase; as a result, they cause huge information loss. 
In contrast, we propose a microaggregation-based 

framework that automatically identifies sensitive 
information from the unstructured data, as defined 
by the legislation [15, 19], and then, de-identifies this 
information by generating at least k-similar records. 
To find similarities in the records, the system se-
mantically analyzes such records by relying on the 
taxonomic lexical database (i.e., WordNet), and then 
aggregates them in homogeneous clusters. The sim-
ilarity factors include both the semantically similar 
and non-similar attributes that are used to scale the 
level of similarity of the records (which most of the 
existing approaches lack). In addition, the size of the 
clusters is not fixed but adaptive in nature; as a re-
sult, the homogeneity of clusters is guaranteed. In 
addition, we provide a metric to measure the utility 
of the anonymized data that assures the proposed 
method emits less information loss.

3. Proposed Framework
As stated in Section 1, the primary objective of the 
proposed microaggregation-based technique is to 
construct such clusters that hold homogeneous re-
cords. Hence, in our proposal, the set-valued records 
(e.g., query logs) are classified in n-clusters, where 
each cluster holds at least k similar records to comply 
with the notion of k-anonymity principle. This adap-
tive nature of the clusters guarantees homogeneous 
records, thus, it ensures that the clusters are more 
cohesive (which is later proved through the experi-
ments). To construct clusters, the mutual distance 
of the records is computed based on the similarity of 
their multivariate. Finally, these records are micro-
aggregated through the extended MDAV algorithm, 
which replaces semantically similar records with the 
centroid of the given cluster. Figure 1 illustrates the 
framework to microaggregate set-valued data, which 
is discussed below:
 _ Semantic data analysis: As set-valued data is 

unstructured in nature, therefore, it is required 
to identify sensitive attributes from the records, 
which are then microaggregated in the later phase. 
For this purpose, the query logs are semantically 
analyzed in order to identify personally identifiable 
information (PII) from the records (PII are defined 
by the legislation [15, 19] and discussed in Section 
1) (details in Section 3.1).
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 _ Semantic similarity of the records: Once the 
sensitive data is retrieved, the records are 
then analyzed to identify multivariate that are 
semantically similar. For this purpose, we rely 
on WordNet taxonomy that holds the conceptual 
abstraction of the data elements. As a result of 
this step, a matrix is formed that holds distinct 
key-variables and their nature of association in 
multiple records (i.e., the extent to which they are 
similar) by highlighting semantically similar and 
non-similar attributes.

 _ Semantic distance and composition of records: In 
order to aggregate records in clusters, it is essential 
to compute the semantic distance of the records. For 
this purpose, the records are analyzed to compute 
the distance of each possible pair of records. In this 
comparison, it computes the maximum number 
of multivariate that are semantically similar in 
each pair of the records. As a result, an aggregated 
distance of each pair of records is computed, 
which is used to construct clusters comprising of 
homogeneous records (details in Section 3.2).

 _ Anonymization: Once the records are managed in 
their respective clusters, we compute the centroid 
of each cluster that replaces other records to 
make them k indistinguishable records (details in 
Section 3.3.

3.1. Semantic Analysis
As the query logs are unstructured in nature, there-
fore, a semantic analysis is required to identify multi-
variate that holds sensitive information. In our study, 
we consider only those attributes as sensitive that 
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3.1 Semantic Analysis 
As the query logs are unstructured in nature, 
therefore, a semantic analysis is required to identify 
multivariate that holds sensitive information. In 
our study, we consider only those attributes as 
sensitive that are defined by the legislation [15, 19] 
(e.g., topics like health, race/ethnic, religious views, 
political views, age, gender, name, etc). In the parts 
of speech, the nouns and verbs hold informative 
content that can be sensitive in nature [42], hence, 
the query logs are analyzed to identify sensitive 
nouns and verbs. For this purpose, we rely on a 
taxonomic database to identify such sensitive 
attributes. These sensitive attributes can be 
identified through the taxonomic branch of the 
sensitive topics (which are declared sensitive by the 
legislation). For example, the types of diseases like 
flu and pneumonia (as shown in Figure 2) fall 
under the category of Disease, which is declared 
sensitive by the legislative bodies. Hence, attributes 
like flu and pneumonia are considered sensitive. 

Definition 1: A set of queries Q = {q1,q2, …..qn} be 
processed by the system to identify the sensitive 
information. Where, each query qn has a set of 
attributes a1n, a2n, ….. amn (i.e., nouns that hold 
sensitive content), where amn is the mth attribute of 
the nth query. Thus, the query sets along with their 
attributes are listed below: 

1 11 21 31 i1

2 12 22 32 j2

3 13 23 33 k3

n 1n 2n 3n ln

{a , a ,a ......a }
{a ,a , a ......a }
{a ,a , a ......a }
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In order to identify noun phrases from the query 
records, we rely on our already proposed system 
[20] that illustrates the procedure to identify parts 
of speech through the natural language processing 
libraries [33]. After the data analysis step, we have 
a set of multivariate from each query record as 
listed in Definition 1. In the next step, we analyze 
the semantics of the query records in order to 
quantify the level of similarity they hold with each 
other. Based on the similarity score, the query logs 

are aggregated into homogeneous clusters. For 
this purpose, the queries are processed in the 
following order: (i) identify semantically similar 
and non-similar attributes within the query 
records, and (ii) based on distinct attributes 
determined in step (i), identify the semantic 
similarity between the pair of query records. The 
later step reduces computation time by matching 
only distinct attributes as determined in the 
former step (i.e., considering only one instance of 
all semantically similar attributes of the records). 
In order to find semantic similarity between 
attributes, we rely on a knowledge base (i.e., 
WordNet) that provides a conceptual 
representation of the attributes arranged in 
taxonomic order. To do so, we use a taxonomy-
based measure [41] (shown in Equation (1)) that 
calculates the semantic distance between the 
given attributes (e.g., var1 and var2) from the 
taxonomic database. A semantic distance of the 
attributes illustrates the level of dissimilarity 
between their semantics. This measure illustrates 
the ratio between the distinct taxonomic ancestors 
of the variables (i.e., T(var1) and T(var2)), divided 
by their cumulative ancestors. The logarithmic 
scale adds the smoothing factor between the 
variables, whereas the factor ‘1+’ avoids the 
condition of log(0). 
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The taxonomic flow of attributes flu and 
pneumonia 

 
Example 1: To formulate the working of Equation 
(1), we compute the semantic distance (i.e.,

1 2(var , var ) ) between the attributes flu and 

are defined by the legislation [15, 19] (e.g., topics like 
health, race/ethnic, religious views, political views, 
age, gender, name, etc). In the parts of speech, the 
nouns and verbs hold informative content that can be 
sensitive in nature [42], hence, the query logs are an-
alyzed to identify sensitive nouns and verbs. For this 
purpose, we rely on a taxonomic database to identify 
such sensitive attributes. These sensitive attributes 
can be identified through the taxonomic branch of the 
sensitive topics (which are declared sensitive by the 
legislation). For example, the types of diseases like flu 
and pneumonia (as shown in Figure 2) fall under the 
category of Disease, which is declared sensitive by the 
legislative bodies. Hence, attributes like flu and pneu-
monia are considered sensitive.
Definition 1: A set of queries Q = {q1,q2, …..qn} be pro-
cessed by the system to identify the sensitive infor-
mation. Where, each query qn has a set of attributes 
a1n, a2n, ….. amn (i.e., nouns that hold sensitive content), 
where amn is the mth attribute of the nth query. Thus, the 
query sets along with their attributes are listed below:

1 11 21 31 i1

2 12 22 32 j2

3 13 23 33 k3

n 1n 2n 3n ln

{a ,a ,a ......a }
{a ,a ,a ......a }
{a ,a ,a ......a }
{a ,a ,a ......a }

=
=

=
=
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q
q

In order to identify noun phrases from the query re-
cords, we rely on our already proposed system [20] that 
illustrates the procedure to identify parts of speech 
through the natural language processing libraries [33]. 
After the data analysis step, we have a set of multivar-
iate from each query record as listed in Definition 1. In 
the next step, we analyze the semantics of the query 
records in order to quantify the level of similarity they 
hold with each other. Based on the similarity score, 
the query logs are aggregated into homogeneous clus-
ters. For this purpose, the queries are processed in the 
following order: (i) identify semantically similar and 
non-similar attributes within the query records, and 
(ii) based on distinct attributes determined in step 
(i), identify the semantic similarity between the pair 
of query records. The later step reduces computation 
time by matching only distinct attributes as deter-
mined in the former step (i.e., considering only one 
instance of all semantically similar attributes of the 
records). In order to find semantic similarity between 
attributes, we rely on a knowledge base (i.e., WordNet) 
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that provides a conceptual representation of the attri-
butes arranged in taxonomic order. To do so, we use a 
taxonomy-based measure [41] (shown in Equation (1)) 
that calculates the semantic distance between the giv-
en attributes (e.g., var1 and var2) from the taxonomic 
database. A semantic distance of the attributes illus-
trates the level of dissimilarity between their seman-
tics. This measure illustrates the ratio between the dis-
tinct taxonomic ancestors of the variables (i.e., T(var1) 
and T(var2)), divided by their cumulative ancestors. 
The logarithmic scale adds the smoothing factor be-
tween the variables, whereas the factor ‘1+’ avoids the 
condition of log(0).

( ) 1 2 1 2
1 2 2

1 2

(var ) (var ) (var ) (var )
var , var 1

(var ) (var )
log .       (1)T T T T

T T
δ

∪ − ∩
= +

∪

 
 
 

(1)

Example 1: To formulate the working of Equation (1), 
we compute the semantic distance (i.e., 1 2(var , var )δ ) 
between the attributes flu and pneumonia. For this 
purpose, we derived a taxonomic relation of these at-
tributes (as illustrated in Figure 2) from the WordNet 
(a taxonomically arranged knowledgebase). In this 
taxonomy, these attributes have 12 distinct ancestors 
(i.e., 1 2T(var ) T(var )∪ ), out of which 10 are the common 
ancestors ( 1 2T(var ) T(var )∩ ). As a result of Equation 
(1), the semantic distance between these attributes is 
0.22, which states that these attributes are semanti-
cally coherent.
Based on Equation (1), the semantic similarity be-
tween two variables is determined by computing the 
inverse of semantic distance, which is represented by 
the following equation (i.e., Equation (2)). This simi-
larity score ranges between ‘0’ and ‘1’, where a score 
close to ‘0’ represents dissimilar attributes and a 
score closer to ‘1’ signifies that the two attributes have 
a high similarity index and they are highly semanti-
cally similar attributes.

1 2 1 2
(var , var ) 1 (var , var ).              (2)sim δ= − (2)

To compute semantic similarity between the attri-
butes, a query qn = {a1n, a2n, …… apn} holding a set of 
multivariate is processed by the system, and the sim-
ilarity score of each distinct pair of attributes is com-
puted through Equation (2). As a result, a pair of noun 
phrase that attains a threshold of similarity score 
(e.g., similarity > 0.8) is considered highly semanti-
cally similar attributes. To achieve this, Algorithm 1 

illustrates a procedure to compute the similarity be-
tween each pair of the attributes of a query. In Algo-
rithm 1, the similarity is calculated by matching each 
attribute of a query record qn with the rest of its attri-
butes, and their distance is computed (using Equation 
(2)) based on the taxonomically arranged knowledge-
base (i.e., WordNet) (lines 1-4). As a result, all pairs of 
the attributes that attain a threshold level of similari-
ty are chosen for further processing (lines 5-10). 

Algorithm 1: SimilarityOfAttributes (qn)
Define array similarity[n][n]
loop starts at j← 1 till total_attributes - 1 
  loop  start at k←j+1 till total_attributes
      similarity[j][k] = (1- TaxonomicDistance(attributes[j], 
                                    attributes[k])) 
      if  similarity[j][k] >= max
          Indexes ← Save indexes of variables j and k as 
          they both are similar
      end if
  end loop
end loop
return indexes

Figure 2 
The taxonomic flow of attributes flu and pneumonia
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3.1 Semantic Analysis 
As the query logs are unstructured in nature, 
therefore, a semantic analysis is required to identify 
multivariate that holds sensitive information. In 
our study, we consider only those attributes as 
sensitive that are defined by the legislation [15, 19] 
(e.g., topics like health, race/ethnic, religious views, 
political views, age, gender, name, etc). In the parts 
of speech, the nouns and verbs hold informative 
content that can be sensitive in nature [42], hence, 
the query logs are analyzed to identify sensitive 
nouns and verbs. For this purpose, we rely on a 
taxonomic database to identify such sensitive 
attributes. These sensitive attributes can be 
identified through the taxonomic branch of the 
sensitive topics (which are declared sensitive by the 
legislation). For example, the types of diseases like 
flu and pneumonia (as shown in Figure 2) fall 
under the category of Disease, which is declared 
sensitive by the legislative bodies. Hence, attributes 
like flu and pneumonia are considered sensitive. 

Definition 1: A set of queries Q = {q1,q2, …..qn} be 
processed by the system to identify the sensitive 
information. Where, each query qn has a set of 
attributes a1n, a2n, ….. amn (i.e., nouns that hold 
sensitive content), where amn is the mth attribute of 
the nth query. Thus, the query sets along with their 
attributes are listed below: 

1 11 21 31 i1

2 12 22 32 j2

3 13 23 33 k3

n 1n 2n 3n ln

{a , a ,a ......a }
{a ,a , a ......a }
{a ,a , a ......a }
{a , a ,a ......a }









q
q
q
q

 

In order to identify noun phrases from the query 
records, we rely on our already proposed system 
[20] that illustrates the procedure to identify parts 
of speech through the natural language processing 
libraries [33]. After the data analysis step, we have 
a set of multivariate from each query record as 
listed in Definition 1. In the next step, we analyze 
the semantics of the query records in order to 
quantify the level of similarity they hold with each 
other. Based on the similarity score, the query logs 

are aggregated into homogeneous clusters. For 
this purpose, the queries are processed in the 
following order: (i) identify semantically similar 
and non-similar attributes within the query 
records, and (ii) based on distinct attributes 
determined in step (i), identify the semantic 
similarity between the pair of query records. The 
later step reduces computation time by matching 
only distinct attributes as determined in the 
former step (i.e., considering only one instance of 
all semantically similar attributes of the records). 
In order to find semantic similarity between 
attributes, we rely on a knowledge base (i.e., 
WordNet) that provides a conceptual 
representation of the attributes arranged in 
taxonomic order. To do so, we use a taxonomy-
based measure [41] (shown in Equation (1)) that 
calculates the semantic distance between the 
given attributes (e.g., var1 and var2) from the 
taxonomic database. A semantic distance of the 
attributes illustrates the level of dissimilarity 
between their semantics. This measure illustrates 
the ratio between the distinct taxonomic ancestors 
of the variables (i.e., T(var1) and T(var2)), divided 
by their cumulative ancestors. The logarithmic 
scale adds the smoothing factor between the 
variables, whereas the factor ‘1+’ avoids the 
condition of log(0). 

  1 2 1 2
1 2 2

1 2

(var ) (var ) (var ) (var )
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(var ) (var )
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Figure 2  

The taxonomic flow of attributes flu and 
pneumonia 

 
Example 1: To formulate the working of Equation 
(1), we compute the semantic distance (i.e.,

1 2(var , var ) ) between the attributes flu and 



111Information Technology and Control 2022/1/51

Example 2: A sample of a query record (e.g., a cure for 
ill-health pulmonary disease lung infection) is taken 
to demonstrate the working of the proposed solution. 
A query has a set of multivariate q1={ a11, a21, a31, a41, 
a51} (where a11=infection, a21=disease, a31=ill-health, 
a41=cure, a51=lung). Algorithm 1 measures the seman-
tic distance of each pair of the attributes of a query 
record (through the measures defined in Equation 
(1) & Equation (2)). Table 1 holds the similarity score 
of each distinct pair of the attributes of a query q1. In 
Table 1, the attributes a11, a21, and a31 (i.e., infection, 
disease, and ill-health respectively) are semantically 
similar as they hold higher similarity scores. There-
fore, only one instance of such attributes is used in 
the next step (which is to find similarity amongst the 
complete records).

result, several matrices are constructed that hold a 
similarity score of the attributes of the distinct pair 
of the queries (e.g., qi, qj) (as shown in Table 2). The 
similarity score of the queries is computed through 
Equation (2). This procedure is repeated in a non-re-
petitive order to avoid the repetition of the matching 
queries (as the similarity of queries (qi, qj) = (qj, qi)).

( ) ( )
,

1, 1
, , .              (3)

m y k=z

i j mi nj
m k=

q q a asim
=

=

Γ = (3)

Hence, the total number of matrices to process ‘n’ 
queries is determined from Equation (4). In this 
equation, the 2-permutations of n queries are the 
ordered arrangements of a query set represented in 
the matrices, which are arranged in a non-repetitive 
ordered pair. The constant factor ‘2’ illustrates that 
each matrix must hold the comparison of two que-
ries at a time. For example, we require three matrices 
to process three queries (n=3) (i.e., q1, q2, q3), and the 
non-repetitive arrangement of these matrices will be 
(q1 x q2), (q1 x q3) and (q2 x q3). In these matrices, the 
paired attributes of the queries are also compared in a 
non-repetitive order to save computation time. Thus, 
we take the Cartesian product of each ordered pair of 
queries to compute the similarity between the attri-
butes (which is required to determine the similarity 
of the records in the later phase).

( )
!Matrices .              (4)

2* 2 !
n
n

=
− (4)

Definition 2: A set of queries Q = {q1,q2, …..qn}, where 
each query qn has attributes n 1n 2n lnq {a ,a ,.......a }= . 
Thus, a Cartesian product of the queries qi x qj has the 
following property (Equation (5)):

( ) ( ){ }(a , a ) | a q and a ,       (5)q q qi j mi nj mi i nj j× = ∈ ∈ (5)

where ami symbolizes the mth attribute of the ith que-
ry, and a pair of attributes ami & anj (belong to queries 
qi and qj respectively) are examined mutually for se-
mantic similarity. 
For example, the following matrices (i.e., Table 2) il-
lustrate the Cartesian product of three queries (i.e., q1 
x q2, q1 x q3, and q2 x q3. The Cartesian product of the 
attributes of a query q1 (i.e., a11, a41, a51) is computed 
with each attribute of query q2 (i.e., a12, a22, a32, a42) (i.e., 

Table 1 
Semantic similarity of attributes in the same query

    q1

q1
a11 a21 a31 a41 a51

a11 - 0.85 0.82 0.33 0.13

a21 - - 0.91 0.14 0.65

a31 - - - 0.55 0.23

a41 - - - - 0.22

a51 - - - - -

On the contrary to the existing methods [5], our sys-
tem relies on the WordNet knowledge base, thus, the 
distance between the two concepts is always equal 
irrespective of their order ( i.e., δ (a1,a2) = δ (a2,a1)), be-
cause the ancestors of the attributes in a taxonomic 
branch are always common (as discussed in Equation 
(1)). Hence, we can avoid the repetition of such attri-
butes in order to save computation time (as ignored 
in the existing methods). The distinct attributes that 
are obtained from each query record (e.g., query q1= 
{a11, a41, a51} retrieved in Example 2), can be used to 
compute the similarity score between the other que-
ry records. For this purpose, a set of ‘n’ queries are 
processed in non-repetitive ordered pairs, where the 
similarity score of the attributes is stored in a matrix. 
To do so, the similarity of each attribute ami of a que-
ry record qi is measured with the attributes anj of the 
other query qj (i.e., qi x qj). This relation (Γ(qi,qj)) of 
matching queries is illustrated in Equation (3). As a 
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Table 2(a)), and, in the same way, the similarity score 
is computed for other queries. In this table, the attri-
butes having a similarity score greater than 0.8 (e.g., 
(a11, a12) =0.8) are more semantically similar than the 
other pair of the attributes. It is important to note that 
the distinct attributes of the queries are only equated 
in these matrices to conserve the computation time 
(as calculated in Example 2 of the semantic analysis).
The similarity between the attributes is computed 
through the following Algorithm 2. In this algorithm, 
the attributes of each query are semantically analyzed 
with the attributes of other queries, and their similar-
ity score is computed using Equation (3) (lines 2-6). 
Moreover, the indices of semantically similar attri-
butes (procedure detailed in Algorithm 1) of ordered 
paired queries are stored (lines 7-14), which are used 
to construct clusters in the later phase.

Table 2 
The semantic similarity score of attributes of multiple queries

     q1

q2
a11 a41 a51

a12 0.8 0.4 0.3

a22 0.2 0.7 0.6

a32 0.6 0.1 0.5

a42 0.1 0.8 0.6

     q1

q3
a11 a41 a51

a13 0.3 0.2 0.3

a23 0.1 0.8 0.4

a33 0.6 0.2 0.6

a43 0.9 0.4 0.1

    q3

q2
a13 a23 a33 a43

a12 0.6 0.2 0.8 0.4

a22 0.5 0.2 0.7 0.5

a32 0.5 0.3 0.7 0.3

a42 0.4 0.6 0.1 0.6

(a) г(q1,q2) (b) г(q1,q3) (c) г(q2,q3)

As stated in Section 3, the proposed system relies 
on the MDAV algorithm that requires a distance of 
the records of a dataset in order to aggregate them in 
clusters. Therefore, we require a semantic distance of 
the query records in order to construct homogeneous 
clusters. Section 3.2 states the procedure to calculate 
the distance of the query records based on the similar-
ity score of the attributes as calculated in this section.

3.2. Semantic Distance of the Records
As a result of semantic analysis (Section 3.1), we have 
a set of matrices for each ordered pair of the queries, 
in these matrices, each cell holds a similarity score 
of the matching attributes of the paired queries (as 
shown in Table 2). Since we require a semantic dis-
tance of the records in order to compute the centroid 
of the set-valued data (which is required to construct 
clusters in the later phase); therefore, it is necessary 
to develop a solution that measures the semantic dis-
tance of the multivariate of the set-valued records. 
The existing approaches [5, 28] calculate the weight 
of the attributes in terms of their recurrence/similar-
ity within the same record, which is later used in de-
termining the distance of a complete record (i.e., this 
weight factor of attributes is multiplied with the total 
distance of the record). This practice may affect the 
actual distance of the records, as a result, an incor-
rect centroid is chosen. Consequently, the redaction 
methods generate poor generalizations that cause 
huge information loss to the data. In contrast, our 
solution considers only one instance of semantically 
similar attributes of a query record while computing 
the distance of a complete record; however, the same 
generalization is enforced on all semantically similar 
attributes of the records during the redaction phase. 
In addition, we rely on semantic similarity scores of 

Algorithm 2: SimilarityOfQueries (set of queries)

1: set n ← total number of queries
2: loop starts at h ← 1 till queries qn-1 are processed
3:  loop starts at i ← h+1 till queries qn are processed
4:   loop starts at j ← 1 till total attributes of query qh

5:     loop  start at k←1 till total attributes of query qi

6:       Similarity[j][k]=(1-TaxonomicDistanc 
7:                                 (qh_attributes[j],  qi_attributes[k])) 
8:       if  similarity[j][k] >= max
9: indexes ← Save indexes h and i of queries qh 
10: and qi  respectively, and also the indexes   

of  their matching attributes (i.e.,  j and k)
11:       end if
12:     end loop
13:   end loop
14:  end loop
15: end loop
16: return indexes
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the attributes in order to compute the distance of the 
records, hence, the semantic distance of the records 
is proportional to the number of semantically similar 
and non-similar attributes of the paired queries.
For this purpose, we require the cardinality of (i) se-
mantically similar and (ii) non-similar attributes of 
the paired queries. As an example, Figure 3 illustrates 
semantically similar and non-similar attributes of 
the paired queries (i.e., q1, q2, and q3) that are retrieved 
from the similarity scores as listed in Table 2. Hence, 
the cardinality score of semantically similar attri-
butes of the paired queries can be computed through 
Equation (6). In this equation, it states that the cardi-
nality of similar attributes of the paired queries (e.g., 
qi and qj) is the difference between (i) the total num-
ber of attributes of the paired queries (i.e., i jn(q ) n(q )+
) and (ii) the distinct attributes that are indifferent 
in semantics (i.e., i jn(q q )∪ ). The distinct attributes 
of the paired queries can be easily computed through 
the similarity table (i.e., Table 2) of the paired queries. 
In this equation (i.e., Equation (6)), only one instance 
of the paired attributes is considered that holds a sim-
ilarity score greater than ‘0.8’. For example, in Table 
2(a), the attributes of the queries q1={ a11, a41, a51}, and 
q2={ a12, a22, a32, a42} have their cardinal values n(q1)=3 
and n(q2)=4, whereas the indifferent attributes in 
these queries are 1 2n(q q ) 5∪ = (where three attributes 
a51, a22, and a32 are distinct attributes and two pairs are 
semantically similar, i.e., (a11, a12) and (a41, a42) > 0.8). 
Hence, the cardinality of semantically similar attri-
butes in these queries is 2 3n(q q ) 2∩ = .

i j i j i j(q q ) (q ) (q ) (q q ).              (6)n n n n∩ = + − ∪ (6)

Similarly, the cardinality of non-similar attributes is 

computed by taking the symmetric difference of the 
paired queries (i.e., qi ∆ qj) (as stated in Equation (7)). 
The symmetric difference is the ratio between the dis-
tinct attributes ( i jn(q q )∪ ) and the semantically simi-
lar attributes i jn(q q )∩  (as computed in Equation (6)). 
For this purpose, the similarity score of the attributes 
of the matching queries can be inferred from Table 2. 
For example, the cardinality of distinct attributes of 
queries q1 and q2 is 1 2n(q q ) 5∪ = and the cardinality 
of semantically similar attributes is i jn(q q ) 2∩ =  (as 
computed in Equation (6)). Therefore, the symmetric 
difference of these queries is n(q1 ∆ q2)=2.5

 

3.2 Semantic Distance of the 
Records 

As a result of semantic analysis (Section 3.1), we 
have a set of matrices for each ordered pair of the 
queries, in these matrices, each cell holds a 
similarity score of the matching attributes of the 
paired queries (as shown in Table 2). Since we 
require a semantic distance of the records in order 
to compute the centroid of the set-valued data 
(which is required to construct clusters in the later 
phase); therefore, it is necessary to develop a 
solution that measures the semantic distance of the 
multivariate of the set-valued records. The existing 
approaches [5, 28] calculate the weight of the 
attributes in terms of their recurrence/similarity 
within the same record, which is later used in 
determining the distance of a complete record (i.e., 

this weight factor of attributes is multiplied with 
the total distance of the record). This practice may 
affect the actual distance of the records, as a result, 
an incorrect centroid is chosen. Consequently, the 
redaction methods generate poor generalizations 
that cause huge information loss to the data. In 
contrast, our solution considers only one instance 
of semantically similar attributes of a query 
record while computing the distance of a 
complete record; however, the same 
generalization is enforced on all semantically 
similar attributes of the records during the 
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compute the distance of the records, hence, the 
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For this purpose, we require the cardinality of (i) 
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of the paired queries. As an example, Figure 3 
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Similarly, the cardinality of non-similar attributes 
is computed by taking the symmetric difference 
of the paired queries (i.e., qi ∆ qj) (as stated in 
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(as computed in Equation (6)). For this purpose, 
the similarity score of the attributes of the 
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For example, the cardinality of distinct attributes 
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The results retrieved through Equation (7) are 
used to compute the semantic distance of the 
paired queries (i.e., i j(q ,q ) ). The semantic 
distance of the corresponding queries is estimated 
to measure the degree to which the queries are 

(7)

The results retrieved through Equation (7) are used to 
compute the semantic distance of the paired queries 
(i.e., i j(q ,q )δ ). The semantic distance of the corre-
sponding queries is estimated to measure the degree 
to which the queries are semantically similar (i.e., 
the matching queries are less semantically similar 
for higher distance scores and vice versa). To achieve 
this, we drive the following Equation (8) that deter-
mines the distance of the queries. In this equation, the 
semantic distance between the paired queries (i.e., 

i j(q ,q )δ ) is proportional to the ratio between (i) the 
number of non-semantically similar attributes (i.e., 
the symmetric difference of the paired queries (i.e., 
n(qi ∆ qj)) and (ii) their total number of distinct attri-
butes (i.e., i jn(q q )∪ ). For example, queries q1 and q2 
in Figure 3 have 7 attributes in both queries. There-
fore, the symmetric difference of the paired queries q1 
and q2 is n(q1 ∆ q2) =2.5, whereas, the value of the dis-
tinct attribute is 1 2n(q q ) 5∪ = (as retrieved from the 
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The results retrieved through Equation (7) are 
used to compute the semantic distance of the 
paired queries (i.e., i j(q ,q ) ). The semantic 
distance of the corresponding queries is estimated 
to measure the degree to which the queries are 
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trailing example of Equation (6) and Equation (7)). 
Therefore, the semantic distance of queries q1 and 
q2 is 1 2(q ,q ) 0.5δ = . Based on this, we can construct 
clusters that hold semantically coherent queries that 
have the least distance within a set of queries. To re-
cord such coherence between queries, we determine 
the distance of all possible non-repetitive ordered 
pairs of ’n’ queries, and their results are stored in the 
distance matrix. We explain this procedure through 
the following Example 3. 

 

semantically similar (i.e., the matching queries are 
less semantically similar for higher distance scores 
and vice versa). To achieve this, we drive the 
following Equation (8) that determines the distance 
of the queries. In this equation, the semantic 
distance between the paired queries (i.e., i j(q ,q ) ) 
is proportional to the ratio between (i) the number 
of non-semantically similar attributes (i.e., the 
symmetric difference of the paired queries (i.e., n(qi 
∆ qj)) and (ii) their total number of distinct 
attributes (i.e., i jn(q q ) ). For example, queries q1 
and q2 in Figure 3 have 7 attributes in both queries. 
Therefore, the symmetric difference of the paired 
queries q1 and q2 is n(q1 ∆ q2) =2.5, whereas, the 
value of the distinct attribute is 1 2n(q q ) 5  (as 
retrieved from the trailing example of Equation (6) 
and Equation (7)). Therefore, the semantic distance 
of queries q1 and q2 is 1 2(q ,q ) 0.5  . Based on this, 
we can construct clusters that hold semantically 
coherent queries that have the least distance within 
a set of queries. To record such coherence between 
queries, we determine the distance of all possible 
non-repetitive ordered pairs of ’n’ queries, and 
their results are stored in the distance matrix. We 

explain this procedure through the following 
Example 3.  
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Example 3: Following Table 3 illustrates the 
distance of ten queries calculated through the 
stated procedure; these queries are collected from 
AOL query logs released in 2006 that are 
publically available. In this table, each tuple 
illustrates the distance of a distinct query with all 
possible combinations of other queries in non-
repetitive ordered pairs. The distance between 
two queries ranges between ‘0’ and ‘1’ that 
signifies the level of variance of both queries (i.e., 
‘0’ specifies perfectly matched queries, and ‘1’ 
signifies strongly dissimilar queries with all the 
attributes that differ from each other).  

Once the semantic distance of all paired queries is 
determined, we need to compute the centroid of 
the query set to aggregate query records in their 
respective clusters, and then anonymize them 
accordingly. Following Section 3.3 elaborates 
these procedures. 

Table 3 

Distance of distinct pair of queries 
 q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 

q1 - 0.50 0.33 0.88 1.0 0.88 0.88 0.11 0.88 0.75 
q2 - - 0.40 0.75 0.88 1.0 0.88 0.57 0.57 0.75 
q3 - - - 0.75 1.0 0.75 0.88 0.38 0.88 0.88 
q4 - - - - 0.57 1.0 0.88 0.88 0.88 0.57 
q5 - - - - - 0.75 0.75 1.0 0.57 0.75 
q6 - - - - - - 0.75 0.88 0.88 0.75 
q7 - - - - - - - 0.75 0.75 1.0 
q8 - - - - - - - - 0.88 0.75 
q9 - - - - - - - - - 0.75 
q10 - - - - - - - - - - 

3.3 Formation of Clusters and 
Anonymization 

As the proposed system extends the MDAV 
algorithm, hence, the centroid of the dataset is 
required that is used to aggregate records in 
homogeneous clusters. Furthermore, these clusters 
are anonymized based on the centroid of their 
respective clusters. In the MDAV algorithm, it is 
trivial to compute the centroid of continuous 
datasets, however, the process to compute the 
centroid of the categorical dataset is a challenging 
task [28]. In addition, the imprecise selection of the 
centroid causes information loss during the data 
generalization phase. The state-of-the-art solutions 
[28] compute the centroid of the categorical 
datasets by driving the semantic distance of the 
multivariate of the records from the taxonomy. 

However, it is a computation-intensive solution 
to derive semantics of all multivariate records 
from the taxonomic database during each 
iteration of the centroid selection process. In 
contrast, we choose centroid of the set-valued 
data based on the cumulative distance of the 
entire query (instead of each attribute of the 
records). To do so, we compute the cardinality of 
the attributes of a record (as discussed in Section 
3.2), which is sued to measures the degree of 
commonalities between a pair of the records (i.e., 
the cardinality of semantically similar and non-
similar attributes).  

To achieve this, Equation (9) measures the 
centroid of the dataset by relying on the semantic 
distance as computed in Table 3. In this equation, 
a set S holds such pairs of queries that have 
minimum distance amongst their respective 

(8)

Example 3: Following Table 3 illustrates the distance 
of ten queries calculated through the stated proce-
dure; these queries are collected from AOL query logs 
released in 2006 that are publically available. In this 
table, each tuple illustrates the distance of a distinct 
query with all possible combinations of other que-
ries in non-repetitive ordered pairs. The distance 
between two queries ranges between ‘0’ and ‘1’ that 
signifies the level of variance of both queries (i.e., ‘0’ 
specifies perfectly matched queries, and ‘1’ signifies 
strongly dissimilar queries with all the attributes that 
differ from each other). 
Once the semantic distance of all paired queries is 
determined, we need to compute the centroid of the 
query set to aggregate query records in their respec-
tive clusters, and then anonymize them accordingly. 
Following Section 3.3 elaborates these procedures.

3.3. Formation of Clusters and 
Anonymization
As the proposed system extends the MDAV algorithm, 
hence, the centroid of the dataset is required that is 
used to aggregate records in homogeneous clusters. 
Furthermore, these clusters are anonymized based on 
the centroid of their respective clusters. In the MDAV 
algorithm, it is trivial to compute the centroid of con-
tinuous datasets, however, the process to compute 
the centroid of the categorical dataset is a challenging 
task [28]. In addition, the imprecise selection of the 
centroid causes information loss during the data gen-
eralization phase. The state-of-the-art solutions [28] 
compute the centroid of the categorical datasets by 
driving the semantic distance of the multivariate of 
the records from the taxonomy. However, it is a com-
putation-intensive solution to derive semantics of all 
multivariate records from the taxonomic database 
during each iteration of the centroid selection pro-
cess. In contrast, we choose centroid of the set-valued 
data based on the cumulative distance of the entire 
query (instead of each attribute of the records). To 
do so, we compute the cardinality of the attributes of 
a record (as discussed in Section 3.2), which is sued 
to measures the degree of commonalities between a 
pair of the records (i.e., the cardinality of semantically 
similar and non-similar attributes). 
To achieve this, Equation (9) measures the centroid 
of the dataset by relying on the semantic distance as 
computed in Table 3. In this equation, a set S holds 

Table 3
Distance of distinct pair of queries

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

q1 - 0.50 0.33 0.88 1.0 0.88 0.88 0.11 0.88 0.75

q2 - - 0.40 0.75 0.88 1.0 0.88 0.57 0.57 0.75

q3 - - - 0.75 1.0 0.75 0.88 0.38 0.88 0.88

q4 - - - - 0.57 1.0 0.88 0.88 0.88 0.57

q5 - - - - - 0.75 0.75 1.0 0.57 0.75

q6 - - - - - - 0.75 0.88 0.88 0.75

q7 - - - - - - - 0.75 0.75 1.0

q8 - - - - - - - - 0.88 0.75

q9 - - - - - - - - - 0.75

q10 - - - - - - - - - -
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such pairs of queries that have minimum distance 
amongst their respective tuples of the distance table 
(collected from the tuples of Table 3). A pair with the 
minimum distance constitute that the query qi shares 
maximum semantically similar attributes with the 
other pair of the query (e.g., qj) (in contrast to the 
rest of the queries). Therefore, we collect such pairs 
of queries in clusters that have minimum distance 
amongst the other pairs to increase the cohesiveness 
of clusters. In addition, it is mandatory to choose a 
pair of queries from each tuple to guarantee the pres-
ence of each query in the final clusters (regardless 
the matching query has been chosen in other tuples). 
Then, the centroid distance is computed by taking the 
mean of the distance score of all pairs of a set S (where 
N is the total number of pairs in this set). 

i j

n 1 n

i jj i 1Q i 0q ,q
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The empty cells in the table (marked with a dash (-) as 
shown in Table 3) do not affect the overall results, be-
cause the distance of such paired queries is computed 
and analyzed in the other cells of the tuples (e.g., the 
distance of a pair (q4, q2) is same as computed for (q2, 
q4)). Finally, the centroid pair of the queries from a set 
S is chosen that has the semantic distance closer to 
the centroid score of the set S. In case there are more 
than one pairs that have a similar distance score, then 
we can choose any pair as the centroid pair because 
these pairs will share a common cluster as they have 
an equal number of semantically similar attributes. 
This process is explained through the following Ex-
ample 4 (which is the extension of Example 3).
Example 4: The following Table 4 shows the optimal 
query pairs and their respective distance scores that 
are computed through Equation (9). This table is the 
illustration of a set S that holds the least distant pairs 
determined from each tuple of Table 3. Table 4 holds 
pairs for each distinct query in order to guarantee the 

presence of each query in the final query set that will 
be used to construct clusters in the later phase. We 
choose a minimum distance score from each tuple 
of the distance table (as highlighted in Table 4). The 
queries are compared in non-repetitive ordered pairs. 
For example, in the pairs for query q2, the following 
pair of queries (q2, q3) have the minimum distance 
score (i.e., 0.40) from the rest of the pairs, therefore, 
this pair is chosen for onward steps. Moreover, we ig-
nore other pairs that are marked with dash notation 
(-) because such pairs have already been compared 
in the previous tuples of the table. For example, in a 
tuple for query q8, the minimum distance pair for this 
query is q1, but this pair (q1, q8) has already been com-
pared in the previous tuple for query q1. Moreover, if 
we repeatedly take the least distant pairs then we may 
ignore some of the queries in the clustering phase; as 
a result, the missing queries will not be anonymized 
in the later phase.
Based on Table 4, the centroid score computed for 
this table is 0.59. Therefore, we choose a query pair 
as the centroid that has a distance score closer to the 
centroid score. Preferably, a query pair that has a dis-
tance smaller than the centroid score is chosen be-
cause it holds a more semantically similar multivar-
iate in contrast to the pairs that have a larger distance 
score. In this case, we have four pairs that have small-
er distance scores (i.e., 0.57), which are highlighted in 
Table 4. Hence, we can choose any pair as the centroid 
because all of these pairs will share a common clus-
ter as they have an equal number of multivariate that 
are semantically similar. The rest of the procedure to 
compute clusters and to anonymize data is discussed 
in the following algorithm. 

3.3.1. Adaptive-MDAV Algorithm
As mentioned in Section 1.1, our method relies on 
an adaptive size clustering approach in which the 
records are aggregated in clusters based on their 
semantics. However, the minimum size of the clus-
ters is adhered in order to comply with the notion of 
k-anonymity principle. This type of approach is more 

q1,q8 q2,q3 q3,q8 q4,q10 q4,q5 q5,q10 q5,q9 q6,q10 q6,q7 q7,q8 q7,q9 q8,q10 q9,q10

0.11 0.40 0.38 0.57 0.57 0.57 0.57 0.75 0.75 0.75 0.75 0.75 0.75

Table 4 
Least Distance of Paired Queries
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cohesive [28] as it accumulates set-valued records 
based on their common properties (i.e., the semantic 
similarity of the attributes). As a result, the clusters 
emit less information loss during the data general-
ization phase. Hence, we incorporate the self-adap-
tiveness into the MDAV algorithm by clustering only 
those pairs of queries that have similar/contiguous 
distances. The similarity in the distances of the query 
pairs indicates that these pairs hold an equal number 
of semantically similar attributes. To achieve this, 
the following modifications are made to the existing 
MDAV algorithm: (i) an adaptive size clusters, and 
(ii) the query records are chosen for cluster based on 
their maximum number of semantically similar mul-
tivariate. The modified MDAV algorithm is illustrated 
below (i.e., Algorithm 3) that highlights the processes 
of cluster formation and the anonymization of the re-
cords of these clusters.
This Algorithm 3 operates on a set of paired queries Qp 
along with their paired distances D that illustrates the 
amount of semantically similar multivariate of these 
pairs (as calculated above in Table 4) (lines 1-3). It is 
important to note that such pairs are optimal in terms 
of semantic similarities, which are retrieved after the 
semantic analysis of the query records. This algorithm 
aggregates at least k query records in each cluster to 

comply with the principle of k-anonymity, however, 
the size of the clusters is not fixed (i.e., clusters size >= 
k) (line 4). In addition, the query logs that are smaller 
than the size k are ignored and such records are never 
published. In order to construct clusters, the centroid 
of the dataset (i.e., Table 4) is computed (line 5) (de-
tails in Section 3.3). Based on this centroid, the follow-
ing two pairs of the queries are marked: (i) a pair that 
is most distant to the centroid (i.e., (qi,qj)), and (ii) a 
pair that is most distant to a pair computed in step (i) 
(i.e., (qx,qy)) (lines 6-7). In contrast to the convention-
al MDAV algorithm, we do not fix the size of the clus-
ters but the clusters are adaptive in nature. To achieve 
this, the pairs of queries that are closer to such pairs 
(i.e., in lines 6 & 7) are aggregated in their respective 
clusters (lines 8 &10). It is important to note that the 
distance score of a pair (qx,qy) is smaller than the pair 
(qi,qj). A pair with a smaller distance score holds max-
imum semantically similar attributes, therefore, the 
cluster for this pair (i.e., (qx, qy)) forms a cluster be-
fore the other pair (i.e., (qi,qj)). The clusters hold only 
distinct instances of the paired queries (e.g., cluster 
c1={q1,q2,q3,q4}). In addition, all remaining pairs in a set 
Qp that contains any of the instances of the clustered 
queries are removed from the set (lines 8 & 11). Sim-
ilarly, the above-mentioned procedure is repeated for 

Algorithm 3: Adaptive_MDAV (paired_queries, istance_of_paired_queries)

1: Qp=paird_queries
2: D=distance_of_paired_queries
3: QA (clusters of queries)
4: while (Qp has paired queries > k)
5: Calculate centroid µ of the paired queries of Qp

6: Find the most distant paired query qi, qj to the centroid µ
7: Find the most distant paired query qx, qy to the queries qi, qj

8: Construct a cluster in QA with queries qx, qy, and all records that have distance scores closer to the queries qx, qy

9: Remove all records from query sets Qp that has any element of these paired queries i.e., qx or qy

10: Construct a cluster in QA with queries qi, qj, and all records closest to the queries qi, qj

11: Remove these records from query sets Qp that has any element of these queries i.e., qi or qj

12: end while
13: Construct a cluster in QA with the remaining records
14: for each cluster in QA do
15: Compute the centroid of the cluster
16: Replace all semantically similar attributes of the records with the centroid values
17: Replace non-similar attributes of a record with the centroid attributes of the taxonomic branch
18: end for
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the remaining pairs in a set Qp until all queries are ag-
gregated in their respective clusters.
At this point, we have several clusters and each clus-
ter holds a set of distinct homogeneous query records. 
Now, we can anonymize the query records of each clus-
ter with the help of their respective centroids. Hence, 
it is essential to compute the centroid record of each 
cluster. To compute a centroid (line 15), we choose a 
record from each cluster that has maximum cardinali-
ty in terms of recurrence in the pairs that are clustered 
together, and in case of a tie, we also consider the least 
paired score to break the tie. The maximum cardinali-
ty of a record illustrates that it has maximum seman-
tically similar attributes to the other records. In case 
of conflict in the recurrence of the queries, any query 
record can be chosen in order to break the tie. Now, we 
can anonymize query records of the cluster by replac-
ing them with the centroid record to make them indis-
tinguishable (as explained in Section 1). As query logs 
are unstructured in nature, therefore, these records 
may not be perfectly semantically similar (i.e., the 
number of semantically similar and non-similar attri-
butes may vary). As a result, if we replace all attributes 
of the records with the attributes of the centroid record 
(in order to anonymize them); it may result in huge in-
formation loss, and such records may not be useful for 
analytical purposes. To deal with this situation, we re-
place only those attributes of the query record that are 
semantically similar to the attributes of the centroid 
record. Whereas, the rest of the data items (that are not 
semantically similar to any other attribute of the cen-
troid record) are generalized with the centroid node of 
the taxonomic branch of the respective data items (as 
mentioned in Figure 2) (lines 14-18). The taxonomic 
branch of the data item holds all semantically similar 
data values, therefore, it preserves the semantics of the 
data item. This approach retains the actual semantics 
of the attributes to minimize information loss. The 
working of this algorithm is explained in the following 
Example 5.
Example 5: We extend Table 4 to demonstrate the 
working of Algorithm 3. The following results are 
computed:
Centroid score of all paired records = 0.59
A pair of queries close to the centroid is µ = (q4, q5) (i.e., 
score =0.57)
Distant pair to µ is (q9, q10)
Distant pair to queries (q9, q10) is (q1, q8)

Cluster c1 holds all query pairs that are closer to the 
distance score of a pair (q1, q8), which are (q2, q3) and 
(q3, q8), hence, the cluster c1={q1, q2, q3, q8}. Similarly, 
the other clusters are c2={q6, q7, q9, q10} and c3={q4, q5}.
Based on this, a record from each cluster is chosen 
as a centroid that has maximum cardinality in terms 
of recurrence; in addition, we choose the least paired 
score to break the tie (as explained above). As a result, 
the centroids (µn) of the respective clusters are µ1= q8, 
µ2= q7, and µ3= q5. These centroids can replace the que-
ry records of their respective clusters as per the rules 
defined in Algorithm 3.

4. Evaluation
In this section, the proposed system is evaluated to 
measure its significance in terms of the homogeneity 
of the clusters, and the utility of the anonymized re-
cords. For this purpose, the proposed system is evalu-
ated based on the following two aspects, which are (i) 
cohesion of the clusters (i.e., in terms of homogeneous 
records), and (ii) utility of the anonymized data. First, 
we explain the measures used for the evaluation of 
the proposed mechanism (Section 4.1). Then, in Sec-
tion 4.2, we detail the analysis of our proposed system 
based on these measures. 

4.1. Evaluation Measures

As introduced in Section 1, the records are aggregated 
in clusters based on their semantic similarity. In ad-
dition, these records are anonymized by preserving 
their semantics during the microaggregation process. 
Hence, we require such metrics that could gauge the 
cohesion of clusters and the information loss of the 
records generated as a result of microaggregation 
methods. Therefore, we derived two methods to gauge 
the significance of the proposed method: (i) cohesion 
of clusters and (ii) information loss of clusters. The 
cohesion of a cluster illustrates the amount of se-
mantic dispersion of the records sharing a common 
cluster, whereas, the information loss is measured to 
determine the utility of data generated as a result of 
anonymization methods.
In order to measure the cohesion of clusters (Čc), we 
propose a measure that computes the degree of dis-
persion of the records from the centroid of the cluster 
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(i.e., semantics dispersion of the records). We drive a 
metric to measure the cohesion of clusters from the 
existing literature [1, 10]. The existing metric (i.e., 
Sum square of distances SSE) computes the distance 
between the attributes of the records and the centroid 
attributes of a cluster in order to measure the homoge-
neity. In view of this metric, we measure the homoge-
neity of the query records with respect to the centroid 
of the cluster. For this purpose, we drive the semantic 
distance of the queries and the centroid of the clus-
ters to gauge the dispersion of records from the cen-
troid. To achieve this, the proposed measure takes 
account of the semantically similar and non-similar 
attributes of the examined records. Hence, the follow-
ing Equation (10) computes the degree of dispersion 
of the query records from the respective centroid of 
the clusters. This equation states that the cohesion 
of a cluster ζk (that holds n set of queries, i.e., ζk = 
{q1,q2,….qn}) is measured through the sum of seman-
tic variations between the query records of a cluster 
ζk and its centroid αk. For this purpose, we use a dis-
tance measure defined in Equation (8) (i.e., i k(q , )δ α
to compute the sum of semantic variation between 
the query records and the centroid αk, where n-1 is the 
total number of queries within a cluster ζk (exclud-
ing centroid of the cluster). This distance measure 
(i.e., Equation (8)) computes the ratio between the (i) 
non-similar attributes of the paired records (i.e., be-
tween query qi and the centroid of the cluster αk), and 
(ii) the total number of attributes of both records. In 
addition, a query record qj is chosen as a centroid of 
the cluster (i.e., αk = qj) that has maximum cardinal-
ity in terms of semantically similar attributes to the 
other records of the cluster ζk (as detailed in Section 
3.3). It is important to note that a single instance of 
all semantically similar attributes (within a query re-
cord) is considered while measuring the cohesiveness 
of the clusters, because multiple instances of these 
attributes in a query may disrupt the results. There-
fore, we consider only one instance of these attributes 
in query qi when comparing with the other query qc, 
since these two attributes used for the same purpose 
may increase/decrease the similarity score in rela-
tion to the other query. For example, a query qi has 
five attributes qi={peach, apple, orange, citrus, cherry} 
and a query qj has three attributes qc={circle, orange, 
soccer}. The attributes orange and citrus are semanti-
cally similar within a query qi, and both attributes are 

semantically similar to orange in query qc, hence, the 
mutual distance score for both of these queries will be 
low (i.e., high semantically similar). Hence, a cluster 
that has a low cohesive factor (which ranges between 
0 to 1) indicates that the records it holds are closer to 
the centroid of the cluster, hence a cluster tends to be 
more cohesive.

 

attributes to the other records of the cluster ζk (as 
detailed in Section 3.3). It is important to note that 
a single instance of all semantically similar 
attributes (within a query record) is considered 
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In addition, the utility of anonymized data is 
essential for analytical purposes. Moreover, it is 
desirable that the data generated, as a result of 
microaggregation-based techniques, must 
illustrate the same semantics as the original data. 
The utility of data is attributed to the information 
loss (IL) that quantifies the change in the semantics 
of the original data and the anonymized data. 
Thus, in order to measure information loss (IL) of 
the anonymized dataset, we adapt a measure (i.e., 
Equation (11)) that is widely used by many 
researchers [1, 12, 28] for the said purpose. The 
information loss (measured in percentage) is 
computed as a ratio between the sum of the 
squared errors (SSE) of the clusters and the total 
sum of squares (SST) of the complete dataset, 
which is explained in the subsequent paragraphs. 

100.              (11)SSEIL
SST
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As already mentioned, the microaggregation-
based techniques focus to aggregate homogeneous 
records in clusters and then anonymizing such 
records with the help of the centroid of their 
respective clusters. Therefore, in order to gauge 
the value of anonymized data, we compute the 
information loss of the anonymized records of the 
cluster generated through the anonymization 
method. For this purpose, we compute SSE that 
measures the amount of change in the semantics of 
the records that are occurred due to the 

anonymization process. As explained in Section 
3.3, the semantically similar attributes of the 
records of a cluster are anonymized through the 
centroid record, and the attributes that are not 
semantically similar to any other attributes of the 
centroid record are replaced with the centroid 
node of the taxonomic branch retrieved from the 
ontological knowledge base (i.e., WordNet). 
Therefore, in order to compute SSE for the 
proposed system, we determine a semantic change 
in each record for both of these scenarios (i.e., the 
attributes that are semantically similar and that are 
not similar to the centroid record). This change can 
be measured by computing the semantic distance 
between the original data and the anonymized 
data (i.e., the distance between the original value 
of the attributes and the centroid values). Thus, we 
compute SSE through the following Equation (12). 
In this equation, the sum of the square of distances 
between each query qi and the centroid record αk 
of the cluster or the taxonomic branch is measured 
as follows. 
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For this purpose, the sum of semantic distance is 
computed (through the measure defined in 
Equation (1) i.e., δ(xmi, µk)) between (i) each 
attribute ‘xmi’ of a query qi (where xmi is the mth 
attribute of ith query) and (ii) it's corresponding 
semantically similar attribute µk of the centroid 
record or the attribute in the taxonomy. Whereas, 
the factor wm is the weight of the mth attribute that 
has multiple instances in a query qi (in terms of 
semantic similarity). In order to measure the 
distances of the attributes, we rely on Table 2 that 
holds the distance scores of the attributes of the 
paired records. Hence, the SSE holds the sum of 
the distance of all queries (which range between 1 
to n-1 excluding the centroid record) of the kth 
cluster.  

Likewise, the total sum of squares (SST) 
determines the sum of the square of the distances 
between the individual records and the centroid of 
the overall dataset. In order to compute the 
centroid of an overall dataset, we rely on a 
measure (as defined in Equation (9)) that 
determines a paired query that has the least 
distance from the other pairs of the queries. Hence, 
any query qi of the chosen pair is considered as the 
centroid query ć (i.e., ć = qi) of an overall dataset. 
The Equation (13) illustrates this measure to 
compute the SST, in which, the sum of the square 
of the distance between each attribute ‘xmi’ of a 
query qj and it’s corresponding semantically 
similar attribute λk of the centroid record is 
measured (wm is the weight of mth attribute). 
Similarly, the cumulative sum of all queries is 
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In addition, the utility of anonymized data is essen-
tial for analytical purposes. Moreover, it is desirable 
that the data generated, as a result of microaggrega-
tion-based techniques, must illustrate the same se-
mantics as the original data. The utility of data is at-
tributed to the information loss (IL) that quantifies 
the change in the semantics of the original data and 
the anonymized data. Thus, in order to measure infor-
mation loss (IL) of the anonymized dataset, we adapt 
a measure (i.e., Equation (11)) that is widely used by 
many researchers [1, 12, 28] for the said purpose. The 
information loss (measured in percentage) is com-
puted as a ratio between the sum of the squared er-
rors (SSE) of the clusters and the total sum of squares 
(SST) of the complete dataset, which is explained in 
the subsequent paragraphs.
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In addition, the utility of anonymized data is 
essential for analytical purposes. Moreover, it is 
desirable that the data generated, as a result of 
microaggregation-based techniques, must 
illustrate the same semantics as the original data. 
The utility of data is attributed to the information 
loss (IL) that quantifies the change in the semantics 
of the original data and the anonymized data. 
Thus, in order to measure information loss (IL) of 
the anonymized dataset, we adapt a measure (i.e., 
Equation (11)) that is widely used by many 
researchers [1, 12, 28] for the said purpose. The 
information loss (measured in percentage) is 
computed as a ratio between the sum of the 
squared errors (SSE) of the clusters and the total 
sum of squares (SST) of the complete dataset, 
which is explained in the subsequent paragraphs. 
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As already mentioned, the microaggregation-
based techniques focus to aggregate homogeneous 
records in clusters and then anonymizing such 
records with the help of the centroid of their 
respective clusters. Therefore, in order to gauge 
the value of anonymized data, we compute the 
information loss of the anonymized records of the 
cluster generated through the anonymization 
method. For this purpose, we compute SSE that 
measures the amount of change in the semantics of 
the records that are occurred due to the 

anonymization process. As explained in Section 
3.3, the semantically similar attributes of the 
records of a cluster are anonymized through the 
centroid record, and the attributes that are not 
semantically similar to any other attributes of the 
centroid record are replaced with the centroid 
node of the taxonomic branch retrieved from the 
ontological knowledge base (i.e., WordNet). 
Therefore, in order to compute SSE for the 
proposed system, we determine a semantic change 
in each record for both of these scenarios (i.e., the 
attributes that are semantically similar and that are 
not similar to the centroid record). This change can 
be measured by computing the semantic distance 
between the original data and the anonymized 
data (i.e., the distance between the original value 
of the attributes and the centroid values). Thus, we 
compute SSE through the following Equation (12). 
In this equation, the sum of the square of distances 
between each query qi and the centroid record αk 
of the cluster or the taxonomic branch is measured 
as follows. 
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The Equation (13) illustrates this measure to 
compute the SST, in which, the sum of the square 
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query qj and it’s corresponding semantically 
similar attribute λk of the centroid record is 
measured (wm is the weight of mth attribute). 
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branch retrieved from the ontological knowledge base 
(i.e., WordNet). Therefore, in order to compute SSE 
for the proposed system, we determine a semantic 
change in each record for both of these scenarios (i.e., 
the attributes that are semantically similar and that 
are not similar to the centroid record). This change 
can be measured by computing the semantic distance 
between the original data and the anonymized data 
(i.e., the distance between the original value of the 
attributes and the centroid values). Thus, we com-
pute SSE through the following Equation (12). In this 
equation, the sum of the square of distances between 
each query qi and the centroid record αk of the cluster 
or the taxonomic branch is measured as follows.
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In addition, the utility of anonymized data is 
essential for analytical purposes. Moreover, it is 
desirable that the data generated, as a result of 
microaggregation-based techniques, must 
illustrate the same semantics as the original data. 
The utility of data is attributed to the information 
loss (IL) that quantifies the change in the semantics 
of the original data and the anonymized data. 
Thus, in order to measure information loss (IL) of 
the anonymized dataset, we adapt a measure (i.e., 
Equation (11)) that is widely used by many 
researchers [1, 12, 28] for the said purpose. The 
information loss (measured in percentage) is 
computed as a ratio between the sum of the 
squared errors (SSE) of the clusters and the total 
sum of squares (SST) of the complete dataset, 
which is explained in the subsequent paragraphs. 
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in each record for both of these scenarios (i.e., the 
attributes that are semantically similar and that are 
not similar to the centroid record). This change can 
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between the original data and the anonymized 
data (i.e., the distance between the original value 
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compute SSE through the following Equation (12). 
In this equation, the sum of the square of distances 
between each query qi and the centroid record αk 
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For this purpose, the sum of semantic distance is 
computed (through the measure defined in 
Equation (1) i.e., δ(xmi, µk)) between (i) each 
attribute ‘xmi’ of a query qi (where xmi is the mth 
attribute of ith query) and (ii) it's corresponding 
semantically similar attribute µk of the centroid 
record or the attribute in the taxonomy. Whereas, 
the factor wm is the weight of the mth attribute that 
has multiple instances in a query qi (in terms of 
semantic similarity). In order to measure the 
distances of the attributes, we rely on Table 2 that 
holds the distance scores of the attributes of the 
paired records. Hence, the SSE holds the sum of 
the distance of all queries (which range between 1 
to n-1 excluding the centroid record) of the kth 
cluster.  

Likewise, the total sum of squares (SST) 
determines the sum of the square of the distances 
between the individual records and the centroid of 
the overall dataset. In order to compute the 
centroid of an overall dataset, we rely on a 
measure (as defined in Equation (9)) that 
determines a paired query that has the least 
distance from the other pairs of the queries. Hence, 
any query qi of the chosen pair is considered as the 
centroid query ć (i.e., ć = qi) of an overall dataset. 
The Equation (13) illustrates this measure to 
compute the SST, in which, the sum of the square 
of the distance between each attribute ‘xmi’ of a 
query qj and it’s corresponding semantically 
similar attribute λk of the centroid record is 
measured (wm is the weight of mth attribute). 
Similarly, the cumulative sum of all queries is 
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For this purpose, the sum of semantic distance is 
computed (through the measure defined in Equation 
(1) i.e., δ(xmi, μk)) between (i) each attribute ‘xmi’ of a 
query qi (where xmi is the mth attribute of ith query) 
and (ii) it’s corresponding semantically similar attri-
bute μk of the centroid record or the attribute in the 
taxonomy. Whereas, the factor wm is the weight of the 
mth attribute that has multiple instances in a query 
qi (in terms of semantic similarity). In order to mea-
sure the distances of the attributes, we rely on Table 2 
that holds the distance scores of the attributes of the 
paired records. Hence, the SSE holds the sum of the 
distance of all queries (which range between 1 to n-1 
excluding the centroid record) of the kth cluster. 
Likewise, the total sum of squares (SST) determines 
the sum of the square of the distances between the 
individual records and the centroid of the overall 
dataset. In order to compute the centroid of an overall 
dataset, we rely on a measure (as defined in Equation 
(9)) that determines a paired query that has the least 
distance from the other pairs of the queries. Hence, 
any query qi of the chosen pair is considered as the 
centroid query ć (i.e., ć = qi) of an overall dataset. The 
Equation (13) illustrates this measure to compute the 
SST, in which, the sum of the square of the distance 
between each attribute ‘xmi’ of a query qj and it’s corre-
sponding semantically similar attribute λk of the cen-
troid record is measured (wm is the weight of mth at-
tribute). Similarly, the cumulative sum of all queries 

is measured, where queries range between 1 to n - 1 
excluding the centroid record. 
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4.2 Evaluation Results 
To measure the performance of our system, in this 
section, we compute (i) the complexity of our 
algorithms, (ii) the cohesiveness of the clusters, 
and (iii) the information loss comparison with 
respect to existing solutions.  

First, we compute the complexity of Algorithm 1 
that determines the similarity of the attributes of 
any query qi. For this purpose, the n attributes of a 
query qi are matched mutually to measure the 
similarity scores of the attributes. Therefore, the n 
attributes are matched with the rest of n-1 
attributes. Hence, the complexity of the algorithm 
is O(n*(n-1)). In Algorithm 2, we compute the 
similarity of the queries according to their 
matching attributes. Hence, each query is 
examined for the similarity with the rest of the 
queries. Therefore, the n queries are matched with 

the rest of n - 1 queries and the computation cost is 
O(n*(n-1)). In addition, the n attributes of a query 
qi are matched with the n attributes of other query 
qj. Hence, the computation cost of matching 
attributes is O(n2). Algorithm 3 creates the clusters 
of the paired queries retrieved as a result of 
Algorithm 2. In this algorithm, the n pair of queries 
are processed and matched with the other pairs 
based on their similarity score. Hence, the 
complexity of this algorithm is O(n). 

The overall complexity of our method to match 
attributes and then generate clusters is O(n2+n). In 
comparison, the complexity of MDAV-based 
solution [38] to generate clusters is O(n2), whereas 
the complexity to generate clusters in another 
scheme [6] is  O(n2+n/k). This comparison states 
that the complexity to generate the clusters in our 
approach is not affected by the proposed methods, 
and it is the same as other MDAV-based solutions 
[6, 38]. However, we have improved the 
information loss generated as a result of these 
methods that preserve the utility of the 
anonymized data (as shown in Figure 5). 
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We implemented our system in Java programming 
language with the supporting APIs (i.e., Standford 
NLP1, OpenNLP2 , and Jena API3) that are used for 
the semantic analysis of the query logs through the 
WordNet ontology. In addition, we obtained a 
query log dataset that was published by AOL in 

                                                           
1 https://nlp.stanford.edu/ 
2 https://opennlp.apache.org/ 

2006 (which is publically available at [3]). For 
semantic analysis, we obtained logs of 800 users 
and chose their 10,000 query records at random. 
Our system aggregated query records in 200 
clusters, where each cluster holds variable-size 
query logs. The maximum size of a cluster that is 
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the information loss comparison with respect to ex-
isting solutions. 
First, we compute the complexity of Algorithm 1 that 
determines the similarity of the attributes of any 
query qi. For this purpose, the n attributes of a que-
ry qi are matched mutually to measure the similarity 
scores of the attributes. Therefore, the n attributes 
are matched with the rest of n-1 attributes. Hence, 
the complexity of the algorithm is O(n*(n-1)). In Al-
gorithm 2, we compute the similarity of the queries 
according to their matching attributes. Hence, each 
query is examined for the similarity with the rest of 
the queries. Therefore, the n queries are matched 
with the rest of n - 1 queries and the computation cost 
is O(n*(n-1)). In addition, the n attributes of a query 
qi are matched with the n attributes of other query qj. 
Hence, the computation cost of matching attributes is 
O(n2). Algorithm 3 creates the clusters of the paired 
queries retrieved as a result of Algorithm 2. In this 
algorithm, the n pair of queries are processed and 
matched with the other pairs based on their similarity 
score. Hence, the complexity of this algorithm is O(n).
The overall complexity of our method to match at-
tributes and then generate clusters is O(n2+n). In 
comparison, the complexity of MDAV-based solution 
[38] to generate clusters is O(n2), whereas the com-
plexity to generate clusters in another scheme [6] 
is O(n2+n/k). This comparison states that the com-
plexity to generate the clusters in our approach is not 
affected by the proposed methods, and it is the same 
as other MDAV-based solutions [6, 38]. However, we 
have improved the information loss generated as a re-
sult of these methods that preserve the utility of the 
anonymized data (as shown in Figure 5).
We implemented our system in Java programming 
language with the supporting APIs (i.e., Standford 
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NLP1, OpenNLP2 , and Jena API3) that are used for 
the semantic analysis of the query logs through the 
WordNet ontology. In addition, we obtained a query 
log dataset that was published by AOL in 2006 (which 
is publically available at [3]). For semantic analysis, 
we obtained logs of 800 users and chose their 10,000 
query records at random. Our system aggregated que-
ry records in 200 clusters, where each cluster holds 
variable-size query logs. The maximum size of a clus-
ter that is observed during the experiments is 1600 
queries and the minimum size of the cluster was 14 
queries, whereas, the k value set for these query logs 
was 5 queries. The proposed model complies with the 
minimum size of the cluster as defined in the algo-
rithm (i.e., k records); however, the size of the cluster 
is never fixed.
First, we measure the cohesiveness of the clusters in 
order to quantify the homogeneity of the records. For 

1  https://nlp.stanford.edu/
2  https://opennlp.apache.org/
3  https://jena.apache.org/

this purpose, we measure the degree of dispersion of 
the query records from their respective centroids by 
using Equation (10). As the measure to compute co-
hesiveness of the clusters (i.e., Equation (10)) relies 
on the distance method defined in Equation (8), thus, 
the difference between the query records of a clus-
ter varies between ‘0’ to ‘1’. Where, ‘0’ implies that 
the query records of a cluster are convergent to the 
centroid; hence, we deduce that the cluster is more 
cohesive. Whereas, ‘1’ states that all attributes of the 
records are semantically dissimilar and the cluster 
is non-cohesive. The results are illustrated in Fig-
ure 4 that shows the cohesion score of 200 clusters. 
From these results (i.e., Figure 4), it is important to 
note that 75% of the clusters have cohesion scores 
less than 0.45, which indicates that the query records 
that are aggregated in these clusters are more seman-
tically similar. Moreover, there are few clusters (i.e., 
between 150-200) that have cohesive factor higher 
than 0.5, which implies that these clusters hold such 
query records that are least semantically similar to 
the former set of the clusters. Because such clusters 

Figure 4 
The cohesiveness of Clusters
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2006 (which is publically available at [3]). For 
semantic analysis, we obtained logs of 800 users 
and chose their 10,000 query records at random. 
Our system aggregated query records in 200 
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query logs. The maximum size of a cluster that is 
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hold leftover query logs (that do not perfectly match 
with other records), hence, these clusters have high 
scores of cohesiveness.
In addition, we determined the utility of the ano-
nymized data by computing the information loss 
caused by our system (as detailed in Section 4.1). 
Moreover, we compare the results of our work with 
the following state of art solutions that anonymize the 
categorical unstructured data:
Senavirathne et al. [32]: A machine learning-based 
anonymization approach that relies on probabilistic 
k-anonymity principal to anonymize set-valued data. 
Majeed and Lee [27]: An anonymization method that 
relies on the machine learning approach to preserve 
the privacy of the published data, and then anonymiz-
es the data by using generalization technique.
Batet et al. [5]: An approach that relies on an open di-
rectory project (ODP) to extract the semantics of the 
query logs, and then microaggregate such logs based 
on the derived semantics.
Novarro-Arribas et al. [31]: An anonymization meth-
od based on the syntactical measures that were pro-
posed to compare the query logs.

Figure 5 illustrates the comparison of the proposed 
system and the existing solutions. Our solution is 
adaptive in nature (i.e., the size of the clusters is de-
termined automatically after the semantic analysis 
of the set-valued data), hence, we collected different 
sizes of clusters that are automatically generated by 
the system. However, in this comparison, we choose 
only those clusters from the proposed solution that 
have the same size as in the existing solutions. In 
this analysis, we observed that our proposed model 
has similar results as Majeed et al. [27] for the clus-
ter size ranges between 1 to 300, however, our model 
outperforms for the large size clusters. It can be seen 
through the graph that the information loss increas-
es as the cluster size increases. In addition, there is a 
rapid increase in information loss for the cluster hav-
ing a cluster size greater than 1400 records, however, 
the proposed scheme has less effect on the informa-
tion loss as compared to other methods. Because such 
clusters hold a bulk of those records that are more 
semantically similar. Hence, we can conclude that 
our system perfectly aggregates semantically simi-
lar records in common clusters, and the information 
loss, caused as a result of the redaction method, is also 
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improved than the existing state-of-the-art solutions. 
In addition, the fixed-size clusters (i.e., existing solu-
tions) are constrained to aggregate such records that 
may not be semantically coherent to other records, as 
a result, these solutions uphold more information loss 
caused by the redaction methods. However, our adap-
tive size clusters only aggregate those records that are 
semantically coherent to other records of the clusters, 
hence, the results are much improved.
In addition, we computed the information loss of ran-
dom clusters that is illustrated in Figure 6 The stats 
show that the data loss is low for the first 40 clusters 
but it increases logarithmically for the rest of the 
clusters. However, the logarithmic increase in IL is 
minimal due to the homogeneity of the clusters. As 
shown in Figure 4 and Figure 5, the clusters formed 
in the beginning are more cohesive as there is less in-
formation loss. These clusters are independent of the 
cluster size but hold such query logs that are more se-
mantically similar. Hence, the proposed MDAV algo-
rithm is not affected by the size of the clusters. 

5. Conclusion and Future Work
In this paper, we present a novel method to microag-
gregate set-valued data that aggregate semantically 
similar records holding sensitive information (i.e, 
identifying variables and sensitive variables). For 
this purpose, we rely on a taxonomic database (i.e., 
WordNet) to derive the semantics of the data items. 
To gauge the distance of the records, it measures se-
mantically similar and non-similar multivariate of 
the records, which help to aggregate semantically 
similar records in common clusters. In addition, this 
method relies on an adaptive size clustering approach 
that accumulates records according to their seman-
tics instead of fixed-size clusters. As a result, the clus-
ters hold homogeneous records and the anonymized 
records generated as a result of redaction methods 
emit less information loss. 
As future work, we plan to further improve the redac-
tion method (detailed in the last paragraph of Section 
3.3) by dealing with non-semantically similar data 
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items of the records. These data items are only gen-
eralized to hide the details but they do not comply 
with the principle of k-anonymity (i.e., at least k-sim-
ilar records to anonymize records). Hence, we plan to 
extend this solution with the partial clusters holding 
semantically similar and non-similar data items of 
the records. The partial clusters of non-semantically 
similar data items are grouped with the data items of 
other records. In addition, as this proposed work only 
relies on sensitive attributes, we plan to extend this 

work to microaggregate other types of variables from 
the unstructured data (i.e., quasi-identifiers). In addi-
tion, we plan to improve this mechanism to work with 
the differential privacy method to address the limita-
tion of the k-anonymity model.
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