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The discriminative information of fruit fly images often exists in a very fine region, resulting in hard extract-
ing the desired features from the entire image level. Hence, it is a tough task to obtain the discriminative fea-
tures in the fine-grained image for the classification of fruit fly images. To address this, here proposed a con-
volutional neural network of bilinear pooling based on feature fusion for the classification of fruit fly images. 
Firstly, Gaussian blur is performed on fruit fly images to reduce the detailed level of fruit fly images, which 
conveniently extracts high-level features. In the fruit fly images processed by Gaussian blur, the convolution-
al layers in the proposed model (i.e., consisting of CNN A and CNN B) are used for the features extraction 
from the processed images. Then, these extracted features are fused by using the matrix dot multiplication in 
the Bilinear layers. According to these fused features, the softmax layer performs the classification of fruit fly 
images. Experimental results on the 4000 image set containing different fruit fly morphology show that the 
propose method not only outperforms the state-of-the-art methods in the classification accuracy of fruit fly 
images, but also the precision, recall and score are above 94.87% on testing set and validation set. We find that 
image feature fusion has positive effects on promoting the accuracy of image classification. We also demon-
strate that using feature connection operation after performing the matrix point multiplication operation is 
beneficial to feature fusion, instead of using feature connection operation directly. In addition, our findings 
indicates that convolutional neural networks easily obtain the desired features from the images performed 
by Gaussian blur.
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1. Introduction
Bayberry is one of characteristic fruits in Chongqing, 
China. However, in recent years, bayberry fruit flies 
have eaten a lot of bayberry fruits. Especially, bayber-
ry fruit flies flourish in June and July in the Chongq-
ing region, so that the insect fruit rate is as high as 
70%. As such, bayberry fruit flies are considered as a 
dangerous pest since they can cause potentially huge 
economic losses to the bayberry industry in Chongq-
ing. Indeed, the classification of fruit flies is a mean-
ingful link of quarantine works [5], [10]. Hence, the 
classification of fruit fly images is a research hot spot.
Currently, collecting image features of the fruit fly 
more used the artificial markers, whereas, in order 
to high accurately label features in the fruit fly wings, 
chest and back, this process needs to maintain the im-
age sharpness using Camera. In addition, the feature 
labeling by artificial and traditional manners is low 
fault-tolerant, as well as, the process cumbersome 
and high cost.
The classification of fruit fly images is a kind of im-
age classification, indeed, the research of image clas-
sification includes the studies both image features 
extraction and classification algorithms, such as sup-
port vector machine based classifier [3] and bag of 
visual word [15], automatic image analysis based on 
artificial intelligence techniques [17], etc. While im-
age features extraction suffers from the gap between 
the low-level image features represented by machines 
and the high-level semantic information perceived by 
humans.
Recently, deep networks have earned good results in 
the field of image classification, such as, the VGG in 
[20], the GoogleNet in [7] and DenseNet in [23]. While 
for multi-label image classification, the deep networks 
in [19] and in [25] are used and gain advanced classi-
fication results. Since deep networks can auto-learn 
image features from massive images [26], thereby 
avoiding manual feature extraction, deep networks 
gain high accuracy and efficiency for image classi-
fication. Especially, convolutional neural networks 
(CNNs) show outstanding ability on images [32], 
[31], e.g., the [29] and the [30]. Certainly, CNNs can 
be also used a classifier, for instance, the [18] applies 
CNNs as a classifier for image processing. In addition, 
CNNs is also widely used in remote sensing image 

classification, for instance, in [6, 11, 37, 2, 35, 4, 9, 34, 
36, 26], CNNs perform image classification according 
to the schemes of patch-based or pixel-to-pixel, which 
achieves pixel-level image classification (i.e., seman-
tic segmentation), so as to gain a high classification 
precision. Whereas, using the pixel-to-pixel scheme 
needs to mark tedious image annotations. Indeed, it is 
a challenge that labels tedious image annotations for 
multi-classification issues. Usually, the pixel-to-pixel 
scheme is more beneficial for binary classification is-
sues than for multi-classification ones.
In the field of agriculture, deep networks are used 
for identification and classification of crop pest, and 
detection of various insects, etc. While for the clas-
sification of fruit flies, their chest and back features 
are often used as the learning goals of deep networks, 
e.g., after the local binary patterns (LBP) operator ex-
tracts the features of real fly wings and mid-thorac-
ic back plane [27], the AdaBoost algorithm [27] can 
complete the classification of fruit flies, which gains 
a good classification accuracy and robustness. How-
ever, the classifier constructed by the AdaBoost algo-
rithm is complex so that the classification complexi-
ty of the extracted features is increased. In addition, 
according to the extracted local stripe features for 
the chest and back of fruit flies, using the BP neural 
network [33] achieves the classification of fruit flies. 
Similarly, through filtering and locking the edge of the 
fruit fly images, after extracting the shape feature pa-
rameters in the locked area, the BP neural network in 
[28] realizes the classification of fruit flies. The clas-
sification accuracy in [33] and in [28] relies on the ex-
tracted features, so the extracted features determines 
the classification results of fruit flies. Moreover, ac-
cording to the calculation results on the Euclidean 
distance between the points in wings of fruit flies 
[16], using a support vector machine (SVM) can also 
identify the classification of fruit fly images. Obvious-
ly, the selection about the points in wings of fruit flies 
is critical because of affecting the calculation of dis-
tance. Indeed, the selection of points is a tough issue 
in itself. By extracting the middle-level features on 
the vein of the wings, Maced [12] et al. identify fruit 
flies using Multi-layer perceptron (MLP) and SVM, 
respectively, and the obtained average accuracy is 
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88.9% and 87.7%. As a result of acquiring the mid-
dle-level features, the classification accuracy in [12] 
is not sufficiently high.
Usually, the discriminative information of fruit fly 
images exists in a very fine region, so that it is not easy 
to extract the desired features of the entire image 
level by using deep networks directly. As such, it is a 
tough challenge to obtain the discriminative features 
in the fine-grained image for the classification of fruit 
fly images. To address this, this work proposes a con-
volutional neural network based on feature fusion for 
the classification fruit fly images. Through the fusion 
of image features, the classification accuracy of fruit 
fly images can be improved. As an important applica-
tion, the classification of fruit fly images is essential 
for further preventing fruit flies from harming citrus 
in Chongqing city, China, and reduce economic losses.
We summarize the contribution in this work as fol-
lowing.
1 A convolutional neural network based on feature 

fusion is proposed for image classification, obtain-
ing the desired results on the classification of fruit 
fly images. 

2 The manner of fusing image features has positive 
effects on promoting the accuracy of image classi-
fication. As for feature fusion, the operation of per-
forming feature connection after performing the 
matrix dot multiplication to the features is better 
than that of performing feature connection directly.

3 Using Gaussian blur for performing images is more 
helpful for convolutional neural networks to ex-
tract high-level features from images.

2. Methodology
The overall scheme of our method is that using 
Gaussian blur decreases definition of fruit fly imag-
es to extract high-level features. Then, the mid-level 
and high-level features are extracted from the fruit fly 
images, respectively, and the extracted mid-level and 
high-level features are fused in the Bilinear layers. 
According to the features fused, the classification of 
fruit fly images is implemented in the softmax layer.

2.1. Gaussian Blur
Gaussian blur, i.e., Gaussian filter, is a linear smoothing 
filter widely used in image processing. In many appli-

cation, Gaussian blur can effectively reduce the image 
noise and image detail level [12], whose principle is 
that an image is convoluted using the normal distribu-
tion, then the transformation of each pixel in the image 
is calculated. For the n-dimensional space, the normal 
distribution equation is given in Equation (1).
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where u  and σ  are mean value and standard devi-
ation of x, respectively. Using Equation (1), the defi-
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The convolution operation between an image Image and 
a filter G is given in Equation (3).

mage( , , ) ( , , ) ( , )onnC x y G x y I x yσ σ= ⊗ . (3)

where the item ⊗  represents the convolution opera-
tion. 

2.2. Model Description
In this subsection, our motivation is to integrate in-
formation from different channels to achieve fine-
grained classification. Hence, we design our model 
and give the manner of feature fusion. 
A. Model Architecture
Traditional manners of feature fusion, such as sum-
mation or averaging, only use first-order statistics, i.e., 
feature concatenation. This can be regarded as direct 
sum mathematically. Unlike traditional manners, bi-
linear pooling [13] uses second-order statistical in-
formation, which is intended to use the difference in 
second-order information for classification when the 
first-order information is the same. Bilinear pooling 
calculates the outer product of different spatial posi-
tions, and obtains bilinear features through calculat-
ing average pooling for different spatial positions. The 
outer product captures the paired correlation between 
feature channels, and is translation invariant. Hence, 
bilinear pooling can be regarded as direct product, 
which can be used for fine-grained classification. More 
importantly, bilinear pooling [14] provides a stron-
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ger feature representation than traditional manners, 
and can be optimized end-to-end. Convolution neural 
networks (CNNs) can extract mid-level features con-
taining detailed information [26], which is beneficial 
to obtain the relations between features. Given those 
advantages between CNN and bilinear pooling, we 
propose the CNN of bilinear pooling based on feature 
fusion for the classification of fruit fly images.
In the proposed model, as shown in Figure 1, the con-
volution layers are used to extract the mid-level and 
high-level features. These extracted mid-level and 
high-level features are allocated the Bilinear layers 
separately. In Figure 1, after an image passes CNN A 
and CNN B, their outputs at each location consist of 
the matrix outer product and average pooled, thereby 
obtaining the bilinear features representation. For 
our model, it has two parallel Bilinear layers. After the 
fusion of features using the two Bilinear layers, the 
classification of fruit fly images is implemented in the 
softmax layer.
The architecture of convolutional and pooling is di-
vided into three branches, as shown in Figure 1, and 
the performing each branch using different convolu-
tions, as follows.
1 A 1 ×  1 ×  96 convolution and a ReLU, followed by a  

3 ×  3 ×  128 convolution and a ReLU.
2 A 1 ×  1 ×  16 convolution and a ReLU, followed by a  

5 ×  5 ×  32 convolution and a ReLU.
3 A 2 ×  2 max pooling with stride 1, followed by a  

 1 ×  1 ×  32 convolution and a ReLU.
4 After concatenating the above three branches, a 

global pooling and two fully connected layers are 
connected in series in turn.

B. Feature Fusion
Next, let us calculate feature fusion. Let bilinear oper-
ation denote as Bo=(f1, f2, P, C), where f1 and f2 are the 
feature functions to two bilinear layers. f1=(m, p1) and 
f2=(h, p2), where, m and h are mid-level and high-level 
features. p1 and p2 are convergent functions in bilinear 
layers. P and C are the pooling and classification func-
tions, respectively. The bilinear operation and feature 
concatenation are calculated as following.
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where, the  represents matrix dot multiplication. The 
item ⊕ represents concatenation. Using Equation (4), 
the n-dimension feature vector fn can be gotten through 
concatenating mid-level feature m and high-level 
feature h. The fn is used as the input of the softmax 
layer. 
C. Hyper Parameters and Model Training 
In the training process of neural networks, hyper 
parameters, such as batch size, base learning rate, etc., 
often need to be determined, and training epoch needs 
to be determined, in order to ensure that networks have 
converged to a suitable value, also to prevent over-
fitting. Hence, we carefully study following hyper 
parameters. 
     (1) Learning rate and training epoch. During the 
training process, if loss starts to decrease quickly, and it 
is obvious fluctuation in the training later. This may be 
caused by the high learning rate. In addition, if there is 
a slight upward arc in the loss, there may be over-
fitting, so training epoch should be reduced. The 
relation between learning rate, loss and epoch is as 
shown in Figure 2, which indicates that loss relies on 
good learning rate and a proper epoch. Consequently, 
we use cross-validation to determine learning rate and 
training epoch, i.e, learning rate, denoted as L, L∈Ω , 
and training epoch, denoted as E, is determined by 
varying from E=e1 to e2 with a step of e∆ . Let Ω ={1e-
2, 1e-3,1e-4,1e-5,1-e6,1e-7}, e1 =100, e2

 =1000, and 
e∆ =50. 
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Figure 2 Relation of learning rate, loss and epoch 
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1 Learning rate and training epoch. During the train-
ing process, if loss starts to decrease quickly, and 
it is obvious fluctuation in the training later. This 
may be caused by the high learning rate. In addi-
tion, if there is a slight upward arc in the loss, there 
may be over-fitting, so training epoch should be re-
duced. The relation between learning rate, loss and 
epoch is as shown in Figure 2, which indicates that 
loss relies on good learning rate and a proper ep-
och. Consequently, we use cross-validation to de-
termine learning rate and training epoch, i.e, learn-
ing rate, denoted as L, L∈ Ω , and training epoch, 
denoted as E, is determined by varying from E=e1 to 
e2 with a step of e∆ . Let Ω ={1e-2, 1e-3,1e-4,1e-5,1-
e6,1e-7}, e1 =100, e2

 =1000, and e∆ =50.
2 Batch size. If batch size is too large, local optimum 

may occur. Oppositely, a small batch size introduces 
greater randomness, so as to difficulty achieve con-
vergence. Usually, within a certain range, the larger 
the batch size is, the more accurate the descending 

Figure 2 
Relation of learning rate, loss and epoch
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Figure 3 
Batch size [8], [21], [22]

direction is determined, and the smaller the train-
ing shock will be. Indeed, batch size increases to a 
certain extent, whose determined descending di-
rection has basically no longer changed. Hoffer [8] 
et al. indicate that the performance degradation of a 
large batch size is because training time is not long 
enough. Smith [21], [22] et al. show that for a fixed 
learning rate, there is an optimal batch size that can 
maximize test accuracy, moreover, batch size is pos-
itively correlated with learning rate and a training 
set scale. Respecting batch size, epoch and accuracy, 
etc., Figure 3 [8], [21], [22] displays their relation. 
Figure 3 shows that batch size is too small, result-
ing in difficultly converging within 200 epochs. 
As batch size increases, the speed of processing 
the same amount of data increases. Since the fi-
nal convergence accuracy falls into different local 
extremes, batch size is increased to a certain size, 
thus achieving the best final convergence accuracy. 
Using Figure 3 a reference, we dynamically adjust 
batch size according to the change relations be-
tween epoch and precision during training.

3 Convergence judgment. Existing methods are 
hardly to precisely determine with certainty 
whether neural networks have been fully trained 
and reached the optimal value, but it is still possi-
ble to evaluate whether networks have converged 
using some manners, so as to help us stop training 
at a suitable position (i.e., get better good results, 
meanwhile has no occurred over-fitting). One of 
the methods is to monitor the loss of a training set 
and a testing set, i.e., obtaining training curves. 
When the training loss and the testing loss are 
maintained in a relatively stable state and the gap 
between the two is almost unchanged, networks 
are considered to be basically trained. 
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4 Activation function. The activation functions of 
convolutional layers and fully connection layers 
are given in Figure 1, i.e., ReLU and Sigmoid are 
used as their activation functions. 

5 Model training. Table 1 displays the overall algo-
rithm. In the algorithm 1, some parameters are 
firstly initialized, and the division of sample is 
given, in step 1 to step 5. Sample sets are divide 
into three parts, including training set, Train_set, 

Table 1  
Algorithm 1

1 Initialization parameters, Q,
Ω  = {1e-2, 1e-3,1e-4,1e-5,1-e6,1e-7}

batch_size=64, 
e1=100, e2=1000, e∆  =50, etc;

2 Input sample dataset X;
3 Train_set is obtained by random selecting 80% of X ;
4 Test_set is obtained by 10% of X ;  
5 Let Val_set =X- Train_set- Test_set ;
6 for E= e1 to e2 with step  e∆   do:
7    foreach  L  in Ω
8       Use training set Train_set to train NN;
9       Calculate training accuracy 

TrainAcc = NN(Train_set; E; L; batch_size) ;
10       Adjust batch_size according to TrainAcc ;
11       Test NN using testing set Test_set ;
12       Calculate testing accuracy

        TestAcc = NN(Test_set; E; L;batch_size) ;
13    end foreach
14 end for
15 Get the optimal parameter value

      Opt(E; L;batch_size)=arg max(TestAcc)
16 for  q=1 to Q  do:
17 Train NN using Train_set and Opt(E; L;batch_size);
18 Calculate training accuracy 

Train_Acc(q)= 
NN(Train_set; Opt(E; L;batch_size)) ;

19 Validate NN using validation set Val_set ;
20 Calculate validation accuracy

                    Val_Acc(q)=NN(Val_set);
21 end for
22 Calculate average training accuracy

      1
AvgTrAcc ( Train_Acc( )) /q Q

q
q Q=

=
= ∑

23 Calculate average validation accuracy
     

1
AvgValAcc ( Val_Acc( )) /q Q

q
q Q=

=
= ∑

24 Output AvgTrAcc, AvgValAcc;

testing set Test_set, and validation set Val_set. For 
batch size, we refer to the value in Figure 3, let ini-
tial value be equal to 64, i.e., batch_size=64. Then, 
the parameter cross-validation is presented in step 
6 to step 15, in order to gain the optimal values for 
E, L, batch_size, denoted as Opt(E; L;batch_size). 
In addition, NN represents our model. The proce-
dure between step 16 and step 21 shows that NN is 
trained using training set and Opt(E; L;batch_size). 
Once NN is well trained, NN is verified by valida-
tion set Val_set. Fianlly, the average training and 
testing accuracy are sent out, as shown in step 22 
and step 24.

3. Experimental Settings
3.1. Dataset  
We selected 6 fruit flies with different morphology to 
form an image set as show in Figure 4, including 420 
pictures of morphology1, 430 pictures of morphol-
ogy2, 400 pictures of morphology3, 420 pictures of 
morphology4, 430 pictures of morphology5, and 500 
pictures of morphology6. For the 2600 pictures, 1400 
pictures of them are randomly selected to be enlarged 
by rotating, reversing and adjusting the brightness 
and darkness. Then, the experimental image set con-
sists of the 2600 pictures and 1400 pictures, i.e., the 
experimental image set is 4000 pictures. 80% of pic-
tures for each sample are randomly selected as the 
training set, and 10% of pictures for each sample are 
used as the testing set. The remaining 10% is used as 
the validation set. The experimental image set de-
scription is listed in Table 2.

Table 2
Experimental image set

Category  Training Testing Validation

Morphology 1 336 42 42

Morphology 2 344 43 43

Morphology 3 320 40 40

Morphology 4 336 42 42

Morphology 5 344 43 43

Morphology 6 400 50 50
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Figure 4 
Image set of fruit fly. The dimension of image is 300×200
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3.2 Assessment Metrics  
Each image in the experimental image set has four 
conditions, including True Positive (TP), False 
Positive (FP), True Negative (TN), and False 
Negative (FN). Three assessment indicators are 
considered in this work in order to verify the 
ability for our method, i.e., precision, recall rate 
and score, as following. 
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3.2. Assessment Metrics 
Each image in the experimental image set has four 
conditions, including True Positive (TP), False Pos-
itive (FP), True Negative (TN), and False Negative 
(FN). Three assessment indicators are considered in 
this work in order to verify the ability for our method, 
i.e., precision, recall rate and score, as following.

Pr ecision

Recall

Score

TP
TP FP
TP

TP FN
precision recall
precision recall


= +

 =
+

×
= +

(5)

3.3. Comparison Methods 
In order to objectively assess the classification ability 
of our method, four mainstream methods are used for 
comparison, i.e., AlexNet in the [17], DenseNet in the 
[23], CNN in the [25] and CNN the [24]. In addition, 
to address a fair conclusion, as for the selected four 
comparison methods, their optimal parameters ob-
served in the corresponding literature are used. Un-
less otherwise stated, all experiments run on the same 
GPU, and using the same environment.

4. Results 
In this section, entire experimental results are ex-
hibited, including parameter validation, validation of 
feature fusion, and classification accuracy. Together, 
the results show that the propose method outper-
forms the state-of-the-art methods in term of the 
classification accuracy of fruit fly images. The preci-
sion, recall rate and score of the proposed method are 
above 94.87% on testing set and validation set. Sec-
tion down below detailed these results.

4.1. Parameter Validation 

To achieve the optimal performance of our model, 
four group of Gaussian matrix is considered to per-
form image blur, including (10,10), (20, 20), (30, 30), 
(50, 50). 
The results in Figure 5 show that training and testing 
accuracy are highest on the Gaussian matrix (10, 10) 
when learning rate is equal to 0.0001, i.e., training and 
testing accuracy reaches 98.27%,  97.11%, respective-
ly. As such,  1e-4 is chosen as learning rate to train our 
model. The final choice is to set the Gaussian matrix 
as (10, 10), and sample images are blurred. Figure 6 
displays the degree of blurring.   
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Figure 6  Results using Gaussian blur. The dimension of 
image is 300× 200. 

 
4.2 Feature Fusion Validation  
The Bilinear layers in the proposed model can fuse the 
features extracted by the convolution layers, so we need 
to verify the effectiveness of feature fusion. Based on 
this, in this subsection, two sets of experiments were 
implemented, i.e., the first set uses feature fusion in the 
Bilinear layers, whereas, the second set does not use 
feature fusion in the Bilinear layers. The designed 
scheme respecting the effectiveness validation of 
feature fusion is listed in Table 3. 

The verified results on feature fusion are presented 
in Table 4. It can be seen that the best classification 
results are obtained through using the features extracted 
by the Conv3 layer and Conv5 layer and fused by the 

Bilinear layers. Obviously, the results obtained by 
not using feature fusion are not as good as that of 
using feature fusion. Together, these results 
demonstrates that this manner of feature fused can 
promote the classification ability for the proposed 
model. 

In training process, convolution layers extract 
different types of features of the image region, 
and pooling operation fuses these features. As the 
convolutional operations are superimposed, the 
deep features obtained from each layer are 
transitioned to from generalized features, 
including edges, textures, etc, to high-level 
semantic representations, e.g., wings, head, and 
back. The convolution features obtained the fifth 
layer are visualized in Figure 7. 
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2 
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4 
Conv 

5 
Bilinear 

First set √    √ Use 
 √   √ Use 
  √  √ Use 
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Second 
set 
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  √  √ Not use 
   √ √ Not use 
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Results on the effectiveness validation of feature fusion 

  precision recall score 

Feature 
fusion 

Conv1+Conv5 
+Bilinear 

89.22% 88.86% 89.02% 

Conv2+Conv5 
+Bilinear 

93.17% 93.56% 93.11% 

Conv3+Conv5 
+Bilinear 

94.55% 95.05% 94.51% 

Conv4+ 
Conv5+Bilinear 

87.30% 87.10% 87.17% 

Not 
fusion 

Conv1+ Conv5 84.67% 85.16% 85.88% 
Conv2+ Conv5  86.82% 86.22% 86.98% 
Conv3+ Conv5  88.05% 88.18% 88.07% 
Conv4+ Conv5  81.73% 81.72% 81.68% 

 
                     The loss in process of training and testing is 

presented in Figure 8 (a). It can be seen that the 
proposed model converged after nearly 175 
epochs, and the loss fell to 0.22. Figure 8 (b) 
displays the Receiver Operating Characteristic 
curve (ROC) and the corresponding area under the 
curve (AUC) on the testing results. In addition, in 
order to further analyze the testing results, we also 
gave the confusion matrix, as shown in Figure 9. 
The results on the confusion matrix show that the 
classification accuracy for the image of 
morphology 2 (i.e., label 1 in Figure 9) and 
morphology 4 (i.e., label 3 in Figure 9) is lower, 
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Figure 6 displays the degree of blurring.    
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Figure 6  
Results using Gaussian blur. The dimension of image is 300 × 200
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4.2. Feature Fusion Validation 
The Bilinear layers in the proposed model can fuse 
the features extracted by the convolution layers, so 
we need to verify the effectiveness of feature fusion. 
Based on this, in this subsection, two sets of experi-
ments were implemented, i.e., the first set uses fea-
ture fusion in the Bilinear layers, whereas, the second 
set does not use feature fusion in the Bilinear layers. 
The designed scheme respecting the effectiveness 
validation of feature fusion is listed in Table 3.

Table 3
Designed scheme to the effectiveness validation of feature 
fusion

Conv 
1

Conv 
2

Conv 
3

Conv 
4

Conv 
5 Bilinear

First 
set

√ √ Use
√ √ Use

√ √ Use
√ √ Use

Second 
set

√ √ Not use
√ √ Not use

√ √ Not use
√ √ Not use

Table 4
Results on the effectiveness validation of feature fusion

precision recall score

Feature 
fusion

Conv1+Conv5
+Bilinear 89.22% 88.86% 89.02%

Conv2+Conv5
+Bilinear 93.17% 93.56% 93.11%

Conv3+Conv5 
+Bilinear 94.55% 95.05% 94.51%

Conv4+ 
Conv5+Bilinear 87.30% 87.10% 87.17%

Not 
fusion

Conv1+ Conv5 84.67% 85.16% 85.88%
Conv2+ Conv5 86.82% 86.22% 86.98%
Conv3+ Conv5 88.05% 88.18% 88.07%
Conv4+ Conv5 81.73% 81.72% 81.68%

The verified results on feature fusion are presented in 
Table 4. It can be seen that the best classification re-
sults are obtained through using the features extracted 
by the Conv3 layer and Conv5 layer and fused by the 
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Figure 7
Visualization of convolution features of the fifth layer

Bilinear layers. Obviously, the results obtained by not 
using feature fusion are not as good as that of using fea-
ture fusion. Together, these results demonstrates that 
this manner of feature fused can promote the classifi-
cation ability for the proposed model.
In training process, convolution layers extract differ-
ent types of features of the image region, and pooling 
operation fuses these features. As the convolutional 
operations are superimposed, the deep features ob-
tained from each layer are transitioned to from gen-
eralized features, including edges, textures, etc, to 
high-level semantic representations, e.g., wings, head, 
and back. The convolution features obtained the fifth 
layer are visualized in Figure 7.
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The loss in process of training and testing is present-
ed in Figure 8 (a). It can be seen that the proposed 
model converged after nearly 175 epochs, and the loss 

Figure 8 
Loss curve and ROC curve

fell to 0.22. Figure 8 (b) displays the Receiver Operat-
ing Characteristic curve (ROC) and the correspond-
ing area under the curve (AUC) on the testing results. 

(a) loss curve (b) ROC curve
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In addition, in order to further analyze the testing 
results, we also gave the confusion matrix, as shown 
in Figure 9. The results on the confusion matrix show 
that the classification accuracy for the image of mor-
phology 2 (i.e., label 1 in Figure 9) and morphology 4 
(i.e., label 3 in Figure 9) is lower, while the classifica-
tion accuracy on the images of other morphology is 1.

4.3. Classification Precision Comparison
The results in Table 5 show that our method outper-
forms the four competitors for the classification re-
sults on fruit fly images. It can be observed in Table 5 
that the classification accuracy of our method is equal 
to 97.11% on testing set and 94.87% on validation 
set, respectively. This implies that the convolutional 
layers can extract the advanced features from fruit 
fly images for training on classification tasks. More 
importantly, this also further demonstrates that the 
desired classification results can be obtained using 
the manner of fusing the mid-level and high-level fea-
tures in the classification of fruit fly images. 
From the above multiple experiments, some results 
can be obtained, as following
1 For the classification of images, using the manner 

of feature fused can achieve a advanced classifica-
tion accuracy than that of not using feature fused.

Figure 9 
The confusion matrix
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Figure 8 Loss curve and ROC curve 
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4.3 Classification Precision Comparison 
The results in Table 5 show that our method outperforms 
the four competitors for the classification results on fruit 
fly images. It can be observed in Table 5 that the 
classification accuracy of our method is equal to 97.11% 
on testing set and 94.87% on validation set, respectively. 
This implies that the convolutional layers can extract the 
advanced features from fruit fly images for training on 
classification tasks. More importantly, this also further 
demonstrates that the desired classification results can be 
obtained using the manner of fusing the mid-level and 
high-level features in the classification of fruit fly 
images.  

From the above multiple experiments, some results 
can be obtained, as following 
      (i) For the classification of images, using the manner 
of feature fused can achieve a advanced classification 
accuracy than that of not using feature fused. 

(ii) In feature fusion, after performing the matrix dot 
multiplication operation on features, it is a better choice 
to perform feature connection than performing feature 
connection directly. 

(iii) Using Gaussian blur to perform images, 
convolutional neural networks are easy to extract high-
level features from images.  

 
Table 5 

Precision on testing and validation set. Experiment 
100 times independently. 

Method Category  Precision 

Testing  Validation  
Our method 6 97.11 ± 1.12% 94.87% 

Method in [24] 6 94.11 ± 1.77% 90.55% 

Method in [25] 6 95.07 ± 1.55% 90.27% 

Method in [23] 6 90.06 ± 2.36% 87.66% 

Method in [17] 6 84.64 ± 3.29% 84.66% 

 
5. Conclusion 

In this work, to address this issue for the 
classification of fruit fly images, the CNN of 
bilinear pooling based on feature fusion was 
proposed. In our method, Gaussian blur is 
performed on fruit fly images to reduce the detailed 
level of fruit fly images, which conveniently 
extracts high-level features. Then, the features are 
extracted using the convolutional layers from the 
fruit fly images processed by Gaussian blur, using 
the matrix dot multiplication achieves feature 
fusion in the Bilinear layers. Finally, the softmax 
layer completes the classification of fruit fly images 
according to the fused features. Experimental 
results show that the proposed method is better than 
the competitors in the classification precision of 
fruit fly images. We find that the feature fusion of 
images has a positive effect on promoting the 
accuracy of image classification. In term of feature 
fusion, we also indicate that this is a better choice to 
perform feature connection after performing the 
matrix dot multiplication operation on features, 
instead of performing feature connection directly. 
      These image sets used in this paper is based on 
different morphology of fruit flies, so the proposed 
model extracts features according to the 
morphology of fruit flies, and then classifies the 
images of fruit fly. However, as for classifying fruit 
fly images with natural background, currently, the 
proposed model is weak in this aspect. Therefore, in 
future work, we will look at focusing on solving the 
issue how to effectively classify fruit fly images 
with natural background. 
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Table 5
Precision on testing and validation set. Experiment 100 
times independently

Method Category 
Precision

Testing Validation 

Our method 6 97.11 ± 1.12% 94.87%

Method in [24] 6 94.11 ± 1.77% 90.55%

Method in [25] 6 95.07 ± 1.55% 90.27%

Method in [23] 6 90.06 ±2.36% 87.66%

Method in [17] 6 84.64 ± 3.29% 84.66%

2 In feature fusion, after performing the matrix dot 
multiplication operation on features, it is a better 
choice to perform feature connection than per-
forming feature connection directly.

3 Using Gaussian blur to perform images, convolu-
tional neural networks are easy to extract high-lev-
el features from images. 

5. Conclusion
In this work, to address this issue for the classification 
of fruit fly images, the CNN of bilinear pooling based 
on feature fusion was proposed. In our method, Gauss-
ian blur is performed on fruit fly images to reduce the 
detailed level of fruit fly images, which conveniently 
extracts high-level features. Then, the features are ex-
tracted using the convolutional layers from the fruit fly 
images processed by Gaussian blur, using the matrix 
dot multiplication achieves feature fusion in the Bi-
linear layers. Finally, the softmax layer completes the 
classification of fruit fly images according to the fused 
features. Experimental results show that the proposed 
method is better than the competitors in the classifica-
tion precision of fruit fly images. We find that the fea-
ture fusion of images has a positive effect on promoting 
the accuracy of image classification. In term of feature 
fusion, we also indicate that this is a better choice to 
perform feature connection after performing the ma-
trix dot multiplication operation on features, instead of 
performing feature connection directly.
These image sets used in this paper is based on differ-
ent morphology of fruit flies, so the proposed model 
extracts features according to the morphology of fruit 
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flies, and then classifies the images of fruit fly. How-
ever, as for classifying fruit fly images with natural 
background, currently, the proposed model is weak in 
this aspect. Therefore, in future work, we will look at 
focusing on solving the issue how to effectively classi-
fy fruit fly images with natural background.
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