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Two alternative Bayesian approaches are proposed for the prediction of fragmentation of pressure vessels 
triggered off by accidental explosions (bursts) of these containment structures. It is shown how to carry 
out this prediction with post-mortem data on fragment numbers counted after past explosion accidents. 
Results of the prediction are estimates of probabilities of individual fragment numbers. These estimates are 
expressed by means of Bayesian prior or posterior distributions. It is demonstrated how to elicit the prior 
distributions from relatively scarce post-mortem data on vessel fragmentations. Specifically, it is suggested 
to develop priors with two Bayesian models known as compound Poisson-gamma and multinomial-Dirichlet 
probability distributions. The available data is used to specify non-informative prior for Poisson parameter 
that is subsequently transformed into priors of individual fragment number probabilities. Alternatively, the 
data is applied to a specification of Dirichlet concentration parameters. The latter priors directly express 
epistemic uncertainty in the fragment number probabilities. Example calculations presented in the study 
demonstrate that the suggested non-informative prior distributions are responsive to updates with scarce 
data on vessel explosions. It is shown that priors specified with Poisson-gamma and multinomial-Dirichlet 
models differ tangibly; however, this difference decreases with increasing amount of new data. For the sake 
of brevity and concreteness, the study was limited to fire induced vessel bursts known as boiling liquid ex-
panding vapour explosions (BLEVEs).
KEYWORDS: post-mortem data, data scarcity, Bayesian updating, Poisson-gamma distribution, multino-
mial-Dirichlet distribution, epistemic uncertainty, aleatory uncertainty, explosion, pressure vessel, frag-
ment, risk.
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1. Introduction
Bursts of pressure vessels occur as violent explosions 
often leading to a catastrophic fragmentation vessel 
shells. These explosions belong to the most violent 
industrial accidents [1]. The industry branch that is 
especially prone to pressure vessel explosions is re-
lated to handing of commercial hydrocarbons. Raw 
data on pressure vessel explosions is represented 
mainly by post-mortem information collected in the 
course of investigation of these accidents [9]. Nature 
of this data and its appropriateness to estimating con-
sequences of future explosions is fairly diverse. How-
ever, a part of the data can be processed to the form 
suitable for a quantitative risk assessment (QRA) of 
facilities operating pressure vessels [33].
History of pressure vessel explosions in industry 
is long. However, the most violent explosions, like 
BLEVEs, are relatively rare events [1, 25]. Amount 
of data on specific aspects of these events is not suf-
ficient for a Fisherian (classical, frequentist) statisti-
cal analysis in the context of QRA. For instance, the 
largest widely known set of data on fragmentation of 
vessels due to BLEVEs consists of approximately 250 
records and represents statistically highly nonhomo-
geneous population of these pressure containers [21, 
38]. However, we think that limited data on vessel ex-
plosions is suitable for Bayesian analysis that forms 
the methodological basis of QRA [35].
The essential quantity characterising the immediate 
hazard of each vessel explosion is the number of frag-
ments generated by vessel burst. This number deter-
mines to a great extent damaging effects of explosion. 
As a discrete random variable, the fragment number 
is susceptible of Bayesian estimation. The basic idea 
of this study was to carry out this estimation by ap-
plying two models of Bayesian reasoning known as 
compound Poisson-gamma (PG) and multinomi-
al-Dirichlet (MD) distributions. They can be used for 
estimating probabilities of individual fragment num-
bers in terms of probability distributions expressing 
epistemic (reducible) uncertainty. Distributions of 
this type are widely used in the field of QRA [5].
The study presents a comparative analysis of PG and 
MD models with a view to applying them to QRA. 
Ultimate aim and, in our opinion, added value of the 
study was an improvement of QRA of pressure vessels 
through a better use of scarce data on catastrophic 
fragmentations of these containment tanks.

2. Review of Related Work and 
Available Data
The knowledge gap tackled in the present study is 
how to express uncertainty in the number of frag-
ments by means of Bayesian reasoning. To date this 
uncertainty has been expressed simply by empirical 
proportions of individual fragment numbers count-
ed for relatively small amount of explosion accidents 
(see the review in the book chapter [45] and referenc-
es cited therein). These proportions can be easily sup-
plemented with Fisherian confidence intervals, pri-
marily with Clopper-Pearson intervals [7]. However, 
right here possibilities of the Fisherian estimation 
are exhausted. The precision of Fisherian confidence 
intervals will not increase significantly during a slow 
and sporadic arrival of new data on vessel fragmenta-
tions. In addition, it is difficult to propagate the con-
fidence intervals through such QRA models as event 
trees and fault trees [36].
The current situation of data on fragment numbers is 
typical for most QRA applications that are predomi-
nantly based on Bayesian reasoning. Currently, there 
are three publicly accessible sources of information 
on numbers of fragments generated by BLEVEs:
1 In 1985, Holden and Reeves [14] presented counts 

of fragment numbers related to 23 fire induced 
vessel bursts. This original data has been directly 
gained from accident investigation reports. Indi-
rect information presented in, say, scientific arti-
cles was not used.

2 In 2009, Gubinelli and Cozanni [13] declared a 
collection of data on fragmentation of 89 horizon-
tal and vertical pressure vessels that underwent 
BLEVEs. Data has been extracted from original 
information presented by other authors. The same 
data was presented also by Tugnoli et al. [45].

3 In 2012, Sun et  al. [38] presented counts of frag-
ment numbers related to 259 BLEVEs of horizon-
tal pressure vessels. The data has been acquired 
from books and scientific journals. This data was 
repeatedly presented by Li et  al. [21]. The counts 
obtained by Sun et al. are given in Table 1. They will 
be used for the example calculations presented in 
Section 6. 

Counts of fragment numbers given in the sources just 
listed is processed data. These counts are not related 
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to raw information on technical details of vessels, for 
instance, substance stored at the onset of failure, vol-
ume, wall thickness, relief pressure. Thus, the counts 
represent lumped, non-homogenous populations of 
vessels that underwent bursts. An attempt to divide 
these populations into more homogenous subpopula-
tions will result in a decrease of the sets of events that 
underlie fragment number counts.

Bayesian prediction of the number of fragments gen-
erated by pressure vessel bursts can be useful at least 
for three reasons:
1 Contrary to the Fisherian analysis, Bayesian rea-

soning allows to incorporate expert judgement into 
the estimation of the probabilities of individual 
fragment numbers. Clearly, the procedure used for 
this estimation must be sensitive to updates with 
scarce data on fragment numbers. In addition, this 
procedure should indicate an acceptable speed of 
learning from new data on vessel fragmentations 
[44].

2 Estimates of fragment number probabilities are 
expressed in the Bayesian format by prior and 
posterior distributions. They model epistemic 
uncertainty in these probabilities. Propagation of 
uncertainties expressed by Bayesian priors and 
posteriors through QRA models is fairly simple 
and transparent as compared with propagation of 
Fisherian confidence intervals [36].

No. of fragments  n Count mn Percentage
mn /ne ×100 %a

1 50 19.3

2 98 37.8

3 78 30.1

4 24 9.27

5 3 1.58

6 2 0.77

7 3 1.58

8 0 0

9 1 0.39
ane = 259; the subscript “e” means an explosion accident

Table 1
Numbers of fragments counted after 259 BLEVE events [21, 38]

3 The currently available methods of elicitation of 
the prior distributions related to PG and MD mod-
els allow to develop priors that express the ana-
lyst’s attitude towards the situation of available 
knowledge on vessel fragmentation. This knowl-
edge is relatively vague. From standpoint of sim-
plicity and defensibility, diffuse non-informative 
priors are ideal [5].

A subjective estimation of an individual probability is 
a standard problem of Bayesian inference expressed as 
estimation of a single binomial parameter (binomial 
proportion) [17]. In the case under study, the observed 
data used for binomial modelling are number of vessel 
bursts with any number of fragments and number of 
cases with given number of fragments. Approaches to 
elicitation and updating of prior and posterior distri-
butions of the binomial parameter used in the field of 
QRA are reviewed by Kelly and Smith [18] as well as Siu 
and Kelly [36]. A highly practical elicitation of a beta 
prior distribution for the binomial parameter used for 
QRA applications has been suggested by Atwood [4]. 
This distribution is called the constrained non-infor-
mative prior and it is suitable for updating with scarce 
data, among them data on vessel bursts.
The fact that a vessel burst can generate any number 
of fragments starting from one and this number is un-
certain requires naturally to apply the multinomial 
generalisation of the binomial distribution as aleato-
ry model of fragmentation. Bayesian inference in this 
case can be based on the compound MD distribution, 
in which probability vector (alpha-factors) drawn 
from a multi-parameter Dirichlet distribution will 
express probabilities of individual fragment numbers. 
MD distribution is the most commonly used model 
for common cause failures (CCFs) that are subject 
of QRA and reliability analysis [28, 44, 49]. Kelly and 
Atwood [16] suggested the so-called minimally infor-
mative Dirichlet prior distribution that is a general-
isation of the constrained non-informative prior of 
the binomial parameter. This Dirichlet prior incor-
porates means of alpha-factors specified from data, if 
available, and is otherwise fairly diffuse.
Troffaes et al. [44] proposed to express epistemic un-
certainty in the alpha-factors by means of lower and 
upper expectations of each alpha-factor as well as a 
learning parameter that determines how quickly the 
model learns from observed data. Elicitation of priors 
for alpha-factors is an extension of the minimally in-
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formative Dirichlet prior to the case where a precise 
mean for each alpha-factor cannot be specified. 
The minimally informative Dirichlet prior will be 
used in this study for the estimation of fragment 
number probabilities. The first reason for this choice 
is that we have no zero counts related to the fragment 
numbers 1 to 4 that prevail in BLEVE events (Ta-
ble 1). This allows a simple specification of means of 
marginal beta distributions used to construct the Di-
richlet prior. The second reason is that an elicitation 
of minimally informative Dirichlet prior suggested 
by Kelly and Atwood [16] is simpler and more trans-
parent than the specification of bounds of Dirichlet 
concentration parameters in line with the procedure 
proposed by Troffaes et al. [44].
Outside QRA and reliability analysis, the develop-
ment of methods intended for eliciting priors of the 
MD model extends over fifty years since Lindley [22] 
proposed the combination of multinomial distribution 
and conjugate Dirichlet prior. Brief reviews of these 
methods are presented by Alvares et  al. [2] as well as 
Elfadaly and Garthwaite [11]. Needless to say, a variety 
of prior elicitation methods and diversity of practical 
applications of MD model is large. Some of these meth-
ods are not suited to the data and modelling situation 
considered in this study as they deal, for instance, with 
elicitation of informative priors [47]. However, several 
methods developed outside QRA by Atwood [3], Ber-
nard [6] and Walley [46] underlie directly or indirect-
ly the aforementioned elicitation methods suggested 
for the case of CCFs. CCF events are similar to vessel 
fragmentations, because the number of explosions, 

en , can be treated as a total number of observed CCF 
events and the counts nm  can be interpreted as counts 
of failure events with exactly n  failures (Table 1). This 
similarity was a substantial reason to use the afore-
mentioned minimally informative Dirichlet prior dis-
tribution for the estimation of the fragment number 
probabilities in line with MD model.
An alternative approach to the Bayesian estimation 
of fragment number probabilities can be based on 
the fact that a slightly modified Poisson distribution 
is suitable, at least logically, for the description of in-
tegers representing fragment numbers. In the context 
of the present study, the usual Poisson data { r  fail-
ures in t  time units} should be interpreted as {the 
total of +n  fragments in en  explosions}. Probability 
masses of the Poisson distribution can be interpreted 

as probabilities of individual fragment numbers. The 
epistemic uncertainty is introduced into PG model as 
a prior of the Poisson parameter [17, 36].
The combination of aleatory Poisson model and epis-
temic gamma distribution has been used and is still 
used for a multitude of applications in various do-
mains of science [10]. Applications of the PG model 
to QRA and reliability analysis are also numerous 
[31, 32]. In the context of the present study, mention 
should be made of the attempt to expand modelling 
of uncertainties via PG model by introducing uncer-
tainties in the Poison variables r  and t  (or +n  and en  
in the case under study) [26, 27]. The total number of 
fragments, +n , can be inaccurate because of unreli-
able investigation of past explosion accidents and the 
number of explosions, en , can be uncertain, because 
not all explosions represented by the count en  may 
belong to the same category, say, fire induced BLEVEs.
A review of methods proposed for elicitation of prior 
for Poisson parameter in the context of QRA is pre-
sented by Kelly and Smith [17, 18]. The data situation 
related to vessel bursts and resulting fragment num-
bers suggests the constrained non-informative prior 
developed by Atwood for binomial modelling can also 
be used in case of PG model [4]. In the present study, 
the elicitation Poisson gamma prior was just an inter-
mediate step in the estimation of fragment number 
probabilities with PG model. Our idea was to trans-
form the epistemic uncertainty expressed by the gam-
ma prior distribution into distributions of epistemic 
uncertainty related to Poisson probability masses. 
These epistemic distributions may serve as Bayesian 
estimates of the fragment number probabilities and 
make a viable alternative to the estimates expressed 
by the Dirichlet distribution. The application of PG 
model seems to be new, because attempts to model 
epistemic uncertainties in probability masses of Pois-
son and binomial distributions are not known to us.
In terms of safety engineering, the number of frag-
ments is the essential information necessary for a 
probabilistic prediction of aerodynamic properties, 
trajectories and impact of fragments on vulnerable 
objects [34, 41, 45]. Eventually this information will 
be important to a design of protective structures in-
tended for a defence against moderate-velocity and 
high-mass non-rigid projectiles from such events as 
BLEVEs. These structures are mainly safety barri-
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ers built in stationary facilities and along vulnerable 
roadside territory. In previous five decades, the design 
of safety barriers was mainly based on deterministic 
specification of blast and impact loads and determin-
istic assessment of structural response to these loads 
[19, 37, 39, 48]. However, a probabilistic design of safe-
ty barriers is a more natural and scientifically justified 
approach due to considerable uncertainties on the side 
of blast and impact loads. To date attempts to design 
barriers in a probabilistic way were restricted mainly 
to the case of blast loading [15, 23, 29, 30, 40, 42, 43]. 
A probabilistic design of barriers for moderate-veloc-
ity impacts by non-totally rigid fragments from vessel 
bursts is in its infancy to the best of our knowledge. 
The Bayesian prediction of the number of fragments 
proposed in this study can be a useful, even if early, 
step towards non-deterministic assessment of impact 
loads and probabilistic design of safety barriers.

3. Mathematical Problem Under Study
The problem under study is expressed by a random 
number of fragments, N , generated per one vessel 
explosion. Formally, the number N  can be any inte-
ger greater than zero. However, real BLEVE events 
produce a very limited number of fragments. For in-
stance, values of N  encountered in the past accidents 
range between 1 and 9 (Table 1).
The safety problem arises only when at least two frag-
ments are ejected, that is, the random event 2N ≥  
occurs (Figure  1). The event 1N =  represents neg-

Figure 2
Illustration of the random events N = 1 and N ≥ 5: (a) local 
crack is formed; (b) rupture without ejection of fragments; 
(c) generation of five or more small fragments

  

masses of Poisson and binomial distributions are not 
known to us. 
In terms of safety engineering, the number of fragments 
is the essential information necessary for a probabilistic 
prediction of aerodynamic properties, trajectories and 
impact of fragments on vulnerable objects [34, 41, 45]. 
Eventually this information will be important to a design 
of protective structures intended for a defence against 
moderate-velocity and high-mass non-rigid projectiles 
from such events as BLEVEs. These structures are 
mainly safety barriers built in stationary facilities and 
along vulnerable roadside territory. In previous five 
decades, the design of safety barriers was mainly based 
on deterministic specification of blast and impact loads 
and deterministic assessment of structural response to 
these loads [19, 37, 39, 48]. However, a probabilistic 
design of safety barriers is a more natural and 
scientifically justified approach due to considerable 
uncertainties on the side of blast and impact loads. To 
date attempts to design barriers in a probabilistic way 
were restricted mainly to the case of blast loading [15, 23, 
29, 30, 40, 42, 43]. A probabilistic design of barriers for 
moderate-velocity impacts by non-totally rigid fragments 
from vessel bursts is in its infancy to the best of our 
knowledge. The Bayesian prediction of the number of 
fragments proposed in this study can be a useful, even if 
early, step towards non-deterministic assessment of 
impact loads and probabilistic design of safety barriers. 

3. Mathematical problem under 
study 
The problem under study is expressed by a random 
number of fragments, N , generated per one vessel 
explosion. Formally, the number N  can be any integer 
greater than zero. However, real BLEVE events produce 
a very limited number of fragments. For instance, values 
of N  encountered in the past accidents range between 1 
and 9 (Table 1). 
The safety problem arises only when at least two 
fragments are ejected, that is, the random event 2N   
occurs (Figure 1). The event 1N   represents negligible 
hazard because it usually occurs as a vessel burst without 
long-range ejection of fragments (Figure 2ab). A 
generation of a large number of fragments represented by 
the event 5N   poses relatively low risk. The kinetic 
energy of small and light fragments is comparatively low 
and they tend to have poor aerodynamic characteristics 
(Figure 2c). Due to the above reasons, it appears 
reasonable to restrict the prediction of two or more 
fragments. This leads to a consideration of 209 BLEVE 
events with proportions given in Table 2.  
Figure 1 
Illustration of the random events 2N  : (a) ejection of 
two fragments (event 2N  ); (b) ejection of three or 
four fragments (events 3N   or 4N  ) 

 
Figure 2 
Illustration of the random events 1N   and 5N  : (a) 
local crack is formed; (b) rupture without ejection of 
fragments; (c) generation of five or more small fragments 

 
Explosion induced fragmentation of vessels is a very 
uncertain phenomenon. Therefore, the prediction of the 
number of fragments should have the form of the 
fragment number probabilities )( nNP   with n = 1, 2, 
… . They model aleatory (unreducible) uncertainty 
related to the random events N n . Data on occurrences 
of the events N n  is scarce and this results in fairly 
wide confidence intervals of )( nNP  . Clopper-
Pearson confidence intervals of )( nNP   calculated for 
the data on 209 BLEVE explosions are presented in 
Table 3. 
Bayesian analysis yields estimates of the probabilities 

)( nNP   expressed as prior and posterior probability 
distributions. In terms of QRA, prior and posterior related 
to )( nNP   expresses the epistemic uncertainty. In what 
follows, this uncertainty in )( nNP   will be modelled 
by the random variables n, the values of which will be 
denoted by np . 
 
Table 2 
Information extracted from Table 1 and related to the 
numbers of fragments recorded after 209 BLEVE events 
that generated at least two projectiles 

(a)

(b)

(c)
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Clopper-Pearson confidence intervals of )( nNP =  
calculated for the data on 209 BLEVE explosions are 
presented in Table 3.
Bayesian analysis yields estimates of the probabilities 

)( nNP =  expressed as prior and posterior probabili-
ty distributions. In terms of QRA, prior and posterior 
related to )( nNP =  expresses the epistemic uncer-

Figure 1
Illustration of the random events N ≥ 2: (a) ejection of 
two fragments (event N = 2); (b) ejection of three or four 
fragments (events N = 3  or N = 4 )

  

masses of Poisson and binomial distributions are not 
known to us. 
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3. Mathematical problem under 
study 
The problem under study is expressed by a random 
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greater than zero. However, real BLEVE events produce 
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and they tend to have poor aerodynamic characteristics 
(Figure 2c). Due to the above reasons, it appears 
reasonable to restrict the prediction of two or more 
fragments. This leads to a consideration of 209 BLEVE 
events with proportions given in Table 2.  
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the data on 209 BLEVE explosions are presented in 
Table 3. 
Bayesian analysis yields estimates of the probabilities 

)( nNP   expressed as prior and posterior probability 
distributions. In terms of QRA, prior and posterior related 
to )( nNP   expresses the epistemic uncertainty. In what 
follows, this uncertainty in )( nNP   will be modelled 
by the random variables n, the values of which will be 
denoted by np . 
 
Table 2 
Information extracted from Table 1 and related to the 
numbers of fragments recorded after 209 BLEVE events 
that generated at least two projectiles 

(a)

(b)
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n mn na nµ̂ CI Width of CI

2 98 209 0.4689 (0.400, 0.5390) 0.139

3 78 209 0.3732 (0.307, 0.443) 0.136

4 24 209 0.1148 (0.0750, 0.1660) 0.091

Table 2
Information extracted from Table 1 and related to the 
numbers of fragments recorded after 209 BLEVE events 
that generated at least two projectiles

No. of fragments 
n 

Proportion 
mn /na

a 
Displaced 

no. n0
b Category kc

2 0.4689 0 1

3 0.3732 1 2

4 0.1148 2 3

4 0.1148 2 3

5 0.0144 3 4

6 0.0096 4 5

7 0.0144 5 N/A

8 0 6 N/A

9 0.0048 7 N/A
a mn is the count of explosions with n  fragments, na = 209
b Cf Figure 4 and Section 4.1
c Cf Figure 4 and Section 5.1

Table 3
Clopper-Pearson 95 % confidence intervals (CIs) obtained 
for the data pairs mn and na (n = 2, 3, 4)

tainty. In what follows, this uncertainty in )( nNP =  
will be modelled by the random variables n, the val-
ues of which will be denoted by np .
This study looks into the possibility to express un-
certainties in the probabilities )( nNP =  by means of 
MG and PG models. They are adapted to the currently 
available empirical (post-mortem) data on numbers 
of fragments generated by BLEVEs and compared by 
applying to the same set of initial data.
The comparison is of the two models is based on two 
“common denominators”:
1 The data used for eliciting priors for )( nNP =  is 

the same for both models. The data given in Table 2 
was applied in the example calculation presented 
in Section 6.

2 Methods used for eliciting priors within PG and 
MD models are closely related and based on the 
same approach to Bayesian updating with scarce 
and slowly arriving data. 

The sequence of reasoning based on the above “com-
mon denominators” is explained in Figure 3.

Figure 3
Processes used to predict fragment numbers by applying 
PG and MD models 

No. of frag-
ments n  

Proportion 
nm / an a 

Displaced 
no. 0n b 

Category k c 

2 0.4689 0 1 

3 0.3732 1 2 

4 0.1148 2 3 

4 0.1148 2 3 

5 0.0144 3 4 

6 0.0096 4 5 

7 0.0144 5 N/A 

8 0 6 N/A 

9 0.0048 7 N/A 

a nm  is the count of explosions with n  fragments, an = 
209 
b Cf Figure 4 and Section 4.1 
c Cf Figure 4 and Section 5.1 
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Processes used to predict fragment numbers by applying 
PG and MD models 

 
 

4. Processing the Data by Means of 
the Poisson-Gamma Distribution 
4.1. Distribution Adaptation the to the Case 
Under Study 

In context of the present study, the Poisson distribution is 
applied to modelling the number of fragments generated 
during one vessel explosion. The basic definition of the 
probability mass function of the Poisson distribution 
presumes that the number of occurrences takes on the 
values 0, 1, 2, … and we are interested in values starting 
from two fragments, that is, from n = 2. Therefore, the 
basic probability mass function should be applied to the 
displaced number of fragments, 0N , given by 2N . In 
this setting, the Poisson parameter 0  is equal to the 
expected value of 0N  and the probabilities )( nNP   
are equal to the probabilities )2( 0  nNP . The 
probabilities )( nNP   can be expressed through 
Poisson probability masses as follows: 

 )()( 000 |nNPnNP   

 ,e
!

0

0

0

0  
n

n

 0n  = 0, 1, 2, … . (1) 

The numbers 0n  are illustrated in Table 2 and Figure 4. 
Let the random variable expressing uncertainty in the 
parameter 0  be 0 . In Bayesian analysis, the 
probability distribution of 0  is called the prior or 
posterior for 0 . The conjugate prior distribution of 0  
is the gamma distribution: 

),( 000  ~ , (2) 

4. Processing the Data by Means of 
the Poisson-Gamma Distribution
4.1. Distribution Adaptation the to the Case 
Under Study
In context of the present study, the Poisson distribu-
tion is applied to modelling the number of fragments 
generated during one vessel explosion. The basic defi-
nition of the probability mass function of the Poisson 
distribution presumes that the number of occurrenc-
es takes on the values 0, 1, 2, … and we are interested 
in values starting from two fragments, that is, from  
n = 2. Therefore, the basic probability mass function 
should be applied to the displaced number of frag-
ments, 0N , given by 2−N . In this setting, the Poisson 
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parameter 0λ  is equal to the expected value of 0N  
and the probabilities )( nNP =  are equal to the prob-
abilities )2( 0 −= nNP . The probabilities )( nNP =  
can be expressed through Poisson probability masses 
as follows:

==== )()( 000 λ|nNPnNP

 ,e
!

0

0

0

0 λλ −=
n

n

 0n
 
= 0, 1, 2, … .

(1)

The numbers 0n  are illustrated in Table  2 and Fig-
ure 4. Let the random variable expressing uncertainty 
in the parameter 0λ  be 0Λ . In Bayesian analysis, the 
probability distribution of 0Λ  is called the prior or 
posterior for 0λ . The conjugate prior distribution of 

0Λ  is the gamma distribution:

),( 000 βαΛ Γ~ , (2)

where 0α  is the shape parameter and 0β  is an inverse 
scale parameter. With the random parameter 0Λ , the 
uncertain probabilities n are expressed by

n 0 0 0( )|P N n Λ= = =  

 e
!

0
0

0

0 ΛΛ −=
n

n

 
with n = 0n +2.

(3)

Consequently, uncertainty related to the fragment 
number probabilities )( nNP =  amounts in PG model 
to uncertainty related to a single Poisson parameter.

Figure 4
Illustration of the variables n0 and k used to describe 
fragment numbers in PG and MD analyses
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uncertainty related to a single Poisson parameter. 
 
Figure 4 
Illustration of the variables 0n  and k  used to describe 
fragment numbers in PG and MD analyses 

 

4.2. Developing a Gamma Prior 

Developing the prior ),( 00   is the most problematic 
element of PG model. Naturally limited and sporadically 
incoming information on vessel explosions will require to 
develop a non-informative prior of 0  that is relatively 
sensitive to updates with scarce new data. This problem 
is typical for QRA and can be addressed by eliciting the 
constrained non-informative prior distribution of 0  [4]. 
It is suitable to incorporate limited empirical information 
on the average number of fragments and remains non-
informative in general. 
Two constraints are placed on the mean value of 0N  and 
the shape parameter 0 , namely 

0
0

0
0][ 


 ˆNE , (4a) 

.500  , (4b) 

where 0̂  is the empirical average of the displaced 
number of fragments per explosion with at least two 
fragments. Thus the parameters of the prior distribution 
specified by Equations (4) are 0 = 0.5 and 0 = ̂.5/0 . 
As 0 < 1, the gamma prior ),( 00   has a J-shaped 
and monotonically decreasing probability density 
function. The coefficient of variation (CoV) of 

),( 00   is equal to 1/2
0
 , that is, equal to 1.414 

(141 %). Thus the assignment of the value 0.5 to the 
parameter 0  yields a large variance that corresponds to 
fairly large ignorance about the average number of 
fragments. The choice of this value is the only subjective 
element in the development of the constrained non-
informative prior distribution. 
In the present problem formulation, the new data will be 
the total displaced number of fragments, 0n , counted in 

en  explosions: 

)2(10  
en
e fenn , (5) 

where fen  is the number of fragments generated by the 
explosion e . Then the posterior distribution based on the 
counts 0n  and en  is ),( 00    with  000 n  
and en 00  . The count en  is the observed number 
of explosion accidents. Therefore the parameter 0  can 
be viewed as a prior (pseudo) count of accidents. The 
parameter 0  can be interpreted as a prior pseudo-count 
of fragments in 0  accidents. 
The relation between random probability n and random 
Poisson parameter 0  given by Equation (3) is non-
linear, and so the distribution of n can be estimated most 
easily by means of a stochastic (Monte Carlo) simulation. 
Results of such estimation are presented in Section 6. 
However, the distribution of n is not an end in itself from 
the viewpoint of QRA. Equation (3) can be used for 
generating values of n and simulating decisions 
concerning the number of fragments and related assessing 
of fragment characteristics [24]. 

5. Processing the Data by Applying 
the Multinomial-Dirichlet Distribution 
5.1. Distribution adaptation to the case 
considered 

In the present context, the probability mass function of 
the multinomial distribution models an observation of en  
explosions with m  categories of fragment numbers. Let 
the random number of observing the category k  in en  
explosions be kM . In the standard definition of the 
multinomial distribution, the number k  takes on values 
from 1 to m . However, we are interested in explosions 
generating two or more fragments. Therefore, the random 
variable kM  must represent the number of occurrences 
of the random event 1N k   (Figure 4). As m  is a fixed 
finite number, an application of the multinomial 
distribution must be preceded by the choice of the 
maximum limiting number of fragments 1m . The 
considerations presented in Section 3 suggest that 1m  
can be equal to 4 or 5. Then m  can be equal to 3 or 4 
(Table 2 and Figure 4). Thus, in the present context, the 
multinomial probability mass function can be defined as 

4.2. Developing a Gamma Prior
Developing the prior ),( 00 βαΓ  is the most problem-
atic element of PG model. Naturally limited and spo-
radically incoming information on vessel explosions 
will require to develop a non-informative prior of 0Λ  
that is relatively sensitive to updates with scarce new 
data. This problem is typical for QRA and can be ad-
dressed by eliciting the constrained non-informative 
prior distribution of 0Λ  [4]. It is suitable to incor-
porate limited empirical information on the average 
number of fragments and remains non-informative in 
general.
Two constraints are placed on the mean value of 0N  
and the shape parameter 0α , namely

0
0

0
0][ λ

β
α ˆ==NE , (4a)

.500 =α , (4b)

where 0λ̂  is the empirical average of the displaced 
number of fragments per explosion with at least two 
fragments. Thus the parameters of the prior distri-
bution specified by Equations  (4) are 0α =  0.5 and 

0β =  λ̂.5/0 . As 0α <  1, the gamma prior ),( 00 βαΓ  
has a J-shaped and monotonically decreasing prob-
ability density function. The coefficient of variation 
(CoV) of ),( 00 βαΓ  is equal to 1/2

0
−α , that is, equal to 

1.414 (141  %). Thus the assignment of the value 0.5 
to the parameter 0α  yields a large variance that cor-
responds to fairly large ignorance about the average 
number of fragments. The choice of this value is the 
only subjective element in the development of the 
constrained non-informative prior distribution.
In the present problem formulation, the new data 
will be the total displaced number of fragments, +0n , 
counted in en  explosions:

, (5)

where  is the number of fragments generated by the 
explosion e. Then the posterior distribution based on 
the counts +0n  and en  is ),( 00 βα ′′Γ  with ++=′ 000 nαα  
and en+=′ 00 ββ . The count en  is the observed num-
ber of explosion accidents. Therefore the parameter 

0β  can be viewed as a prior (pseudo) count of acci-
dents. The parameter 0α  can be interpreted as a prior 
pseudo-count of fragments in 0β  accidents.
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The relation between random probability n and ran-
dom Poisson parameter 0Λ  given by Equation  (3) is 
non-linear, and so the distribution of n can be esti-
mated most easily by means of a stochastic (Monte 
Carlo) simulation. Results of such estimation are 
presented in Section  6. However, the distribution of 
n is not an end in itself from the viewpoint of QRA. 
Equation  (3) can be used for generating values of n 
and simulating decisions concerning the number of 
fragments and related assessing of fragment charac-
teristics [24].

5. Processing the Data by Applying 
the Multinomial-Dirichlet Distribution
5.1. Distribution Adaptation to the Case 
Considered
In the present context, the probability mass function 
of the multinomial distribution models an observa-
tion of en  explosions with m  categories of fragment 
numbers. Let the random number of observing the 
category k  in en  explosions be kM . In the standard 
definition of the multinomial distribution, the num-
ber k  takes on values from 1 to m . However, we are 
interested in explosions generating two or more 
fragments. Therefore, the random variable kM  must 
represent the number of occurrences of the random 
event 1N k= +  (Figure 4). As m  is a fixed finite num-
ber, an application of the multinomial distribution 
must be preceded by the choice of the maximum lim-
iting number of fragments 1+m . The considerations 
presented in Section 3 suggest that 1+m  can be equal 
to 4 or 5. Then m  can be equal to 3 or 4 (Table 2 and 
Figure 4). Thus, in the present context, the multino-
mial probability mass function can be defined as
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where each km  is a non-negative integer and kp  is the 
probability that a given explosion will generate 1+k  
fragments, that is, the probability

)1( +== kNPpk , (7)

In terms of QRA, the probabilities kp  are uncertain 
in the epistemic sense. The uncertainty in kp  will be 
modelled by the random variables k, the vector of 
which (1, …, m), follows a Dirichlet distribution:

(1, … , k, …, m) 1Dir( ,  ... , , ... , )~ k mθ θ θ , (8)

where kθ  are positive real numbers called the con-
centration parameters [16]. The parameters kθ  
correspond to the uncertain probabilities k. The 
marginal distributions of k are beta ones with pa-
rameters kθ  and kθθ   −+ , where   1∑ =+ =

m
k kθθ . That is, 

k Be( , )~ k kα β  with kα = kθ  and kβ = kθθ   −+ . The 
marginal mean and variance of k  are given by

E[k] ( ) k
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where θ  denotes the vector ) , ... ,, ...  ,( 1 mk θθθ .
The Dirichlet distribution is a conjugate to the mul-
tinomial distribution. Thus the Dirichlet density 

∏
=

−∝
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k
kmm

kppp
1

1
11 ) , ... , | , ... ,( θθθπ (10)

expresses a prior distribution of the probabilities k.
The new data in the present context has the form 

, where  is the number of frag-
mentations belonging to the category k  encountered 
in en  explosions. The number en  is equal to the sum 
∑ =

en
e efn1 . The posterior distribution of k is again a 

Dirichlet with the updated concentration parameters 
fkkk n+=′ θθ

 
. In other words, the count is  an ob-

served number of vessel bursts into 1+k  fragments.
As the count  is an observed number of explosion 
ns with 1+k  fragments, the prior parameter kθ  can 
be treated as a prior pseudo-count of the 1+k  explo-
sions. Therefore, the larger is the sum of the pseu-
do-counts, +θ , the less diffuse is the prior distribu-
tion of the parameters kθ .

5.2. Developing a Dirichlet Prior Distribution
Developing a Dirichlet prior distribution consists in a 
selection of values for the parameters kθ . As the aim 
of this study is to compare PG and MD models, the 
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Dirichlet prior can be developed by applying the same 
approach as in the case of the constrained non-infor-
mative gamma prior (Section 4.2). A minimally infor-
mative Dirichlet prior distribution can be elicited by 
means of the multivariate generalisation of the con-
strained non-informative prior method [16].
The following constraint is placed on the marginal 
means E[k]:

E[k] ˆ k
k

a

m
n

µ= = , (11)

where km  the observed number of accidents with 
1+k  fragments counted in an  explosion accidents. 

An example of km , an  and kµ̂  is given in Table 2. The 
ratio kµ̂  is the observed proportion and can be called 
the specified mean value. In principle, some values of 
E[k] can be specified subjectively if the proportions 

kµ̂  are very small or equal to zero [16]. However, the 
data used in this study does not contain “empty” or 
“almost empty” categories k  related to the small 
numbers of fragments posing the most serious impact 
hazard (Table 2). 
Parameters of the marginal prior, kα  and kβ , are 
specified by means of the following expressions:

(12a)

and

. (12b)

The parameters kα  and kβ  calculated by means of 
Equations (11) allow to specify a marginal variance of 
of E[k] related to the specified mean value kµ̂ :

1
)(12

++
−

=
kk

kk
k βα

µµ
σ

ˆˆˆ . (13)

With the parameters kα  and kβ , parameters of the Di-
richlet prior, kθ , are calculated by a constraint mini-
misation of the least squares objective function:

(14)

with the constraint that each kθ >  0. The functions 
)(θkµ  and )(2 θkσ  in the above minimisation problem 

are expressed by Equations (9). Reasons for the mini-
mization of )(θϕ  were explained by Kelly and Atwood 
[16].
The initial point of the minimisation of )(θϕ  can be the 
vector θ  with the components calculated by means of 
the Equations (12), that is, kθ = kα . 
With the desired parameters kθ , the epistemic proba-
bility distributions of the fragment number probabil-
ities will be

n 1 1Be( , )~ n nθ θ θ− + −− (15a)

or

n 1 1Be( , )~ n nθ θ θ− + −′ ′ ′− (15a)

depending on the prior or posterior status of the con-
centration parameters. In Equations (14), the quanti-
ty +′θ  is the sum of the updated parameters kθ ′ .
The above specification of the epistemic uncertain-
ty distributions of n is based only on the Dirichlet 
distribution. An application of the epistemic distri-
butions of fragment number probabilities to purpos-
es of QRA will require sampling values of n  form a 
Dirichlet distribution. It is commonly known that this 
can be done with relative ease by sampling from the 
gamma distributions )1 ,( 1−Γ nθ  [12].

6. A Numerical Example
The starting point of this case study is data on frag-
ment numbers counted in 209 BLEVE accidents and 
given in Table  2. This data will be used for both PG 
and MD modelling (Figure 3). The proportions given 
in Table 2 and denoted by nµ̂  suggest that the prevail-
ing numbers of fragments are 2, 3 and 4. Therefore, 
prior and posterior distributions of the random prob-
abilities n  will be developed only for n  = 2, 3 and 
4. This means that the indices shown in Figure 4 will 
take on the following values: 0n  = 0, 1, 2 and k  = 1, 2, 
3. The case of five fragments ( n = 5) was not included 
in the analysis due to its small observed proportion  

5µ̂  = 0.0144. The dealing with only three fragment 
numbers 2, 3 and 4 allowed a visualisation of Dirichlet 
results by means of ternary graphs.
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6.1. Application of the Poisson-gamma Model
From Table 2, the average displaced number of frag-
ments per accident is 

∑
=

==
7

0
00

0
0

n
nn µλ ˆˆ 0×0.4689 + … + 7×0.0432 = 0.790.

Pairs of proportions 
0nµ̂  and Poisson probabili-

ty masses 0.790)|( 00 nNP =  ( 0n   =  0,  1,  …  ,  7) are 
compared in Table  3. The difference between 

0nµ̂  
and 0.790)|( 00 nNP =  is relatively low, and so we as-
sumed that the goodness of fit of Poisson distribution 
is sufficient for the purposes of this case study.

Table 3
Comparison of proportions 

0nµ̂  and Poisson probability 
masses calculated with 0λ̂  = 0.790

n n0 0nµ̂ P(N0 = n0|0.790)

2 0 0.4689 0.4538

3 1 0.3732 0.3585

4 2 0.1148 0.1416

5 3 0.0144 0.0373

6 4 0.0096 0.0074

7 5 0.0144 0.0012

8 6 0 0.015×10–2

9 7 0.0048 0.0017×10–2

The parameters of the prior distribution of 0Λ  spec-
ified by Equations  (4) are 0α =  0.5 and 0β =  λ̂.5/0  = 
0.5/0.79 = 0.633. Assume that in four future explo-
sions with n  ≥ 2 the following fragment numbers fen  
will be counted: {4, 2, 3, 3}. From Equation (5), +0n  = 4. 
Thus the new data is } ,{ 0 enn +  = {4,  4}. Applying 

} ,{ 0 enn +  yields the posterior parameters: 0α′  = 0α  + 
tn0  = 0.5 + 4 = 4.5 and 0β ′  = 0β  + en  = 0.633 + 4 = 4.633. 

Thus the posterior distribution of 0Λ  is .633)4.5,4(Γ . 
Densities of .633)0.5,0(Γ  and .633)4.5,4(Γ  are plot-
ted in Figure  5. Characteristics of .633)0.5,0(Γ  and 

.633)4.5,4(Γ  are given in Table 4.
Prior and posterior distributions of the uncertain 
probabilities n were assessed by means of a stochas-
tic simulation. A total of 10 000 simulation runs were 

carried out using the transformation given by Equa-
tion (3). The simulation generated two groups of sam-
ples consisting of prior and posterior values of n:
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(n  = 1, 2, 3), (16b)

where i0λ  and i0λ′  are values of 0Λ  generated in the 
simulation run i  from .633)0.5,0(Γ  and .633)4.5,4(Γ , 
respectively; M  is the number of simulation runs. 
Descriptive measures of the samples np  and np′  are 
presented in Table  5. Frequency distributions (poly-
gons) of np  and np′  are plotted in Figure 6. The lim-
itation of arguments of the prior and posterior distri-

Table 4
Properties of gamma priors and posteriors of 0Λ  

Property
Prior

.633)0.5,0(Γ
Posterior

.633)4.5,4(Γ

Mean 0.790 0.971

CoV 141 % 47.1 %

Quantile ,0.050λ 0.003 0.359

Median ,0.50λ 0.359 0.900

Quantile ,0.950λ 3.03 1.826

Figure 5
Prior and posterior densities obtained for the mean 0λ  of 
the random displaced number of fragments, N0 
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where i0  and i0  are values of 0  generated in the 
simulation run i  from .633)0.5,0(  and .633)4.5,4( , 
respectively; M  is the number of simulation runs. 
Descriptive measures of the samples np  and np  are 
presented in Table 5. Frequency distributions (polygons) 
of np  and np  are plotted in Figure 6. The limitation of 
arguments of the prior and posterior distributions of 3 
and 4 by the intervals [0, 37] and [0, 28] is explained in 
Annex A. 
 
Table 5 
Characteristics of the samples np  and np  used to assess 
the distributions of the random variables n 

Sample Mean CoV, 
% 

5th 
perc. 

95th 
perc. 

Min Max 

2p  0.626 51.0 0.051 0.997 0.000 1.000 

3p  0.190 68.0 0.003 0.366 0.000 0.368 

4p  0.086 110 0.000 0.265 0.000 0.271 

2p  0.417 39.1 0.162 0.700 0.034 0.944 

3p  0.331 13.8 0.234 0.368 0.056 0.368 

4p  0.162 42.8 0.045 0.266 0.002 0.271 

 
Figure 5 
Prior and posterior densities obtained for the mean 0  of 
the random displaced number of fragments, 0N  

 
An additional comment is necessary if we look at values 
of the simulated probabilities given by 
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Figure 6 
Estimates of priors and posteriors of the probabilities 

)( nNP   obtained with PG model: (a) the case N  = 2; 
(b) the case N  = 3; (c) the case N  = 4 

 

 

 
The values nip  and nip  simulate probability masses of 
the Poisson distribution and are components of the 
samples np  and np , respectively. In each simulation run 
i , nip  and nip  were computed by generating three 
values of i0  and three values of i0 . Each of them was 
sampled independently from respective prior and 
posterior gamma distributions. This led to the result that 
the totals 

   4
2, n nii pp  and    4

2, n nii pp  (18) 

do not come to some constant value as would be the case 
with the fixed Poisson probability masses 

)( 000 |nNP   ( 0n  = 0, 1, 2). In addition, values of 

ip ,  and ip ,  in some simulation runs exceeded unity 
(Figure 7). However, proportions of the probabilities nip  
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Table 5
Characteristics of the samples np  and np′  used to assess 
the distributions of the random variables n

Sample Mean CoV, % 5th perc. 95th perc. Min Max

2p 0.626 51.0 0.051 0.997 0.000 1.000

3p 0.190 68.0 0.003 0.366 0.000 0.368

4p 0.086 110 0.000 0.265 0.000 0.271

2p′ 0.417 39.1 0.162 0.700 0.034 0.944

3p′ 0.331 13.8 0.234 0.368 0.056 0.368

4p′ 0.162 42.8 0.045 0.266 0.002 0.271

Figure 6
Estimates of priors and posteriors of the probabilities 
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where i0  and i0  are values of 0  generated in the 
simulation run i  from .633)0.5,0(  and .633)4.5,4( , 
respectively; M  is the number of simulation runs. 
Descriptive measures of the samples np  and np  are 
presented in Table 5. Frequency distributions (polygons) 
of np  and np  are plotted in Figure 6. The limitation of 
arguments of the prior and posterior distributions of 3 
and 4 by the intervals [0, 37] and [0, 28] is explained in 
Annex A. 
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where i0  and i0  are values of 0  generated in the 
simulation run i  from .633)0.5,0(  and .633)4.5,4( , 
respectively; M  is the number of simulation runs. 
Descriptive measures of the samples np  and np  are 
presented in Table 5. Frequency distributions (polygons) 
of np  and np  are plotted in Figure 6. The limitation of 
arguments of the prior and posterior distributions of 3 
and 4 by the intervals [0, 37] and [0, 28] is explained in 
Annex A. 
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where i0  and i0  are values of 0  generated in the 
simulation run i  from .633)0.5,0(  and .633)4.5,4( , 
respectively; M  is the number of simulation runs. 
Descriptive measures of the samples np  and np  are 
presented in Table 5. Frequency distributions (polygons) 
of np  and np  are plotted in Figure 6. The limitation of 
arguments of the prior and posterior distributions of 3 
and 4 by the intervals [0, 37] and [0, 28] is explained in 
Annex A. 
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where i0  and i0  are values of 0  generated in the 
simulation run i  from .633)0.5,0(  and .633)4.5,4( , 
respectively; M  is the number of simulation runs. 
Descriptive measures of the samples np  and np  are 
presented in Table 5. Frequency distributions (polygons) 
of np  and np  are plotted in Figure 6. The limitation of 
arguments of the prior and posterior distributions of 3 
and 4 by the intervals [0, 37] and [0, 28] is explained in 
Annex A. 
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where i0  and i0  are values of 0  generated in the 
simulation run i  from .633)0.5,0(  and .633)4.5,4( , 
respectively; M  is the number of simulation runs. 
Descriptive measures of the samples np  and np  are 
presented in Table 5. Frequency distributions (polygons) 
of np  and np  are plotted in Figure 6. The limitation of 
arguments of the prior and posterior distributions of 3 
and 4 by the intervals [0, 37] and [0, 28] is explained in 
Annex A. 
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where i0  and i0  are values of 0  generated in the 
simulation run i  from .633)0.5,0(  and .633)4.5,4( , 
respectively; M  is the number of simulation runs. 
Descriptive measures of the samples np  and np  are 
presented in Table 5. Frequency distributions (polygons) 
of np  and np  are plotted in Figure 6. The limitation of 
arguments of the prior and posterior distributions of 3 
and 4 by the intervals [0, 37] and [0, 28] is explained in 
Annex A. 
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where i0  and i0  are values of 0  generated in the 
simulation run i  from .633)0.5,0(  and .633)4.5,4( , 
respectively; M  is the number of simulation runs. 
Descriptive measures of the samples np  and np  are 
presented in Table 5. Frequency distributions (polygons) 
of np  and np  are plotted in Figure 6. The limitation of 
arguments of the prior and posterior distributions of 3 
and 4 by the intervals [0, 37] and [0, 28] is explained in 
Annex A. 
 
Table 5 
Characteristics of the samples np  and np  used to assess 
the distributions of the random variables n 

Sample Mean CoV, 
% 

5th 
perc. 

95th 
perc. 

Min Max 

2p  0.626 51.0 0.051 0.997 0.000 1.000 

3p  0.190 68.0 0.003 0.366 0.000 0.368 

4p  0.086 110 0.000 0.265 0.000 0.271 

2p  0.417 39.1 0.162 0.700 0.034 0.944 

3p  0.331 13.8 0.234 0.368 0.056 0.368 

4p  0.162 42.8 0.045 0.266 0.002 0.271 

 
Figure 5 
Prior and posterior densities obtained for the mean 0  of 
the random displaced number of fragments, 0N  

 
An additional comment is necessary if we look at values 
of the simulated probabilities given by 

!/e 00
00 np i

n

ini
   ( 0n  = n  – 2; n  = 2, 3, 4), (17a) 

!/e 00
00 np i

n

ini
   ( 0n  = n  – 2; n  = 2, 3, 4). (17b) 

 
Figure 6 
Estimates of priors and posteriors of the probabilities 

)( nNP   obtained with PG model: (a) the case N  = 2; 
(b) the case N  = 3; (c) the case N  = 4 

 

 

 
The values nip  and nip  simulate probability masses of 
the Poisson distribution and are components of the 
samples np  and np , respectively. In each simulation run 
i , nip  and nip  were computed by generating three 
values of i0  and three values of i0 . Each of them was 
sampled independently from respective prior and 
posterior gamma distributions. This led to the result that 
the totals 

   4
2, n nii pp  and    4

2, n nii pp  (18) 

do not come to some constant value as would be the case 
with the fixed Poisson probability masses 

)( 000 |nNP   ( 0n  = 0, 1, 2). In addition, values of 

ip ,  and ip ,  in some simulation runs exceeded unity 
(Figure 7). However, proportions of the probabilities nip  
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(b)

(c)
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Figure 7
Distributions of the simulated sums ip ,+  and ip ,+′  
computed by means of Equations (18)

  

and nip  in the sums ip ,  and ip ,  can be utilised for 
QRA. They allow to sample values of the fragment 
number probabilities as explained in Annex B. 
 
Figure 7 
Distributions of the simulated sums ip ,  and ip ,  
computed by means of Equations (18) 

 

6.2. Application of the Multinomial-Dirichlet 
Model 

In case of MD model, prior distributions of the random 
probabilities n ( n = 2, 3, 4) were developed by applying 
the observed proportions k̂  ( k  = n –1) given in 
Table 2. Values of k̂  were used to specify the marginal 
means E[k] of k according to Equation (11). 
The parameters of the marginal beta priors, k  and k , 
were calculated by means of Equations (12). Values of 
k  and k  as well as values of the marginal variances 
2
k̂  calculated by means of Equation (13) are given in 

Table 6.  
The values k  were grouped into the vector   = 
(0.5, 0.5, 0.5, 0.5). This vector was taken as the initial 
point of the minimisation of the function )(  defined by 
Equation (14). A ternary graph of )(  is shown in 
Figure 8. The minimum of )(  was found at the point 

  = ),,( 321
***   = (0.66, 0.53, 0.17). The function 

value )(   is equal to 0.00161. The sum of the 
minimising values *

k  is   = 1.36. The prior marginal 
distributions of n are the beta distributions 
Be(0.66, 1.36), Be(0.53, 1.36) and Be(0.17, 1.36) with 
densities plotted in Figure 9. Properties of these 
distributions are given in Table 7. A ternary graph of the 
prior Dirichlet density 0.53,0.17) 0.66, |,,( 432 ppp  is 
presented in Figure 10. 
 
Table 6 

The specified marginal prior beta distributions 
) ,Be( kk   calculated with Equations (12) and (13) 

n  k  k̂  k  k  2
k̂  

2 1 0.4689 0.5 0.5663 0.1205 
3 2 0.3732 0.5 0.8398 0.1000 
4 3 0.1148 0.5 3.8554 0.0190 

Table 7 
Properties of the marginal prior and posterior beta 
distributions of the random probabilities n ( n  = 2, 3, 4) 

Property Prior beta 
densities with 

  = 1.36 

Posterior beta 
densities with 

  = 5.36 

Mean of 2  0.3267 0.2365 

CoV of 2 82.6 % 63.5 % 

5th perc. of 2 0.00757 0.0394 

95th perc. of 2 0.8448 0.5225 

Mean of 3 0.2804 0.3207 

CoV of 3 94.2 % 48.8 % 

5th perc. of 3 0.00244 0.0920 

95th perc. of 3 0.8157 0.6037 

Mean of 4 0.1111 0.1792 

CoV of 4 178 % 78.0 % 

5th perc. of 4 7.51×10–8 0.0157 

95th perc. of 4 0.5940 0.4567 

 
Let new information acquired for updating the Dirichlet 
prior 0.53,0.17) 0.66, |,,( 432 ppp  be same as in PG 
analysis, namely, {4, 2, 3, 3} (four explosions with 4, 2, 
3 and 3 fragments). Then the new data has the form 

},,{ 321 fff nnn  = {1, 2, 1}. With the new data, the vector 

of posterior Dirichlet parameters, ),,( 321   , is 
(1.66, 2.53, 1.17) and the posterior sum   is equal to 
5.36. Figure 11 presents a ternary graph of the Dirichlet 
posterior 2.53,1.17) 1.66, |,,( 432 ppp . The surfaces 
shown in Figures 10 and 11 are cubic approximations of 
the Dirichlet densities fitted to precise values of the 
Dirichlet prior Dir(0,66, 0,53, 0,17) and posterior 
Dir(1,66, 2,53, 1,17). This explains the negative density 
values that appear in Figure 11. However, the 
approximate surfaces are sufficient to illustrate the degree 
of the change resulting from the Bayesian updating of the 
Dirichlet prior with new data. 
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Ternary graph of the least squares function )(  defined 
by Equation (14) 
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marginal distributions of n are the beta distributions 
Be(0.66,  1.36), Be(0.53,  1.36) and Be(0.17,  1.36) with 
densities plotted in Figure 9. Properties of these dis-
tributions are given in Table 7. A ternary graph of the 
prior Dirichlet density 0.53,0.17) 0.66, |,,( 432 pppπ  
is presented in Figure 10.

Figure 8
Ternary graph of the least squares function )(θϕ  defined 
by Equation (14) 

 
Figure 9 
Prior and posterior beta densities of the fragment number 
probabilities )( nNP   ( n  = 2, 3, 4) 

 

6.3. Comparison of the Models Under Study 

The next natural step of this case study is a comparison 
of results obtained by means of PG model and the model 
based on the specification of Dirichlet parameters. As 
declared in Figure 3, either of them was applied to the 
same data presented in Table 2 and related methods were 
used to develop non-informative priors for these models. 
Both models yield estimates of the fragment number 
probabilities )( nNP   expressed as distributions of the 
epistemic random variables n ( n = 2, 3, 4). Yet there the 
similarity ends. The comparison must be made between 
distributions of n independently assessed by means a 
stochastic simulation and multivariate distribution of the 
triplet of random variables (2, 3, 4). 
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Ternary graph of the Dirichlet prior 

0.53,0.17) 0.66, |,,( 432 ppp  

 
Figure 11 
Ternary graph of the Dirichlet posterior 

2.53,1.17) 1.66, |,,( 432 ppp  

 
The shape of the epistemic distributions of )( nNP   
developed by means of PG model is determined by the 
function of Poisson probability masses (see Figure 6 and 
Annex A). The positive, practical feature of this model is 
that the estimation of the probabilities )( nNP   requires 
eliciting only one prior distribution, namely, the 
distribution of the average number of accidents per 
explosion. This quantity has a clear physical meaning and 
is well understandable for the analyst. The application of 
the Poisson distribution is also natural due to the range of 
values of N  and incidence of fragment numbers. 
The distributions of )( nNP   specified by means of PG 
model have all three distinctive forms (“bell”, “J” and 
“U” shapes). These forms are determined by the choice 
of gamma prior and nature of the Poisson model. In other 
words, estimates of )( nNP   are as good as is the prior 
distribution of the displaced average number of 

Figure 9
Prior and posterior beta densities of the fragment number 
probabilities P(N = n) (n = 2, 3, 4)
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The distributions of )( nNP   specified by means of PG 
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Table 7
Properties of the marginal prior and posterior beta 
distributions of the random probabilities n (n = 2, 3, 4)

Property Prior beta densi-
ties with +θ  = 1.36

Posterior beta densi-
ties with +′θ  = 5.36

Mean of 2 0.3267 0.2365

CoV of 2 82.6 % 63.5 %

5th perc. of 2 0.00757 0.0394

95th perc. of 2 0.8448 0.5225

Mean of 3 0.2804 0.3207

CoV of 3 94.2 % 48.8 %

5th perc. of 3 0.00244 0.0920

95th perc. of 3 0.8157 0.6037

Mean of 4 0.1111 0.1792

CoV of 4 178 % 78.0 %

5th perc. of 4 7.51×10–8 0.0157

95th perc. of 4 0.5940 0.4567

Let new information acquired for updating the Dir-
ichlet prior 0.53,0.17) 0.66, |,,( 432 pppπ  be same as 
in PG analysis, namely, {4, 2, 3, 3} (four explosions with 
4, 2, 3 and 3 fragments). Then the new data has the 
form },,{ 321 fff nnn  = {1, 2, 1}. With the new data, the 
vector of posterior Dirichlet parameters, ),,( 321 θθθ ′′′ , 
is (1.66, 2.53, 1.17) and the posterior sum +′θ  is equal 
to 5.36. Figure 11 presents a ternary graph of the Di-
richlet posterior 2.53,1.17) 1.66, |,,( 432 pppπ . The 
surfaces shown in Figures 10 and 11 are cubic approx-
imations of the Dirichlet densities fitted to precise 
values of the Dirichlet prior Dir(0,66, 0,53, 0,17) and 
posterior Dir(1,66, 2,53, 1,17). This explains the nega-
tive density values that appear in Figure 11. However, 
the approximate surfaces are sufficient to illustrate 
the degree of the change resulting from the Bayesian 
updating of the Dirichlet prior with new data.

6.3. Comparison of the Models Under Study
The next natural step of this case study is a compar-
ison of results obtained by means of PG model and 
the model based on the specification of Dirichlet pa-
rameters. As declared in Figure 3, either of them was 
applied to the same data presented in Table 2 and re-
lated methods were used to develop non-informative 

priors for these models. Both models yield estimates 
of the fragment number probabilities )( nNP =  ex-
pressed as distributions of the epistemic random 
variables n ( n = 2, 3, 4). Yet there the similarity ends. 
The comparison must be made between distributions 
of n independently assessed by means a stochastic 
simulation and multivariate distribution of the triplet 
of random variables (2, 3, 4).
The shape of the epistemic distributions of )( nNP =  
developed by means of PG model is determined by the 
function of Poisson probability masses (see Figure 6 
and Appendix  A). The positive, practical feature of 
this model is that the estimation of the probabilities 

Figure 10
Ternary graph of the Dirichlet prior  π(p2, p3, p4 |0.66, 0.53, 0.17) 
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values of N  and incidence of fragment numbers. 
The distributions of )( nNP   specified by means of PG 
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)( nNP =  requires eliciting only one prior distribu-
tion, namely, the distribution of the average number 
of accidents per explosion. This quantity has a clear 
physical meaning and is well understandable for the 
analyst. The application of the Poisson distribution is 
also natural due to the range of values of N  and inci-
dence of fragment numbers.
The distributions of )( nNP =  specified by means of 
PG model have all three distinctive forms (“bell”, “J” 
and “U” shapes). These forms are determined by the 
choice of gamma prior and nature of the Poisson mod-
el. In other words, estimates of )( nNP =  are as good 
as is the prior distribution of the displaced average 
number of fragments, 0λ . The procedure suggested 
for developing the constrained non-informative gam-
ma prior of 0λ  is in essence formal and allows little 
leeway for subjective judgement. However, the mere 
decision to apply this procedure is subjective.
The shape of the marginal beta priors and posteriors 
developed within MD model is a direct choice dictat-
ed by this model. Figures 5 and 10 as well as Tables 
5 and 7 reveal that these marginal beta priors differ 
significantly from the priors developed by simula-
tion within PG model. Another difference between 
these two models lies in the nature of the quantities, 
for which priors must be developed. MD model re-
quires to specify priors for probabilities. Thus, the 
analyst will have to do with quantifying the degree of 
belief instead of quantifying uncertainty in the aver-
age number of fragments. The latter task is obviously 
more natural than the former.
The suggested procedure used for developing mini-
mally informative prior distribution of the multino-
mial parameters is also technically formal. It relieves 
the analyst of making decisions concerning the prob-
abilities )( nNP =  that could be overly subjective. 
This procedure is a multivariate generalisation of the 
constrained non-informative procedure used in PG 
model. Thus, the degree of subjectivity in the use of 
the minimally informative priors is minimal. Howev-
er, the choice of the minimally informative procedure 
is subjective in principle.
It seems that the only practical approach allowing 
to compare PG model with MD model is looking at 
convergence of Bayesian estimates of )( nNP =  with 
larger amounts of data. Hypothetical future data was 
used to demonstrate convergence of this type in QRA 

applications [36]. A widely known review of BLEVE 
accidents from the years 1926 to 2004 reveals that ac-
cidents recorded on the global scale happen roughly 1 
to 4 times per year [1]. Thus, formally in the coming 
decade we can expect 10 to 40 BLEVE accidents and 
the past data reveals that approximately 80 % of them 
will generate at least two fragments [38]. Thus, the 
potential amount of new information that could be 
gained from the future accidents and used for Bayes-
ian updating may be extracted from 8 to 32 accidents.
Let us assume that in the coming ten years we will 
face 30 accidents with fire induced vessel disintegra-
tions in at least two fragments (30 realisations of the 
random events 2N ≥ ). As the period of one decade 
will hardly produce essential changes in design and 
exploitation of pressure vessels, it is likely that pro-
portions of fragment numbers will be similar to the 
values of nµ̂  given in Table  2. Therefore, hypotheti-
cal, future data may have the form given in Table 8.

Table 8
Hypothetical data on thirty future 30 BLEVE accidents (ne = 30)

n nm
e

n
n n

m
=µ̂ 0n k

2 14 0.467 0 1

3 11 0.367 1 2

4 5 0.167 2 3

The total number of fragments counted in these 30 
accidents is equal to 81. In line with Equation  (5), 
the corresponding sum of displaced numbers of frag-
ments, +0n , is equal to 81 – 2× en , that is, 21. The new 
data for updating the gamma prior of the uncertain 
Poisson parameter 0Λ  has the form },{ 0 enn +  and 
amounts to {21,  30}. With the new data, the posteri-
or gamma parameters will be 0α′  = 0α  + +0n  = 0.5 + 
21 = 21.5 and 0β ′  = 0β  + en  = 0.633 + 30 = 30.6. The 
density of the posterior distribution 30.6)Ã(21.5,  is 
shown in Figure 5. The mean, CoV and 90 % credible 
interval of 30.6)Ã(21.5,  are equal to 0.703, 21.6 % and 
(0.473, 0.969), respectively. The credible interval is il-
lustrated in Appendix A.
The transformation of the uncertainty expressed by 
the posterior distribution 30.6)Ã(21.5,  yielded three 
samples np′  ( n  = 2, 3, 4) of n values. Descriptive sta-
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tistics and frequency polygons of np′  are given in Ta-
ble 9 and Figure 12, respectively.
In the case of the Dirichlet model, the hypothetical 
new information is expressed by the counts relat-
ed to the fragment number categories k , namely, 

},,{ 321 fff nnn  = {14, 11, 5} (see Table 8). Adding these 
counts to the prior values of the Dirichlet parame-
ters, (0.66, 0.53, 0.17), yields the posterior parameters 

),,( 321 θθθ ′′′  = (14.7, 11.5, 5.17) with the sum +′θ  = 31.4. 
Densities of the marginal posterior distributions 
Be(14.7,  31.4), Be(11.5,  31.4) and Be(5.17,  31.4) are 
shown in Figure 12. Properties of these distributions 
are listed in Table 10.

Table 9
Characteristics of the samples np′  used to express 
uncertainty in the probabilities n and related to ten years 
data on future BLEVE accidents

Sample Mean CoV, % 5th 
perc.

95th 
perc. Min Max

2p′ 0.500 14.76 0.378 0.622 0.250 0.760

3p′ 0.341 6.81 0.295 0.367 0.209 0.368

4p′ 0.122 27.01 0.070 0.179 0.029 0.240

Table 10
Marginal posterior beta distributions calculated with the 
hypothetical ten years data given (cf Table 8)

Probability Distribution Mean CoV, %

P(N = 2) Be(14.7, 31.4) 0.314 21.3

P(N = 3) Be(11.5, 31.4) 0.268 24.9

P(N = 4) Be(5.17, 31.4) 0.141 40.2

Figure 12
Three pairs of posteriors of the probabilities  P(N = n)  
(n = 2, 3, 4) calculated for supposed new data by means of 
PG and MD models

 

Probability Distribution Mean CoV, % 
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Figure 12 
Three pairs of posteriors of the probabilities )( nNP   (
n  = 2, 3, 4) calculated for supposed new data by means 
of PG and MD models 

 

 

 
As expected, the relatively large amount of data presented 
in Table 8 resulted in peaked (comparatively narrow) 
posterior distributions of n. The distributions developed 
by PG and MD models came closer together. However, a 
particularly close convergence was not achieved. In 
average, estimates of the probabilities )2( NP  and 

)3( NP  produced by the hypothetical 10 years data 
were tangibly larger in the case of PG model (cf Tables 9 
and 10). It is very likely that convergence of results 
obtained with these models will increase with a further 
increase of the amount of data. However, the speculation 
about the data that will become available in the coming 

two or three decades is of little practical use. 

7. Discussion 
An answer to the question, which of the two models, PG 
or MD, should be used for QRA applications, is not 
straightforward. In the present data situation, either of the 
models yields fairly vague prior estimates of the fragment 
number probabilities (Figures 6 and 9). These estimates 
are non-informative prior distributions that express 
diffuse statements about the probabilities )( nNP  . 
Thus we have to compare two diffuse priors without 
knowing true values of the probabilities )( nNP  . In 
addition, an estimation of these probabilities is only an 
early, if not the first, step of QRA related to pressure 
vessel explosions. Uncertainties related to the 
probabilities )( nNP   must be propagated further and 
transformed eventually into uncertainties in fragment 
impact probabilities. 
It seems that the only worthwhile answer to the above 
question can be provided from the heuristic and 
conservative point of view: 
 
1. The three fragmentation events N n  ( n  = 2, 3, 4) 
must be ranked in terms of the hazard of fragment impacts 
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7. Discussion
An answer to the question, which of the two models, 
PG or MD, should be used for QRA applications, is 
not straightforward. In the present data situation, ei-
ther of the models yields fairly vague prior estimates 
of the fragment number probabilities (Figures 6 and 
9). These estimates are non-informative prior dis-
tributions that express diffuse statements about the 
probabilities )( nNP = . Thus we have to compare 
two diffuse priors without knowing true values of the 
probabilities )( nNP = . In addition, an estimation of 
these probabilities is only an early, if not the first, step 
of QRA related to pressure vessel explosions. Uncer-
tainties related to the probabilities )( nNP =  must be 
propagated further and transformed eventually into 
uncertainties in fragment impact probabilities.
It seems that the only worthwhile answer to the above 
question can be provided from the heuristic and con-
servative point of view:
1 The three fragmentation events N n=  ( n  = 2, 3, 4) 

must be ranked in terms of the hazard of fragment 
impacts on potential targets. A stochastic simu-
lation of fragment ejection and projection can be 
used for this ranking [34, 41].

2 The most hazardous fragmentation must be asso-
ciated with the prior (posterior) distribution of the 
model that yields larger values of the probability of 
fragment number in question.

For instance, the vessel fragmentation into two ob-
long end-caps shown in Figure  1a might be found as 
the most hazardous event due to largest kinetic energy 
of these fragments at the instant of ejection. Then the 
prior (posterior) distribution developed by means of 
PG model must be preferred. This distribution covers 
larger range of values of the probability )2( =NP  than 
the prior (posterior) elicited by means of MD model 
(compare the prior and posterior percentile ranges 
(0.051, 0.997) and (0.162, 0.700) given in Tables 5 and 
to the corresponding ranges (0.00757,  08448) and 
(0.0394, 0.5225) shown in Table 7).
In the context of the present modelling, the aleatory 
parts of PG or MD models were used only formally, 
as platforms for eliciting priors of fragment num-
ber probabilities. The aleatory Poisson distribution 
served as means for propagating epistemic uncer-
tainty in average number of fragments per accident 
and the aleatory multinomial distribution was only 

background for the application of the Dirichlet prior 
and posterior distributions. The fact that Poisson and 
multinomial distributions were not directly used for 
modelling allows to relax the assumption of constant 
parameters of these distributions. In the presence of 
time trends, Bayesian inference for these parameters 
will be more complicated but still tractable [8, 17, 20]. 
Here, it is pertinent to note that to date applications of 
MD model to CCFs have not included checks for trends 
in occurrences of these failures [28, 44, 49].
The processed data on fragment numbers presented 
in Section 2 does not allow to reveal the trend of these 
numbers over previous time represented by a series of 
BLEVE explosions. However, this data is suitable for 
eliciting non-informative priors in line with PG or MD 
models. Elicitation of non-informative priors is not a 
rigorous procedure and includes a good deal of subjec-
tivity. A part of this subjectivity can be disregarding of 
a possible time trend in average number of fragments.

8. Conclusion
Two Bayesian approaches to a prediction of the num-
ber of fragments from pressure vessel explosions 
have been proposed. The prediction was expressed 
in terms of probabilities of individual fragment num-
bers. The proposed approaches were based on an 
application of two Bayesian models known as com-
pound Poisson-gamma (PG) and multinomial-Dir-
ichlet (MD) probability distributions.
The study reached the conclusion that either of the 
compound distributions can be used to elicit prior 
distributions of fragment number probabilities on 
the basis of available post-mortem data on fragmen-
tation of pressure vessels. Updating these epistemic 
distributions with the new data consists in updating 
priors of Poisson lambda parameter in PG model and 
Dirichlet concentration parameters in MD model.
The priors of the fragment number probabilities de-
veloped by means of PG and MD models for currently 
available scarce data on vessel fragmentations differ 
noticeably. However, these priors are only the first 
step of the Bayesian updating procedure. Calculations 
with hypothetical new data brought out that differ-
ence between posterior distributions obtained with 
PG and MD models tend to decrease with increasing 
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amount of new data. Another conclusion that can be 
drawn from the example calculations presented in the 
study is that priors expressing epistemic uncertainty 
in fragment number probabilities are sensitive to up-
dating with scarce new data. This conclusion is high-
ly advantageous because such vessel explosions as 
BLEVEs are rare events even on the global scale. Thus 
the arrival of new data on these accidents is slow.
Findings of this study can be useful for a quantita-
tive assessment of risk posed by potential damage 
due to fragment impacts. The priors and posteriors 
of the uncertain fragment number probabilities can 
be propagated with relative ease through the logical 
model of QRA known as the event tree. This model is 
naturally suited to express scenarios of the accident 
involving a pressure vessel burst.

Appendix A
The probability mass function of the Poisson distribu-
tion is used to express uncertainty in the fragment num-
ber probabilities )( nNP =  expressed by the probability 
masses )2( 0 −= nNP  (see Equation (1)). Epistemic un-
certainty related to the probabilities )|2( 00 λ−= nNP  
is expressed by propagating uncertainty in the Poisson 
parameter 0λ  through the function  !/e 00

00 n
n λλ −  with 

0n = n –2. This function takes the forms  e 0λ− , 0e0
λλ −  

and  e0.5 02
0

λλ −  for the values 0, 1 and 2 of the displaced 
number of fragments 0n . Graphs of these functions 
are given in Figure  A. We can see that in the case of 
the functions )|1( 00 λ=NP  and )|2( 00 λ=NP  proba-
bility values are limited by the intervals [0, 0.368] and 
[0, 0.271], respectively. This limitation stems from the 
structure of the Poisson distribution and explains lim-
its of the prior and posterior densities of )3( =NP  and 

)4( =NP  shown in Figures 6b and 6c.

Appendix B
The triplets ),,( 432 iii ppp  or ),,( 432 iii ppp ′′′  calculat-
ed with Equations (18) are suitable for generating 
fragment numbers in individual runs of a stochastic 
simulation aimed at predicting vessel fragmentation 
effects. A number of fragments in the run i  can be 
generated by sampling a value iu  of a random vari-
able U  that is uniformly distributed over the interval 

,]0, [ip+  or ,]0, [ip+′  (Figure B). 
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Figure B
Two approaches to generating the number of fragments in a 
stochastic simulation run i : (a) ejection of three fragments 
is simulated when , 1ip+ < ; (b) ejection of four fragments is 
simulated when , 1ip+ >
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in a stochastic simulation run i : (a) ejection of three 
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