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The modern industrial sector requires an intelligent fault diagnosis system to ensure reliable and safe processing 
since traditional methods require expert diagnosis, which consumes time and requires labor. Furthermore, diagnostic 
results are influenced by the expert’s expertise and in-depth knowledge of the machine. The objective of this paper is 
to solve the manual intervention problem and improve the fault diagnosis. We propose a novel two-stage unsupervised 
learning algorithm based on artificial intelligence (AI) that learns fault features efficiently from raw vibration signals. 
To accomplish the aforementioned goal, we encapsulate the two-stage learning technique such as sparse filtering and 
Rectified Linear Unit (ReLU) regression function. As a first step, we used a two-layer neural network sparse filtering 
procedure to extract vibration signals’ features. Based on vibration signals, ReLU regression determines the health 
condition of the machine in the second phase. ReLU is a linear function that improves the performance of neural net-
work training. Here we utilized a sigmoid and softmax regression function to compare the performance of ReLU. The 
sigmoid function works well for binary classification, whereas softmax works well for multiclass classification. A da-
tabase of motor-bearing bibration signals containing signals about four different health conditions of machines, such 
as Inner rase faults (IF), Outer race faulta (OF), Rolling faults (RF) and Normal Condition.  The sparse filter is evalu-
ated on different input and output dimensions, which significantly increases the learning accuracy. We classified the 
health condition using ReLU and achieved 93.8% accuracy, which is higher than sigmoid and softmax. Through the 
two-step learning process, machine fault diagnosis is enhanced, as well as big data is effectively handled.
KEYWORDS: Big data, unsupervised feature learning, sparse filtering, rectified linear unit regression, fault 
diagnosis.
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1. Introduction
The advent of technology has endorsed the concept 
of big data, which makes it possible to collect huge 
amounts of data, such as medical data, software infor-
mation, and so on. In the modern world, machines are 
more automated and efficient than ever before, and 
therefore health status monitoring is more difficult. 
To avoid disastrous accidents, such as environmental 
pollution, economic losses, etc., an effective diagnosis 
of the machine fault [13] is necessary. In the tradi-
tional approach, manual diagnosis is used to diagnose 
faults occurrence in machines, but it is time-con-
suming and prone to errors due to human observa-
tion. Afterward, the research moved to Condition 
Monitoring System (CMS) which effectively collects 
real-time data from sensors after a long-term oper-
ation to build the big data. The machine parameters 
(temperature, vibration, flow, frequency, status, etc.) 
are continuously monitored by various sensors every 
second to produce big data. Artificial Intelligence (AI) 
has demonstrated many breakthroughs in the build-
ing of smart technology for the future in numerous 
applications. Intelligent fault diagnosing based on ar-
tificial intelligence will be a promising tool to handle 
mechanical big data. It consists of three steps: signal 
acquisition, feature extraction, and fault classifica-
tion. But this approach provides insensitive informa-
tion which widely affects computational efficiency 
and diagnosing results. The proposed novel two-step 
unsupervised learning approach will improve fault 
diagnosis by improving error detection accuracy.

2. Related Work
Zhang et al. [21] presented a paper on the fault diagno-
sis on machine bearings where three algorithms are 
employed such as the Hidden Markov model (HMM), 
the adaptive fault prediction model, and Principal 
Component Analysis (PCA). PCA extracts the prin-
cipal signal features from the raw data which is pro-
cessed by HMM for health status assessment. In ad-
dition, the adaptive prognostic algorithm measures 
the degrading index of HMM to reduce component 
replacement. The algorithm provides an inefficient 
result even though it works on a real bearing dataset. 
Chen et al. [3] proposed a method to determine the 
bearing fault using data fusion techniques with 

multiple sensors. The online sensing technologies 
recognize the incipient fault, which is evaluated by 
Principal Component Analysis (PCA) and Gaussian 
Mixture Model (GMMI). It evaluates the main vari-
able that causes the fault, but there is no real-time 
bearing dataset to measure performance. 
Fan et al. [6] proposed a paper to detect the bearing 
fault in the machine using the SVM and the Self-Reg-
ulating particle swarm method. It is discussed the 
fundamentals of multi-kernel least square support 
vector machines (MK-LS-SVMs) with the aim of 
identifying a classifier that can fuse multi-dimension 
features of empirical modes decomposition (EMD) 
with high generalization properties. The accuracy of 
SVM classification is limited by kernel parameters. 
Zhang et al. [20] used the manifold learning method for 
fault diagnosis, where machine condition and rotation-
al speed are monitored under stable loading self-Orga-
nizing Map (SOM) and Neighborhood Preserving Em-
bedding (NPE) methods are used to measure bearing 
performance degradation. The NPE method was ad-
opted to perform dimension reduction and classifica-
tion of faults under varying working conditions. Even 
though the NPE and SOM measure the bearing degra-
dation till it faces accuracy problem.
Devendiran et al. [5] tried a method that detects the 
root of faults and severity levels. In order to get contin-
uous machine monitoring, it is necessary to detect and 
diagnose faults present in the system, determine the 
most probable cause of the fault, and assess the severity 
of the fault. The bearing and gearing component faults 
are analyzed and monitored progressively. During this 
survey the fault diagnosing still need improvement.
Li et al. [12] analyze the bearing fault by monitoring 
the vibration signal spectrum image. To diagnose the 
fault, the spectrum images are transformed via Fou-
rier transform, 2D PCA, and a minimum distance 
method. It has limited training samples to determine 
the diagnosing efficiency. 
Gligorijevic et al. [7] implement the fault diagnosis in 
the packing industry by monitoring the bearing con-
dition thereby trying to improve the reliability of the 
machine. Vibration signals, statical pattern recogni-
tion, and wavelet transform are utilized to obtain an 
efficient result. However, they did not implement the 
process in a real environment.
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Coates et al. [4] proposed a method to learn features 
from unlabeled data of CIFAR-10 and NORB datasets. 
The k means clustering algorithm is used to learn the 
single layer dense features. K-means clustering has 
the limitation that it cannot deal with noisy data.
Wu et al. [17] proposed a method for fault diagnosis 
using a feature vector extracted from a vibration si-
gnal that is decomposed using Ensemble Empirical 
Modes (EEM). In the EEMD, faults can be diagnosed 
accurately whether they are single faults or coupling 
faults, but it has trouble classifying multiple faults
Chegini et al [2] introduced an autocorrelation func-
tion based filtering algorithm for vibration signals 
which is classified by energy variation among bearing 
data. Using the Empirical Wavelet Transform (EWT), 
Pearson’s correlation coefficient is used to select the 
relevant and appropriate modes. But it suffers from 
time complexity.
Ranzato et al. [15] presented an unsupervised lear-
ning method for invariant sparse features with few-
layered training samples that provides a reliable re-
sult in features detection. It was applicable for a small 
dataset only.
Kuncan [10] discussed the combination of local bi-
nary patterns with a gray relational model for featu-
re extraction and classifying bearing faults. With the 
help of these features, one can obtain statistical fea-
tures from the signals in the 1-D-LBP plane, and final-
ly, one can classify the vibrational signals by using a 
gray relational analysis (GRA) model. However, it has 
not yet been implemented in a real-time environment.
Sohaib et al. [16] presented a hybrid feature model 
which classifies faults based on their classes. A com-
bination of sparse stacked autoencoders (SAE) and 
Deep Neural Networks (DNNs) is used to diagnose 
fault severity. However, the scheme performs better 
than SVMs and BPNNs which take longer to compute.
Hamadache et al. [8] a method was presented for di-
agnosing and detecting bearing faults in normal and 
load conditions of a rotating machine. This technique 
uses Absolute Value Principal Component Analysis 
(AVPCA), ProbPlot via Image Recognition using the 
AVPCA (IR-AVPCA). The AVPCA to extract eigenfac-
es, and the bases of the SSE were generated to detect 
and diagnose three kinds of bearing faults (outer-race 
fault (ORF), inner-race fault (IRF), and ball fault 
(BBF)). But still, need a performance improvement in 
fault detection.

Lei et al. [11] presented a distance estimation tech-
nique that uses six important raw signal features. 
Then it fed into an Adaptive Neuro-fuzzy interferen-
ce (ANFISs) system to classify the faulty bearing. The 
system divides the large problem into multiple classes 
where multiple outputs are adopted using empirical 
mode decomposition. The accuracy of fault diagnosis 
is higher than that of individual ANFISs because AN-
FISs enable both the identification of bearing abnor-
malities and the severity of faults, which is not possi-
ble with individual ANFISs. Still, time Complexity is 
a problem for the system.
Yu [18] proposed a technique to identify the bearing 
fault based on the Local and Nonlocal Preserving Pro-
jection (LNPP) concepts that discover the manifold‘s 
nonlocal and local structure. It easily detects the hi-
dden low-dimensional information in a high-dimen-
sional feature set. LNPP failed to use the fault diag-
nosing approach on other machine components and 
check their performance, resulting in performance 
issues.
Yu et al. [19] presented a method to learn about image 
representation through sparse coding. Sparse coding 
encodes local patches independently, accounting for 
high-order dependencies among patterns in a local 
image neighborhood. However, it faces difficulties 
when it comes to handling high-noise images.
Amar et al. [1] proposed a high-robust fault classifier 
at low SNR conditions using spectrum images. To 
achieve high precision bearing fault classification by 
combining neural network and empirical features, 
a modified neural network structure (LiftingNet) is 
proposed that enables adaptive extraction of hidden 
features from specific objects. LifitingNet has not 
been tested under different working conditions.
We analyze the various fault diagnosis techniques and 
understand their advantages and disadvantages. Ac-
cording to the analysis, the previous works had some 
drawbacks due to data capacity or inefficient results. 
Based on these studies and analysis of various feature 
learning algorithms, we presented a novel framework 
for an intelligent fault identification system depicted 
in Figure 1. An overview of a novel framework for the 
intelligent diagnosis of faults, 
1 In the first step, sparse filtering is used to represent 

the two-layer network. In this filtering, features 
extraction is performed on the vibration signal. 
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During the second step, ReLU regression is used 
as the two-layer network. We trained the ReLU 
regression to classify the conditions of machine 
health. The complete diagnosis is carried out on 
the neural network without human intervention.

2 The feature extracted from this technique is supe-
rior to other conventional techniques because it 
efficiently utilized the data features for new fault 
prediction. The sparse filter physical interpreta-
tion is explored in feature learning thereby impro-
vise the system’s reliability.

3.1. Sparse Filter
The sparse filter is a simple algorithm that ignores 
the data distribution learning problem. It is simple 
to tune since there is only one hyper-parameter to 
tune as opposed to numerous parameters that must 
be tuned to get good results. Figure 3 depicts the ar-
chitecture of sparse filtering, which is implemented 
in MATLAB to optimize a cost function for a nor-
malized feature [14]. This method reduces feature 
density and provides a more accurate representation 
of the signal. In order to achieve a good performance, 
the sample needs to satisfy the following three prin-
ciples: lifetime sparsity, high dispersal, and popula-
tion sparsity. A number of active features are used to 
represent the population sparsely. Lifetime sparsity 
is a measure of the number of valid features used in 

Figure 1 
A traditional and a new framework of intelligent fault 
diagnosis
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The test accuracy of the regression function for 
bearing dataset under normal conditions is 
depicted in Table 1. It has been shown that the 
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various conditions: Inner race fault (IF), Outer race 
fault (OF), Rolling fault (RF). Normal condition. For 
different condition, the vibration signal dataset is 
prepared based on different methods which used 12kHZ 
as sample frequency. The evaluation results of the 
ReLU regression function is compared with the other 
regression functions (softmax, sigmoid). The proposed 
model is developed in the MATLAB 2018a software 
model. The experimental PC configuration: Intel i5 - 

5200U, 2.2GHz, 8GB RAM. In Figure 6, it shows 
the segment of the fault signal of motor bearing 
datasets. The vibration signal is the main cause to 
generate the motor bearing dataset. The dataset 
has four different loads with ten bearing healthy 
conditions have one class with a different load of 
health conditions. The big dataset contains 
thousands of samples. These samples are 
categorized based on their health condition at 
different loads. Therefore, the classified data 
points are organized in a class-wise manner.  
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Figure 4 illustrates that a different input and 
output dimension is applied for evaluating the 
performance of sparse filtering. During testing, 
the accuracy of feature learning from machine 
fault is increased widely. İt showed that the sparse 
filtering has the capability to learn more sensitive 
features from the fault thereby enhanced the 
learning ability which is depicted in Figure 5.  
The ReLU performance is analyzed and depicted 
in Figure 6. The confusion matrix for the 
regression function is calculated and depicted in 
Figure 7.  It represented that the accuracy of 
ReLU (93.8%) is higher than the other regression 
methods (Softmax-81.3% and Sigmoid 87.5%) 
under normal conditions. 
 
The test accuracy of the regression function for 
bearing dataset under normal conditions is 
depicted in Table 1. It has been shown that the 
ReLU does not have vanishing gradient problems. 
. 
Table 1 
Testing accuracy of bearing dataset using three 
regression functions in (%) 
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Figure 4 illustrates that a different input and output 
dimension is applied for evaluating the performance 
of sparse filtering. During testing, the accuracy of fea-
ture learning from machine fault is increased widely. 
İt showed that the sparse filtering has the capability 
to learn more sensitive features from the fault thereby 
enhanced the learning ability which is depicted in Fig-
ure 5. The ReLU performance is analyzed and depicted 
in Figure 6. The confusion matrix for the regression 
function is calculated and depicted in Figure 7. It rep-
resented that the accuracy of ReLU (93.8%) is higher 
than the other regression methods (Softmax-81.3% 
and Sigmoid 87.5%) under normal conditions.
The test accuracy of the regression function for bear-
ing dataset under normal conditions is depicted in 
Table 1. It has been shown that the ReLU does not 
have vanishing gradient problems.
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It can train faster than sigmoid due to less numerical 
computation. The experimental results show ReLU 
regression effectively identifies the gear with differ-
ent fault types and different health conditions. A sum-
mary of recall, precision, and F1-Score values with 
test data sets for all the three regression functions 

Table 1
Testing accuracy of bearing dataset using three regression 
functions in (%)

Regression 
Function Softmax Sigmoid ReLU (Proposed 

Method)

Accuracy 81.3 87.5 93.8

Figure 7
Confusion matrix for Bearing dataset
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Table 2 
Performance Comparison in (%) 
 

Regression 
Function Precision Recall F1-Score 

Softmax 85.42 81.25 81.6 
Sigmoid 87.5 87.5 87.5 
ReLU 95 93.75 93.65 

 
It can train faster than sigmoid due to less numerical 
computation. The experimental results show ReLU 
regression effectively identifies the gear with different 
fault types and different health conditions. A summary 
of recall, precision, and F1-Score values with test data 
sets for all the three regression functions are given in 
Table 2. ReLU based regression method performs the 
best with 95%, 93.75%, and 93.65% of F1-Score, 
recall, and precision respectively. Thus our proposed 
unsupervised approach will be the promising solution 
for machine fault detection in an effective manner. 
 

5. Conclusion 
In this paper, we proposed an intelligent fault 

diagnosing approach in an unsupervised manner 
using big data. The traditional approach depends 
on expert knowledge for detecting machine faults 
and lacks accuracy due to hidden features. An 
intelligent fault identification system finds 
difficulties in extracting sensitive information 
from machine faults. The two-step unsupervised 
feature learning algorithm overcomes the 
aforementioned problems by implementing sparse 
filtering and ReLU regression. The sparse filter is 
responsible for extracting the sensitive data from 
bearing faults those data will be classified by 
ReLU. We evaluated the performance of sparse 
filtering and ReLU on bearing fault detection 
which shown an efficient result. ReLU regression 
function obtains 93.8 % accuracy in the fault 
classification under different conditions (Inner 
race fault (IF), Outer race fault (OF), Rolling fault 
(RF), and Normal). The accuracy and learning 
progress of the proposed method is superior to the 
traditional approaches. In future work, we are 
planning to change the learning method thereby 
improving the accuracy of unsupervised learning. 
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