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This paper evaluates the performances of numerous encryption algorithms on mobile devices running the An-
droid operating system. The primary objective of our research was to measure and compare the relative perfor-
mances of tested algorithm implementations (Data Encryption Standard (DES), 3DES, Advanced Encryption 
Standard (AES), ChaCha20, Blowfish, and Rivest Cipher 4 (RC4)) on the Android platform. The algorithms were 
compared in terms of CPU utilization by measuring the time required to encrypt and decrypt variable size text files. 
Besides evaluating the six common symmetric encryption ciphers, a comparison has been conducted for several 
Password-Based Encryption (PBE) algorithms. Diverse cipher transformations were evaluated for each algorithm 
by utilizing various feedback modes and padding schemes. Two smartphone devices were used for testing, with 
different versions of the Android operating system and hardware specifications. The summarized performance 
outcomes for various cipher transformations are presented to demonstrate the effectiveness of each algorithm.
KEYWORDS: encryption algorithms, software security, performance analysis, mobile devices, Android platform.
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1. Introduction
Cryptography (encryption and decryption) includes 
procedures employed for keeping private information 
safe while storing and transmitting data. Its primary 
purposes are to protect sensitive data from unautho-
rized persons and exchange information over a public 
channel. In addition, cryptography is used for user au-
thentication. Encryption ciphers can be divided into 
two categories: symmetric key and asymmetric key 
encryption.
In symmetric-key ciphers, both sender and receiver 
use the same private key (used for encryption and de-
cryption). This means that the key must be exchanged 
between them using some trustworthy procedure. 
Also, this approach requires a new key for each pair of 
persons who communicate over a public channel. 
On the other hand, asymmetric key ciphers use two re-
lated keys (public and private keys). The public key is 
open and freely distributed, while its paired private key 
is kept as a secret. The public key is used by the send-
er for encryption of data, and the private key is used by 
the receiver to decrypt received encrypted data. Hence, 
there is no need for a new pair of keys for each pair of 
persons who communicate over a public channel.
In this article, we focus on common encryption meth-
ods used on contemporary smartphones. The perfor-
mance of several algorithms was assessed using two 
mobile devices with varied hardware specifications 
and different versions of the Android operating system. 
Our research concentrates on six relevant symmetric 
encryption ciphers provided by Android platform: 
AES, ChaCha20, RC4, DES, TripleDES, and Blowfish. 
Additionally, performances of various Password-Based 
Encryption (PBE) algorithms were evaluated.
The reason for employing these algorithms is the usage 
of the Cipher class, which implements the encryption 
and decryption capabilities of a cryptographic cipher 
on Android platform, additionally providing various 
cipher transformations [4]. That is why we selected 
cipher transformations which the Android operating 
system supports. The Cipher class the fundamental 
component of the Java Cryptographic Extensions 
(JCE) framework. The supported cipher transforma-
tions we have tested in this research are described in 
the Cipher section of the Java Cryptography Architec-
ture Standard Algorithm Name Documentation [5].
The mobile application was developed to assess the 
cryptographic algorithms by considering CPU uti-

lization during the encryption-decryption process. 
The application allows users to encrypt and decrypt 
files of various types and sizes and to adjust algorithm 
parameters, such as key length, mode of operation 
(feedback mode), and padding scheme. In addition, 
several encryption-decryption cycles and the delay 
between the cycles can be specified. Two Samsung 
smartphones at our disposal were evaluated: Sam-
sung Galaxy S9 Plus, which has enhanced hardware, 
and Samsung Galaxy A20e, with somewhat poorer 
performances. We consider the following contribu-
tion as compared to other relevant works:
 _ extensive performance evaluation of several 

different cipher modes of operation (feedback 
modes), as well as supported padding schemes and 
key lengths

 _ assessing the encryption algorithms utilizing 
smartphone devices with varying hardware 
capabilities (devices with different computational 
performance levels)

 _ analyzing encryption algorithms on earlier as 
well as newer versions of the Android operating 
system (including the Chacha20 cipher, which is 
accessible only on recent Android version 9 and 
above, i.e., starting from API level 28+)

 _ comparison of several Password-Based Encryption 
(PBE) algorithms with different parameters 
provided

 _ implementation of an application for the Android 
operating system that provides encryption and 
decryption capabilities for a variety of file types 
using configurable cipher parameters

The rest of the paper is structured as follows. A brief 
overview of encryption algorithms and implementa-
tion details are described in Sections 3 and 4. Simula-
tion results and discussion on ciphers’ performances 
are given in Section 5. Conclusion is found in Section 6.

2. Related Work
Several research papers have already addressed the is-
sue of performance analysis of encryption algorithms 
on different platforms. Namely, in [21], Nadeem and 
Javed implemented and compared the performance of 
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four popular encryption algorithms: Data Encryption 
Standard (DES), TripleDES (3DES), Advanced En-
cryption Standard (AES) and Blowfish. Two different 
machines were used, based on Pentium processors, 
and running the Windows operating system. 
Salama et al. [32] performed a comparison based on 
CPU process time, clock cycles and battery power 
consumption on a laptop computer. The authors pre-
sented simulation results to demonstrate the effec-
tiveness of each encryption algorithm. Their findings 
demonstrate that the Blowfish algorithm outperforms 
all other algorithms in terms of processing time, while 
the 3DES takes more time than the DES cipher. 
Sahu and Kushwaha [31] and Panda [25] compared 
the performance of three symmetric cryptographic 
algorithms (AES, DES and Blowfish) with different 
data types. Again, the outcomes of this research cor-
roborated our own. Namely, when comparing encryp-
tion and decryption speed, i.e., throughput, the Blow-
fish cipher performed better than the DES algorithm. 
The efficiency of a Blowfish cipher is also demonstrat-
ed by Patil et al. [26] and Thirupalu and Reddy [38]. 
Among AES, DES and 3DES the findings indicate 
that Blowfish is the best choice as it consumes least 
CPU time and memory. However, the authors stated 
that AES is the ideal algorithm when cryptographic 
strength plays an important role in the application.
Nie et al. [22] studied the encryption security of the 
algorithms Blowfish and DES, as well as their perfor-
mance and power consumption. It has been shown 
that the Blowfish encryption method may be more 
suitable for application security in wireless net-
works. Moreover, the results show that the Blowfish 
algorithm outperforms the DES algorithm in terms of 
speed and power consumption. 
Moreover, Haque et al. [15] tested several algorithms 
with different parameters including data blocks, vary-
ing keys (128, 192, 256 bits) and file sizes. The basic 
concept behind performance testing is to identify the 
optimal algorithms for better utilization on resource 
constraint and mobile devices. 
Idrus et al. [36], investigated how several encryption 
algorithms behave on different web browsers. The 
goal of the study was to find out which algorithm 
works best on a particular desktop web browser.
In addition, Ratnadewi et al. [28] developed an appli-
cation to write and read data on a smart card using the 

cryptographic methods DES and 3DES on systems 
with NFC technology. Unsurprisingly, data writing 
and reading were faster using the DES cipher. The au-
thors concluded that the difference in execution time 
between the two encryption methods grew as the 
length of the processed data increased.
Olaleye [24] compared cryptographic algorithms 
based on performance in mobile cloud computing. 
The work examined AES, DES, RSA and ECC cryp-
tographic algorithms. The test results showed that 
DES encryption was faster than AES when smaller 
file sizes were utilized.
In addition to all mentioned, special attention should 
be paid to mobile devices. Indeed, today’s mobile de-
vices have become powerful computing platforms 
capable of running relatively complex software appli-
cations. Since communication via mobile devices is 
increasing, their use is also subject to communication 
and cyber-attacks. This, together with the rapid de-
velopment of mobile platforms, contributes to the in-
creasing demand for encryption algorithms suitable 
for mobile devices to protect them from increasingly 
serious security threats. As a result, various encryp-
tion ciphers are now available on mobile platforms to 
secure information in both communication transmis-
sion process and data storage.
To further compare our work with similar studies, 
it is feasible to refer to the work of Grgić et al. [14]. 
The Android platform is used to analyze the imple-
mentation of three symmetric ciphers (DES, 3DES 
and AES) in different operating modes. Similarly, 
the performance of the cryptosystems was evaluated 
under different conditions using a variety of variable 
factors, including cipher, key size, plaintext size, and 
thread count. However, unlike our research, the au-
thors considered only two modes of operation: ECB 
and CTR. The authors confirmed when using the ECB 
mode, the AES cipher outperformed both the DES 
and 3DES cryptosystems.
With reference to smartphone devices, Tayde and 
Siledar [37] utilized AES cipher on the Android oper-
ating system to test its performance in encrypting and 
decrypting images and text files. The implemented 
application allows the user to encrypt the file before it 
is transmitted over the network. The authors provid-
ed support for different types of file encryption such 
as text, docx, pdf and image encryption. 
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Malina et al. [18], the authors analyzed lightweight 
and classical software-oriented block ciphers on the 
Android platform. They compared the performance 
of two forms of implementation by native JAVA cryp-
tography APIs and by an external cryptography pro-
vider.
Gonzalez et al. [13] studied Android’s cryptography 
framework and integrated tools. The authors evaluat-
ed the cryptographic services offered by a number of 
modules, including Bouncy Castle, Crypto, and Har-
monyJSSE. It was found that external modules are 
the best approach for providing cryptographic capa-
bilities.
Rouaf and Yousif [30] evaluated five algorithms (AES, 
DES, TEA, RSA and REA) in terms of execution time 
and battery consumption. The experiment was con-
ducted on three Android devices with different hard-
ware specifications than the ones used in our study. 
According to these results, AES proved to be the most 
efficient encryption method, followed by DES algo-
rithm.
In addition, Montoya et al. [20] compared three algo-
rithms (AES, Serpent and Twofish) in terms of com-
putational cost on smartphone and tablet devices. In 
the experiment, two response variables were consid-
ered (CPU usage and memory consumption), which 
are closely related to battery life. The aim of the study 
was to determine which cipher is optimal for imple-
mentation in smartphones and tablets. The AES was 
confirmed as the one with the best performance on 
the tablet, while the Twofish performed better on the 
smartphone. 
Mentioning device batteries, the authors evaluated 
different algorithms in terms of battery consumption 
in several other studies. When developing a mobile 
application, increased battery consumption could 
discourage programmers from using a particular en-
cryption cipher. For this reason, power consumption 
should be one of the main requirements when design-
ing these algorithms for smartphones.
Masoud et al. [19] provided a performance evaluation 
of four different symmetric encryption algorithms 
and analyzed the power consumption of smartphones 
when using different encryption methods. The au-
thors found that the power consumption mainly de-
pends on the file size, an encryption technique and 
the battery capacity of the smartphone. Depending on 

the version of AES used, this encryption resulted in 
the highest reduction in battery life.
Finally, let us conclude this literature review with the 
work done by Yao et al. [39], who addressed the energy 
consumption of ten security algorithms. The work in-
vestigates the trade-off between the security level of 
the algorithms and the power consumption on mobile 
devices.
In the next section, before presenting simulation 
results, we provide a brief description of the tested 
cryptography algorithms.

3. Encryption Methods
3.1. DES/3DES
Data Encryption Standard (DES) is a symmetric-key 
algorithm for data encryption, developed by IBM in 
the early 1970s and published in a slightly modified 
version as an official Federal Information Processing 
Standard for the United States in 1977. Due to its short 
key length of 56 bits, DES is today unsafe for most of 
the modern applications. The algorithm is vulnerable 
to various attacks, including differential and linear 
cryptanalysis.
Triple-DES (3DES) uses the DES algorithm three 
times, each time with a different 56 bits key [34]. This 
symmetric key-block cipher applies the DES cipher 
in triplicate by encrypting with the first key (key1), 
decrypting with the second key (key2), and encrypt-
ing with the third key (key3). A two-key variant is also 
available, using the identical in the first and the third 
step (same key1 and key3). Eventually, this variant 
was retired in 2015.
When implementing the 3DES algorithm and test it 
using an Android application, a symmetric key must 
be generated. Key size can be select as one of the three 
options: 56, 112, or 168 bits. A similar method is also 
utilized in the AES (using the keyGenerator class). 
The initialization vector must be provided when us-
ing the Cipher class to encrypt and decrypt the data 
(when the cipher is initialized using the init method). 
For this purpose, the SecureRandom class is used, 
as well as the nextBytes method to generate random 
bytes. The length of the initialization vector is equal 
to the algorithm’s block size (8 bytes, 64 bits), not to 
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the length of the key. Block cipher mode of operation 
and padding schemes can also be selected when set-
ting the algorithm’s parameters using the Android 
application. It is important to note that due to its vul-
nerability, 3DES is likely to be disallowed after 2023.
Tables and figures should appear within the text 
rather than in appendices. All illustrations should be 
numbered in Arabic numerals. Place a caption at the 
top. Figures must have a caption at the top as well. 

3.2. AES
The research for replacing the DES started in 1997 
since it was found vulnerable and not satisfying in-
creasing security levels due to its small key size. Ad-
vanced Encryption Standard (AES), also known as 
Rijndael, was established by the National Institute of 
Standards and Technology in 2001. The AES is a sym-
metric-key block cipher with a block size set to 128 
bits, specified in the AES standard. 
Due to the fact that symmetric encryption uses the 
identical key for data encryption and decryption, the 
implemented Android application generates the same 
key for both the sender and the receiver [27]. The keys 
were created using KeyGenerator class, which pro-
vides the functionality of a secret (symmetric) key 
generator [16]. Objects created this way are reusable, 
and the same KeyGenerator object can be used again 
to generate further keys. For key generation, two dif-
ferent options are available:
 _ Algorithm-Independent Initialization - uses 

the init method to generate the key. Two types 
of arguments are required: key size and a source 
of randomness. The randomness source is a 
SecureRandom implementation – a class that 
provides a cryptographically strong random 
number generator (RNG).

 _ Algorithm- Specific Initialization - this option is 
used when a set of algorithm-specific parameters 
already exists. Two init methods that have an 
argument for the transparent specification of 
cryptographic parameters are used.

To generate a secret key using the KeyGenerator 
for the AES, three different key sizes can be pro-
vided as an argument: 128-, 192- and 256-bit size. 
Namely, these are key sizes accepted by the AES 
standard. Finally, interface SecretKey groups all 
secret key interfaces and generates a symmetric 

key with the help of a KeyGenerator. The optional 
step includes an initialization vector, an arbitrary 
number used with a secret key. Initialization vector 
prevents repetition in data encryption and can be 
agreed on in advance or transmitted independently. 
In order to implement the encrypt function, a cipher 
object must be created, along with a provided trans-
formation string that describes the cryptograph-
ic algorithm. Feedback mode and padding scheme 
may also be provided. The feedback mode masks the 
patterns which exist in encrypted data. A padding 
scheme is used if block cipher modes require their in-
put to be an exact multiple of the block size, filling up 
the missing bits of the block. As mentioned before, the 
same generated secret key is used for decryption.
The main advantage of the AES encryption algorithm 
is fast execution (implemented in both hardware and 
software). Only one key is needed to both encrypt and 
decrypt data. However, if the key is somehow obtained 
by the attacker, cracking is a matter of time. Due to the 
key size, the time necessary to encrypt and decrypt 
the message hinders efficient communication. Also, 
each recipient must receive the key using a different 
channel than the message itself.

3.3. BLOWFISH
Blowfish is a symmetric-key block cipher included in 
many encryption products. The algorithm provides a 
reasonable encryption rate in hardware applications 
[22]. It is mostly used when the key does not often 
change, for example, cipher data file or communica-
tion link. Key size is variable, ranging from 32 bits up 
to 448 bits. Implemented Android application uses 
128-, 256- and 448-bits key size and allows testing 
algorithm’s performances. Compared to other block 
ciphers, Blowfish is very slow when changing keys. 
Pre-processing equivalent is required for each new 
key, equivalent to encrypting about 4 kilobytes of text. 
Due to the use of 64-bit block size, Blowfish is vulner-
able to birthday attacks.

3.4. RC4
RC4 (Rivest Cipher 4), also called ARC4 or ARC-
FOUR, is a software-optimized variable-key-size 
stream cipher that generates a pseudorandom stream 
of bits (a keystream) [12]. The algorithm has two 
phases: key generation and encryption. The first step 
is the most difficult and is used to generate an encryp-
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tion key. The key is then used to generate variable en-
cryption that uses two arrays, state and keys, and the 
results of merging operations [35].
The symmetric key algorithm is used identical-
ly for encryption and decryption. RC4 uses a vari-
able-length key from 1 to 256 bytes. However, RC4 
can turn into very insecure cryptosystems if one 
keystream is used twice or when the start of the out-
put keystream is not removed. The simplicity of RC4 
makes it vulnerable to different security attacks.

3.4. CHACHA20
ChaCha20 is a symmetric encryption algorithm, a 
member of a family of fast symmetric stream ciphers. 
ChaCha variants are improved versions of the Salsa20 
algorithm, using very similar stream ciphers. A new 
round function increases performance on some archi-
tectures [2]. It uses a pseudo-random number genera-
tor, as its main purpose is data encryption. Unlike block 
ciphers used in other encryption algorithms, padding is 
not necessary. The stream can be defined as a one-time 
pad, an encryption technique that requires a one-time 
pre-shared key. However, the same nonce must never 
be used with the same key twice.
It is important to notice that Android provides Cipher 
transformations for API levels 28+ and above (An-
droid Pie or newer). Two modes are available (NONE 
and Poly1305) with no padding.
The ChaCha20 stream cipher with integrated 
Poly1305 authenticator requires a 256-bit key and 
random 96-bit nonce. The extremely high-perfor-
mance cipher is useful on mobile devices and is im-
plemented by the most modern crypto libraries. Sal-
sa20 and its variant are not patented.
In comparison to the AES algorithm, a stream cipher 
is used in the ChaCha20 instead of a block cipher. The 
stream cipher converts plain text into cipher text by 
taking one byte of plain text at a time, instead of tak-
ing plain text’s block. Additionally, 8 bits are used 
rather than 64 bits or more. In software-only imple-
mentations, when the CPU does not provide dedicat-
ed AES instructions, ChaCha20-Poly1305 is almost 
three times faster than the AES. Also, ChaCha20 is 
not vulnerable to cache-collision timing attacks, un-
like the AES [3].
To implement this algorithm in the developed An-
droid application, a special method for creating 96-

bit nonce is developed. The nonce itself is not a secret, 
but it has to be unique for a given key. For example, a 
96-bit counter can be defined. When invoked, the 
method increments the counter by one. The nonce is 
then prepended with the message cipher. A secret key 
for this algorithm was generated using the KeyGener-
ator class, similar to the AES implementation.
The algorithm is simple to implement securely in 
software, in contrast to AES. This is very important 
since most mobile platforms do not support AES ac-
celeration [11]. For Android devices, even with no 
hardware acceleration, ChaCha20 is fast and secure 
(taking advantage of some acceleration features in 
the ARM chips). It is able to leverage common CPU 
instructions, including ARM vector instructions, on 
both mobile and wearable devices. Also, spending 
less time and computational power on decryption is 
especially important to save battery life. However, 
the weakest point for encryption is the asymmetric 
handshake that begins the session. If the key for sym-
metric encryption is lost, the rest of the session is in-
secure, regardless of the method of encryption. The 
algorithm is currently supported by mobile internet 
browsers, like Google Chrome.

4. Implementation Details
4.1. Application Details
An Android mobile application was developed for the 
purpose of testing of encoding and decoding using 
symmetric block and stream ciphers. While imple-
menting the application, recent functionality chang-
es affecting cryptography were taken into consider-
ation. Starting with Android version 9 (Android P), 
the Bouncy Castle, a popular collection of APIs used 
in cryptography, is deprecated for implementations of 
many algorithms [8].
Consequently, instead of explicitly requesting the 
Bouncy Castle provider, the default implementation 
should be used instead. Furthermore, when using 
password-based encryption (PBE) ciphers, an explic-
it initialization vector must be provided. As of An-
droid 9 (API level 28), the Crypto Java Cryptography 
Architecture (JCA) provider has been removed [7].
The mobile application measuring the algorithm per-
formances have been implemented using Java pro-
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gramming language. The Cipher class forms the core 
of the Java Cryptography Extension (JCE) frame-
work. It provides the cryptographic cipher function-
ality for encryption and decryption, as well as hash-
ing of private data. Stream and block ciphers are two 
major types of ciphers. These symmetric key ciphers 
represent the methods used for transforming plain 
text into ciphertext. While the stream cipher encrypts 
plain text one byte at a time, the block cipher splits the 
data into blocks of a set length. The plain text conver-
sion is then performed by encrypting bits or bytes in 
each block simultaneously.
Various transformations can be provided to the Ci-
pher object, specifying the mode of operation and 
padding scheme. A block cipher mode of operation 
describes how to repeatedly apply a cipher’s sin-
gle-block operation to securely encrypt or decrypt 
amounts of data larger than a block. A padding al-
gorithm is used for the block modes that require the 
input to be split into blocks and the final block to be 
padded to the block size.
Depending on the API level, the Android operating 
system provides various cipher transformations. 
When creating Cipher object, a user may provide a 
transformation string describing the operation(s) to 
be performed. The name of a cryptographic algorithm 
is always included in a string and may be followed by 
a cipher mode and padding scheme. If the block mode 
or padding are not given, provider-specific default 
values for the mode and padding scheme are used [4]. 

4.2. Utilized Software and Hardware
To conduct the experiment, we had two mobile de-
vices at our disposal. The first device was the Sam-
sung Galaxy A20e, which was released in May 2019. 
The smartphone is equipped with an Exynos 7884 
chipset (Octa-core CPU (2 x 1.6GHz & 6 x 1.35GHz)) 
and 3 gigabytes of random-access memory (RAM). 
This device is running Android Q (10), with the final 
API Level 29.
The second device available for testing was the Sam-
sung Galaxy S9 Plus (a variant for European markets). 
This smartphone is somewhat older and has been 
launched in March 2018. It is powered by Exynos 
9810 chipset (Octa-core CPU ((4x2.7 GHz Mongoose 
M3 & 4x1.8 GHz Cortex-A55))) together with 6 giga-
bytes of RAM. The smartphone is running Android 
Pie (9), with API version 28. It should be pointed out 

that several cipher transformations available on An-
droid OS are supported only at API level 28 or higher.

4.3. Supported Algorithms
The implemented application allows users to test the 
performances of various encryption algorithms. An-
droid supports the following symmetric encryption 
algorithms: DES, 3DES (DESede), AES, AES_128, 
AES_256, BLOWFISH, RC4, and ChaCha20. As men-
tioned, the supported cipher transformations are 
described in the Cipher section of the Java Cryptog-
raphy Architecture Standard Algorithm Name Docu-
mentation [5].
Furthermore, the users can specify several different 
cipher operating modes (feedback modes) for each 
algorithm, as well as the supported padding schemes. 
Besides, various key lengths can be selected for the 
encryption process. Key size selection has been pro-
grammatically restricted to ensure a particular algo-
rithm supports the chosen key length.
The application is capable of performing encryption 
and decryption processes on several different file 
types. Supported document types include text files, 
PDF documents, Excel, and PowerPoint file formats. 
Besides, images, audio, and video files can also be 
encrypted and decrypted using the abovementioned 
algorithms. The flowchart of general encryption-de-
cryption process using the implemented Android mo-
bile application is illustrated in Figure 1.

Figure 1 
Flowchart illustrating the general process for initiating the 
encryption/decryption of text files using an implemented 
Android mobile application
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Password-Based Encryption (PBE) refers to the type 
of symmetric key encryption and decryption tech-
nique. The developed mobile application implements 
various PBE algorithms intended for performance 
testing. To encrypt a file using the PBE, the user se-
lects an arbitrary password, which is used along with 
a generated salt (key). The chosen password is then 
exchanged between the parties. The decryption pro-
cess again involves the same password along with the 
salt. Therefore, an encryption key could be generated 
by providing a user-specified string or even a ran-
dom value. The decryption process again involves the 
same password along with the salt.
The test application allows users to choose between 
two iteration count values. The iteration count rep-
resents the number of times the password is hashed 
during the derivation of the symmetric key. The high-
er number, the more difficult it is to validate a pass-
word guess and then derive the correct key.

4.4. Measuring the Performances
Our research’s primary objective was to measure and 
compare the relative performance of several algo-
rithm implementations on the Android operating sys-
tem. To ensure a fair comparison, we have maintained 
the same style consistently throughout the source 
code. The code is structured so that each algorithm 
has its own method to perform the encryption and de-
cryption process. The whole procedure involves the 
following steps:
 _ reading the plain data from the file on the device’s 

internal memory,
 _ encrypting the data using the specified cipher 

algorithm,
 _ writing the encrypted data to the newly created file 

on the internal memory,
 _ reading the encrypted data from the file,
 _ decrypting the data using the corresponding 

algorithm,
 _ writing the decrypted data to the newly created file 

on the internal memory of a device.

To measure the CPU usage of the procedure, the 
threadCpuTimeNanos method from Debug class has 
been used. The obtained value indicates the amount 
of time that the current thread has spent executing 
code or waiting for certain types of I/O. However, the 

nanosecond resolution does not imply nanosecond 
accuracy [9]. 
While measuring algorithms’ performance, the time 
required to initialize the cipher and set up the key also 
has also been taken into consideration. The delay of 
several seconds has been utilized between every 100 
encryption and decryption cycles. During the testing 
procedure, all network-based services on mobile de-
vices were turned off.
The following section provides a discussion on the 
obtained simulation results for all tested symmetric 
ciphers for various file sizes and mobile devices.

5. Performance Results
In this section, the performance results of encryp-
tion algorithms are presented. The simulation re-
sults show differences in encryption and decryption 
times when using diverse cipher transformations, 
i.e., various block cipher modes, padding algorithms, 
and key sizes. As mentioned, CPU utilization is de-
fined as the time (in milliseconds) needed to encrypt 
and decrypt the documents stored on the internal 
memory of a device. To summarize the results, we 
have given performances for text files. Different siz-
es of text files have been encrypted and decrypted 
using various ciphers: 0.01, 0.1, 1, and 10 megabytes. 
The implemented application allows users to deter-
mine the number of total encryption and decryption 
cycles, as well as the custom delay between different 
runs. In this experiment, we have used a constant 
number of 100 cycles and a delay of two seconds. 
Once all cycles had been completed successfully, 
the application automatically calculated the average 
CPU time. Subsequently, the final result was written 
to the log file.

5.1. Results for DES & 3DES Ciphers
DES and TripleDES (3DES, DESede, or TDES) are 
block cipher algorithms supported on the Android op-
erating system starting from API level 1. The same keys 
are used for encryption and decryption. However, the 
security level of the DES is considered today relatively 
low due to its key size of 56 bits [21]. The initial key ac-
tually consists of 64 bits. However, 8 bits are reserved 
for parity checking and eventually discarded. Hence, 
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the effective key length is 56 bits. The drawback of this 
algorithm is that it is easily prone to Brute Force Attack 
in which the hacker attempts to break the key by apply-
ing all possible combinations [1].
3DES cipher supports double and triple length keys. 
For Two-Key 3DES, the user must specify a key size 
of 128 bits. Given that each byte’s MSB is a parity bit, 
the strength is in fact 112 bits. Three-Key TripleDES 
uses a total key length of 192 bits, providing effective 
security of 168 bits. 3DES is vulnerable to meet-in-
the-middle attack and the block collision attack. 
In recent years, the cipher has been superseded by the 
AES algorithm. Besides being stronger than 3DES, 
the AES is also significantly faster.
Several feedback modes combined with two padding 
schemes were tested for both DES and 3DES ciphers. 
The particular cipher transformations correspond to 
those utilized with AES and Blowfish algorithms. Ta-
bles 1 and 2 provide DES cipher results obtained from 
both mobile devices.
Tables 3 and 4 present the results for the 3DES cipher 
tested on Galaxy S9 Plus and Galaxy A20e devices, 
respectively. This algorithm assuredly yielded the 
slowest encryption-decryption times among all oth-
er ciphers we have tested. Two different key lengths 

Table 1
Comparative execution times (in ms) of DES algorithm on 
Galaxy S9+ (56-bit key)

Cipher Padding Mode 0.01mb 0.1mb 1mb 10mb

D
E

S

PK
C

S5
Pa

dd
in

g

CBC 7.106 23.424 170.703 1461.402

CFB 9.630 31.466 199.434 1884.228

CTR 7.417 28.444 251.707 1769.271

CTS 7.025 22.889 152.697 1449.570

ECB 7.118 22.250 149.386 1258.129

OFB 7.634 34.231 186.897 1757.705

IS
O

10
12

6P
ad

di
ng

CBC 7.575 26.541 150.881 1408.635

CFB 7.855 30.916 195.341 1880.133

CTR 7.425 32.858 180.297 1594.242

CTS 7.124 24.582 154.587 1452.622

ECB 6.856 22.239 136.674 1226.751

OFB 7.386 28.413 191.473 1775.506

Table 2
Comparative execution times (in ms) of DES algorithm on 
Galaxy A20e (56-bit key) 

Cipher Padding Mode 0.01mb 0.1mb 1mb 10mb

D
E

S

PK
C

S5
Pa

dd
in

g

CBC 17.524 63.869 622.650 5693.122

CFB 15.860 79.268 791.506 7265.053

CTR 17.816 70.037 692.653 6398.734

CTS 13.936 63.165 624.407 5692.895

ECB 12.902 54.865 534.253 4834.796

OFB 15.235 74.309 740.798 6806.912

IS
O

10
12

6P
ad

di
ng

CBC 14.506 63.807 623.620 5692.004

CFB 16.050 79.081 792.926 7269.239

CTR 15.243 69.404 694.158 6317.854

CTS 14.286 63.612 624.542 5705.297

ECB 13.062 54.977 534.165 4839.931

OFB 15.162 73.785 738.414 6741.632

were used, together with six modes of operation and 
two padding schemes.
The results show that different key sizes affect CPU 
utilization. Namely, when we utilized a device with 
higher hardware specifications (Galaxy S9 Plus), the 
encryption-decryption process was somewhat faster 
if we provided the 192-bit key. However, the differ-
ences in results are not so prominent, as it can be ob-
served from Table 4. 
Regarding the cipher transformations using the DES, 
the outcomes are comparable to the AES algorithm 
with a 128-bit key. 
It can be observed that two different mobile devic-
es attained similar results when the DES or AES 
ciphers are utilized. For both provided padding 
schemes (PKCS5Padding and ISO10126Padding), 
the Cipher Feedback (CFB) mode yielded the slow-
est encryption-decryption times. Again, Cipher 
block chaining (CBC) and Electronic codebook 
(ECB) modes proved to be the fastest modes of oper-
ation. Compared with other block cipher algorithms, 
like AES or Blowfish, 3DES was the slowest option. 
For both padding schemes, CFB mode required the 
most CPU time to encrypt and decrypt the text files. 



795Information Technology and Control 2021/4/50

Table 3
Text files encryption-decryption times (in milliseconds) 
using 3DES cipher with 128- and 192-bit key sizes on 
Samsung Galaxy S9 Plus device

Cipher Key 
size Padd. Mode 0.01mb 0.1mb 1mb 10mb

Tr
ip

le
D

ES

128 
bits

PK
CS

5P
ad

di
ng

CBC 8.014 38.017 278.893 2636.159

CFB 15.855 45.836 392.096 4782.926

CTR 10.496 40.952 355.713 3707.193

CTS 8.719 40.190 328.008 3098.009

ECB 12.063 41.688 334.711 3469.213

OFB 9.188 52.387 364.591 3805.269

IS
O

10
12

6P
ad

di
ng

CBC 12.135 45.153 326.483 3001.291

CFB 8.996 49.457 387.517 4661.737

CTR 9.024 51.992 361.987 3958.649

CTS 8.431 34.875 337.515 3560.789

ECB 10.191 50.670 625.069 3626.286

OFB 9.288 46.560 375.603 4303.548

192 
bits

PK
CS

5P
ad

di
ng

CBC 8.757 38.029 286.819 2439.856

CFB 9.193 52.461 389.830 3569.959

CTR 8.810 49.678 460.091 3625.130

CTS 7.083 47.226 481.949 3045.118

ECB 9.218 37.355 347.111 3218.112

OFB 11.005 62.211 518.042 4156.313

IS
O

10
12

6P
ad

di
ng

CBC 8.215 47.372 480.989 3581.662

CFB 11.972 43.547 394.526 3521.521

CTR 9.060 52.343 380.980 3832.504

CTS 9.459 45.882 348.359 3109.964

ECB 8.544 45.172 333.698 3317.770

OFB 9.130 54.028 416.254 4246.282

Similar to the AES algorithm, the fastest mode of op-
eration was the CBC mode.
The 3DES cipher unarguably achieved the lowest per-
formances of all tested algorithms on both devices. 
As shown in Table 4, this algorithm was especially in-
efficient on less-powerful Galaxy A20e device. When 
the results are compared to the ones obtained from 
Galaxy S9+ device, the encryption-decryption pro-
cess was significantly slower.

Table 4
Text files encryption-decryption times (in milliseconds) 
using 3DES cipher with 128- and 192-bit key sizes on 
Samsung Galaxy A20e device 

Cipher Key 
size Padd. Mode 0.01mb 0.1mb 1mb 10mb

Tr
ip

le
D

ES

128 
bits

PK
CS

5P
ad

di
ng

CBC 16.462 63.903 624.220 5733.306

CFB 21.330 149.835 1556.935 14280.901

CTR 23.559 140.603 1449.789 13323.153

CTS 20.792 133.651 1382.435 12717.155

ECB 20.917 124.516 1292.808 11822.519

OFB 21.504 144.113 1494.541 13745.526

IS
O

10
12

6P
ad

di
ng

CBC 21.353 133.939 1373.051 12689.928

CFB 22.325 150.211 1558.152 14272.954

CTR 21.501 140.012 1449.044 13321.714

CTS 23.388 135.618 1393.489 12786.035

ECB 20.647 125.334 1292.286 11831.700

OFB 21.111 144.385 1507.103 13743.422

192 
bits

PK
CS

5P
ad

di
ng

CBC 14.426 63.931 629.426 5797.143

CFB 21.508 150.925 1566.009 14346.761

CTR 23.434 140.513 1460.812 13357.382

CTS 20.983 134.858 1396.065 12785.659

ECB 19.700 125.912 1304.041 11899.184

OFB 22.403 143.398 1503.530 13750.740

IS
O

10
12

6P
ad

di
ng

CBC 19.931 134.445 1393.031 12798.459

CFB 24.800 151.578 1561.663 14332.682

CTR 21.513 139.643 1460.804 13350.047

CTS 20.411 134.723 1395.843 12787.808

ECB 19.315 126.119 1302.672 11900.799

OFB 23.142 144.245 1502.863 13742.847

5.2. Results for AES Cipher
Two different key lengths (128-bit and 256-bit keys) 
were tested with AES cipher. Block cipher modes of 
operation have been combined with different pad-
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ding schemes for each key size. Also, two padding 
algorithms have been utilized: PKCS5Padding and 
ISO10126Padding. AES with Galois/Counter Mode 
(AES-GCM) does not require data being padded out 
to a specific block size, hence avoiding the need to use 
the padding mechanism. 
Tables 5-6 show the elapsed times required to encrypt 
and decrypt four different text files with different siz-
es. These results refer to the Samsung Galaxy S9 Plus 
device using 128-bit and 256-bit AES, respectively.
As indicated in the Tables 5-6, the fastest encryp-
tion-decryption times were acquired when using the 
CBC or ECB modes and PKCS5Padding algorithm. 
Although this can be expected, as simplicity and 
speed are the main advantages of ECB, it is the easiest 
to cryptanalysis and not semantically secure [33].
The slowest results were achieved when the CFB and 
PKCS5Padding were utilized for both 128- and 256-
bit key length.
In case when CBC or ECB modes are combined with 
the ISO10126Padding, more time is required for the 
complete process.

Table 5
Encryption-decryption times (in ms) on Samsung Galaxy 
S9+ using AES cipher with a 128-bit key

Cipher Padding Mode 0.01mb 0.1mb 1mb 10mb

AE
S 

(1
28

)

PK
CS

5P
ad

di
ng

CBC 8.292 20.516 85.123 733.766

CFB 11.567 38.686 215.520 1884.358

CTR 14.258 37.402 182.577 1668.644

CTS 13.798 32.784 159.036 1435.431

ECB 7.884 20.730 91.778 719.447

OFB 9.539 30.989 213.572 1798.168

IS
O

10
12

6P
ad

di
ng

CBC 10.957 33.691 169.657 1441.750

CFB 13.438 36.003 213.456 1878.245

CTR 12.754 32.868 196.588 1823.418

CTS 11.585 30.594 164.050 1442.604

ECB 11.041 28.875 160.071 1365.735

OFB 12.569 44.374 197.944 1788.293

NoPadding GCM 7.881 10.716 92.967 1629.124

Table 6
Encryption-decryption times (in ms) on Samsung Galaxy 
S9+ using AES cipher with a 256-bit key

Cipher Padding Mode 0.01mb 0.1mb 1mb 10mb

AE
S 

(2
56

)

PK
CS

5P
ad

di
ng

CBC 8.576 20.575 92.641 665.134

CFB 13.504 47.553 241.369 2789.291

CTR 12.620 48.380 230.024 2529.401

CTS 12.124 42.508 200.889 2130.827

ECB 8.352 21.756 77.921 641.334

OFB 13.092 48.520 230.189 2075.595

IS
O

10
12

6P
ad

di
ng

CBC 13.116 38.012 193.416 1724.681

CFB 13.539 41.555 232.291 2157.963

CTR 13.222 44.977 229.124 2531.739

CTS 12.489 35.969 210.265 2242.854

ECB 12.035 38.694 193.067 1670.217

OFB 13.092 48.520 230.189 2075.595

NoPadding GCM 6.829 11.797 102.707 1745.916

To test the performances of the AES cipher on a lower 
hardware specification device, we have used the Sam-
sung Galaxy A20e device running Android Q (10). 
When compared to the Galaxy S9 Plus model, this device 
was significantly slower when the largest file (10 mb) 
was utilized in the encryption-decryption process. 
When compared to the Galaxy S9 Plus model, this device 
was significantly slower when the largest file (10  mb) 
was utilized in the encryption-decryption process.
However, the difference is not so prominent when 
smaller text files were employed.
As shown in the Tables 7-8, similar results were ob-
tained in general, where CBC and ECB modes com-
bined with PKCS5Padding yielded the fastest encryp-
tion-decryption times.
Moreover, when PKCS5Padding or ISO101216 pad-
ding algorithms were applied, the AES cipher trans-
formation using CFB mode proved to be the slowest 
option. 
Additionally, it can be observed that the GCM pro-
duced very similar results for both padding algo-
rithms and key lengths. The same could also be said 
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Table 7
Encryption-decryption times (in ms) on Samsung Galaxy 
A20e using AES cipher with a 128-bit key

Cipher Padding Mode 0.01mb 0.1mb 1mb 10mb

AE
S 

(1
28

)

PK
CS

5P
ad

di
ng

CBC 14.049 27.142 212.166 1835.062

CFB 16.947 82.375 785.214 7154.419

CTR 16.566 74.959 717.230 6533.891

CTS 15.308 65.525 614.725 5592.708

ECB 10.397 26.920 215.073 1860.548

OFB 16.302 76.980 729.950 6650.728

IS
O

10
12

6P
ad

di
ng

CBC 17.047 67.172 617.375 5586.215

CFB 17.566 82.456 784.940 7154.308

CTR 16.814 75.646 717.202 6536.435

CTS 15.757 65.830 617.002 5594.179

ECB 15.137 62.667 579.265 5230.725

OFB 16.810 76.414 730.378 6668.537

NP GCM 11.019 17.737 130.136 3867.815

Table 8
Encryption-decryption times (in ms) on Samsung Galaxy 
A20e using AES cipher with a 256-bit key 

Cipher Padding Mode 0.01mb 0.1mb 1mb 10mb

AE
S 

(2
56

)

PK
CS

5P
ad

di
ng

CBC 14.281 27.864 211.326 1833.323

CFB 19.096 96.815 935.547 8565.483

CTR 18.080 90.030 868.727 7933.309

CTS 17.601 80.532 767.471 7004.101

ECB 10.888 27.210 215.363 1867.484

OFB 17.843 92.601 883.657 8067.842

IS
O

10
12

6P
ad

di
ng

CBC 19.030 79.689 769.828 6996.850

CFB 19.002 97.238 935.561 8560.270

CTR 18.254 89.922 868.763 7940.664

CTS 17.438 80.564 767.642 7000.774

ECB 17.300 76.405 731.040 6631.829

OFB 18.276 93.241 883.265 8062.224

NP GCM 10.536 17.213 129.367 3843.505

for the Output Feedback (OFB) and CypherText 
Stealing (CTS) modes.

5.3. Results for Blowfish Cipher
Blowfish algorithm is a 64-bit block cipher with a 
variable-length key from 32-bits (4 bytes) to 448-bits 
(56 bytes). The symmetric key encryption algorithm 
is suitable and efficient for hardware implementation 
[23]. However, like most other ciphers, the Blowfish 
is often used in software implementations (from An-
droid API level 10+).
The cipher can be used as a drop-in replacement for 
the DES or International Data Encryption Algorithm 
(IDEA). The Blowfish algorithm is considered secure 
and fast. However, the keys should be chosen to be big 
enough to withstand a brute force attack (e.g., at least 
16 bytes).
To test the Blowfish performances, we have provided 
five different key lengths, including lower and upper 
key limits. The cipher transformation refers to a com-
bination of two padding schemes and 6 modes of op-
erations.
Tables 9-10 provide performance results obtained 
with Blowfish cipher on Galaxy S9 Plus device, us-
ing PKCS5Padding and ISO101216Padding padding 
schemes, respectively.
As can be seen, the differences in computational time 
between the two padding schemes are not prominent. 
Regarding the comparison to other tested ciphers, it 
can be observed that the Blowfish algorithm was out-
performed by both tested stream ciphers (ChaCha20/
NONE/NoPadding and RC4). However, the Cha-
Cha20 encryption-decryption times were somewhat 
slower when Poly1305 feedback mode was utilized on 
the Galaxy S9 Plus device.
When compared to the AES, the faster encryption-de-
cryption times were achieved with AES only in a situ-
ation when CBC or ECB modes (combined with PKC-
S5Padding scheme) were utilized.
For other modes of operation and padding schemes, 
the Blowfish performed faster than AES. This cipher 
also performed significantly better than the DES and 
3DES block ciphers.
Furthermore, results obtained from a lower perfor-
mance device (Galaxy A20e) show the RC4 stream ci-
pher was faster than the Blowfish block cipher. Unlike 
results from the Galaxy S9 Plus device, when the Cha-
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Table 10
Execution times (in ms) on Galaxy S9 Plus using the 
Blowfish cipher and ISO10126Padding scheme

Cipher Mode Key 
size Mode 0.01mb 0.1mb 1mb 10mb

Bl
ow

fis
h

IS
O

10
12

6 P
ad

di
ng

32 
bits

CBC 6.269 22.117 142.938 1122.703

ECB 5.970 19.555 143.396 1134.827

CTR 6.033 19.570 143.298 1146.477

CTS 5.857 19.237 147.967 1144.946

OFB 5.928 19.294 141.954 1144.196

CFB 6.460 21.526 148.725 1169.140

64 
bits

CBC 6.449 21.563 144.054 1122.483

ECB 6.446 21.656 152.972 1116.980

CTR 6.627 25.284 198.592 1422.841

CTS 6.503 23.900 151.577 1125.730

OFB 6.121 26.943 214.862 1227.251

CFB 6.341 21.676 152.057 1366.054

128 
bits

CBC 6.517 19.591 139.851 1139.217

ECB 6.677 19.658 143.144 1447.182

CTR 6.537 20.261 211.909 1366.366

CTS 6.540 19.892 144.159 1142.271

OFB 5.948 20.305 150.111 1148.841

CFB 6.659 21.828 141.618 1157.637

256 
bits

CBC 6.489 19.307 139.146 1144.456

ECB 6.212 17.803 139.923 1145.977

CTR 6.389 20.301 138.888 1140.367

CTS 6.542 19.365 139.545 1144.296

OFB 6.535 20.674 144.840 1144.207

CFB 6.551 19.352 140.601 1145.893

448 
bits

CBC 6.549 25.230 145.262 1159.551

ECB 6.510 18.973 142.215 1146.360

CTR 6.806 20.077 136.908 1145.345

CTS 6.526 19.565 142.961 1144.872

OFB 6.588 19.705 141.146 1145.214

CFB 6.631 28.426 185.758 1286.251

Cipher Mode Key 
size Mode 0.01mb 0.1mb 1mb 10mb

Bl
ow

fis
h

PK
CS

5P
ad

di
ng

32 bits

CBC 5.854 20.229 141.412 1131.290

ECB 5.769 19.392 141.143 1136.098

CTR 5.849 20.297 140.236 1138.478

CTS 6.001 19.557 143.498 1141.933

OFB 5.591 19.693 148.471 1150.964

CFB 6.512 21.295 141.510 1132.870

64 bits

CBC 6.065 21.246 164.881 1356.558

ECB 6.336 21.693 145.674 1112.461

CTR 5.912 21.302 151.798 1118.786

CTS 6.366 21.458 150.408 1133.411

OFB 6.303 23.171 149.976 1226.121

CFB 6.278 21.832 153.535 1364.487

128 
bits

CBC 6.400 20.407 134.003 1138.683

ECB 6.611 20.090 200.049 1185.560

CTR 6.527 19.504 138.542 1140.158

CTS 6.328 21.963 138.067 1144.860

OFB 5.741 19.605 144.946 1132.322

CFB 6.306 21.492 142.299 1135.524

256 
bits

CBC 6.437 19.335 137.193 1142.071

ECB 6.374 19.697 143.697 1145.442

CTR 6.450 19.557 140.677 1145.143

CTS 6.614 19.464 140.181 1142.245

OFB 6.445 19.985 143.174 1145.868

CFB 5.304 19.648 141.276 1137.993

448 
bits

CBC 6.602 21.162 151.377 1154.152

ECB 6.581 19.753 144.526 1146.532

CTR 6.810 20.518 139.537 1153.289

CTS 6.555 19.738 141.133 1156.952

OFB 6.893 21.289 138.389 1156.594

CFB 6.488 21.334 138.893 1154.016

Table 9
Execution times (in ms) on Galaxy S9 Plus using the 
Blowfish cipher and PKCS5Padding scheme 



Table 11
Execution times on Galaxy A20e – Blowfish/
PKCS5Padding

Cipher Mode Key 
size Mode 0.01mb 0.1mb 1mb 10mb

Bl
ow

fis
h

PK
CS

5P
ad

di
ng

32 
bits

CBC 12.617 53.433 512.164 4572.016

ECB 12.474 53.532 511.581 4583.087

CTR 12.135 53.027 515.317 4573.389

CTS 11.996 52.743 511.898 4572.733

OFB 12.226 53.062 511.496 4573.029

CFB 15.240 53.701 514.172 4574.275

64 
bits

CBC 15.236 54.172 511.211 4602.183

ECB 12.522 53.438 512.532 4610.807

CTR 12.383 54.221 512.986 4609.036

CTS 11.568 53.781 513.601 4611.579

OFB 12.176 53.421 513.691 4602.532

CFB 12.051 53.196 513.171 4609.774

128 
bits

CBC 12.198 52.979 511.949 4571.927

ECB 12.405 53.291 512.451 4582.290

CTR 12.394 54.315 512.899 4567.503

CTS 12.298 53.779 513.442 4567.218

OFB 12.466 52.691 512.847 4566.304

CFB 12.533 53.114 512.686 4572.589

256 
bits

CBC 15.668 53.326 511.889 4609.992

ECB 15.383 53.790 509.001 4585.996

CTR 12.481 53.436 510.949 4597.795

CTS 12.089 54.371 510.067 4596.939

OFB 12.287 54.318 510.857 4596.757

CFB 12.356 53.374 510.655 4597.682

448 
bits

CBC 14.885 54.143 513.035 4626.042

ECB 15.390 59.229 514.685 4623.143

CTR 12.081 54.727 512.355 4606.192

CTS 12.328 54.411 512.502 4599.046

OFB 12.412 54.115 511.376 4594.384

CFB 12.399 53.870 514.822 4574.546

Table 12
Execution times on Galaxy A20e – Blowfish/
ISO10125Padding

Cipher Mode Key 
size Mode 0.01mb 0.1mb 1mb 10mb

Bl
ow

fis
h

IS
O

10
12

6 P
ad

di
ng

32 
bits

CBC 15.772 53.759 511.823 4566.677

ECB 11.952 53.133 512.358 4575.922

CTR 12.125 53.509 511.783 4576.918

CTS 12.235 52.981 512.146 4571.054

OFB 12.296 54.389 512.645 4572.524

CFB 12.425 52.966 512.578 4574.776

64 
bits

CBC 12.348 55.184 512.223 4653.591

ECB 12.486 52.770 513.138 4613.991

CTR 12.430 53.715 513.576 4608.366

CTS 12.476 53.638 513.132 4605.202

OFB 12.321 53.001 512.426 4604.305

CFB 12.500 53.692 512.933 4605.954

128 
bits

CBC 12.534 53.275 513.890 4566.651

ECB 12.542 53.955 513.203 4565.278

CTR 12.415 53.838 513.151 4566.292

CTS 12.431 54.018 512.774 4566.395

OFB 12.272 53.707 513.937 4569.615

CFB 12.278 53.973 514.334 4582.273

256 
bits

CBC 12.506 53.358 512.671 4617.118

ECB 12.370 54.076 541.170 4594.027

CTR 12.387 53.188 510.560 4592.074

CTS 12.265 53.655 510.923 4597.685

OFB 12.428 53.351 511.144 4596.208

CFB 12.447 54.687 510.613 4594.699

448 
bits

CBC 12.130 53.908 514.253 4651.642

ECB 11.435 53.734 514.261 4627.384

CTR 12.341 54.574 511.171 4602.165

CTS 12.355 53.836 512.159 4604.905

OFB 12.463 54.071 511.610 4601.230

CFB 12.471 52.950 514.262 4574.347
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Cha20 stream cipher was combined with different 
modes of operation (NONE and Poly1305), the Blow-
fish algorithm was outperformed in both cases. When 
compared to the PBE algorithms, this cipher proved 
to be the faster option on both smartphone devices.
Tables 11-12 provide results obtained by the Blowfish 
cipher on Galaxy A20e device, using PKCS5Padding 
and ISO101216Padding padding schemes, respective-
ly. It can be observed that the obtained CPU utiliza-
tion times are very similar for both padding schemes.

5.4. Results for RC4 (ARC4) Cipher
The RC4 (or ARCFOUR, ARC4) is a stream cipher 
using variable-sized keys. The supported key length 
is between 1 byte and 256 bytes, conventionally used 
from 40 bits (5 bytes) to 2048 bits (256 bytes). 
Due to the fact that this cipher does not encrypt in 
blocks, the number of output bytes is exactly equal 
to the number of input bytes. Also, RC4 does not uti-
lize initialization vectors, which are only applied in 
block cipher algorithms. As mentioned, the Bouncy 
Castle versions of parameters and many algorithms 
have been deprecated as of Android 9. For this rea-
son, several changes related to cryptography were 
introduced. Additional implementations of algorithm 
parameters are provided in Conscrypt [6]. The Con-
scrypt implementation of the RC4 cipher allows us-
ers to specify either RC4/ECB/NoPadding or RC4/
NONE/NoPadding. However, it should be mentioned 
that using NONE as a mode of operation is supported 
only on API level 28 and higher.
The RC4 outperformed all ciphers we have tested. Ta-
ble 13 presents the outcomes from the Samsung Gal-
axy S9 Plus device. Very similar results were obtained 
for all four text file sizes. It can be observed that nei-
ther the key size nor padding scheme significantly af-
fected encryption-decryption times.
Table 14 provides the RC4 encryption-decryption 
times acquired by the less powerful Galaxy A20e 
device. The identical algorithm modes and key siz-
es were employed as in the Galaxy S9 Plus model. 
Likewise, the results show no significant variations 
regarding CPU time when different key lengths or 
cipher modes are utilized. Similar outcomes were ac-
quired with the ECB and NONE modes of operation. 
In case when larger text files are encrypted, the differ-
ence between devices is more prominent. However, 
it can be seen that results for smaller text files do not 
differ significantly on different tested mobile devices

Table 13
Results of the encryption-decryption process (in ms) using 
the RC4 cipher, tested on Galaxy S9 Plus

Cipher Mode
Key 
size 

[bits]
0.01mb 0.1mb 1mb 10mb

RC
4

N
O

N
E

40 6.057 16.321 81.074 690.160

64 4.482 12.660 114.194 682.013

128 5.579 11.714 80.024 688.027

256 5.238 11.429 79.768 695.925

512 5.594 17.840 78.545 686.746

1024 5.480 18.637 78.044 694.424

2048 5.353 13.617 79.490 687.553

EC
B

40 5.333 12.711 89.268 716.045

64 5.876 17.949 80.210 690.065

128 5.750 12.706 91.216 715.133

256 6.043 12.565 78.509 693.585

512 5.505 17.372 80.104 685.431

1024 5.507 17.734 79.616 684.982

2048 5.787 17.924 99.176 764.131

Table 14
Results of the encryption-decryption process (in ms) using 
the RC4 cipher, tested on Galaxy A20e

Cipher Mode Key size 
[bits] 0.01mb 0.1mb 1mb 10mb

RC
4

N
O

N
E

40 8.388 26.033 219.039 1920.510

64 9.690 25.221 219.065 1925.623

128 8.406 24.672 218.916 1937.155

256 11.673 25.129 219.809 1929.744

512 8.928 24.861 219.548 1927.004

1024 8.287 25.977 219.097 1924.540

2048 9.603 24.491 218.696 1922.298

EC
B

40 12.054 26.309 217.068 1924.771

64 12.130 26.590 221.323 1965.724

128 8.943 25.761 218.692 1926.733

256 11.986 25.917 215.167 1912.890

512 8.777 26.020 220.483 1962.694

1024 8.695 26.442 220.398 1962.855

2048 8.482 26.136 218.081 1925.217
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5.5. Results for ChaCha20 Cipher
The Android operating system provides support for the 
ChaCha stream cipher with 20 rounds, 96-bit nonce, 
and 32-bit counter, as described in [3]. To encrypt the 
plain text, the cipher uses a 256-bit key and IV (initial-
ization value, nonce + initial count). The nonce and se-
cret key must be unique for each encryption. 
For the encryption process, the key, nonce, and count-
er must be the same. Unlike the AES, it is not vulnera-
ble to cache-collision-timing attacks. The ChaCha20 
cipher has been reported faster than the AES in soft-
ware-only implementations when the CPU does not 
provide dedicated AES instructions [17]. However, 
it must be noted that the cipher is supported only on 
API levels 28 or higher. The ChaCha20 is a relatively 
new stream cipher that can replace the older, insecure 
RC4 stream cipher on Android devices. The Figures 
2-3 illustrate the text files encryption-decryption 
times utilizing ChaCha20 and ChaCha20-Poly1305 
cipher transformations on the Samsung Galaxy S9 
Plus and Galaxy A20e, respectively.
Four different text file sizes were tested in encryp-
tion-decryption process: 10, 1, 0.1, and 0.01 megabytes. 
The ChaCha20 cipher obtained similar results as the 
AES algorithm with 128-bit key size on the Galaxy 
S9 Plus device. The results are even more compara-
ble when CBC or ECB modes are combined with the 
PKCS5Padding algorithm. Additionally, the Cha-
Cha20-Poly1305 acquired somewhat faster times 
when compared to the remaining AES modes and 
paddings. However, this cipher required considerably 

Figure 2 
Difference between ChaCha20 and ChaCha20-Poly1305 
cipher transformations on the Samsung Galaxy S9 Plus.  
The encryption-decryption process includes four different 
file sizes (0.01, 0.1, 1, and 10 megabytes). The results are in 
milliseconds

Figure 3 
Difference between ChaCha20 and ChaCha20-Poly1305 
cipher transformations on the Samsung Galaxy A20e. The 
encryption-decryption process includes four different 
file sizes (0.01, 0.1, 1, and 10 megabytes). The results are in 
milliseconds

Figure 4 
CPU utilization times (in milliseconds) of an encryption-
decryption process on Galaxy S9 Plus device using 
ChaCha20 cipher, grouped by the same text file sizes

more time to encrypt-decrypt the text files when com-
pared to the ChaCha20.
Regarding the Galaxy A20e device with lower hard-
ware specifications, the results obtained using Cha-
Cha20 were significantly enhanced when compared 
to the AES cipher. This is true for both 128- and 256-
bit key lengths. As depicted in Figure 3, both the Cha-
Cha20 and ChaCha20-Poly1305 encrypted and de-
crypted the text files significantly faster than the AES 
on a less powerful device.
The only case when the AES was faster is for the PKC-
S5Padding algorithm along with CBC or ECB modes. 
When compared to another tested stream cipher 
(RC4), ChaCha20/NONE/NoPadding cipher is faster 
only on the device with higher hardware specifications.
The Figures 4-5 present CPU utilization times (in 
milliseconds) of an encryption-decryption process on 
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Figure 5 
CPU utilization times (in milliseconds) of an encryption-
decryption process on Galaxy A20e device using 
ChaCha20 cipher, grouped by the same text file sizes

Figure 6 
CPU utilization times (in milliseconds) of an encryption-
decryption process on both devices using ChaCha20 
cipher, grouped by the same text file sizes

Galaxy S9 Plus and Galaxy A20e devices, respectively. 
The results are obtained using ChaCha20 cipher and 
grouped by the same text file sizes.
For comparison, Figure 6 shows the same results si-
multaneously for both devices.

5.6. Results for PBE Algorithms
The PBE (Password-Based Encryption) algorithms 
are techniques that allow generating a secret key 
based on a password provided by the end-user. This 
feature is convenient if the users want to encrypt 
files based on the easily memorable passwords [10]. 
In order to produce key bytes as random and un-
predictable as possible, additional parameters (i.e., 
salt and iteration count) are provided. The salt is a 
randomization system aiming to prevent dictionary 
attacks.

Creating a table of possible passwords (‘’dictionary 
attack’’) would be challenging since there would be 
several possible keys for each password. Consequent-
ly, searching through passwords separately for each 
salt would be limited.
The iteration count complicates the key derivation 
function by performing a number of iterations, great-
ly increasing the cost of exhaustive password search 
attacks. A minimum of 1000 iterations is recom-
mended [29].
The PBE algorithm combines the specified message 
digest or pseudo-random function and symmetric 
encryption algorithm [5]. In total, we have tested 17 
different combinations of PBE algorithm parameters, 
defined as PBEWith<digest>And<encryption>. For 
every tested algorithm, two different values (1000 and 
10000) were provided as an iteration count. 
Table 15 presents the outcomes of the PBE encryp-
tion-decryption process using the Samsung Galaxy S9 
Plus device. The fastest encryption time was obtained 
by utilizing SHA as message digest and RC4 as encryp-
tion algorithm. When compared to other ciphers, Cha-
Cha20 (NONE used as feedback mode) and RC4 algo-
rithms achieved slightly faster performances.
The AES cipher combined with the PKCS5Padding 
scheme and two modes of operation (CBC or ECB) 
also performed faster. In case when 3DES cipher was 
used together with SHA message digest, the poorer 
outcomes were obtained. Table 16 shows the results 
from Samsung Galaxy A20e device. Again, the PBE 
with an RC4 encryption algorithm and SHA message 
digest yielded the fastest outcomes, while SHA and 
3DES cipher resulted in the slowest encryption-de-
cryption times.
However, the difference between various PBE algo-
rithm parameters is more prominent when compared 
to results obtained by the Galaxy S9 Plus device. As 
can be observed, the CPU utilization was not signifi-
cantly affected by diverse iteration count values for 
large file sizes.

5.7. Discussion
In this section, we provide a concluding analysis of the 
comparison of all tested algorithms with respect to 
different file sizes, utilized devices, and cipher types 
(block or stream). Also, we compare our obtained re-
sults with the with the results of the other authors.
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Table 15
Encryption-decryption times (in ms) using the PBE (Password-
Based Encryption) algorithms on the Galaxy S9 Plus device 

Cipher Iter. 
count 0.01mb 0.1mb 1mb 10mb

PBEWithSHA 
AndAES_128

1 000 19.806 34.212 173.277 1434.596

10 000 78.297 89.563 229.934 1499.064

PBEWithSHA 
AndAES_256

1 000 26.652 39.760 207.809 1820.101

10 000 108.075 124.430 304.382 1874.394

PBEWithSHA256 
AndAES_128

1 000 20.702 34.790 170.002 1457.359

10 000 81.494 97.489 235.637 1672.277

PBEWithSHA256 
AndAES_256

1 000 14.145 35.740 264.713 1883.595

10 000 95.215 117.602 336.835 2047.895

PBEWithMD5 
AndAES_128

1 000 6.292 22.948 166.090 1588.924

10 000 6.579 33.068 256.305 1550.301

PBEWithMD5 
AndAES_256

1 000 10.111 27.987 200.267 1759.074

10 000 6.391 26.593 211.016 1994.764

PBEWithSHA 
AndRC4_40

1 000 9.542 20.872 105.707 870.129

10 000 52.521 54.980 146.929 910.693

PBEWithSHA 
AndRC4_128

1 000 15.096 21.221 116.367 890.555

10 000 50.801 53.756 146.635 909.834

PBEWithMD5 
AndDES

1 000 17.238 31.646 165.883 1461.346

10 000 53.142 65.061 206.404 1554.473

PBEWithSHA1 
AndDES

1 000 14.731 28.157 176.767 1486.448

10 000 51.330 73.169 288.389 1614.502

PBEWithSHA 
And2-
KeyTripleDES

1 000 20.999 42.252 333.897 2999.435

10 000 67.138 92.318 385.760 3121.791

PBEWithSHA 
And3-
KeyTripleDES

1 000 20.861 59.786 466.927 3128.143

10 000 96.863 124.102 437.986 3717.820

PBEWithSHA 
AndTwoFish

1 000 22.285 34.766 158.179 1234.499

10 000 108.584 123.751 247.335 1557.562

PBEWithSHA 
AndRC2_40

1 000 22.097 37.535 217.236 1832.921

10 000 80.745 98.921 286.657 1939.613

PBEWithSHA 
AndRC2_128

1 000 20.068 37.899 226.817 1885.972

10 000 78.938 97.417 287.953 1968.008

PBEWithMD5 
AndRC2

1 000 17.552 35.627 215.023 1877.257

10 000 51.924 64.403 249.711 1916.396

PBEWithSHA1 
AndRC2

1 000 15.072 35.318 224.487 2018.025

10 000 55.614 82.214 326.354 2017.591

Table 16
Encryption-decryption times (in ms) using the PBE (Password-
Based Encryption) algorithms on the Galaxy A20e device

Cipher Iter. 
count 0.01mb 0.1mb 1mb 10mb

PBEWithSHA 
AndAES_128

1 000 32.654 80.360 628.963 5518.971

10 000 187.389 234.848 788.164 5680.162

PBEWithSHA 
AndAES_256

1 000 40.116 104.833 789.520 6977.135

10 000 270.890 335.590 1005.797 7201.701

PBEWithSHA256 
AndAES_128

1 000 30.140 81.144 631.012 5532.806

10 000 191.064 239.089 791.905 5670.330

PBEWithSHA256 
AndAES_256

1 000 34.353 95.141 787.093 6968.974

10 000 192.724 253.075 935.032 7139.641

PBEWithMD5 
AndAES_128

1 000 13.390 63.409 615.560 5517.451

10 000 13.126 63.991 617.144 5512.636

PBEWithMD5 
AndAES_256

1 000 14.928 78.685 771.684 6959.989

10 000 14.885 77.984 771.528 6964.944

PBEWithSHA 
AndRC4_40

1 000 19.166 36.574 260.300 2257.256

10 000 97.078 115.399 343.639 2330.458

PBEWithSHA 
AndRC4_128

1 000 19.066 36.873 260.910 2256.598

10 000 96.665 116.136 342.699 2326.426

PBEWithMD5 
AndDES

1 000 22.836 71.877 636.696 5702.136

10 000 103.523 153.235 715.764 5779.626

PBEWithSHA1 
AndDES

1 000 21.278 72.077 636.491 5708.364

10 000 99.160 150.132 711.094 5769.855

PBEWithSHA 
And2-
KeyTripleDES

1 000 38.997 151.666 1411.665 12811.084

10 000 194.703 306.684 1572.867 12916.847

PBEWithSHA 
And3-
KeyTripleDES

1 000 48.454 161.034 1403.666 12771.224

10 000 279.104 397.151 1650.404 12995.879

PBEWithSHA 
AndTwoFish

1 000 38.210 81.119 540.867 4661.399

10 000 274.354 315.177 779.612 4895.116

PBEWithSHA 
AndRC2_40

1 000 31.900 100.047 847.923 7582.186

10 000 190.087 259.983 997.371 7731.347

PBEWithSHA 
AndRC2_128

1 000 33.797 99.846 845.920 7563.939

10 000 188.177 256.292 1002.332 7723.197

PBEWithMD5 
AndRC2

1 000 26.158 92.270 838.803 7570.298

10 000 104.060 171.107 916.466 7638.832

PBEWithSHA1 
AndRC2

1 000 24.607 92.863 838.941 7574.212

10 000 101.501 169.478 916.441 7650.544
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Regarding the smallest text file size (0.01 megabytes), 
the RC4 cipher proved to be the fastest among all oth-
er ciphers on both tested devices. Considering the 
other three text file sizes (in particular, 0.1, 1, and 10 
megabytes), the AES cipher outperformed all other 
algorithms on a less powerful Galaxy A20e device. 
Furthermore, when compared to the DES cipher, AES 
algorithm was found to be slower option for smaller 
file sizes. This conclusion confirms our findings with 
the results obtained by Olaleye [24]. 
Although tested on two different platforms (desktop 
and mobile), the results of Nadeem and Javed [21] 
study are very comparable to ours which were ob-
tained on mobile Android devices. Among the four 
algorithms tested, the results presented show that 
Blowfish is the fastest algorithm. The same is true for 
the results of our performance tests, especially for 
larger file sizes. The algorithms AES and DES per-
formed quite similarly on both platforms, while the 
3DES cipher was the slowest option, as in our study.
Rouaf and Yousif [30] additionally validated the AES 
and DES results we have obtained in our study. How-
ever, they have performed an experiment using three 
Android smartphones with hardware specifications 
that varied from those utilized in our study. 
Additionally, Haque et al. [15] and Salama et al. [32] 
reached the same conclusions, in which our findings 
also corroborate theirs. Namely, it was unsurprising 
that a smaller key size (128 bits) results in a quicker 
execution time for AES. Also, as with our findings ob-
tained on Android platform, larger key sizes (256 bits) 
resulted in greater AES time consumption. As a result, 
a higher key size should be used to support the smaller 
packet sizes typically required by mobile devices.
As with the ChaCha20 algorithm, given the large text 
files (i.e., 1 and 10 megabytes), the stream cipher was 
confirmed to be the fastest option on a device with 
more powerful hardware specifications (Galaxy S9 
Plus). On a smartphone with less powerful hardware, 
only the RC4 cipher obtained better performance.
Similar to Nie et al. [22] research who compared 
Blowfish and DES ciphers, results we have obtained 
also match the authors’ findings. Namely, the Blow-
fish has outperformed DES algorithm on both devices 
and across all file sizes we have evaluated. Our find-
ings on mobile platform are also relatable to a com-
parison conducted by Patil et al. [26] and Thirupalu 

and Reddy [38]. Between AES, DES, and 3DES, the 
results suggest that Blowfish is the optimal option be-
cause to its minimal CPU and memory requirements.
The outcomes of research obtained by Sahu and 
Kushwaha [31] and Panda [25] are similarly compa-
rable to our results related to the AES and Blowfish 
ciphers. As was the case in our research on Android 
platform, AES and Blowfish produced findings that 
were generally similar. Also, when encryption and 
decryption speeds are compared, the Blowfish cipher 
outperformed the DES cipher.
The TripleDES cipher assuredly has the lowest 
performance in view of all four text file sizes when 
compared to other algorithms tested on both smart-
phones. While the results we got are exclusive to the 
Android mobile OS, the findings in related works us-
ing 3DES method obtained on desktop computers are 
consistent with ours.
Similar to our research, Grgić et al. [14] utilized An-
droid mobile platform to evaluate the performance 
of three symmetric ciphers (AES, DES, and 3DES). 
However, unlike our research, the authors considered 
only two modes of operation: ECB and CTR. Regard-
less, their results and conclusions further corrobo-
rated ours. Namely, when employed in the ECB mode, 
the AES cipher surpasses both the DES and 3DES 
cryptosystems.
Furthermore, the PBE algorithm with AES (128) en-
cryption cipher and MD5 message digest yielded the 
fastest outcomes when the smallest text file is taken 
into consideration. For other file sizes, the best per-
formances were obtained using the PBE algorithm 
with RC4 encryption cipher and SHA message digest. 
The slowest results were acquired when the PBE al-
gorithm combined TripleDES cipher and SHA mes-
sage digest as algorithm parameters. 
With regard to different device models, the best op-
tion on a less powerful Galaxy A20e device was the 
AES block cipher with 128- or 256-bit keys provided. 
However, the stream ciphers (ChaCha20 and RC4) 
achieved the leading results on the Galaxy S9 Plus 
device. As mentioned, TripleDES was the slowest ci-
pher on both devices, utilizing the most CPU time.
Relating to the types of encryption algorithm, the AES 
proved to be the fastest block cipher on both devices. 
Apropos of the stream ciphers, the RC4 algorithm was 
the fastest option on the slower Galaxy A20e model, 
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while the ChaCha20 attained the best performances 
on the Galaxy S9 Plus device.

6. Conclusion 
This paper provides a detailed study of the popular 
symmetric key encryption algorithms available on 
the Android operating system. Various ciphers are de-
signed to provide different features and performance 
characteristics. We have tested six block and stream 
ciphers, as well as Password-Based Encryption (PBE) 
ciphers with different algorithms’ parameters. Their 
performances were compared by measuring CPU 
utilization while encrypting and decrypting text files 
of varying sizes. Two different devices were utilized: 
Samsung Galaxy S9 Plus (Android 9) and Samsung 
Galaxy A20e (Android 10). 
Results obtained by both devices clearly show the ad-
vantage of RC4 and ChaCha20 stream ciphers over 
other encryption algorithms. RC4 proved to be the 
fastest option on the less powerful Galaxy A20e mod-
el, while it was outperformed by ChaCha20 cipher on 
S9 Plus device. 

Regarding the block ciphers, the AES algorithm ob-
tained the best performances on both devices. The 
3DES cipher yielded the poorest performances, es-
pecially in the case of a device with lower hardware 
specifications. When referring to PBE ciphers, the 
best performances were obtained with the RC4 en-
cryption algorithm and SHA message digest. In case 
when SHA was combined with 3DES, the algorithm 
performs encryption-decryption process consider-
ably slower than other ciphers.
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