
Information Technology and Control 2022/1/5148

Hash Functions and GPU
Algorithm of Infinite Grid
Method for Contact Search

ITC 1/51
Information Technology
and Control
Vol. 51 / No. 1 / 2022
pp. 48-58
DOI 10.5755/j01.itc.51.1.29455

Hash Functions and GPU Algorithm of Infinite Grid Method for Contact Search

Received 2021/07/13 Accepted after revision 2022/01/25

 http://dx.doi.org/10.5755/j01.itc.51.1.29455

HOW TO CITE: Pacevič, R., Kačeniauskas, A. (2022). Hash Functions and GPU Algorithm of Infinite Grid Method for Contact Search.
Information Technology and Control, 51(1), 48-58. https://doi.org/10.5755/j01.itc.51.1.29455

Corresponding author: arnas.kaceniauskas@vilniustech.lt

R. Pacevič
Department of Graphical Systems; Vilnius Gediminas Technical University; Saulėtekio al. 11 , LT-10223, Vilnius,
Lithuania; phone: +370 5 274 4913; e-mail: ruslan.pacevic@vilniustech.lt

A. Kačeniauskas
Department of Graphical Systems; Vilnius Gediminas Technical University; Saulėtekio al. 11 , LT-10223, Vilnius,
Lithuania; Laboratory of Parallel Computing, Vilnius Gediminas Technical University; Saulėtekio al. 11 ,
LT-10223, Vilnius; phone: +370 5 274 4913; e-mail: arnas.kaceniauskas@vilniustech.lt

The paper presents the memory-saving GPU algorithm of the infinite grid method with various hash functions for
contact search in discrete element computations. The implemented hash table of fixed size has the added benefit of
allowing the grid to be potentially infinite in size, which is particularly suitable for a large number of discrete parti-
cles, moving in large computational domains with empty regions. Research on the application of various hash func-
tions and hash table sizes was performed to preserve the computational performance of the developed memory-sav-
ing GPU algorithm and its OpenCL implementation. The performance of the developed software was evaluated by
solving the hopper fill and discharge as well as the artificial avalanche problems on the NVIDIA® Tesla™ P100 GPU.
The performance achieved by using the memory-saving implementation of contact search was compared with that
attained by using the standard implementation of the uniform grid method. The performed analysis revealed that the
developed GPU algorithm and its OpenCL implementation reduced the GPU memory consumed by the uniform grid
method up to 69.7 times, which resulted in the contact search memory equal to 1.86% of the total memory required by
DEM computations. Moreover, the application of the Morton hash function and the proper hash table size allowed
for preserving high computational performance of the infinite grid method and the developed GPU software.
KEYWORDS: parallel computing, GPGPU computing, OpenCL, contact search, hash functions, infinite grid
method, discrete element method.

49Information Technology and Control 2022/1/51

1. Introduction
The discrete element method (DEM) suggested in the
pioneering work of Cundall and Strack [3] presents
numerical methodology providing a quantitative de-
scription of discrete particulate media. The key con-
cepts of the DEM imply that the domain of interest is
treated as an assemblage of rigid or deformable par-
ticles and that the contacts among them need to be
identified and updated during the entire motion pro-
cess. DEM has been applied to solve numerous prob-
lems related to granular flows [32], cohesive powders
[31] and diluted aerosols [16]. However, the simula-
tion of systems at the particle level of detail has the
disadvantage of making DEM computationally very
expensive. Naturally, to solve the industrial-scale
problems, parallel computing has become an obvi-
ous option for significantly increasing computation-
al capabilities. However, the selection of the efficient
parallel solution algorithm is highly dependable on
the specific features of the considered problem and
the numerical method [14, 15, 27]. Compared to the
CPU-based parallelization, GPU has a higher paral-
lel structure, which makes them more efficient for
particle-based algorithms, where large blocks of data
can be processed in parallel. Software environments,
such as CUDA or OpenCL [4], are targeted at gener-
al-purpose GPU (GPGPU) programming.
Usually, the computing time of industrial applications
can be significantly reduced, using the paralleliza-
tion benefits of GPU, which is becoming increasing-
ly more important as an alternative computational
platform for DEM simulations [9]. Shigeto and Sakai
[26] have proposed a new algorithm for multi-thread
parallel computation of DEM, pointing out that their
calculation speed ratio of the GPU to CPU was up to
3.4 when single-precision floating-point numbers are
used. Durand et al. [5] have performed GPU simula-
tion of an impact on a reinforced concrete slab with
14274 particles, which is insufficient in the case of
civil engineering structures. Yue et al. [35] have made
a GPU version of Trubal code and demonstrated its
application to die filling. In 3D simulations, contain-
ing 20000 particles, an average speedup of 19.66 was
achieved on the NVIDIA Tesla K40c card. Govender
et al. [9] have designed the modular high performance
Blaze-DEMGPU framework for the GPU architecture
and investigated the influence of shape non-unifor-

mity and polydispersity of polyhedral particles on
hopper discharge. Kelly et al. [18] have adopted an adi-
mensionalization process combined with mixed-pre-
cision data to simulate 3D scenarios with up to 710
million spherical frictionless particles.
To achieve a higher speedup ratio for a larger number
of particles, a few efforts were made to use the com-
bined GPU and MPI technology. Xu et al. [33] have
achieved the quasi-real-time simulation of an indus-
trial rotating drum, when about 9.6⋅106 particles were
treated with 270 GPUs. The one-dimensional domain
decomposition with multiple GPUs has been applied
to the simulation of 128 million particles by Tian et al.
[29]. GPU-based DEM combined with MPI has been
applied by Gan et al. [7] to study flow in different gran-
ular handling and processing systems related to the
ironmaking industry.
Contact search is a very important and time-consum-
ing part of DEM computations of granular materials
[34]. Spatial partitioning techniques subdivide domain
into particular regions, such as cells. Since two parti-
cles can only be in contact if they are in the neighbor-
ing regions, the number of pairwise contact checks is
significantly decreased [22]. The uniform grid method
(UGM) is the efficient space subdivision scheme often
used to speed up the contact search queries on GPU in
the case of nearly monosized particles. A typical grid
representation stores a list of particles contained by
each cell. However, in the cases of large grids, the mere
storing of the lists can exceed limits of available GPU
memory [2]. Thus, large uniform grids only partially
filled with particles inefficiently allocate memory, and
contact search can violate the limits of GPU resources,
which restricts the application of DEM in industry.
Most of the authors [9, 29, 35] have performed stan-
dard implementations of the UGM for contact search
or its minor modifications [26, 33]. Kalojanov and
Slusallek [17] have developed the first GPU-based
parallel algorithm of uniform grid construction for
ray tracing. NVIDIA SDK provides a sample code [10]
for simulating simple particle interactions by using a
sorting algorithm and a uniform grid structure. Xu et
al. [33] have used atomic functions to register parti-
cles to cells and the thread block per cell to perform
the neighbour search. Durand et al. [5] have used a
dynamic bounding box to reduce the number of cells
in the uniform grid. Cai et al. [1] have modified cell-

Information Technology and Control 2022/1/5150

linked list method using dynamic mesh for better
utilization of CPU memory. Zheng et al. [36] have ap-
plied a complex and costly contact search algorithm,
allowing a particle to overlap an arbitrary number of
cells, to the self-compacting concrete flow simula-
tions. The developed algorithm performed well up to
140063 heterogeneous particles in a simple case of the
gravity packing problem. However, only 29580 parti-
cles were employed to simulate a complex self-com-
pacting concrete flow. Gan et al. [8] have applied the
hierarchical grids method for large-scale polydis-
persed particulate systems and noticed the decrease
in efficiency caused by the load balance problem and
the time-consuming MPI communication between
GPUs on different nodes.
The main drawback of the UGM is that too much
memory as buckets are allocated with predefined
capacity. In a typical DEM simulation, many of
these buckets are not used. Hence, the occupied
GPU memory cannot be used for any other purpose.
It seems that mapping of cells into a hash table of a
fixed size requires less memory than storing the grid
in a dense array [23]. Moreover, positions of particles
are mapped by the hash function into a finite number
of cells. The size of used storage is associated with
the number of particles. Memory necessary for the
hash table does not depend on the number of grid
cells, therefore, the grid can be potentially infinite
in size. However, memory usage and performance of
the GPU code might depend on the considered solu-
tion domain and dynamics of particles, as well as the
applied hash function and the hash table size. More-
over, the performance of contact search algorithms
on large or complex computational domains with
unfilled regions, covered by large number of grid
cells, has been rarely investigated in the frame of the
DEM simulations on GPU.
The paper presents performance analysis of the de-
veloped memory-saving GPU algorithm of the infinite
grid method (IGM) with various hash functions for
contact search of DEM simulations in computation-
al domains that can be covered only by a large num-
ber of uniform grid cells. The other parts of the paper
are organized as follows: Section 2 describes the im-
plemented DEM model and used software, Section
3 presents the developed GPU algorithm for contact
search, Section 4 describes the solved applications,
Section 5 provides the performance analysis, while
Section 6 gives the concluding remarks.

2. The DEM Model and Software
In the present work, the employed DEM software
models the non-cohesive frictional visco-elastic par-
ticle systems. The dynamic behaviour of a discrete
system is described by considering the motion and
deformation of the interacting individual particles in
the frame of Newtonian mechanics. An arbitrary par-
ticle is characterized by three translational and three
rotational degrees of freedom. The forces acting on the
particle may be classified into the forces induced by
the external fields and the contact forces between the
contacting particles. In the present work, the electro-
magnetic force [30], the aerodynamic force [16] and
other external forces [20], except for the gravity force,
are not considered. The normal contact force can be
expressed as the sum of the elastic and viscous com-
ponents. In the present work, the normal elastic force
is computed according to the Hertz’s contact model.
The viscous counterpart of the contact force linearly
depends on the relative velocity of the particles at the
contact point. The tangential contact force is divided
into the parts of static friction and dynamic friction.
The dynamic friction force is directly proportional to
the normal component of the contact force. The static
friction force is calculated by summing up the elastic
counterpart and the viscous damping counterpart. It
is worth noting that the elastic counterpart includes
the length of the tangential displacement, which de-
pends on the time history. Thus, the considered fric-
tion model is incremental or time history-dependent,
which requires storing the values of the tangential
displacement during the contact between the neigh-
bouring particles in the memory. The details of the
applied DEM model can be found in [6, 11].
The DEM code is developed by using OpenCL [4] to
run the same software on GPU and CPU of different
vendors. In the present research, the main attention
is focused on contact search because it can take a
large part of the computing time and the consumed
memory of granular material simulations on GPU.
Therefore, at the beginning the whole DEM algorithm
is only briefly outlined for completeness. The devel-
oped DEM algorithm for shared-memory architec-
tures can be described as follows. At the start of the
simulation, preprocessing is performed on CPU and
the initial data are copied into the GPU memory. No
further memory transactions between the CPU and

51Information Technology and Control 2022/1/51

GPU memory are required, except for the result stor-
age. All GPU kernels run thread per particle, which
takes advantage of the massive parallel computation
capabilities of modern GPUs and can be considered to
be the most suitable parallelism in the case of DEM
computations. The initial kernel performs the pre-
dictor step according to the Gear predictor-corrector
method, starting the time integration. The several fol-
lowing kernels run contact search, therefore, they are
circumstantially outlined below. The other kernels
handle the time history of contacts, compute the con-
tact forces and evaluate the external forces. The last
kernel completes the time integration by performing
the Gear corrector step. The values of positions, ve-
locities and accelerations of the particles are correct-
ed. At the end of the time step, the particle data can be
copied from the GPU memory to CPU and stored on
the hard disk drive in HDF5 format. It is recommend-
ed to transfer the data to the CPU memory as seldom
as possible because it is a time-consuming process.

3. The GPU Algorithm of Contact
Search
In fact, a very effective space subdivision scheme is
a regular grid, which is often applied to perform fast
contact search. However, a serious drawback of the
UGM is that too much memory as buckets are al-
located for a large number of uniform grid cells. To
avoid storing the grid by using a dense array and to
save the GPU memory each cell of the grid or the par-
ticles located there can be mapped into a hash table
of a fixed set of M buckets. The main information is
stored in two arrays (Figure 1), containing the list of
pairs PARTICLE_ID(N) and PARTICLE_HASH(N),
where N is the number of particles. The information
for accessing the particles associated with a partic-
ular bucket is stored in two additional arrays BUCK-
ET_START(M) and BUCKET_END(M), where M is
the considered size of the hash table. The output of
the contact search algorithm is stored in the arrays
CONTACT_N(N) and CONTACT_IDS(K), where K is
the number of particles N multiplied by the maximal
number of contacts. In the case of packed monosized
particles, the maximal number of contacts equals 12.
These arrays are necessary for computing the contact
forces in the relevant kernels.

Figure 1 shows the scheme of the developed memo-
ry-saving GPU algorithm for the IGM. Kernel 1 runs
a thread per particle and calculates hash values by
using the considered hash function. In Figure 1, the
values of the array PARTICLE_HASH are not calcu-
lated by any real hash function and only of an illus-
trative character. Kernel 1 stores the results to arrays
PARTICLE_ID and PARTICLE_HASH in the global
GPU memory. Kernel 2 sorts the particles according
to their hash values. The sorting is performed by us-
ing the fast radix sort algorithm [25] provided by the
Boost Compute library [21]. Kernel 3 fills the arrays
BUCKET_START and BUCKET_END. The kernel
compares the hash value of the current particle with
the hash value of the previous particle in the sorted
array PARTICLE_HASH. If the hash value is differ-
ent, this indicates the end of the old bucket and the

Figure 1
A scheme of the developed GPU algorithm of the infinite
grid method

kernels handle the time history of contacts,
compute the contact forces and evaluate the
external forces. The last kernel completes the time
integration by performing the Gear corrector step.
The values of positions, velocities and
accelerations of the particles are corrected. At the
end of the time step, the particle data can be copied
from the GPU memory to CPU and stored on the
hard disk drive in HDF5 format. It is
recommended to transfer the data to the CPU
memory as seldom as possible because it is a time-
consuming process.

3. The GPU Algorithm of Contact
Search

In fact, a very effective space subdivision scheme is
a regular grid, which is often applied to perform
fast contact search. However, a serious drawback
of the UGM is that too much memory as buckets
are allocated for a large number of uniform grid
cells. To avoid storing the grid by using a dense
array and to save the GPU memory each cell of the
grid or the particles located there can be mapped
into a hash table of a fixed set of M buckets. The
main information is stored in two arrays (Figure 1),
containing the list of pairs PARTICLE_ID(N) and
PARTICLE_HASH(N), where N is the number of
particles. The information for accessing the
particles associated with a particular bucket is
stored in two additional arrays
BUCKET_START(M) and BUCKET_END(M),
where M is the considered size of the hash table.
The output of the contact search algorithm is
stored in the arrays CONTACT_N(N) and
CONTACT_IDS(K), where K is the number of
particles N multiplied by the maximal number of
contacts. In the case of packed monosized particles,
the maximal number of contacts equals 12. These
arrays are necessary for computing the contact
forces in the relevant kernels.

Figure 1 shows the scheme of the developed
memory-saving GPU algorithm for the IGM.
Kernel 1 runs a thread per particle and calculates
hash values by using the considered hash function.
In Figure 1, the values of the array
PARTICLE_HASH are not calculated by any real
hash function and only of an illustrative character.
Kernel 1 stores the results to arrays PARTICLE_ID
and PARTICLE_HASH in the global GPU
memory. Kernel 2 sorts the particles according to
their hash values. The sorting is performed by
using the fast radix sort algorithm [25] provided by
the Boost Compute library [21]. Kernel 3 fills the
arrays BUCKET_START and BUCKET_END. The

kernel compares the hash value of the current
particle with the hash value of the previous
particle in the sorted array
PARTICLE_HASH. If the hash value is
different, this indicates the end of the old
bucket and the start of a new bucket. The end
index and the start index are written to the
arrays BUCKET_END and BUCKET_START,
respectively. In the array BUCKET_END,
minus one indicates that this bucket has no
particles and the relevant loop through the
particles will not be performed. This kernel
also performs computations on a thread per
particle basis.

Figure 1

A scheme of the developed GPU algorithm of the
infinite grid method.

Kernel 4 performs the final contact check,
which sometimes is referred to as the narrow
phase of contact search. The contact check of
the particular particle is performed against
the particles located only in the neighbouring
grid cells. Thus, for each particle, hash values
of 27 neighbouring cells are calculated by
using the considered hash function. It is

Information Technology and Control 2022/1/5152

start of a new bucket. The end index and the start
index are written to the arrays BUCKET_END and
BUCKET_START, respectively. In the array BUCK-
ET_END, minus one indicates that this bucket has no
particles and the relevant loop through the particles
will not be performed. This kernel also performs com-
putations on a thread per particle basis.
Kernel 4 performs the final contact check, which
sometimes is referred to as the narrow phase of con-
tact search. The contact check of the particular par-
ticle is performed against the particles located only
in the neighbouring grid cells. Thus, for each particle,
hash values of 27 neighbouring cells are calculated by
using the considered hash function. It is worth noting
that, contrary to the UGM, some hash values of the
neighbouring cells might be the same and should be
removed to avoid the duplicated contact. Then, the
outer loop is performed over the determined buck-
ets, while the inner loop is run over the particles of
the current bucket. These neighbouring particles are
accessed by using the indices to the array PARTI-
CLE_ID that are stored in arrays BUCKET_START
and BUCKET_END. When the distance between
the checked particles is smaller than the sum of the
radii of the particles, the contact is identified. The
number of the contacting particles is increased in
the array CONTACT_N, while the particle Id is added
to the contact list CONTACT_IDS. The arrays CON-
TACT_N and CONTACT_IDS serve as the output of
Kernel 4 and the whole contact search algorithm.
The occupancy of the hash table and the number of po-
tential contacts is highly dependent on the employed
hash function, which can have a great influence on the
required memory and computational performance of
the contact search algorithm. The uniform function
[28], the Morton function [2] and the universal function
based on the primary numbers [19] are considered for
wrapping the world coordinates into a finite number of
buckets. Thus, three different hash functions are con-
sidered to investigate the influence of the function used
to the computational performance of contact search in
the case of problem-specific DEM simulations.

4. The Considered Applications
Three different problems are considered to evalu-
ate the computational performance of the developed
GPU implementation of contact search for prob-

lem-specific DEM simulations. The hopper fill prob-
lem has a relatively small and simple solution do-
main, therefore, it can be efficiently solved by using
the UGM for contact search. The solution domains of
hopper discharge and artificial avalanche problems,
on the contrary, have a relatively complex shape, in-
volving several regions that require a large number of
uniform grid cells. Moreover, in each time instance,
the moving particles occupy only a small part of the
computational domain, leaving empty regions and
limiting efficiency of standard contact search imple-
mentations.
In the case of the hopper fill and the hopper discharge
problems, the pyramid-shaped hopper of the same
geometry is considered. The dimensions for the hop-
per geometry are as follows: height 1.0m, width 1.0m,
thickness 1.0m and the height of the pyramidal part
0.4m. The width of the orifice is considered to be 0.5m
to make a faster discharge. At the initial time instant
of the hopper fill problem, cubically packed particles
are placed in the cubic part of the hopper. In the case
of the hopper discharge problem, a large rectangular
box, imitating the infinite plane at the bottom, has
the following inward dimensions: height 0.5m, width
8.0m and thickness 8.0m.
In the initial state of the hopper discharge problem,
the particulate material is obtained from the numeri-
cal solution of the hopper fill problem at t=0.5s. Gran-
ular material is presented by the assemblies of 117649,
970299, 1906624, 2863288 and 3723875 particles
with the radii equal to 0.0100m, 0.0050m, 0.0040m,
0.0035m and 0.0032m, respectively. The material
has the bulk particle density of 1290kg/m3. The other
physical data for particles are as follows: the Poisson’s
ratio is equal to 0.2, the particle elasticity modulus is
equal to 2.36⋅108Pa, the friction coefficient between
the particles is equal to 0.4, while the coefficient of
restitution is equal to 0.5. The coefficients of the walls
are considered to be as follows: the Poisson’s ratio is
0.35, the elasticity modulus is 2.63109Pa and the fric-
tion coefficient between walls and particles is 0.4.
The avalanche flow is considered for DEM analysis
of damping effects. This analysis resulted in large
numbers of particles, moving in the partially filled
computational domain covered by a large number of
grid cells, which is a very suitable test case for the de-
veloped memory-saving GPU algorithm. The geom-
etry of the considered avalanche problem is given in

53Information Technology and Control 2022/1/51

Figure 2. The main rectangular box has the following
inward dimensions: height 9.5m, width 20.0m and
length 32.0m. The cuboid of the cubically packed
particles falls to the channel with an inclination of
10 degrees. The dimensions of the channel are as fol-
lows: width 4.0m, length 12.0m and the height of walls
is equal to 5.5m. The left end and the right end of the
channel are raised above the bottom of the rectangu-
lar box by 6.0m and 4.0m, respectively.
In the case of the avalanche problem, the granular
material is presented by the assemblies of 108640,
963600, 1649520, 2053430, 3237300 and 4241517
particles with the radii equal to 0.037m, 0.018m,
0.015m, 0.014m, 0.012m and 0.011m, respectively.
The material has the bulk particle density of 920kg/
m3. The other physical data for the particles are as
follows: the Poisson’s ratio equals 0.3, particle elas-
ticity modulus is 9.33⋅106Pa, the friction coefficient
between the particles equals 0.05 and the coefficient

Figure 2
The avalanche flow at t=17s: (a) 108640 particles with
R=0.037m; (b) 1649520 particles with R=0.015m

worth noting that, contrary to the UGM, some
hash values of the neighbouring cells might be the
same and should be removed to avoid the
duplicated contact. Then, the outer loop is
performed over the determined buckets, while the
inner loop is run over the particles of the current
bucket. These neighbouring particles are accessed
by using the indices to the array PARTICLE_ID
that are stored in arrays BUCKET_START and
BUCKET_END. When the distance between the
checked particles is smaller than the sum of the
radii of the particles, the contact is identified. The
number of the contacting particles is increased in
the array CONTACT_N, while the particle Id is
added to the contact list CONTACT_IDS. The
arrays CONTACT_N and CONTACT_IDS serve as
the output of Kernel 4 and the whole contact
search algorithm.

The occupancy of the hash table and the number of
potential contacts is highly dependent on the
employed hash function, which can have a great
influence on the required memory and
computational performance of the contact search
algorithm. The uniform function [28], the Morton
function [2] and the universal function based on
the primary numbers [19] are considered for
wrapping the world coordinates into a finite
number of buckets. Thus, three different hash
functions are considered to investigate the
influence of the function used to the computational
performance of contact search in the case of
problem-specific DEM simulations.

4. The Considered Applications
Three different problems are considered to
evaluate the computational performance of the
developed GPU implementation of contact search
for problem-specific DEM simulations. The hopper
fill problem has a relatively small and simple
solution domain, therefore, it can be efficiently
solved by using the UGM for contact search. The
solution domains of hopper discharge and artificial
avalanche problems, on the contrary, have a
relatively complex shape, involving several
regions that require a large number of uniform
grid cells. Moreover, in each time instance, the
moving particles occupy only a small part of the
computational domain, leaving empty regions and
limiting efficiency of standard contact search
implementations.

In the case of the hopper fill and the hopper
discharge problems, the pyramid-shaped hopper
of the same geometry is considered. The
dimensions for the hopper geometry are as

follows: height 1.0m, width 1.0m, thickness
1.0m and the height of the pyramidal part
0.4m. The width of the orifice is considered to
be 0.5m to make a faster discharge. At the
initial time instant of the hopper fill problem,
cubically packed particles are placed in the
cubic part of the hopper. In the case of the
hopper discharge problem, a large
rectangular box, imitating the infinite plane at
the bottom, has the following inward
dimensions: height 0.5m, width 8.0m and
thickness 8.0m.

Figure 2

The avalanche flow at t=17s: (a) 108640 particles
with R=0.037m; (b) 1649520 particles with
R=0.015m.

In the initial state of the hopper discharge
problem, the particulate material is obtained
from the numerical solution of the hopper fill
problem at t=0.5s. Granular material is
presented by the assemblies of 117649,
970299, 1906624, 2863288 and 3723875
particles with the radii equal to 0.0100m,
0.0050m, 0.0040m, 0.0035m and 0.0032m,
respectively. The material has the bulk
particle density of 1290kg/m3. The other

worth noting that, contrary to the UGM, some
hash values of the neighbouring cells might be the
same and should be removed to avoid the
duplicated contact. Then, the outer loop is
performed over the determined buckets, while the
inner loop is run over the particles of the current
bucket. These neighbouring particles are accessed
by using the indices to the array PARTICLE_ID
that are stored in arrays BUCKET_START and
BUCKET_END. When the distance between the
checked particles is smaller than the sum of the
radii of the particles, the contact is identified. The
number of the contacting particles is increased in
the array CONTACT_N, while the particle Id is
added to the contact list CONTACT_IDS. The
arrays CONTACT_N and CONTACT_IDS serve as
the output of Kernel 4 and the whole contact
search algorithm.

The occupancy of the hash table and the number of
potential contacts is highly dependent on the
employed hash function, which can have a great
influence on the required memory and
computational performance of the contact search
algorithm. The uniform function [28], the Morton
function [2] and the universal function based on
the primary numbers [19] are considered for
wrapping the world coordinates into a finite
number of buckets. Thus, three different hash
functions are considered to investigate the
influence of the function used to the computational
performance of contact search in the case of
problem-specific DEM simulations.

4. The Considered Applications
Three different problems are considered to
evaluate the computational performance of the
developed GPU implementation of contact search
for problem-specific DEM simulations. The hopper
fill problem has a relatively small and simple
solution domain, therefore, it can be efficiently
solved by using the UGM for contact search. The
solution domains of hopper discharge and artificial
avalanche problems, on the contrary, have a
relatively complex shape, involving several
regions that require a large number of uniform
grid cells. Moreover, in each time instance, the
moving particles occupy only a small part of the
computational domain, leaving empty regions and
limiting efficiency of standard contact search
implementations.

In the case of the hopper fill and the hopper
discharge problems, the pyramid-shaped hopper
of the same geometry is considered. The
dimensions for the hopper geometry are as

follows: height 1.0m, width 1.0m, thickness
1.0m and the height of the pyramidal part
0.4m. The width of the orifice is considered to
be 0.5m to make a faster discharge. At the
initial time instant of the hopper fill problem,
cubically packed particles are placed in the
cubic part of the hopper. In the case of the
hopper discharge problem, a large
rectangular box, imitating the infinite plane at
the bottom, has the following inward
dimensions: height 0.5m, width 8.0m and
thickness 8.0m.

Figure 2

The avalanche flow at t=17s: (a) 108640 particles
with R=0.037m; (b) 1649520 particles with
R=0.015m.

In the initial state of the hopper discharge
problem, the particulate material is obtained
from the numerical solution of the hopper fill
problem at t=0.5s. Granular material is
presented by the assemblies of 117649,
970299, 1906624, 2863288 and 3723875
particles with the radii equal to 0.0100m,
0.0050m, 0.0040m, 0.0035m and 0.0032m,
respectively. The material has the bulk
particle density of 1290kg/m3. The other

(a)

(b)

of restitution equals 0.5. Figure 2 shows the avalanche
flow visualized by ParaView software [12]. The parti-
cles are coloured according to the magnitude of the
particle’s velocity. It can be observed that the results
of the avalanche flow simulations are highly depend-
able on the number of particles.

4. The Performance Analysis
The considered benchmark problems were solved to
evaluate memory consumption and computational
performance of the developed memory-saving GPU
implementation of contact search. In the frame of the
IGM, the application of different hash functions was
investigated, and the results were compared to those
obtained by using the standard UGM. It is worth not-
ing that the UGM is efficient in the case of monosized
and nearly monosized particles. A large heterogene-
ity ratio can reduce the performance of the contact
search based on the UGM. Thus, only monosized
particles were considered to perform a correct per-
formance comparison between the UGM and the de-
veloped GPU implementation of the IGM in the case
of all the considered problems. All double-precision
computations were performed on the NVIDIA® Te-
sla™ P100 GPU Computing Accelerator (56 Stream-
ing Multiprocessors, 1792 FP64 CUDA Cores, 12GB
HBM2, 549GB/s memory bandwidth), which was in-
stalled on the workstation with the hardware charac-
teristics as follows: Intel®Xeon™ E5-2630 2.20GHz
2xCPU, 32GB DDR4 2133MHz RAM. The simulation
and visualization were performed on the computa-
tional infrastructure [13, 24] hosted by Vilnius Ged-
iminas Technical University.
Figure 3 shows GPU memory consumption of the de-
veloped DEM code, solving the hopper fill problem
(the abbreviation FIL), the hopper discharge problem
(the abbreviation DIS) and the artificial avalanche
problem (the abbreviation AVA). The curves FIL
UGM, DIS UGM and AVA UGM represent memory
consumption of the code, using the UGM for contact
search, while the curves FIL IGM, DIS IGM and AVA
IGM represent the memory consumed by the devel-
oped implementation of the IGM with the table size
equal to the number of particles. It is obvious that
the developed implementation of the IGM consumed
a very small amount of memory compared to other

Information Technology and Control 2022/1/5154

DEM procedures represented by the BASE curve for
the artificial avalanche problem. The IGM consumed
only 59.6MB, 59.6MB and 67.9MB in the cases of the
hopper fill problem with 3723875 particles, the hop-
per discharge problem with 3723875 particles and the
artificial avalanche problem with 4241517 particles,
respectively, which was up to 1.9% of the total mem-
ory required by DEM computations. Therefore, it was
difficult to observe the difference between the BASE
curve and the curves FIL IGM, DIS IGM and AVA
IGM, representing the IGM. Moreover, it was hardly
possible to distinguish these curves from each other.
In the case of the hopper fill problem, which has a sim-
ple and small solution domain, the UGM consumed
only 1.2 times more memory for contact search than
the IGM, which results in 2.2 and 2.3 times more
memory for the whole DEM computations, respec-
tively. Therefore, the curves FIL IGM and FIL UGM
are also located very close to each other. However, the
UGM applied to solve the hopper discharge problem
(the curve DIS UGM) and the artificial avalanche
problem (the curve AVA UGM) consumed up to 65.1
and 69.7 times more memory for contact search then
the IGM, which results in 2.2 and 2.3 times more
memory for the whole DEM computations, respec-
tively. It is worth noting that the developed GPU
implementation reduced the percentage of memory
consumed by contact search from 55.2% to 1.86% and
from 56.9% to 1.86% of the total benchmark memory

in the case of the hopper discharge problem and the
artificial avalanche problem, respectively.
The developed implementation significantly reduced
the GPU memory required by the standard UGM, which
could lead to a decrease in computational performance.
The applications of the uniform function [28], the Mor-
ton function [2] and the universal function based on the
primary numbers [25] were investigated to evaluate
and improve computational performance of the devel-
oped GPU implementation of the IGM.
Figure 4 presents the time-averaged values of the
computing time consumed by contact search per time
step in the case of three problems solved with differ-
ent numbers of the particles. Figure 4a shows the con-
tact search time of the hopper fill problem (FIL), the
hopper discharge problem (DIS) and the artificial av-
alanche problem (AVA) solved with 108640, 108640
and 117649 particles, respectively. Figure 4b shows
the computing time consumed by contact search of
the considered problems solved with 963600, 963600
and 970299 particles. The UGM was the fastest for
smaller numbers of particles (Figure 4a), but it was
not the case for larger numbers of the particles (Fig-
ure 4b). The main observation was that the applica-
tion of the Morton function resulted in the lowest
computational performance in the case of smaller
numbers of particles (Figure 4a). However, the lowest
values of the computing time were measured applying
the Morton function in the case of the larger numbers
of particles (Figure 4b).
Figure 5 shows the time-averaged values of the com-
puting time consumed by contact search per time step
in the case of the considered hash functions mapping
particles to hash tables of various sizes. The present-
ed values of the contact search time were measured,
solving the hopper fill problem (FIL), the hopper
discharge problem (DIS) and the artificial avalanche
problem (AVA) with 963600, 963600 and 970299
particles, respectively. In the legend of Figure 5, the
abbreviations UGM, Morton, Uniform and Universal
represent the solutions obtained by using the uniform
grid method, the Morton hash function, the uniform
hash function and the universal hash function, re-
spectively. Initially, the table size was considered to
be equal to the number of particles (the abbreviation
S1). The memory required by the IGM was negligi-
bly small compared to the memory consumed by the
UGM, therefore, there was no sense to consider small-

Figure 3
GPU memory consumption for DEM computations

physical data for particles are as follows: the
Poisson’s ratio is equal to 0.2, the particle elasticity
modulus is equal to 2.36108Pa, the friction
coefficient between the particles is equal to 0.4,
while the coefficient of restitution is equal to 0.5.
The coefficients of the walls are considered to be as
follows: the Poisson’s ratio is 0.35, the elasticity
modulus is 2.63109Pa and the friction coefficient
between walls and particles is 0.4.

The avalanche flow is considered for DEM analysis
of damping effects. This analysis resulted in large
numbers of particles, moving in the partially filled
computational domain covered by a large number
of grid cells, which is a very suitable test case for
the developed memory-saving GPU algorithm.
The geometry of the considered avalanche
problem is given in Figure 2. The main rectangular
box has the following inward dimensions: height
9.5m, width 20.0m and length 32.0m. The cuboid of
the cubically packed particles falls to the channel
with an inclination of 10 degrees. The dimensions
of the channel are as follows: width 4.0m, length
12.0m and the height of walls is equal to 5.5m. The
left end and the right end of the channel are raised
above the bottom of the rectangular box by 6.0m
and 4.0m, respectively.

In the case of the avalanche problem, the granular
material is presented by the assemblies of 108640,
963600, 1649520, 2053430, 3237300 and 4241517
particles with the radii equal to 0.037m, 0.018m,
0.015m, 0.014m, 0.012m and 0.011m, respectively.
The material has the bulk particle density of
920kg/m3. The other physical data for the particles
are as follows: the Poisson’s ratio equals 0.3,
particle elasticity modulus is 9.33106Pa, the friction
coefficient between the particles equals 0.05 and
the coefficient of restitution equals 0.5. Figure 2
shows the avalanche flow visualized by ParaView
software [12]. The particles are coloured according
to the magnitude of the particle’s velocity. It can be
observed that the results of the avalanche flow
simulations are highly dependable on the number
of particles.

5. The Performance Analysis
The considered benchmark problems were solved
to evaluate memory consumption and
computational performance of the developed
memory-saving GPU implementation of contact
search. In the frame of the IGM, the application of
different hash functions was investigated, and the
results were compared to those obtained by using
the standard UGM. It is worth noting that the
UGM is efficient in the case of monosized and

nearly monosized particles. A large
heterogeneity ratio can reduce the
performance of the contact search based on
the UGM. Thus, only monosized particles
were considered to perform a correct
performance comparison between the UGM
and the developed GPU implementation of
the IGM in the case of all the considered
problems. All double-precision computations
were performed on the NVIDIA® Tesla™
P100 GPU Computing Accelerator (56
Streaming Multiprocessors, 1792 FP64 CUDA
Cores, 12GB HBM2, 549GB/s memory
bandwidth), which was installed on the
workstation with the hardware characteristics
as follows: Intel®Xeon™ E5-2630 2.20GHz
2xCPU, 32GB DDR4 2133MHz RAM. The
simulation and visualization were performed
on the computational infrastructure [13, 24]
hosted by Vilnius Gediminas Technical
University.

Figure 3

GPU memory consumption for DEM
computations.

Figure 3 shows GPU memory consumption of
the developed DEM code, solving the hopper
fill problem (the abbreviation FIL), the
hopper discharge problem (the abbreviation
DIS) and the artificial avalanche problem (the
abbreviation AVA). The curves FIL UGM,
DIS UGM and AVA UGM represent memory
consumption of the code, using the UGM for
contact search, while the curves FIL IGM, DIS
IGM and AVA IGM represent the memory
consumed by the developed implementation
of the IGM with the table size equal to the
number of particles. It is obvious that the

55Information Technology and Control 2022/1/51

er hash tables. Thus, the use of two (the abbreviation
S2) and five (the abbreviation S5) times larger hash
tables was investigated to increase the computational
performance. The presented results show that the in-
creased size of the hash table allowed for reducing the
contact search time in the most cases. However, the
observed performance increase often became very
small in the case of the uniform and Morton functions
with table size S5. Therefore, further increase in the
table size did not appear very promising for the con-
sidered size of the solved problems.

Figure 6 presents the performance scaling of the de-
veloped GPU software, which solved the considered
problems, applying various hash functions for contact
search. The average execution time of the OpenCL
code per time step was measured computing 40000
time steps. In the legend of Figure 6, the abbreviations
have the same meanings as in the previous figures.
Figure 6a shows the performance scaling measured
by solving the hopper discharge problem and apply-
ing various hash functions. As expected, the lowest
performance could be observed by using the univer-
sal hash function, while the highest performance was
achieved by applying the Morton hash function for
contact search. Moreover, larger performance differ-
ences can be observed for larger numbers of parti-
cles, starting from 1906624. The difference in contact
search time between the UGM and the IGM with the
Morton hash function varied from 10.0% to 36.6% of
the contact search time of the UGM. The resulting
difference in the total computing time was up to 19.4%
of the benchmark computing time obtained by using
the UGM.
Figure 6b compares the performance of the developed
GPU implementation, using the uniform hash func-
tion, and that of the standard UGM. In general, both
methods demonstrate nearly the same performance
for various numbers of particles. In most cases, the
computing time of DEM simulations with the UGM is
slightly shorter. However, the observed difference in

developed implementation of the IGM consumed a
very small amount of memory compared to other
DEM procedures represented by the BASE curve
for the artificial avalanche problem. The IGM
consumed only 59.6MB, 59.6MB and 67.9MB in the
cases of the hopper fill problem with 3723875
particles, the hopper discharge problem with
3723875 particles and the artificial avalanche
problem with 4241517 particles, respectively,
which was up to 1.9% of the total memory
required by DEM computations. Therefore, it was
difficult to observe the difference between the
BASE curve and the curves FIL IGM, DIS IGM and
AVA IGM, representing the IGM. Moreover, it was
hardly possible to distinguish these curves from
each other.

In the case of the hopper fill problem, which has a
simple and small solution domain, the UGM
consumed only 1.2 times more memory for contact
search than the IGM, which results in 2.2 and 2.3
times more memory for the whole DEM
computations, respectively. Therefore, the curves
FIL IGM and FIL UGM are also located very close
to each other. However, the UGM applied to solve
the hopper discharge problem (the curve DIS
UGM) and the artificial avalanche problem (the
curve AVA UGM) consumed up to 65.1 and 69.7
times more memory for contact search then the
IGM, which results in 2.2 and 2.3 times more
memory for the whole DEM computations,
respectively. It is worth noting that the developed
GPU implementation reduced the percentage of
memory consumed by contact search from 55.2%
to 1.86% and from 56.9% to 1.86% of the total
benchmark memory in the case of the hopper
discharge problem and the artificial avalanche
problem, respectively.

The developed implementation significantly
reduced the GPU memory required by the
standard UGM, which could lead to a decrease in
computational performance. The applications of
the uniform function [28], the Morton function [2]
and the universal function based on the primary
numbers [25] were investigated to evaluate and
improve computational performance of the
developed GPU implementation of the IGM.

Figure 4 presents the time-averaged values of the
computing time consumed by contact search per
time step in the case of three problems solved with
different numbers of the particles. Figure 4a shows
the contact search time of the hopper fill problem
(FIL), the hopper discharge problem (DIS) and the
artificial avalanche problem (AVA) solved with
108640, 108640 and 117649 particles, respectively.
Figure 4b shows the computing time consumed by

contact search of the considered problems
solved with 963600, 963600 and 970299
particles. The UGM was the fastest for
smaller numbers of particles (Figure 4a), but
it was not the case for larger numbers of the
particles (Figure 4b). The main observation
was that the application of the Morton
function resulted in the lowest computational
performance in the case of smaller numbers
of particles (Figure 4a). However, the lowest
values of the computing time were measured
applying the Morton function in the case of
the larger numbers of particles (Figure 4b).

Figure 4

The time-averaged values of the contact search
time of three considered problems solved with
different numbers of particles: (a) 108640 (FIL),
108640 (DIS) and 117649 (AVA) particles;
(b) 963600 (FIL), 963600 (DIS) and 970299 (AVA)
particles.

developed implementation of the IGM consumed a
very small amount of memory compared to other
DEM procedures represented by the BASE curve
for the artificial avalanche problem. The IGM
consumed only 59.6MB, 59.6MB and 67.9MB in the
cases of the hopper fill problem with 3723875
particles, the hopper discharge problem with
3723875 particles and the artificial avalanche
problem with 4241517 particles, respectively,
which was up to 1.9% of the total memory
required by DEM computations. Therefore, it was
difficult to observe the difference between the
BASE curve and the curves FIL IGM, DIS IGM and
AVA IGM, representing the IGM. Moreover, it was
hardly possible to distinguish these curves from
each other.

In the case of the hopper fill problem, which has a
simple and small solution domain, the UGM
consumed only 1.2 times more memory for contact
search than the IGM, which results in 2.2 and 2.3
times more memory for the whole DEM
computations, respectively. Therefore, the curves
FIL IGM and FIL UGM are also located very close
to each other. However, the UGM applied to solve
the hopper discharge problem (the curve DIS
UGM) and the artificial avalanche problem (the
curve AVA UGM) consumed up to 65.1 and 69.7
times more memory for contact search then the
IGM, which results in 2.2 and 2.3 times more
memory for the whole DEM computations,
respectively. It is worth noting that the developed
GPU implementation reduced the percentage of
memory consumed by contact search from 55.2%
to 1.86% and from 56.9% to 1.86% of the total
benchmark memory in the case of the hopper
discharge problem and the artificial avalanche
problem, respectively.

The developed implementation significantly
reduced the GPU memory required by the
standard UGM, which could lead to a decrease in
computational performance. The applications of
the uniform function [28], the Morton function [2]
and the universal function based on the primary
numbers [25] were investigated to evaluate and
improve computational performance of the
developed GPU implementation of the IGM.

Figure 4 presents the time-averaged values of the
computing time consumed by contact search per
time step in the case of three problems solved with
different numbers of the particles. Figure 4a shows
the contact search time of the hopper fill problem
(FIL), the hopper discharge problem (DIS) and the
artificial avalanche problem (AVA) solved with
108640, 108640 and 117649 particles, respectively.
Figure 4b shows the computing time consumed by

contact search of the considered problems
solved with 963600, 963600 and 970299
particles. The UGM was the fastest for
smaller numbers of particles (Figure 4a), but
it was not the case for larger numbers of the
particles (Figure 4b). The main observation
was that the application of the Morton
function resulted in the lowest computational
performance in the case of smaller numbers
of particles (Figure 4a). However, the lowest
values of the computing time were measured
applying the Morton function in the case of
the larger numbers of particles (Figure 4b).

Figure 4

The time-averaged values of the contact search
time of three considered problems solved with
different numbers of particles: (a) 108640 (FIL),
108640 (DIS) and 117649 (AVA) particles;
(b) 963600 (FIL), 963600 (DIS) and 970299 (AVA)
particles.

(a)

(b)

Figure 4
The time-averaged values of the contact search time of
three considered problems solved with different numbers
of particles: (a) 108640 (FIL), 108640 (DIS) and 117649
(AVA) particles; (b) 963600 (FIL), 963600 (DIS) and
970299 (AVA) particles

Figure 5
The performance of contact search for various sizes of the
hash tables

Figure 5 shows the time-averaged values of the
computing time consumed by contact search per
time step in the case of the considered hash
functions mapping particles to hash tables of
various sizes. The presented values of the contact
search time were measured, solving the hopper fill
problem (FIL), the hopper discharge problem (DIS)
and the artificial avalanche problem (AVA) with
963600, 963600 and 970299 particles, respectively.
In the legend of Figure 5, the abbreviations UGM,
Morton, Uniform and Universal represent the
solutions obtained by using the uniform grid
method, the Morton hash function, the uniform
hash function and the universal hash function,
respectively. Initially, the table size was considered
to be equal to the number of particles (the
abbreviation S1). The memory required by the
IGM was negligibly small compared to the
memory consumed by the UGM, therefore, there
was no sense to consider smaller hash tables. Thus,
the use of two (the abbreviation S2) and five (the
abbreviation S5) times larger hash tables was
investigated to increase the computational
performance. The presented results show that the
increased size of the hash table allowed for
reducing the contact search time in the most cases.
However, the observed performance increase often
became very small in the case of the uniform and
Morton functions with table size S5. Therefore,
further increase in the table size did not appear
very promising for the considered size of the
solved problems.

Figure 5

The performance of contact search for various sizes of
the hash tables.

Figure 6 presents the performance scaling of the

developed GPU software, which solved the
considered problems, applying various hash
functions for contact search. The average
execution time of the OpenCL code per time
step was measured computing 40000 time
steps. In the legend of Figure 6, the
abbreviations have the same meanings as in
the previous figures. Figure 6a shows the
performance scaling measured by solving the
hopper discharge problem and applying
various hash functions. As expected, the
lowest performance could be observed by
using the universal hash function, while the
highest performance was achieved by
applying the Morton hash function for
contact search. Moreover, larger performance
differences can be observed for larger
numbers of particles, starting from 1906624.
The difference in contact search time between
the UGM and the IGM with the Morton hash
function varied from 10.0% to 36.6% of the
contact search time of the UGM. The resulting
difference in the total computing time was up
to 19.4% of the benchmark computing time
obtained by using the UGM.

Figure 6b compares the performance of the
developed GPU implementation, using the
uniform hash function, and that of the
standard UGM. In general, both methods
demonstrate nearly the same performance for
various numbers of particles. In most cases,
the computing time of DEM simulations with
the UGM is slightly shorter. However, the
observed difference in the computing time
did not exceed 4.9% of the computing time
with the UGM. It was due to the difference in
the contact search time equal to 6.8% of the
measured execution time of the UGM. The
largest performance differences were
obtained simulating the hopper fill because of
the simple and comparatively small solution
domain, which was very suitable for contact
search performed by the UGM. The shortest
computing times were measured solving the
hopper fill problem because it had the
smallest number of the detected contacts and
the smallest number of the potential contacts
in the considered time interval.

Figure 6c shows the influence of the table size
on the measured performance in the case of
applying the Morton function. The fivefold
increase in the table size resulted in
significant reduction in the computing time,
which varied from 7.4% to 29.9% of the
computing time measured by using the table
size equal to the number of particles.

Information Technology and Control 2022/1/5156

the computing time did not exceed 4.9% of the com-
puting time with the UGM. It was due to the differ-
ence in the contact search time equal to 6.8% of the
measured execution time of the UGM. The largest
performance differences were obtained simulating
the hopper fill because of the simple and compara-
tively small solution domain, which was very suitable
for contact search performed by the UGM. The short-
est computing times were measured solving the hop-
per fill problem because it had the smallest number of
the detected contacts and the smallest number of the
potential contacts in the considered time interval.
Figure 6c shows the influence of the table size on the
measured performance in the case of applying the
Morton function. The fivefold increase in the table
size resulted in significant reduction in the comput-
ing time, which varied from 7.4% to 29.9% of the com-
puting time measured by using the table size equal to
the number of particles. Moreover, the largest differ-
ences in the computing time could be observed in the
cases of the largest numbers of particles.
The computing time was reduced by 29.9%, 21.8% and
28.1% of the computing time measured by using the
smaller table size, solving the hopper fill problem, the
hopper discharge problem and the avalanche problem,
respectively. It also allowed for achieving large Cun-
dall numbers (FPS×the number of particles) equal to
6.11⋅107, 3.05⋅107 and 4.61⋅107 for the considered prob-
lems. Thus, the reduction in the table size can signifi-
cantly increase computational performance, especial-
ly, in the case of large numbers of particles.

5. Conclusions
The paper presents the developed memory-saving
GPU algorithm of contact search for DEM simula-
tions in computational domains covered by a large
number of grid cells and filled by particles, changing
the occupied regions. The developed GPU algorithm
and its OpenCL implementation significantly reduce
memory consumption of the standard UGM. More-
over, the percentage of memory consumed by contact
search becomes almost negligible comparing to the
total benchmark memory, which is very important in
the case of computational domains covered by a large
number of grid cells. Computational performance of
contact search highly depends on the applied hash

Figure 6
The performance scaling with various numbers of particles:
(a) The solution of hopper discharge problem by using
various hash functions; (b) The application of the uniform
hash function and the UGM; (c) The application of the
Morton hash function, increasing the size of the hash table

(a)

(b)

(c)

Moreover, the largest differences in the computing
time could be observed in the cases of the largest
numbers of particles.
Figure 6

The performance scaling with various numbers of
particles: (a) The solution of hopper discharge problem
by using various hash functions; (b) The application of
the uniform hash function and the UGM; (c) The
application of the Morton hash function, increasing the
size of the hash table.

Moreover, the largest differences in the computing
time could be observed in the cases of the largest
numbers of particles.
Figure 6

The performance scaling with various numbers of
particles: (a) The solution of hopper discharge problem
by using various hash functions; (b) The application of
the uniform hash function and the UGM; (c) The
application of the Morton hash function, increasing the
size of the hash table.

Moreover, the largest differences in the computing
time could be observed in the cases of the largest
numbers of particles.
Figure 6

The performance scaling with various numbers of
particles: (a) The solution of hopper discharge problem
by using various hash functions; (b) The application of
the uniform hash function and the UGM; (c) The
application of the Morton hash function, increasing the
size of the hash table.

57Information Technology and Control 2022/1/51

function and the considered number of particles. The
standard UGM demonstrates the highest computa-
tional performance for problems with the number of
particles, which slightly exceeds 100000. The IGM
with Morton hash function is recommended, when
the number of particles approaches one million. The
presented performance analysis reveals a high po-
tential of the developed GPU algorithm and OpenCL
software, which significantly reduce memory con-
sumption of contact search and preserve high compu-

tational performance, applying the Morton function
and the proper hash table size.

Acknowledgement
The present research is part of the project No.
09.3.3-LMT-K-712-02-0131, funded under the Euro-
pean Social Fund measure “Strengthening the Skills
and Capacities of Public Sector Researchers for En-
gaging in High Level R&D Activities”, administered
by the Research Council of Lithuania.

References
1. Cai, R., Xu, L., Zheng, J., Zhao, Y. Modified Cell-Linked

List Method Using Dynamic Mesh for Discrete Ele-
ment Method. Powder Technology, 2018, 340, 321-330.
https://doi.org/10.1016/j.powtec.2018.09.034

2. Christer, E. Real-Time Collision Detection. CRC Press,
2004.

3. Cundall, PA., Strack, ODL. A Discrete Numerical Model
for Granular Assemblies. Géotechnique, 1979, 29, 47-
65. https://doi.org/10.1680/geot.1979.29.1.47

4. Du, P., Weber, R., Luszczek, P., Tomov, S., Peterson, G.,
Dongarra, J. From CUDA to OpenCL: Towards a Per-
formance-Portable Solution for Multi-platform GPU
Programming. Parallel Computing, 2012, 38, 391-407.
https://doi.org/10.1016/j.parco.2011.10.002

5. Durand, M., Marin, P., Faure, F., Raffin, B. DEM-Based Sim-
ulation of Concrete Structures on GPU. European Journal
of Environmental and Civil Engineering, 2012, 16, 1102-
1114. https://doi.org/10.1080/19648189.2012.716590

6. Džiugys, A., Peters, B. An Approach to Simulate the Mo-
tion of Spherical and Non-spherical Fuel Particles in
Combustion Chambers. Granular Matter, 2001, 3, 231-
266. https://doi.org/10.1007/PL00010918

7. Gan, J., Evans, T., Yu, A. Application of GPU-DEM Sim-
ulation on Large-Scale Granular Handling and Process-
ing in Ironmaking Related Industries. Powder Tech-
nology, 2020, 361, 258-273. https://doi.org/10.1016/j.
powtec.2019.08.043

8. Gan, J. Q., Zhou, Z. Y., Yu, A. B. A GPU-based DEM
Approach for Modelling of Particulate Systems. Pow-
der Technology, 2016, 301, 1172-1182. https://doi.
org/10.1016/j.powtec.2016.07.072

9. Govender, N., Wilke, DN., Pizette, P., Abriak, N-E. A
Study of Shape Non-uniformity and Poly-dispersity in

Hopper Discharge of Spherical and polyhedral Parti-
cle Systems Using the Blaze-DEM GPU Code. Applied
Mathematics and Computation, 2018, 319, 318-336.
https://doi.org/10.1016/j.amc.2017.03.037

10. Green, S. Particle Simulation Using CUDA. NVIDIA
whitepaper, 2010, 6, 121-128.

11. Kačeniauskas, A., Kačianauskas, R., Maknickas, A.,
Markauskas, D. Computation and Visualization of Dis-
crete Particle Systems on gLite-based Grid. Advances
in Engineering Software, 2011, 42, 237-246. https://doi.
org/10.1016/j.advengsoft.2011.02.007

12. Kačeniauskas, A., Pacevič, R., Bugajev, A., Katkevičius,
T. Efficient Visualization by Using ParaView Software
on BalticGrid. Information Technology and Control,
2010, 39, 108-15.

13. Kačeniauskas, A., Pacevič, R., Starikovičius, V., Mak-
nickas, A., Staškūnienė, M., Davidavičius, G. Develop-
ment of Cloud Services for Patient-specific Simula-
tions of Blood Flows Through Aortic Valves. Advances
in Engineering Software, 2017, 103, 57-64. https://doi.
org/10.1016/j.advengsoft.2016.01.013

14. Kačeniauskas, A., Pacevič, R., Staškūnienė, M., Šešok,
D., Rusakevičius, D., Aidietis, A., Davidavičius, G. Pri-
vate Cloud Infrastructure for Applications of Me-
chanical and Medical Engineering. Information Tech-
nology and Control, 2015, 44(3), 254-261. https://doi.
org/10.5755/j01.itc.44.3.7379

15. Kačeniauskas, A., Rutschmann, P. Parallel FEM soft-
ware for CFD problems. Informatica, 2004, 15(3), 363-
378. https://doi.org/10.15388/Informatica.2004.066

16. Kačianauskas, R., Rimša, V., Kačeniauskas, A., Mak-
nickas, A., Vainorius, D., Pacevič, R. Comparative DEM-
CFD Study of Binary Interaction and Acoustic Agglom-

Information Technology and Control 2022/1/5158

eration of Aerosol Microparticles at Low Frequencies.
Chemical Engineering Research and Design, 2018, 136,
548-563. https://doi.org/10.1016/j.cherd.2018.06.006

17. Kalojanov, J., Slusallek, P. A parallel algorithm for con-
struction of uniform grids. Proceedings of the Con-
ference on High Performance Graphics, 2009, 1-23.
https://doi.org/10.1145/1572769.1572773

18. Kelly, C., Olsen, N., Negrut, D. Billion Degree of Free-
dom Granular Dynamics Simulation on Commodity
Hardware Via Heterogeneous Data-Type Representa-
tion. Multibody System Dynamics, 2020, 50, 355-379.
https://doi.org/10.1007/s11044-020-09749-7

19. Lefebvre, S., Hoppe, H. Perfect Spatial Hashing. ACM
Transactions on Graphics, 2006, 25, 579-589. https://
doi.org/10.1145/1141911.1141926

20. Liu, G., Marshall, J. S., Li, S. Q., Yao, Q. Discrete-Ele-
ment Method for Particle Capture by a Body in an Elec-
trostatic Field. International Journal for Numerical
Methods in Engineering, 2010, 84, 1589-1612. https://
doi.org/10.1002/nme.2953

21. Lutz, K. Boost Compute. https://www.boost.org/doc/
libs/1_76_0/libs/compute/doc/html/index.html. Ac-
cessed on July 9, 2021.

22. Mazhar, H., Heyn, T., Negrut, D. A Scalable Parallel
Method for Large Collision Detection Problems. Multi-
body System Dynamics, 2011, 26(1), 37-55. https://doi.
org/10.1007/s11044-011-9246-y

23. Miao, Q., Huang, M., Xue, J., Ben, Y. Spatial Hashing
Based Contact Detection for Numerical Manifold Meth-
od. Geomechanics and Geoengineering, 2014, 9(2), 153-
159. https://doi.org/10.1080/17486025.2013.871072

24. Pacevič, R., Kačeniauskas, A. The Development of Vis-
LT Visualization Service in Openstack Cloud Infra-
structure. Advances in Engineering Software, 2017, 103,
46-56. https://doi.org/10.1016/j.advengsoft.2016.06.012

25. Satish, N., Harris, M., Garland, M. Designing Efficient
Sorting Algorithms for Manycore GPUs. IEEE Interna-
tional Symposium on Parallel & Distributed Processing,
2009, 1-10. https://doi.org/10.1109/IPDPS.2009.5161005

26. Shigeto, Y., Sakai, M. Parallel Computing of Discrete
Element Method on Multi-Core Processors. Particu-
ology, 2011, 9, 398-405. https://doi.org/10.1016/j.par-
tic.2011.04.002

27. Stupak, E., Kačianauskas, R., Kačeniauskas, A., Starikov-
ičius, V., Maknickas, A., Pacevič, R., Staškūnienė, M., Da-
vidavičius, G., Aidietis, A. The Geometric Model-Based

Patient-Specific Simulations of Turbulent Aortic Valve
Flows. Archives of Mechanics, 2017, 69(4-5), 317-345.

28. Tang, M., Liu, Z., Tong, R., Manocha, D. PSCC: Par-
allel Self-Collision Culling with Spatial Hashing on
GPUs. Proceedings of the ACM on Computer Graphics
and Interactive Techniques, 2018, 1, 1-18. https://doi.
org/10.1145/3203188

29. Tian, Y., Zhang, S., Lin, P., Yang, Q., Yang, G., Yang, L. Im-
plementing Discrete Element Method for Large-Scale
Simulation of Particles on Multiple GPUs. Computers
& Chemical Engineering, 2017, 104, 231-240. https://
doi.org/10.1016/j.compchemeng.2017.04.019

30. Tumonis, L., Kačianauskas, R., Kačeniauskas, A.,
Schneider, M. The Transient Behavior of Rails Used in
Electromagnetic Railguns: Numerical Investigations at
Constant Loading Velocities. Journal of Vibroengineer-
ing, 2007, 9(3), 15-19.

31. Tykhoniuk, R., Tomas, J., Luding, S., Kappl, M., Heim,
L., Butt, H-J. Ultrafine Cohesive Powders: from Inter-
particle Contacts to Continuum Behaviour. Chemical
Engineering Science, 2007, 62, 2843-2864. https://doi.
org/10.1016/j.ces.2007.02.027

32. Walther, J. H., Sbalzarini, IF. Large-Scale Parallel Dis-
crete Element Simulations of Granular Flow. Engi-
neering Computations, 2009, 26, 688-697. https://doi.
org/10.1108/02644400910975478

33. Xu, J., Qi, H., Fang, X., Lu, L., Ge, W., Wang, X., Xu, M.,
Chen, F., He, X., Li, J. Quasi-Real-Time Simulation of
Rotating Drum Using Discrete Element Method with
Parallel GPU Computing. Particuology, 2011, 9, 446-
450. https://doi.org/10.1016/j.partic.2011.01.003

34. Yan, B., Regueiro, R. Comparison Between O(n2) and
O(n) Neighbor Search Algorithm and Its Influence
on Superlinear Speedup in Parallel Discrete Element
Method (DEM) for Complex-Shaped Particles. Engi-
neering Computations, 2018, 35(6), 2327-2348. https://
doi.org/10.1108/EC-01-2018-0023

35. Yue, X., Zhang, H., Ke, C., Luo, C., Shu, S., Tan, Y., Feng,
C. A GPU-Based Discrete Element Modeling Code and
Its Application in Die Filling. Computers & Fluids,
2015, 110, 235-244. https://doi.org/10.1016/j.compflu-
id.2014.11.020

36. Zheng, J., An, X., Huang, M. GPU-Based Parallel Algo-
rithm for Particle Contact Detection and Its Applica-
tion in Self-Compacting Concrete Flow Simulations.
Computers & Structures, 2012, 112-113, 193-204.
https://doi.org/10.1016/j.compstruc.2012.08.003

This article is an Open Access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

