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This paper presents a new method for synchronizing between two fractional order chaotic systems in the si-
multaneous presence of three categories including uncertainty, external disturbance and time-varying delay. 
The uncertainties considered in chaotic drive and response systems are on the nonlinear functions, the exter-
nal disturbances are finite with unknown upper bound,  and the delays in the nonlinear functions are 1- variable 
with time 2- unknown and 3- different from each other in two drive and response systems. A new hybrid method 
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1. Introduction
Most physical systems are nonlinear in nature and 
exhibit complex dynamic behaviors. One of these non-
linear phenomena is chaotic systems whose behavior 
is strongly influenced by the initial values and is abun-
dant in chemical reactions, lasers, electronic circuits, 
as well as in natural phenomena such as the solar sys-
tem, air and so on. Due to the nature of chaotic systems, 
they are widely used in various fields such as encryp-
tion, secure data transfer, etc. [20, 21, 35, 25, 12].
One of the fields of research related to chaos theory 
is fractional order systems [9]. Many chaotic systems, 
such as Lorenz [34], Chen [18], etc. [11] exhibit frac-
tional-order dynamic behavior. Due to the fact that 
fractional order systems operate more accurately 
than the integer order type, they are able to describe 
and model operating systems more accurately and 
also have a wide range of applications from signal and 
image processing to automation and robotics control, 
quantum [4, 15, 24]. Therefore, the chaos theory needs 
to be further evaluated and developed in this area.
Various researches have been done in relation to frac-
tional order chaotic systems (FOCSs) and numerous 
methods have been planned to control, stabilize and 
synchronize them. Given the importance of synchroni-
zation [37], which offers tremendous potential for cha-
otic systems in the areas of secure communication, sig-
nal encryption, and fault diagnostics [7, 8, 17], and note 
that the synchronization of fractional-order systems is 
more intricate than integer order systems, the synchro-
nization issue of FOCSs is considered in this paper.
To date, several methods have been proposed to 
achieve synchronization between two chaotic systems, 
and various control methods have been used for getting 
the purpose. These methods provide the various types 

of synchronization, including complete, projective, 
and lag synchronization [13, 32, 36] using various con-
trol methods such as adaptive [31], fuzzy [29], active 
[5], passive [16], sliding mode [1] and the like. How-
ever, there are still fundamental challenges that need 
to be addressed. The challenge of time delay is a very 
important issue in chaotic systems like most physical 
systems. This delay occurs due to the transfer of data, 
energy or materials and sometimes leads to plant in-
stability. Despite the extensive studies in the field of 
stability analysis on the issue of synchronization of 
FOCSs in the presence of time delay, there is still a 
critical issue, especially when the delay in the system 
varies with time and is unknown. Another challenge in 
synchronizing the fractional chaotic systems is the is-
sue of external disturbance. Despite the variety of syn-
chronization methods for integer-order chaotic sys-
tems in the presence of disturbances, limited studies 
have been conducted in the field for fractional-order 
systems, and at least it can be said that disturbances 
with unknown upper boundaries are rarely considered. 
The next challenge that has been considered in this 
study is the discussion of the existence of uncertainty. 
The existence of any kind uncertainty strongly affects 
the synchronization process and it is necessary to find 
the appropriate measures foe ensuring the stability of 
the synchronization method.
Considering the mentioned challenges, which in-
clude 1- existence of disturbance with unknown upper 
bound, 2- existence of uncertainty in the system mod-
el and 3- existence of unknown time-varying delay, 
this paper presents a new method for synchronizing 
a certain class of FOCSs. The upper limit of external 
disturbance is considered unknown and not only there 
is uncertainty as the parametric type, but also on the 

based on fuzzy, adaptive and robust techniques is proposed to achieve synchronization for a specific class of 
fractional order chaotic systems. The fuzzy method is used to estimate the effects of uncertainties and delayed 
functions, the adaptive method is employed to obtain the optimal weights of the fuzzy approximator as well 
as the estimation for upper bound of disturbances, and the robust method is performed to ensure the stability 
of synchronization and also to cover the errors of both fuzzy and adaptive methods. Simulation in MATLAB 
environment shows the efficiency of the proposed method in achieving the synchronization goal despite the 
problems of delay, disturbance and uncertainty.
KEYWORDS. Uncertainty; external disturbance; time-varying delay; synchronization; fractional order chaotic 
system.



223Information Technology and Control 2022/2/51

functions. In addition, there are unknown time-vary-
ing delay in drive and response systems that make 
it more difficult to achieve the synchronization goal 
and they are considered simultaneously with external 
disturbances and uncertainties in this study. Due to 
the appropriate efficiency of fuzzy, adaptive and slid-
ing mode methods in different applications [4, 28], an 
innovative robust control scheme is proposed to syn-
chronize the fractional drive and response systems 
that combines the above techniques. The fuzzy method 
is used to estimate the effects of uncertainty and delay 
in the model, and the adaptive method gives the opti-
mal gains for fuzzy method, in addition, approximates 
the upper limit of the disturbance. Finally, the sliding 
mode method makes it possible to achieve robust syn-
chronization and overcome the shortcomings of both 
fuzzy and adaptive techniques. As many articles [30], 
stability is guaranteed using the Lyapunov criterion.
Accordingly, this paper has been compiled as follows: 
In the second part, an introduction is given to frac-
tional relations and fuzzy approximation calcula-
tions, and the third part describes the chaotic system 
class and the innovative synchronization method. In 
the fourth section, the simulation results are given by 
applying the proposed method to the fractional cha-
otic system. Finally, the conclusion of the article is 
presented in the fifth section.

2. Introduction to Fractional 
Relations and Calculations and 
Description of Fuzzy Approximator
In this section, some definitions and relations of frac-
tions and necessary lemmas are given at first and then 
the fuzzy approximator is described.

2.1. Introduction to Fractional Calculations
Definition 1. [6]. The fractional integrator and deriv-
ative operators are as follows:
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where α is a complex number that represents the frac-
tional order.
Definition 2. [2]. Equation (2) shows the fractional 
order integral of Riemann–Liouville type for function  
f of order α
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The t0 corresponds to the initial time and the function  
Γ(α) is defined as follows:
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Definition 4. [26]. Equation (5) shows the Caputo 
fractional derivative for the continuous function f(t) 
of order α
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2- For α = 0, the function of 
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3- The following linear condition is established for 
the Caputo fractional order derivative, and accord-
ingly all calculations are performed in terms of the 
Caputo derivative in this paper:
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The α and β represent two fraction orders.
The following is a summary of the two lemmas used to 
design a synchronization method.
Lemma 1. [14]. Consider a fractional non-autono-
mous system of form (9) where x = 0 is the equilibri-
um point.
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where x = 0 and f(x, t) satisfies the Lipchitz condition 
with a factor of l > 0. Assuming positive gains for α1, α2, 
α3 and α, there exists a Lyapunov function that satis-
fies the following condition
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Then, the system is asymptotically stable and this is val-
id for both Caputo and Riemann-Liouville definitions.
Lemma 2. [22]. The following inequality holds for 
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2.2. Overview of Fuzzy Approximator
A Fuzzy system is specified as a system that provides 
an outline from the input vector to output vector:  
x → y, where 
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The fuzzy system has an integrated fuzzification, 
Gauss membership function, product inference, and 
principal mean defuzzification, the ith rule of the fuzzy 
logic system is as follows:
Rule i : if xi is Fi1, xn is Fin, then y = wi , where i = 1,..., m, 
m indicates how many fuzzy logic rules there are, wiwi 
shows the ith fuzzy law, Fij(j = 1,..., n) indicates a fuzzy 
collection in the world of discourse Xi. Gauss function 
is as membership function
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where aij and bij are design components.
To realize the fuzzy system, one should combine the 
fuzzy rules one after the other, i.e.
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By determining a constant value for membership function, (i.e.  and   constant), and 

describing the fuzzy rule   as a variable component, we have 
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where  is a fuzzy basis function vector and  is component vector.  

There exists a fuzzy system   for each real continuous function  in the set  and 

also for each real number  , that satisfies sup  , so using the fuzzy system 

to estimate a continuous function  is offered as follows: 
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where   contents  [10]. 
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where ∆f(x) contents ∆f(x) < ε [10].
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where α ∈ (0, 1) denotes the fractional order of sys-
tem, x(t) = [x1, x2,..., xn]T ∈ Rn is the states of the system  
fi1(x, t) ∈ R, i = 1, 2,..., n states a specified nonlin-
ear function of t and x. The fi2(x, x – τm

i  (t), t) ∈ R,  
i = 1, 2,..., n is a definite nonlinear function of the 
states x and time t and the delayed states in which  
τm

i (t) represents the unknown time variant delay. The 
∆fi(x) ∈ R, i = 1, 2,..., n determines the unknown para-
metric uncertainties and dm

i (t) ∈ R, i = 1, 2,..., n is the 
unknown bounded disturbances.
There is the following assumption regarding the drive 
system.
Assumption 1. Suppose that disturbances are in the 
following form.
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where y(t) = [y1, y2,..., yn]T ∈ Rn signifies the states 
vector, gi1(y, t) ∈ R, i = 1, 2,..., n determines nonlinear 

function of t and y that is known. gi2(y, y – τs
i (t), t) ∈ R,  

i = 1, 2,..., n is a definite nonlinear function of the 
states y and time t and the delayed states in which  
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i (t) represents the unknown time variant delay. The  
∆gi(y) ∈ R, i = 1, 2,..., n indicates the unknown paramet-
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As a result, the two systems (20) and (22) are syn-
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 is defined as follows:

 
 

. (30)  

Proof 

Consider the following non-negative function as Lyapunov's candidate: 

, 
(31)  

where   and   is the estimation for disturbances upper bound, and   is defined as 

follows: 

, (32)  

where   is the weights of fuzzy approximator and   indicates the estimation for the weights 

of fuzzy approximator. Derived from Equation (31) gives 

. 

(33)  

By defining the following function: 

. (34)  

Equation (33) is rewritten as follows: 

. 
(35)  

The function  	 can now be rewritten as follows using a fuzzy approximator. 

. (36)  

It is obtained by placing (36) by (35) 

. 
(37)  

0i i ie y x= - =

( ) 1 2 2

1 1 1

1 1 1 1
2 2 2

n n n
T

i i i i
i i ii

V t D e W W Da

l
-

= = =

= + +å å å! ! !

ˆ
i i iD D D= -! ˆ

iD iW!

ˆ
i i iW W W= -!

iW ˆ
iW

( )

( )
( ) ( ) ( )( )

( ) ( ) ( )

˙ ˙

1 1 1

1 2

˙ ˙

1

ˆ ˆ

ˆ

1

( , , , , , ,

1, ˆ

n n n
T

iii i i i
i i ii

m s
i i i i in

T
i iii i i i i

i

V t D e e W W D D

e h x y t h x y x t y t t
V t

h x y d t u t W W D D

a

l

t t

l

= = =

=

= - -

é ù+ - -
ê ú

= ê ú
+D + + - -ê ú
ë û

å å å

å

! " "

!
" "

( ) ( ) ( )( ) ( )2, , , , , , ,m s
i i i i ix y t h x y x t y t t h x yj t t= - - +D

( ) ( ) ( ) ( ) ( )
˙ ˙

1
1

1( , , ˆ) ˆ, ,
n

T
iii i i i i i i

i i

V t e h x y t x y t d t u t W W D Dj
l=

é ù
= + + + - -ê ú

ë û
å! " "

( ), ,i x y tj

( ) ( ), , ,T
i i i ix y t W P x yj e= +

( ) ( ) ( ) ( ) ( )
˙ ˙

1
1

1, ˆ( ˆ, ,
n

T T
iii i i i i i i i i

i i

V t e h x y t W P x y d t u t W W D De
l=

= + + + + - -å! " "

(32)

where Wi is the weights of fuzzy approximator and 
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indicates the estimation for the weights of fuzzy ap-
proximator. Derived from Equation (31) gives
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(33)

By defining the following function:

φi (x, y, t) = hi2(x, y, x – τi
m(t), y – τs

i(t), t) + ∆hi (x, y). (34)

Equation (33) is rewritten as follows:
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(35)

The function φi (x, y, t) can now be rewritten as follows 
using a fuzzy approximator.

φi (x, y, t) = Wi
TPi(x, y) + εi. (36)

It is obtained by placing (36) by (35)
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(38)

where ηi is the design parameter. ki and li are also con-
troller gains. Obtained by placing (38) by (37)
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(39)

With mathematical simplification, Equation (39) is 
rewritten as follows:
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(40)

By selecting the adaptive law for fuzzy system weights 
as follows:
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(41)

Equation (40) is rewritten as follows:
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Let us now simplify the Equation (42)
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Integrate Equation (48) on the span ξ ∈ [0, T]
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Considering V(T) ⩾ 0 the following is achieved:
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According to Equation (50), it is known that the 
closed system is stable and ultimately bounded by 
applying control law (38) and adaptive laws (41) and 
(45). As a result, synchronization of the two systems 
is guaranteed and the error between the two drive and 
response systems will be zero.

4. Numerical Example
Simulation in MATLAB environment has been used 
to show the capability of the proposed method. The re-
cently introduced Fei Yu and Chunhua Wang chaotic 
system with exponential term as a non-linear part has 
been used to implement the innovative synchroniza-
tion method. The system definition is as follows:
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Its parameters are , their phase portraits are shown in Figure 1. 

The fractional equations of the chaotic system are: 
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With the values of  and  as the fractional order, the phase portrait 

representation of this system is shown in Figure 2. 
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Its parameters are a = 10, b = 40, c = 2, d = 2.5, their 
phase portraits are shown in Figure 1.

The fractional equations of the chaotic system are:
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Figure 1 
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With the values of a = 10, b = 40, c = 2, d = 2.5 and α as 
the fractional order, the phase portrait representation 
of this system is shown in Figure 2.
By entering uncertainties, disturbances and delay to 
system (52), the drive system is in the following gen-
eral form:
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The response system is as follows:
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where parametric uncertainties and external distur-
bances for the response system are defined as follows:
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Figure 2
Display of phase portraits for innovative FOCS (52)
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u1(t), u2(t) and u3(t) are the control signals obtained 
from Equation (38) to achieve synchronization be-
tween the drive and response systems. The error be-
tween the states are defined as follows:
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The error dynamics between the two chaotic systems 
is obtained as follows:
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Now by setting the initial values as   for the drive system and 
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The next step is selecting nine membership functions for fuzzy approximator to estimate nonlinear 

functions as follows:  
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The results of the implementation of the proposed method on the chaotic fractional system are 

shown in Figures 3-10. 

According to the main function of the proposed synchronization method, which covers the variable 

time delay in different ways in both response and drive systems simultaneously with disturbance 

and uncertainty, profiles for these delays are shown in Figures 3-6. To examine the ability of the 

proposed method in more depth, these four different profiles are considered for variable delays 

with time , ,  and . 
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Now by setting the initial values as x1(0) = 3, y1(0) = 1, 
z1(0) = 4 for the drive system and x2(0) = 6.2, y2(0) = –1.4, 
z2(0) = 2 for the response system and selecting the con-
troller parameters as
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The next step is selecting nine membership functions 
for fuzzy approximator to estimate nonlinear func-
tions as follows: 
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( ) ( )20.1 , 1,2, ,9x i
iP x e i- -= = …

( )1
m tt ( )2

m tt ( )1
s tt ( )2

s tt

(62)

The results of the implementation of the proposed 
method on the chaotic fractional system are shown in 
Figures 3-10.
According to the main function of the proposed syn-
chronization method, which covers the variable time 
delay in different ways in both response and drive sys-
tems simultaneously with disturbance and uncertain-
ty, profiles for these delays are shown in Figures 3-6. 
To examine the ability of the proposed method in more 
depth, these four different profiles are considered for 
variable delays with time τ1

m(t), τ2
m(t), τ1

s(t) and τ2
s(t).

Figure 3
The time delay (τ1

m(t))

Figure 4
The time delay (τ2

m(t))

Figure 5
The time delay (τ1

s(t))

Figure 6
The time delay (τ2

s(t))

Figure 7 shows the synchronization error resulting 
from the implementation of the proposed method. As 
it turns out, after a very limited time of about 0.005s, 
the two drive and response systems exhibit exactly 
the same behavior. Also for better evaluation, the er-
ror value based on different criteria Integral Square 
Error (ISE), Integral Time Square Error (ITSE), In-
tegral Absolute Error (IAE) and Integral Time Ab-
solute Error (ITAE) is given in Table 1. By showing 
the behavior of each state in both drive and response 
systems, this synchronization is shown in more detail 
in Figures 8-10. Figure 8 shows the behavior of x1, y1, 
Figure 9 shows the behavior of x2, y2 and Figure 10 
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Figure 7
The display of synchronization errors (ex, ey, ez) between 
drive and response systems

Figure 8
The time-domain display of signal (x1, y1) for drive and 
response systems

Figure 9
The time-domain display of signal (x2, y2) for drive and 
response systems

Figure 10
The time-domain display of signal (x3, y3) for drive and 
response systems

Table 1
The error value based on different criteria

Error ISE ITSE IAE ITAE

e1 0.0031 7.62e-4 0.0257 0.1505

e2 0.0012 5.32e-5 0.0127 0.0408

e3 0.0032 0.001 0.0395 0.1933

shows the behavior of x3, y3 in both drive and response 
systems. The tracking quality of each drive states by 
the response states is quite evident in these figures. 
In general, the simulation shows that the proposed 
method is well able to synchronize two FOCSs in the 
presence of external disturbances, uncertainties and 
unknown time-varying delays.
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5. Conclusion
In this paper, a new method is presented for synchro-
nizing chaotic systems of fractional order. Three issues 
affecting the synchronization of the chaotic system in-
cluding external disturbances, uncertainties and time 
delays were considered simultaneously. External dis-
turbances were limited but with unknown boundaries, 
uncertainties could be non-parametric and in addition 
delay was considered as variable over time, which of 
course could have unknown boundaries and different 

forms on drive and response systems. To achieve syn-
chronization, a hybrid control method proposed which 
included the fuzzy, adaptive and sliding mode tech-
niques. Finally, the simulation in MATLAB environ-
ment showed the ability of this controller to achieve 
the goal of synchronizing two fractional order chaos 
systems in the shortest time. Optimizing the control 
signal and considering the constraints on it can be a 
very good way to complete and develop this study. 
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