
5Information Technology and Control 2022/1/51

Reliable Multipath
Flow for Link Failure
Recovery in 5G
Networks Using SDN
Paradigm

ITC 1/51
Information Technology
and Control
Vol. 51 / No. 1 / 2022
pp. 5-17
DOI 10.5755/j01.itc.51.1.29408

Reliable Multipath Flow for Link Failure Recovery
in 5G Networks Using SDN Paradigm

Received 2021/07/05 Accepted after revision 2021/08/28

 http://dx.doi.org/10.5755/j01.itc.51.1.29408

HOW TO CITE: Yasin, Q., Iqbal, Z., Khan, M. A., Kadry, S., Nam, Y. (2022). Reliable Multipath Flow for Link Failure Recovery in 5G
Networks Using SDN Paradigm. Information Technology and Control, 51(1), 5-17. https://doi.org/10.5755/j01.itc.51.1.29408

Corresponding author: ynam@sch.ac.kr

Qadeer Yasin
Department of Computer Science, University of Engineering and Technology Taxila; e-mail:qadeer26@gmail.com

Zeshan Iqbal
Faculty of Computer Science Department, University of Engineering and Technology, Taxila;
e-mail: Zeshan.iqbal@gmail.com

Muhammad Attique Khan
Department of Computer Science, HITEC University, Taxila, Pakistan; e-mail: attique@ciitwah.edu.pk

Seifedine Kadry
Department of Applied Data Science, Noroff University College, Norway; e-mail: skadry@gmail.com

Yunyoung Nam
Department of Computer Science and Engineering, Soonchunhyang University, Asan, South Korea;
e-mail: ynam@sch.ac.kr

Information Technology and Control 2022/1/516

In modern networks and cloud evolution, as new nodes to internetwork growing rapidly and use of gaming and vid-
eo streaming over the network require high availability with very small latency rate. 5G networks provides much
faster services than 4G but link failure occurrence can affect the quality of service. In 5G networks environmental
factors also affect the efficiency of wireless signals. To overcome such type of issues, base stations are placed in
distributed manner around urban areas when decision is required for the placement. However, in some scenarios
we can have few similarities, as in general, highways are same. In existed systems signals distribution is performed
homogenously, so it will be generating issues like fractal and environmental. It will be cause of great economic
loss. However, being an emerging network paradigm, Software defined Network (SDN) is easy to manage due to
logical separation of control plane and data plane. SDN supports numerous advantages, one of them is link ro-
bustness to avoid service unavailability. To cope with network link failures there are many mechanisms existed
like proactive and reactive mechanisms, but these mechanisms calculate multiple paths and stored in flow tables
without considering reliability of link. Therefore, it will be cause of high latency rate due to calculation of many
multiple paths and increased traffic overhead too. To overcome these issues, we proposed a new approach in which
multipath numbers depend on reliability of primary path. Number of alternative paths decreased as reliability of
link increased it leads to less time required to calculate alternative path. In addition, traffic overhead decreases as
compared to existing approaches. Secondly, we also integrate the shortest distance factor with reliability factor,
and we get better results than existing approaches. Our proposed system will be helpful in increasing the availabil-
ity of services in 5G network due to low latency rate and small traffic overhead required in link failure recovery.
KEYWORDS: Software Defined Networking (SDN), OpenFlow Enabled Switches, OpenFlow, POX.

1. Introduction
In traditional networks, control and management
functions along with data were performed on network
devices e.g. switches, gateways, and routers. That is
why many problems were faced such as misconfigura-
tion, network fluctuation, etc. Mostly problems in tra-
ditional networks were due to manual configuration of
devices, low level programming commands and no less
involvement of operating system in it [22]. To over-
come these issues software defined network (SDN)
introduced as a new architecture of network in which
new manner used with separate control and manage-
ment plane at logically centralized point known as
SDN controller [21]. Data plane of forwarding devic-
es separation improve the working of SDN controller
due to easy control and management of network. Due
to centralized controller, a network can efficiently con-
figure with load balancing, traffic engineering, security
enforcement, etc. Central controller in SDN make easy
to maintain tasks like reachability map, enforcing Ac-
cess Control List (ACL) at a single logical point [40].
SDN divides in three moduli. First, application plane
in which Northbound API use to forwarding updates to
control plane. Secondly control plan controlled the data
plane by decision making by itself use southbound API.
(Commonly used open flow protocol). Each device in

a network manual register itself with SDN controller
and regularly update the central controller by provid-
ing latest link state information. Thus, it is cleared that
SDN controller has complete view of overall network
and this quality makes SDN more efficient as compare
to traditional network [23]. SDN introduced as easy
management of network by decoupling the planes.
Application plane is also known as management
plane because end user is controlling it by using SDN
programming languages like Frenetic [7].This plane
interrelate with control plane like security applica-
tion is answerable to counter attacks and load bal-
ancer is responsible for distribution of traffic among
given links. Application plane can be customized by
the network administrator for modifying the perfor-
mance of network. Thus, this unit makes network
easy to program and modify by the developers [11]. In
the control plane perform decision logic at data pack-
ets which is depend on application plane and topology
which is used. Control plane sends the specific action
to the centralize controller and controller apply these
decisions on data packets. These flow rules installed
at switch located in communication path. Network
administrator can obtain complete view of network
topology at centralize controller [26].

7Information Technology and Control 2022/1/51

The third module in SDN is data plane consist of
network nodes and devices all these devices are con-
trolled by controller using protocol(like open flow)
until packet arrived at destination point. Data plane
provide secure communication with controller and
memorize all pattern and corresponding actions in
form of table. When data packet arrived, controller
perform action on it by taking information from flow
table. Corresponding action performed on given pack-
et where pattern matched with flow table’s pattern. In
case no similar pattern found then switch sends idle
message to controller through OpenFlow protocol to
calculate the flow rule for given data packet [23]. SDN
has many advantages as compare to traditional inter-
net protocol networks. Easy to update the policies at
single point (i.e. controller) and quite easier for net-
work administrator to manage the whole network. In
traditional network difficult to find failure specially
when network consist of large number of nodes but
in case of SDN controller has view of whole network
and have awareness about failures that occurs in net-
work. Due to these advantages in this era SDN adopted
by many organizations e.g. Huawei, Google, VMware
and Microsoft [20, 30, 35]. These organizations using
SDN parallelly with already established functional
network. As we discussed that data plane and con-
trolled plane decoupled in SDN and it provide better
programming capabilities, easy to manage flow of data
packets and network virtualization, etc. [32]. All these
advantages are admirable however, separation of data
and control plane also cause of some difficulties. In
which fast link failure recovery is also included be-
cause whole network is depending on SDN controller
for failure handling, which is cause of large delay in
between [15]. Failure recovery delay is also cause of
packet loss and badly effect the network services.

Challenges in 5G networks
In this era, the growing usage of video streaming on-
line gaming and smart technologies are the main
causes for development of 5G network system [1].
To overcome these challenges 5G technology intro-
duced which is providing ten times more data than
4G network system [4]. 5G network set to provide
the services with high availability in cost effective
way. Different technologies such as SDN and NFV
currently using by many cloud service provider for
providing high throughput, Resilience and reliabili-
ty with low latency rate in 5G [24]. As we discussed

that video streaming and gaming, etc. Are causes of
utilization of bandwidth and delay in service avail-
ability. To overcome these issues multi path flow pro-
tocol and forwarding devices with latest technology
for fast communication between different planes of
SDN paradigm while it is integrated with 5G network.
SDN paradigm works very efficiently using Multipath
flow protocol for achieving better utilization of 5G re-
sources with high throughput with low latency.
In 5G networks many environmental factors which
can affect the efficiency of wireless signals. To over-
come this issue radio, microwaves distributed Heter-
ogenous based on urban development and user distri-
bution territory. If decision about place of base station
made. However, in different scenarios few similar-
ities can be occur. Because mostly developed cities,
highways have same architecture. In existed systems
signals distribution performed homogenously so, it
will be generating issues like fractal and environmen-
tal [6, 38].
Besides these advantages of integration of 5G and
SDN in large number of end users, requirement of
high bandwidth, and reliability can be badly affect
by link/node failure. In SDN occurrence of link fail-
ure not only in centralized point but also can be ef-
fect data plane as well. To overcome these issue 5G
network should be able to predict/detect the failure
occurrence either in central point or in data plane.
To recover these failures in very small period which
will almost negligible. In our proposed system SDN
and 5G integrated with multipath flow protocol but
in modified form of it. Multipath flow protocol using
reliability of given path it will be reduce the failure re-
covery time and effectively reduced the bandwidth in
5G network.

2. Related Work
In SDN failure recovery possible with two mecha-
nisms. Now in this section we will discuss some exist-
ing techniques and their deficiencies.

Proactive Failure Recovery Mechanisms
FF is failure recovery mechanism which is mostly
suitable for port failure detection and recovery. In
group tables few actions are predefine in buckets.
Watch group detect a failure occur at any post that

Information Technology and Control 2022/1/518

flag down indicator then any alternative port with
liveliness will used instead of failed one [9, 3].
In SDN by adopting Bidirectional Forwarding Detec-
tion (BDF) failure detection performed by using con-
trol messages and echo in between two nodes. Link
current state checked by control messages and these
messages sends to each node. Nodes can be making
judgement for status of existing session by echo mes-
sages. In FF group less involvement of controller after
computation of primary path. However, drawback is
alternative paths have not predefined, so if primary
path fails these is no alternative path for failure re-
covery.
SPIDER project is the one where researchers over-
come the problems faced in FF group. In SPIDER,
failure recovered without communicating to control-
ler when there is no alternative path available [27]. By
using link probing failure detected and can be resend
with low latency without involvement of Controller.
However, this solution is completely based on data
plane.
It is also a proactive solution in which two flow entries
must be installed for each switch for every incoming
packet for its associated path.one of them is used as
active and other one is alternative path when failure
occurred [19]. However, it is suitable only small net-
works where number of failures in very small num-
bers and another issue is TCAM memory limitation
which can be overflow when number of matching and
actions increased in network.
In searching for an alternating path if congestion
factor considered then alternative paths can be com-
puted with low packet loss rate [33]. In this technique
back paths predefined for each primary path. Any flow
in which failure occur it can be retransmitted by using
alternative path. In Congestion aware techniques re-
searcher have overcome these issues like less involve-
ment of controller, Reducing flow entries, etc. Howev-
er, if alternative path calculated for each link, it will be
cause of traffic over head [34, 28].

Challanges in Proactive Failure Recovery
Mechanisms
1 SDN Switches available with limited number of

flow entries. E.g. 8000 flow rules can store in State
of art switches. Cost increased when more switch-
es required [13].

2 In large scale SDN network when number of flow
entries increased then in flow entries matching
process (for alternative paths) will be cause of
greater latency rate [5].

3 Proactive approach is suitable for small scale net-
work, because when number of flow entries in-
creased then Data plane scales upward.

4 In dynamic conditions may be possible that backup
path may be fail earlier than first configured path.
In this case, there will be no alternative path when
failure occurs.

Reactive Failure Recovery Mechanisms
In reactive failure recovery consists of the following
steps.
1 Monitoring the status of network by heartbeat

mechanism.
2 Detection of failure based on heartbeat messages.
3 Controller computation for alternative path for

failure recovery.
4 Replacement of old entries with new flow entries

for updating path.

Challenges in Reactive Failure Recovery
Mechanisms
Shortest distance mechanism was proposed in [8]. In
which priority-based flow used. A packet with high-
est priority takes minimum delay for failure recovery.
Due to avidness of congestion this mechanism is not
suitable for large scale SDN. Because when as size of
network increased it will be cause in increasing com-
plexity of algorithm. This technique has not been ap-
plied on standard topology.
As number of flow operations increases then average
failure recovery delay increased. Thus, to overcome
this issue flow operations minimized as described in
[37]. If alternative path selected with low cost (small
number of flow operations) then overall failure re-
covery delay can be reduced. In described that a sin-
gle flow entry consumes 11 ms. [17]. In realistic SDN
minimum 200 to 300 ms required to recover a failure.
In following table, a comparative view of proactive
and reactive failure recovery techniques.
As we have already discussed two methods of link
failure recovery in integration of SDN with 5G. In
these existing systems in which proactive mecha-

9Information Technology and Control 2022/1/51

nism used computation of alternative paths cause of
overburden at centralized controller specially when
number of nodes in data plane increased and utiliza-
tion of switch’s memory also increased. Specifically,
when end users of 5G demands high service availabil-
ity with minimum ten times faster as compare to 4G
[2]. In predefined mechanisms mostly researchers
focused on how we can reduce the utilization of mem-
ory or by reducing the load at SDN controller (less
involvement in failure recovery). However, these de-
fined mechanisms can work more efficiently if mul-
tipath flow protocol calculate different number alter-
native paths after measuring the reliability of primary
path. Like If reliability of primary path is maximum
then no need to compute alternate paths for this link.
It will be creating great impact on memory consump-
tions with low latency rate because number of alter-
native paths decreases.

3. Proposed Methodology
Reliable multipath flow mechanism proposed in
which in first step controller compute a primary path
between sender and receiver node when sender node
send a request to SDN controller for path computa-

Table 1
Comparison of Proactive and reactive Approaches

Issues Proactive Reactive

Routing Tables
Updates

Heartbeat and
Echo messages

In data plane
(Failure occurs)

TCAM memory High
Consumption

Low
Consumption

Flow operation
Matching

High, due to
backup paths Fewer matching

Network
Configuration

Difficult to
backup paths

Easy to find
backup paths

Processing
Load on Switches

High load
(more flow rules)

Low
Overhead traffic
on switch

Latency
Rate

Small
(predefined
paths)

High
(Controller
involved)

Scalability
(large/small)

Suitable
for small

Large
networks

tion as we discussed in above section. After that Us-
ing proposed methodology calculate reliability of pri-
mary path on basis of predefined factors. Then how
many numbers of alternate paths will be stored in for-
warding table is depend on reliability ratio. After first
phase then we also include distance calculation and
find the shortest path using minimum spanning tree
or Dijkstra can be used to find shortest path. It will be
more effective when reliability and distance both at-
tributes integrate in proposed method. Dijkstra algo-
rithm is also used for calculating shortest path.

Bootstrapping process
When an OpenFlow channel is established between
controller and switch, Symmetric packets like Hel-
lo, Echo request, and Echo response are exchanged
among the controller and all switches. Controller
initiates a Feature-Request message for the switch.
In response to said request, switch generate an asyn-
chronous message Feature-Reply for Controller [31].
Multiple packets are exchanged using OpenFlow
channel which is initiated by the controller for switch
states inspection, state modification, interface statis-
tics, flow rule statistics, and capabilities. By caching
these response packets in the proposed methodology,
controller maintains the network-wide view dynami-
cally and periodically [16].

Graph Composition process
Controller C in our proposed methodology has an
application for transforming the data plane informa-
tion and attributes into weighted undirected graph
Ĝ  . Controller periodically updates graph connectivi-
ty in the response of end node and devices discovery
events. It also updates the nodes joining like end-us-
er and forwarding devices in data plane as vertices
VEND_USER, links ꝲ END_USER their attributes ꝲ -attribute
and VSWITCHES, links ꝲ SWITCHES. Reliability inquired
by controller reflects the stability of link among for-
warding devices and end-user connectivity with
devices and proposed approach use procedural pro-
gramming fashion for its processing reliable flow rule
installation.
Algorithm 1
Initialize undirected Graph = Ĝ
1 Procedure Activate (C (event_publisher, event_

subscriber)) ® Control functionality for getting
data plane event and handling.

Information Technology and Control 2022/1/5110

2 Procedure Data Plane (link _event, Publisher)
C_handler (link_event, Subscriber)
Return devices_dictionatory (VEND_USER,
 ꝲ END_USER [ꝲ-attribute])

3 Procedure Data_Plane (end_user_event,
Publisher):
C _handler (end_user_event, Subscriber)
Return end_user_dictionatory (VSWITCHES,
 ꝲ SWITCHES [ꝲ-attribute])

4 UPDATE (Ĝ {[VEND_USER: ꝲ END_USER [ꝲ-attribute]],
VSWITCHES: ꝲ SWITCHES [ꝲ-attribute]})

Primary path computation
In this phase, after the graph composition, now net-
work can start working. At First stage, flow tables will
be empty. After that switch 1 receives a packet from
host A. Switch s1 sending a message to SDN control-
ler for path computation after checking its own for-
warding table. If entry

i. Procedure Activate (𝑪𝑪(event_publisher,
event_subscriber))  Control functionality for
getting data plane event and handling.

ii. Procedure Data Plane (link _event, Publisher)

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 (link_event, Subscriber)
Return devices_dictionatory (VEND_USER, ꝲ
END_USER [ꝲ-attribute])

iii. Procedure Data_Plane (end_user_event,

Publisher):
𝑪𝑪_handler (end_user_event, Subscriber)
Return end_user_dictionatory (VSWITCHES, ꝲ
SWITCHES [ꝲ-attribute])

iv. UPDATE (Ĝ {[VEND_USER: ꝲ END_USER [ꝲ-

attribute]], VSWITCHES: ꝲ SWITCHES [ꝲ-attribute]})

Primary path computation.
In this phase, after the graph composition, now
network can start working. At First stage, flow tables
will be empty. After that switch 1 receives a packet
from host A. Switch s1 sending a message to SDN
controller for path computation after checking its own
forwarding table. If entry Ϸ − ӗ matched with
forwarding table entries then corresponding action
will be performed, otherwise now SDN controller
decides whether this packet will be forwarded or not
according to already defined network policy(Ά).
If Ϸ ∋ Ϸ − ӗ Permit or Deny
else

(1)

Ά ∋ Ϸ ∀ (ΆSRC, ΆDST) ∋ (ϷSRC, ϷDST)

(2)

𝑆𝑆� = ϷSRC + ꝲ� + ꝲ� +
ꝲ� … … … … … ..+ꝲ� + ϷDST
OpenFlow Command [Ϸ − ӗ → Șω]

(3)

Reliability Computation process.
Controller application use periodically probe packets
for inspection of link failure frequency within a time
slot (10 seconds) and compute the link reliability.
Higher the number of failures 𝜑𝜑 cause in lower the
reliability percentage and introduce signal of flow
rule installation for controller. 𝜑𝜑 presents the failure
frequency between 0 and 1, where ʎ is recovery
constant of link for all re-channelized links in
topology heuristically.

Ф = (1 − 𝜑𝜑) (4)

1 − Ф ×ʎ where ʎ=10 (5)

Ф in Equation 4 presents the link aliveness time in
stipulated 10 seconds time slot while Ф × ʎ is
reliability. A path 𝑆𝑆� computed from source to
destination is a set of all intermediate forwarding

devices. Equations 6-7 present the path from source
to destination along with associated aliveness time
between source and destination and the sum of path
aliveness time of any path.

𝑆𝑆� = Ф� �� + Ф� �� + Ф� �� ……………….
+Ф� ��

(6)

𝑆𝑆� = � Ф� ��

�

���

(7)

i = {0,1,2,3 … … . . 𝑪𝑪}

 Reliable multipath flow.

In this phase, first primary path will be computed
based on highest reliability which is computed in last
phase D. All alternative paths will be calculated
according to rules defined as follows.

𝑆𝑆�𝑪𝑪𝑪𝑪𝑪𝑪𝑟𝑟𝑪𝑪𝑟𝑟𝑪𝑪𝑪𝑪 = ∑ Max Ф� ��
�
��� (8)

i. IF S ̂reliable> 90 % Then no alternative path.
ii. IF S ̂reliable> 80 % Then 2 alternative paths.
iii. IF S ̂reliable> 70 % Then 3 alternative paths.
iv. IF S ̂reliable> 60 % Then 4 alternative paths.
v. IF S ̂reliable> 50 % Then 5 alternative paths.
vi. IF S ̂reliable< 50 % Then all alternative paths.

Disstance Based Reliable multipath flow.
It is a modified form of multipath flow in which
primary path calculated not only reliability based but
shortest distance attributes also involved in it. It will
be decreasing the latency rate better as compare to
RMF.

S� = ∑ Max Ф� Min ꝲ �
�
��� (9)

Algorithm 2
Input
 (i)- (Ĝ{[VEND_USER : ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]] ,
VSWITCHES : ꝲ SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]}
(ii)- Source_node
(iii)- Destination_node

For i , j in Zip(ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]] , VSWITCHES : ꝲ
SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]) ,

 For timestamp in ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]:
 i.get(ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟][timestamp][reliability]),

 For timestamp in ꝲ SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]:
 j.get(ꝲ SWITCHES [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟][timestamp][reliability]),

 Case::1

 matched with forward-
ing table entries then corresponding action will be
performed, otherwise now SDN controller decides
whether this packet will be forwarded or not accord-
ing to already defined network policy(Ά).

If

i. Procedure Activate (𝑪𝑪(event_publisher,
event_subscriber))  Control functionality for
getting data plane event and handling.

ii. Procedure Data Plane (link _event, Publisher)

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 (link_event, Subscriber)
Return devices_dictionatory (VEND_USER, ꝲ
END_USER [ꝲ-attribute])

iii. Procedure Data_Plane (end_user_event,

Publisher):
𝑪𝑪_handler (end_user_event, Subscriber)
Return end_user_dictionatory (VSWITCHES, ꝲ
SWITCHES [ꝲ-attribute])

iv. UPDATE (Ĝ {[VEND_USER: ꝲ END_USER [ꝲ-

attribute]], VSWITCHES: ꝲ SWITCHES [ꝲ-attribute]})

Primary path computation.
In this phase, after the graph composition, now
network can start working. At First stage, flow tables
will be empty. After that switch 1 receives a packet
from host A. Switch s1 sending a message to SDN
controller for path computation after checking its own
forwarding table. If entry Ϸ − ӗ matched with
forwarding table entries then corresponding action
will be performed, otherwise now SDN controller
decides whether this packet will be forwarded or not
according to already defined network policy(Ά).
If Ϸ ∋ Ϸ − ӗ Permit or Deny
else

(1)

Ά ∋ Ϸ ∀ (ΆSRC, ΆDST) ∋ (ϷSRC, ϷDST)

(2)

𝑆𝑆� = ϷSRC + ꝲ� + ꝲ� +
ꝲ� … … … … … ..+ꝲ� + ϷDST
OpenFlow Command [Ϸ − ӗ → Șω]

(3)

Reliability Computation process.
Controller application use periodically probe packets
for inspection of link failure frequency within a time
slot (10 seconds) and compute the link reliability.
Higher the number of failures 𝜑𝜑 cause in lower the
reliability percentage and introduce signal of flow
rule installation for controller. 𝜑𝜑 presents the failure
frequency between 0 and 1, where ʎ is recovery
constant of link for all re-channelized links in
topology heuristically.

Ф = (1 − 𝜑𝜑) (4)

1 − Ф ×ʎ where ʎ=10 (5)

Ф in Equation 4 presents the link aliveness time in
stipulated 10 seconds time slot while Ф × ʎ is
reliability. A path 𝑆𝑆� computed from source to
destination is a set of all intermediate forwarding

devices. Equations 6-7 present the path from source
to destination along with associated aliveness time
between source and destination and the sum of path
aliveness time of any path.

𝑆𝑆� = Ф� �� + Ф� �� + Ф� �� ……………….
+Ф� ��

(6)

𝑆𝑆� = � Ф� ��

�

���

(7)

i = {0,1,2,3 … … . . 𝑪𝑪}

 Reliable multipath flow.

In this phase, first primary path will be computed
based on highest reliability which is computed in last
phase D. All alternative paths will be calculated
according to rules defined as follows.

𝑆𝑆�𝑪𝑪𝑪𝑪𝑪𝑪𝑟𝑟𝑪𝑪𝑟𝑟𝑪𝑪𝑪𝑪 = ∑ Max Ф� ��
�
��� (8)

i. IF S ̂reliable> 90 % Then no alternative path.
ii. IF S ̂reliable> 80 % Then 2 alternative paths.
iii. IF S ̂reliable> 70 % Then 3 alternative paths.
iv. IF S ̂reliable> 60 % Then 4 alternative paths.
v. IF S ̂reliable> 50 % Then 5 alternative paths.
vi. IF S ̂reliable< 50 % Then all alternative paths.

Disstance Based Reliable multipath flow.
It is a modified form of multipath flow in which
primary path calculated not only reliability based but
shortest distance attributes also involved in it. It will
be decreasing the latency rate better as compare to
RMF.

S� = ∑ Max Ф� Min ꝲ �
�
��� (9)

Algorithm 2
Input
 (i)- (Ĝ{[VEND_USER : ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]] ,
VSWITCHES : ꝲ SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]}
(ii)- Source_node
(iii)- Destination_node

For i , j in Zip(ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]] , VSWITCHES : ꝲ
SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]) ,

 For timestamp in ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]:
 i.get(ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟][timestamp][reliability]),

 For timestamp in ꝲ SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]:
 j.get(ꝲ SWITCHES [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟][timestamp][reliability]),

 Case::1

 ®Permit or Deny (1)

else
else
Ά ∋ Ϸ ∀ (ΆSRC, ΆDST) ∋ (ϷSRC, ϷDST) (2)

i. Procedure Activate (𝑪𝑪(event_publisher,
event_subscriber))  Control functionality for
getting data plane event and handling.

ii. Procedure Data Plane (link _event, Publisher)

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 (link_event, Subscriber)
Return devices_dictionatory (VEND_USER, ꝲ
END_USER [ꝲ-attribute])

iii. Procedure Data_Plane (end_user_event,

Publisher):
𝑪𝑪_handler (end_user_event, Subscriber)
Return end_user_dictionatory (VSWITCHES, ꝲ
SWITCHES [ꝲ-attribute])

iv. UPDATE (Ĝ {[VEND_USER: ꝲ END_USER [ꝲ-

attribute]], VSWITCHES: ꝲ SWITCHES [ꝲ-attribute]})

Primary path computation.
In this phase, after the graph composition, now
network can start working. At First stage, flow tables
will be empty. After that switch 1 receives a packet
from host A. Switch s1 sending a message to SDN
controller for path computation after checking its own
forwarding table. If entry Ϸ − ӗ matched with
forwarding table entries then corresponding action
will be performed, otherwise now SDN controller
decides whether this packet will be forwarded or not
according to already defined network policy(Ά).
If Ϸ ∋ Ϸ − ӗ Permit or Deny
else

(1)

Ά ∋ Ϸ ∀ (ΆSRC, ΆDST) ∋ (ϷSRC, ϷDST)

(2)

𝑆𝑆� = ϷSRC + ꝲ� + ꝲ� +
ꝲ� … … … … … ..+ꝲ� + ϷDST
OpenFlow Command [Ϸ − ӗ → Șω]

(3)

Reliability Computation process.
Controller application use periodically probe packets
for inspection of link failure frequency within a time
slot (10 seconds) and compute the link reliability.
Higher the number of failures 𝜑𝜑 cause in lower the
reliability percentage and introduce signal of flow
rule installation for controller. 𝜑𝜑 presents the failure
frequency between 0 and 1, where ʎ is recovery
constant of link for all re-channelized links in
topology heuristically.

Ф = (1 − 𝜑𝜑) (4)

1 − Ф ×ʎ where ʎ=10 (5)

Ф in Equation 4 presents the link aliveness time in
stipulated 10 seconds time slot while Ф × ʎ is
reliability. A path 𝑆𝑆� computed from source to
destination is a set of all intermediate forwarding

devices. Equations 6-7 present the path from source
to destination along with associated aliveness time
between source and destination and the sum of path
aliveness time of any path.

𝑆𝑆� = Ф� �� + Ф� �� + Ф� �� ……………….
+Ф� ��

(6)

𝑆𝑆� = � Ф� ��

�

���

(7)

i = {0,1,2,3 … … . . 𝑪𝑪}

 Reliable multipath flow.

In this phase, first primary path will be computed
based on highest reliability which is computed in last
phase D. All alternative paths will be calculated
according to rules defined as follows.

𝑆𝑆�𝑪𝑪𝑪𝑪𝑪𝑪𝑟𝑟𝑪𝑪𝑟𝑟𝑪𝑪𝑪𝑪 = ∑ Max Ф� ��
�
��� (8)

i. IF S ̂reliable> 90 % Then no alternative path.
ii. IF S ̂reliable> 80 % Then 2 alternative paths.
iii. IF S ̂reliable> 70 % Then 3 alternative paths.
iv. IF S ̂reliable> 60 % Then 4 alternative paths.
v. IF S ̂reliable> 50 % Then 5 alternative paths.
vi. IF S ̂reliable< 50 % Then all alternative paths.

Disstance Based Reliable multipath flow.
It is a modified form of multipath flow in which
primary path calculated not only reliability based but
shortest distance attributes also involved in it. It will
be decreasing the latency rate better as compare to
RMF.

S� = ∑ Max Ф� Min ꝲ �
�
��� (9)

Algorithm 2
Input
 (i)- (Ĝ{[VEND_USER : ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]] ,
VSWITCHES : ꝲ SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]}
(ii)- Source_node
(iii)- Destination_node

For i , j in Zip(ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]] , VSWITCHES : ꝲ
SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]) ,

 For timestamp in ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]:
 i.get(ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟][timestamp][reliability]),

 For timestamp in ꝲ SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]:
 j.get(ꝲ SWITCHES [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟][timestamp][reliability]),

 Case::1

(3)

Reliability Computation process
Controller application use periodically probe pack-
ets for inspection of link failure frequency within a
time slot (10 seconds) and compute the link reliability.
Higher the number of failures φ cause in lower the reli-
ability percentage and introduce signal of flow rule in-
stallation for controller. φ presents the failure frequen-
cy between 0 and 1, where ʎ is recovery constant of link
for all re-channelized links in topology heuristically.

i. Procedure Activate (𝑪𝑪(event_publisher,
event_subscriber))  Control functionality for
getting data plane event and handling.

ii. Procedure Data Plane (link _event, Publisher)

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 (link_event, Subscriber)
Return devices_dictionatory (VEND_USER, ꝲ
END_USER [ꝲ-attribute])

iii. Procedure Data_Plane (end_user_event,

Publisher):
𝑪𝑪_handler (end_user_event, Subscriber)
Return end_user_dictionatory (VSWITCHES, ꝲ
SWITCHES [ꝲ-attribute])

iv. UPDATE (Ĝ {[VEND_USER: ꝲ END_USER [ꝲ-

attribute]], VSWITCHES: ꝲ SWITCHES [ꝲ-attribute]})

Primary path computation.
In this phase, after the graph composition, now
network can start working. At First stage, flow tables
will be empty. After that switch 1 receives a packet
from host A. Switch s1 sending a message to SDN
controller for path computation after checking its own
forwarding table. If entry Ϸ − ӗ matched with
forwarding table entries then corresponding action
will be performed, otherwise now SDN controller
decides whether this packet will be forwarded or not
according to already defined network policy(Ά).
If Ϸ ∋ Ϸ − ӗ Permit or Deny
else

(1)

Ά ∋ Ϸ ∀ (ΆSRC, ΆDST) ∋ (ϷSRC, ϷDST)

(2)

𝑆𝑆� = ϷSRC + ꝲ� + ꝲ� +
ꝲ� … … … … … ..+ꝲ� + ϷDST
OpenFlow Command [Ϸ − ӗ → Șω]

(3)

Reliability Computation process.
Controller application use periodically probe packets
for inspection of link failure frequency within a time
slot (10 seconds) and compute the link reliability.
Higher the number of failures 𝜑𝜑 cause in lower the
reliability percentage and introduce signal of flow
rule installation for controller. 𝜑𝜑 presents the failure
frequency between 0 and 1, where ʎ is recovery
constant of link for all re-channelized links in

Ф = (1 − 𝜑𝜑) (4)

1 − Ф ×ʎ where ʎ=10 (5)

Ф in Equation 4 presents the link aliveness time in
stipulated 10 seconds time slot while Ф × ʎ is
reliability. A path 𝑆𝑆� computed from source to
destination is a set of all intermediate forwarding

devices. Equations 6-7 present the path from source
to destination along with associated aliveness time
between source and destination and the sum of path
aliveness time of any path.

𝑆𝑆� = Ф� �� + Ф� �� + Ф� �� ……………….
+Ф� ��

(6)

𝑆𝑆� = � Ф� ��

�

���

(7)

i = {0,1,2,3 … … . . 𝑪𝑪}

 Reliable multipath flow.

In this phase, first primary path will be computed
based on highest reliability which is computed in last
phase D. All alternative paths will be calculated
according to rules defined as follows.

𝑆𝑆�𝑪𝑪𝑪𝑪𝑪𝑪𝑟𝑟𝑪𝑪𝑟𝑟𝑪𝑪𝑪𝑪 = ∑ Max Ф� ��
�
��� (8)

i. IF S ̂reliable> 90 % Then no alternative path.
ii. IF S ̂reliable> 80 % Then 2 alternative paths.
iii. IF S ̂reliable> 70 % Then 3 alternative paths.
iv. IF S ̂reliable> 60 % Then 4 alternative paths.
v. IF S ̂reliable> 50 % Then 5 alternative paths.
vi. IF S ̂reliable< 50 % Then all alternative paths.

Disstance Based Reliable multipath flow.
It is a modified form of multipath flow in which
primary path calculated not only reliability based but
shortest distance attributes also involved in it. It will
be decreasing the latency rate better as compare to
RMF.

S� = ∑ Max Ф� Min ꝲ �
�
��� (9)

Algorithm 2
Input
 (i)- (Ĝ{[VEND_USER : ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]] ,
VSWITCHES : ꝲ SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]}
(ii)- Source_node
(iii)- Destination_node

For i , j in Zip(ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]] , VSWITCHES : ꝲ
SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]) ,

 For timestamp in ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]:
 i.get(ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟][timestamp][reliability]),

 For timestamp in ꝲ SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]:
 j.get(ꝲ SWITCHES [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟][timestamp][reliability]),

 Case::1

(4)

i. Procedure Activate (𝑪𝑪(event_publisher,
event_subscriber))  Control functionality for
getting data plane event and handling.

ii. Procedure Data Plane (link _event, Publisher)

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 (link_event, Subscriber)
Return devices_dictionatory (VEND_USER, ꝲ
END_USER [ꝲ-attribute])

iii. Procedure Data_Plane (end_user_event,

Publisher):
𝑪𝑪_handler (end_user_event, Subscriber)
Return end_user_dictionatory (VSWITCHES, ꝲ
SWITCHES [ꝲ-attribute])

iv. UPDATE (Ĝ {[VEND_USER: ꝲ END_USER [ꝲ-

attribute]], VSWITCHES: ꝲ SWITCHES [ꝲ-attribute]})

Primary path computation.
In this phase, after the graph composition, now
network can start working. At First stage, flow tables
will be empty. After that switch 1 receives a packet
from host A. Switch s1 sending a message to SDN
controller for path computation after checking its own
forwarding table. If entry Ϸ − ӗ matched with
forwarding table entries then corresponding action
will be performed, otherwise now SDN controller
decides whether this packet will be forwarded or not
according to already defined network policy(Ά).
If Ϸ ∋ Ϸ − ӗ Permit or Deny
else

(1)

Ά ∋ Ϸ ∀ (ΆSRC, ΆDST) ∋ (ϷSRC, ϷDST)

(2)

𝑆𝑆� = ϷSRC + ꝲ� + ꝲ� +
ꝲ� … … … … … ..+ꝲ� + ϷDST
OpenFlow Command [Ϸ − ӗ → Șω]

(3)

Reliability Computation process.
Controller application use periodically probe packets
for inspection of link failure frequency within a time
slot (10 seconds) and compute the link reliability.
Higher the number of failures 𝜑𝜑 cause in lower the
reliability percentage and introduce signal of flow
rule installation for controller. 𝜑𝜑 presents the failure
frequency between 0 and 1, where ʎ is recovery
constant of link for all re-channelized links in

Ф = (1 − 𝜑𝜑) (4)

1 − Ф ×ʎ where ʎ=10 (5)

Ф in Equation 4 presents the link aliveness time in
stipulated 10 seconds time slot while Ф × ʎ is
reliability. A path 𝑆𝑆� computed from source to
destination is a set of all intermediate forwarding

devices. Equations 6-7 present the path from source
to destination along with associated aliveness time
between source and destination and the sum of path
aliveness time of any path.

𝑆𝑆� = Ф� �� + Ф� �� + Ф� �� ……………….
+Ф� ��

(6)

𝑆𝑆� = � Ф� ��

�

���

(7)

i = {0,1,2,3 … … . . 𝑪𝑪}

 Reliable multipath flow.

In this phase, first primary path will be computed
based on highest reliability which is computed in last
phase D. All alternative paths will be calculated
according to rules defined as follows.

𝑆𝑆�𝑪𝑪𝑪𝑪𝑪𝑪𝑟𝑟𝑪𝑪𝑟𝑟𝑪𝑪𝑪𝑪 = ∑ Max Ф� ��
�
��� (8)

i. IF S ̂reliable> 90 % Then no alternative path.
ii. IF S ̂reliable> 80 % Then 2 alternative paths.
iii. IF S ̂reliable> 70 % Then 3 alternative paths.
iv. IF S ̂reliable> 60 % Then 4 alternative paths.
v. IF S ̂reliable> 50 % Then 5 alternative paths.
vi. IF S ̂reliable< 50 % Then all alternative paths.

Disstance Based Reliable multipath flow.
It is a modified form of multipath flow in which
primary path calculated not only reliability based but
shortest distance attributes also involved in it. It will
be decreasing the latency rate better as compare to
RMF.

S� = ∑ Max Ф� Min ꝲ �
�
��� (9)

Algorithm 2
Input
 (i)- (Ĝ{[VEND_USER : ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]] ,
VSWITCHES : ꝲ SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]}
(ii)- Source_node
(iii)- Destination_node

For i , j in Zip(ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]] , VSWITCHES : ꝲ
SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]) ,

 For timestamp in ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]:
 i.get(ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟][timestamp][reliability]),

 For timestamp in ꝲ SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]:
 j.get(ꝲ SWITCHES [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟][timestamp][reliability]),

 Case::1

(4)

i. Procedure Activate (𝑪𝑪(event_publisher,
event_subscriber))  Control functionality for
getting data plane event and handling.

ii. Procedure Data Plane (link _event, Publisher)

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 (link_event, Subscriber)
Return devices_dictionatory (VEND_USER, ꝲ
END_USER [ꝲ-attribute])

iii. Procedure Data_Plane (end_user_event,

Publisher):
𝑪𝑪_handler (end_user_event, Subscriber)
Return end_user_dictionatory (VSWITCHES, ꝲ
SWITCHES [ꝲ-attribute])

iv. UPDATE (Ĝ {[VEND_USER: ꝲ END_USER [ꝲ-

attribute]], VSWITCHES: ꝲ SWITCHES [ꝲ-attribute]})

Primary path computation.
In this phase, after the graph composition, now
network can start working. At First stage, flow tables
will be empty. After that switch 1 receives a packet
from host A. Switch s1 sending a message to SDN
controller for path computation after checking its own
forwarding table. If entry Ϸ − ӗ matched with
forwarding table entries then corresponding action
will be performed, otherwise now SDN controller
decides whether this packet will be forwarded or not
according to already defined network policy(Ά).
If Ϸ ∋ Ϸ − ӗ Permit or Deny
else

(1)

Ά ∋ Ϸ ∀ (ΆSRC, ΆDST) ∋ (ϷSRC, ϷDST)

(2)

𝑆𝑆� = ϷSRC + ꝲ� + ꝲ� +
ꝲ� … … … … … ..+ꝲ� + ϷDST
OpenFlow Command [Ϸ − ӗ → Șω]

(3)

Reliability Computation process.
Controller application use periodically probe packets
for inspection of link failure frequency within a time
slot (10 seconds) and compute the link reliability.
Higher the number of failures 𝜑𝜑 cause in lower the
reliability percentage and introduce signal of flow
rule installation for controller. 𝜑𝜑 presents the failure
frequency between 0 and 1, where ʎ is recovery
constant of link for all re-channelized links in

Ф = (1 − 𝜑𝜑) (4)

1 − Ф ×ʎ where ʎ=10 (5)

Ф in Equation 4 presents the link aliveness time in
stipulated 10 seconds time slot while Ф × ʎ is
reliability. A path 𝑆𝑆� computed from source to
destination is a set of all intermediate forwarding

devices. Equations 6-7 present the path from source
to destination along with associated aliveness time
between source and destination and the sum of path
aliveness time of any path.

𝑆𝑆� = Ф� �� + Ф� �� + Ф� �� ……………….
+Ф� ��

(6)

𝑆𝑆� = � Ф� ��

�

���

(7)

i = {0,1,2,3 … … . . 𝑪𝑪}

 Reliable multipath flow.

In this phase, first primary path will be computed
based on highest reliability which is computed in last
phase D. All alternative paths will be calculated
according to rules defined as follows.

𝑆𝑆�𝑪𝑪𝑪𝑪𝑪𝑪𝑟𝑟𝑪𝑪𝑟𝑟𝑪𝑪𝑪𝑪 = ∑ Max Ф� ��
�
��� (8)

i. IF S ̂reliable> 90 % Then no alternative path.
ii. IF S ̂reliable> 80 % Then 2 alternative paths.
iii. IF S ̂reliable> 70 % Then 3 alternative paths.
iv. IF S ̂reliable> 60 % Then 4 alternative paths.
v. IF S ̂reliable> 50 % Then 5 alternative paths.
vi. IF S ̂reliable< 50 % Then all alternative paths.

Disstance Based Reliable multipath flow.
It is a modified form of multipath flow in which
primary path calculated not only reliability based but
shortest distance attributes also involved in it. It will
be decreasing the latency rate better as compare to
RMF.

S� = ∑ Max Ф� Min ꝲ �
�
��� (9)

Algorithm 2
Input
 (i)- (Ĝ{[VEND_USER : ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]] ,
VSWITCHES : ꝲ SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]}
(ii)- Source_node
(iii)- Destination_node

For i , j in Zip(ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]] , VSWITCHES : ꝲ
SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]) ,

 For timestamp in ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]:
 i.get(ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟][timestamp][reliability]),

 For timestamp in ꝲ SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]:
 j.get(ꝲ SWITCHES [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟][timestamp][reliability]),

 Case::1

(5)

Φ in Equation 4 presents the link aliveness time
in stipulated 10 seconds time slot while Φ × ʎ is
reliability. A path

i. Procedure Activate (𝑪𝑪(event_publisher,
event_subscriber))  Control functionality for
getting data plane event and handling.

ii. Procedure Data Plane (link _event, Publisher)

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 (link_event, Subscriber)
Return devices_dictionatory (VEND_USER, ꝲ
END_USER [ꝲ-attribute])

iii. Procedure Data_Plane (end_user_event,

Publisher):
𝑪𝑪_handler (end_user_event, Subscriber)
Return end_user_dictionatory (VSWITCHES, ꝲ
SWITCHES [ꝲ-attribute])

iv. UPDATE (Ĝ {[VEND_USER: ꝲ END_USER [ꝲ-

attribute]], VSWITCHES: ꝲ SWITCHES [ꝲ-attribute]})

Primary path computation.
In this phase, after the graph composition, now
network can start working. At First stage, flow tables
will be empty. After that switch 1 receives a packet
from host A. Switch s1 sending a message to SDN
controller for path computation after checking its own
forwarding table. If entry Ϸ − ӗ matched with
forwarding table entries then corresponding action
will be performed, otherwise now SDN controller
decides whether this packet will be forwarded or not
according to already defined network policy(Ά).
If Ϸ ∋ Ϸ − ӗ Permit or Deny
else

(1)

Ά ∋ Ϸ ∀ (ΆSRC, ΆDST) ∋ (ϷSRC, ϷDST)

(2)

𝑆𝑆� = ϷSRC + ꝲ� + ꝲ� +
ꝲ� … … … … … ..+ꝲ� + ϷDST
OpenFlow Command [Ϸ − ӗ → Șω]

(3)

Reliability Computation process.
Controller application use periodically probe packets
for inspection of link failure frequency within a time
slot (10 seconds) and compute the link reliability.
Higher the number of failures 𝜑𝜑 cause in lower the
reliability percentage and introduce signal of flow
rule installation for controller. 𝜑𝜑 presents the failure
frequency between 0 and 1, where ʎ is recovery
constant of link for all re-channelized links in
topology heuristically.

Ф = (1 − 𝜑𝜑) (4)

1 − Ф ×ʎ where ʎ=10 (5)

Ф in Equation 4 presents the link aliveness time in
stipulated 10 seconds time slot while Ф × ʎ is
reliability. A path 𝑆𝑆� computed from source to
destination is a set of all intermediate forwarding

devices. Equations 6-7 present the path from source
to destination along with associated aliveness time
between source and destination and the sum of path
aliveness time of any path.

𝑆𝑆� = Ф� �� + Ф� �� + Ф� �� ……………….
+Ф� ��

(6)

𝑆𝑆� = � Ф� ��

�

���

(7)

i = {0,1,2,3 … … . . 𝑪𝑪}

 Reliable multipath flow.

In this phase, first primary path will be computed
based on highest reliability which is computed in last
phase D. All alternative paths will be calculated
according to rules defined as follows.

𝑆𝑆�𝑪𝑪𝑪𝑪𝑪𝑪𝑟𝑟𝑪𝑪𝑟𝑟𝑪𝑪𝑪𝑪 = ∑ Max Ф� ��
�
��� (8)

i. IF S ̂reliable> 90 % Then no alternative path.
ii. IF S ̂reliable> 80 % Then 2 alternative paths.
iii. IF S ̂reliable> 70 % Then 3 alternative paths.
iv. IF S ̂reliable> 60 % Then 4 alternative paths.
v. IF S ̂reliable> 50 % Then 5 alternative paths.
vi. IF S ̂reliable< 50 % Then all alternative paths.

Disstance Based Reliable multipath flow.
It is a modified form of multipath flow in which
primary path calculated not only reliability based but
shortest distance attributes also involved in it. It will
be decreasing the latency rate better as compare to
RMF.

S� = ∑ Max Ф� Min ꝲ �
�
��� (9)

Algorithm 2
Input
 (i)- (Ĝ{[VEND_USER : ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]] ,
VSWITCHES : ꝲ SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]}
(ii)- Source_node
(iii)- Destination_node

For i , j in Zip(ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]] , VSWITCHES : ꝲ
SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]) ,

 For timestamp in ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]:
 i.get(ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟][timestamp][reliability]),

 For timestamp in ꝲ SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]:
 j.get(ꝲ SWITCHES [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟][timestamp][reliability]),

 Case::1
 computed from source to desti-

nation is a set of all intermediate forwarding devices.
Equations 6-7 present the path from source to desti-
nation along with associated aliveness time between
source and destination and the sum of path aliveness
time of any path.

i. Procedure Activate (𝑪𝑪(event_publisher,
event_subscriber))  Control functionality for
getting data plane event and handling.

ii. Procedure Data Plane (link _event, Publisher)

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 (link_event, Subscriber)
Return devices_dictionatory (VEND_USER, ꝲ
END_USER [ꝲ-attribute])

iii. Procedure Data_Plane (end_user_event,

Publisher):
𝑪𝑪_handler (end_user_event, Subscriber)
Return end_user_dictionatory (VSWITCHES, ꝲ
SWITCHES [ꝲ-attribute])

iv. UPDATE (Ĝ {[VEND_USER: ꝲ END_USER [ꝲ-

attribute]], VSWITCHES: ꝲ SWITCHES [ꝲ-attribute]})

Primary path computation.
In this phase, after the graph composition, now
network can start working. At First stage, flow tables
will be empty. After that switch 1 receives a packet
from host A. Switch s1 sending a message to SDN
controller for path computation after checking its own
forwarding table. If entry Ϸ − ӗ matched with
forwarding table entries then corresponding action
will be performed, otherwise now SDN controller
decides whether this packet will be forwarded or not
according to already defined network policy(Ά).
If Ϸ ∋ Ϸ − ӗ Permit or Deny
else

(1)

Ά ∋ Ϸ ∀ (ΆSRC, ΆDST) ∋ (ϷSRC, ϷDST)

(2)

𝑆𝑆� = ϷSRC + ꝲ� + ꝲ� +
ꝲ� … … … … … ..+ꝲ� + ϷDST
OpenFlow Command [Ϸ − ӗ → Șω]

(3)

Reliability Computation process.
Controller application use periodically probe packets
for inspection of link failure frequency within a time
slot (10 seconds) and compute the link reliability.
Higher the number of failures 𝜑𝜑 cause in lower the
reliability percentage and introduce signal of flow
rule installation for controller. 𝜑𝜑 presents the failure
frequency between 0 and 1, where ʎ is recovery
constant of link for all re-channelized links in
topology heuristically.

Ф = (1 − 𝜑𝜑) (4)

1 − Ф ×ʎ where ʎ=10 (5)

Ф in Equation 4 presents the link aliveness time in
stipulated 10 seconds time slot while Ф × ʎ is
reliability. A path 𝑆𝑆� computed from source to
destination is a set of all intermediate forwarding

devices. Equations 6-7 present the path from source
to destination along with associated aliveness time
between source and destination and the sum of path
aliveness time of any path.

𝑆𝑆� = Ф� �� + Ф� �� + Ф� �� ……………….
+Ф� ��

(6)

𝑆𝑆� = � Ф� ��

�

���

(7)

i = {0,1,2,3 … … . . 𝑪𝑪}

 Reliable multipath flow.

In this phase, first primary path will be computed
based on highest reliability which is computed in last
phase D. All alternative paths will be calculated
according to rules defined as follows.

𝑆𝑆�𝑪𝑪𝑪𝑪𝑪𝑪𝑟𝑟𝑪𝑪𝑟𝑟𝑪𝑪𝑪𝑪 = ∑ Max Ф� ��
�
��� (8)

i. IF S ̂reliable> 90 % Then no alternative path.
ii. IF S ̂reliable> 80 % Then 2 alternative paths.
iii. IF S ̂reliable> 70 % Then 3 alternative paths.
iv. IF S ̂reliable> 60 % Then 4 alternative paths.
v. IF S ̂reliable> 50 % Then 5 alternative paths.
vi. IF S ̂reliable< 50 % Then all alternative paths.

Disstance Based Reliable multipath flow.
It is a modified form of multipath flow in which
primary path calculated not only reliability based but
shortest distance attributes also involved in it. It will
be decreasing the latency rate better as compare to
RMF.

S� = ∑ Max Ф� Min ꝲ �
�
��� (9)

Algorithm 2
Input
 (i)- (Ĝ{[VEND_USER : ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]] ,
VSWITCHES : ꝲ SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]}
(ii)- Source_node
(iii)- Destination_node

For i , j in Zip(ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]] , VSWITCHES : ꝲ
SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]) ,

 For timestamp in ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]:
 i.get(ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟][timestamp][reliability]),

 For timestamp in ꝲ SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]:
 j.get(ꝲ SWITCHES [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟][timestamp][reliability]),

 Case::1
= Φ1 ꝲ1 + Φ2 ꝲ2 + Φ3 ꝲ3 Φn ꝲn

(6)

Algorithm 1.
Initialize undirected Graph = Ĝ
i. Procedure Activate (𝑪𝑪(event_publisher,

event_subscriber))  Control functionality for
getting data plane event and handling.

ii. Procedure Data Plane (link _event, Publisher)

𝑪𝑪_ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (link_event, Subscriber)
Return devices_dictionatory (VEND_USER, ꝲ
END_USER [ꝲ-attribute])

iii. Procedure Data_Plane (end_user_event,

Publisher):
𝑪𝑪_handler (end_user_event, Subscriber)
Return end_user_dictionatory (VSWITCHES, ꝲ
SWITCHES [ꝲ-attribute])

iv. UPDATE (Ĝ {[VEND_USER: ꝲ END_USER [ꝲ-

attribute]], VSWITCHES: ꝲ SWITCHES [ꝲ-attribute]})

Primary path computation.
In this phase, after the graph composition, now
network can start working. At First stage, flow tables
will be empty. After that switch 1 receives a packet
from host A. Switch s1 sending a message to SDN
controller for path computation after checking its own
forwarding table. If entry Ϸ � � matched with
forwarding table entries then corresponding action
will be performed, otherwise now SDN controller
decides whether this packet will be forwarded or not
according to already defined network policy(Ά).
If Ϸ ∋ Ϸ � � Permit or Deny
else

(1)

Ά ∋ Ϸ ∀ (ΆSRC, ΆDST � ∋ (ϷSRC, ϷDST)

(2)

𝑆𝑆� = ϷSRC � ꝲ� � ꝲ� �
ꝲ� … … … … … ..+ꝲ� � ϷDST
OpenFlow Command [Ϸ � � � Șω]

(3)

Reliability Computation process.
Controller application use periodically probe packets
for inspection of link failure frequency within a time
slot (10 seconds) and compute the link reliability.
Higher the number of failures 𝜑𝜑 cause in lower the
reliability percentage and introduce signal of flow
rule installation for controller. 𝜑𝜑 presents the failure
frequency between 0 and 1, where ʎ is recovery
constant of link for all re-channelized links in
topology heuristically.

Ф � �1 � 𝜑𝜑� (4)

1 �Ф ×ʎ where ʎ=10 (5)

Ф in Equation 4 presents the link aliveness time in

stipulated 10 seconds time slot while Ф × ʎ is
reliability. A path 𝑆𝑆� computed from source to
destination is a set of all intermediate forwarding
devices. Equations 6-7 present the path from source
to destination along with associated aliveness time
between source and destination and the sum of path
aliveness time of any path.

𝑆𝑆� �� Ф� ��
�

���

(7)

i = �0,1,2,3 … … . .𝑎𝑎�

 Reliable multipath flow.

In this phase, first primary path will be computed
based on highest reliability which is computed in last
phase D. All alternative paths will be calculated
according to rules defined as follows.

𝑆𝑆�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 � ∑ Max Ф� ���
��� (8)

i. IF S r̂eliable> 90 % Then no alternative path.
ii. IF S r̂eliable> 80 % Then 2 alternative paths.
iii. IF S r̂eliable> 70 % Then 3 alternative paths.
iv. IF S r̂eliable> 60 % Then 4 alternative paths.
v. IF S r̂eliable> 50 % Then 5 alternative paths.
vi. IF S r̂eliable< 50 % Then all alternative paths.

Disstance Based Reliable multipath flow.
It is a modified form of multipath flow in which
primary path calculated not only reliability based but
shortest distance attributes also involved in it. It will
be decreasing the latency rate better as compare to
RMF.

S� � ∑ Max Ф� Min ꝲ �
���� (9)

Algorithm 2
Input
 (i)- (Ĝ{[VEND_USER : ꝲ END_USER [ꝲ_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎]] ,
VSWITCHES : ꝲ SWITCHES[ꝲ_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎]}
(ii)- Source_node
(iii)- Destination_node

For i , j in Zip(ꝲ END_USER [ꝲ_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎]] , VSWITCHES : ꝲ
SWITCHES[ꝲ_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎]) ,

 For timestamp in ꝲ END_USER [ꝲ_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎]:
 i.get(ꝲ END_USER [ꝲ_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎][timestamp][reliability]),

 For timestamp in ꝲ SWITCHES[ꝲ_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎]:
 j.get(ꝲ SWITCHES [ꝲ_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎][timestamp][reliability]),

 ꝲi

i = {0, 1, 2, 3……..n}

(7)

Reliable multipath flow
In this phase, first primary path will be computed
based on highest reliability which is computed in last
phase D. All alternative paths will be calculated ac-
cording to rules defined as follows.

Algorithm 1.
Initialize undirected Graph = Ĝ
i. Procedure Activate (𝑪𝑪(event_publisher,

event_subscriber))  Control functionality for
getting data plane event and handling.

ii. Procedure Data Plane (link _event, Publisher)

𝑪𝑪_ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (link_event, Subscriber)
Return devices_dictionatory (VEND_USER, ꝲ
END_USER [ꝲ-attribute])

iii. Procedure Data_Plane (end_user_event,

Publisher):
𝑪𝑪_handler (end_user_event, Subscriber)
Return end_user_dictionatory (VSWITCHES, ꝲ
SWITCHES [ꝲ-attribute])

iv. UPDATE (Ĝ {[VEND_USER: ꝲ END_USER [ꝲ-

attribute]], VSWITCHES: ꝲ SWITCHES [ꝲ-attribute]})

Primary path computation.
In this phase, after the graph composition, now
network can start working. At First stage, flow tables
will be empty. After that switch 1 receives a packet
from host A. Switch s1 sending a message to SDN
controller for path computation after checking its own
forwarding table. If entry Ϸ � � matched with
forwarding table entries then corresponding action
will be performed, otherwise now SDN controller
decides whether this packet will be forwarded or not
according to already defined network policy(Ά).
If Ϸ ∋ Ϸ � � Permit or Deny
else

(1)

Ά ∋ Ϸ ∀ (ΆSRC, ΆDST � ∋ (ϷSRC, ϷDST)

(2)

𝑆𝑆� = ϷSRC � ꝲ� � ꝲ� �
ꝲ� … … … … … ..+ꝲ� � ϷDST
OpenFlow Command [Ϸ � � � Șω]

(3)

Reliability Computation process.
Controller application use periodically probe packets
for inspection of link failure frequency within a time
slot (10 seconds) and compute the link reliability.
Higher the number of failures 𝜑𝜑 cause in lower the
reliability percentage and introduce signal of flow
rule installation for controller. 𝜑𝜑 presents the failure
frequency between 0 and 1, where ʎ is recovery
constant of link for all re-channelized links in
topology heuristically.

Ф � �1 � 𝜑𝜑� (4)

1 �Ф ×ʎ where ʎ=10 (5)

Ф in Equation 4 presents the link aliveness time in

stipulated 10 seconds time slot while Ф × ʎ is
reliability. A path 𝑆𝑆� computed from source to
destination is a set of all intermediate forwarding
devices. Equations 6-7 present the path from source
to destination along with associated aliveness time
between source and destination and the sum of path
aliveness time of any path.

𝑆𝑆� �� Ф� ��
�

���

(7)

i = �0,1,2,3 … … . .𝑎𝑎�

 Reliable multipath flow.

In this phase, first primary path will be computed
based on highest reliability which is computed in last

𝑆𝑆�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 � ∑ Max Ф� ���
��� (8)

i. IF S r̂eliable> 90 % Then no alternative path.
ii. IF S r̂eliable> 80 % Then 2 alternative paths.
iii. IF S r̂eliable> 70 % Then 3 alternative paths.
iv. IF S r̂eliable> 60 % Then 4 alternative paths.
v. IF S r̂eliable> 50 % Then 5 alternative paths.
vi. IF S r̂eliable< 50 % Then all alternative paths.

Disstance Based Reliable multipath flow.
It is a modified form of multipath flow in which
primary path calculated not only reliability based but
shortest distance attributes also involved in it. It will
be decreasing the latency rate better as compare to
RMF.

S� � ∑ Max Ф� Min ꝲ �
���� (9)

Algorithm 2
Input
 (i)- (Ĝ{[VEND_USER : ꝲ END_USER [ꝲ_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎]] ,
VSWITCHES : ꝲ SWITCHES[ꝲ_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎]}
(ii)- Source_node
(iii)- Destination_node

For i , j in Zip(ꝲ END_USER [ꝲ_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎]] , VSWITCHES : ꝲ
SWITCHES[ꝲ_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎]) ,

 For timestamp in ꝲ END_USER [ꝲ_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎]:
 i.get(ꝲ END_USER [ꝲ_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎][timestamp][reliability]),

 For timestamp in ꝲ SWITCHES[ꝲ_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎]:
 j.get(ꝲ SWITCHES [ꝲ_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎][timestamp][reliability]),

 ꝲi (8)

1 IF

i. Procedure Activate (𝑪𝑪(event_publisher,
event_subscriber))  Control functionality for
getting data plane event and handling.

ii. Procedure Data Plane (link _event, Publisher)

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 (link_event, Subscriber)
Return devices_dictionatory (VEND_USER, ꝲ
END_USER [ꝲ-attribute])

iii. Procedure Data_Plane (end_user_event,

Publisher):
𝑪𝑪_handler (end_user_event, Subscriber)
Return end_user_dictionatory (VSWITCHES, ꝲ
SWITCHES [ꝲ-attribute])

iv. UPDATE (Ĝ {[VEND_USER: ꝲ END_USER [ꝲ-

attribute]], VSWITCHES: ꝲ SWITCHES [ꝲ-attribute]})

Primary path computation.
In this phase, after the graph composition, now
network can start working. At First stage, flow tables
will be empty. After that switch 1 receives a packet
from host A. Switch s1 sending a message to SDN
controller for path computation after checking its own
forwarding table. If entry Ϸ − ӗ matched with
forwarding table entries then corresponding action
will be performed, otherwise now SDN controller
decides whether this packet will be forwarded or not
according to already defined network policy(Ά).
If Ϸ ∋ Ϸ − ӗ Permit or Deny
else

(1)

Ά ∋ Ϸ ∀ (ΆSRC, ΆDST) ∋ (ϷSRC, ϷDST)

(2)

𝑆𝑆� = ϷSRC + ꝲ� + ꝲ� +
ꝲ� … … … … … ..+ꝲ� + ϷDST
OpenFlow Command [Ϸ − ӗ → Șω]

(3)

Reliability Computation process.
Controller application use periodically probe packets
for inspection of link failure frequency within a time
slot (10 seconds) and compute the link reliability.
Higher the number of failures 𝜑𝜑 cause in lower the
reliability percentage and introduce signal of flow
rule installation for controller. 𝜑𝜑 presents the failure
frequency between 0 and 1, where ʎ is recovery
constant of link for all re-channelized links in
topology heuristically.

Ф = (1 − 𝜑𝜑) (4)

1 − Ф ×ʎ where ʎ=10 (5)

Ф in Equation 4 presents the link aliveness time in
stipulated 10 seconds time slot while Ф × ʎ is
reliability. A path 𝑆𝑆� computed from source to
destination is a set of all intermediate forwarding

devices. Equations 6-7 present the path from source
to destination along with associated aliveness time
between source and destination and the sum of path
aliveness time of any path.

𝑆𝑆� = Ф� �� + Ф� �� + Ф� �� ……………….
+Ф� ��

(6)

𝑆𝑆� = � Ф� ��

�

���

(7)

i = {0,1,2,3 … … . . 𝑪𝑪}

 Reliable multipath flow.

In this phase, first primary path will be computed
based on highest reliability which is computed in last
phase D. All alternative paths will be calculated
according to rules defined as follows.

𝑆𝑆�𝑪𝑪𝑪𝑪𝑪𝑪𝑟𝑟𝑪𝑪𝑟𝑟𝑪𝑪𝑪𝑪 = ∑ Max Ф� ��
�
��� (8)

i. IF S ̂reliable> 90 % Then no alternative path.
ii. IF S ̂reliable> 80 % Then 2 alternative paths.
iii. IF S ̂reliable> 70 % Then 3 alternative paths.
iv. IF S ̂reliable> 60 % Then 4 alternative paths.
v. IF S ̂reliable> 50 % Then 5 alternative paths.
vi. IF S ̂reliable< 50 % Then all alternative paths.

Disstance Based Reliable multipath flow.
It is a modified form of multipath flow in which
primary path calculated not only reliability based but
shortest distance attributes also involved in it. It will
be decreasing the latency rate better as compare to
RMF.

S� = ∑ Max Ф� Min ꝲ �
�
��� (9)

Algorithm 2
Input
 (i)- (Ĝ{[VEND_USER : ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]] ,
VSWITCHES : ꝲ SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]}
(ii)- Source_node
(iii)- Destination_node

For i , j in Zip(ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]] , VSWITCHES : ꝲ
SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]) ,

 For timestamp in ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]:
 i.get(ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟][timestamp][reliability]),

 For timestamp in ꝲ SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]:
 j.get(ꝲ SWITCHES [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟][timestamp][reliability]),

 Case::1
reliable> 90 % Then no alternative path.

2 IF

i. Procedure Activate (𝑪𝑪(event_publisher,
event_subscriber))  Control functionality for
getting data plane event and handling.

ii. Procedure Data Plane (link _event, Publisher)

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 (link_event, Subscriber)
Return devices_dictionatory (VEND_USER, ꝲ
END_USER [ꝲ-attribute])

iii. Procedure Data_Plane (end_user_event,

Publisher):
𝑪𝑪_handler (end_user_event, Subscriber)
Return end_user_dictionatory (VSWITCHES, ꝲ
SWITCHES [ꝲ-attribute])

iv. UPDATE (Ĝ {[VEND_USER: ꝲ END_USER [ꝲ-

attribute]], VSWITCHES: ꝲ SWITCHES [ꝲ-attribute]})

Primary path computation.
In this phase, after the graph composition, now
network can start working. At First stage, flow tables
will be empty. After that switch 1 receives a packet
from host A. Switch s1 sending a message to SDN
controller for path computation after checking its own
forwarding table. If entry Ϸ − ӗ matched with
forwarding table entries then corresponding action
will be performed, otherwise now SDN controller
decides whether this packet will be forwarded or not
according to already defined network policy(Ά).
If Ϸ ∋ Ϸ − ӗ Permit or Deny
else

(1)

Ά ∋ Ϸ ∀ (ΆSRC, ΆDST) ∋ (ϷSRC, ϷDST)

(2)

𝑆𝑆� = ϷSRC + ꝲ� + ꝲ� +
ꝲ� … … … … … ..+ꝲ� + ϷDST
OpenFlow Command [Ϸ − ӗ → Șω]

(3)

Reliability Computation process.
Controller application use periodically probe packets
for inspection of link failure frequency within a time
slot (10 seconds) and compute the link reliability.
Higher the number of failures 𝜑𝜑 cause in lower the
reliability percentage and introduce signal of flow
rule installation for controller. 𝜑𝜑 presents the failure
frequency between 0 and 1, where ʎ is recovery
constant of link for all re-channelized links in
topology heuristically.

Ф = (1 − 𝜑𝜑) (4)

1 − Ф ×ʎ where ʎ=10 (5)

Ф in Equation 4 presents the link aliveness time in
stipulated 10 seconds time slot while Ф × ʎ is
reliability. A path 𝑆𝑆� computed from source to
destination is a set of all intermediate forwarding

devices. Equations 6-7 present the path from source
to destination along with associated aliveness time
between source and destination and the sum of path
aliveness time of any path.

𝑆𝑆� = Ф� �� + Ф� �� + Ф� �� ……………….
+Ф� ��

(6)

𝑆𝑆� = � Ф� ��

�

���

(7)

i = {0,1,2,3 … … . . 𝑪𝑪}

 Reliable multipath flow.

In this phase, first primary path will be computed
based on highest reliability which is computed in last
phase D. All alternative paths will be calculated
according to rules defined as follows.

𝑆𝑆�𝑪𝑪𝑪𝑪𝑪𝑪𝑟𝑟𝑪𝑪𝑟𝑟𝑪𝑪𝑪𝑪 = ∑ Max Ф� ��
�
��� (8)

i. IF S ̂reliable> 90 % Then no alternative path.
ii. IF S ̂reliable> 80 % Then 2 alternative paths.
iii. IF S ̂reliable> 70 % Then 3 alternative paths.
iv. IF S ̂reliable> 60 % Then 4 alternative paths.
v. IF S ̂reliable> 50 % Then 5 alternative paths.
vi. IF S ̂reliable< 50 % Then all alternative paths.

Disstance Based Reliable multipath flow.
It is a modified form of multipath flow in which
primary path calculated not only reliability based but
shortest distance attributes also involved in it. It will
be decreasing the latency rate better as compare to
RMF.

S� = ∑ Max Ф� Min ꝲ �
�
��� (9)

Algorithm 2
Input
 (i)- (Ĝ{[VEND_USER : ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]] ,
VSWITCHES : ꝲ SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]}
(ii)- Source_node
(iii)- Destination_node

For i , j in Zip(ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]] , VSWITCHES : ꝲ
SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]) ,

 For timestamp in ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]:
 i.get(ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟][timestamp][reliability]),

 For timestamp in ꝲ SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]:
 j.get(ꝲ SWITCHES [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟][timestamp][reliability]),

 Case::1
reliable> 80 % Then 2 alternative paths.

3 IF

i. Procedure Activate (𝑪𝑪(event_publisher,
event_subscriber))  Control functionality for
getting data plane event and handling.

ii. Procedure Data Plane (link _event, Publisher)

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 (link_event, Subscriber)
Return devices_dictionatory (VEND_USER, ꝲ
END_USER [ꝲ-attribute])

iii. Procedure Data_Plane (end_user_event,

Publisher):
𝑪𝑪_handler (end_user_event, Subscriber)
Return end_user_dictionatory (VSWITCHES, ꝲ
SWITCHES [ꝲ-attribute])

iv. UPDATE (Ĝ {[VEND_USER: ꝲ END_USER [ꝲ-

attribute]], VSWITCHES: ꝲ SWITCHES [ꝲ-attribute]})

Primary path computation.
In this phase, after the graph composition, now
network can start working. At First stage, flow tables
will be empty. After that switch 1 receives a packet
from host A. Switch s1 sending a message to SDN
controller for path computation after checking its own
forwarding table. If entry Ϸ − ӗ matched with
forwarding table entries then corresponding action
will be performed, otherwise now SDN controller
decides whether this packet will be forwarded or not
according to already defined network policy(Ά).
If Ϸ ∋ Ϸ − ӗ Permit or Deny
else

(1)

Ά ∋ Ϸ ∀ (ΆSRC, ΆDST) ∋ (ϷSRC, ϷDST)

(2)

𝑆𝑆� = ϷSRC + ꝲ� + ꝲ� +
ꝲ� … … … … … ..+ꝲ� + ϷDST
OpenFlow Command [Ϸ − ӗ → Șω]

(3)

Reliability Computation process.
Controller application use periodically probe packets
for inspection of link failure frequency within a time
slot (10 seconds) and compute the link reliability.
Higher the number of failures 𝜑𝜑 cause in lower the
reliability percentage and introduce signal of flow
rule installation for controller. 𝜑𝜑 presents the failure
frequency between 0 and 1, where ʎ is recovery
constant of link for all re-channelized links in
topology heuristically.

Ф = (1 − 𝜑𝜑) (4)

1 − Ф ×ʎ where ʎ=10 (5)

Ф in Equation 4 presents the link aliveness time in
stipulated 10 seconds time slot while Ф × ʎ is
reliability. A path 𝑆𝑆� computed from source to
destination is a set of all intermediate forwarding

devices. Equations 6-7 present the path from source
to destination along with associated aliveness time
between source and destination and the sum of path
aliveness time of any path.

𝑆𝑆� = Ф� �� + Ф� �� + Ф� �� ……………….
+Ф� ��

(6)

𝑆𝑆� = � Ф� ��

�

���

(7)

i = {0,1,2,3 … … . . 𝑪𝑪}

 Reliable multipath flow.

In this phase, first primary path will be computed
based on highest reliability which is computed in last
phase D. All alternative paths will be calculated
according to rules defined as follows.

𝑆𝑆�𝑪𝑪𝑪𝑪𝑪𝑪𝑟𝑟𝑪𝑪𝑟𝑟𝑪𝑪𝑪𝑪 = ∑ Max Ф� ��
�
��� (8)

i. IF S ̂reliable> 90 % Then no alternative path.
ii. IF S ̂reliable> 80 % Then 2 alternative paths.
iii. IF S ̂reliable> 70 % Then 3 alternative paths.
iv. IF S ̂reliable> 60 % Then 4 alternative paths.
v. IF S ̂reliable> 50 % Then 5 alternative paths.
vi. IF S ̂reliable< 50 % Then all alternative paths.

Disstance Based Reliable multipath flow.
It is a modified form of multipath flow in which
primary path calculated not only reliability based but
shortest distance attributes also involved in it. It will
be decreasing the latency rate better as compare to
RMF.

S� = ∑ Max Ф� Min ꝲ �
�
��� (9)

Algorithm 2
Input
 (i)- (Ĝ{[VEND_USER : ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]] ,
VSWITCHES : ꝲ SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]}
(ii)- Source_node
(iii)- Destination_node

For i , j in Zip(ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]] , VSWITCHES : ꝲ
SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]) ,

 For timestamp in ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]:
 i.get(ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟][timestamp][reliability]),

 For timestamp in ꝲ SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]:
 j.get(ꝲ SWITCHES [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟][timestamp][reliability]),

 Case::1
reliable> 70 % Then 3 alternative paths.

4 IF

i. Procedure Activate (𝑪𝑪(event_publisher,
event_subscriber))  Control functionality for
getting data plane event and handling.

ii. Procedure Data Plane (link _event, Publisher)

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 (link_event, Subscriber)
Return devices_dictionatory (VEND_USER, ꝲ
END_USER [ꝲ-attribute])

iii. Procedure Data_Plane (end_user_event,

Publisher):
𝑪𝑪_handler (end_user_event, Subscriber)
Return end_user_dictionatory (VSWITCHES, ꝲ
SWITCHES [ꝲ-attribute])

iv. UPDATE (Ĝ {[VEND_USER: ꝲ END_USER [ꝲ-

attribute]], VSWITCHES: ꝲ SWITCHES [ꝲ-attribute]})

Primary path computation.
In this phase, after the graph composition, now
network can start working. At First stage, flow tables
will be empty. After that switch 1 receives a packet
from host A. Switch s1 sending a message to SDN
controller for path computation after checking its own
forwarding table. If entry Ϸ − ӗ matched with
forwarding table entries then corresponding action
will be performed, otherwise now SDN controller
decides whether this packet will be forwarded or not
according to already defined network policy(Ά).
If Ϸ ∋ Ϸ − ӗ Permit or Deny
else

(1)

Ά ∋ Ϸ ∀ (ΆSRC, ΆDST) ∋ (ϷSRC, ϷDST)

(2)

𝑆𝑆� = ϷSRC + ꝲ� + ꝲ� +
ꝲ� … … … … … ..+ꝲ� + ϷDST
OpenFlow Command [Ϸ − ӗ → Șω]

(3)

Reliability Computation process.
Controller application use periodically probe packets
for inspection of link failure frequency within a time
slot (10 seconds) and compute the link reliability.
Higher the number of failures 𝜑𝜑 cause in lower the
reliability percentage and introduce signal of flow
rule installation for controller. 𝜑𝜑 presents the failure
frequency between 0 and 1, where ʎ is recovery
constant of link for all re-channelized links in
topology heuristically.

Ф = (1 − 𝜑𝜑) (4)

1 − Ф ×ʎ where ʎ=10 (5)

Ф in Equation 4 presents the link aliveness time in
stipulated 10 seconds time slot while Ф × ʎ is
reliability. A path 𝑆𝑆� computed from source to
destination is a set of all intermediate forwarding

devices. Equations 6-7 present the path from source
to destination along with associated aliveness time
between source and destination and the sum of path
aliveness time of any path.

𝑆𝑆� = Ф� �� + Ф� �� + Ф� �� ……………….
+Ф� ��

(6)

𝑆𝑆� = � Ф� ��

�

���

(7)

i = {0,1,2,3 … … . . 𝑪𝑪}

 Reliable multipath flow.

In this phase, first primary path will be computed
based on highest reliability which is computed in last
phase D. All alternative paths will be calculated
according to rules defined as follows.

𝑆𝑆�𝑪𝑪𝑪𝑪𝑪𝑪𝑟𝑟𝑪𝑪𝑟𝑟𝑪𝑪𝑪𝑪 = ∑ Max Ф� ��
�
��� (8)

i. IF S ̂reliable> 90 % Then no alternative path.
ii. IF S ̂reliable> 80 % Then 2 alternative paths.
iii. IF S ̂reliable> 70 % Then 3 alternative paths.
iv. IF S ̂reliable> 60 % Then 4 alternative paths.
v. IF S ̂reliable> 50 % Then 5 alternative paths.
vi. IF S ̂reliable< 50 % Then all alternative paths.

Disstance Based Reliable multipath flow.
It is a modified form of multipath flow in which
primary path calculated not only reliability based but
shortest distance attributes also involved in it. It will
be decreasing the latency rate better as compare to
RMF.

S� = ∑ Max Ф� Min ꝲ �
�
��� (9)

Algorithm 2
Input
 (i)- (Ĝ{[VEND_USER : ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]] ,
VSWITCHES : ꝲ SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]}
(ii)- Source_node
(iii)- Destination_node

For i , j in Zip(ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]] , VSWITCHES : ꝲ
SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]) ,

 For timestamp in ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]:
 i.get(ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟][timestamp][reliability]),

 For timestamp in ꝲ SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]:
 j.get(ꝲ SWITCHES [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟][timestamp][reliability]),

 Case::1
reliable> 60 % Then 4 alternative paths.

5 IF

i. Procedure Activate (𝑪𝑪(event_publisher,
event_subscriber))  Control functionality for
getting data plane event and handling.

ii. Procedure Data Plane (link _event, Publisher)

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 (link_event, Subscriber)
Return devices_dictionatory (VEND_USER, ꝲ
END_USER [ꝲ-attribute])

iii. Procedure Data_Plane (end_user_event,

Publisher):
𝑪𝑪_handler (end_user_event, Subscriber)
Return end_user_dictionatory (VSWITCHES, ꝲ
SWITCHES [ꝲ-attribute])

iv. UPDATE (Ĝ {[VEND_USER: ꝲ END_USER [ꝲ-

attribute]], VSWITCHES: ꝲ SWITCHES [ꝲ-attribute]})

Primary path computation.
In this phase, after the graph composition, now
network can start working. At First stage, flow tables
will be empty. After that switch 1 receives a packet
from host A. Switch s1 sending a message to SDN
controller for path computation after checking its own
forwarding table. If entry Ϸ − ӗ matched with
forwarding table entries then corresponding action
will be performed, otherwise now SDN controller
decides whether this packet will be forwarded or not
according to already defined network policy(Ά).
If Ϸ ∋ Ϸ − ӗ Permit or Deny
else

(1)

Ά ∋ Ϸ ∀ (ΆSRC, ΆDST) ∋ (ϷSRC, ϷDST)

(2)

𝑆𝑆� = ϷSRC + ꝲ� + ꝲ� +
ꝲ� … … … … … ..+ꝲ� + ϷDST
OpenFlow Command [Ϸ − ӗ → Șω]

(3)

Reliability Computation process.
Controller application use periodically probe packets
for inspection of link failure frequency within a time
slot (10 seconds) and compute the link reliability.
Higher the number of failures 𝜑𝜑 cause in lower the
reliability percentage and introduce signal of flow
rule installation for controller. 𝜑𝜑 presents the failure
frequency between 0 and 1, where ʎ is recovery
constant of link for all re-channelized links in
topology heuristically.

Ф = (1 − 𝜑𝜑) (4)

1 − Ф ×ʎ where ʎ=10 (5)

Ф in Equation 4 presents the link aliveness time in
stipulated 10 seconds time slot while Ф × ʎ is
reliability. A path 𝑆𝑆� computed from source to
destination is a set of all intermediate forwarding

devices. Equations 6-7 present the path from source
to destination along with associated aliveness time
between source and destination and the sum of path
aliveness time of any path.

𝑆𝑆� = Ф� �� + Ф� �� + Ф� �� ……………….
+Ф� ��

(6)

𝑆𝑆� = � Ф� ��

�

���

(7)

i = {0,1,2,3 … … . . 𝑪𝑪}

 Reliable multipath flow.

In this phase, first primary path will be computed
based on highest reliability which is computed in last
phase D. All alternative paths will be calculated
according to rules defined as follows.

𝑆𝑆�𝑪𝑪𝑪𝑪𝑪𝑪𝑟𝑟𝑪𝑪𝑟𝑟𝑪𝑪𝑪𝑪 = ∑ Max Ф� ��
�
��� (8)

i. IF S ̂reliable> 90 % Then no alternative path.
ii. IF S ̂reliable> 80 % Then 2 alternative paths.
iii. IF S ̂reliable> 70 % Then 3 alternative paths.
iv. IF S ̂reliable> 60 % Then 4 alternative paths.
v. IF S ̂reliable> 50 % Then 5 alternative paths.
vi. IF S ̂reliable< 50 % Then all alternative paths.

Disstance Based Reliable multipath flow.
It is a modified form of multipath flow in which
primary path calculated not only reliability based but
shortest distance attributes also involved in it. It will
be decreasing the latency rate better as compare to
RMF.

S� = ∑ Max Ф� Min ꝲ �
�
��� (9)

Algorithm 2
Input
 (i)- (Ĝ{[VEND_USER : ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]] ,
VSWITCHES : ꝲ SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]}
(ii)- Source_node
(iii)- Destination_node

For i , j in Zip(ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]] , VSWITCHES : ꝲ
SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]) ,

 For timestamp in ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]:
 i.get(ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟][timestamp][reliability]),

 For timestamp in ꝲ SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]:
 j.get(ꝲ SWITCHES [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟][timestamp][reliability]),

 Case::1
reliable> 50 % Then 5 alternative paths.

6 IF

i. Procedure Activate (𝑪𝑪(event_publisher,
event_subscriber))  Control functionality for
getting data plane event and handling.

ii. Procedure Data Plane (link _event, Publisher)

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 (link_event, Subscriber)
Return devices_dictionatory (VEND_USER, ꝲ
END_USER [ꝲ-attribute])

iii. Procedure Data_Plane (end_user_event,

Publisher):
𝑪𝑪_handler (end_user_event, Subscriber)
Return end_user_dictionatory (VSWITCHES, ꝲ
SWITCHES [ꝲ-attribute])

iv. UPDATE (Ĝ {[VEND_USER: ꝲ END_USER [ꝲ-

attribute]], VSWITCHES: ꝲ SWITCHES [ꝲ-attribute]})

Primary path computation.
In this phase, after the graph composition, now
network can start working. At First stage, flow tables
will be empty. After that switch 1 receives a packet
from host A. Switch s1 sending a message to SDN
controller for path computation after checking its own
forwarding table. If entry Ϸ − ӗ matched with
forwarding table entries then corresponding action
will be performed, otherwise now SDN controller
decides whether this packet will be forwarded or not
according to already defined network policy(Ά).
If Ϸ ∋ Ϸ − ӗ Permit or Deny
else

(1)

Ά ∋ Ϸ ∀ (ΆSRC, ΆDST) ∋ (ϷSRC, ϷDST)

(2)

𝑆𝑆� = ϷSRC + ꝲ� + ꝲ� +
ꝲ� … … … … … ..+ꝲ� + ϷDST
OpenFlow Command [Ϸ − ӗ → Șω]

(3)

Reliability Computation process.
Controller application use periodically probe packets
for inspection of link failure frequency within a time
slot (10 seconds) and compute the link reliability.
Higher the number of failures 𝜑𝜑 cause in lower the
reliability percentage and introduce signal of flow
rule installation for controller. 𝜑𝜑 presents the failure
frequency between 0 and 1, where ʎ is recovery
constant of link for all re-channelized links in
topology heuristically.

Ф = (1 − 𝜑𝜑) (4)

1 − Ф ×ʎ where ʎ=10 (5)

Ф in Equation 4 presents the link aliveness time in
stipulated 10 seconds time slot while Ф × ʎ is
reliability. A path 𝑆𝑆� computed from source to
destination is a set of all intermediate forwarding

devices. Equations 6-7 present the path from source
to destination along with associated aliveness time
between source and destination and the sum of path
aliveness time of any path.

𝑆𝑆� = Ф� �� + Ф� �� + Ф� �� ……………….
+Ф� ��

(6)

𝑆𝑆� = � Ф� ��

�

���

(7)

i = {0,1,2,3 … … . . 𝑪𝑪}

 Reliable multipath flow.

In this phase, first primary path will be computed
based on highest reliability which is computed in last
phase D. All alternative paths will be calculated
according to rules defined as follows.

𝑆𝑆�𝑪𝑪𝑪𝑪𝑪𝑪𝑟𝑟𝑪𝑪𝑟𝑟𝑪𝑪𝑪𝑪 = ∑ Max Ф� ��
�
��� (8)

i. IF S ̂reliable> 90 % Then no alternative path.
ii. IF S ̂reliable> 80 % Then 2 alternative paths.
iii. IF S ̂reliable> 70 % Then 3 alternative paths.
iv. IF S ̂reliable> 60 % Then 4 alternative paths.
v. IF S ̂reliable> 50 % Then 5 alternative paths.
vi. IF S ̂reliable< 50 % Then all alternative paths.

Disstance Based Reliable multipath flow.
It is a modified form of multipath flow in which
primary path calculated not only reliability based but
shortest distance attributes also involved in it. It will
be decreasing the latency rate better as compare to
RMF.

S� = ∑ Max Ф� Min ꝲ �
�
��� (9)

Algorithm 2
Input
 (i)- (Ĝ{[VEND_USER : ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]] ,
VSWITCHES : ꝲ SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]}
(ii)- Source_node
(iii)- Destination_node

For i , j in Zip(ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]] , VSWITCHES : ꝲ
SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]) ,

 For timestamp in ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]:
 i.get(ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟][timestamp][reliability]),

 For timestamp in ꝲ SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]:
 j.get(ꝲ SWITCHES [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟][timestamp][reliability]),

 Case::1
reliable< 50 % Then all alternative paths.

Disstance Based Reliable multipath flow
It is a modified form of multipath flow in which
primary path calculated not only reliability based
but shortest distance attributes also involved in it.
It will be decreasing the latency rate better as com-
pare to RMF.

Algorithm 1.
Initialize undirected Graph = Ĝ
i. Procedure Activate (𝑪𝑪(event_publisher,

event_subscriber))  Control functionality for
getting data plane event and handling.

ii. Procedure Data Plane (link _event, Publisher)

𝑪𝑪_ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (link_event, Subscriber)
Return devices_dictionatory (VEND_USER, ꝲ
END_USER [ꝲ-attribute])

iii. Procedure Data_Plane (end_user_event,

Publisher):
𝑪𝑪_handler (end_user_event, Subscriber)
Return end_user_dictionatory (VSWITCHES, ꝲ
SWITCHES [ꝲ-attribute])

iv. UPDATE (Ĝ {[VEND_USER: ꝲ END_USER [ꝲ-

attribute]], VSWITCHES: ꝲ SWITCHES [ꝲ-attribute]})

Primary path computation.
In this phase, after the graph composition, now
network can start working. At First stage, flow tables
will be empty. After that switch 1 receives a packet
from host A. Switch s1 sending a message to SDN
controller for path computation after checking its own
forwarding table. If entry Ϸ � � matched with
forwarding table entries then corresponding action
will be performed, otherwise now SDN controller
decides whether this packet will be forwarded or not
according to already defined network policy(Ά).
If Ϸ ∋ Ϸ � � Permit or Deny
else

(1)

Ά ∋ Ϸ ∀ (ΆSRC, ΆDST � ∋ (ϷSRC, ϷDST)

(2)

𝑆𝑆� = ϷSRC � ꝲ� � ꝲ� �
ꝲ� … … … … … ..+ꝲ� � ϷDST
OpenFlow Command [Ϸ � � � Șω]

(3)

Reliability Computation process.
Controller application use periodically probe packets
for inspection of link failure frequency within a time
slot (10 seconds) and compute the link reliability.
Higher the number of failures 𝜑𝜑 cause in lower the
reliability percentage and introduce signal of flow
rule installation for controller. 𝜑𝜑 presents the failure
frequency between 0 and 1, where ʎ is recovery
constant of link for all re-channelized links in
topology heuristically.

Ф � �1 � 𝜑𝜑� (4)

1 �Ф ×ʎ where ʎ=10 (5)

Ф in Equation 4 presents the link aliveness time in

stipulated 10 seconds time slot while Ф × ʎ is
reliability. A path 𝑆𝑆� computed from source to
destination is a set of all intermediate forwarding
devices. Equations 6-7 present the path from source
to destination along with associated aliveness time
between source and destination and the sum of path
aliveness time of any path.

𝑆𝑆� �� Ф� ��
�

���

(7)

i = �0,1,2,3 … … . .𝑎𝑎�

 Reliable multipath flow.

In this phase, first primary path will be computed
based on highest reliability which is computed in last

𝑆𝑆�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 � ∑ Max Ф� ���
��� (8)

i. IF S r̂eliable> 90 % Then no alternative path.
ii. IF S r̂eliable> 80 % Then 2 alternative paths.
iii. IF S r̂eliable> 70 % Then 3 alternative paths.
iv. IF S r̂eliable> 60 % Then 4 alternative paths.
v. IF S r̂eliable> 50 % Then 5 alternative paths.
vi. IF S r̂eliable< 50 % Then all alternative paths.

Disstance Based Reliable multipath flow.
It is a modified form of multipath flow in which
primary path calculated not only reliability based but
shortest distance attributes also involved in it. It will
be decreasing the latency rate better as compare to
RMF.

S� � ∑ Max Ф� Min ꝲ �
���� (9)

Algorithm 2
Input
 (i)- (Ĝ{[VEND_USER : ꝲ END_USER [ꝲ_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎]] ,
VSWITCHES : ꝲ SWITCHES[ꝲ_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎]}
(ii)- Source_node
(iii)- Destination_node

For i , j in Zip(ꝲ END_USER [ꝲ_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎]] , VSWITCHES : ꝲ
SWITCHES[ꝲ_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎]) ,

 For timestamp in ꝲ END_USER [ꝲ_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎]:
 i.get(ꝲ END_USER [ꝲ_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎][timestamp][reliability]),

 For timestamp in ꝲ SWITCHES[ꝲ_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎]:
 j.get(ꝲ SWITCHES [ꝲ_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎][timestamp][reliability]),

(9)

11Information Technology and Control 2022/1/51

Algorithm 2
Input
1 (Ĝ{[VEND_USER : ꝲ END_USER [ꝲ-attrib],

VSWITCHES : ꝲ SWITCHES[ꝲ-attrib]}
2 Source_node
3 Destination_node

For i , j in Zip(ꝲ END_USER [ꝲ-attrib] ,
VSWITCHES : ꝲ SWITCHES[ꝲ-attrib]) ,

For timestamp in ꝲ END_USER [ꝲ-attrib]:
i.get(ꝲ END_USER [ꝲ-attrib][timestamp][reliability]),

For timestamp in ꝲ SWITCHES[ꝲ-attrib]:
j.get(ꝲ SWITCHES[ꝲ-attrib][timestamp][reliability]),

Case::1
if (i > threshold) and (j> threshold):
call Procedure RMF(Ĝ, i, j)

if (i <threshold) and (j> threshold):
call Procedure_ALT(Ĝ, i , j)

Case::2
if (i > threshold) and (j> threshold):
call Procedure DRMF(Ĝ, i, j)

Procedure RMF (Ĝ, i, j):
For level in reliabdictionary :

If i , j = reliabdictionary[value]:
K.get(reliabdictionary[alternate_paths])
For path in K:
OpenFlow_Configuration(path)

Procedure2_ALT(Ĝ, i, j):
OpenFlow_Configuration(All_paths)

Procedure DRMF(Ĝ, I , j):
For level in reliabdictionary :

If I , j = reliabdictionary[value]:
K.get(reliabdictionary(Min([alternate_paths]))
For path in K:
OpenFlow_Configuration(path)

Flow of Proposed Methodology
In working of reliable multiple path flow starting by
controller take a network view of all nodes (switches)
after that primary reliable path computed by control-
ler when switch requested for it. Reliability measur-
ing algorithm computed reliability if calculated reli-
ability is less than threshold then all alternative paths
updated in flow table but in case more than threshold
then MRF cases decides how many alternative paths
assigned. Primary path calculation based on reliabil-
ity and shortest distance. In our propsed system we
have used dijekstra algorithm for calculating shortest
path. Flow diagram repeated for n number of paths
and each time update latest paths in flow entries.

4. Simulation and Results

Simulation
Perform series of experiments of proposed approach-
es POX To controller and Mininet simulator have
used in it.
Mininet Simulator
Mininet simulator have used in experimentation be-
cause it is feasible for both large scale and small-scale
simulation of network. Hundreds and thousands of
nodes can be tested easily using simple tools for com-
mand line and API. The simulator has the benefit of in-
terface for multiple SDN controller like Pox, Floodlight,
Ryu and Open daylight regardless of topology develop-
ment programming interface level as a programming
model in SDN comprises of low, mid, and high-level
programming [8, 37, 31]. Mininet provide easy custom-
ization, sharing, and testing nodes of SDN [19]. It also
provides a virtually separate interface for any host node
for processing of host granular applications. Mininet
simulator suitable for both (real and simulated control-
ler).It can also use to simulate connections between dif-
ferent types of controllers like POX, Ryu, etc. [40]. Var-
ious types of switches can be created and modify using
Mininet according to required simulation. NASA, ICSI,
and many other researchers used in world used Mininet
for multi controller simulations [14].
POX Controller
Stateless switch communication based OpenFlow
protocol can be controlled by POX framework [12].

Information Technology and Control 2022/1/5112

Figure 1
Flow Diagram of Proposed Methodology

13Information Technology and Control 2022/1/51

Python language can used POX for design a SDN con-
troller. It is efficient tool used in research for develop-
ing a basic SDN controller [8]. By adding more com-
ponents, a complex SDN controller can be designed.
POX can support 1.0 and 1.3 versions of OpenFlow
switches. POX also provide interface for Mininet,
open source availability, and integration with other
simulators like NS3 [36].

Experimental Results
In our emulated network following components used.

Figure 2
Overhead comarison between existing and RMF

Figure 3
Average packet transmission delay

Figure 4
Flow rules Installation

Table 2
Components of Network

Virtual end hosts 25

OVS switches 9

OVS switches 9

Packet generated per host 10000 UDP

Size of average packet 62 bytes

Better results obtained generated by 5 hosts because
of limited resources. All experiments performed us-
ing POX controller (version 2.2).Mininet simulator
improves our work performance and competitively
better results than existing approaches ./we have used
python for scripting due to commutability of python
with POX and Mininet. Figure 2 presents comparison
between overheads of existing and new system.

Overhead of existing system greater due to install-
ing large number of alternative paths which is cause
of increase in communication between controller
and intermediate switches. Figure 3 elaborates delay
comparison of packet transmission. RMF has smaller
delay due to less involvement of controller.

Figure 4 Flow rules Installation

Figure 5 illustrates the observation of flow entry
encapsulated packet drop at switch. The reason
behind this behavior of OpenFlow switch has limited
memory. These memory constraints insist on the
mechanism of flow rule installation wisely by
considering the forwarding devices' capacity. In this
situation, our proposed solution is relatively more
suitable in the SDN production network.

Figure 5 Switch flow entry drop percentage in case of
switch memory Overflow

Observations regarding the average delay of flow rule
entries installation in Figure 6 conclude that as the
number of entries increases, the time of their
installation also increases proportionally. When the
controller computes the higher frequency of these
flow entries along with another application interface
then control traffic for configuration approaches to

delay. RMF and DRMF are relatively less delayed
oriented and perform configurations according to the
network policies timely.

Figure 6 Average delay computed at controller for
installation of computed Flow Rule Entries

All or selective path installation procedures in the
existing approach install the useless entries in switch
memory. Figure 7 presents the experimental results
by accessing the packets and number of bytes
entertained by flow rule entries in switches and it
has yielded that RMF and DRMF are much efficient
for said situation. The proposed approach presents
the highest percentage comparative to the existing
approaches and useful entries in switches.

Figure 7 Flow Rule Entries entertaining the
production packets according to specified action in a
flow rule entry

5. Conclusion
As we have discussed that 5G networks used to
provide high availability to end users in services

0
10
20
30
40
50

1 2 3 4 5

Fl
ow

 R
ul

e
Rn

tr
ie

s

Number of Host communicating over UDP

Comparitive Number of
Flow Entries in Switch

Existing RMF DRMF

0

20

40

60

80

100

100 200 300 400 500Pa
ck

et
 D

ro
p

Pe
rc

en
ta

ge
 a

t o
pe

n
sw

itc
h

Number of Flow Rules Entries From
Controller to Switch over TCP

Percentage of Flow
Entry Packet Drop at

Switch in Case of TCAM
overflow

Existing RMF DRMF

0

20000

40000

60000

100 200 300 400 500

Ti
m

e
(m

ic
ro

 s
ec

on
ds

)

Number of Flow Rule Installation

Average Delay for Flow
Rule Entries Installation in

Open Flow Switch

Existing RMF DRMF

0

20

40

60

80

100 200 300 400 500

Fl
ow

 R
ul

e
En

tr
ie

s U
sa

ge
 P

er
ce

nt
ag

e

Number of Flow Entries

Percentage of Useful
Flow Rule Entries in

Switch TCAM

Existing RMF DRMF

Figure 4 Flow rules Installation

Figure 5 illustrates the observation of flow entry
encapsulated packet drop at switch. The reason
behind this behavior of OpenFlow switch has limited
memory. These memory constraints insist on the
mechanism of flow rule installation wisely by
considering the forwarding devices' capacity. In this
situation, our proposed solution is relatively more
suitable in the SDN production network.

Figure 5 Switch flow entry drop percentage in case of
switch memory Overflow

Observations regarding the average delay of flow rule
entries installation in Figure 6 conclude that as the
number of entries increases, the time of their
installation also increases proportionally. When the
controller computes the higher frequency of these
flow entries along with another application interface
then control traffic for configuration approaches to

delay. RMF and DRMF are relatively less delayed
oriented and perform configurations according to the
network policies timely.

Figure 6 Average delay computed at controller for
installation of computed Flow Rule Entries

All or selective path installation procedures in the
existing approach install the useless entries in switch
memory. Figure 7 presents the experimental results
by accessing the packets and number of bytes
entertained by flow rule entries in switches and it
has yielded that RMF and DRMF are much efficient
for said situation. The proposed approach presents
the highest percentage comparative to the existing
approaches and useful entries in switches.

Figure 7 Flow Rule Entries entertaining the
production packets according to specified action in a
flow rule entry

5. Conclusion
As we have discussed that 5G networks used to
provide high availability to end users in services

0
10
20
30
40
50

1 2 3 4 5

Fl
ow

 R
ul

e
Rn

tr
ie

s

Number of Host communicating over UDP

Comparitive Number of
Flow Entries in Switch

Existing RMF DRMF

0

20

40

60

80

100

100 200 300 400 500Pa
ck

et
 D

ro
p

Pe
rc

en
ta

ge
 a

t o
pe

n
sw

itc
h

Number of Flow Rules Entries From
Controller to Switch over TCP

Percentage of Flow
Entry Packet Drop at

Switch in Case of TCAM
overflow

Existing RMF DRMF

0

20000

40000

60000

100 200 300 400 500

Ti
m

e
(m

ic
ro

 s
ec

on
ds

)

Number of Flow Rule Installation

Average Delay for Flow
Rule Entries Installation in

Open Flow Switch

Existing RMF DRMF

0

20

40

60

80

100 200 300 400 500

Fl
ow

 R
ul

e
En

tr
ie

s U
sa

ge
 P

er
ce

nt
ag

e

Number of Flow Entries

Percentage of Useful
Flow Rule Entries in

Switch TCAM

Existing RMF DRMF

Mininet Simulator.
Mininet simulator have used in experimentation
because it is feasible for both large scale and small-
scale simulation of network. Hundreds and thousands
of nodes can be tested easily using simple tools for
command line and API. The simulator has the benefit
of interface for multiple SDN controller like Pox,
Floodlight, Ryu and Open daylight regardless of
topology development programming interface level
as a programming model in SDN comprises of low,
mid, and high-level programming [8, 37, 31]. Mininet
provide easy customization, sharing, and testing
nodes of SDN [19]. It also provides a virtually
separate interface for any host node for processing of
host granular applications. Mininet simulator suitable
for both (real and simulated controller).It can also use
to simulate connections between different types of
controllers like POX, Ryu, etc. [40]. Various types of
switches can be created and modify using Mininet
according to required simulation. NASA, ICSI, and
many other researchers used in world used Mininet
for multi controller simulations [14].
POX Controller.
Stateless switch communication based OpenFlow
protocol can be controlled by POX framework [12].
Python language can used POX for design a SDN
controller. It is efficient tool used in research for
developing a basic SDN controller [8]. By adding
more components, a complex SDN controller can be
designed. POX can support 1.0 and 1.3 versions of
OpenFlow switches. POX also provide interface for
Mininet, open source availability, and integration
with other simulators like NS3 [36].
Experimental Results.
In our emulated network following components used.

Table 2 Components of Network

Virtual end hosts 25
OVS switches 9

Packet generated per host 10000 UDP
Size of average packet 62 bytes

Better results obtained generated by 5 hosts because
of limited resources. All experiments performed
using POX controller (version 2.2).Mininet simulator
improves our work performance and competitively
better results than existing approaches ./we have used
python for scripting due to commutability of python
with POX and Mininet. Figure 2 presents comparison
between overheads of existing and new system.

Figure 2 Overhead comarison between existing and
RMF

Overhead of existing system greater due to installing
large number of alternative paths which is cause of
increase in communication between controller and
intermediate switches. Figure 3 elaborates delay
comparison of packet transmission. RMF has smaller
delay due to less involvement of controller.

Figure 3 Average packet transmission delay

In Figure 4, elaboration of flow rule installation is
shown. If length of path increased, then number of
alternative paths also increase which will be cause of
large number of flow rules installation in existing
system. In RMF/DRMF consumes less memory for
flow rules installations.

0
10000
20000
30000

1 2 3 4 5

Ti
m

e(
M

icr
o

se
co

nd
s)

Number of hosts

Path Computation
Controller Overhead

Existing RMF DRMF

0

10000

20000

1 2 3 4 5

Ti
m

e
(m

icr
os

ec
on

ds
)

Number of end host using UDP protocol

Comperitive Averge
Packet Delay

Existing RMF DRMF

Mininet Simulator.
Mininet simulator have used in experimentation
because it is feasible for both large scale and small-
scale simulation of network. Hundreds and thousands
of nodes can be tested easily using simple tools for
command line and API. The simulator has the benefit
of interface for multiple SDN controller like Pox,
Floodlight, Ryu and Open daylight regardless of
topology development programming interface level
as a programming model in SDN comprises of low,
mid, and high-level programming [8, 37, 31]. Mininet
provide easy customization, sharing, and testing
nodes of SDN [19]. It also provides a virtually
separate interface for any host node for processing of
host granular applications. Mininet simulator suitable
for both (real and simulated controller).It can also use
to simulate connections between different types of
controllers like POX, Ryu, etc. [40]. Various types of
switches can be created and modify using Mininet
according to required simulation. NASA, ICSI, and
many other researchers used in world used Mininet
for multi controller simulations [14].
POX Controller.
Stateless switch communication based OpenFlow
protocol can be controlled by POX framework [12].
Python language can used POX for design a SDN
controller. It is efficient tool used in research for
developing a basic SDN controller [8]. By adding
more components, a complex SDN controller can be
designed. POX can support 1.0 and 1.3 versions of
OpenFlow switches. POX also provide interface for
Mininet, open source availability, and integration
with other simulators like NS3 [36].
Experimental Results.
In our emulated network following components used.

Table 2 Components of Network

Virtual end hosts 25
OVS switches 9

Packet generated per host 10000 UDP
Size of average packet 62 bytes

Better results obtained generated by 5 hosts because
of limited resources. All experiments performed
using POX controller (version 2.2).Mininet simulator
improves our work performance and competitively
better results than existing approaches ./we have used
python for scripting due to commutability of python
with POX and Mininet. Figure 2 presents comparison
between overheads of existing and new system.

Figure 2 Overhead comarison between existing and
RMF

Overhead of existing system greater due to installing
large number of alternative paths which is cause of
increase in communication between controller and
intermediate switches. Figure 3 elaborates delay
comparison of packet transmission. RMF has smaller
delay due to less involvement of controller.

Figure 3 Average packet transmission delay

In Figure 4, elaboration of flow rule installation is
shown. If length of path increased, then number of
alternative paths also increase which will be cause of
large number of flow rules installation in existing
system. In RMF/DRMF consumes less memory for
flow rules installations.

0
10000
20000
30000

1 2 3 4 5

Ti
m

e(
M

icr
o

se
co

nd
s)

Number of hosts

Path Computation
Controller Overhead

Existing RMF DRMF

0

10000

20000

1 2 3 4 5

Ti
m

e
(m

icr
os

ec
on

ds
)

Number of end host using UDP protocol

Comperitive Averge
Packet Delay

Existing RMF DRMF

Mininet Simulator.
Mininet simulator have used in experimentation
because it is feasible for both large scale and small-
scale simulation of network. Hundreds and thousands
of nodes can be tested easily using simple tools for
command line and API. The simulator has the benefit
of interface for multiple SDN controller like Pox,
Floodlight, Ryu and Open daylight regardless of
topology development programming interface level
as a programming model in SDN comprises of low,
mid, and high-level programming [8, 37, 31]. Mininet
provide easy customization, sharing, and testing
nodes of SDN [19]. It also provides a virtually
separate interface for any host node for processing of
host granular applications. Mininet simulator suitable
for both (real and simulated controller).It can also use
to simulate connections between different types of
controllers like POX, Ryu, etc. [40]. Various types of
switches can be created and modify using Mininet
according to required simulation. NASA, ICSI, and
many other researchers used in world used Mininet
for multi controller simulations [14].
POX Controller.
Stateless switch communication based OpenFlow
protocol can be controlled by POX framework [12].
Python language can used POX for design a SDN
controller. It is efficient tool used in research for
developing a basic SDN controller [8]. By adding
more components, a complex SDN controller can be
designed. POX can support 1.0 and 1.3 versions of
OpenFlow switches. POX also provide interface for
Mininet, open source availability, and integration
with other simulators like NS3 [36].
Experimental Results.
In our emulated network following components used.

Table 2 Components of Network

Virtual end hosts 25
OVS switches 9

Packet generated per host 10000 UDP
Size of average packet 62 bytes

Better results obtained generated by 5 hosts because
of limited resources. All experiments performed
using POX controller (version 2.2).Mininet simulator
improves our work performance and competitively
better results than existing approaches ./we have used
python for scripting due to commutability of python
with POX and Mininet. Figure 2 presents comparison
between overheads of existing and new system.

Figure 2 Overhead comarison between existing and
RMF

Overhead of existing system greater due to installing
large number of alternative paths which is cause of
increase in communication between controller and
intermediate switches. Figure 3 elaborates delay
comparison of packet transmission. RMF has smaller
delay due to less involvement of controller.

Figure 3 Average packet transmission delay

In Figure 4, elaboration of flow rule installation is
shown. If length of path increased, then number of
alternative paths also increase which will be cause of
large number of flow rules installation in existing
system. In RMF/DRMF consumes less memory for
flow rules installations.

0
10000
20000
30000

1 2 3 4 5

Ti
m

e(
M

icr
o

se
co

nd
s)

Number of hosts

Path Computation
Controller Overhead

Existing RMF DRMF

0

10000

20000

1 2 3 4 5

Ti
m

e
(m

icr
os

ec
on

ds
)

Number of end host using UDP protocol

Comperitive Averge
Packet Delay

Existing RMF DRMF

Mininet Simulator.
Mininet simulator have used in experimentation
because it is feasible for both large scale and small-
scale simulation of network. Hundreds and thousands
of nodes can be tested easily using simple tools for
command line and API. The simulator has the benefit
of interface for multiple SDN controller like Pox,
Floodlight, Ryu and Open daylight regardless of
topology development programming interface level
as a programming model in SDN comprises of low,
mid, and high-level programming [8, 37, 31]. Mininet
provide easy customization, sharing, and testing
nodes of SDN [19]. It also provides a virtually
separate interface for any host node for processing of
host granular applications. Mininet simulator suitable
for both (real and simulated controller).It can also use
to simulate connections between different types of
controllers like POX, Ryu, etc. [40]. Various types of
switches can be created and modify using Mininet
according to required simulation. NASA, ICSI, and
many other researchers used in world used Mininet
for multi controller simulations [14].
POX Controller.
Stateless switch communication based OpenFlow
protocol can be controlled by POX framework [12].
Python language can used POX for design a SDN
controller. It is efficient tool used in research for
developing a basic SDN controller [8]. By adding
more components, a complex SDN controller can be
designed. POX can support 1.0 and 1.3 versions of
OpenFlow switches. POX also provide interface for
Mininet, open source availability, and integration
with other simulators like NS3 [36].
Experimental Results.
In our emulated network following components used.

Table 2 Components of Network

Virtual end hosts 25
OVS switches 9

Packet generated per host 10000 UDP
Size of average packet 62 bytes

Better results obtained generated by 5 hosts because
of limited resources. All experiments performed
using POX controller (version 2.2).Mininet simulator
improves our work performance and competitively
better results than existing approaches ./we have used
python for scripting due to commutability of python
with POX and Mininet. Figure 2 presents comparison
between overheads of existing and new system.

Figure 2 Overhead comarison between existing and
RMF

Overhead of existing system greater due to installing
large number of alternative paths which is cause of
increase in communication between controller and
intermediate switches. Figure 3 elaborates delay
comparison of packet transmission. RMF has smaller
delay due to less involvement of controller.

Figure 3 Average packet transmission delay

In Figure 4, elaboration of flow rule installation is
shown. If length of path increased, then number of
alternative paths also increase which will be cause of
large number of flow rules installation in existing
system. In RMF/DRMF consumes less memory for
flow rules installations.

0
10000
20000
30000

1 2 3 4 5

Ti
m

e(
M

icr
o

se
co

nd
s)

Number of hosts

Path Computation
Controller Overhead

Existing RMF DRMF

0

10000

20000

1 2 3 4 5

Ti
m

e
(m

icr
os

ec
on

ds
)

Number of end host using UDP protocol

Comperitive Averge
Packet Delay

Existing RMF DRMF

In Figure 4, elaboration of flow rule installation is
shown. If length of path increased, then number of
alternative paths also increase which will be cause of
large number of flow rules installation in existing sys-
tem. In RMF/DRMF consumes less memory for flow
rules installations.

Information Technology and Control 2022/1/5114

Figure 5 illustrates the observation of flow entry en-
capsulated packet drop at switch. The reason behind
this behavior of OpenFlow switch has limited mem-
ory. These memory constraints insist on the mecha-
nism of flow rule installation wisely by considering
the forwarding devices' capacity. In this situation, our
proposed solution is relatively more suitable in the
SDN production network.

Figure 5
Switch flow entry drop percentage in case of switch
memory Overflow

Figure 6
Average delay computed at controller for installation of
computed Flow Rule Entries

Figure 7
Flow Rule Entries entertaining the production packets
according to specified action in a flow rule entry

Figure 4 Flow rules Installation

Figure 5 illustrates the observation of flow entry
encapsulated packet drop at switch. The reason
behind this behavior of OpenFlow switch has limited
memory. These memory constraints insist on the
mechanism of flow rule installation wisely by
considering the forwarding devices' capacity. In this
situation, our proposed solution is relatively more
suitable in the SDN production network.

Figure 5 Switch flow entry drop percentage in case of
switch memory Overflow

Observations regarding the average delay of flow rule
entries installation in Figure 6 conclude that as the
number of entries increases, the time of their
installation also increases proportionally. When the
controller computes the higher frequency of these
flow entries along with another application interface
then control traffic for configuration approaches to

delay. RMF and DRMF are relatively less delayed
oriented and perform configurations according to the
network policies timely.

Figure 6 Average delay computed at controller for
installation of computed Flow Rule Entries

All or selective path installation procedures in the
existing approach install the useless entries in switch
memory. Figure 7 presents the experimental results
by accessing the packets and number of bytes
entertained by flow rule entries in switches and it
has yielded that RMF and DRMF are much efficient
for said situation. The proposed approach presents
the highest percentage comparative to the existing
approaches and useful entries in switches.

Figure 7 Flow Rule Entries entertaining the
production packets according to specified action in a
flow rule entry

5. Conclusion
As we have discussed that 5G networks used to
provide high availability to end users in services

0
10
20
30
40
50

1 2 3 4 5

Fl
ow

 R
ul

e
Rn

tr
ie

s

Number of Host communicating over UDP

Comparitive Number of
Flow Entries in Switch

Existing RMF DRMF

0

20

40

60

80

100

100 200 300 400 500Pa
ck

et
 D

ro
p

Pe
rc

en
ta

ge
 a

t o
pe

n
sw

itc
h

Number of Flow Rules Entries From
Controller to Switch over TCP

Percentage of Flow
Entry Packet Drop at

Switch in Case of TCAM
overflow

Existing RMF DRMF

0

20000

40000

60000

100 200 300 400 500

Ti
m

e
(m

ic
ro

 s
ec

on
ds

)

Number of Flow Rule Installation

Average Delay for Flow
Rule Entries Installation in

Open Flow Switch

Existing RMF DRMF

0

20

40

60

80

100 200 300 400 500

Fl
ow

 R
ul

e
En

tr
ie

s U
sa

ge
 P

er
ce

nt
ag

e

Number of Flow Entries

Percentage of Useful
Flow Rule Entries in

Switch TCAM

Existing RMF DRMF

Figure 4 Flow rules Installation

Figure 5 illustrates the observation of flow entry
encapsulated packet drop at switch. The reason
behind this behavior of OpenFlow switch has limited
memory. These memory constraints insist on the
mechanism of flow rule installation wisely by
considering the forwarding devices' capacity. In this
situation, our proposed solution is relatively more
suitable in the SDN production network.

Figure 5 Switch flow entry drop percentage in case of
switch memory Overflow

Observations regarding the average delay of flow rule
entries installation in Figure 6 conclude that as the
number of entries increases, the time of their
installation also increases proportionally. When the
controller computes the higher frequency of these
flow entries along with another application interface
then control traffic for configuration approaches to

delay. RMF and DRMF are relatively less delayed
oriented and perform configurations according to the
network policies timely.

Figure 6 Average delay computed at controller for
installation of computed Flow Rule Entries

All or selective path installation procedures in the
existing approach install the useless entries in switch
memory. Figure 7 presents the experimental results
by accessing the packets and number of bytes
entertained by flow rule entries in switches and it
has yielded that RMF and DRMF are much efficient
for said situation. The proposed approach presents
the highest percentage comparative to the existing
approaches and useful entries in switches.

Figure 7 Flow Rule Entries entertaining the
production packets according to specified action in a
flow rule entry

5. Conclusion
As we have discussed that 5G networks used to
provide high availability to end users in services

0
10
20
30
40
50

1 2 3 4 5

Fl
ow

 R
ul

e
Rn

tr
ie

s

Number of Host communicating over UDP

Comparitive Number of
Flow Entries in Switch

Existing RMF DRMF

0

20

40

60

80

100

100 200 300 400 500Pa
ck

et
 D

ro
p

Pe
rc

en
ta

ge
 a

t o
pe

n
sw

itc
h

Number of Flow Rules Entries From
Controller to Switch over TCP

Percentage of Flow
Entry Packet Drop at

Switch in Case of TCAM
overflow

Existing RMF DRMF

0

20000

40000

60000

100 200 300 400 500

Ti
m

e
(m

ic
ro

 s
ec

on
ds

)

Number of Flow Rule Installation

Average Delay for Flow
Rule Entries Installation in

Open Flow Switch

Existing RMF DRMF

0

20

40

60

80

100 200 300 400 500

Fl
ow

 R
ul

e
En

tr
ie

s U
sa

ge
 P

er
ce

nt
ag

e

Number of Flow Entries

Percentage of Useful
Flow Rule Entries in

Switch TCAM

Existing RMF DRMF

Figure 4 Flow rules Installation

Figure 5 illustrates the observation of flow entry
encapsulated packet drop at switch. The reason
behind this behavior of OpenFlow switch has limited
memory. These memory constraints insist on the
mechanism of flow rule installation wisely by
considering the forwarding devices' capacity. In this
situation, our proposed solution is relatively more
suitable in the SDN production network.

Figure 5 Switch flow entry drop percentage in case of
switch memory Overflow

Observations regarding the average delay of flow rule
entries installation in Figure 6 conclude that as the
number of entries increases, the time of their
installation also increases proportionally. When the
controller computes the higher frequency of these
flow entries along with another application interface
then control traffic for configuration approaches to

delay. RMF and DRMF are relatively less delayed
oriented and perform configurations according to the
network policies timely.

Figure 6 Average delay computed at controller for
installation of computed Flow Rule Entries

All or selective path installation procedures in the
existing approach install the useless entries in switch
memory. Figure 7 presents the experimental results
by accessing the packets and number of bytes
entertained by flow rule entries in switches and it
has yielded that RMF and DRMF are much efficient
for said situation. The proposed approach presents
the highest percentage comparative to the existing
approaches and useful entries in switches.

Figure 7 Flow Rule Entries entertaining the
production packets according to specified action in a
flow rule entry

5. Conclusion
As we have discussed that 5G networks used to
provide high availability to end users in services

0
10
20
30
40
50

1 2 3 4 5
Fl

ow
 R

ul
e

Rn
tr

ie
s

Number of Host communicating over UDP

Comparitive Number of
Flow Entries in Switch

Existing RMF DRMF

0

20

40

60

80

100

100 200 300 400 500Pa
ck

et
 D

ro
p

Pe
rc

en
ta

ge
 a

t o
pe

n
sw

itc
h

Number of Flow Rules Entries From
Controller to Switch over TCP

Percentage of Flow
Entry Packet Drop at

Switch in Case of TCAM
overflow

Existing RMF DRMF

0

20000

40000

60000

100 200 300 400 500

Ti
m

e
(m

ic
ro

 s
ec

on
ds

)

Number of Flow Rule Installation

Average Delay for Flow
Rule Entries Installation in

Open Flow Switch

Existing RMF DRMF

0

20

40

60

80

100 200 300 400 500

Fl
ow

 R
ul

e
En

tr
ie

s U
sa

ge
 P

er
ce

nt
ag

e

Number of Flow Entries

Percentage of Useful
Flow Rule Entries in

Switch TCAM

Existing RMF DRMF

Observations regarding the average delay of flow rule
entries installation in Figure 6 conclude that as the
number of entries increases, the time of their instal-
lation also increases proportionally. When the con-
troller computes the higher frequency of these flow
entries along with another application interface then
control traffic for configuration approaches to delay.
RMF and DRMF are relatively less delayed oriented
and perform configurations according to the network
policies timely.
All or selective path installation procedures in the ex-
isting approach install the useless entries in switch
memory. Figure 7 presents the experimental results
by accessing the packets and number of bytes en-

Figure 4 Flow rules Installation

Figure 5 illustrates the observation of flow entry
encapsulated packet drop at switch. The reason
behind this behavior of OpenFlow switch has limited
memory. These memory constraints insist on the
mechanism of flow rule installation wisely by
considering the forwarding devices' capacity. In this
situation, our proposed solution is relatively more
suitable in the SDN production network.

Figure 5 Switch flow entry drop percentage in case of
switch memory Overflow

Observations regarding the average delay of flow rule
entries installation in Figure 6 conclude that as the
number of entries increases, the time of their
installation also increases proportionally. When the
controller computes the higher frequency of these
flow entries along with another application interface
then control traffic for configuration approaches to

delay. RMF and DRMF are relatively less delayed
oriented and perform configurations according to the
network policies timely.

Figure 6 Average delay computed at controller for
installation of computed Flow Rule Entries

All or selective path installation procedures in the
existing approach install the useless entries in switch
memory. Figure 7 presents the experimental results
by accessing the packets and number of bytes
entertained by flow rule entries in switches and it
has yielded that RMF and DRMF are much efficient
for said situation. The proposed approach presents
the highest percentage comparative to the existing
approaches and useful entries in switches.

Figure 7 Flow Rule Entries entertaining the
production packets according to specified action in a
flow rule entry

5. Conclusion
As we have discussed that 5G networks used to
provide high availability to end users in services

0
10
20
30
40
50

1 2 3 4 5

Fl
ow

 R
ul

e
Rn

tr
ie

s

Number of Host communicating over UDP

Comparitive Number of
Flow Entries in Switch

Existing RMF DRMF

0

20

40

60

80

100

100 200 300 400 500Pa
ck

et
 D

ro
p

Pe
rc

en
ta

ge
 a

t o
pe

n
sw

itc
h

Number of Flow Rules Entries From
Controller to Switch over TCP

Percentage of Flow
Entry Packet Drop at

Switch in Case of TCAM
overflow

Existing RMF DRMF

0

20000

40000

60000

100 200 300 400 500

Ti
m

e
(m

ic
ro

 s
ec

on
ds

)

Number of Flow Rule Installation

Average Delay for Flow
Rule Entries Installation in

Open Flow Switch

Existing RMF DRMF

0

20

40

60

80

100 200 300 400 500

Fl
ow

 R
ul

e
En

tr
ie

s U
sa

ge
 P

er
ce

nt
ag

e

Number of Flow Entries

Percentage of Useful
Flow Rule Entries in

Switch TCAM

Existing RMF DRMF

Figure 4 Flow rules Installation

Figure 5 illustrates the observation of flow entry
encapsulated packet drop at switch. The reason
behind this behavior of OpenFlow switch has limited
memory. These memory constraints insist on the
mechanism of flow rule installation wisely by
considering the forwarding devices' capacity. In this
situation, our proposed solution is relatively more
suitable in the SDN production network.

Figure 5 Switch flow entry drop percentage in case of
switch memory Overflow

Observations regarding the average delay of flow rule
entries installation in Figure 6 conclude that as the
number of entries increases, the time of their
installation also increases proportionally. When the
controller computes the higher frequency of these
flow entries along with another application interface
then control traffic for configuration approaches to

delay. RMF and DRMF are relatively less delayed
oriented and perform configurations according to the
network policies timely.

Figure 6 Average delay computed at controller for
installation of computed Flow Rule Entries

All or selective path installation procedures in the
existing approach install the useless entries in switch
memory. Figure 7 presents the experimental results
by accessing the packets and number of bytes
entertained by flow rule entries in switches and it
has yielded that RMF and DRMF are much efficient
for said situation. The proposed approach presents
the highest percentage comparative to the existing
approaches and useful entries in switches.

Figure 7 Flow Rule Entries entertaining the
production packets according to specified action in a
flow rule entry

5. Conclusion
As we have discussed that 5G networks used to
provide high availability to end users in services

0
10
20
30
40
50

1 2 3 4 5

Fl
ow

 R
ul

e
Rn

tr
ie

s

Number of Host communicating over UDP

Comparitive Number of
Flow Entries in Switch

Existing RMF DRMF

0

20

40

60

80

100

100 200 300 400 500Pa
ck

et
 D

ro
p

Pe
rc

en
ta

ge
 a

t o
pe

n
sw

itc
h

Number of Flow Rules Entries From
Controller to Switch over TCP

Percentage of Flow
Entry Packet Drop at

Switch in Case of TCAM
overflow

Existing RMF DRMF

0

20000

40000

60000

100 200 300 400 500

Ti
m

e
(m

ic
ro

 s
ec

on
ds

)

Number of Flow Rule Installation

Average Delay for Flow
Rule Entries Installation in

Open Flow Switch

Existing RMF DRMF

0

20

40

60

80

100 200 300 400 500

Fl
ow

 R
ul

e
En

tr
ie

s U
sa

ge
 P

er
ce

nt
ag

e

Number of Flow Entries

Percentage of Useful
Flow Rule Entries in

Switch TCAM

Existing RMF DRMF

Figure 4 Flow rules Installation

Figure 5 illustrates the observation of flow entry
encapsulated packet drop at switch. The reason
behind this behavior of OpenFlow switch has limited
memory. These memory constraints insist on the
mechanism of flow rule installation wisely by
considering the forwarding devices' capacity. In this
situation, our proposed solution is relatively more
suitable in the SDN production network.

Figure 5 Switch flow entry drop percentage in case of
switch memory Overflow

Observations regarding the average delay of flow rule
entries installation in Figure 6 conclude that as the
number of entries increases, the time of their
installation also increases proportionally. When the
controller computes the higher frequency of these
flow entries along with another application interface
then control traffic for configuration approaches to

delay. RMF and DRMF are relatively less delayed
oriented and perform configurations according to the
network policies timely.

Figure 6 Average delay computed at controller for
installation of computed Flow Rule Entries

All or selective path installation procedures in the
existing approach install the useless entries in switch
memory. Figure 7 presents the experimental results
by accessing the packets and number of bytes
entertained by flow rule entries in switches and it
has yielded that RMF and DRMF are much efficient
for said situation. The proposed approach presents
the highest percentage comparative to the existing
approaches and useful entries in switches.

Figure 7 Flow Rule Entries entertaining the
production packets according to specified action in a
flow rule entry

5. Conclusion
As we have discussed that 5G networks used to
provide high availability to end users in services

0
10
20
30
40
50

1 2 3 4 5

Fl
ow

 R
ul

e
Rn

tr
ie

s

Number of Host communicating over UDP

Comparitive Number of
Flow Entries in Switch

Existing RMF DRMF

0

20

40

60

80

100

100 200 300 400 500Pa
ck

et
 D

ro
p

Pe
rc

en
ta

ge
 a

t o
pe

n
sw

itc
h

Number of Flow Rules Entries From
Controller to Switch over TCP

Percentage of Flow
Entry Packet Drop at

Switch in Case of TCAM
overflow

Existing RMF DRMF

0

20000

40000

60000

100 200 300 400 500

Ti
m

e
(m

ic
ro

 s
ec

on
ds

)

Number of Flow Rule Installation

Average Delay for Flow
Rule Entries Installation in

Open Flow Switch

Existing RMF DRMF

0

20

40

60

80

100 200 300 400 500

Fl
ow

 R
ul

e
En

tr
ie

s U
sa

ge
 P

er
ce

nt
ag

e

Number of Flow Entries

Percentage of Useful
Flow Rule Entries in

Switch TCAM

Existing RMF DRMF

Figure 4 Flow rules Installation

Figure 5 illustrates the observation of flow entry
encapsulated packet drop at switch. The reason
behind this behavior of OpenFlow switch has limited
memory. These memory constraints insist on the
mechanism of flow rule installation wisely by
considering the forwarding devices' capacity. In this
situation, our proposed solution is relatively more
suitable in the SDN production network.

Figure 5 Switch flow entry drop percentage in case of
switch memory Overflow

Observations regarding the average delay of flow rule
entries installation in Figure 6 conclude that as the
number of entries increases, the time of their
installation also increases proportionally. When the
controller computes the higher frequency of these
flow entries along with another application interface
then control traffic for configuration approaches to

delay. RMF and DRMF are relatively less delayed
oriented and perform configurations according to the
network policies timely.

Figure 6 Average delay computed at controller for
installation of computed Flow Rule Entries

All or selective path installation procedures in the
existing approach install the useless entries in switch
memory. Figure 7 presents the experimental results
by accessing the packets and number of bytes
entertained by flow rule entries in switches and it
has yielded that RMF and DRMF are much efficient
for said situation. The proposed approach presents
the highest percentage comparative to the existing
approaches and useful entries in switches.

Figure 7 Flow Rule Entries entertaining the
production packets according to specified action in a
flow rule entry

5. Conclusion
As we have discussed that 5G networks used to
provide high availability to end users in services

0
10
20
30
40
50

1 2 3 4 5

Fl
ow

 R
ul

e
Rn

tr
ie

s

Number of Host communicating over UDP

Comparitive Number of
Flow Entries in Switch

Existing RMF DRMF

0

20

40

60

80

100

100 200 300 400 500Pa
ck

et
 D

ro
p

Pe
rc

en
ta

ge
 a

t o
pe

n
sw

itc
h

Number of Flow Rules Entries From
Controller to Switch over TCP

Percentage of Flow
Entry Packet Drop at

Switch in Case of TCAM
overflow

Existing RMF DRMF

0

20000

40000

60000

100 200 300 400 500

Ti
m

e
(m

ic
ro

 s
ec

on
ds

)

Number of Flow Rule Installation

Average Delay for Flow
Rule Entries Installation in

Open Flow Switch

Existing RMF DRMF

0

20

40

60

80

100 200 300 400 500

Fl
ow

 R
ul

e
En

tr
ie

s U
sa

ge
 P

er
ce

nt
ag

e

Number of Flow Entries

Percentage of Useful
Flow Rule Entries in

Switch TCAM

Existing RMF DRMF

Figure 4 Flow rules Installation

Figure 5 illustrates the observation of flow entry
encapsulated packet drop at switch. The reason
behind this behavior of OpenFlow switch has limited
memory. These memory constraints insist on the
mechanism of flow rule installation wisely by
considering the forwarding devices' capacity. In this
situation, our proposed solution is relatively more
suitable in the SDN production network.

Figure 5 Switch flow entry drop percentage in case of
switch memory Overflow

Observations regarding the average delay of flow rule
entries installation in Figure 6 conclude that as the
number of entries increases, the time of their
installation also increases proportionally. When the
controller computes the higher frequency of these
flow entries along with another application interface
then control traffic for configuration approaches to

delay. RMF and DRMF are relatively less delayed
oriented and perform configurations according to the
network policies timely.

Figure 6 Average delay computed at controller for
installation of computed Flow Rule Entries

All or selective path installation procedures in the
existing approach install the useless entries in switch
memory. Figure 7 presents the experimental results
by accessing the packets and number of bytes
entertained by flow rule entries in switches and it
has yielded that RMF and DRMF are much efficient
for said situation. The proposed approach presents
the highest percentage comparative to the existing
approaches and useful entries in switches.

Figure 7 Flow Rule Entries entertaining the
production packets according to specified action in a
flow rule entry

5. Conclusion
As we have discussed that 5G networks used to
provide high availability to end users in services

0
10
20
30
40
50

1 2 3 4 5

Fl
ow

 R
ul

e
Rn

tr
ie

s

Number of Host communicating over UDP

Comparitive Number of
Flow Entries in Switch

Existing RMF DRMF

0

20

40

60

80

100

100 200 300 400 500Pa
ck

et
 D

ro
p

Pe
rc

en
ta

ge
 a

t o
pe

n
sw

itc
h

Number of Flow Rules Entries From
Controller to Switch over TCP

Percentage of Flow
Entry Packet Drop at

Switch in Case of TCAM
overflow

Existing RMF DRMF

0

20000

40000

60000

100 200 300 400 500

Ti
m

e
(m

ic
ro

 s
ec

on
ds

)

Number of Flow Rule Installation

Average Delay for Flow
Rule Entries Installation in

Open Flow Switch

Existing RMF DRMF

0

20

40

60

80

100 200 300 400 500

Fl
ow

 R
ul

e
En

tr
ie

s U
sa

ge
 P

er
ce

nt
ag

e

Number of Flow Entries

Percentage of Useful
Flow Rule Entries in

Switch TCAM

Existing RMF DRMF

tertained by flow rule entries in switches and it has
yielded that RMF and DRMF are much efficient for
said situation. The proposed approach presents the
highest percentage comparative to the existing ap-
proaches and useful entries in switches.

15Information Technology and Control 2022/1/51

5. Conclusion
As we have discussed that 5G networks used to provide
high availability to end users in services lsuch as vid-
eo streaming, gaming, etc. However, different types of
network failures will be cause of a great economic loss
if services not provided with high speed and reliabili-
ty. To overcome this issue many techniques designed
for failure recovery but without using reliability fac-
tor. Thus, as shown in results existing system produce
large traffic overhead due to computation of many al-
ternative paths and latency rate increased too. SDN is
and emerging paradigm in which control plane decou-
pled by data plane. Due to this reason SDN easy to con-
trol by centralized controller (SDN Controller). In our
proposed system we have used reliability factor to and
number of alternative paths depend on this reliability.
As reliability of primary path increased number of al-
ternative paths will reduce. Therefore, traffic overhead

decreased due to less involvement of controller, low la-
tency rate in failure recovery because small number of
alternative paths will be computed for failure recovery.
After that, we have involved shortest distance factor
which improves our results as shown in results. In fu-
ture, we can improve our work by using machine learn-
ing algorithm for reliability computation and including
more factors like shortest distance. It will be beneficial
in future 5G networks.

Acknowledgment
This research was supported by a grant of the Korea
Health Technology R&D Project through the Korea
Health Industry Development Institute (KHIDI),
funded by the Ministry of Health & Welfare, Republic
of Korea (grant number: HI21C1831) and the Soon-
chunhyang University Research Fund.

References
1. Aggarwal, R. Kompella, K. Nadeau, T. Swallow, G. Bi-

directional Forwarding Detection (BFD) for MPLS
Label Switched Paths (LSPs); Internet Engineering
Task Force: Fremont, CA, USA, 2017, RFC 5884, RFC
7726.

2. Barakabitze, A., Sun, L., Mkwawa, I.-H., Ifeachor, E. A
Novel QoE-Centric SDN-based Multipath Routing Ap-
proach of Mutimedia

3. Services over 5G Networks. IEEE International Con-
ference on Communications, May, 2018, 191-209.

4. Capone, A., Cascone, C. Nguyen, A. Q. T., Sanso, B. De-
tour Planning for Fast and Reliable Failure Recovery
in SDN with OpenState. In Proceedings of the Interna-
tional Conference on Design of Reliable Communica-
tion Networks, 24-27 March, 2015, 25-32. https://doi.
org/10.1109/DRCN.2015.7148981

5. Cascone, C., Sanvito, D., Pollini, L., Capone, A., Sansò, B.
Fast Failure Detection and Recovery in SDN with State-
ful Data Plane. International Journal of Network Man-
agement, 2017, 1957. https://doi.org/10.1002/nem.1957

6. Chang, D. F., Govindan, R., Heidemann, J. The Temporal
and Topological Characteristics of BGP Path Changes
in Network Protocols. In Proceedings of the 11th IEEE
International Conference on Network Protocols, Atlan-
ta, GA, USA, 4-7 November, 2003, 190-199.

7. Chen, J., Ge, X., Zhong, Y., Li, Y. A Novel JT-CoMP
Scheme in 5G fractal Small Cell Networks. In IEEE
Wireless Communications and Networking Conference
(WCNC), 2019 April 15, 1-7. https://doi.org/10.1109/
WCNC.2019.8886024

8. Cheng, Z., Xiaoning, Z., Li, Y., Yu, S., Lin, R., He, L. Con-
gestion Aware Local Reroute for Fast Failure Recovery
in Software-Defined Networks. IEEE/OSA Journal of
Optical Communications and Networking, 2017, 9(11),
934-944. https://doi.org/10.1364/JOCN.9.000934

9. Francois, P., Bonaventure, O., Decraene, B., Coste, P.A.
Avoiding Disruptions During Maintenance Operations
on BGP Sessions. IEEE Transactions on Network and
Service Management, 2017, 221-233.

10. Huang, L. Shen, Q. Shao, W. Congestion Aware Fast
Link Failure Recovery of SDN Network Based on
Source Routing. KSII Transactions on Internet and
Information Systems, 2017, 11, 5200-5222. https://doi.
org/10.3837/tiis.2017.11.002

11. Jin, C., Lumezanu, C., Xu, Q., Zhang, Z. L., Jiang, G. Tele-
kinesis: Controlling Legacy Switch Routing with Open-
Flow in Hybrid Networks. In Proceedings of the 1st
ACM SIGCOMM Symposium on Software Defined Net-
working Research, Santa Clara, CA, USA, 17-18 June,
2015, 20. https://doi.org/10.1145/2774993.2775013

Information Technology and Control 2022/1/5116

12. Kandan, M., Valliyammai, V., Deepa, C. Switch Failure
Detection in Software-Defined Networks. Advances in
Big Data Cloud Computing, 2019, 750, 155-162. https://
doi.org/10.1007/978-981-13-1882-5_13

13. Kitsuwan, N., Payne, D. B., Ruffini, M. A Novel Pro-
tection Design for OpenFlow-based Networks. Pro-
ceedings of 16th International Conference on Trans-
parent Optical Networks, July, 2014, 1-5. https://doi.
org/10.1109/ICTON.2014.6876515

14. Kreutz, D., Ramos, P. E., Rothenberg, C. E., Azodolmolky,
S., Uhlig, S. Software-Defined Networking: A Compre-
hensive Survey. IEEE Proceedings, 2015, 103, 14-76.
https://doi.org/10.1109/JPROC.2014.2371999

15. Lee, S. S. W., Li, K. Y., Chan, K. Y., Lai, G. H., Chung, Y.
C. Software-based Fast Failure Recovery for Resilient
OpenFlow Networks. In Proceedings of 7th Interna-
tional Workshop on Reliable Networks Design and
Modeling, October 5-7, 2017, 194-200.

16. Lin, Y. D., Teng, H. Y., Hsu, C. R., Liao, C. C., Lai, Y.C. Fast
Failover and Switchover for Link Failures and Con-
gestion in Software Defined Networks. In Proceedings
of the 2016 IEEE International Conference on Com-
munications (ICC), 22-27 May, 2019, 1-6. https://doi.
org/10.1109/ICC.2016.7510886

17. Lin, Y. D., Teng, H. Y., Hsu, C. R., Liao, Y. C. Fast Failover
and Switchover for Link Failures and Congestion in
Software Defined Networks. In Communications (ICC),
IEEE International Conference on 2016, 1-6. https://
doi.org/10.1109/ICC.2016.7510886

18. Malik, A., Aziz, B., Adda, M., Ke, C. H. Smart Routing:
Towards Proactive Fault Handling of Software-De-
fined Networks. Computer Networks, 2020, 1655-1668.
https://doi.org/10.1016/j.comnet.2020.107104

19. Martínez, R. Experimental SDN Control Solutions for
Automatic Operations and Management of 5G Services
in a Fixed Mobile Converged Packet-Optical Network.
In International Conference on Optical Network De-
sign and Modeling (ONDM), 2018, 214-219. https://doi.
org/10.23919/ONDM.2018.8396133

20. Martínez, R. Integrated SDN/NFV Orchestration for
the Dynamic Deployment of Mobile Virtual Backhaul
Networks Over a Multilayer (Packet/Optical) Aggre-
gation Infrastructure. IEEE/OSA Journal of Optical
Communications and Networking, 2017, A135-A142.
https://doi.org/10.1364/JOCN.9.00A135

21. Montero, R. et al. Supporting QoE/QoS aware End-
to-End Network Slicing in Future 5G-Enabled Op-
tical Networks, Metro and Data Center Optical Net-
works and Short-Reach Links II. Int'l. Society for

Optics and Photonics, 2019, 10946, 289-305. https://doi.
org/10.1117/12.2508579

22. Nam, T. M., Phong, P. H., Khoa, T. D., Huong, T. T., Nam,
P. N., Thanh, N. H., Thang, L. X., Tuan, P. A., Loi, V. D.
Self-Organizing Map-Based Approaches In DDOS
Flooding Detection Using SDN. International Confer-
ence on Information Networking (ICOIN), IEEE, 2018,
249-254. https://doi.org/10.1109/ICOIN.2018.8343119

23. Ndiaye, M. Hancke, G. P. Abu-Mahfouz, A. M. Software
Defined Networking for Improved Wireless Sensor
Network Management: A Survey. Sensors, 2019, 5200-
5222.

24. Oliveira, T. et al. SDN-Based Architecture for Provid-
ing QoS to High Performance Distributed Applications,
Proceedings of 2018 IEEE Symposium on Computers
and Communication (ISCC), IEEE, 2018, 602-607.
https://doi.org/10.1109/ISCC.2018.8538694

25. Padma, V., Yogesh, P. Proactive Failure Recovery in
OpenFlow Based Software Defined Networking, In Pro-
ceedings of the 3rd International Conference on Signal
Processing, Communication and Networking (ICSCN),
Chennai, India, 26-28 Marchm 2017, 1-6.

26. Paramonov, A., Muthanna, A., Aboulola, O. I., Elgendy,
I. A., Alharbey, R., Tonkikh, E., Koucheryavy, A. Beyond
5G Network Architecture Study: Fractal Properties
of Access Network. Applied Sciences, 2020, 238-255.
https://doi.org/10.3390/app10207191

27. Qiu, K., Yuan, J. Zhao, J. Wang, X. Secci, S. Fu, X. Efficient
Recovery Path Computation for Fast Reroute in Large-
scale Software Defined Networks. IEEE, 2018, 37, 1755-
1768. https://doi.org/10.1109/JSAC.2019.2927098

28. Ramos, R. M. Martinello, M. Rothenberg, C. E. Slick-
Flow Resilient Source Routing in Data Center Net-
works Unlocked by OpenFlow. In Proceedings of the
38th Annual IEEE Conference on Local Computer Net-
works, October 2018, 606-613.

29. Rawat, D., Reddy, B. Software Defined Networking Ar-
chitecture, Security, and Energy Efficiency, A survey.
Environment, 2017, 3(5), 6.

30. Rezaee, M., Moghaddam, M. H. Y. SDN-Based Quali-
tyof Service Networking for Wide Area Measurement
System, IEEE Transactions of Industrial Informatics,
May, 2020, v16, 3018-3028. https://doi.org/10.1109/
TII.2019.2893865

31. Sgambelluri, A. et al. Orchestrating QoS-Based Connec-
tivity Services in a Multi-Operator Sandbox. Journal of
Optical Communications and Networking, 2019, 11(2),
A196-A208. https://doi.org/10.1364/JOCN.11.00A196

17Information Technology and Control 2022/1/51

32. Shantharama, P., LayBack, SDN Management of
Multi-Access Edge Computing (MEC) for Network
Access Services and radio Resource Sharing. IEEE Ac-
cess 6, 2018, 57545-57561. https://doi.org/10.1109/AC-
CESS.2018.2873984

33. Sharma, S. Staessens, D., Colle, D., Pickavet, M., De-
meester, P. Openflow: Meeting Carrier-Grade Recovery
Requirements. Computer Communication, 2018, 36,
656-665. https://doi.org/10.1016/j.comcom.2012.09.011

34. Siminesh, C. N., Grace, M. K. E. Ranjitha, K. A Proac-
tive Flow Admission and Re-routing Scheme for Load
Balancing and Mitigation of Congestion Propagation
in SDN Data Plane. International Journal of Computer
Networks & Communications, 2019, 314-329.

35. Soliman, M., Nandy, B. Lambadaris, I. Ashwood-Smith,
P. Exploring Source Routed Forwarding in SDN-based
WANs. In Proceedings of IEEE International Confer-
ence on Communications, June, 2018, 3070-3075.

36. Van Andrichem, N. L. M., Van Asten, B.J., Kuipers, F.A.
Fast Recovery in Software-Defined Networks. In Pro-
ceedings of the Third European Workshop on Software
Defined Networks, London, UK, 1-3September, 2019.

37. Venkatesh, K., et al. QoS Improvisation of Delay Sen-
sitive Communication Using SDN Based Multipath
Routing for Medical Applications. Future Generation
Computer Systems, 2019, 93, 256-265. https://doi.
org/10.1016/j.future.2018.10.032

38. Vissicchio, S., Vanbever, L., Pelsser, C., Cittadini, L.,
Francois, P., Bonaventure, O. Improving Network Agil-
ity with Seamless BGP Reconfigurations. IEEE/ACM
Transactions on Networking (TON), 2013, 21, 990-
1002. https://doi.org/10.1109/TNET.2012.2217506

39. Wang, D., Liu, S., Zhao, Y. A Preliminary Study on the
fractal Phenomenon Disconnected+ Disconnect-
ed= Connected. Fractals, 2017 February 27, 25(01),
1750004. https://doi.org/10.1142/S0218348X17500049

40. Yao, J., Han, Z., Sohail, M., Wang, L. A robust Security
Architecture for SDN-based 5g Networks. Future Inter-
net, 2019, 11(4), 85. https://doi.org/10.3390/fi11040085

41. Ye, J., Cheng, X., Zhu, J., Feng, L., Song, L. A DDOS At-
tack Detection Method Based on SVM in Software De-
fined Network. Security and Communication Networks,
2018, 309-324. https://doi.org/10.1155/2018/9804061

This article is an Open Access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

