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In modern networks and cloud evolution, as new nodes to internetwork growing rapidly and use of gaming and vid-
eo streaming over the network require high availability with very small latency rate. 5G networks provides much 
faster services than 4G but link failure occurrence can affect the quality of service. In 5G networks environmental 
factors also affect the efficiency of wireless signals. To overcome such type of issues, base stations are placed in 
distributed manner around urban areas when decision is required for the placement. However, in some scenarios 
we can have few similarities, as in general, highways are same. In existed systems signals distribution is performed 
homogenously, so it will be generating issues like fractal and environmental. It will be cause of great economic 
loss. However, being an emerging network paradigm, Software defined Network (SDN) is easy to manage due to 
logical separation of control plane and data plane. SDN supports numerous advantages, one of them is link ro-
bustness to avoid service unavailability. To cope with network link failures there are many mechanisms existed 
like proactive and reactive mechanisms, but these mechanisms calculate multiple paths and stored in flow tables 
without considering reliability of link. Therefore, it will be cause of high latency rate due to calculation of many 
multiple paths and increased traffic overhead too. To overcome these issues, we proposed a new approach in which 
multipath numbers depend on reliability of primary path. Number of alternative paths decreased as reliability of 
link increased it leads to less time required to calculate alternative path. In addition, traffic overhead decreases as 
compared to existing approaches. Secondly, we also integrate the shortest distance factor with reliability factor, 
and we get better results than existing approaches. Our proposed system will be helpful in increasing the availabil-
ity of services in 5G network due to low latency rate and small traffic overhead required in link failure recovery.
KEYWORDS: Software Defined Networking (SDN), OpenFlow Enabled Switches, OpenFlow, POX. 

1. Introduction
In traditional networks, control and management 
functions along with data were performed on network 
devices e.g. switches, gateways, and routers. That is 
why many problems were faced such as misconfigura-
tion, network fluctuation, etc. Mostly problems in tra-
ditional networks were due to manual configuration of 
devices, low level programming commands and no less 
involvement of operating system in it [22]. To over-
come these issues software defined network (SDN) 
introduced as a new architecture of network in which 
new manner used with separate control and manage-
ment plane at logically centralized point known as 
SDN controller [21]. Data plane of forwarding devic-
es separation improve the working of SDN controller 
due to easy control and management of network. Due 
to centralized controller, a network can efficiently con-
figure with load balancing, traffic engineering, security 
enforcement, etc. Central controller in SDN make easy 
to maintain tasks like reachability map, enforcing Ac-
cess Control List (ACL) at a single logical point [40]. 
SDN divides in three moduli. First, application plane 
in which Northbound API use to forwarding updates to 
control plane. Secondly control plan controlled the data 
plane by decision making by itself use southbound API. 
(Commonly used open flow protocol). Each device in 

a network manual register itself with SDN controller 
and regularly update the central controller by provid-
ing latest link state information. Thus, it is cleared that 
SDN controller has complete view of overall network 
and this quality makes SDN more efficient as compare 
to traditional network [23]. SDN introduced as easy 
management of network by decoupling the planes.
Application plane is also known as management 
plane because end user is controlling it by using SDN 
programming languages like Frenetic [7].This plane 
interrelate with control plane like security applica-
tion is answerable to counter attacks and load bal-
ancer is responsible for distribution of traffic among 
given links. Application plane can be customized by 
the network administrator for modifying the perfor-
mance of network. Thus, this unit makes network 
easy to program and modify by the developers [11]. In 
the control plane perform decision logic at data pack-
ets which is depend on application plane and topology 
which is used. Control plane sends the specific action 
to the centralize controller and controller apply these 
decisions on data packets. These flow rules installed 
at switch located in communication path. Network 
administrator can obtain complete view of network 
topology at centralize controller [26].
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The third module in SDN is data plane consist of 
network nodes and devices all these devices are con-
trolled by controller using protocol( like open flow) 
until packet arrived at destination point. Data plane 
provide secure communication with controller and 
memorize all pattern and corresponding actions in 
form of table. When data packet arrived, controller 
perform action on it by taking information from flow 
table. Corresponding action performed on given pack-
et where pattern matched with flow table’s pattern. In 
case no similar pattern found then switch sends idle 
message to controller through OpenFlow protocol to 
calculate the flow rule for given data packet [23]. SDN 
has many advantages as compare to traditional inter-
net protocol networks. Easy to update the policies at 
single point (i.e. controller) and quite easier for net-
work administrator to manage the whole network. In 
traditional network difficult to find failure specially 
when network consist of large number of nodes but 
in case of SDN controller has view of whole network 
and have awareness about failures that occurs in net-
work. Due to these advantages in this era SDN adopted 
by many organizations e.g. Huawei, Google, VMware 
and Microsoft [20, 30, 35]. These organizations using 
SDN parallelly with already established functional 
network. As we discussed that data plane and con-
trolled plane decoupled in SDN and it provide better 
programming capabilities, easy to manage flow of data 
packets and network virtualization, etc. [32]. All these 
advantages are admirable however, separation of data 
and control plane also cause of some difficulties. In 
which fast link failure recovery is also included be-
cause whole network is depending on SDN controller 
for failure handling, which is cause of large delay in 
between [15]. Failure recovery delay is also cause of 
packet loss and badly effect the network services.

Challenges in 5G networks
In this era, the growing usage of video streaming on-
line gaming and smart technologies are the main 
causes for development of 5G network system [1].
To overcome these challenges 5G technology intro-
duced which is providing ten times more data than 
4G network system [4]. 5G network set to provide 
the services with high availability in cost effective 
way. Different technologies such as SDN and NFV 
currently using by many cloud service provider for 
providing high throughput, Resilience and reliabili-
ty with low latency rate in 5G [24]. As we discussed 

that video streaming and gaming, etc. Are causes of 
utilization of bandwidth and delay in service avail-
ability. To overcome these issues multi path flow pro-
tocol and forwarding devices with latest technology 
for fast communication between different planes of 
SDN paradigm while it is integrated with 5G network. 
SDN paradigm works very efficiently using Multipath 
flow protocol for achieving better utilization of 5G re-
sources with high throughput with low latency.
In 5G networks many environmental factors which 
can affect the efficiency of wireless signals. To over-
come this issue radio, microwaves distributed Heter-
ogenous based on urban development and user distri-
bution territory. If decision about place of base station 
made. However, in different scenarios few similar-
ities can be occur. Because mostly developed cities, 
highways have same architecture. In existed systems 
signals distribution performed homogenously so, it 
will be generating issues like fractal and environmen-
tal [6, 38].
Besides these advantages of integration of 5G and 
SDN in large number of end users, requirement of 
high bandwidth, and reliability can be badly affect 
by link/node failure. In SDN occurrence of link fail-
ure not only in centralized point but also can be ef-
fect data plane as well. To overcome these issue 5G 
network should be able to predict/detect the failure 
occurrence either in central point or in data plane. 
To recover these failures in very small period which 
will almost negligible. In our proposed system SDN 
and 5G integrated with multipath flow protocol but 
in modified form of it. Multipath flow protocol using 
reliability of given path it will be reduce the failure re-
covery time and effectively reduced the bandwidth in 
5G network.

2. Related Work
In SDN failure recovery possible with two mecha-
nisms. Now in this section we will discuss some exist-
ing techniques and their deficiencies. 

Proactive Failure Recovery Mechanisms
FF is failure recovery mechanism which is mostly 
suitable for port failure detection and recovery. In 
group tables few actions are predefine in buckets.
Watch group detect a failure occur at any post that 
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flag down indicator then any alternative port with 
liveliness will used instead of failed one [9, 3].
In SDN by adopting Bidirectional Forwarding Detec-
tion (BDF) failure detection performed by using con-
trol messages and echo in between two nodes. Link 
current state checked by control messages and these 
messages sends to each node. Nodes can be making  
judgement for status of existing session by echo mes-
sages. In FF group less involvement of controller after 
computation of primary path. However, drawback is 
alternative paths have not predefined, so if primary 
path fails these is no alternative path for failure re-
covery.
SPIDER project is the one where researchers over-
come the problems faced in FF group. In SPIDER, 
failure recovered without communicating to control-
ler when there is no alternative path available [27]. By 
using link probing failure detected and can be resend 
with low latency without involvement of Controller. 
However, this solution is completely based on data 
plane.
It is also a proactive solution in which two flow entries 
must be installed for each switch for every incoming 
packet for its associated path.one of them is used as 
active and other one is alternative path when failure 
occurred [19]. However, it is suitable only small net-
works where number of failures in very small num-
bers and another issue is TCAM memory limitation 
which can be overflow when number of matching and 
actions increased in network.
In searching for an alternating path if congestion 
factor considered then alternative paths can be com-
puted with low packet loss rate [33]. In this technique 
back paths predefined for each primary path. Any flow 
in which failure occur it can be retransmitted by using 
alternative path. In Congestion aware techniques re-
searcher have overcome these issues like less involve-
ment of controller, Reducing flow entries, etc. Howev-
er, if alternative path calculated for each link, it will be 
cause of traffic over head [34, 28].

Challanges in Proactive Failure Recovery 
Mechanisms
1 SDN Switches available with limited number of 

flow entries. E.g. 8000 flow rules can store in State 
of art switches. Cost increased when more switch-
es required [13].

2 In large scale SDN network when number of flow 
entries increased then in flow entries matching 
process (for alternative paths) will be cause of 
greater latency rate [5].

3 Proactive approach is suitable for small scale net-
work, because when number of flow entries in-
creased then Data plane scales upward.

4 In dynamic conditions may be possible that backup 
path may be fail earlier than first configured path. 
In this case, there will be no alternative path when 
failure occurs.

Reactive Failure Recovery Mechanisms
In reactive failure recovery consists of the following 
steps.
1 Monitoring the status of network by heartbeat 

mechanism.
2 Detection of failure based on heartbeat messages.
3 Controller computation for alternative path for 

failure recovery.
4 Replacement of old entries with new flow entries 

for updating path.

Challenges in Reactive Failure Recovery 
Mechanisms
Shortest distance mechanism was proposed in [8]. In 
which priority-based flow used. A packet with high-
est priority takes minimum delay for failure recovery. 
Due to avidness of congestion this mechanism is not 
suitable for large scale SDN. Because when as size of 
network increased it will be cause in increasing com-
plexity of algorithm. This technique has not been ap-
plied on standard topology.
As number of flow operations increases then average 
failure recovery delay increased. Thus, to overcome 
this issue flow operations minimized as described in 
[37]. If alternative path selected with low cost (small 
number of flow operations) then overall failure re-
covery delay can be reduced. In described that a sin-
gle flow entry consumes 11 ms. [17]. In realistic SDN 
minimum 200 to 300 ms required to recover a failure. 
In following table, a comparative view of proactive 
and reactive failure recovery techniques.
As we have already discussed two methods of link 
failure recovery in integration of SDN with 5G. In 
these existing systems in which proactive mecha-
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nism used computation of alternative paths cause of 
overburden at centralized controller specially when 
number of nodes in data plane increased and utiliza-
tion of switch’s memory also increased. Specifically, 
when end users of 5G demands high service availabil-
ity with minimum ten times faster as compare to 4G 
[2]. In predefined mechanisms mostly researchers 
focused on how we can reduce the utilization of mem-
ory or by reducing the load at SDN controller (less 
involvement in failure recovery). However, these de-
fined mechanisms can work more efficiently if mul-
tipath flow protocol calculate different number alter-
native paths after measuring the reliability of primary 
path. Like If reliability of primary path is maximum 
then no need to compute alternate paths for this link. 
It will be creating great impact on memory consump-
tions with low latency rate because number of alter-
native paths decreases.

3. Proposed Methodology
Reliable multipath flow mechanism proposed in 
which in first step controller compute a primary path 
between sender and receiver node when sender node 
send a request to SDN controller for path computa-

Table 1 
Comparison of Proactive and reactive Approaches

Issues Proactive Reactive

Routing Tables 
Updates

Heartbeat and 
Echo messages

In data plane 
(Failure occurs)

TCAM memory High 
Consumption

Low 
Consumption

Flow operation 
Matching

High, due to 
backup paths Fewer matching

Network 
Configuration

Difficult to
backup paths

Easy to find 
backup paths

Processing 
Load on Switches

High load
(more flow rules)

Low
Overhead traffic 
on switch

Latency
Rate

Small
(predefined 
paths)

High
(Controller 
involved)

Scalability 
(large/small)

Suitable
for small

Large
networks

tion as we discussed in above section. After that Us-
ing proposed methodology calculate reliability of pri-
mary path on basis of predefined factors. Then how 
many numbers of alternate paths will be stored in for-
warding table is depend on reliability ratio. After first 
phase then we also include distance calculation and 
find the shortest path using minimum spanning tree 
or Dijkstra can be used to find shortest path. It will be 
more effective when reliability and distance both at-
tributes integrate in proposed method. Dijkstra algo-
rithm is also used for calculating shortest path.

Bootstrapping process
When an OpenFlow channel is established between 
controller and switch, Symmetric packets like Hel-
lo, Echo request, and Echo response are exchanged 
among the controller and all switches. Controller 
initiates a Feature-Request message for the switch. 
In response to said request, switch generate an asyn-
chronous message Feature-Reply for Controller [31]. 
Multiple packets are exchanged using OpenFlow 
channel which is initiated by the controller for switch 
states inspection, state modification, interface statis-
tics, flow rule statistics, and capabilities. By caching 
these response packets in the proposed methodology, 
controller maintains the network-wide view dynami-
cally and periodically [16].

Graph Composition process
Controller C in our proposed methodology has an 
application for transforming the data plane informa-
tion and attributes into weighted undirected graph 
Ĝ  . Controller periodically updates graph connectivi-
ty in the response of end node and devices discovery 
events. It also updates the nodes joining like end-us-
er and forwarding devices in data plane as vertices  
VEND_USER, links  ꝲ END_USER their attributes  ꝲ -attribute 
and VSWITCHES, links  ꝲ SWITCHES. Reliability inquired 
by controller reflects the stability of link among for-
warding devices and end-user connectivity with 
devices and proposed approach use procedural pro-
gramming fashion for its processing reliable flow rule 
installation.
Algorithm 1
Initialize undirected Graph = Ĝ
1 Procedure Activate (C (event_publisher, event_

subscriber)) ® Control functionality for getting 
data plane event and handling.
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2 Procedure Data Plane (link _event, Publisher) 
C_handler (link_event, Subscriber)  
Return devices_dictionatory (VEND_USER,    
 ꝲ END_USER [ ꝲ-attribute])

3 Procedure Data_Plane (end_user_event,  
Publisher): 
C _handler (end_user_event, Subscriber)  
Return end_user_dictionatory (VSWITCHES,   
 ꝲ SWITCHES [ ꝲ-attribute])

4 UPDATE (Ĝ {[ VEND_USER:  ꝲ  END_USER [ ꝲ-attribute]], 
VSWITCHES:  ꝲ   SWITCHES [ ꝲ-attribute]})

Primary path computation
In this phase, after the graph composition, now net-
work can start working. At First stage, flow tables will 
be empty. After that switch 1 receives a packet from 
host A. Switch s1 sending a message to SDN control-
ler for path computation after checking its own for-
warding table. If entry 

  

i. Procedure Activate (𝑪𝑪(event_publisher, 
event_subscriber))  Control functionality for 
getting data plane event and handling. 

 
ii. Procedure Data Plane (link _event, Publisher)  

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 (link_event, Subscriber) 
Return devices_dictionatory (VEND_USER,  ꝲ 
END_USER [ꝲ-attribute]) 

 
iii. Procedure Data_Plane (end_user_event, 

Publisher): 
𝑪𝑪_handler (end_user_event, Subscriber) 
Return end_user_dictionatory (VSWITCHES, ꝲ 
SWITCHES [ꝲ-attribute]) 

 
iv. UPDATE (Ĝ {[ VEND_USER:  ꝲ END_USER [ꝲ-

attribute]], VSWITCHES:  ꝲ SWITCHES [ꝲ-attribute]}) 
 
Primary path computation. 
In this phase, after the graph composition, now 
network can start working. At First stage, flow tables 
will be empty. After that switch 1 receives a packet 
from host A. Switch s1 sending a message to SDN 
controller for path computation after checking its own 
forwarding table. If entry Ϸ − ӗ  matched with 
forwarding table entries then corresponding action 
will be performed, otherwise now SDN controller 
decides whether this packet will be forwarded or not 
according to already defined network policy(Ά). 
If  Ϸ ∋ Ϸ − ӗ Permit or Deny 
else 

(1) 

Ά ∋ Ϸ  ∀ (ΆSRC, ΆDST )  ∋ (ϷSRC, ϷDST   )
  

(2) 

𝑆𝑆� = ϷSRC + ꝲ� +  ꝲ� +
ꝲ� … … … … … ..+ꝲ�  + ϷDST  
OpenFlow Command [Ϸ − ӗ →  Șω]
  
 

 
 

(3) 

Reliability Computation process. 
Controller application use periodically probe packets 
for inspection of link failure frequency within a time 
slot (10 seconds) and compute the link reliability. 
Higher the number of failures 𝜑𝜑 cause in lower the 
reliability percentage and introduce signal of flow 
rule installation for controller. 𝜑𝜑 presents the failure 
frequency between 0 and 1, where ʎ is  recovery 
constant of link for all re-channelized links in 
topology heuristically.  

Ф = (1 − 𝜑𝜑) (4) 

1 − Ф ×ʎ where ʎ=10 (5) 

    
Ф in Equation 4 presents the link aliveness time in 
stipulated 10 seconds time slot while Ф  × ʎ is 
reliability. A path 𝑆𝑆�  computed from source to 
destination is a set of all intermediate forwarding 

devices. Equations 6-7 present the path from source 
to destination along with associated aliveness time 
between source and destination and the sum of path 
aliveness time of any path.   

𝑆𝑆� = Ф� �� + Ф� �� + Ф� �� ………………. 
+Ф� �� 

 
(6) 

𝑆𝑆� = � Ф� ��

�

���
 

 

(7) 

i = {0,1,2,3 … … . . 𝑪𝑪} 
 

 
 Reliable multipath flow. 

In this phase, first primary path will be computed 
based on highest reliability which is computed in last 
phase D. All alternative paths will be calculated 
according to rules defined as follows. 

𝑆𝑆�𝑪𝑪𝑪𝑪𝑪𝑪𝑟𝑟𝑪𝑪𝑟𝑟𝑪𝑪𝑪𝑪 = ∑ Max Ф� ��
�
���        (8) 

 
i. IF  S ̂reliable> 90 %  Then no alternative path. 
ii. IF  S ̂reliable> 80 % Then 2 alternative paths. 
iii. IF  S ̂reliable> 70 % Then 3 alternative paths. 
iv. IF  S ̂reliable> 60 % Then 4 alternative paths. 
v. IF  S ̂reliable> 50 % Then 5 alternative paths. 
vi. IF  S ̂reliable< 50 % Then  all alternative paths. 

 
Disstance Based Reliable multipath flow. 
It is a modified form of multipath flow in which 
primary path calculated not only reliability based but 
shortest distance attributes also involved in it. It will 
be decreasing the latency rate better as compare to 
RMF. 
 

S� = ∑ Max Ф� Min ꝲ �
�
���    (9) 

 
    

Algorithm 2 
Input 
  (i)- (Ĝ{[ VEND_USER  : ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]] , 
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(ii)- Source_node  
(iii)- Destination_node 
 
For i , j in Zip(ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]] , VSWITCHES  :  ꝲ 
SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]) , 
 

 For  timestamp in ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]: 
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performed, otherwise now SDN controller decides 
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ing to already defined network policy(Ά).
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It is a modified form of multipath flow in which 
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shortest distance attributes also involved in it. It will 
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 ®Permit or Deny (1)

else
else 
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𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 (link_event, Subscriber) 
Return devices_dictionatory (VEND_USER,  ꝲ 
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else 

(1) 

Ά ∋ Ϸ  ∀ (ΆSRC, ΆDST )  ∋ (ϷSRC, ϷDST   )
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ꝲ� … … … … … ..+ꝲ�  + ϷDST  
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(3) 

Reliability Computation process. 
Controller application use periodically probe packets 
for inspection of link failure frequency within a time 
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Higher the number of failures 𝜑𝜑 cause in lower the 
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frequency between 0 and 1, where ʎ is  recovery 
constant of link for all re-channelized links in 
topology heuristically.  

Ф = (1 − 𝜑𝜑) (4) 

1 − Ф ×ʎ where ʎ=10 (5) 
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stipulated 10 seconds time slot while Ф  × ʎ is 
reliability. A path 𝑆𝑆�  computed from source to 
destination is a set of all intermediate forwarding 

devices. Equations 6-7 present the path from source 
to destination along with associated aliveness time 
between source and destination and the sum of path 
aliveness time of any path.   
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�

���
 

 

(7) 

i = {0,1,2,3 … … . . 𝑪𝑪} 
 

 
 Reliable multipath flow. 
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based on highest reliability which is computed in last 
phase D. All alternative paths will be calculated 
according to rules defined as follows. 
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iv. IF  S ̂reliable> 60 % Then 4 alternative paths. 
v. IF  S ̂reliable> 50 % Then 5 alternative paths. 
vi. IF  S ̂reliable< 50 % Then  all alternative paths. 

 
Disstance Based Reliable multipath flow. 
It is a modified form of multipath flow in which 
primary path calculated not only reliability based but 
shortest distance attributes also involved in it. It will 
be decreasing the latency rate better as compare to 
RMF. 
 

S� = ∑ Max Ф� Min ꝲ �
�
���    (9) 

 
    

Algorithm 2 
Input 
  (i)- (Ĝ{[ VEND_USER  : ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]] , 
VSWITCHES  :  ꝲ SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]}                
(ii)- Source_node  
(iii)- Destination_node 
 
For i , j in Zip(ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]] , VSWITCHES  :  ꝲ 
SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]) , 
 

 For  timestamp in ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]: 
 i.get(ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟][ timestamp][reliability]), 
 
 For  timestamp in ꝲ SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]: 
 j.get(ꝲ SWITCHES [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟][ timestamp][reliability]), 

 
 

 Case::1 

(3)

Reliability Computation process
Controller application use periodically probe pack-
ets for inspection of link failure frequency within a 
time slot (10 seconds) and compute the link reliability. 
Higher the number of failures φ cause in lower the reli-
ability percentage and introduce signal of flow rule in-
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based on highest reliability which is computed in last 
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according to rules defined as follows. 
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It is a modified form of multipath flow in which 
primary path calculated not only reliability based but 
shortest distance attributes also involved in it. It will 
be decreasing the latency rate better as compare to 
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i. Procedure Activate (𝑪𝑪(event_publisher, 
event_subscriber))  Control functionality for 
getting data plane event and handling. 

 
ii. Procedure Data Plane (link _event, Publisher)  
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Primary path computation. 
In this phase, after the graph composition, now 
network can start working. At First stage, flow tables 
will be empty. After that switch 1 receives a packet 
from host A. Switch s1 sending a message to SDN 
controller for path computation after checking its own 
forwarding table. If entry Ϸ − ӗ  matched with 
forwarding table entries then corresponding action 
will be performed, otherwise now SDN controller 
decides whether this packet will be forwarded or not 
according to already defined network policy(Ά). 
If  Ϸ ∋ Ϸ − ӗ Permit or Deny 
else 
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Ά ∋ Ϸ  ∀ (ΆSRC, ΆDST )  ∋ (ϷSRC, ϷDST   )
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Reliability Computation process. 
Controller application use periodically probe packets 
for inspection of link failure frequency within a time 
slot (10 seconds) and compute the link reliability. 
Higher the number of failures 𝜑𝜑 cause in lower the 
reliability percentage and introduce signal of flow 
rule installation for controller. 𝜑𝜑 presents the failure 
frequency between 0 and 1, where ʎ is  recovery 
constant of link for all re-channelized links in 

Ф = (1 − 𝜑𝜑) (4) 

1 − Ф ×ʎ where ʎ=10 (5) 

    
Ф in Equation 4 presents the link aliveness time in 
stipulated 10 seconds time slot while Ф  × ʎ is 
reliability. A path 𝑆𝑆�  computed from source to 
destination is a set of all intermediate forwarding 

devices. Equations 6-7 present the path from source 
to destination along with associated aliveness time 
between source and destination and the sum of path 
aliveness time of any path.   
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 Reliable multipath flow. 

In this phase, first primary path will be computed 
based on highest reliability which is computed in last 
phase D. All alternative paths will be calculated 
according to rules defined as follows. 

𝑆𝑆�𝑪𝑪𝑪𝑪𝑪𝑪𝑟𝑟𝑪𝑪𝑟𝑟𝑪𝑪𝑪𝑪 = ∑ Max Ф� ��
�
���        (8) 

 
i. IF  S ̂reliable> 90 %  Then no alternative path. 
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iv. IF  S ̂reliable> 60 % Then 4 alternative paths. 
v. IF  S ̂reliable> 50 % Then 5 alternative paths. 
vi. IF  S ̂reliable< 50 % Then  all alternative paths. 

 
Disstance Based Reliable multipath flow. 
It is a modified form of multipath flow in which 
primary path calculated not only reliability based but 
shortest distance attributes also involved in it. It will 
be decreasing the latency rate better as compare to 
RMF. 
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network can start working. At First stage, flow tables 
will be empty. After that switch 1 receives a packet 
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Reliability Computation process. 
Controller application use periodically probe packets 
for inspection of link failure frequency within a time 
slot (10 seconds) and compute the link reliability. 
Higher the number of failures 𝜑𝜑 cause in lower the 
reliability percentage and introduce signal of flow 
rule installation for controller. 𝜑𝜑 presents the failure 
frequency between 0 and 1, where ʎ is  recovery 
constant of link for all re-channelized links in 
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Ф in Equation 4 presents the link aliveness time in 
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destination is a set of all intermediate forwarding 
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Disstance Based Reliable multipath flow. 
It is a modified form of multipath flow in which 
primary path calculated not only reliability based but 
shortest distance attributes also involved in it. It will 
be decreasing the latency rate better as compare to 
RMF. 
 

S� = ∑ Max Ф� Min ꝲ �
�
���    (9) 

 
    

Algorithm 2 
Input 
  (i)- (Ĝ{[ VEND_USER  : ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]] , 
VSWITCHES  :  ꝲ SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]}                
(ii)- Source_node  
(iii)- Destination_node 
 
For i , j in Zip(ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]] , VSWITCHES  :  ꝲ 
SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]) , 
 

 For  timestamp in ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]: 
 i.get(ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟][ timestamp][reliability]), 
 
 For  timestamp in ꝲ SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]: 
 j.get(ꝲ SWITCHES [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟][ timestamp][reliability]), 

 
 

 Case::1 

(5)

Φ in Equation 4 presents the link aliveness time 
in stipulated 10 seconds time slot while Φ × ʎ is 
reliability. A path 

  

i. Procedure Activate (𝑪𝑪(event_publisher, 
event_subscriber))  Control functionality for 
getting data plane event and handling. 

 
ii. Procedure Data Plane (link _event, Publisher)  

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 (link_event, Subscriber) 
Return devices_dictionatory (VEND_USER,  ꝲ 
END_USER [ꝲ-attribute]) 

 
iii. Procedure Data_Plane (end_user_event, 

Publisher): 
𝑪𝑪_handler (end_user_event, Subscriber) 
Return end_user_dictionatory (VSWITCHES, ꝲ 
SWITCHES [ꝲ-attribute]) 

 
iv. UPDATE (Ĝ {[ VEND_USER:  ꝲ END_USER [ꝲ-

attribute]], VSWITCHES:  ꝲ SWITCHES [ꝲ-attribute]}) 
 
Primary path computation. 
In this phase, after the graph composition, now 
network can start working. At First stage, flow tables 
will be empty. After that switch 1 receives a packet 
from host A. Switch s1 sending a message to SDN 
controller for path computation after checking its own 
forwarding table. If entry Ϸ − ӗ  matched with 
forwarding table entries then corresponding action 
will be performed, otherwise now SDN controller 
decides whether this packet will be forwarded or not 
according to already defined network policy(Ά). 
If  Ϸ ∋ Ϸ − ӗ Permit or Deny 
else 

(1) 

Ά ∋ Ϸ  ∀ (ΆSRC, ΆDST )  ∋ (ϷSRC, ϷDST   )
  

(2) 

𝑆𝑆� = ϷSRC + ꝲ� +  ꝲ� +
ꝲ� … … … … … ..+ꝲ�  + ϷDST  
OpenFlow Command [Ϸ − ӗ →  Șω]
  
 

 
 

(3) 

Reliability Computation process. 
Controller application use periodically probe packets 
for inspection of link failure frequency within a time 
slot (10 seconds) and compute the link reliability. 
Higher the number of failures 𝜑𝜑 cause in lower the 
reliability percentage and introduce signal of flow 
rule installation for controller. 𝜑𝜑 presents the failure 
frequency between 0 and 1, where ʎ is  recovery 
constant of link for all re-channelized links in 
topology heuristically.  

Ф = (1 − 𝜑𝜑) (4) 

1 − Ф ×ʎ where ʎ=10 (5) 

    
Ф in Equation 4 presents the link aliveness time in 
stipulated 10 seconds time slot while Ф  × ʎ is 
reliability. A path 𝑆𝑆�  computed from source to 
destination is a set of all intermediate forwarding 

devices. Equations 6-7 present the path from source 
to destination along with associated aliveness time 
between source and destination and the sum of path 
aliveness time of any path.   

𝑆𝑆� = Ф� �� + Ф� �� + Ф� �� ………………. 
+Ф� �� 

 
(6) 

𝑆𝑆� = � Ф� ��

�

���
 

 

(7) 

i = {0,1,2,3 … … . . 𝑪𝑪} 
 

 
 Reliable multipath flow. 

In this phase, first primary path will be computed 
based on highest reliability which is computed in last 
phase D. All alternative paths will be calculated 
according to rules defined as follows. 

𝑆𝑆�𝑪𝑪𝑪𝑪𝑪𝑪𝑟𝑟𝑪𝑪𝑟𝑟𝑪𝑪𝑪𝑪 = ∑ Max Ф� ��
�
���        (8) 

 
i. IF  S ̂reliable> 90 %  Then no alternative path. 
ii. IF  S ̂reliable> 80 % Then 2 alternative paths. 
iii. IF  S ̂reliable> 70 % Then 3 alternative paths. 
iv. IF  S ̂reliable> 60 % Then 4 alternative paths. 
v. IF  S ̂reliable> 50 % Then 5 alternative paths. 
vi. IF  S ̂reliable< 50 % Then  all alternative paths. 

 
Disstance Based Reliable multipath flow. 
It is a modified form of multipath flow in which 
primary path calculated not only reliability based but 
shortest distance attributes also involved in it. It will 
be decreasing the latency rate better as compare to 
RMF. 
 

S� = ∑ Max Ф� Min ꝲ �
�
���    (9) 

 
    

Algorithm 2 
Input 
  (i)- (Ĝ{[ VEND_USER  : ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]] , 
VSWITCHES  :  ꝲ SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]}                
(ii)- Source_node  
(iii)- Destination_node 
 
For i , j in Zip(ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]] , VSWITCHES  :  ꝲ 
SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]) , 
 

 For  timestamp in ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]: 
 i.get(ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟][ timestamp][reliability]), 
 
 For  timestamp in ꝲ SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]: 
 j.get(ꝲ SWITCHES [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟][ timestamp][reliability]), 

 
 

 Case::1 
 computed from source to desti-

nation is a set of all intermediate forwarding devices. 
Equations 6-7 present the path from source to desti-
nation along with associated aliveness time between 
source and destination and the sum of path aliveness 
time of any path. 

  

i. Procedure Activate (𝑪𝑪(event_publisher, 
event_subscriber))  Control functionality for 
getting data plane event and handling. 

 
ii. Procedure Data Plane (link _event, Publisher)  

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 (link_event, Subscriber) 
Return devices_dictionatory (VEND_USER,  ꝲ 
END_USER [ꝲ-attribute]) 

 
iii. Procedure Data_Plane (end_user_event, 

Publisher): 
𝑪𝑪_handler (end_user_event, Subscriber) 
Return end_user_dictionatory (VSWITCHES, ꝲ 
SWITCHES [ꝲ-attribute]) 

 
iv. UPDATE (Ĝ {[ VEND_USER:  ꝲ END_USER [ꝲ-

attribute]], VSWITCHES:  ꝲ SWITCHES [ꝲ-attribute]}) 
 
Primary path computation. 
In this phase, after the graph composition, now 
network can start working. At First stage, flow tables 
will be empty. After that switch 1 receives a packet 
from host A. Switch s1 sending a message to SDN 
controller for path computation after checking its own 
forwarding table. If entry Ϸ − ӗ  matched with 
forwarding table entries then corresponding action 
will be performed, otherwise now SDN controller 
decides whether this packet will be forwarded or not 
according to already defined network policy(Ά). 
If  Ϸ ∋ Ϸ − ӗ Permit or Deny 
else 

(1) 

Ά ∋ Ϸ  ∀ (ΆSRC, ΆDST )  ∋ (ϷSRC, ϷDST   )
  

(2) 

𝑆𝑆� = ϷSRC + ꝲ� +  ꝲ� +
ꝲ� … … … … … ..+ꝲ�  + ϷDST  
OpenFlow Command [Ϸ − ӗ →  Șω]
  
 

 
 

(3) 

Reliability Computation process. 
Controller application use periodically probe packets 
for inspection of link failure frequency within a time 
slot (10 seconds) and compute the link reliability. 
Higher the number of failures 𝜑𝜑 cause in lower the 
reliability percentage and introduce signal of flow 
rule installation for controller. 𝜑𝜑 presents the failure 
frequency between 0 and 1, where ʎ is  recovery 
constant of link for all re-channelized links in 
topology heuristically.  

Ф = (1 − 𝜑𝜑) (4) 

1 − Ф ×ʎ where ʎ=10 (5) 

    
Ф in Equation 4 presents the link aliveness time in 
stipulated 10 seconds time slot while Ф  × ʎ is 
reliability. A path 𝑆𝑆�  computed from source to 
destination is a set of all intermediate forwarding 

devices. Equations 6-7 present the path from source 
to destination along with associated aliveness time 
between source and destination and the sum of path 
aliveness time of any path.   

𝑆𝑆� = Ф� �� + Ф� �� + Ф� �� ………………. 
+Ф� �� 

 
(6) 

𝑆𝑆� = � Ф� ��

�

���
 

 

(7) 

i = {0,1,2,3 … … . . 𝑪𝑪} 
 

 
 Reliable multipath flow. 

In this phase, first primary path will be computed 
based on highest reliability which is computed in last 
phase D. All alternative paths will be calculated 
according to rules defined as follows. 

𝑆𝑆�𝑪𝑪𝑪𝑪𝑪𝑪𝑟𝑟𝑪𝑪𝑟𝑟𝑪𝑪𝑪𝑪 = ∑ Max Ф� ��
�
���        (8) 

 
i. IF  S ̂reliable> 90 %  Then no alternative path. 
ii. IF  S ̂reliable> 80 % Then 2 alternative paths. 
iii. IF  S ̂reliable> 70 % Then 3 alternative paths. 
iv. IF  S ̂reliable> 60 % Then 4 alternative paths. 
v. IF  S ̂reliable> 50 % Then 5 alternative paths. 
vi. IF  S ̂reliable< 50 % Then  all alternative paths. 

 
Disstance Based Reliable multipath flow. 
It is a modified form of multipath flow in which 
primary path calculated not only reliability based but 
shortest distance attributes also involved in it. It will 
be decreasing the latency rate better as compare to 
RMF. 
 

S� = ∑ Max Ф� Min ꝲ �
�
���    (9) 

 
    

Algorithm 2 
Input 
  (i)- (Ĝ{[ VEND_USER  : ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]] , 
VSWITCHES  :  ꝲ SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]}                
(ii)- Source_node  
(iii)- Destination_node 
 
For i , j in Zip(ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]] , VSWITCHES  :  ꝲ 
SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]) , 
 

 For  timestamp in ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]: 
 i.get(ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟][ timestamp][reliability]), 
 
 For  timestamp in ꝲ SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]: 
 j.get(ꝲ SWITCHES [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟][ timestamp][reliability]), 

 
 

 Case::1 
= Φ1 ꝲ1 + Φ2 ꝲ2 + Φ3 ꝲ3  .......... Φn ꝲn

(6)

  

Algorithm 1. 
Initialize undirected Graph = Ĝ 
i. Procedure Activate (𝑪𝑪(event_publisher, 

event_subscriber))  Control functionality for 
getting data plane event and handling. 

 
ii. Procedure Data Plane (link _event, Publisher)  

𝑪𝑪_ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (link_event, Subscriber) 
Return devices_dictionatory (VEND_USER,  ꝲ 
END_USER [ꝲ-attribute]) 

 
iii. Procedure Data_Plane (end_user_event, 

Publisher): 
𝑪𝑪_handler (end_user_event, Subscriber) 
Return end_user_dictionatory (VSWITCHES, ꝲ 
SWITCHES [ꝲ-attribute]) 

 
iv. UPDATE (Ĝ {[ VEND_USER:  ꝲ END_USER [ꝲ-

attribute]], VSWITCHES:  ꝲ SWITCHES [ꝲ-attribute]}) 
 
Primary path computation. 
In this phase, after the graph composition, now 
network can start working. At First stage, flow tables 
will be empty. After that switch 1 receives a packet 
from host A. Switch s1 sending a message to SDN 
controller for path computation after checking its own 
forwarding table. If entry Ϸ � �  matched with 
forwarding table entries then corresponding action 
will be performed, otherwise now SDN controller 
decides whether this packet will be forwarded or not 
according to already defined network policy(Ά). 
If  Ϸ ∋ Ϸ � � Permit or Deny 
else 

(1) 

Ά ∋ Ϸ  ∀ (ΆSRC, ΆDST �  ∋ (ϷSRC, ϷDST   )
  

(2) 

𝑆𝑆� = ϷSRC � ꝲ� �  ꝲ� �
ꝲ� … … … … … ..+ꝲ�  � ϷDST  
OpenFlow Command [Ϸ � � �  Șω]
  
 

 
 

(3) 

Reliability Computation process. 
Controller application use periodically probe packets 
for inspection of link failure frequency within a time 
slot (10 seconds) and compute the link reliability. 
Higher the number of failures 𝜑𝜑 cause in lower the 
reliability percentage and introduce signal of flow 
rule installation for controller. 𝜑𝜑 presents the failure 
frequency between 0 and 1, where ʎ is  recovery 
constant of link for all re-channelized links in 
topology heuristically.  

Ф � �1 � 𝜑𝜑� (4) 

1 �Ф ×ʎ where ʎ=10 (5) 

    
Ф in Equation 4 presents the link aliveness time in 

stipulated 10 seconds time slot while Ф  × ʎ is 
reliability. A path 𝑆𝑆�  computed from source to 
destination is a set of all intermediate forwarding 
devices. Equations 6-7 present the path from source 
to destination along with associated aliveness time 
between source and destination and the sum of path 
aliveness time of any path.   

 

𝑆𝑆� �� Ф�  ��
�

���
 

 

(7) 

i = �0,1,2,3 … … . .𝑎𝑎� 
 

 
 Reliable multipath flow. 

In this phase, first primary path will be computed 
based on highest reliability which is computed in last 
phase D. All alternative paths will be calculated 
according to rules defined as follows. 

𝑆𝑆�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 � ∑ Max Ф�  ���
���        (8) 

 
i. IF  S r̂eliable> 90 %  Then no alternative path. 
ii. IF  S r̂eliable> 80 % Then 2 alternative paths. 
iii. IF  S r̂eliable> 70 % Then 3 alternative paths. 
iv. IF  S r̂eliable> 60 % Then 4 alternative paths. 
v. IF  S r̂eliable> 50 % Then 5 alternative paths. 
vi. IF  S r̂eliable< 50 % Then  all alternative paths. 

 
Disstance Based Reliable multipath flow. 
It is a modified form of multipath flow in which 
primary path calculated not only reliability based but 
shortest distance attributes also involved in it. It will 
be decreasing the latency rate better as compare to 
RMF. 
 

S� � ∑ Max Ф� Min ꝲ �
����    (9) 

 
    

Algorithm 2 
Input 
  (i)- (Ĝ{[ VEND_USER  : ꝲ END_USER [ꝲ_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎]] , 
VSWITCHES  :  ꝲ SWITCHES[ꝲ_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎]}                
(ii)- Source_node  
(iii)- Destination_node 
 
For i , j in Zip(ꝲ END_USER [ꝲ_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎]] , VSWITCHES  :  ꝲ 
SWITCHES[ꝲ_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎]) , 
 

 For  timestamp in ꝲ END_USER [ꝲ_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎]: 
 i.get(ꝲ END_USER [ꝲ_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎][ timestamp][reliability]), 
 
 For  timestamp in ꝲ SWITCHES[ꝲ_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎]: 
 j.get(ꝲ SWITCHES [ꝲ_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎][ timestamp][reliability]), 

 ꝲi

i = {0, 1, 2, 3……..n}

(7)

Reliable multipath flow
In this phase, first primary path will be computed 
based on highest reliability which is computed in last 
phase D. All alternative paths will be calculated ac-
cording to rules defined as follows.

  

Algorithm 1. 
Initialize undirected Graph = Ĝ 
i. Procedure Activate (𝑪𝑪(event_publisher, 

event_subscriber))  Control functionality for 
getting data plane event and handling. 

 
ii. Procedure Data Plane (link _event, Publisher)  

𝑪𝑪_ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (link_event, Subscriber) 
Return devices_dictionatory (VEND_USER,  ꝲ 
END_USER [ꝲ-attribute]) 

 
iii. Procedure Data_Plane (end_user_event, 

Publisher): 
𝑪𝑪_handler (end_user_event, Subscriber) 
Return end_user_dictionatory (VSWITCHES, ꝲ 
SWITCHES [ꝲ-attribute]) 

 
iv. UPDATE (Ĝ {[ VEND_USER:  ꝲ END_USER [ꝲ-

attribute]], VSWITCHES:  ꝲ SWITCHES [ꝲ-attribute]}) 
 
Primary path computation. 
In this phase, after the graph composition, now 
network can start working. At First stage, flow tables 
will be empty. After that switch 1 receives a packet 
from host A. Switch s1 sending a message to SDN 
controller for path computation after checking its own 
forwarding table. If entry Ϸ � �  matched with 
forwarding table entries then corresponding action 
will be performed, otherwise now SDN controller 
decides whether this packet will be forwarded or not 
according to already defined network policy(Ά). 
If  Ϸ ∋ Ϸ � � Permit or Deny 
else 

(1) 

Ά ∋ Ϸ  ∀ (ΆSRC, ΆDST �  ∋ (ϷSRC, ϷDST   )
  

(2) 

𝑆𝑆� = ϷSRC � ꝲ� �  ꝲ� �
ꝲ� … … … … … ..+ꝲ�  � ϷDST  
OpenFlow Command [Ϸ � � �  Șω]
  
 

 
 

(3) 

Reliability Computation process. 
Controller application use periodically probe packets 
for inspection of link failure frequency within a time 
slot (10 seconds) and compute the link reliability. 
Higher the number of failures 𝜑𝜑 cause in lower the 
reliability percentage and introduce signal of flow 
rule installation for controller. 𝜑𝜑 presents the failure 
frequency between 0 and 1, where ʎ is  recovery 
constant of link for all re-channelized links in 
topology heuristically.  

Ф � �1 � 𝜑𝜑� (4) 

1 �Ф ×ʎ where ʎ=10 (5) 

    
Ф in Equation 4 presents the link aliveness time in 

stipulated 10 seconds time slot while Ф  × ʎ is 
reliability. A path 𝑆𝑆�  computed from source to 
destination is a set of all intermediate forwarding 
devices. Equations 6-7 present the path from source 
to destination along with associated aliveness time 
between source and destination and the sum of path 
aliveness time of any path.   

 

𝑆𝑆� �� Ф�  ��
�

���
 

 

(7) 

i = �0,1,2,3 … … . .𝑎𝑎� 
 

 
 Reliable multipath flow. 

In this phase, first primary path will be computed 
based on highest reliability which is computed in last 

𝑆𝑆�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 � ∑ Max Ф�  ���
���        (8) 

 
i. IF  S r̂eliable> 90 %  Then no alternative path. 
ii. IF  S r̂eliable> 80 % Then 2 alternative paths. 
iii. IF  S r̂eliable> 70 % Then 3 alternative paths. 
iv. IF  S r̂eliable> 60 % Then 4 alternative paths. 
v. IF  S r̂eliable> 50 % Then 5 alternative paths. 
vi. IF  S r̂eliable< 50 % Then  all alternative paths. 

 
Disstance Based Reliable multipath flow. 
It is a modified form of multipath flow in which 
primary path calculated not only reliability based but 
shortest distance attributes also involved in it. It will 
be decreasing the latency rate better as compare to 
RMF. 
 

S� � ∑ Max Ф� Min ꝲ �
����    (9) 

 
    

Algorithm 2 
Input 
  (i)- (Ĝ{[ VEND_USER  : ꝲ END_USER [ꝲ_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎]] , 
VSWITCHES  :  ꝲ SWITCHES[ꝲ_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎]}                
(ii)- Source_node  
(iii)- Destination_node 
 
For i , j in Zip(ꝲ END_USER [ꝲ_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎]] , VSWITCHES  :  ꝲ 
SWITCHES[ꝲ_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎]) , 
 

 For  timestamp in ꝲ END_USER [ꝲ_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎]: 
 i.get(ꝲ END_USER [ꝲ_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎][ timestamp][reliability]), 
 
 For  timestamp in ꝲ SWITCHES[ꝲ_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎]: 
 j.get(ꝲ SWITCHES [ꝲ_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎][ timestamp][reliability]), 

 ꝲi (8)

1 IF  

  

i. Procedure Activate (𝑪𝑪(event_publisher, 
event_subscriber))  Control functionality for 
getting data plane event and handling. 

 
ii. Procedure Data Plane (link _event, Publisher)  

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 (link_event, Subscriber) 
Return devices_dictionatory (VEND_USER,  ꝲ 
END_USER [ꝲ-attribute]) 

 
iii. Procedure Data_Plane (end_user_event, 

Publisher): 
𝑪𝑪_handler (end_user_event, Subscriber) 
Return end_user_dictionatory (VSWITCHES, ꝲ 
SWITCHES [ꝲ-attribute]) 

 
iv. UPDATE (Ĝ {[ VEND_USER:  ꝲ END_USER [ꝲ-

attribute]], VSWITCHES:  ꝲ SWITCHES [ꝲ-attribute]}) 
 
Primary path computation. 
In this phase, after the graph composition, now 
network can start working. At First stage, flow tables 
will be empty. After that switch 1 receives a packet 
from host A. Switch s1 sending a message to SDN 
controller for path computation after checking its own 
forwarding table. If entry Ϸ − ӗ  matched with 
forwarding table entries then corresponding action 
will be performed, otherwise now SDN controller 
decides whether this packet will be forwarded or not 
according to already defined network policy(Ά). 
If  Ϸ ∋ Ϸ − ӗ Permit or Deny 
else 

(1) 

Ά ∋ Ϸ  ∀ (ΆSRC, ΆDST )  ∋ (ϷSRC, ϷDST   )
  

(2) 

𝑆𝑆� = ϷSRC + ꝲ� +  ꝲ� +
ꝲ� … … … … … ..+ꝲ�  + ϷDST  
OpenFlow Command [Ϸ − ӗ →  Șω]
  
 

 
 

(3) 

Reliability Computation process. 
Controller application use periodically probe packets 
for inspection of link failure frequency within a time 
slot (10 seconds) and compute the link reliability. 
Higher the number of failures 𝜑𝜑 cause in lower the 
reliability percentage and introduce signal of flow 
rule installation for controller. 𝜑𝜑 presents the failure 
frequency between 0 and 1, where ʎ is  recovery 
constant of link for all re-channelized links in 
topology heuristically.  

Ф = (1 − 𝜑𝜑) (4) 

1 − Ф ×ʎ where ʎ=10 (5) 

    
Ф in Equation 4 presents the link aliveness time in 
stipulated 10 seconds time slot while Ф  × ʎ is 
reliability. A path 𝑆𝑆�  computed from source to 
destination is a set of all intermediate forwarding 

devices. Equations 6-7 present the path from source 
to destination along with associated aliveness time 
between source and destination and the sum of path 
aliveness time of any path.   

𝑆𝑆� = Ф� �� + Ф� �� + Ф� �� ………………. 
+Ф� �� 

 
(6) 

𝑆𝑆� = � Ф� ��

�

���
 

 

(7) 

i = {0,1,2,3 … … . . 𝑪𝑪} 
 

 
 Reliable multipath flow. 

In this phase, first primary path will be computed 
based on highest reliability which is computed in last 
phase D. All alternative paths will be calculated 
according to rules defined as follows. 

𝑆𝑆�𝑪𝑪𝑪𝑪𝑪𝑪𝑟𝑟𝑪𝑪𝑟𝑟𝑪𝑪𝑪𝑪 = ∑ Max Ф� ��
�
���        (8) 

 
i. IF  S ̂reliable> 90 %  Then no alternative path. 
ii. IF  S ̂reliable> 80 % Then 2 alternative paths. 
iii. IF  S ̂reliable> 70 % Then 3 alternative paths. 
iv. IF  S ̂reliable> 60 % Then 4 alternative paths. 
v. IF  S ̂reliable> 50 % Then 5 alternative paths. 
vi. IF  S ̂reliable< 50 % Then  all alternative paths. 

 
Disstance Based Reliable multipath flow. 
It is a modified form of multipath flow in which 
primary path calculated not only reliability based but 
shortest distance attributes also involved in it. It will 
be decreasing the latency rate better as compare to 
RMF. 
 

S� = ∑ Max Ф� Min ꝲ �
�
���    (9) 

 
    

Algorithm 2 
Input 
  (i)- (Ĝ{[ VEND_USER  : ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]] , 
VSWITCHES  :  ꝲ SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]}                
(ii)- Source_node  
(iii)- Destination_node 
 
For i , j in Zip(ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]] , VSWITCHES  :  ꝲ 
SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]) , 
 

 For  timestamp in ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]: 
 i.get(ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟][ timestamp][reliability]), 
 
 For  timestamp in ꝲ SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]: 
 j.get(ꝲ SWITCHES [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟][ timestamp][reliability]), 

 
 

 Case::1 
reliable> 90 %  Then no alternative path.

2 IF  

  

i. Procedure Activate (𝑪𝑪(event_publisher, 
event_subscriber))  Control functionality for 
getting data plane event and handling. 

 
ii. Procedure Data Plane (link _event, Publisher)  

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 (link_event, Subscriber) 
Return devices_dictionatory (VEND_USER,  ꝲ 
END_USER [ꝲ-attribute]) 

 
iii. Procedure Data_Plane (end_user_event, 

Publisher): 
𝑪𝑪_handler (end_user_event, Subscriber) 
Return end_user_dictionatory (VSWITCHES, ꝲ 
SWITCHES [ꝲ-attribute]) 

 
iv. UPDATE (Ĝ {[ VEND_USER:  ꝲ END_USER [ꝲ-

attribute]], VSWITCHES:  ꝲ SWITCHES [ꝲ-attribute]}) 
 
Primary path computation. 
In this phase, after the graph composition, now 
network can start working. At First stage, flow tables 
will be empty. After that switch 1 receives a packet 
from host A. Switch s1 sending a message to SDN 
controller for path computation after checking its own 
forwarding table. If entry Ϸ − ӗ  matched with 
forwarding table entries then corresponding action 
will be performed, otherwise now SDN controller 
decides whether this packet will be forwarded or not 
according to already defined network policy(Ά). 
If  Ϸ ∋ Ϸ − ӗ Permit or Deny 
else 

(1) 

Ά ∋ Ϸ  ∀ (ΆSRC, ΆDST )  ∋ (ϷSRC, ϷDST   )
  

(2) 

𝑆𝑆� = ϷSRC + ꝲ� +  ꝲ� +
ꝲ� … … … … … ..+ꝲ�  + ϷDST  
OpenFlow Command [Ϸ − ӗ →  Șω]
  
 

 
 

(3) 

Reliability Computation process. 
Controller application use periodically probe packets 
for inspection of link failure frequency within a time 
slot (10 seconds) and compute the link reliability. 
Higher the number of failures 𝜑𝜑 cause in lower the 
reliability percentage and introduce signal of flow 
rule installation for controller. 𝜑𝜑 presents the failure 
frequency between 0 and 1, where ʎ is  recovery 
constant of link for all re-channelized links in 
topology heuristically.  

Ф = (1 − 𝜑𝜑) (4) 

1 − Ф ×ʎ where ʎ=10 (5) 

    
Ф in Equation 4 presents the link aliveness time in 
stipulated 10 seconds time slot while Ф  × ʎ is 
reliability. A path 𝑆𝑆�  computed from source to 
destination is a set of all intermediate forwarding 

devices. Equations 6-7 present the path from source 
to destination along with associated aliveness time 
between source and destination and the sum of path 
aliveness time of any path.   

𝑆𝑆� = Ф� �� + Ф� �� + Ф� �� ………………. 
+Ф� �� 

 
(6) 

𝑆𝑆� = � Ф� ��

�

���
 

 

(7) 

i = {0,1,2,3 … … . . 𝑪𝑪} 
 

 
 Reliable multipath flow. 

In this phase, first primary path will be computed 
based on highest reliability which is computed in last 
phase D. All alternative paths will be calculated 
according to rules defined as follows. 

𝑆𝑆�𝑪𝑪𝑪𝑪𝑪𝑪𝑟𝑟𝑪𝑪𝑟𝑟𝑪𝑪𝑪𝑪 = ∑ Max Ф� ��
�
���        (8) 

 
i. IF  S ̂reliable> 90 %  Then no alternative path. 
ii. IF  S ̂reliable> 80 % Then 2 alternative paths. 
iii. IF  S ̂reliable> 70 % Then 3 alternative paths. 
iv. IF  S ̂reliable> 60 % Then 4 alternative paths. 
v. IF  S ̂reliable> 50 % Then 5 alternative paths. 
vi. IF  S ̂reliable< 50 % Then  all alternative paths. 

 
Disstance Based Reliable multipath flow. 
It is a modified form of multipath flow in which 
primary path calculated not only reliability based but 
shortest distance attributes also involved in it. It will 
be decreasing the latency rate better as compare to 
RMF. 
 

S� = ∑ Max Ф� Min ꝲ �
�
���    (9) 

 
    

Algorithm 2 
Input 
  (i)- (Ĝ{[ VEND_USER  : ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]] , 
VSWITCHES  :  ꝲ SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]}                
(ii)- Source_node  
(iii)- Destination_node 
 
For i , j in Zip(ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]] , VSWITCHES  :  ꝲ 
SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]) , 
 

 For  timestamp in ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]: 
 i.get(ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟][ timestamp][reliability]), 
 
 For  timestamp in ꝲ SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]: 
 j.get(ꝲ SWITCHES [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟][ timestamp][reliability]), 

 
 

 Case::1 
reliable> 80 % Then 2 alternative paths.

3 IF  

  

i. Procedure Activate (𝑪𝑪(event_publisher, 
event_subscriber))  Control functionality for 
getting data plane event and handling. 

 
ii. Procedure Data Plane (link _event, Publisher)  

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 (link_event, Subscriber) 
Return devices_dictionatory (VEND_USER,  ꝲ 
END_USER [ꝲ-attribute]) 

 
iii. Procedure Data_Plane (end_user_event, 

Publisher): 
𝑪𝑪_handler (end_user_event, Subscriber) 
Return end_user_dictionatory (VSWITCHES, ꝲ 
SWITCHES [ꝲ-attribute]) 

 
iv. UPDATE (Ĝ {[ VEND_USER:  ꝲ END_USER [ꝲ-

attribute]], VSWITCHES:  ꝲ SWITCHES [ꝲ-attribute]}) 
 
Primary path computation. 
In this phase, after the graph composition, now 
network can start working. At First stage, flow tables 
will be empty. After that switch 1 receives a packet 
from host A. Switch s1 sending a message to SDN 
controller for path computation after checking its own 
forwarding table. If entry Ϸ − ӗ  matched with 
forwarding table entries then corresponding action 
will be performed, otherwise now SDN controller 
decides whether this packet will be forwarded or not 
according to already defined network policy(Ά). 
If  Ϸ ∋ Ϸ − ӗ Permit or Deny 
else 

(1) 

Ά ∋ Ϸ  ∀ (ΆSRC, ΆDST )  ∋ (ϷSRC, ϷDST   )
  

(2) 

𝑆𝑆� = ϷSRC + ꝲ� +  ꝲ� +
ꝲ� … … … … … ..+ꝲ�  + ϷDST  
OpenFlow Command [Ϸ − ӗ →  Șω]
  
 

 
 

(3) 

Reliability Computation process. 
Controller application use periodically probe packets 
for inspection of link failure frequency within a time 
slot (10 seconds) and compute the link reliability. 
Higher the number of failures 𝜑𝜑 cause in lower the 
reliability percentage and introduce signal of flow 
rule installation for controller. 𝜑𝜑 presents the failure 
frequency between 0 and 1, where ʎ is  recovery 
constant of link for all re-channelized links in 
topology heuristically.  

Ф = (1 − 𝜑𝜑) (4) 

1 − Ф ×ʎ where ʎ=10 (5) 

    
Ф in Equation 4 presents the link aliveness time in 
stipulated 10 seconds time slot while Ф  × ʎ is 
reliability. A path 𝑆𝑆�  computed from source to 
destination is a set of all intermediate forwarding 

devices. Equations 6-7 present the path from source 
to destination along with associated aliveness time 
between source and destination and the sum of path 
aliveness time of any path.   

𝑆𝑆� = Ф� �� + Ф� �� + Ф� �� ………………. 
+Ф� �� 

 
(6) 

𝑆𝑆� = � Ф� ��

�

���
 

 

(7) 

i = {0,1,2,3 … … . . 𝑪𝑪} 
 

 
 Reliable multipath flow. 

In this phase, first primary path will be computed 
based on highest reliability which is computed in last 
phase D. All alternative paths will be calculated 
according to rules defined as follows. 

𝑆𝑆�𝑪𝑪𝑪𝑪𝑪𝑪𝑟𝑟𝑪𝑪𝑟𝑟𝑪𝑪𝑪𝑪 = ∑ Max Ф� ��
�
���        (8) 

 
i. IF  S ̂reliable> 90 %  Then no alternative path. 
ii. IF  S ̂reliable> 80 % Then 2 alternative paths. 
iii. IF  S ̂reliable> 70 % Then 3 alternative paths. 
iv. IF  S ̂reliable> 60 % Then 4 alternative paths. 
v. IF  S ̂reliable> 50 % Then 5 alternative paths. 
vi. IF  S ̂reliable< 50 % Then  all alternative paths. 

 
Disstance Based Reliable multipath flow. 
It is a modified form of multipath flow in which 
primary path calculated not only reliability based but 
shortest distance attributes also involved in it. It will 
be decreasing the latency rate better as compare to 
RMF. 
 

S� = ∑ Max Ф� Min ꝲ �
�
���    (9) 

 
    

Algorithm 2 
Input 
  (i)- (Ĝ{[ VEND_USER  : ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]] , 
VSWITCHES  :  ꝲ SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]}                
(ii)- Source_node  
(iii)- Destination_node 
 
For i , j in Zip(ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]] , VSWITCHES  :  ꝲ 
SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]) , 
 

 For  timestamp in ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]: 
 i.get(ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟][ timestamp][reliability]), 
 
 For  timestamp in ꝲ SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]: 
 j.get(ꝲ SWITCHES [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟][ timestamp][reliability]), 

 
 

 Case::1 
reliable> 70 % Then 3 alternative paths.

4 IF  

  

i. Procedure Activate (𝑪𝑪(event_publisher, 
event_subscriber))  Control functionality for 
getting data plane event and handling. 

 
ii. Procedure Data Plane (link _event, Publisher)  

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 (link_event, Subscriber) 
Return devices_dictionatory (VEND_USER,  ꝲ 
END_USER [ꝲ-attribute]) 

 
iii. Procedure Data_Plane (end_user_event, 

Publisher): 
𝑪𝑪_handler (end_user_event, Subscriber) 
Return end_user_dictionatory (VSWITCHES, ꝲ 
SWITCHES [ꝲ-attribute]) 

 
iv. UPDATE (Ĝ {[ VEND_USER:  ꝲ END_USER [ꝲ-

attribute]], VSWITCHES:  ꝲ SWITCHES [ꝲ-attribute]}) 
 
Primary path computation. 
In this phase, after the graph composition, now 
network can start working. At First stage, flow tables 
will be empty. After that switch 1 receives a packet 
from host A. Switch s1 sending a message to SDN 
controller for path computation after checking its own 
forwarding table. If entry Ϸ − ӗ  matched with 
forwarding table entries then corresponding action 
will be performed, otherwise now SDN controller 
decides whether this packet will be forwarded or not 
according to already defined network policy(Ά). 
If  Ϸ ∋ Ϸ − ӗ Permit or Deny 
else 

(1) 

Ά ∋ Ϸ  ∀ (ΆSRC, ΆDST )  ∋ (ϷSRC, ϷDST   )
  

(2) 

𝑆𝑆� = ϷSRC + ꝲ� +  ꝲ� +
ꝲ� … … … … … ..+ꝲ�  + ϷDST  
OpenFlow Command [Ϸ − ӗ →  Șω]
  
 

 
 

(3) 

Reliability Computation process. 
Controller application use periodically probe packets 
for inspection of link failure frequency within a time 
slot (10 seconds) and compute the link reliability. 
Higher the number of failures 𝜑𝜑 cause in lower the 
reliability percentage and introduce signal of flow 
rule installation for controller. 𝜑𝜑 presents the failure 
frequency between 0 and 1, where ʎ is  recovery 
constant of link for all re-channelized links in 
topology heuristically.  

Ф = (1 − 𝜑𝜑) (4) 

1 − Ф ×ʎ where ʎ=10 (5) 

    
Ф in Equation 4 presents the link aliveness time in 
stipulated 10 seconds time slot while Ф  × ʎ is 
reliability. A path 𝑆𝑆�  computed from source to 
destination is a set of all intermediate forwarding 

devices. Equations 6-7 present the path from source 
to destination along with associated aliveness time 
between source and destination and the sum of path 
aliveness time of any path.   

𝑆𝑆� = Ф� �� + Ф� �� + Ф� �� ………………. 
+Ф� �� 

 
(6) 

𝑆𝑆� = � Ф� ��

�

���
 

 

(7) 

i = {0,1,2,3 … … . . 𝑪𝑪} 
 

 
 Reliable multipath flow. 

In this phase, first primary path will be computed 
based on highest reliability which is computed in last 
phase D. All alternative paths will be calculated 
according to rules defined as follows. 

𝑆𝑆�𝑪𝑪𝑪𝑪𝑪𝑪𝑟𝑟𝑪𝑪𝑟𝑟𝑪𝑪𝑪𝑪 = ∑ Max Ф� ��
�
���        (8) 

 
i. IF  S ̂reliable> 90 %  Then no alternative path. 
ii. IF  S ̂reliable> 80 % Then 2 alternative paths. 
iii. IF  S ̂reliable> 70 % Then 3 alternative paths. 
iv. IF  S ̂reliable> 60 % Then 4 alternative paths. 
v. IF  S ̂reliable> 50 % Then 5 alternative paths. 
vi. IF  S ̂reliable< 50 % Then  all alternative paths. 

 
Disstance Based Reliable multipath flow. 
It is a modified form of multipath flow in which 
primary path calculated not only reliability based but 
shortest distance attributes also involved in it. It will 
be decreasing the latency rate better as compare to 
RMF. 
 

S� = ∑ Max Ф� Min ꝲ �
�
���    (9) 

 
    

Algorithm 2 
Input 
  (i)- (Ĝ{[ VEND_USER  : ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]] , 
VSWITCHES  :  ꝲ SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]}                
(ii)- Source_node  
(iii)- Destination_node 
 
For i , j in Zip(ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]] , VSWITCHES  :  ꝲ 
SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]) , 
 

 For  timestamp in ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]: 
 i.get(ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟][ timestamp][reliability]), 
 
 For  timestamp in ꝲ SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]: 
 j.get(ꝲ SWITCHES [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟][ timestamp][reliability]), 

 
 

 Case::1 
reliable> 60 % Then 4 alternative paths.

5 IF  

  

i. Procedure Activate (𝑪𝑪(event_publisher, 
event_subscriber))  Control functionality for 
getting data plane event and handling. 

 
ii. Procedure Data Plane (link _event, Publisher)  

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 (link_event, Subscriber) 
Return devices_dictionatory (VEND_USER,  ꝲ 
END_USER [ꝲ-attribute]) 

 
iii. Procedure Data_Plane (end_user_event, 

Publisher): 
𝑪𝑪_handler (end_user_event, Subscriber) 
Return end_user_dictionatory (VSWITCHES, ꝲ 
SWITCHES [ꝲ-attribute]) 

 
iv. UPDATE (Ĝ {[ VEND_USER:  ꝲ END_USER [ꝲ-

attribute]], VSWITCHES:  ꝲ SWITCHES [ꝲ-attribute]}) 
 
Primary path computation. 
In this phase, after the graph composition, now 
network can start working. At First stage, flow tables 
will be empty. After that switch 1 receives a packet 
from host A. Switch s1 sending a message to SDN 
controller for path computation after checking its own 
forwarding table. If entry Ϸ − ӗ  matched with 
forwarding table entries then corresponding action 
will be performed, otherwise now SDN controller 
decides whether this packet will be forwarded or not 
according to already defined network policy(Ά). 
If  Ϸ ∋ Ϸ − ӗ Permit or Deny 
else 

(1) 

Ά ∋ Ϸ  ∀ (ΆSRC, ΆDST )  ∋ (ϷSRC, ϷDST   )
  

(2) 

𝑆𝑆� = ϷSRC + ꝲ� +  ꝲ� +
ꝲ� … … … … … ..+ꝲ�  + ϷDST  
OpenFlow Command [Ϸ − ӗ →  Șω]
  
 

 
 

(3) 

Reliability Computation process. 
Controller application use periodically probe packets 
for inspection of link failure frequency within a time 
slot (10 seconds) and compute the link reliability. 
Higher the number of failures 𝜑𝜑 cause in lower the 
reliability percentage and introduce signal of flow 
rule installation for controller. 𝜑𝜑 presents the failure 
frequency between 0 and 1, where ʎ is  recovery 
constant of link for all re-channelized links in 
topology heuristically.  

Ф = (1 − 𝜑𝜑) (4) 

1 − Ф ×ʎ where ʎ=10 (5) 

    
Ф in Equation 4 presents the link aliveness time in 
stipulated 10 seconds time slot while Ф  × ʎ is 
reliability. A path 𝑆𝑆�  computed from source to 
destination is a set of all intermediate forwarding 

devices. Equations 6-7 present the path from source 
to destination along with associated aliveness time 
between source and destination and the sum of path 
aliveness time of any path.   

𝑆𝑆� = Ф� �� + Ф� �� + Ф� �� ………………. 
+Ф� �� 

 
(6) 

𝑆𝑆� = � Ф� ��

�

���
 

 

(7) 

i = {0,1,2,3 … … . . 𝑪𝑪} 
 

 
 Reliable multipath flow. 

In this phase, first primary path will be computed 
based on highest reliability which is computed in last 
phase D. All alternative paths will be calculated 
according to rules defined as follows. 

𝑆𝑆�𝑪𝑪𝑪𝑪𝑪𝑪𝑟𝑟𝑪𝑪𝑟𝑟𝑪𝑪𝑪𝑪 = ∑ Max Ф� ��
�
���        (8) 

 
i. IF  S ̂reliable> 90 %  Then no alternative path. 
ii. IF  S ̂reliable> 80 % Then 2 alternative paths. 
iii. IF  S ̂reliable> 70 % Then 3 alternative paths. 
iv. IF  S ̂reliable> 60 % Then 4 alternative paths. 
v. IF  S ̂reliable> 50 % Then 5 alternative paths. 
vi. IF  S ̂reliable< 50 % Then  all alternative paths. 

 
Disstance Based Reliable multipath flow. 
It is a modified form of multipath flow in which 
primary path calculated not only reliability based but 
shortest distance attributes also involved in it. It will 
be decreasing the latency rate better as compare to 
RMF. 
 

S� = ∑ Max Ф� Min ꝲ �
�
���    (9) 

 
    

Algorithm 2 
Input 
  (i)- (Ĝ{[ VEND_USER  : ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]] , 
VSWITCHES  :  ꝲ SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]}                
(ii)- Source_node  
(iii)- Destination_node 
 
For i , j in Zip(ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]] , VSWITCHES  :  ꝲ 
SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]) , 
 

 For  timestamp in ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]: 
 i.get(ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟][ timestamp][reliability]), 
 
 For  timestamp in ꝲ SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]: 
 j.get(ꝲ SWITCHES [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟][ timestamp][reliability]), 

 
 

 Case::1 
reliable> 50 % Then 5 alternative paths.

6 IF  

  

i. Procedure Activate (𝑪𝑪(event_publisher, 
event_subscriber))  Control functionality for 
getting data plane event and handling. 

 
ii. Procedure Data Plane (link _event, Publisher)  

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 (link_event, Subscriber) 
Return devices_dictionatory (VEND_USER,  ꝲ 
END_USER [ꝲ-attribute]) 

 
iii. Procedure Data_Plane (end_user_event, 

Publisher): 
𝑪𝑪_handler (end_user_event, Subscriber) 
Return end_user_dictionatory (VSWITCHES, ꝲ 
SWITCHES [ꝲ-attribute]) 

 
iv. UPDATE (Ĝ {[ VEND_USER:  ꝲ END_USER [ꝲ-

attribute]], VSWITCHES:  ꝲ SWITCHES [ꝲ-attribute]}) 
 
Primary path computation. 
In this phase, after the graph composition, now 
network can start working. At First stage, flow tables 
will be empty. After that switch 1 receives a packet 
from host A. Switch s1 sending a message to SDN 
controller for path computation after checking its own 
forwarding table. If entry Ϸ − ӗ  matched with 
forwarding table entries then corresponding action 
will be performed, otherwise now SDN controller 
decides whether this packet will be forwarded or not 
according to already defined network policy(Ά). 
If  Ϸ ∋ Ϸ − ӗ Permit or Deny 
else 

(1) 

Ά ∋ Ϸ  ∀ (ΆSRC, ΆDST )  ∋ (ϷSRC, ϷDST   )
  

(2) 

𝑆𝑆� = ϷSRC + ꝲ� +  ꝲ� +
ꝲ� … … … … … ..+ꝲ�  + ϷDST  
OpenFlow Command [Ϸ − ӗ →  Șω]
  
 

 
 

(3) 

Reliability Computation process. 
Controller application use periodically probe packets 
for inspection of link failure frequency within a time 
slot (10 seconds) and compute the link reliability. 
Higher the number of failures 𝜑𝜑 cause in lower the 
reliability percentage and introduce signal of flow 
rule installation for controller. 𝜑𝜑 presents the failure 
frequency between 0 and 1, where ʎ is  recovery 
constant of link for all re-channelized links in 
topology heuristically.  

Ф = (1 − 𝜑𝜑) (4) 

1 − Ф ×ʎ where ʎ=10 (5) 

    
Ф in Equation 4 presents the link aliveness time in 
stipulated 10 seconds time slot while Ф  × ʎ is 
reliability. A path 𝑆𝑆�  computed from source to 
destination is a set of all intermediate forwarding 

devices. Equations 6-7 present the path from source 
to destination along with associated aliveness time 
between source and destination and the sum of path 
aliveness time of any path.   

𝑆𝑆� = Ф� �� + Ф� �� + Ф� �� ………………. 
+Ф� �� 

 
(6) 

𝑆𝑆� = � Ф� ��

�

���
 

 

(7) 

i = {0,1,2,3 … … . . 𝑪𝑪} 
 

 
 Reliable multipath flow. 

In this phase, first primary path will be computed 
based on highest reliability which is computed in last 
phase D. All alternative paths will be calculated 
according to rules defined as follows. 

𝑆𝑆�𝑪𝑪𝑪𝑪𝑪𝑪𝑟𝑟𝑪𝑪𝑟𝑟𝑪𝑪𝑪𝑪 = ∑ Max Ф� ��
�
���        (8) 

 
i. IF  S ̂reliable> 90 %  Then no alternative path. 
ii. IF  S ̂reliable> 80 % Then 2 alternative paths. 
iii. IF  S ̂reliable> 70 % Then 3 alternative paths. 
iv. IF  S ̂reliable> 60 % Then 4 alternative paths. 
v. IF  S ̂reliable> 50 % Then 5 alternative paths. 
vi. IF  S ̂reliable< 50 % Then  all alternative paths. 

 
Disstance Based Reliable multipath flow. 
It is a modified form of multipath flow in which 
primary path calculated not only reliability based but 
shortest distance attributes also involved in it. It will 
be decreasing the latency rate better as compare to 
RMF. 
 

S� = ∑ Max Ф� Min ꝲ �
�
���    (9) 

 
    

Algorithm 2 
Input 
  (i)- (Ĝ{[ VEND_USER  : ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]] , 
VSWITCHES  :  ꝲ SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]}                
(ii)- Source_node  
(iii)- Destination_node 
 
For i , j in Zip(ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]] , VSWITCHES  :  ꝲ 
SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]) , 
 

 For  timestamp in ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]: 
 i.get(ꝲ END_USER [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟][ timestamp][reliability]), 
 
 For  timestamp in ꝲ SWITCHES[ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟]: 
 j.get(ꝲ SWITCHES [ꝲ𝑪𝑪𝑪𝑎𝑎𝑎𝑎𝑪𝑪𝑟𝑟𝑟𝑟][ timestamp][reliability]), 

 
 

 Case::1 
reliable< 50 % Then  all alternative paths.

Disstance Based Reliable multipath flow
It is a modified form of multipath flow in which 
primary path calculated not only reliability based 
but shortest distance attributes also involved in it. 
It will be decreasing the latency rate better as com-
pare to RMF.

  

Algorithm 1. 
Initialize undirected Graph = Ĝ 
i. Procedure Activate (𝑪𝑪(event_publisher, 

event_subscriber))  Control functionality for 
getting data plane event and handling. 

 
ii. Procedure Data Plane (link _event, Publisher)  

𝑪𝑪_ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (link_event, Subscriber) 
Return devices_dictionatory (VEND_USER,  ꝲ 
END_USER [ꝲ-attribute]) 

 
iii. Procedure Data_Plane (end_user_event, 

Publisher): 
𝑪𝑪_handler (end_user_event, Subscriber) 
Return end_user_dictionatory (VSWITCHES, ꝲ 
SWITCHES [ꝲ-attribute]) 

 
iv. UPDATE (Ĝ {[ VEND_USER:  ꝲ END_USER [ꝲ-

attribute]], VSWITCHES:  ꝲ SWITCHES [ꝲ-attribute]}) 
 
Primary path computation. 
In this phase, after the graph composition, now 
network can start working. At First stage, flow tables 
will be empty. After that switch 1 receives a packet 
from host A. Switch s1 sending a message to SDN 
controller for path computation after checking its own 
forwarding table. If entry Ϸ � �  matched with 
forwarding table entries then corresponding action 
will be performed, otherwise now SDN controller 
decides whether this packet will be forwarded or not 
according to already defined network policy(Ά). 
If  Ϸ ∋ Ϸ � � Permit or Deny 
else 

(1) 

Ά ∋ Ϸ  ∀ (ΆSRC, ΆDST �  ∋ (ϷSRC, ϷDST   )
  

(2) 

𝑆𝑆� = ϷSRC � ꝲ� �  ꝲ� �
ꝲ� … … … … … ..+ꝲ�  � ϷDST  
OpenFlow Command [Ϸ � � �  Șω]
  
 

 
 

(3) 

Reliability Computation process. 
Controller application use periodically probe packets 
for inspection of link failure frequency within a time 
slot (10 seconds) and compute the link reliability. 
Higher the number of failures 𝜑𝜑 cause in lower the 
reliability percentage and introduce signal of flow 
rule installation for controller. 𝜑𝜑 presents the failure 
frequency between 0 and 1, where ʎ is  recovery 
constant of link for all re-channelized links in 
topology heuristically.  

Ф � �1 � 𝜑𝜑� (4) 

1 �Ф ×ʎ where ʎ=10 (5) 

    
Ф in Equation 4 presents the link aliveness time in 

stipulated 10 seconds time slot while Ф  × ʎ is 
reliability. A path 𝑆𝑆�  computed from source to 
destination is a set of all intermediate forwarding 
devices. Equations 6-7 present the path from source 
to destination along with associated aliveness time 
between source and destination and the sum of path 
aliveness time of any path.   

 

𝑆𝑆� �� Ф�  ��
�

���
 

 

(7) 

i = �0,1,2,3 … … . .𝑎𝑎� 
 

 
 Reliable multipath flow. 

In this phase, first primary path will be computed 
based on highest reliability which is computed in last 

𝑆𝑆�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 � ∑ Max Ф�  ���
���        (8) 

 
i. IF  S r̂eliable> 90 %  Then no alternative path. 
ii. IF  S r̂eliable> 80 % Then 2 alternative paths. 
iii. IF  S r̂eliable> 70 % Then 3 alternative paths. 
iv. IF  S r̂eliable> 60 % Then 4 alternative paths. 
v. IF  S r̂eliable> 50 % Then 5 alternative paths. 
vi. IF  S r̂eliable< 50 % Then  all alternative paths. 

 
Disstance Based Reliable multipath flow. 
It is a modified form of multipath flow in which 
primary path calculated not only reliability based but 
shortest distance attributes also involved in it. It will 
be decreasing the latency rate better as compare to 
RMF. 
 

S� � ∑ Max Ф� Min ꝲ �
����    (9) 

 
    

Algorithm 2 
Input 
  (i)- (Ĝ{[ VEND_USER  : ꝲ END_USER [ꝲ_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎]] , 
VSWITCHES  :  ꝲ SWITCHES[ꝲ_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎]}                
(ii)- Source_node  
(iii)- Destination_node 
 
For i , j in Zip(ꝲ END_USER [ꝲ_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎]] , VSWITCHES  :  ꝲ 
SWITCHES[ꝲ_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎]) , 
 

 For  timestamp in ꝲ END_USER [ꝲ_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎]: 
 i.get(ꝲ END_USER [ꝲ_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎][ timestamp][reliability]), 
 
 For  timestamp in ꝲ SWITCHES[ꝲ_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎]: 
 j.get(ꝲ SWITCHES [ꝲ_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎][ timestamp][reliability]), 

(9)
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Algorithm 2
Input
1 (Ĝ{[ VEND_USER  :   ꝲ END_USER [ ꝲ-attrib],  

VSWITCHES  :  ꝲ SWITCHES[ ꝲ-attrib]}               
2 Source_node 
3 Destination_node

For i , j in Zip( ꝲ END_USER [ ꝲ-attrib] ,  
VSWITCHES  :   ꝲ SWITCHES[ ꝲ-attrib]) ,

For  timestamp in  ꝲ END_USER [ ꝲ-attrib]:
i.get( ꝲ END_USER [ ꝲ-attrib][ timestamp][reliability]),

For  timestamp in   ꝲ SWITCHES[ ꝲ-attrib]:
j.get( ꝲ SWITCHES[ ꝲ-attrib][ timestamp][reliability]),

Case::1
if (i > threshold) and ( j> threshold):
call Procedure RMF(Ĝ, i, j)

if (i <threshold) and ( j> threshold):
call Procedure_ALT(Ĝ, i , j)

Case::2
if (i > threshold) and ( j> threshold):
call Procedure DRMF(Ĝ, i, j)

Procedure RMF (Ĝ, i, j ):
For level in reliabdictionary :

If i , j = reliabdictionary[value]:
K.get(reliabdictionary[alternate_paths])
For path in K:
OpenFlow_Configuration(path)

Procedure2_ALT(Ĝ, i, j ):
OpenFlow_Configuration(All_paths)

Procedure DRMF(Ĝ, I , j):
For level in reliabdictionary :

If I , j = reliabdictionary[value]:
K.get(reliabdictionary(Min([alternate_paths]))
For path in K:
OpenFlow_Configuration(path)

Flow of Proposed Methodology
In working of reliable multiple path flow starting by 
controller take a network view of all nodes (switches) 
after that primary reliable path computed by control-
ler when switch requested for it. Reliability measur-
ing algorithm computed reliability if calculated reli-
ability is less than threshold then all alternative paths  
updated in flow table but in case more than threshold 
then MRF cases decides how many alternative paths 
assigned. Primary path calculation based on reliabil-
ity and shortest distance. In our propsed system we 
have used dijekstra algorithm for calculating shortest 
path. Flow diagram repeated for n number of paths 
and each time update latest paths in flow entries.

4. Simulation and Results

Simulation 
Perform series of experiments of proposed approach-
es POX To controller and Mininet simulator have 
used in it.
Mininet Simulator
Mininet simulator have used in experimentation be-
cause it is feasible for both large scale and small-scale 
simulation of network. Hundreds and thousands of 
nodes can be tested easily using simple tools for com-
mand line and API. The simulator has the benefit of in-
terface for multiple SDN controller like Pox, Floodlight, 
Ryu and Open daylight regardless of topology develop-
ment programming interface level as a programming 
model in SDN comprises of low, mid, and high-level 
programming [8, 37, 31]. Mininet provide easy custom-
ization, sharing, and testing nodes of SDN [19]. It also 
provides a virtually separate interface for any host node 
for processing of host granular applications. Mininet 
simulator suitable for both (real and simulated control-
ler).It can also use to simulate connections between dif-
ferent types of controllers like POX, Ryu, etc. [40]. Var-
ious types of switches can be created and modify using 
Mininet according to required simulation. NASA, ICSI, 
and many other researchers used in world used Mininet 
for multi controller simulations [14].
POX Controller
Stateless switch communication based OpenFlow 
protocol can be controlled by POX framework [12].  
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Figure 1 
Flow Diagram of Proposed Methodology
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Python language can used POX for design a SDN con-
troller. It is efficient tool used in research for develop-
ing a basic SDN controller [8]. By adding more com-
ponents, a complex SDN controller can be designed. 
POX can support 1.0 and 1.3 versions of OpenFlow 
switches. POX also provide interface for Mininet, 
open source availability, and integration with other 
simulators like NS3 [36].

Experimental Results
In our emulated network following components used.

Figure 2 
Overhead comarison between existing and RMF

Figure 3 
Average packet transmission delay

Figure 4 
Flow rules Installation

Table 2 
Components of Network

Virtual end hosts 25

OVS switches 9

OVS switches 9

Packet generated per host 10000 UDP

Size of average packet 62 bytes

Better results obtained generated by 5 hosts because 
of limited resources. All experiments performed us-
ing POX controller (version 2.2).Mininet simulator 
improves our work performance and competitively 
better results than existing approaches ./we have used 
python for scripting due to commutability of python 
with POX and Mininet. Figure 2 presents comparison 
between overheads of existing and new system.

Overhead of existing system greater due to install-
ing large number of alternative paths which is cause 
of increase in communication between controller 
and intermediate switches. Figure 3 elaborates delay 
comparison of packet transmission. RMF has smaller 
delay due to less involvement of controller.

  

Figure 4 Flow rules Installation 

 

Figure 5 illustrates the observation of flow entry 
encapsulated packet drop at switch. The reason 
behind this behavior of OpenFlow switch has limited 
memory. These memory constraints insist on the 
mechanism of flow rule installation wisely by 
considering the forwarding devices' capacity. In this 
situation, our proposed solution is relatively more 
suitable in the SDN production network. 

Figure 5 Switch flow entry drop percentage in case of 
switch memory Overflow 

 
Observations regarding the average delay of flow rule 
entries installation in Figure 6 conclude that as the 
number of entries increases, the time of their 
installation also increases proportionally. When the 
controller computes the higher frequency of these 
flow entries along with another application interface 
then control traffic for configuration approaches to 

delay. RMF and DRMF are relatively less delayed 
oriented and perform configurations according to the 
network policies timely. 

Figure 6 Average delay computed at controller for 
installation of computed Flow Rule Entries 

 
All or selective path installation procedures in the 
existing approach install the useless entries in switch 
memory. Figure 7 presents the experimental results 
by accessing the packets and number of bytes 
entertained by flow rule entries in switches and it 
has yielded that RMF and DRMF are much efficient 
for said situation. The proposed approach presents 
the highest percentage comparative to the existing 
approaches and useful entries in switches. 

Figure 7 Flow Rule Entries entertaining the 
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Mininet Simulator. 
Mininet simulator have used in experimentation 
because it is feasible for both large scale and small-
scale simulation of network. Hundreds and thousands 
of nodes can be tested easily using simple tools for 
command line and API. The simulator has the benefit 
of interface for multiple SDN controller like Pox, 
Floodlight, Ryu and Open daylight  regardless of 
topology development programming interface level 
as a programming model in SDN comprises of low, 
mid, and high-level programming [8, 37, 31]. Mininet 
provide easy customization, sharing, and testing 
nodes of SDN [19]. It also provides a virtually 
separate interface for any host node for processing of 
host granular applications. Mininet simulator suitable 
for both (real and simulated controller).It can also use 
to simulate connections between different types of 
controllers like POX, Ryu, etc. [40]. Various types of 
switches can be created and modify using Mininet 
according to required simulation. NASA, ICSI, and 
many other researchers used in world used Mininet 
for multi controller simulations [14]. 
POX Controller. 
Stateless switch communication based OpenFlow 
protocol can be controlled by POX framework [12].  
Python language can used POX for design a SDN 
controller. It is efficient tool used in research for 
developing a basic SDN controller [8]. By adding 
more components, a complex SDN controller can be 
designed. POX can support 1.0 and 1.3 versions of 
OpenFlow switches. POX also provide interface for 
Mininet, open source availability, and integration 
with other simulators like NS3 [36]. 
Experimental  Results. 
In our emulated network following components used. 

 
Table 2 Components of Network 

Virtual end hosts 25 
OVS switches 9 

Packet generated per host 10000 UDP 
Size of average packet 62 bytes 

 
Better results obtained generated by 5 hosts because 
of limited resources. All experiments performed 
using POX controller (version 2.2).Mininet simulator 
improves our work performance and competitively 
better results than existing approaches ./we have used 
python for scripting due to commutability of python 
with POX and Mininet. Figure 2 presents comparison 
between overheads of existing and new system. 
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shown. If length of path increased, then number of 
alternative paths also increase which will be cause of 
large number of flow rules installation in existing 
system. In RMF/DRMF consumes less memory for 
flow rules installations. 
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In Figure 4, elaboration of flow rule installation is 
shown. If length of path increased, then number of 
alternative paths also increase which will be cause of 
large number of flow rules installation in existing sys-
tem. In RMF/DRMF consumes less memory for flow 
rules installations.
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Figure 5 illustrates the observation of flow entry en-
capsulated packet drop at switch. The reason behind 
this behavior of OpenFlow switch has limited mem-
ory. These memory constraints insist on the mecha-
nism of flow rule installation wisely by considering 
the forwarding devices' capacity. In this situation, our 
proposed solution is relatively more suitable in the 
SDN production network.

Figure 5 
Switch flow entry drop percentage in case of switch 
memory Overflow

Figure 6
Average delay computed at controller for installation of 
computed Flow Rule Entries

Figure 7
Flow Rule Entries entertaining the production packets 
according to specified action in a flow rule entry
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Observations regarding the average delay of flow rule 
entries installation in Figure 6 conclude that as the 
number of entries increases, the time of their instal-
lation also increases proportionally. When the con-
troller computes the higher frequency of these flow 
entries along with another application interface then 
control traffic for configuration approaches to delay. 
RMF and DRMF are relatively less delayed oriented 
and perform configurations according to the network 
policies timely.
All or selective path installation procedures in the ex-
isting approach install the useless entries in switch 
memory. Figure 7 presents the experimental results 
by accessing the packets and number of bytes en-
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tertained by flow rule entries in switches and it has 
yielded that RMF and DRMF are much efficient for 
said situation. The proposed approach presents the 
highest percentage comparative to the existing ap-
proaches and useful entries in switches.
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5. Conclusion
As we have discussed that 5G networks used to provide 
high availability to end users in services lsuch as vid-
eo streaming, gaming, etc. However, different types of 
network failures will be cause of a great economic loss 
if services not provided with high speed and reliabili-
ty. To overcome this issue many techniques designed 
for failure recovery but without using reliability fac-
tor. Thus, as shown in results existing system produce 
large traffic overhead due to computation of many al-
ternative paths and latency rate increased too. SDN is 
and emerging paradigm in which control plane decou-
pled by data plane. Due to this reason SDN easy to con-
trol by centralized controller (SDN Controller). In our 
proposed system we have used reliability factor to and 
number of alternative paths depend on this reliability. 
As reliability of primary path increased number of al-
ternative paths will reduce. Therefore, traffic overhead 

decreased due to less involvement of controller, low la-
tency rate in failure recovery because small number of 
alternative paths will be computed for failure recovery. 
After that, we have involved shortest distance factor 
which improves our results as shown in results. In fu-
ture, we can improve our work by using machine learn-
ing algorithm for reliability computation and including 
more factors like shortest distance. It will be beneficial 
in future 5G networks.
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