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We propose a novel algorithm for the navigation of agents based on reinforcement learning, using boredom 
as an element of intrinsic motivation. Improvements obtained with the inclusion of this element over classic 
strategies are shown through simulations. Boredom is modeled through a chaotic element that generates condi-
tions for the creation of routes when the environment does not offer any reward, allowing prompting the robot 
to navigate. Our proposal seeks to avoid what classical algorithms suffer in scenarios without rewards, gener-
ating losses of time in the resolution. We demonstrate experimentally that by adding the element of boredom 
it is possible to generate routes in scenarios in which rewards do not exist, allowing the use of these strategies 
in real circumstances and facilitating the robot's navigation towards its objective. The most important contri-
bution sustained by this work corresponds to the fact that it is possible to improve navigation in completely 
adverse scenarios for a navigation algorithm based on rewards.
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1. Introduction
Reinforcement learning (RL) is of the most common 
techniques in the field of machine learning [15, 29]. 
Its form of operation is based on how human beings 
learn, considering learning by conditioning one of its 
influences [7].
In general, reinforcement learning values the cor-
rect execution of actions and punishes the wrong 
decisions. However, the environment skews the op-
tions that the agent can take, therefore, it becomes 
an element that seeks to maximize an internal objec-
tive function, constantly learning from the problem 
through trial and error. A model of an agent based on 
reinforcement learning can be visualized in Figure 1.

Figure 1
Representation of a learning system based on reinforcement

There are multiple algorithms where extrinsic re-
ward elements are considered to improve learning as 
indicated in [1, 25], however, a specific dependence of 
the entity is observed with respect to what the envi-
ronment can offer it.
Currently the investigations developed by different 
authors integrate bio-inspired behaviors, such as the 
work [21] where a framework for the interaction of 
robots with humans is developed.
As robotic agent, what happens if the natural envi-
ronment does not offer the rewards that the algorithm 
needs to function? In general, we can say that the en-
tity could not operate creating havoc in the way of ex-
ecuting actions. On the contrary, human beings have 
the ability to determine their objectives considering 
their particular abilities [27], due to this the context 
in which the human finds himself does not determine 
how far he will be able to execute a certain task. This 

attribute can be linked to works developed on emo-
tions as portrayed by [14, 26].
This capacity, which, based on the impulse to explore 
the environment spontaneously, is visualized in the 
works of [8] and widely discussed by [2], is known as 
intrinsic motivation (IM) and becomes an aspect to 
be considered to avoid failures in the algorithms that 
are only tested in simulation form.
Learning by motivation is subject to learning by rein-
forcement. Considering the growing wave in which re-
searchers have made important efforts to try to define 
emotions, which are basically rooted in the area of   psy-
chology, within the problems of computational learn-
ing, study models have been generated such as those 
exposed in [4, 11, 17] where indicators such as curiosity, 
novelty, pain, surprise, among others associated with 
motivation, are used. Other aspects where this type of 
bio-inspired algorithm is applied can be seen in [28], 
the proposal involves the development of an algorithm 
to emulate the cerebellum and ganglia interaction.
Psychologically it is accepted that learning is a process 
in which practical experience produces a change in 
behavior, therefore, there is an internal element that 
generates the expectations of this learning, we call this 
intrinsic motivation [19] and it is considered as a mech-
anism that encourages species to achieve objectives.
This mechanism can be seen associated with both inter-
nal and external factors Figure 2, this edge being an area 
of   interest for research [22], since internal intentions or 
what really moves robots to fulfill a goal may not be the 
same for everyone, offering the possibility of establish-
ing differences between a set of homogeneous robots 
since their constitution, but being absolutely heteroge-
neous regarding their condition towards the objective.

Figure 2
Representation of an agent system based on motivation
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This concept is widely treated in different theories as 
portrayed in [10, 13] that associate motivation with 
intangible elements such as expectation, incentive or 
boredom [30].
Other authors have developed experiments with an-
imals where they have sought to measure reinforce-
ment learning considering intrinsic motivation [16] 
to find behavioral models.
The nature of boredom and the positives effects on 
motivation represent a starting point for this work [6], 
modeling this condition through a chaotic element 
that generates conditions for the creation of routes 
when the environment does not offer any reward.
Our objective is to compare navigation strategies for 
robots, through the application of a proprietary RL 
algorithm based on intrinsic motivation driven by 
boredom.

2. Methodology
Being then the problem of positioning a robot in space 
and how it will reach an objective point, the problem 
is defined in one related to dynamic programming us-
ing the Bellman equation, [3] where it is possible to 
define the algorithm as shown  in  Equation (1), where  
V(s) it corresponds to the value of being in a state,  
R(s, a) represents the reward function in a current 
state s and taking an action a, V(s') represents the value 
of the new state s' if the action a is taken and γ is a dis-
count factor that weighs the decisions that the entity 
will make allowing future decisions to be evaluated. 

 

 

allowing future decisions to be evaluated. 

( ) ( ) ( )( )max , '
a

V s R s a V sγ= + . (1) 

Being then the case that the process of determining the 
direction of navigation will depend with total freedom 
on the entity, as specified in [18], it is possible to 
rewrite Equation (1) and express it as it is formalized 
in Equation (2), where the probabilities of all possible 
decisions are analyzed when the robot is at a certain 
point in space as represented in Figure 3. 
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Figure 3 
Grid world visualized by the robot. 

 

 
Considering the above, when the scenario does not 
offer alternatives that provide the algorithm with a 
reward for its execution of tasks, the entity begins to 
perform random actions, taking this as a basis, two 
classic RL algorithms are studied, this algorithm was 
previously compared without one intrinsic motivation 
[24] in mobile robot path planning. 
 

2.1 Q-Learning 
Learning algorithm that seeks to maximize the future 
reward through the exploration of all the possible 
solutions that could be had for a displacement, each 
iteration is stored in a table called Q table generating 
policies and displacement actions. 
The model can be visualized as expressed in Equation 
(3), where ( ),Q s a  represents a state-action set 
whatever where the robot is,ξ  represents the learning 
coefficient, γ  is a discount factor to weight the 
behavior of taking a new state called 's . 
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2.2 SARSA 
Policy-based learning algorithm Markov decision 
process (MDP), bases its operation on updating a Q 

table that depends on the state and action selected 
by the agent ( ),Q s a , the reward r  will be 
selected according to that action and the new state 
is executed 's  which involves a change to the 
new action 'a . The system model can be 
visualized in Equation 4. 
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3. Algorithm Based on Boredom 
Motivation 

 
Through what is indicated in the literature, structures 
were developed using novelty as an element to give 
an stimulus [12] or the implementation of a dynamic 
controllers based on curiosity and boredom are 
demonstrated in [23] these related works are based 
in Q.learning algorithms with a method of intrinsic 
motivation, another case where is used boredom and 
curiosity is [31]. These research demonstrate that 
boredom is a enabled to curiosity.  
It is possible to establish a model based on the Q-
learning SARSA structure and apply new variables 
in decision making powered only by boredom 
considering the work [5], where the author exposed 
the boredom how a state that can motivate one to 
pursue a new goal when the actual state feeling is  
unsatisfactory. 
Considering that the SARSA algorithm has a better 
response in growing scenarios [9], a condition called 
boredom is applied. 
This condition occurs in the worst case scenario for 
the RL algorithms, which occurs when the medium 
does not offer any reward, therefore the matrix 

( , ) 0R s a = , this condition implies that none of the 
available options attract you to something. 
Taking what is stated by some authors in the theory 
of self-determination, it is possible to define 
boredom as an instance where creativity has its 
origin and therefore it is possible to use it as a 
catalyst towards intrinsic motivation. 
Therefore, the state of boredom can be described 
as a random element that will lead us to two 
possible conditions, a) maintaining the current 
dissatisfied condition or b) propelling ourselves to 
a state of creativity This duality is portrayed in the 
completeness of the scenario of possible rewards, 
and this is represented in Equation (5), where are 
assigned either in the half or in the whole set 

( , )R s a . The value of 0.5 is defined as the cut-off 
threshold for the Bored variable considering the 
criterion of maximum variance defined as M.  
Assuming that the environment where the 
algorithm will be applied is unknown in size, this 
criterion provides guarantees by granting the same 
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Considering the above, when the scenario does not 
offer alternatives that provide the algorithm with a 

reward for its execution of tasks, the entity begins to 
perform random actions, taking this as a basis, two 
classic RL algorithms are studied, this algorithm was 
previously compared without one intrinsic motiva-
tion [24] in mobile robot path planning.
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Learning algorithm that seeks to maximize the future 
reward through the exploration of all the possible 
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ficient, γ is a discount factor to weight the behavior of 
taking a new state called s'.
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3. Algorithm Based on Boredom 
Motivation
Through what is indicated in the literature, struc-
tures were developed using novelty as an element to 
give an stimulus [12] or the implementation of a dy-
namic controllers based on curiosity and boredom are 
demonstrated in [23] these related works are based in 
Q.learning algorithms with a method of intrinsic mo-
tivation, another case where is used boredom and cu-
riosity is [31]. These research demonstrate that bore-
dom is a enabled to curiosity. 
It is possible to establish a model based on the Q-learn-
ing SARSA structure and apply new variables in de-
cision making powered only by boredom considering 
the work [5], where the author exposed the boredom 
how a state that can motivate one to pursue a new goal 
when the actual state feeling is  unsatisfactory.
Considering that the SARSA algorithm has a better 
response in growing scenarios [9], a condition called 
boredom is applied.
This condition occurs in the worst case scenario for 
the RL algorithms, which occurs when the medi-
um does not offer any reward, therefore the matrix  
R(s, a)  = 0, this condition implies that none of the 
available options attract you to something.
Taking what is stated by some authors in the theory of 
self-determination, it is possible to define boredom as 
an instance where creativity has its origin and there-
fore it is possible to use it as a catalyst towards intrin-
sic motivation.
Therefore, the state of boredom can be described as 
a random element that will lead us to two possible 
conditions, a) maintaining the current dissatisfied 
condition or b) propelling ourselves to a state of cre-
ativity This duality is portrayed in the completeness 
of the scenario of possible rewards, and this is repre-
sented in Equation (5), where are assigned either in 
the half or in the whole set R(s, a) = 0. The value of 0.5 
is defined as the cut-off threshold for the Bored vari-
able considering the criterion of maximum variance 
defined as M. 
Assuming that the environment where the algorithm 
will be applied is unknown in size, this criterion pro-
vides guarantees by granting the same occurrence 
possibility to the situations in which the universe will 
be completed.

  

occurrence possibility to the situations in which the 
universe will be completed. 
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To avoid that the values used are distributed in a normal 
way, a chaotic function is used based on the Chua 
oscillator model in its discrete form as seen in Equation 
(6), where the term ( )( )1kf x t −  it is developed in the 
Equation (7) as exposed by [20] 
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In Algorithm 1 the proposal for the integration of 
boredom in the SARSA flow is displayed. 

 
Algorithm 1: Agent SARSA-Chaotic 

Step 0  If ( ), !0R s a =  

Step 1 Function Sarsa_Agent(perception) 
return an action 

Step 2 Else if ( ), 0R s a ==  

Step 3 Boredom = Random 

Step 4 If (Boredom>0.5) 

Step 5 Function Chua return [ , , ]M x y z=  

Step 6 ( ), [ ]R s a M z=  

Step 7 Else if (Boredom <= 0.5) 

Step 8 Function Chua return [ , , ]M x y z=  

Step 9 
( , ) [ ]
2
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In Algorithm 1 the proposal for the integration of 
boredom in the SARSA flow is displayed.

Algorithm 1: Agent SARSA-Chaotic

Step 0 If  R(s, a) 

Step 1 Function Sarsa_Agent(perception) return 
an action

Step 2 Else if R(s, a) == 0 

Step 3 Boredom = Random

Step 4 If (Boredom>0.5)

Step 5 Function Chua return M [x, y, z] 

Step 6 R(s, a)= M[z]

Step 7 Else if (Boredom <= 0.5)

Step 8 Function Chua return M [x, y, z]

Step 9 R(  s , a) = M [z]       2



489Information Technology and Control 2021/3/50

Step 10 End if

Step 11 Function SARSA-Agent(perception) return 
an action

Step 12 End if

4. Results
Considering the training of 2 agents under normal 
operating conditions in a known world of size 7x7, 

it is possible to observe a slight superiority of the 
Q-Learning algorithm with respect to SARSA in the 
time of convergence towards a solution, however, this 
training process is performed under normal condi-
tions with a specific reward.
When the universe does not deliver any reward, it is 
possible to observe how the algorithm tries to con-
verge on some viable result, but they remain at 0 Fig-
ure 4 A) and B), contrary to the proposed algorithm, 
since in any of the conditions that arise it generates 
training patterns.

Figure 4
Comparisons in the learning process when the reward is 0. A) Show how the Q-Learning algorithm falls to a minimum 
and is maintained until the time limit. B) Shows the behavior of the SARSA algorithm up to the time limit. C) It shows the 
behavior of SARSA with the chaotic component when the boredom indicator is greater than 0.5. D) It shows the behavior 
of SARSA with the chaotic component when the boredom indicator is less than 0.5
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Figure 5
Agent behaviour in training world when boredom is greater 0.5

Figure 6
Agent behaviour in training world when boredom is less than 0.5

In C) the agent converges in a route at 70 iterations that 
are carried out with the entire reward matrix with val-
ues   obtained from the Chua function, on the other hand 
in D) it is visualized that the system takes longer to gen-
erate a route, However, here only 50% of the matrix has 
rewards that are enough to take the learning system 
out of inertia and generate a route to the destination.
The routes traced in both cases are completely differ-
ent, as can be seen in Figure 5 and Figure 6. This has 

effects on the way in which the agent faces the jour-
ney in the world, since the training and knowledge ac-
quired in this process is vital. importance for behav-
ior in the environment, two cases can be considered 
good, because the agent can arrive at the proposed 
destination and the reward is different than 0.
Taking this consideration, it is possible to generate a 
comparison between the different tests developed be-
tween the analyzed algorithms Table 1, where when 
focusing on points that the routes do not have within 
the training pattern, navigation failures are observed, 
as can be seen from what happened with Q-Learning 
and Boredom <0.5 when we refer to the point (6, 2).

Table 1 
Behavior in navigation before target point (6, 2) outside the 
training routes

Algorithm R(s, a) Accumulate 
reward Achievement

Q-Learning 0 0 No

Q-Learning -5 0 No

SARSA 0 80 Yes

SARSA -5 100 Yes

SARSA-Chaos
Bored<0.5

0 -2680 No

SARSA-Chaos
Bored<0.5

-5 -200 No

SARSA-Chaos
Bored>0.5

0 93.98 Yes

SARSA-Chaos
Bored>0.5

-5 89 Yes

The absolute failure of most of the algorithms is visu-
alized in Table 2, where the Boredom <0.5 algorithm 
was the only one to navigate to that point.
The map used to carry out the tests had the same size, 
however, the non-displacement zones were modified, 
as can be seen in Figure 7, which shows the agent 
reaching the most complicated position for all the 
rest of the elements.
The most eloquent results on the effectiveness of the 
navigation method using boredom intrinsic element 
of motivation are observed when viewing the Q tables 
of each of the proposed methods.
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Figure 7
Grid world used to perform algorithm tests

Algorithm R(s, a) Accumulate 
reward Achievement

Q-Learning 0 0 No

Q-Learning -5 -2500 No

SARSA 0 0 No

SARSA -5 -2500 No

SARSA-Chaos
Bored<0.5

0 -50.04 Yes

SARSA-Chaos
Bored<0.5

-5 -65 Yes

SARSA-Chaos
Bored>0.5

0 -2500 No

SARSA-Chaos
Bored>0.5

-5 -8.65 No

Table 2 
Behavior in navigation before target point (3, 5) outside the 
training routes

The Q tables show the relations between movements 
alternatives (forward, right, left, back) and target 
reward obtained for that decision.  Figure 8 and 
Figure 9 portray the situation where even though 
the environment does not offer any rewards, the 
system generator allows navigation, giving the agent 

Figure 8
Behavior of possible alternatives according to the agent’s 
decision to move when boredom is less than to 0.5

Figure 9
Behavior of possible alternatives according to the agent’s de-
cision to move when boredom is greather than or equal to 0.5

different alternatives to do a movement and show 
rewards different to cero.
Both responses differ in convergence times and the 
decisions that the robot executes. The latter can 
demonstrate how boredom influences the decisions, 
allowing the construction of two different solutions 
in the path planning.
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Figure 10
Behavior of the Q table in Q-learning algorithm when 
exposed to an enviroment of 0 values

Figure 11
Behavior of the Q table in Q-learning algorithm when 
exposed to an enviroment of 0 values

In contrast to its peers such as Q-learning and SAR-
SA that do not provide the robot with options to 
perform any movement portrayed in Figure 10 as 
the agent try to move selecting the movement 1 (for-
ward) but in all cases the reward obtained is near to 

cero, that implies the agent in all cases is not going to 
nothing in the Figure 11, the case is different because 
the algorithm intends to give some possibilities of 
movement and the agent moves, but does not arrive 
at the destiny.

5. Conclusion
From the different tests carried out, it is possible to 
deduce that the inclusion of the algorithm boredom 
motivation as a generator of intrinsic rewards pro-
poses an improvement in the agent training process 
because under reward conditions 0, the system uses 
values   that get around this problem providing the 
possibility of an algorithm where boredom powered 
by a chaos number generator is the main element to 
catalyze motivation.
The proposal generates a possible solution to navi-
gation in aggressive environments for the algorithm, 
especially when environmental conditions offer no 
reward for travel, this can be used in path planning or 
in the training process.
Considering that the navigation system generates 
alternative routes in the training process, it is pro-

posed to develop a mixture of both options as the 
algorithm have boredom greater than 0.5 and less 
0.5 that allows, therefore, to know more travel op-
tions, this according to the data generated would 
allow that despite not finding the solution in one 
of the reward tables, you can jump to another that 
does contain it.
For future works, the application of these algorithms 
in a set of robots is proposed so that the navigation in-
formation is shared.
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