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Approximate frequent itemsets (AFI) mining from noisy databases are computationally more expensive than 
traditional frequent itemset mining. This is because the AFI mining algorithms generate large number of can-
didate itemsets. This article proposes an algorithm to mine AFIs using pattern growth approach. The major 
contribution of the proposed approach is it mines core patterns and examines approximate conditions of can-
didate AFIs directly with single phase and two full scans of database. Related algorithms apply Apriori-based 
candidate generation and test approach and require multiple phases to obtain complete AFIs. First phase gen-
erates core patterns, and second phase examines approximate conditions of core patterns. Specifically, the ar-
ticle proposes novel techniques that how to map transactions on approximate FP-tree, and how to mine AFIs 
from the conditional patterns of approximate FP-tree. The approximate FP-tree maps transactions on shared 
branches when the transactions share a similar set of items. This reduces the size of databases and helps to 
efficiently compute the approximate conditions of candidate itemsets. We compare the performance of our al-
gorithm with the state of the art AFI mining algorithms on benchmark databases. The experiments are ana-
lyzed by comparing the processing time of algorithms and scalability of algorithms on varying database size and 
transaction length. The results show pattern growth approach mines AFIs in less processing time than related 
Apriori-based algorithms.
KEYWORDS: Approximate Frequent Itemset Mining, Frequent Itemset Mining, Pattern Growth, Association 
Rules Mining.
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1. Introduction
Mining frequent itemsets from databases is an im-
portant data mining task. It has many practical appli-
cations including document clustering [15, 40], social 
network analysis [23, 34], market basked analysis 
[17], fraud detection [14], bioinformatics [13, 28, 33], 
mining patterns from web logs [22, 38]. The concept 
of mining frequent itemsets and generating associa-
tion rules form the frequent itemsets was proposed by 
[1]. In the last 20 years there have been lot of research 
in developing different techniques to efficiently mine 
frequent itemsets from transactional databases. (Han 
et al., 2000) proposed pattern-growth approach for 
mining frequent itemsets from FP-tree. Kosters et al., 
[26] applied depth-first search for Apriori. Bodon et 
al., [6] and Liu et al., [29] proposed fast implementa-
tion techniques for Apriori and pattern-growth. Uno 
et al., [36], Vo et al., [37], and Chen et al., [9] proposed 
algorithms to mine different variations of frequent 
itemsets such as maximal, probabilistic maximal and 
closed. Burdick et al., [7] proposed bit-vector tech-
nique for mapping frequent items on bit-vectors. Gan 
et al., [16] proposed an algorithm to mine frequent 
itemsets from multiple minimum supports. Chen et 
al., [8] proposed an algorithm to efficiently mine fre-
quent itemsets from small-scale datasets.
The main limitation of traditional frequent itemset 
mining (FIM) concept is that it can be only use to dis-
cover itemsets that are absolutely matched in the data-
base. It cannot mine useful itemsets that are noisy or 
have missing items due to real world data distributions 
[39]. From noisy databases it is difficult to provide sup-
port thresholds for mining expected set of frequent 
itemsets. For instance, mining frequent itemsets with 
high support discovers only small set of short length 
patterns, and small support discovers exponential set 
of two and three length itemsets [12, 21, 35].
For mining useful itemsets from noisy databases, Liu 
et al., [30] proposed the concept of mining approxi-
mate frequent itemsets (AFI). The following prop-
erties describe the concept of mining AFIs from the 
transactional databases [10-11].
 _ An itemset X is an AFI under error-tolerance 

percentage of row and column (εr > 0%) and (εc > 0%), 
if X appears in at least T number of approximate 
and α(T) number of absolute transactions.

 _ A transaction is an approximate transaction if it 
contains at least εr percent of items of X.

 _ X is a core pattern if the absolute support of X is 
equal or greater than minimum absolute support 
(abs_sup).

 _ Every single item of X should has support of at least 
εc percent of approximate transactions of X.

The following example describes the difference be-
tween absolute and approximate matching itemsets. 
Table 1 provides a transactional database with nine 
transactions containing six items. To discover fre-
quent itemsets with min_sup = 3, the absolute match-
ing algorithm cannot discover any itemset with length 
greater than two items. The algorithm mines many 
itemsets with length less than three items. These 
short length itemsets cannot be used for discovering 
generalized knowledge from the databases. However, 
if the user tries to mine itemsets using AFI concept 
by slightly relaxing the notion of traditional concept 
of FIM. The AFI mining algorithm can discover long 
length itemsets with high support. Even though, these 
itemsets are not exactly matched in the transactions, 
but contain high support. For example, the item-
set (efcb) is an AFI of length four and has support 3. 
The transactions 10, 20, and 50 contain three out of 
four items of efcb and every single item of (efcb) is ap-
peared in at least two transactions (10, 20, and 50). 
This approximate match mining concept is appealing 
in this way that it discovers long length frequent item-
sets. This strategy motivates researchers to develop 
algorithms for mining complete AFIs [10-11, 30].
Given the AFI mining properties (presented above), 
if we apply the properties on the dataset of Table 1. 
Suppose the support threshold are (apx_sup) = 3, 
(abs_sup) = 1. The row and column error-tolerance 
percentages are (εr = 75%) and (εc = 65%). The itemset 
X = (efcb) is a core pattern since the absolute support 
of efcb is one in transaction 10. The itemset (efcb) is 
also an AFI as it is three out of four items are appeared 
in the approximate transactions 10, 20 and 50. This 
qualifies εr = 75%. Also, each single item e, f, c and b is 
appeared in at least two transactions. This qualifies εc 

= 65% threshold.
Previous state of the art AFI mining algorithms mine 
AFIs with two phases. In first phase, the complete 
set of core patterns are discovered by applying Ap-
riori-based candidate generation and test approach. 
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Once core patterns are available, the algorithms ex-
amine the AFI properties of core patterns for count-
ing items and itemsets support with multiple full 
scans of database. Mining core patterns using Ap-
riori-based approach are not performance efficient 
when the databases are dense or spare. In the follow-
ing paragraph, we provide main limitations of gener-
ating core patterns using Apriori-based approach.
 _ Apriori-based algorithm mines complete set of 

core patterns using candidate generation and test 
approach. The main limitation of this approach is 
that if the size of database is large then this approach 
generates exponential combinations of candidate 
itemsets. For example, if the database contains 
300 frequent items, the Apriori-based approach 
generates and test all 2300 candidate itemsets.

 _ Apriori-based algorithm generates candidate 
itemsets by applying bottom-up search space 
exploration on frequent items. This means the 
algorithm exponentially generates and tests all the 
2X subsets of an itemset X before producing X. This 
complexity is not suitable for the databases that 
have large number of frequent items.

 _ To examine AFI conditions of core patterns, 
the Apriori-based algorithm scans the original 
database multiple times for calculating supports 
of itemsets and items. These scans consume large 
processing time when the number of core patterns 
to mine are exponential and size of database is 
large.

Table 1
A sample transactional database

TID Items (Ordered) Frequent 
Items

10 b , c , e , f e , f , c , b

20 c , e , f e , f , c

30 a , d , f f , a, d

40 e e

50 a , b , c , e e , a , c , b

60 a , e , f e , f , a

70 b , a , d, f f , a , d, b

80 d d

90 d d

This article proposes a new approach to mine com-
plete set of AFIs using pattern growth approach 
(Apx-PatternGrowth). The pattern growth is a divide 
and conquer technique. It recursively divides the big 
database into small subsets and mines complete set 
of AFIs from the smaller subsets by generating can-
didate itemsets that exist only in the subsets. This 
prunes the combinations of itemsets that are not 
available in the transactions [18-20]. The major ad-
vantage of proposed approach is that it mines the core 
patterns and examines the approximate conditions of 
core patterns directly with one phase and two scans 
of database. Related AFI mining algorithms require 
two phases for obtaining AFIs. First phase generates 
core patterns, and second phase examines approx-
imate conditions of core patterns. In the first scan 
of database, the Apx-PatternGrowth mines all one 
length frequent items and prunes infrequent items. 
In the second scan, the Apx-PatternGrowth maps 
all transactions of database on frequent pattern tree 
(FP-tree). The frequent items of database are mapped 
on the nodes of FP-tree, and transactions are mapped 
on the branches of FP-tree. If multiple transactions 
share common prefix, the shared items are mapped 
on a single branch and the support (frequency) of 
shared subset is mapped on the nodes of FP-tree. The 
pattern growth explores the AFIs using depth first 
search order. All subsets of an itemset are obtained 
by generating conditional patterns from the branch-
es of FP-tree. The frequent items in the conditional 
patterns generate recursive child FP-trees. The child 
FP-trees generate AFIs of next level. We perform 
experiments on benchmarks datasets and compare 
the performance of our algorithm with the related 
algorithms. Our experiments show the Apx-Pattern-
Growth mines complete AFIs in less processing time 
than related algorithms.
The rest of article is organized as follows. In Section 2 
we provide a detailed review of related algorithms on 
mining AFIs and explain how our approach is differ-
ent to related algorithms. Section 3 provides formal 
definition of mining AFIs and presents how to map 
approximate transactions on FP-tree and how to ap-
ply pattern growth approach for mining complete set 
of AFIs. Section 4 presents the details of benchmark 
datasets and compares the performance of AFI min-
ing algorithms. In Section 5 we present key findings of 
the proposed algorithm.
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2. Related Work
Related state of the art algorithms mine complete 
set of AFIs using two phases. In first phase, the algo-
rithms apply Apriori-based candidate generation and 
test approach for generating complete set of core pat-
terns. In second phase, the approximate conditions of 
core patterns are examined for generating AFIs. The 
Apriori-based algorithms prune infrequent search 
space by applying anti-monotone heuristic of Apriori 
on the core patterns [10-11]. The main limitations of 
Apriori-based algorithms are: These algorithms gen-
erate large number of candidate itemsets that do not 
exist in the database, and require multiple scans of 
database for examining the approximate conditions 
of itemsets.
Cheng et al., [10-11] proposed AC-Close algorithm. 
AC-Close applies top down complete search space 
exploration for building lattice of core patterns. 
Intuitively, an itemset X is a core pattern if the ab-
solute support of α(X) in the noisy database is not 
less than minimum abs_sup. AC-Close then mines 
complete AFIs from the lattice of core patterns by 
starting with the largest pattern and proceeds level 
by level in the size decreasing order of core patterns. 
AC-Close discards infrequent approximate itemsets 
by applying anti-monotone heuristic of Apriori on 
the infrequent itemsets. The anti-monotone heuris-
tic of Apriori does not generate supersets of an item-
set when the itemset is found infrequent. AC-Close 
is not performance efficient for the databases having 
large number of transactions as it requires multiple 
full scans of database for examining approximate 
conditions of AFIs. The other drawback of AC-Close 
is it generates candidate itemsets by applying bot-
tom-up search space exploration. This means the 
algorithm exponentially generates and tests all the 
2X subsets of itemset X before producing X. This gen-
erates many candidate itemsets that actually do not 
exist in the database. This complexity is not suitable 
for the databases when the number of itemsets to be 
mined are exponential.
Bashir et al., [3-5], and Koh et al., [25] proposed algo-
rithms for mining fault-tolerant frequent itemsets. 
The concept of fault-tolerant FIM is similar to AFIs, 
however, fault-tolerant FIM keeps the row error-tol-
erance of itemsets fixed regardless of the length of 
itemset. Thus, fault-tolerant FIM discovers different 

set of approximate frequent itemsets. Our proposed 
algorithm discoverers AFIs using the core patterns 
concept as explained in [10-11]. Thus, the processing 
time of our algorithm cannot be directly comparable 
with the fault-tolerant FIM algorithms.
To avoid costly repeatedly scanning of database, Koh 
et al., [25] proposed a tree based approach for mining 
AFIs. At each iteration, the proposed algorithm con-
structs multiple FP-trees for mining AFIs. For ex-
ample, to mine all supersets containing itemset (ab) 
under row error-tolerance of εr = 50%, the algorithm 
constructs four FP-trees. The first FP-tree maps only 
those transactions of database which have both item a 
and item b. The second FP-tree maps all those trans-
actions, which have item a but not item b. The third 
FP-tree maps transactions which have only item b. 
The last FP-tree maps all those transactions, which 
have missing both items. The main limitation of pro-
posed algorithm is it maps the transactions on multi-
ple FP-trees even if the transactions share similar set 
of items. Thus, the algorithms cannot gain actual per-
formance of pattern growth during support counting 
of items and itemsets. The algorithm also consumes 
large memory and difficult to fit in the memory during 
AFI mining. Our proposed pattern growth algorithm 
does not construct multiple FP-trees. The proposed 
algorithm maps all transactions of a database on a 
single FP-tree even if the transactions have different 
percentage of row error-tolerance. The proposed al-
gorithm is scalable on large databases and consumes 
less memory than the Koh et al., [25] approach.
To mine interesting AFIs in a reasonable processing 
time, researchers have proposed alternative heuris-
tics (such as proportional [27, 31] and high utility [2] 
AFIs mining). Although, these heuristics mine inter-
esting AFIs in less processing time, however, provide 
no guarantee on the completeness of the search as 
only imprecise mining results are obtained. Our pro-
posed algorithm mines AFIs using the concept of core 
patterns [10-11] by exploring complete search space 
of candidate itemsets. Thus, mines complete AFIs. 
As the search space requirements of proportional and 
high utility heuristics are different to the proposed 
algorithm, therefore, it is not suitable to directly com-
pare the performance of our algorithm with the AFI 
mining heuristics.
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Lee et al., [28] applied proportional AFIs for mining 
patterns from bioinformatics. Liu et al., [31-32] pro-
posed heuristics for mining proportional AFIs. In ex-
periments they showed the heuristics quickly mine 
itemsets within the acceptable error than the exact 
matching algorithm. All studies on the proportional 
AFIs are Apriori-based algorithms. However, no ef-
fort has been investigated how to utilize the concept 
of pattern growth to mine itemsets, and how to reduce 
processing of itemsets support counting. In this work 
we investigate how to map approximate transactions 
on the FP-tree and how to mine complete set of AFIs 
by recursively generating conditional patterns from 
the FP-tree.

3. Mining Approximate Frequent 
Itemsets Using Pattern Growth: 
Design and Construction
Given user defined row and column error-tolerance 
percentages ((εr > 0%) and (εc > 0%)), an itemset X is 
an AFI if it appears in at least T number of approxi-
mate transactions and α(T) number of absolute trans-
actions, and satisfies the following two conditions.
 _ A transaction t is an approximate transaction of T 

under (εr > 0%) if it contains at least εr percent of 
items of X.

 _ T is the support of X, which must not be less than 
minimum approximate itemset support (apx_sup). 
Each individual item of X must has support of at 
least εc percent of approximate transactions of X.

Given the AFI mining conditions explained above if 
we look again at the database of Table 1. Suppose the 
(εr = 75% and the (εc = 65%). The itemset X = (efcb) is 
a frequent AFI since its 75% of items are available in 
transactions 10, 20 and 50. This qualifies (εr = 75%), 
and each single item e, f, c and b is available in at least 
65% transactions with qualifies (εc = 65%) threshold.
The proposed algorithm mines itemsets using pattern 
growth approach. The pattern growth requires FP-
tree to generate itemsets. FP-Tree is a tree-like data 
structure. It maps complete transactions of a database 
on the branches of tree [ 18-20]. Nodes of tree map 
items of transactions and branches map transactions 
of database. The transactions that share a common 
subset of items are mapped on the shared branches 
and the frequency of shared subset is mapped on the 
nodes of FP-tree. The pattern growth is then applied 
on the FP-tree for mining complete AFIs. The sup-
ersets of an itemset are obtained by generating con-
ditional patterns from the branches of FP-tree. The 
conditional patterns generate recursive FP-trees. The 
recursive FP-trees discover candidate AFIs of next 
level. For generating conditional patterns of items, all 
nodes of items are linked together by making a linked 

  

 

Figure 1 FP-tree after mapping all transactions of database. 
 

constructed for storing head pointers of items. The 
head pointers facilitate tree traversal. One main 
advantage of FP-tree is it generates only those 
candidate itemsets that exist in the candidate 
patterns. Thus, it prunes the candidate itemsets that 
do not exist in the database. Furthermore, the 
approximate conditions of itemsets such as itemsets 
support and item supports are computed directly 
from the conditional patterns. This improves the 
scalability of algorithm on big databases. 

 
Example: Table 1 shows a transactional database. 
Let the error-tolerance percentages of row and 
column are (εr = 50%) and (εc = 50%). Let the 
approximate and absolute itemset supports are 
(apx_sup = 3) and (abs_sup = 1). 
The algorithm scans the database and removes 
infrequent items from the transactions that have 
support less than abs sup. The list of frequent items 
with their support is ⟨ (e : 5),(f : 5),(a : 4),(d : 4),(c : 3),(b 
: 3) ⟩. Items of the transactions are reordered by 
following the decreasing frequency order of items. 
The algorithm again scans the database and 
constructs initial FP-tree. The transactions are 
mapped one by one on the branches of FP-tree. If 
multiple transactions share a common prefix, the 
shared prefix is mapped only one time on the FP-
tree. Figure 1 shows the FP-tree of database (Table 
1). 

3.1. Constructing Approximate (FP-tree) 
The algorithm mines the complete set of AFIs from 
the Apx-FP-tree (Approximate frequent itemset 
tree). The Apx-FP-tree is similar to FP-tree. The only 
difference between Apx-FP-tree and traditional FP-
tree is that Apx-FP-tree maps approximate 
conditional (Apx-conditional) patterns on the tree. 
This helps in pruning infrequent AFIs that are not 
available in the database. 

 
A conditional pattern is called an Apx-conditional 
pattern if it contains εr items of an itemset X. The 
Apx-conditional pattern has four components. The 
first component stores list of items that can be used 
for generating supersets of X. The first component is 
mapped on the branch of Apx-FP-tree. The second 
component stores support of pattern. Third 
component stores row error-tolerance that the 
pattern contains how many items of X. Fourth 
component stores frequencies of all items of X. The 
fourth component stores error-tolerance of items. 
The Apx-FP-tree contains Apx-conditional pattern 
tables (ApxCP-Table) on the leaves to map 
components of Apx-conditional patterns. Each Apx-
CP-Table contains three columns. Components 
second, third, and fourth of Apx-conditional 
patterns are mapped on the first, second and third 
column of Apx-CP-Tables.  

Figure 1
FP-tree after mapping all transactions of database
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list, and a header table is constructed for storing head 
pointers of items. The head pointers facilitate tree 
traversal. One main advantage of FP-tree is it gener-
ates only those candidate itemsets that exist in the 
candidate patterns. Thus, it prunes the candidate 
itemsets that do not exist in the database. Further-
more, the approximate conditions of itemsets such 
as itemsets support and item supports are computed 
directly from the conditional patterns. This improves 
the scalability of algorithm on big databases.
Example: Table 1 shows a transactional database. 
Let the error-tolerance percentages of row and col-
umn are (εr = 50%) and (εc = 50%). Let the approximate 
and absolute itemset supports are (apx_sup = 3) and 
(abs_sup = 1).
The algorithm scans the database and removes infre-
quent items from the transactions that have support 
less than abs sup. The list of frequent items with their 
support is ⟨ (e : 5),(f : 5),(a : 4),(d : 4),(c : 3),(b : 3) ⟩. Items 
of the transactions are reordered by following the 
decreasing frequency order of items. The algorithm 
again scans the database and constructs initial FP-
tree. The transactions are mapped one by one on the 
branches of FP-tree. If multiple transactions share a 
common prefix, the shared prefix is mapped only one 
time on the FP-tree. Figure 1 shows the FP-tree of da-
tabase (Table 1).

3.1. Constructing Approximate (FP-tree)
The algorithm mines the complete set of AFIs from the 
Apx-FP-tree (Approximate frequent itemset tree). The 
Apx-FP-tree is similar to FP-tree. The only difference 
between Apx-FP-tree and traditional FP-tree is that 
Apx-FP-tree maps approximate conditional (Apx-con-
ditional) patterns on the tree. This helps in pruning 
infrequent AFIs that are not available in the database.
A conditional pattern is called an Apx-condition-
al pattern if it contains εr items of an itemset X. The 
Apx-conditional pattern has four components. The 
first component stores list of items that can be used 
for generating supersets of X. The first component is 
mapped on the branch of Apx-FP-tree. The second 
component stores support of pattern. Third compo-
nent stores row error-tolerance that the pattern con-
tains how many items of X. Fourth component stores 
frequencies of all items of X. The fourth component 
stores error-tolerance of items. The Apx-FP-tree con-
tains Apx-conditional pattern tables (ApxCP-Table) 

on the leaves to map components of Apx-conditional 
patterns. Each Apx-CP-Table contains three columns. 
Components second, third, and fourth of Apx-condi-
tional patterns are mapped on the first, second and 
third column of Apx-CP-Tables. 
To mine complete AFIs, the algorithm generates Apx-
FP-Tree for all possible combinations of two length 
itemsets by including only frequent items. Then, the 
Apx-conditional patterns obtained from the Apx-FP-
trees of two length itemsets are used for generating 
supersets of two length itemsets. The approximate 
itemset support and error-tolerance percentages of 
itemsets are counted directly from the Apx-condi-
tional patterns of Apx-FP-trees. 
Example: For example, to construct Apx-FP-tree of 
itemset X = (cb) with error-tolerance percentage of 
row (εr = 50%) and column (εc = 50%). The algorithm 
generates conditional patterns of items b and c.
 _ Item b contains three conditional patterns: ⟨efcb : 

1⟩, ⟨eacb : 1⟩, and ⟨fadb : 1⟩. The algorithm converts 
these conditional patterns into Apx-conditional 
patterns. The patterns ⟨efcb : 1⟩ and ⟨eacb : 1⟩ are 
Apx-conditional patterns with row error-tolerance 
of 100% because both items c and b are present 
in the patterns. The pattern ⟨fadb : 1⟩ is an Apx-
conditional pattern with row error-tolerance of 
50% because the pattern does not contain item c.

 _ The pattern ⟨⟨ef⟩, ⟨sup : 1⟩, ⟨εr = 100%⟩, ⟨c : 1,b : 1⟩⟩ is 
the Apx-conditional pattern of ⟨efcb : 1⟩. It has four 
components. The first component stores list of 
items that can be used for generating supersets of 
itemset (cb). The second component stores support 
of pattern. The third component contains ⟨εr = 
100%⟩ which indicates all items of (cb) are present. 
The fourth component stores support of all items 
of (cb). The pattern ⟨eacb : 1⟩ is converted into 
Apx-conditional pattern ⟨⟨ea⟩, ⟨sup : 1⟩, ⟨εr = 100%⟩,  
⟨c : 1,b : 1⟩⟩. The pattern ⟨fadb : 1⟩ is converted into 
Apx-conditional pattern ⟨⟨fad⟩, ⟨εr = 50%⟩, ⟨c : 0,b : 
1⟩⟩. Figure 2 shows the Apx-FP-tree of item cb.

 _ The initial FP-tree is again scanned for generating 
conditional patterns of item c. The following two 
conditional patterns are generated from the FP-
tree: ⟨efc : 2⟩ and ⟨eac : 1⟩. If the conditional pattern 
(cX) of any next item is a subset of former item, then 
the support of cY is subtracted from the support 
of cX. If the support of cX becomes zero, then the 
conditional pattern cX is ignored. Following this 
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Item Conditional Patterns Apx-Conditional Patterns

b efcb : 1 (⟨⟨ef⟩, ⟨sup:1⟩, ⟨εr=100%⟩, ⟨c:1,b:1⟩⟩)

b eacb : 1 (⟨⟨ea⟩, ⟨sup:1⟩, ⟨εr=100%⟩, ⟨c:1,b:1⟩⟩)

b fadb : 1 (⟨⟨fad⟩, ⟨sup:1⟩, ⟨εr=50%⟩, ⟨c:0,b:1⟩⟩)

c efc : 2 (⟨⟨ef⟩, ⟨sup:1⟩, ⟨εr=50%⟩, ⟨c:1,b:0⟩⟩)

c eac : 1 Ignored, as it is prefix of pattern (eacb : 1). The support of eac : 1 becomes zero after 
subtracting its support from the support of eacb : 1.

Table 2
Conditional patterns obtained from the FP-tree and Apx-conditional patterns of itemset (cb)

approach, the conditional patterns ⟨efc : 2⟩ is a 
prefix of pattern (⟨efcb : 1⟩). After subtracting its 
support from the conditional pattern of b, the new 
support becomes ⟨efc : 1⟩. The conditional pattern 
⟨eac : 1⟩ is ignored as it is subset of conditional 
pattern of item b with similar support and it is 
already mapped on the Apx-FP-tree of itemset (cb). 
The pattern ⟨efc : 1⟩ is an Apx-conditional pattern 
with row error-tolerance of 50% because items b 
is missing from the pattern. The pattern ⟨efc : 1⟩ is 
converted into Apx-conditional pattern ⟨⟨efc : 1⟩, 
⟨sup : 1⟩, ⟨εr =50%⟩, ⟨c : 1,b : 0⟩⟩.

Table 2 shows ll Apx-conditional patterns of itemset 
(cb). The itemset (cb) is examined for approximate 

and absolute itemset support thresholds and er-
ror-tolerance percentages of row and column. Two 
out of four Apx-conditional patterns of Table 2 have 
row error-tolerance of 100%. Thus, itemset (cb) quali-
fies abs_sup. The approximate support of itemset (cb) 
is four, which qualifies apx_sup. Each item of (cb) is 
appeared in at least two out of four transactions of 
Apx-conditional patterns, which qualifies εc. Thus, 
the itemset (cb) is an approximate frequent itemset 
of length two. The algorithm constructs Apx-FP-tree 
for itemset (cb) from the Apx-conditional patterns for 
mining supersets of cb. Figure 2 shows Apx-FP-tree. 
The Apx-CP-Tables of Apx-FP-tree are linked togeth-
er by making linked list of Apx-CP-Tables.

  

Item Conditional 
Patterns 

Apx-Conditional Patterns 

b efcb : 1 (⟨⟨ef⟩, ⟨sup:1⟩, ⟨εr=100%⟩, ⟨c:1,b:1⟩⟩) 
b eacb : 1 (⟨⟨ea⟩, ⟨sup:1⟩, ⟨εr=100%⟩, ⟨c:1,b:1⟩⟩) 
b fadb : 1 (⟨⟨fad⟩, ⟨sup:1⟩, ⟨εr=50%⟩, ⟨c:0,b:1⟩⟩) 
c efc : 2 (⟨⟨ef⟩, ⟨sup:1⟩, ⟨εr=50%⟩, ⟨c:1,b:0⟩⟩) 
c eac : 1 Ignored, as it is prefix of pattern (eacb : 1). The support of eac : 1 becomes 

zero after subtracting its support from the support of eacb : 1. 

Table 2 Conditional patterns obtained from the FP-tree and Apx-conditional patterns of itemset (cb). 

Figure 2 Apx-FP-tree of itemset (cb). 

To mine complete AFIs, the algorithm generates 
Apx-FP-Tree for all possible combinations of two 
length itemsets by including only frequent items. 
Then, the Apx-conditional patterns obtained from 
the Apx-FP-trees of two length itemsets are used for 
generating supersets of two length itemsets. The 
approximate itemset support and error-tolerance 
percentages of itemsets are counted directly from 
the Apx-conditional patterns of Apx-FP-trees.  

Example: For example, to construct Apx-FP-tree of 
itemset X = (cb) with error-tolerance percentage of 
row (εr = 50%) and column (εc = 50%). The algorithm 
generates conditional patterns of items b and c. 

 Item b contains three conditional patterns: ⟨efcb 
: 1⟩, ⟨eacb : 1⟩, and ⟨fadb : 1⟩. The algorithm 
converts these conditional patterns into Apx-

conditional patterns. The patterns ⟨efcb : 1⟩ and 
⟨eacb : 1⟩ are Apx-conditional patterns with row 
error-tolerance of 100% because both items c 
and b are present in the patterns. The pattern 
⟨fadb : 1⟩ is an Apx-conditional pattern with 
row error-tolerance of 50% because the pattern 
does not contain item c. 
 

 The pattern ⟨⟨ef⟩, ⟨sup : 1⟩, ⟨εr = 100%⟩, ⟨c : 1,b : 
1⟩⟩ is the Apx-conditional pattern of ⟨efcb : 1⟩. It 
has four components. The first component 
stores list of items that can be used for 
generating supersets of itemset (cb). The second 
component stores support of pattern. The third 
component contains ⟨εr = 100%⟩ which indicates 
all items of (cb) are present. The fourth 
component stores support of all items of (cb). 
The pattern ⟨eacb : 1⟩ is converted into Apx-

Figure 2
Apx-FP-tree of itemset (cb)
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3.2. Mining Approximate Frequent Itemsets 
from Apx-FP-tree
From the above section we know that Apx-FP-tree of 
an itemset X maps all transactions of X, therefore, com-
plete set of supersets containing X can be mined direct-
ly from the Apx-FP-tree without scanning the original 
database. This section presents an approach how to 
mine complete set of AFIs from the Apx-FP-tree.
Example: If we examine the head table of itemset (cb) 
(Figure 2) the supersets containing itemset (cb) can 
be divided into four parts: (1) Candidate AFIs contain 
item d, (2) candidate AFIs contain item a, (3) candidate 
AFIs having item f, and (4) candidate AFIs contain 
item e. The algorithm mines the supersets as follows.
To examine whether itemsets (dcb) is an AFI and to 
generate subsequent supersets of itemsets (dcb). The 
algorithm starts by generating Apx-conditional pat-
terns of (bcd). The Apx-conditional patterns of (dcb) 
are obtained from the Apx-FP-tree of (cb) by traversing 
all nodes of Apx-CP-Table. Each node of Apx-CP-Table 
generates an Apx-conditional pattern. Since Apx-FP-
tree of itemset (cb) include only those transactions 
which have items b and c but not those transactions 
that contain only d but not c and b. Therefore, FP-tree 
(shown in Figure 1) is again traversed for generating 
conditional patterns of d. The algorithm obtains only 
those conditional patterns from FP-tree which contain 
d but not c and b. Item d contains two conditional pat-
terns: ⟨fad : 2⟩, and ⟨d : 2⟩. The pattern ⟨fad : 2⟩ is a prefix 
of previous conditional pattern of b (⟨fadb : 1⟩). There-
fore, after subtracting its support from the conditional 
pattern of b the new support of pattern ⟨fad⟩ becomes 1. 
Note, there is no need to include conditional pattern ⟨d 
: 2⟩ because it has row error-tolerance (33%) and 
the length of pattern is one. Thus, this pattern cannot 
contribute in the support count of itemset (acb) and 
supersets of (acb). This is because, a candidate itemset 
of length four will make the row error-tolerance of this 
pattern equal to 25% which does not qualify εr = 50%. 
The following list shows the Apx-conditional patterns 
obtained from the Apx-CP-Table and FP-tree:
 _ ⟨⟨ef⟩, ⟨sup : 1⟩, ⟨εr = 100%⟩, ⟨c : 1,b : 1⟩⟩,
 _ ⟨⟨ef⟩, ⟨sup : 1⟩, ⟨εr = 50%⟩, ⟨c : 1,b : 0⟩⟩,
 _ ⟨⟨ea⟩, ⟨sup : 1⟩, ⟨εr =100%⟩, ⟨c : 1,b : 1⟩⟩,
 _ ⟨⟨fad⟩, ⟨sup : 1⟩, ⟨εr = 50%⟩, ⟨c : 0,b : 1⟩⟩, and
 _ ⟨⟨fad⟩, ⟨sup : 1⟩, ⟨εr =0%⟩, ⟨c : 0,b : 0⟩⟩,

All conditional patterns of dcb are converted into 
Apx-conditional patterns. Table 3 shows the Apx-con-
ditional patterns of dcb. Last conditional pattern ⟨fad⟩ 
is ignored for including in the count of itemset sup-
port. This is because this pattern has row error-tol-
erance εr = 0% and items c and b are missing from the 
pattern. This makes the row error-tolerance (33%) 
which is less than εr = 50%. Second conditional pat-
tern ⟨ef⟩ is also ignored. This is because it has only 
item c but b and d are missing from the pattern. This 
makes the row error-tolerance (33%) which does not 
quality εr = 50%. All other conditional patterns qualify 
εr = 50%, however, there is no Apx-conditional pattern 
with row error-tolerance equal to εr = 100%. Thus, 
the itemset (dcb) does not qualify absolute itemset 
support, therefore, dcb is an infrequent approximate 
itemset. The algorithm backtracks to itemset (cb) and 
examines the approximate conditions of next super-
set (acb).
Similar to dcb, the Apx-conditional patterns of item-
set (acb) are obtained from the Apx-CP-Table of 
itemset (cb) by traversing all nodes of Apx-CP-Table. 
FP-tree of (Figure 1) is traversed for including condi-
tional patterns of a. This includes transactions which 
contain a but not c and b. Item a contains three con-
ditional patterns: ⟨efa : 1⟩, ⟨ea : 1⟩ and ⟨fa : 2⟩. The pat-
terns ⟨ea : 1⟩ and ⟨fa : 2⟩ are prefix of patterns (⟨eacb : 
1⟩ and ⟨fadb : 1⟩ (see Table 2). The pattern ⟨ea : 1⟩ has 
same support so it is ignored. The support of pattern 
⟨fa : 2⟩ becomes one after subtracting its support from 
the support of pattern ⟨fadb : 1⟩. The following list 
shows the Apx-conditional patterns obtained from 
the Apx-CP-Table of (cb) and FP-tree:
 _ ⟨⟨ef⟩, ⟨sup : 1⟩, ⟨εr = 100%⟩, ⟨c : 1,b : 1⟩⟩,
 _ ⟨⟨ef⟩, ⟨sup : 1⟩, ⟨εr = 50%⟩, ⟨c : 1,b : 0⟩⟩,
 _ ⟨⟨ea⟩, ⟨sup : 1⟩, ⟨εr = 100%⟩, ⟨c : 1,b : 1⟩⟩,
 _ ⟨⟨fa⟩, ⟨sup : 1⟩, ⟨εr = 50%⟩, ⟨c : 0,b : 1⟩⟩,
 _ ⟨⟨fa⟩, ⟨sup : 1⟩, ⟨εr = 0%⟩, ⟨c : 0,b : 0⟩⟩, and
 _ ⟨⟨efa⟩, ⟨sup : 1⟩, ⟨εr =0%⟩, ⟨c : 0,b : 0⟩⟩,

The conditional patterns ⟨fa⟩ (second last) and ⟨efa⟩ are 
ignored for including in the count of itemset support. 
This is because both patterns have row error-tolerance 
εr = 0% and items b and c are missing from the patterns. 
This makes the row error-tolerance 33% which is less 
than εr = 50%. The second conditional pattern ⟨ef⟩ is 
also ignored. This is because this pattern has two miss-
ing items (b and a). This makes the row error-tolerance 
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Apx-Conditional Patterns Discovered from 
 Apx-FP-tree of itemset (cb)

Apx-Conditional Patterns used for Constructing
Apx-FP-tree of (dcb)

⟨⟨ef⟩, ⟨sup:1⟩, ⟨εr=100%⟩, ⟨c:1,b:1⟩⟩ ⟨⟨ef⟩, ⟨sup:1⟩, ⟨εr=67%⟩, ⟨d:0,c:1,b:1⟩⟩

⟨⟨ef⟩, ⟨sup:1⟩, ⟨εr=50%⟩, ⟨c:1,b:0⟩⟩ ⟨⟨ef⟩, ⟨sup:1⟩, ⟨εr=33%⟩, ⟨d:0,c:1,b:0⟩⟩

⟨⟨ea⟩, ⟨sup:1⟩, ⟨εr=100%⟩, ⟨c:1,b:1⟩⟩ ⟨⟨ea⟩, ⟨sup:1⟩, ⟨εr=67%⟩, ⟨d:0,c:1,b:1⟩⟩

⟨⟨fad⟩, ⟨sup:1⟩, ⟨εr=50%⟩, ⟨c:0,b:1⟩⟩ ⟨⟨fa⟩, ⟨sup:1⟩, ⟨εr=67%⟩, ⟨d:1,c:0,b:1⟩⟩

⟨⟨fad⟩, ⟨sup:1⟩, ⟨εr=0%⟩, ⟨c:0,b:0⟩⟩ ⟨⟨fa⟩, ⟨sup:1⟩, ⟨εr=33%⟩, ⟨d:1,c:0,b:0⟩⟩

Table 3
Apx-conditional patterns of itemset (dcb)

Figure 3
Apx-FP-tree of itemset (acb)

  

Apx-Conditional Patterns Discovered from Apx-
FP-tree of itemset (cb) 

Apx-Conditional Patterns used for Constructing 
Apx-FP-tree of (dcb) 

⟨⟨ef⟩, ⟨sup:1⟩, ⟨εr=100%⟩, ⟨c:1,b:1⟩⟩  ⟨⟨ef⟩, ⟨sup:1⟩, ⟨εr=67%⟩, ⟨d:0,c:1,b:1⟩⟩ 
⟨⟨ef⟩, ⟨sup:1⟩, ⟨εr=50%⟩, ⟨c:1,b:0⟩⟩  ⟨⟨ef⟩, ⟨sup:1⟩, ⟨εr=33%⟩, ⟨d:0,c:1,b:0⟩⟩ 
⟨⟨ea⟩, ⟨sup:1⟩, ⟨εr=100%⟩, ⟨c:1,b:1⟩⟩  ⟨⟨ea⟩, ⟨sup:1⟩, ⟨εr=67%⟩, ⟨d:0,c:1,b:1⟩⟩ 
⟨⟨fad⟩, ⟨sup:1⟩, ⟨εr=50%⟩, ⟨c:0,b:1⟩⟩  ⟨⟨fa⟩, ⟨sup:1⟩, ⟨εr=67%⟩, ⟨d:1,c:0,b:1⟩⟩ 
⟨⟨fad⟩, ⟨sup:1⟩, ⟨εr=0%⟩, ⟨c:0,b:0⟩⟩  ⟨⟨fa⟩, ⟨sup:1⟩, ⟨εr=33%⟩, ⟨d:1,c:0,b:0⟩⟩ 

Table 3 Apx-conditional patterns of itemset (dcb). 
 
 

 
Figure 3 Apx-FP-tree of itemset (acb). 

 
 
the length of pattern is one. Thus, this pattern cannot 
contribute in the support count of itemset (acb) and 
supersets of (acb). This is because, a candidate itemset 
of length four will make the row error-tolerance of this 
pattern equal to 25% which does not qualify εr = 50%. 
The following list shows the Apx-conditional patterns 
obtained from the Apx-CP-Table and FP-tree: 

• ⟨⟨ef⟩, ⟨sup : 1⟩, ⟨εr = 100%⟩, ⟨c : 1,b : 1⟩⟩, 
• ⟨⟨ef⟩, ⟨sup : 1⟩, ⟨εr = 50%⟩, ⟨c : 1,b : 0⟩⟩, 
• ⟨⟨ea⟩, ⟨sup : 1⟩, ⟨εr =100%⟩, ⟨c : 1,b : 1⟩⟩, 
• ⟨⟨fad⟩, ⟨sup : 1⟩, ⟨εr = 50%⟩, ⟨c : 0,b : 1⟩⟩, and 
• ⟨⟨fad⟩, ⟨sup : 1⟩, ⟨εr =0%⟩, ⟨c : 0,b : 0⟩⟩, 
 
All conditional patterns of dcb are converted into Apx-
conditional patterns. Table 3 shows the Apx-
conditional patterns of dcb. Last conditional pattern 
⟨fad⟩ is ignored for including in the count of itemset 
support. This is because this pattern has row error-
tolerance εr = 0% and items c and b are missing from 

the pattern. This makes the row error-tolerance (33%) 
which is less than εr = 50%. Second conditional pattern 
⟨ef⟩ is also ignored. This is because it has only item c 
but b and d are missing from the pattern. This makes 
the row error-tolerance (33%) which does not quality 
εr = 50%. All other conditional patterns qualify εr = 
50%, however, there is no Apx-conditional pattern 
with row error-tolerance equal to εr = 100%. Thus, the 
itemset (dcb) does not qualify absolute itemset 
support, therefore, dcb is an infrequent approximate 
itemset. The algorithm backtracks to itemset (cb) and 
examines the approximate conditions of next superset 
(acb). 
 
Similar to dcb, the Apx-conditional patterns of itemset 
(acb) are obtained from the Apx-CP-Table of itemset 
(cb) by traversing all nodes of Apx-CP-Table. FP-tree 
of (Figure 1) is traversed for including conditional 
patterns of a. This includes transactions which contain 

equal to 33% which do not quality εr = 50%. The condi-
tional patterns ⟨ef⟩, ⟨ea⟩ and ⟨fa⟩ qualify εr = 50% which 
makes the approximate itemset support equal to three 
and the itemset qualifies apx_sup = 3.
Table 4 shows the Apx-conditional patterns of item-
set (acb). Itemset (acb) has one Apx-conditional pat-
tern with row error-tolerance equal to 100%. Thus, 
the itemset qualifies minimum absolute itemset sup-
port (ab_sup = 2). The supports of individual items in 
the Apx-conditional patterns are: ⟨b : 3⟩, ⟨c : 2⟩, and ⟨a 
: 2⟩. Each item qualifies column error-tolerance εc = 
50%. Thus, itemset (acb) is an AFI of length three.
Next the algorithm generates supersets of itemset 
(acb) from the Apx-FP-tree of (acb). The superset of 
(acb) are partitioned into following two subsets: (1) 
Candidate AFIs containing item f, and (2) candidate 
AFIs containing item e.

To generate supersets of itemsets (facb) and to exam-
ine the AFI conditions of itemsets (facb). The algo-
rithm obtains the error-tolerance of row and column 
from the Apx-FP-tree of (acb) by traversing all nodes 
of Apx-FP-table (see Figure 1). As Apx-FP-tree of 
itemset (acb) includes only those transactions which 
have items a, c and b but not those which have only f. 
Therefore, FP-tree of (Figure 1) is traversed for ob-
taining conditional patterns of f. This includes trans-
actions which have f but not a, c and b. Item f contains 
two conditional patterns: ⟨ef : 3⟩ and ⟨f : 2⟩. Both con-
ditional patterns are ignored as these are subsets of 
already discovered conditional patterns of items a 
and b and contain similar support. The following list 
shows the Apx-conditional patterns obtained from 
the Apx-CP-Table of itemset (acb) and FP-tree:
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 _ ⟨⟨ef⟩, ⟨sup : 2⟩, ⟨εr = 33%⟩, ⟨a : 1,c : 1,b : 0⟩⟩,
 _ ⟨⟨ef⟩, ⟨sup : 1⟩, ⟨εr = 67%⟩, ⟨a : 0,c : 1,b : 1⟩⟩,
 _ ⟨⟨e⟩, ⟨sup : 1⟩, ⟨εr = 100%⟩, ⟨a : 1,c : 1,b : 1⟩⟩,
 _ ⟨⟨f⟩, ⟨sup : 1⟩, ⟨εr = 33%⟩, ⟨a : 1,c : 0,b : 0⟩⟩, and
 _ ⟨⟨f⟩, ⟨sup : 1⟩, ⟨εr = 67%⟩, ⟨a : 1,c : 0,b : 1⟩⟩,

All patterns are converted into the Apx-conditional 
patterns of itemset (facb) (see Table 5). All Apx-con-
ditional patterns qualify εr = 50%, however, there is 
no Apx-conditional pattern with row error-tolerance 
equal to 100%. The itemset (facb) does not qualify ab-
solute support threshold, therefore, itemset (facb) is 
an infrequent approximate itemset. The algorithm 
backtracks to itemset (acb) and examines the approx-
imate conditions of next superset (eacb).
Similar to (facb), the Apx-conditional patterns of 
itemset (eacb) are obtained by traversing all nodes of 
Apx-FP-table from the Apx-FP-tree of itemset (acb). 
FP-tree of Figure 1 is traversed for obtaining those 
conditional patterns of e which are not yet included in 
the Apx-FP-tree of itemset (acb). Only one condition-
al pattern ⟨e : 1⟩ is not subset of any already included 

conditional pattern. All others are ignored because 
they are subsets of already included conditional pat-
terns. The pattern ⟨e : 1⟩ is ignored as the length of 
pattern is one and the length of candidate itemset is 
four. This makes the row error-tolerance equal to 25% 
which is less than εr = 50%.
The following list shows the Apx-conditional patterns 
obtained from the Apx-CP-Table of itemset (acb) and 
FP-tree:
 _ ⟨⟨⟩, ⟨sup : 2⟩, ⟨εr = 33%⟩, ⟨a : 1,c : 1,b : 0⟩⟩,
 _ ⟨⟨e⟩, ⟨sup : 1⟩, ⟨εr = 67%⟩, ⟨a : 0,c : 1,b : 1⟩⟩,
 _ ⟨⟨e⟩, ⟨sup : 1⟩, ⟨εr = 100%⟩, ⟨a : 1,c : 1,b : 1⟩⟩,
 _ ⟨⟨⟩, ⟨sup : 1⟩, ⟨εr = 33%⟩, ⟨a : 1,c : 0,b : 0⟩⟩, and
 _ ⟨⟨⟩, ⟨sup : 1⟩, ⟨εr = 67%⟩, ⟨a : 1,c : 0,b : 1⟩⟩,

All patterns are converted into the Apx-conditional 
patterns of itemset (eacb) (see Table 6). The second 
last pattern ⟨⟩ is ignored for including in the count of 
itemset support. This is because it has row error-toler-
ance εr = 33% and items e, c and b are missing from the 
pattern. This makes the row error-tolerance equal to 
25% which is less than εr = 50%. All other conditional 

Apx-Conditional Patterns Discovered from  
Apx-FP-tree of itemset (cb)

Apx-Conditional Patterns used for Constructing
Apx-FP-tree of (acb)

⟨⟨ef⟩, ⟨sup:1⟩, ⟨εr=100%⟩, ⟨c:1,b:1⟩⟩ ⟨⟨ef⟩, ⟨sup:1⟩, ⟨εr=67%⟩, ⟨a:0,c:1,b:1⟩⟩

⟨⟨ef⟩, ⟨sup:1⟩, ⟨εr=50%⟩, ⟨c:1,b:0⟩⟩ ⟨⟨ef⟩, ⟨sup:1⟩, ⟨εr=33%⟩, ⟨a:0,c:1,b:0⟩⟩

⟨⟨ea⟩, ⟨sup:1⟩, ⟨εr=100%⟩, ⟨c:1,b:1⟩⟩ ⟨⟨e⟩, ⟨sup:1⟩, ⟨εr=100%⟩, ⟨a:1,c:1,b:1⟩⟩

⟨⟨fa⟩, ⟨sup:1⟩, ⟨εr=50%⟩, ⟨c:0,b:1⟩⟩ ⟨⟨f⟩, ⟨sup:1⟩, ⟨εr=67%⟩, ⟨a:1,c:0,b:1⟩⟩

⟨⟨fa⟩, ⟨sup:1⟩, ⟨εr=0%⟩, ⟨c:0,b:0⟩⟩ ⟨⟨f⟩, ⟨sup:1⟩, ⟨εr=33%⟩, ⟨a:1,c:0,b:0⟩⟩

⟨⟨efa⟩, ⟨sup:1⟩, ⟨εr=0%⟩, ⟨c:0,b:0⟩⟩ ⟨⟨ef⟩, ⟨sup:1⟩, ⟨εr=33%⟩, ⟨a:1,c:0,b:0⟩⟩

Table 4 
Apx-conditional patterns of itemset (acb)

Apx-Conditional Patterns Discovered from  
Apx-FP-tree of itemset (acb)

Apx-Conditional Patterns used for Constructing
Apx-FP-tree of (facb)

⟨⟨ef⟩, ⟨sup:2⟩, ⟨εr=33%⟩, ⟨a:1,c:1,b:0⟩⟩ ⟨⟨e⟩, ⟨sup:2⟩, ⟨εr=50%⟩, ⟨f:2,a:1,c:1,b:0⟩⟩

⟨⟨ef⟩, ⟨sup:1⟩, ⟨εr=67%⟩, ⟨a:0,c:1,b:1⟩⟩ ⟨⟨e⟩, ⟨sup:1⟩, ⟨εr=75%⟩, ⟨f:1,a:0,c:1,b:1⟩⟩

⟨⟨e⟩, ⟨sup:1⟩, ⟨εr=100%⟩, ⟨a:1,c:1,b:1⟩⟩ ⟨⟨e⟩, ⟨sup:1⟩, ⟨εr=75%⟩, ⟨f:0,a:1,c:1,b:1⟩⟩

⟨⟨f⟩, ⟨sup:1⟩, ⟨εr=33%⟩, ⟨a:1,c:0,b:0⟩⟩ ⟨⟨⟩, ⟨sup:1⟩, ⟨εr=50%⟩, ⟨f:1,a:1,c:0,b:0⟩⟩

⟨⟨f⟩, ⟨sup:1⟩, ⟨εr=33%⟩, ⟨a:1,c:0,b:1⟩⟩ ⟨⟨⟩, ⟨sup:1⟩, ⟨εr=75%⟩, ⟨f:1,a:1,c:0,b:1⟩⟩

Table 5
 Apx-conditional patterns of itemset (facb)



637Information Technology and Control 2021/4/50

Apx-Conditional Patterns Discovered  
from Apx-FP-tree of itemset (acb)

Apx-Conditional Patterns used for Constructing
Apx-FP-tree of (eacb)

⟨⟨e⟩, ⟨sup:2⟩, ⟨εr=33%⟩, ⟨a:1,c:1,b:0⟩⟩ ⟨⟨⟩, ⟨sup:2⟩, ⟨εr=50%⟩, ⟨e:2,a:1,c:1,b:0⟩⟩

⟨⟨e⟩, ⟨sup:1⟩, ⟨εr=67%⟩, ⟨a:0,c:1,b:1⟩⟩ ⟨⟨⟩, ⟨sup:1⟩, ⟨εr=75%⟩, ⟨e:1,a:0,c:1,b:1⟩⟩

⟨⟨e⟩, ⟨sup:1⟩, ⟨εr=100%⟩, ⟨a:1,c:1,b:1⟩⟩ ⟨⟨⟩, ⟨sup:1⟩, ⟨εr=100%⟩, ⟨e:1,a:1,c:1,b:1⟩⟩

⟨⟨f⟩, ⟨sup:1⟩, ⟨εr=33%⟩, ⟨a:1,c:0,b:0⟩⟩ ⟨⟨⟩, ⟨sup:1⟩, ⟨εr=25%⟩, ⟨e:0,a:1,c:0,b:0⟩⟩

⟨⟨f⟩, ⟨sup:1⟩, ⟨εr=33%⟩, ⟨a:1,c:0,b:1⟩⟩ ⟨⟨⟩, ⟨sup:1⟩, ⟨εr=50%⟩, ⟨e:0,a:1,c:0,b:1⟩⟩

Table 6
Apx-conditional patterns of itemset (eacb)

patterns qualify εr = 50% which make the approximate 
itemset support equal to five, thus, the itemset (eacb) 
qualifies the minimum apx_sup = 3. Table 6 shows the 
Apx-conditional patterns of (eacb). Itemset (eacb) 

has one Apx-conditional pattern with row error-tol-
erance equal to 100%. Thus, itemset (eacb) qualifies 
minimum absolute itemset support. The supports 
of individual items obtained from the Apx-condi-
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Database Number of Transactions Number of Items Avg. Transaction Length

Retail 88,162 16,470 10

BMSWebView1 59,601 497 3

FoodMart 4,141 1,559 4

T10I4D100K 100,000 870 11

Table 7
Properties of databases

  

 
 

 
 
tional patterns of (eacb) are: ⟨b : 3⟩, ⟨c : 3⟩, ⟨a : 3⟩, and  
⟨e : 4⟩. All items qualify column error-tolerance εc = 
50%. Thus, (eacb) is an AFI of length four. All candi-
date supersets of itemset (acb) have been generated. 
The algorithm now backtracks to itemset (cb) and ex-
amines the approximate conditions of next superset 
fcb. Similar to the working example of itemset (acb) 
presented in above section, the algorithm generates 
remaining AFIs by generating recursive Apx-FP-
trees, and then performs mining on them, respective-
ly. Algorithm 1 and Algorithm 2 present pseudo code 
to mine AFIs using pattern growth approach.

4. Experiments
This section compares the performance of (Apx-Pat-
ternGrowth) with the best related AFI mining algo-
rithms on one synthetic and three real benchmark da-
tabases. The databases are T10I4D100K, FoodMart, 
and BMSWebView1. These databases have been 
frequently in FIM articles for performance analysis 
of algorithms. The databases are freely available to 
download from the FIM repository (http://fimi.ua.ac.
be). Table 7 shows the properties of databases. The 

columns of Table 7 show size of databases, average 
transaction length, and the number of frequent items. 
The performance of Apx-PatternGrowth is com-
pared with CoreApriori [10-11], AC-Close [10-11] and 
Apx-MultiTree [25]. CoreApriori is similar to AC-
Close, however, it applies Apriori-based candidate 
generation and test approach for generating lattice 
of core patterns. CoreApriori then examines the AFI 
conditions of core patterns in lattice with top-down 
approach starting from the largest pattern and pro-
ceeds level by level, in the size decreasing order of 
core patterns. CoreApriori is not efficient since it gen-
erates exponential number of candidate itemsets and 
requires multiple scan of database for counting item-
sets support. AC-Close also mines AFIs by generating 
lattice of core patterns. However, AC-Close mines core 
patterns using pattern growth. The pattern growth 
reduces the number of candidate itemsets. However, 
both CoreApriori and AC-Close examine the support 
of itemsets and error-tolerance of row and column 
with multiple scans of database. 
Apx-MultiTree is a tree based approach. Apx-Multi-
Tree is not efficient in terms of calculating support 
of itemsets from the FP-tree as it maps similar set of 
transactions on multiple FP-trees when the trans-
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Database Number of Transactions εr εc apx_sup abs_sup

Retail 88,162 50% 50% 0.01% to 0.11%

BMSWebView1 59,601 50% 50% 0.03% to 0.23%

FoodMart 4,141 50% 50% 0.01% to 0.07%

T10I4D100K 100,000 50% 50% 0.05% to 0.55%

Table 8
Characteristics of experiment settings

actions have different percentages of missing items. 
The implementations of CoreApriori, AC-Close and 
Apx-MultiTree are not available from the authors, 
therefore, we implement all algorithms in C++. All 
experiments are executed on MacBook Pro 3.2 GHz 
processor with processor speed of 2.7 GHz and 8GB 
of RAM. Various values of approximate and absolute 
itemset supports are used for performance analysis 
with the error-tolerance percentages of row and col-
umn εr = 50% and εc = 50%. Table 8 shows the settings 
of parameters. 
We analyze the performance of AFI mining algo-
rithms with the following three aspects. 
 _ In first aspect, we compare all algorithms in term 

of how much processing time the algorithms 
consume for mining complete set of AFIs. 

 _ In second aspect, we compare the performance of 
algorithms on varying database size. This helps us 
to understand the scalability analysis of algorithms. 

 _ In third aspect, we compare the performance of 
algorithms on subsets of databases with varying 
transaction size. 

To analyze the performance of AFI algorithms on 
varying database size, we generate subsets of data-
base containing 10,000 to 90,000 transactions. For 
building subsets, the T10I4D100K and Retail are par-
titioned into five subsets. The size of each subset is 
30k transactions by including random 30,000 trans-
actions from the original database. The first subset 
contains only the transactions that have length be-
tween 1 to 10. The second subset contains transac-
tions of length between 11 to 20. Third, fourth and 
fifth subsets contain transaction of length between 
21 to 30, 31 to 40 and 41 to 50 respectively. We per-
form experiments with second and third aspects only 
on Retail and T10I4D100K databases. The reason 

to select only these databases is both databases are 
sparse and have varying length of transactions. All al-
gorithms are executed over the subsets with similar 
values of approximate support thresholds. 
Figures 4-7 show the performance of algorithms in 
terms of processing time. Note that the processing 
time of an algorithm is the total execution time from 
providing input to the algorithm and mining com-
plete set of AFIs. On low (support) thresholds all al-
gorithms consume very long execution time. We stop 
the execution of algorithm when it takes more than 
2300 seconds. 
Figures 4-7 show the processing time of algorithms on 
Retail, BMSWebView1, FoodMart and T10I4D100K. 
Figures 9 and 11 show the performance of algorithms 
on varying database size. Figures 8 and 10 show the 
performance of algorithms on varying average trans-
action length. 
Figures 4, 8 and 9 provide performance of all algo-
rithms on Retail database. The results show Apx-Pat-
ternGrowth mines complete set of itemsets in less 
processing time than CoreApriori, AC-Close, and 
Apx-MultiTree. On databases with long transactions, 
the performance of Apx-PatternGrowth is scalable 
which is challenging for the CoreApriori and AC-
Close to complete the processing within a reasonable 
time. The Apx-PatternGrowth is scalable as it maps 
transactions on FP-tree and applies pattern growth 
for generating candidate itemsets that exists on the 
branches of FP-tree. FP-tree maps the transactions 
on similar branches when the transactions share 
similar set of items. This explains, why the Apx-Pat-
ternGrowth computes the approximate conditions of 
itemsets in less processing time even when the data-
bases are large and support thresholds are low. 
If we compare the results on T10I4D100K, 
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Figure 5
Performance of AFI mining algorithms on BMSWebView1 
with εr = 50% and εc = 50%

Figure 6
Performance of AFI mining algorithms on T10I4D100K 
with εr = 50% and εc = 50%

Figure 7
Performance of AFI mining algorithms on FoodMart with 
εr = 50% and εc = 50%

  

We analyze the performance of AFI mining 
algorithms with the following three aspects.  
 
• In first aspect, we compare all algorithms in 

term of how much processing time the 
algorithms consume for mining complete set 
of AFIs.  

• In second aspect, we compare the 
performance of algorithms on varying 
database size. This helps us to understand 
the scalability analysis of algorithms.  

• In third aspect, we compare the performance 
of algorithms on subsets of databases with 
varying transaction size.  

 
To analyze the performance of AFI algorithms on 
varying database size, we generate subsets of 
database containing 10,000 to 90,000 transactions. 
For building subsets, the T10I4D100K and Retail 
are partitioned into five subsets. The size of each 
subset is 30k transactions by including random 
30,000 transactions from the original database. The 
first subset contains only the transactions that 
have length between 1 to 10. The second subset 
contains transactions of length between 11 to 20. 
Third, fourth and fifth subsets contain transaction 
of length between 21 to 30, 31 to 40 and 41 to 50 
respectively. We perform experiments with 
second and third aspects only on Retail and 
T10I4D100K databases. The reason to select only 
these databases is both databases are sparse and 
have varying length of transactions. All algorithms 
are executed over the subsets with similar values 
of approximate support thresholds.  
 
Figures 4-7 show the performance of algorithms in 
terms of processing time. Note that the processing 
time of an algorithm is the total execution time 
from providing input to the algorithm and mining 
complete set of AFIs. On low (support) thresholds 
all algorithms consume very long execution time. 
We stop the execution of algorithm when it takes 
more than 2300 seconds.  
 

 
Figure 4 Performance of AFI mining algorithms on 

Retail with εr = 50% and εc = 50%. 

Figure 5 Performance of AFI mining algorithms on 
BMSWebView1 with εr = 50% and εc = 50%. 

 
 Figure 6 Performance of AFI mining algorithms on 

T10I4D100K with εr = 50% and εc = 50%. 

FoodMart and BMSWebView1 databases, then sim-
ilar to Retail database, the Apx-PatternGrowth 
mines AFIs in less processing time than other al-
gorithms on different support thresholds. We not-
ed, on low support thresholds the CoreApriori, AC-
Close, and Apx-MultiTree could not mine all AFIs 
within 2300 seconds. On large databases, CoreAp-
riori generates large combinations of candidate 
itemsets including those that do not available in the 
database. The combinations become exponential 
when the number of frequent items of database are 
very large. Also, CoreApriori does not provide any 
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facility to compress the transactions when trans-
actions share a common set of items. Therefore, 
CoreApriori spends large amount of processing 
time on examining approximate conditions of item-
sets. Apx-MultiTree takes less processing time than 
CoreApriori. This is because Apx-MultiTree applies 
pattern growth approach for generating itemsets 
and counting itemsets support. Whereas CoreApri-
ori is an Apriori-based candidate generate approach 
and it generates exponential number of candidate 
itemsets. AC-Close takes less processing time than 
CoreApriori because it generates lattice of core pat-
terns using pattern growth approach. 
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Figure 8
Scalability of AFI mining algorithms on Retail with 
varying transaction length and εr = 50% and εc = 50% and 
apx_sup = 0.09%

Figure 9
Scalability of AFI mining algorithms on Retail with 
varying transaction size and εr = 50% and εc = 50% and 
apx_sup = 0.09%

Figure 10
Scalability of AFI mining algorithms on T10I4D100K with 
varying transaction length and εr = 50% and εc = 50% and 
apx_sup = 0.50%

Figure 11
Scalability of AFI mining algorithms on T10I4D100K with 
varying transaction size and εr = 50% and εc = 50% and 
apx_sup = 0.50%
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5. Conclusion
In this article, we presented a novel algorithm 
Apx-PatternGrowth for storing approximate trans-
actions and mining approximate frequent itemsets 
(AFI) in noisy databases. The Apx-PatternGrowth has 
several advantages over existing Apriori-based AFI 
mining algorithms: (1) It maps approximate transac-
tions on a highly compressed data structure, approx-
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imate FP-tree which maps transactions on common 
branches when multiple transactions share similar 
set of items. Thus, the size of database during item-
set mining becomes substantially  small which helps 
in efficiently computing support of itemsets. (2) The 
mining approach of proposed algorithm is not Apri-
ori-based because the proposed algorithm generates 
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candidate itemsets from conditional patterns of Apx-
FP-tree by applying pattern-growth approach. This 
substantially reduces the combinations of candidate 
itemsets as the pattern-growth makes sure the algo-
rithm never generates any candidate itemset which 
does not exist in the transactions of database. We im-
plemented and analyzed the performance of Apx-Pat-
ternGrowth with the existing AFI mining algorithms 
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