
627Information Technology and Control 2021/4/50

Mining Approximate
Frequent Itemsets Using
Pattern Growth Approach

ITC 4/50
Information Technology
and Control
Vol. 50 / No. 4 / 2021
pp. 627-644
DOI 10.5755/j01.itc.50.4.29060

Mining Approximate Frequent Itemsets Using Pattern Growth Approach

Received 2021/05/06 Accepted after revision 2021/10/25

 http://dx.doi.org/10.5755/j01.itc.50.4.29060

HOW TO CITE: Bashir, S., Lai, D. T. C. (2021). Mining Approximate Frequent Itemsets Using Pattern Growth Approach. Information
Technology and Control, 50(4), 627-644. https://doi.org/10.5755/j01.itc.50.4.29060

Corresponding author: shariq.bashir@ubd.edu.bn

Shariq Bashir
Institute of Applied Data Analytics (IADA), Universiti Brunei Darussalam (UBD), shariq.bashir@ubd.edu.bn

Daphne Teck Ching Lai
School of Digital Sciences (SDS), Universiti Brunei Darussalam (UBD), daphne.lai@ubd.edu.bn

Approximate frequent itemsets (AFI) mining from noisy databases are computationally more expensive than
traditional frequent itemset mining. This is because the AFI mining algorithms generate large number of can-
didate itemsets. This article proposes an algorithm to mine AFIs using pattern growth approach. The major
contribution of the proposed approach is it mines core patterns and examines approximate conditions of can-
didate AFIs directly with single phase and two full scans of database. Related algorithms apply Apriori-based
candidate generation and test approach and require multiple phases to obtain complete AFIs. First phase gen-
erates core patterns, and second phase examines approximate conditions of core patterns. Specifically, the ar-
ticle proposes novel techniques that how to map transactions on approximate FP-tree, and how to mine AFIs
from the conditional patterns of approximate FP-tree. The approximate FP-tree maps transactions on shared
branches when the transactions share a similar set of items. This reduces the size of databases and helps to
efficiently compute the approximate conditions of candidate itemsets. We compare the performance of our al-
gorithm with the state of the art AFI mining algorithms on benchmark databases. The experiments are ana-
lyzed by comparing the processing time of algorithms and scalability of algorithms on varying database size and
transaction length. The results show pattern growth approach mines AFIs in less processing time than related
Apriori-based algorithms.
KEYWORDS: Approximate Frequent Itemset Mining, Frequent Itemset Mining, Pattern Growth, Association
Rules Mining.

Information Technology and Control 2021/4/50628

1. Introduction
Mining frequent itemsets from databases is an im-
portant data mining task. It has many practical appli-
cations including document clustering [15, 40], social
network analysis [23, 34], market basked analysis
[17], fraud detection [14], bioinformatics [13, 28, 33],
mining patterns from web logs [22, 38]. The concept
of mining frequent itemsets and generating associa-
tion rules form the frequent itemsets was proposed by
[1]. In the last 20 years there have been lot of research
in developing different techniques to efficiently mine
frequent itemsets from transactional databases. (Han
et al., 2000) proposed pattern-growth approach for
mining frequent itemsets from FP-tree. Kosters et al.,
[26] applied depth-first search for Apriori. Bodon et
al., [6] and Liu et al., [29] proposed fast implementa-
tion techniques for Apriori and pattern-growth. Uno
et al., [36], Vo et al., [37], and Chen et al., [9] proposed
algorithms to mine different variations of frequent
itemsets such as maximal, probabilistic maximal and
closed. Burdick et al., [7] proposed bit-vector tech-
nique for mapping frequent items on bit-vectors. Gan
et al., [16] proposed an algorithm to mine frequent
itemsets from multiple minimum supports. Chen et
al., [8] proposed an algorithm to efficiently mine fre-
quent itemsets from small-scale datasets.
The main limitation of traditional frequent itemset
mining (FIM) concept is that it can be only use to dis-
cover itemsets that are absolutely matched in the data-
base. It cannot mine useful itemsets that are noisy or
have missing items due to real world data distributions
[39]. From noisy databases it is difficult to provide sup-
port thresholds for mining expected set of frequent
itemsets. For instance, mining frequent itemsets with
high support discovers only small set of short length
patterns, and small support discovers exponential set
of two and three length itemsets [12, 21, 35].
For mining useful itemsets from noisy databases, Liu
et al., [30] proposed the concept of mining approxi-
mate frequent itemsets (AFI). The following prop-
erties describe the concept of mining AFIs from the
transactional databases [10-11].
 _ An itemset X is an AFI under error-tolerance

percentage of row and column (εr > 0%) and (εc > 0%),
if X appears in at least T number of approximate
and α(T) number of absolute transactions.

 _ A transaction is an approximate transaction if it
contains at least εr percent of items of X.

 _ X is a core pattern if the absolute support of X is
equal or greater than minimum absolute support
(abs_sup).

 _ Every single item of X should has support of at least
εc percent of approximate transactions of X.

The following example describes the difference be-
tween absolute and approximate matching itemsets.
Table 1 provides a transactional database with nine
transactions containing six items. To discover fre-
quent itemsets with min_sup = 3, the absolute match-
ing algorithm cannot discover any itemset with length
greater than two items. The algorithm mines many
itemsets with length less than three items. These
short length itemsets cannot be used for discovering
generalized knowledge from the databases. However,
if the user tries to mine itemsets using AFI concept
by slightly relaxing the notion of traditional concept
of FIM. The AFI mining algorithm can discover long
length itemsets with high support. Even though, these
itemsets are not exactly matched in the transactions,
but contain high support. For example, the item-
set (efcb) is an AFI of length four and has support 3.
The transactions 10, 20, and 50 contain three out of
four items of efcb and every single item of (efcb) is ap-
peared in at least two transactions (10, 20, and 50).
This approximate match mining concept is appealing
in this way that it discovers long length frequent item-
sets. This strategy motivates researchers to develop
algorithms for mining complete AFIs [10-11, 30].
Given the AFI mining properties (presented above),
if we apply the properties on the dataset of Table 1.
Suppose the support threshold are (apx_sup) = 3,
(abs_sup) = 1. The row and column error-tolerance
percentages are (εr = 75%) and (εc = 65%). The itemset
X = (efcb) is a core pattern since the absolute support
of efcb is one in transaction 10. The itemset (efcb) is
also an AFI as it is three out of four items are appeared
in the approximate transactions 10, 20 and 50. This
qualifies εr = 75%. Also, each single item e, f, c and b is
appeared in at least two transactions. This qualifies εc

= 65% threshold.
Previous state of the art AFI mining algorithms mine
AFIs with two phases. In first phase, the complete
set of core patterns are discovered by applying Ap-
riori-based candidate generation and test approach.

629Information Technology and Control 2021/4/50

Once core patterns are available, the algorithms ex-
amine the AFI properties of core patterns for count-
ing items and itemsets support with multiple full
scans of database. Mining core patterns using Ap-
riori-based approach are not performance efficient
when the databases are dense or spare. In the follow-
ing paragraph, we provide main limitations of gener-
ating core patterns using Apriori-based approach.
 _ Apriori-based algorithm mines complete set of

core patterns using candidate generation and test
approach. The main limitation of this approach is
that if the size of database is large then this approach
generates exponential combinations of candidate
itemsets. For example, if the database contains
300 frequent items, the Apriori-based approach
generates and test all 2300 candidate itemsets.

 _ Apriori-based algorithm generates candidate
itemsets by applying bottom-up search space
exploration on frequent items. This means the
algorithm exponentially generates and tests all the
2X subsets of an itemset X before producing X. This
complexity is not suitable for the databases that
have large number of frequent items.

 _ To examine AFI conditions of core patterns,
the Apriori-based algorithm scans the original
database multiple times for calculating supports
of itemsets and items. These scans consume large
processing time when the number of core patterns
to mine are exponential and size of database is
large.

Table 1
A sample transactional database

TID Items (Ordered) Frequent
Items

10 b , c , e , f e , f , c , b

20 c , e , f e , f , c

30 a , d , f f , a, d

40 e e

50 a , b , c , e e , a , c , b

60 a , e , f e , f , a

70 b , a , d, f f , a , d, b

80 d d

90 d d

This article proposes a new approach to mine com-
plete set of AFIs using pattern growth approach
(Apx-PatternGrowth). The pattern growth is a divide
and conquer technique. It recursively divides the big
database into small subsets and mines complete set
of AFIs from the smaller subsets by generating can-
didate itemsets that exist only in the subsets. This
prunes the combinations of itemsets that are not
available in the transactions [18-20]. The major ad-
vantage of proposed approach is that it mines the core
patterns and examines the approximate conditions of
core patterns directly with one phase and two scans
of database. Related AFI mining algorithms require
two phases for obtaining AFIs. First phase generates
core patterns, and second phase examines approx-
imate conditions of core patterns. In the first scan
of database, the Apx-PatternGrowth mines all one
length frequent items and prunes infrequent items.
In the second scan, the Apx-PatternGrowth maps
all transactions of database on frequent pattern tree
(FP-tree). The frequent items of database are mapped
on the nodes of FP-tree, and transactions are mapped
on the branches of FP-tree. If multiple transactions
share common prefix, the shared items are mapped
on a single branch and the support (frequency) of
shared subset is mapped on the nodes of FP-tree. The
pattern growth explores the AFIs using depth first
search order. All subsets of an itemset are obtained
by generating conditional patterns from the branch-
es of FP-tree. The frequent items in the conditional
patterns generate recursive child FP-trees. The child
FP-trees generate AFIs of next level. We perform
experiments on benchmarks datasets and compare
the performance of our algorithm with the related
algorithms. Our experiments show the Apx-Pattern-
Growth mines complete AFIs in less processing time
than related algorithms.
The rest of article is organized as follows. In Section 2
we provide a detailed review of related algorithms on
mining AFIs and explain how our approach is differ-
ent to related algorithms. Section 3 provides formal
definition of mining AFIs and presents how to map
approximate transactions on FP-tree and how to ap-
ply pattern growth approach for mining complete set
of AFIs. Section 4 presents the details of benchmark
datasets and compares the performance of AFI min-
ing algorithms. In Section 5 we present key findings of
the proposed algorithm.

Information Technology and Control 2021/4/50630

2. Related Work
Related state of the art algorithms mine complete
set of AFIs using two phases. In first phase, the algo-
rithms apply Apriori-based candidate generation and
test approach for generating complete set of core pat-
terns. In second phase, the approximate conditions of
core patterns are examined for generating AFIs. The
Apriori-based algorithms prune infrequent search
space by applying anti-monotone heuristic of Apriori
on the core patterns [10-11]. The main limitations of
Apriori-based algorithms are: These algorithms gen-
erate large number of candidate itemsets that do not
exist in the database, and require multiple scans of
database for examining the approximate conditions
of itemsets.
Cheng et al., [10-11] proposed AC-Close algorithm.
AC-Close applies top down complete search space
exploration for building lattice of core patterns.
Intuitively, an itemset X is a core pattern if the ab-
solute support of α(X) in the noisy database is not
less than minimum abs_sup. AC-Close then mines
complete AFIs from the lattice of core patterns by
starting with the largest pattern and proceeds level
by level in the size decreasing order of core patterns.
AC-Close discards infrequent approximate itemsets
by applying anti-monotone heuristic of Apriori on
the infrequent itemsets. The anti-monotone heuris-
tic of Apriori does not generate supersets of an item-
set when the itemset is found infrequent. AC-Close
is not performance efficient for the databases having
large number of transactions as it requires multiple
full scans of database for examining approximate
conditions of AFIs. The other drawback of AC-Close
is it generates candidate itemsets by applying bot-
tom-up search space exploration. This means the
algorithm exponentially generates and tests all the
2X subsets of itemset X before producing X. This gen-
erates many candidate itemsets that actually do not
exist in the database. This complexity is not suitable
for the databases when the number of itemsets to be
mined are exponential.
Bashir et al., [3-5], and Koh et al., [25] proposed algo-
rithms for mining fault-tolerant frequent itemsets.
The concept of fault-tolerant FIM is similar to AFIs,
however, fault-tolerant FIM keeps the row error-tol-
erance of itemsets fixed regardless of the length of
itemset. Thus, fault-tolerant FIM discovers different

set of approximate frequent itemsets. Our proposed
algorithm discoverers AFIs using the core patterns
concept as explained in [10-11]. Thus, the processing
time of our algorithm cannot be directly comparable
with the fault-tolerant FIM algorithms.
To avoid costly repeatedly scanning of database, Koh
et al., [25] proposed a tree based approach for mining
AFIs. At each iteration, the proposed algorithm con-
structs multiple FP-trees for mining AFIs. For ex-
ample, to mine all supersets containing itemset (ab)
under row error-tolerance of εr = 50%, the algorithm
constructs four FP-trees. The first FP-tree maps only
those transactions of database which have both item a
and item b. The second FP-tree maps all those trans-
actions, which have item a but not item b. The third
FP-tree maps transactions which have only item b.
The last FP-tree maps all those transactions, which
have missing both items. The main limitation of pro-
posed algorithm is it maps the transactions on multi-
ple FP-trees even if the transactions share similar set
of items. Thus, the algorithms cannot gain actual per-
formance of pattern growth during support counting
of items and itemsets. The algorithm also consumes
large memory and difficult to fit in the memory during
AFI mining. Our proposed pattern growth algorithm
does not construct multiple FP-trees. The proposed
algorithm maps all transactions of a database on a
single FP-tree even if the transactions have different
percentage of row error-tolerance. The proposed al-
gorithm is scalable on large databases and consumes
less memory than the Koh et al., [25] approach.
To mine interesting AFIs in a reasonable processing
time, researchers have proposed alternative heuris-
tics (such as proportional [27, 31] and high utility [2]
AFIs mining). Although, these heuristics mine inter-
esting AFIs in less processing time, however, provide
no guarantee on the completeness of the search as
only imprecise mining results are obtained. Our pro-
posed algorithm mines AFIs using the concept of core
patterns [10-11] by exploring complete search space
of candidate itemsets. Thus, mines complete AFIs.
As the search space requirements of proportional and
high utility heuristics are different to the proposed
algorithm, therefore, it is not suitable to directly com-
pare the performance of our algorithm with the AFI
mining heuristics.

631Information Technology and Control 2021/4/50

Lee et al., [28] applied proportional AFIs for mining
patterns from bioinformatics. Liu et al., [31-32] pro-
posed heuristics for mining proportional AFIs. In ex-
periments they showed the heuristics quickly mine
itemsets within the acceptable error than the exact
matching algorithm. All studies on the proportional
AFIs are Apriori-based algorithms. However, no ef-
fort has been investigated how to utilize the concept
of pattern growth to mine itemsets, and how to reduce
processing of itemsets support counting. In this work
we investigate how to map approximate transactions
on the FP-tree and how to mine complete set of AFIs
by recursively generating conditional patterns from
the FP-tree.

3. Mining Approximate Frequent
Itemsets Using Pattern Growth:
Design and Construction
Given user defined row and column error-tolerance
percentages ((εr > 0%) and (εc > 0%)), an itemset X is
an AFI if it appears in at least T number of approxi-
mate transactions and α(T) number of absolute trans-
actions, and satisfies the following two conditions.
 _ A transaction t is an approximate transaction of T

under (εr > 0%) if it contains at least εr percent of
items of X.

 _ T is the support of X, which must not be less than
minimum approximate itemset support (apx_sup).
Each individual item of X must has support of at
least εc percent of approximate transactions of X.

Given the AFI mining conditions explained above if
we look again at the database of Table 1. Suppose the
(εr = 75% and the (εc = 65%). The itemset X = (efcb) is
a frequent AFI since its 75% of items are available in
transactions 10, 20 and 50. This qualifies (εr = 75%),
and each single item e, f, c and b is available in at least
65% transactions with qualifies (εc = 65%) threshold.
The proposed algorithm mines itemsets using pattern
growth approach. The pattern growth requires FP-
tree to generate itemsets. FP-Tree is a tree-like data
structure. It maps complete transactions of a database
on the branches of tree [18-20]. Nodes of tree map
items of transactions and branches map transactions
of database. The transactions that share a common
subset of items are mapped on the shared branches
and the frequency of shared subset is mapped on the
nodes of FP-tree. The pattern growth is then applied
on the FP-tree for mining complete AFIs. The sup-
ersets of an itemset are obtained by generating con-
ditional patterns from the branches of FP-tree. The
conditional patterns generate recursive FP-trees. The
recursive FP-trees discover candidate AFIs of next
level. For generating conditional patterns of items, all
nodes of items are linked together by making a linked

Figure 1 FP-tree after mapping all transactions of database.

constructed for storing head pointers of items. The
head pointers facilitate tree traversal. One main
advantage of FP-tree is it generates only those
candidate itemsets that exist in the candidate
patterns. Thus, it prunes the candidate itemsets that
do not exist in the database. Furthermore, the
approximate conditions of itemsets such as itemsets
support and item supports are computed directly
from the conditional patterns. This improves the
scalability of algorithm on big databases.

Example: Table 1 shows a transactional database.
Let the error-tolerance percentages of row and
column are (εr = 50%) and (εc = 50%). Let the
approximate and absolute itemset supports are
(apx_sup = 3) and (abs_sup = 1).
The algorithm scans the database and removes
infrequent items from the transactions that have
support less than abs sup. The list of frequent items
with their support is ⟨ (e : 5),(f : 5),(a : 4),(d : 4),(c : 3),(b
: 3) ⟩. Items of the transactions are reordered by
following the decreasing frequency order of items.
The algorithm again scans the database and
constructs initial FP-tree. The transactions are
mapped one by one on the branches of FP-tree. If
multiple transactions share a common prefix, the
shared prefix is mapped only one time on the FP-
tree. Figure 1 shows the FP-tree of database (Table
1).

3.1. Constructing Approximate (FP-tree)
The algorithm mines the complete set of AFIs from
the Apx-FP-tree (Approximate frequent itemset
tree). The Apx-FP-tree is similar to FP-tree. The only
difference between Apx-FP-tree and traditional FP-
tree is that Apx-FP-tree maps approximate
conditional (Apx-conditional) patterns on the tree.
This helps in pruning infrequent AFIs that are not
available in the database.

A conditional pattern is called an Apx-conditional
pattern if it contains εr items of an itemset X. The
Apx-conditional pattern has four components. The
first component stores list of items that can be used
for generating supersets of X. The first component is
mapped on the branch of Apx-FP-tree. The second
component stores support of pattern. Third
component stores row error-tolerance that the
pattern contains how many items of X. Fourth
component stores frequencies of all items of X. The
fourth component stores error-tolerance of items.
The Apx-FP-tree contains Apx-conditional pattern
tables (ApxCP-Table) on the leaves to map
components of Apx-conditional patterns. Each Apx-
CP-Table contains three columns. Components
second, third, and fourth of Apx-conditional
patterns are mapped on the first, second and third
column of Apx-CP-Tables.

Figure 1
FP-tree after mapping all transactions of database

Information Technology and Control 2021/4/50632

list, and a header table is constructed for storing head
pointers of items. The head pointers facilitate tree
traversal. One main advantage of FP-tree is it gener-
ates only those candidate itemsets that exist in the
candidate patterns. Thus, it prunes the candidate
itemsets that do not exist in the database. Further-
more, the approximate conditions of itemsets such
as itemsets support and item supports are computed
directly from the conditional patterns. This improves
the scalability of algorithm on big databases.
Example: Table 1 shows a transactional database.
Let the error-tolerance percentages of row and col-
umn are (εr = 50%) and (εc = 50%). Let the approximate
and absolute itemset supports are (apx_sup = 3) and
(abs_sup = 1).
The algorithm scans the database and removes infre-
quent items from the transactions that have support
less than abs sup. The list of frequent items with their
support is ⟨ (e : 5),(f : 5),(a : 4),(d : 4),(c : 3),(b : 3) ⟩. Items
of the transactions are reordered by following the
decreasing frequency order of items. The algorithm
again scans the database and constructs initial FP-
tree. The transactions are mapped one by one on the
branches of FP-tree. If multiple transactions share a
common prefix, the shared prefix is mapped only one
time on the FP-tree. Figure 1 shows the FP-tree of da-
tabase (Table 1).

3.1. Constructing Approximate (FP-tree)
The algorithm mines the complete set of AFIs from the
Apx-FP-tree (Approximate frequent itemset tree). The
Apx-FP-tree is similar to FP-tree. The only difference
between Apx-FP-tree and traditional FP-tree is that
Apx-FP-tree maps approximate conditional (Apx-con-
ditional) patterns on the tree. This helps in pruning
infrequent AFIs that are not available in the database.
A conditional pattern is called an Apx-condition-
al pattern if it contains εr items of an itemset X. The
Apx-conditional pattern has four components. The
first component stores list of items that can be used
for generating supersets of X. The first component is
mapped on the branch of Apx-FP-tree. The second
component stores support of pattern. Third compo-
nent stores row error-tolerance that the pattern con-
tains how many items of X. Fourth component stores
frequencies of all items of X. The fourth component
stores error-tolerance of items. The Apx-FP-tree con-
tains Apx-conditional pattern tables (ApxCP-Table)

on the leaves to map components of Apx-conditional
patterns. Each Apx-CP-Table contains three columns.
Components second, third, and fourth of Apx-condi-
tional patterns are mapped on the first, second and
third column of Apx-CP-Tables.
To mine complete AFIs, the algorithm generates Apx-
FP-Tree for all possible combinations of two length
itemsets by including only frequent items. Then, the
Apx-conditional patterns obtained from the Apx-FP-
trees of two length itemsets are used for generating
supersets of two length itemsets. The approximate
itemset support and error-tolerance percentages of
itemsets are counted directly from the Apx-condi-
tional patterns of Apx-FP-trees.
Example: For example, to construct Apx-FP-tree of
itemset X = (cb) with error-tolerance percentage of
row (εr = 50%) and column (εc = 50%). The algorithm
generates conditional patterns of items b and c.
 _ Item b contains three conditional patterns: ⟨efcb :

1⟩, ⟨eacb : 1⟩, and ⟨fadb : 1⟩. The algorithm converts
these conditional patterns into Apx-conditional
patterns. The patterns ⟨efcb : 1⟩ and ⟨eacb : 1⟩ are
Apx-conditional patterns with row error-tolerance
of 100% because both items c and b are present
in the patterns. The pattern ⟨fadb : 1⟩ is an Apx-
conditional pattern with row error-tolerance of
50% because the pattern does not contain item c.

 _ The pattern ⟨⟨ef⟩, ⟨sup : 1⟩, ⟨εr = 100%⟩, ⟨c : 1,b : 1⟩⟩ is
the Apx-conditional pattern of ⟨efcb : 1⟩. It has four
components. The first component stores list of
items that can be used for generating supersets of
itemset (cb). The second component stores support
of pattern. The third component contains ⟨εr =
100%⟩ which indicates all items of (cb) are present.
The fourth component stores support of all items
of (cb). The pattern ⟨eacb : 1⟩ is converted into
Apx-conditional pattern ⟨⟨ea⟩, ⟨sup : 1⟩, ⟨εr = 100%⟩,
⟨c : 1,b : 1⟩⟩. The pattern ⟨fadb : 1⟩ is converted into
Apx-conditional pattern ⟨⟨fad⟩, ⟨εr = 50%⟩, ⟨c : 0,b :
1⟩⟩. Figure 2 shows the Apx-FP-tree of item cb.

 _ The initial FP-tree is again scanned for generating
conditional patterns of item c. The following two
conditional patterns are generated from the FP-
tree: ⟨efc : 2⟩ and ⟨eac : 1⟩. If the conditional pattern
(cX) of any next item is a subset of former item, then
the support of cY is subtracted from the support
of cX. If the support of cX becomes zero, then the
conditional pattern cX is ignored. Following this

633Information Technology and Control 2021/4/50

Item Conditional Patterns Apx-Conditional Patterns

b efcb : 1 (⟨⟨ef⟩, ⟨sup:1⟩, ⟨εr=100%⟩, ⟨c:1,b:1⟩⟩)

b eacb : 1 (⟨⟨ea⟩, ⟨sup:1⟩, ⟨εr=100%⟩, ⟨c:1,b:1⟩⟩)

b fadb : 1 (⟨⟨fad⟩, ⟨sup:1⟩, ⟨εr=50%⟩, ⟨c:0,b:1⟩⟩)

c efc : 2 (⟨⟨ef⟩, ⟨sup:1⟩, ⟨εr=50%⟩, ⟨c:1,b:0⟩⟩)

c eac : 1 Ignored, as it is prefix of pattern (eacb : 1). The support of eac : 1 becomes zero after
subtracting its support from the support of eacb : 1.

Table 2
Conditional patterns obtained from the FP-tree and Apx-conditional patterns of itemset (cb)

approach, the conditional patterns ⟨efc : 2⟩ is a
prefix of pattern (⟨efcb : 1⟩). After subtracting its
support from the conditional pattern of b, the new
support becomes ⟨efc : 1⟩. The conditional pattern
⟨eac : 1⟩ is ignored as it is subset of conditional
pattern of item b with similar support and it is
already mapped on the Apx-FP-tree of itemset (cb).
The pattern ⟨efc : 1⟩ is an Apx-conditional pattern
with row error-tolerance of 50% because items b
is missing from the pattern. The pattern ⟨efc : 1⟩ is
converted into Apx-conditional pattern ⟨⟨efc : 1⟩,
⟨sup : 1⟩, ⟨εr =50%⟩, ⟨c : 1,b : 0⟩⟩.

Table 2 shows ll Apx-conditional patterns of itemset
(cb). The itemset (cb) is examined for approximate

and absolute itemset support thresholds and er-
ror-tolerance percentages of row and column. Two
out of four Apx-conditional patterns of Table 2 have
row error-tolerance of 100%. Thus, itemset (cb) quali-
fies abs_sup. The approximate support of itemset (cb)
is four, which qualifies apx_sup. Each item of (cb) is
appeared in at least two out of four transactions of
Apx-conditional patterns, which qualifies εc. Thus,
the itemset (cb) is an approximate frequent itemset
of length two. The algorithm constructs Apx-FP-tree
for itemset (cb) from the Apx-conditional patterns for
mining supersets of cb. Figure 2 shows Apx-FP-tree.
The Apx-CP-Tables of Apx-FP-tree are linked togeth-
er by making linked list of Apx-CP-Tables.

Item Conditional
Patterns

Apx-Conditional Patterns

b efcb : 1 (⟨⟨ef⟩, ⟨sup:1⟩, ⟨εr=100%⟩, ⟨c:1,b:1⟩⟩)
b eacb : 1 (⟨⟨ea⟩, ⟨sup:1⟩, ⟨εr=100%⟩, ⟨c:1,b:1⟩⟩)
b fadb : 1 (⟨⟨fad⟩, ⟨sup:1⟩, ⟨εr=50%⟩, ⟨c:0,b:1⟩⟩)
c efc : 2 (⟨⟨ef⟩, ⟨sup:1⟩, ⟨εr=50%⟩, ⟨c:1,b:0⟩⟩)
c eac : 1 Ignored, as it is prefix of pattern (eacb : 1). The support of eac : 1 becomes

zero after subtracting its support from the support of eacb : 1.

Table 2 Conditional patterns obtained from the FP-tree and Apx-conditional patterns of itemset (cb).

Figure 2 Apx-FP-tree of itemset (cb).

To mine complete AFIs, the algorithm generates
Apx-FP-Tree for all possible combinations of two
length itemsets by including only frequent items.
Then, the Apx-conditional patterns obtained from
the Apx-FP-trees of two length itemsets are used for
generating supersets of two length itemsets. The
approximate itemset support and error-tolerance
percentages of itemsets are counted directly from
the Apx-conditional patterns of Apx-FP-trees.

Example: For example, to construct Apx-FP-tree of
itemset X = (cb) with error-tolerance percentage of
row (εr = 50%) and column (εc = 50%). The algorithm
generates conditional patterns of items b and c.

 Item b contains three conditional patterns: ⟨efcb
: 1⟩, ⟨eacb : 1⟩, and ⟨fadb : 1⟩. The algorithm
converts these conditional patterns into Apx-

conditional patterns. The patterns ⟨efcb : 1⟩ and
⟨eacb : 1⟩ are Apx-conditional patterns with row
error-tolerance of 100% because both items c
and b are present in the patterns. The pattern
⟨fadb : 1⟩ is an Apx-conditional pattern with
row error-tolerance of 50% because the pattern
does not contain item c.

 The pattern ⟨⟨ef⟩, ⟨sup : 1⟩, ⟨εr = 100%⟩, ⟨c : 1,b :
1⟩⟩ is the Apx-conditional pattern of ⟨efcb : 1⟩. It
has four components. The first component
stores list of items that can be used for
generating supersets of itemset (cb). The second
component stores support of pattern. The third
component contains ⟨εr = 100%⟩ which indicates
all items of (cb) are present. The fourth
component stores support of all items of (cb).
The pattern ⟨eacb : 1⟩ is converted into Apx-

Figure 2
Apx-FP-tree of itemset (cb)

Information Technology and Control 2021/4/50634

3.2. Mining Approximate Frequent Itemsets
from Apx-FP-tree
From the above section we know that Apx-FP-tree of
an itemset X maps all transactions of X, therefore, com-
plete set of supersets containing X can be mined direct-
ly from the Apx-FP-tree without scanning the original
database. This section presents an approach how to
mine complete set of AFIs from the Apx-FP-tree.
Example: If we examine the head table of itemset (cb)
(Figure 2) the supersets containing itemset (cb) can
be divided into four parts: (1) Candidate AFIs contain
item d, (2) candidate AFIs contain item a, (3) candidate
AFIs having item f, and (4) candidate AFIs contain
item e. The algorithm mines the supersets as follows.
To examine whether itemsets (dcb) is an AFI and to
generate subsequent supersets of itemsets (dcb). The
algorithm starts by generating Apx-conditional pat-
terns of (bcd). The Apx-conditional patterns of (dcb)
are obtained from the Apx-FP-tree of (cb) by traversing
all nodes of Apx-CP-Table. Each node of Apx-CP-Table
generates an Apx-conditional pattern. Since Apx-FP-
tree of itemset (cb) include only those transactions
which have items b and c but not those transactions
that contain only d but not c and b. Therefore, FP-tree
(shown in Figure 1) is again traversed for generating
conditional patterns of d. The algorithm obtains only
those conditional patterns from FP-tree which contain
d but not c and b. Item d contains two conditional pat-
terns: ⟨fad : 2⟩, and ⟨d : 2⟩. The pattern ⟨fad : 2⟩ is a prefix
of previous conditional pattern of b (⟨fadb : 1⟩). There-
fore, after subtracting its support from the conditional
pattern of b the new support of pattern ⟨fad⟩ becomes 1.
Note, there is no need to include conditional pattern ⟨d
: 2⟩ because it has row error-tolerance (33%) and
the length of pattern is one. Thus, this pattern cannot
contribute in the support count of itemset (acb) and
supersets of (acb). This is because, a candidate itemset
of length four will make the row error-tolerance of this
pattern equal to 25% which does not qualify εr = 50%.
The following list shows the Apx-conditional patterns
obtained from the Apx-CP-Table and FP-tree:
 _ ⟨⟨ef⟩, ⟨sup : 1⟩, ⟨εr = 100%⟩, ⟨c : 1,b : 1⟩⟩,
 _ ⟨⟨ef⟩, ⟨sup : 1⟩, ⟨εr = 50%⟩, ⟨c : 1,b : 0⟩⟩,
 _ ⟨⟨ea⟩, ⟨sup : 1⟩, ⟨εr =100%⟩, ⟨c : 1,b : 1⟩⟩,
 _ ⟨⟨fad⟩, ⟨sup : 1⟩, ⟨εr = 50%⟩, ⟨c : 0,b : 1⟩⟩, and
 _ ⟨⟨fad⟩, ⟨sup : 1⟩, ⟨εr =0%⟩, ⟨c : 0,b : 0⟩⟩,

All conditional patterns of dcb are converted into
Apx-conditional patterns. Table 3 shows the Apx-con-
ditional patterns of dcb. Last conditional pattern ⟨fad⟩
is ignored for including in the count of itemset sup-
port. This is because this pattern has row error-tol-
erance εr = 0% and items c and b are missing from the
pattern. This makes the row error-tolerance (33%)
which is less than εr = 50%. Second conditional pat-
tern ⟨ef⟩ is also ignored. This is because it has only
item c but b and d are missing from the pattern. This
makes the row error-tolerance (33%) which does not
quality εr = 50%. All other conditional patterns qualify
εr = 50%, however, there is no Apx-conditional pattern
with row error-tolerance equal to εr = 100%. Thus,
the itemset (dcb) does not qualify absolute itemset
support, therefore, dcb is an infrequent approximate
itemset. The algorithm backtracks to itemset (cb) and
examines the approximate conditions of next super-
set (acb).
Similar to dcb, the Apx-conditional patterns of item-
set (acb) are obtained from the Apx-CP-Table of
itemset (cb) by traversing all nodes of Apx-CP-Table.
FP-tree of (Figure 1) is traversed for including condi-
tional patterns of a. This includes transactions which
contain a but not c and b. Item a contains three con-
ditional patterns: ⟨efa : 1⟩, ⟨ea : 1⟩ and ⟨fa : 2⟩. The pat-
terns ⟨ea : 1⟩ and ⟨fa : 2⟩ are prefix of patterns (⟨eacb :
1⟩ and ⟨fadb : 1⟩ (see Table 2). The pattern ⟨ea : 1⟩ has
same support so it is ignored. The support of pattern
⟨fa : 2⟩ becomes one after subtracting its support from
the support of pattern ⟨fadb : 1⟩. The following list
shows the Apx-conditional patterns obtained from
the Apx-CP-Table of (cb) and FP-tree:
 _ ⟨⟨ef⟩, ⟨sup : 1⟩, ⟨εr = 100%⟩, ⟨c : 1,b : 1⟩⟩,
 _ ⟨⟨ef⟩, ⟨sup : 1⟩, ⟨εr = 50%⟩, ⟨c : 1,b : 0⟩⟩,
 _ ⟨⟨ea⟩, ⟨sup : 1⟩, ⟨εr = 100%⟩, ⟨c : 1,b : 1⟩⟩,
 _ ⟨⟨fa⟩, ⟨sup : 1⟩, ⟨εr = 50%⟩, ⟨c : 0,b : 1⟩⟩,
 _ ⟨⟨fa⟩, ⟨sup : 1⟩, ⟨εr = 0%⟩, ⟨c : 0,b : 0⟩⟩, and
 _ ⟨⟨efa⟩, ⟨sup : 1⟩, ⟨εr =0%⟩, ⟨c : 0,b : 0⟩⟩,

The conditional patterns ⟨fa⟩ (second last) and ⟨efa⟩ are
ignored for including in the count of itemset support.
This is because both patterns have row error-tolerance
εr = 0% and items b and c are missing from the patterns.
This makes the row error-tolerance 33% which is less
than εr = 50%. The second conditional pattern ⟨ef⟩ is
also ignored. This is because this pattern has two miss-
ing items (b and a). This makes the row error-tolerance

635Information Technology and Control 2021/4/50

Apx-Conditional Patterns Discovered from
 Apx-FP-tree of itemset (cb)

Apx-Conditional Patterns used for Constructing
Apx-FP-tree of (dcb)

⟨⟨ef⟩, ⟨sup:1⟩, ⟨εr=100%⟩, ⟨c:1,b:1⟩⟩ ⟨⟨ef⟩, ⟨sup:1⟩, ⟨εr=67%⟩, ⟨d:0,c:1,b:1⟩⟩

⟨⟨ef⟩, ⟨sup:1⟩, ⟨εr=50%⟩, ⟨c:1,b:0⟩⟩ ⟨⟨ef⟩, ⟨sup:1⟩, ⟨εr=33%⟩, ⟨d:0,c:1,b:0⟩⟩

⟨⟨ea⟩, ⟨sup:1⟩, ⟨εr=100%⟩, ⟨c:1,b:1⟩⟩ ⟨⟨ea⟩, ⟨sup:1⟩, ⟨εr=67%⟩, ⟨d:0,c:1,b:1⟩⟩

⟨⟨fad⟩, ⟨sup:1⟩, ⟨εr=50%⟩, ⟨c:0,b:1⟩⟩ ⟨⟨fa⟩, ⟨sup:1⟩, ⟨εr=67%⟩, ⟨d:1,c:0,b:1⟩⟩

⟨⟨fad⟩, ⟨sup:1⟩, ⟨εr=0%⟩, ⟨c:0,b:0⟩⟩ ⟨⟨fa⟩, ⟨sup:1⟩, ⟨εr=33%⟩, ⟨d:1,c:0,b:0⟩⟩

Table 3
Apx-conditional patterns of itemset (dcb)

Figure 3
Apx-FP-tree of itemset (acb)

Apx-Conditional Patterns Discovered from Apx-
FP-tree of itemset (cb)

Apx-Conditional Patterns used for Constructing
Apx-FP-tree of (dcb)

⟨⟨ef⟩, ⟨sup:1⟩, ⟨εr=100%⟩, ⟨c:1,b:1⟩⟩ ⟨⟨ef⟩, ⟨sup:1⟩, ⟨εr=67%⟩, ⟨d:0,c:1,b:1⟩⟩
⟨⟨ef⟩, ⟨sup:1⟩, ⟨εr=50%⟩, ⟨c:1,b:0⟩⟩ ⟨⟨ef⟩, ⟨sup:1⟩, ⟨εr=33%⟩, ⟨d:0,c:1,b:0⟩⟩
⟨⟨ea⟩, ⟨sup:1⟩, ⟨εr=100%⟩, ⟨c:1,b:1⟩⟩ ⟨⟨ea⟩, ⟨sup:1⟩, ⟨εr=67%⟩, ⟨d:0,c:1,b:1⟩⟩
⟨⟨fad⟩, ⟨sup:1⟩, ⟨εr=50%⟩, ⟨c:0,b:1⟩⟩ ⟨⟨fa⟩, ⟨sup:1⟩, ⟨εr=67%⟩, ⟨d:1,c:0,b:1⟩⟩
⟨⟨fad⟩, ⟨sup:1⟩, ⟨εr=0%⟩, ⟨c:0,b:0⟩⟩ ⟨⟨fa⟩, ⟨sup:1⟩, ⟨εr=33%⟩, ⟨d:1,c:0,b:0⟩⟩

Table 3 Apx-conditional patterns of itemset (dcb).

Figure 3 Apx-FP-tree of itemset (acb).

the length of pattern is one. Thus, this pattern cannot
contribute in the support count of itemset (acb) and
supersets of (acb). This is because, a candidate itemset
of length four will make the row error-tolerance of this
pattern equal to 25% which does not qualify εr = 50%.
The following list shows the Apx-conditional patterns
obtained from the Apx-CP-Table and FP-tree:

• ⟨⟨ef⟩, ⟨sup : 1⟩, ⟨εr = 100%⟩, ⟨c : 1,b : 1⟩⟩,
• ⟨⟨ef⟩, ⟨sup : 1⟩, ⟨εr = 50%⟩, ⟨c : 1,b : 0⟩⟩,
• ⟨⟨ea⟩, ⟨sup : 1⟩, ⟨εr =100%⟩, ⟨c : 1,b : 1⟩⟩,
• ⟨⟨fad⟩, ⟨sup : 1⟩, ⟨εr = 50%⟩, ⟨c : 0,b : 1⟩⟩, and
• ⟨⟨fad⟩, ⟨sup : 1⟩, ⟨εr =0%⟩, ⟨c : 0,b : 0⟩⟩,

All conditional patterns of dcb are converted into Apx-
conditional patterns. Table 3 shows the Apx-
conditional patterns of dcb. Last conditional pattern
⟨fad⟩ is ignored for including in the count of itemset
support. This is because this pattern has row error-
tolerance εr = 0% and items c and b are missing from

the pattern. This makes the row error-tolerance (33%)
which is less than εr = 50%. Second conditional pattern
⟨ef⟩ is also ignored. This is because it has only item c
but b and d are missing from the pattern. This makes
the row error-tolerance (33%) which does not quality
εr = 50%. All other conditional patterns qualify εr =
50%, however, there is no Apx-conditional pattern
with row error-tolerance equal to εr = 100%. Thus, the
itemset (dcb) does not qualify absolute itemset
support, therefore, dcb is an infrequent approximate
itemset. The algorithm backtracks to itemset (cb) and
examines the approximate conditions of next superset
(acb).

Similar to dcb, the Apx-conditional patterns of itemset
(acb) are obtained from the Apx-CP-Table of itemset
(cb) by traversing all nodes of Apx-CP-Table. FP-tree
of (Figure 1) is traversed for including conditional
patterns of a. This includes transactions which contain

equal to 33% which do not quality εr = 50%. The condi-
tional patterns ⟨ef⟩, ⟨ea⟩ and ⟨fa⟩ qualify εr = 50% which
makes the approximate itemset support equal to three
and the itemset qualifies apx_sup = 3.
Table 4 shows the Apx-conditional patterns of item-
set (acb). Itemset (acb) has one Apx-conditional pat-
tern with row error-tolerance equal to 100%. Thus,
the itemset qualifies minimum absolute itemset sup-
port (ab_sup = 2). The supports of individual items in
the Apx-conditional patterns are: ⟨b : 3⟩, ⟨c : 2⟩, and ⟨a
: 2⟩. Each item qualifies column error-tolerance εc =
50%. Thus, itemset (acb) is an AFI of length three.
Next the algorithm generates supersets of itemset
(acb) from the Apx-FP-tree of (acb). The superset of
(acb) are partitioned into following two subsets: (1)
Candidate AFIs containing item f, and (2) candidate
AFIs containing item e.

To generate supersets of itemsets (facb) and to exam-
ine the AFI conditions of itemsets (facb). The algo-
rithm obtains the error-tolerance of row and column
from the Apx-FP-tree of (acb) by traversing all nodes
of Apx-FP-table (see Figure 1). As Apx-FP-tree of
itemset (acb) includes only those transactions which
have items a, c and b but not those which have only f.
Therefore, FP-tree of (Figure 1) is traversed for ob-
taining conditional patterns of f. This includes trans-
actions which have f but not a, c and b. Item f contains
two conditional patterns: ⟨ef : 3⟩ and ⟨f : 2⟩. Both con-
ditional patterns are ignored as these are subsets of
already discovered conditional patterns of items a
and b and contain similar support. The following list
shows the Apx-conditional patterns obtained from
the Apx-CP-Table of itemset (acb) and FP-tree:

Information Technology and Control 2021/4/50636

 _ ⟨⟨ef⟩, ⟨sup : 2⟩, ⟨εr = 33%⟩, ⟨a : 1,c : 1,b : 0⟩⟩,
 _ ⟨⟨ef⟩, ⟨sup : 1⟩, ⟨εr = 67%⟩, ⟨a : 0,c : 1,b : 1⟩⟩,
 _ ⟨⟨e⟩, ⟨sup : 1⟩, ⟨εr = 100%⟩, ⟨a : 1,c : 1,b : 1⟩⟩,
 _ ⟨⟨f⟩, ⟨sup : 1⟩, ⟨εr = 33%⟩, ⟨a : 1,c : 0,b : 0⟩⟩, and
 _ ⟨⟨f⟩, ⟨sup : 1⟩, ⟨εr = 67%⟩, ⟨a : 1,c : 0,b : 1⟩⟩,

All patterns are converted into the Apx-conditional
patterns of itemset (facb) (see Table 5). All Apx-con-
ditional patterns qualify εr = 50%, however, there is
no Apx-conditional pattern with row error-tolerance
equal to 100%. The itemset (facb) does not qualify ab-
solute support threshold, therefore, itemset (facb) is
an infrequent approximate itemset. The algorithm
backtracks to itemset (acb) and examines the approx-
imate conditions of next superset (eacb).
Similar to (facb), the Apx-conditional patterns of
itemset (eacb) are obtained by traversing all nodes of
Apx-FP-table from the Apx-FP-tree of itemset (acb).
FP-tree of Figure 1 is traversed for obtaining those
conditional patterns of e which are not yet included in
the Apx-FP-tree of itemset (acb). Only one condition-
al pattern ⟨e : 1⟩ is not subset of any already included

conditional pattern. All others are ignored because
they are subsets of already included conditional pat-
terns. The pattern ⟨e : 1⟩ is ignored as the length of
pattern is one and the length of candidate itemset is
four. This makes the row error-tolerance equal to 25%
which is less than εr = 50%.
The following list shows the Apx-conditional patterns
obtained from the Apx-CP-Table of itemset (acb) and
FP-tree:
 _ ⟨⟨⟩, ⟨sup : 2⟩, ⟨εr = 33%⟩, ⟨a : 1,c : 1,b : 0⟩⟩,
 _ ⟨⟨e⟩, ⟨sup : 1⟩, ⟨εr = 67%⟩, ⟨a : 0,c : 1,b : 1⟩⟩,
 _ ⟨⟨e⟩, ⟨sup : 1⟩, ⟨εr = 100%⟩, ⟨a : 1,c : 1,b : 1⟩⟩,
 _ ⟨⟨⟩, ⟨sup : 1⟩, ⟨εr = 33%⟩, ⟨a : 1,c : 0,b : 0⟩⟩, and
 _ ⟨⟨⟩, ⟨sup : 1⟩, ⟨εr = 67%⟩, ⟨a : 1,c : 0,b : 1⟩⟩,

All patterns are converted into the Apx-conditional
patterns of itemset (eacb) (see Table 6). The second
last pattern ⟨⟩ is ignored for including in the count of
itemset support. This is because it has row error-toler-
ance εr = 33% and items e, c and b are missing from the
pattern. This makes the row error-tolerance equal to
25% which is less than εr = 50%. All other conditional

Apx-Conditional Patterns Discovered from
Apx-FP-tree of itemset (cb)

Apx-Conditional Patterns used for Constructing
Apx-FP-tree of (acb)

⟨⟨ef⟩, ⟨sup:1⟩, ⟨εr=100%⟩, ⟨c:1,b:1⟩⟩ ⟨⟨ef⟩, ⟨sup:1⟩, ⟨εr=67%⟩, ⟨a:0,c:1,b:1⟩⟩

⟨⟨ef⟩, ⟨sup:1⟩, ⟨εr=50%⟩, ⟨c:1,b:0⟩⟩ ⟨⟨ef⟩, ⟨sup:1⟩, ⟨εr=33%⟩, ⟨a:0,c:1,b:0⟩⟩

⟨⟨ea⟩, ⟨sup:1⟩, ⟨εr=100%⟩, ⟨c:1,b:1⟩⟩ ⟨⟨e⟩, ⟨sup:1⟩, ⟨εr=100%⟩, ⟨a:1,c:1,b:1⟩⟩

⟨⟨fa⟩, ⟨sup:1⟩, ⟨εr=50%⟩, ⟨c:0,b:1⟩⟩ ⟨⟨f⟩, ⟨sup:1⟩, ⟨εr=67%⟩, ⟨a:1,c:0,b:1⟩⟩

⟨⟨fa⟩, ⟨sup:1⟩, ⟨εr=0%⟩, ⟨c:0,b:0⟩⟩ ⟨⟨f⟩, ⟨sup:1⟩, ⟨εr=33%⟩, ⟨a:1,c:0,b:0⟩⟩

⟨⟨efa⟩, ⟨sup:1⟩, ⟨εr=0%⟩, ⟨c:0,b:0⟩⟩ ⟨⟨ef⟩, ⟨sup:1⟩, ⟨εr=33%⟩, ⟨a:1,c:0,b:0⟩⟩

Table 4
Apx-conditional patterns of itemset (acb)

Apx-Conditional Patterns Discovered from
Apx-FP-tree of itemset (acb)

Apx-Conditional Patterns used for Constructing
Apx-FP-tree of (facb)

⟨⟨ef⟩, ⟨sup:2⟩, ⟨εr=33%⟩, ⟨a:1,c:1,b:0⟩⟩ ⟨⟨e⟩, ⟨sup:2⟩, ⟨εr=50%⟩, ⟨f:2,a:1,c:1,b:0⟩⟩

⟨⟨ef⟩, ⟨sup:1⟩, ⟨εr=67%⟩, ⟨a:0,c:1,b:1⟩⟩ ⟨⟨e⟩, ⟨sup:1⟩, ⟨εr=75%⟩, ⟨f:1,a:0,c:1,b:1⟩⟩

⟨⟨e⟩, ⟨sup:1⟩, ⟨εr=100%⟩, ⟨a:1,c:1,b:1⟩⟩ ⟨⟨e⟩, ⟨sup:1⟩, ⟨εr=75%⟩, ⟨f:0,a:1,c:1,b:1⟩⟩

⟨⟨f⟩, ⟨sup:1⟩, ⟨εr=33%⟩, ⟨a:1,c:0,b:0⟩⟩ ⟨⟨⟩, ⟨sup:1⟩, ⟨εr=50%⟩, ⟨f:1,a:1,c:0,b:0⟩⟩

⟨⟨f⟩, ⟨sup:1⟩, ⟨εr=33%⟩, ⟨a:1,c:0,b:1⟩⟩ ⟨⟨⟩, ⟨sup:1⟩, ⟨εr=75%⟩, ⟨f:1,a:1,c:0,b:1⟩⟩

Table 5
 Apx-conditional patterns of itemset (facb)

637Information Technology and Control 2021/4/50

Apx-Conditional Patterns Discovered
from Apx-FP-tree of itemset (acb)

Apx-Conditional Patterns used for Constructing
Apx-FP-tree of (eacb)

⟨⟨e⟩, ⟨sup:2⟩, ⟨εr=33%⟩, ⟨a:1,c:1,b:0⟩⟩ ⟨⟨⟩, ⟨sup:2⟩, ⟨εr=50%⟩, ⟨e:2,a:1,c:1,b:0⟩⟩

⟨⟨e⟩, ⟨sup:1⟩, ⟨εr=67%⟩, ⟨a:0,c:1,b:1⟩⟩ ⟨⟨⟩, ⟨sup:1⟩, ⟨εr=75%⟩, ⟨e:1,a:0,c:1,b:1⟩⟩

⟨⟨e⟩, ⟨sup:1⟩, ⟨εr=100%⟩, ⟨a:1,c:1,b:1⟩⟩ ⟨⟨⟩, ⟨sup:1⟩, ⟨εr=100%⟩, ⟨e:1,a:1,c:1,b:1⟩⟩

⟨⟨f⟩, ⟨sup:1⟩, ⟨εr=33%⟩, ⟨a:1,c:0,b:0⟩⟩ ⟨⟨⟩, ⟨sup:1⟩, ⟨εr=25%⟩, ⟨e:0,a:1,c:0,b:0⟩⟩

⟨⟨f⟩, ⟨sup:1⟩, ⟨εr=33%⟩, ⟨a:1,c:0,b:1⟩⟩ ⟨⟨⟩, ⟨sup:1⟩, ⟨εr=50%⟩, ⟨e:0,a:1,c:0,b:1⟩⟩

Table 6
Apx-conditional patterns of itemset (eacb)

patterns qualify εr = 50% which make the approximate
itemset support equal to five, thus, the itemset (eacb)
qualifies the minimum apx_sup = 3. Table 6 shows the
Apx-conditional patterns of (eacb). Itemset (eacb)

has one Apx-conditional pattern with row error-tol-
erance equal to 100%. Thus, itemset (eacb) qualifies
minimum absolute itemset support. The supports
of individual items obtained from the Apx-condi-

Information Technology and Control 2021/4/50638

Database Number of Transactions Number of Items Avg. Transaction Length

Retail 88,162 16,470 10

BMSWebView1 59,601 497 3

FoodMart 4,141 1,559 4

T10I4D100K 100,000 870 11

Table 7
Properties of databases

tional patterns of (eacb) are: ⟨b : 3⟩, ⟨c : 3⟩, ⟨a : 3⟩, and
⟨e : 4⟩. All items qualify column error-tolerance εc =
50%. Thus, (eacb) is an AFI of length four. All candi-
date supersets of itemset (acb) have been generated.
The algorithm now backtracks to itemset (cb) and ex-
amines the approximate conditions of next superset
fcb. Similar to the working example of itemset (acb)
presented in above section, the algorithm generates
remaining AFIs by generating recursive Apx-FP-
trees, and then performs mining on them, respective-
ly. Algorithm 1 and Algorithm 2 present pseudo code
to mine AFIs using pattern growth approach.

4. Experiments
This section compares the performance of (Apx-Pat-
ternGrowth) with the best related AFI mining algo-
rithms on one synthetic and three real benchmark da-
tabases. The databases are T10I4D100K, FoodMart,
and BMSWebView1. These databases have been
frequently in FIM articles for performance analysis
of algorithms. The databases are freely available to
download from the FIM repository (http://fimi.ua.ac.
be). Table 7 shows the properties of databases. The

columns of Table 7 show size of databases, average
transaction length, and the number of frequent items.
The performance of Apx-PatternGrowth is com-
pared with CoreApriori [10-11], AC-Close [10-11] and
Apx-MultiTree [25]. CoreApriori is similar to AC-
Close, however, it applies Apriori-based candidate
generation and test approach for generating lattice
of core patterns. CoreApriori then examines the AFI
conditions of core patterns in lattice with top-down
approach starting from the largest pattern and pro-
ceeds level by level, in the size decreasing order of
core patterns. CoreApriori is not efficient since it gen-
erates exponential number of candidate itemsets and
requires multiple scan of database for counting item-
sets support. AC-Close also mines AFIs by generating
lattice of core patterns. However, AC-Close mines core
patterns using pattern growth. The pattern growth
reduces the number of candidate itemsets. However,
both CoreApriori and AC-Close examine the support
of itemsets and error-tolerance of row and column
with multiple scans of database.
Apx-MultiTree is a tree based approach. Apx-Multi-
Tree is not efficient in terms of calculating support
of itemsets from the FP-tree as it maps similar set of
transactions on multiple FP-trees when the trans-

639Information Technology and Control 2021/4/50

Database Number of Transactions εr εc apx_sup abs_sup

Retail 88,162 50% 50% 0.01% to 0.11%

BMSWebView1 59,601 50% 50% 0.03% to 0.23%

FoodMart 4,141 50% 50% 0.01% to 0.07%

T10I4D100K 100,000 50% 50% 0.05% to 0.55%

Table 8
Characteristics of experiment settings

actions have different percentages of missing items.
The implementations of CoreApriori, AC-Close and
Apx-MultiTree are not available from the authors,
therefore, we implement all algorithms in C++. All
experiments are executed on MacBook Pro 3.2 GHz
processor with processor speed of 2.7 GHz and 8GB
of RAM. Various values of approximate and absolute
itemset supports are used for performance analysis
with the error-tolerance percentages of row and col-
umn εr = 50% and εc = 50%. Table 8 shows the settings
of parameters.
We analyze the performance of AFI mining algo-
rithms with the following three aspects.
 _ In first aspect, we compare all algorithms in term

of how much processing time the algorithms
consume for mining complete set of AFIs.

 _ In second aspect, we compare the performance of
algorithms on varying database size. This helps us
to understand the scalability analysis of algorithms.

 _ In third aspect, we compare the performance of
algorithms on subsets of databases with varying
transaction size.

To analyze the performance of AFI algorithms on
varying database size, we generate subsets of data-
base containing 10,000 to 90,000 transactions. For
building subsets, the T10I4D100K and Retail are par-
titioned into five subsets. The size of each subset is
30k transactions by including random 30,000 trans-
actions from the original database. The first subset
contains only the transactions that have length be-
tween 1 to 10. The second subset contains transac-
tions of length between 11 to 20. Third, fourth and
fifth subsets contain transaction of length between
21 to 30, 31 to 40 and 41 to 50 respectively. We per-
form experiments with second and third aspects only
on Retail and T10I4D100K databases. The reason

to select only these databases is both databases are
sparse and have varying length of transactions. All al-
gorithms are executed over the subsets with similar
values of approximate support thresholds.
Figures 4-7 show the performance of algorithms in
terms of processing time. Note that the processing
time of an algorithm is the total execution time from
providing input to the algorithm and mining com-
plete set of AFIs. On low (support) thresholds all al-
gorithms consume very long execution time. We stop
the execution of algorithm when it takes more than
2300 seconds.
Figures 4-7 show the processing time of algorithms on
Retail, BMSWebView1, FoodMart and T10I4D100K.
Figures 9 and 11 show the performance of algorithms
on varying database size. Figures 8 and 10 show the
performance of algorithms on varying average trans-
action length.
Figures 4, 8 and 9 provide performance of all algo-
rithms on Retail database. The results show Apx-Pat-
ternGrowth mines complete set of itemsets in less
processing time than CoreApriori, AC-Close, and
Apx-MultiTree. On databases with long transactions,
the performance of Apx-PatternGrowth is scalable
which is challenging for the CoreApriori and AC-
Close to complete the processing within a reasonable
time. The Apx-PatternGrowth is scalable as it maps
transactions on FP-tree and applies pattern growth
for generating candidate itemsets that exists on the
branches of FP-tree. FP-tree maps the transactions
on similar branches when the transactions share
similar set of items. This explains, why the Apx-Pat-
ternGrowth computes the approximate conditions of
itemsets in less processing time even when the data-
bases are large and support thresholds are low.
If we compare the results on T10I4D100K,

Information Technology and Control 2021/4/50640

Figure 5
Performance of AFI mining algorithms on BMSWebView1
with εr = 50% and εc = 50%

Figure 6
Performance of AFI mining algorithms on T10I4D100K
with εr = 50% and εc = 50%

Figure 7
Performance of AFI mining algorithms on FoodMart with
εr = 50% and εc = 50%

We analyze the performance of AFI mining
algorithms with the following three aspects.

• In first aspect, we compare all algorithms in

term of how much processing time the
algorithms consume for mining complete set
of AFIs.

• In second aspect, we compare the
performance of algorithms on varying
database size. This helps us to understand
the scalability analysis of algorithms.

• In third aspect, we compare the performance
of algorithms on subsets of databases with
varying transaction size.

To analyze the performance of AFI algorithms on
varying database size, we generate subsets of
database containing 10,000 to 90,000 transactions.
For building subsets, the T10I4D100K and Retail
are partitioned into five subsets. The size of each
subset is 30k transactions by including random
30,000 transactions from the original database. The
first subset contains only the transactions that
have length between 1 to 10. The second subset
contains transactions of length between 11 to 20.
Third, fourth and fifth subsets contain transaction
of length between 21 to 30, 31 to 40 and 41 to 50
respectively. We perform experiments with
second and third aspects only on Retail and
T10I4D100K databases. The reason to select only
these databases is both databases are sparse and
have varying length of transactions. All algorithms
are executed over the subsets with similar values
of approximate support thresholds.

Figures 4-7 show the performance of algorithms in
terms of processing time. Note that the processing
time of an algorithm is the total execution time
from providing input to the algorithm and mining
complete set of AFIs. On low (support) thresholds
all algorithms consume very long execution time.
We stop the execution of algorithm when it takes
more than 2300 seconds.

Figure 4 Performance of AFI mining algorithms on

Retail with εr = 50% and εc = 50%.

Figure 5 Performance of AFI mining algorithms on
BMSWebView1 with εr = 50% and εc = 50%.

 Figure 6 Performance of AFI mining algorithms on

T10I4D100K with εr = 50% and εc = 50%.

FoodMart and BMSWebView1 databases, then sim-
ilar to Retail database, the Apx-PatternGrowth
mines AFIs in less processing time than other al-
gorithms on different support thresholds. We not-
ed, on low support thresholds the CoreApriori, AC-
Close, and Apx-MultiTree could not mine all AFIs
within 2300 seconds. On large databases, CoreAp-
riori generates large combinations of candidate
itemsets including those that do not available in the
database. The combinations become exponential
when the number of frequent items of database are
very large. Also, CoreApriori does not provide any

We analyze the performance of AFI mining
algorithms with the following three aspects.

• In first aspect, we compare all algorithms in

term of how much processing time the
algorithms consume for mining complete set
of AFIs.

• In second aspect, we compare the
performance of algorithms on varying
database size. This helps us to understand
the scalability analysis of algorithms.

• In third aspect, we compare the performance
of algorithms on subsets of databases with
varying transaction size.

To analyze the performance of AFI algorithms on
varying database size, we generate subsets of
database containing 10,000 to 90,000 transactions.
For building subsets, the T10I4D100K and Retail
are partitioned into five subsets. The size of each
subset is 30k transactions by including random
30,000 transactions from the original database. The
first subset contains only the transactions that
have length between 1 to 10. The second subset
contains transactions of length between 11 to 20.
Third, fourth and fifth subsets contain transaction
of length between 21 to 30, 31 to 40 and 41 to 50
respectively. We perform experiments with
second and third aspects only on Retail and
T10I4D100K databases. The reason to select only
these databases is both databases are sparse and
have varying length of transactions. All algorithms
are executed over the subsets with similar values
of approximate support thresholds.

Figures 4-7 show the performance of algorithms in
terms of processing time. Note that the processing
time of an algorithm is the total execution time
from providing input to the algorithm and mining
complete set of AFIs. On low (support) thresholds
all algorithms consume very long execution time.
We stop the execution of algorithm when it takes
more than 2300 seconds.

Figure 4 Performance of AFI mining algorithms on

Retail with εr = 50% and εc = 50%.

Figure 5 Performance of AFI mining algorithms on
BMSWebView1 with εr = 50% and εc = 50%.

 Figure 6 Performance of AFI mining algorithms on

T10I4D100K with εr = 50% and εc = 50%.

 Figure 7 Performance of AFI mining algorithms on

FoodMart with εr = 50% and εc = 50%.

 Figure 8 Scalability of AFI mining algorithms on
Retail with varying transaction length and εr = 50%

and εc = 50% and apx_sup = 0.09%.

 Figure 9 Scalability of AFI mining algorithms on

Retail with varying transaction size and εr = 50% and
εc = 50% and apx_sup = 0.09%.

 Figure 10 Scalability of AFI mining algorithms on
T10I4D100K with varying transaction length and εr

= 50% and εc = 50% and apx_sup = 0.50%.

Figure 11 Scalability of AFI mining algorithms on
T10I4D100K with varying transaction size and εr =

50% and εc = 50% and apx_sup = 0.50%.

Figures 4-7 show the processing time of algorithms
on Retail, BMSWebView1, FoodMart and T10I4D100K.
Figures 9 and 11 show the performance of
algorithms on varying database size. Figures 8 and
10 show the performance of algorithms on varying
average transaction length.

Figures 4, 8 and 9 provide performance of all
algorithms on Retail database. The results show Apx-
PatternGrowth mines complete set of itemsets in less
processing time than CoreApriori, AC-Close, and Apx-
MultiTree. On databases with long transactions, the
performance of Apx-PatternGrowth is scalable which
is challenging for the CoreApriori and AC-Close to
complete the processing within a reasonable time.

Figure 4
Performance of AFI mining algorithms on Retail with εr =
50% and εc = 50%

We analyze the performance of AFI mining
algorithms with the following three aspects.

• In first aspect, we compare all algorithms in

term of how much processing time the
algorithms consume for mining complete set
of AFIs.

• In second aspect, we compare the
performance of algorithms on varying
database size. This helps us to understand
the scalability analysis of algorithms.

• In third aspect, we compare the performance
of algorithms on subsets of databases with
varying transaction size.

To analyze the performance of AFI algorithms on
varying database size, we generate subsets of
database containing 10,000 to 90,000 transactions.
For building subsets, the T10I4D100K and Retail
are partitioned into five subsets. The size of each
subset is 30k transactions by including random
30,000 transactions from the original database. The
first subset contains only the transactions that
have length between 1 to 10. The second subset
contains transactions of length between 11 to 20.
Third, fourth and fifth subsets contain transaction
of length between 21 to 30, 31 to 40 and 41 to 50
respectively. We perform experiments with
second and third aspects only on Retail and
T10I4D100K databases. The reason to select only
these databases is both databases are sparse and
have varying length of transactions. All algorithms
are executed over the subsets with similar values
of approximate support thresholds.

Figures 4-7 show the performance of algorithms in
terms of processing time. Note that the processing
time of an algorithm is the total execution time
from providing input to the algorithm and mining
complete set of AFIs. On low (support) thresholds
all algorithms consume very long execution time.
We stop the execution of algorithm when it takes
more than 2300 seconds.

Figure 4 Performance of AFI mining algorithms on

Retail with εr = 50% and εc = 50%.

Figure 5 Performance of AFI mining algorithms on
BMSWebView1 with εr = 50% and εc = 50%.

 Figure 6 Performance of AFI mining algorithms on

T10I4D100K with εr = 50% and εc = 50%.

facility to compress the transactions when trans-
actions share a common set of items. Therefore,
CoreApriori spends large amount of processing
time on examining approximate conditions of item-
sets. Apx-MultiTree takes less processing time than
CoreApriori. This is because Apx-MultiTree applies
pattern growth approach for generating itemsets
and counting itemsets support. Whereas CoreApri-
ori is an Apriori-based candidate generate approach
and it generates exponential number of candidate
itemsets. AC-Close takes less processing time than
CoreApriori because it generates lattice of core pat-
terns using pattern growth approach.

641Information Technology and Control 2021/4/50

Figure 8
Scalability of AFI mining algorithms on Retail with
varying transaction length and εr = 50% and εc = 50% and
apx_sup = 0.09%

Figure 9
Scalability of AFI mining algorithms on Retail with
varying transaction size and εr = 50% and εc = 50% and
apx_sup = 0.09%

Figure 10
Scalability of AFI mining algorithms on T10I4D100K with
varying transaction length and εr = 50% and εc = 50% and
apx_sup = 0.50%

Figure 11
Scalability of AFI mining algorithms on T10I4D100K with
varying transaction size and εr = 50% and εc = 50% and
apx_sup = 0.50%

 Figure 7 Performance of AFI mining algorithms on

FoodMart with εr = 50% and εc = 50%.

 Figure 8 Scalability of AFI mining algorithms on
Retail with varying transaction length and εr = 50%

and εc = 50% and apx_sup = 0.09%.

 Figure 9 Scalability of AFI mining algorithms on

Retail with varying transaction size and εr = 50% and
εc = 50% and apx_sup = 0.09%.

 Figure 10 Scalability of AFI mining algorithms on
T10I4D100K with varying transaction length and εr

= 50% and εc = 50% and apx_sup = 0.50%.

Figure 11 Scalability of AFI mining algorithms on
T10I4D100K with varying transaction size and εr =

50% and εc = 50% and apx_sup = 0.50%.

Figures 4-7 show the processing time of algorithms
on Retail, BMSWebView1, FoodMart and T10I4D100K.
Figures 9 and 11 show the performance of
algorithms on varying database size. Figures 8 and
10 show the performance of algorithms on varying
average transaction length.

Figures 4, 8 and 9 provide performance of all
algorithms on Retail database. The results show Apx-
PatternGrowth mines complete set of itemsets in less
processing time than CoreApriori, AC-Close, and Apx-
MultiTree. On databases with long transactions, the
performance of Apx-PatternGrowth is scalable which
is challenging for the CoreApriori and AC-Close to
complete the processing within a reasonable time.

 Figure 7 Performance of AFI mining algorithms on

FoodMart with εr = 50% and εc = 50%.

 Figure 8 Scalability of AFI mining algorithms on
Retail with varying transaction length and εr = 50%

and εc = 50% and apx_sup = 0.09%.

 Figure 9 Scalability of AFI mining algorithms on

Retail with varying transaction size and εr = 50% and
εc = 50% and apx_sup = 0.09%.

 Figure 10 Scalability of AFI mining algorithms on
T10I4D100K with varying transaction length and εr

= 50% and εc = 50% and apx_sup = 0.50%.

Figure 11 Scalability of AFI mining algorithms on
T10I4D100K with varying transaction size and εr =

50% and εc = 50% and apx_sup = 0.50%.

Figures 4-7 show the processing time of algorithms
on Retail, BMSWebView1, FoodMart and T10I4D100K.
Figures 9 and 11 show the performance of
algorithms on varying database size. Figures 8 and
10 show the performance of algorithms on varying
average transaction length.

Figures 4, 8 and 9 provide performance of all
algorithms on Retail database. The results show Apx-
PatternGrowth mines complete set of itemsets in less
processing time than CoreApriori, AC-Close, and Apx-
MultiTree. On databases with long transactions, the
performance of Apx-PatternGrowth is scalable which
is challenging for the CoreApriori and AC-Close to
complete the processing within a reasonable time.

5. Conclusion
In this article, we presented a novel algorithm
Apx-PatternGrowth for storing approximate trans-
actions and mining approximate frequent itemsets
(AFI) in noisy databases. The Apx-PatternGrowth has
several advantages over existing Apriori-based AFI
mining algorithms: (1) It maps approximate transac-
tions on a highly compressed data structure, approx-

 Figure 7 Performance of AFI mining algorithms on

FoodMart with εr = 50% and εc = 50%.

 Figure 8 Scalability of AFI mining algorithms on
Retail with varying transaction length and εr = 50%

and εc = 50% and apx_sup = 0.09%.

 Figure 9 Scalability of AFI mining algorithms on

Retail with varying transaction size and εr = 50% and
εc = 50% and apx_sup = 0.09%.

 Figure 10 Scalability of AFI mining algorithms on
T10I4D100K with varying transaction length and εr

= 50% and εc = 50% and apx_sup = 0.50%.

Figure 11 Scalability of AFI mining algorithms on
T10I4D100K with varying transaction size and εr =

50% and εc = 50% and apx_sup = 0.50%.

Figures 4-7 show the processing time of algorithms
on Retail, BMSWebView1, FoodMart and T10I4D100K.
Figures 9 and 11 show the performance of
algorithms on varying database size. Figures 8 and
10 show the performance of algorithms on varying
average transaction length.

Figures 4, 8 and 9 provide performance of all
algorithms on Retail database. The results show Apx-
PatternGrowth mines complete set of itemsets in less
processing time than CoreApriori, AC-Close, and Apx-
MultiTree. On databases with long transactions, the
performance of Apx-PatternGrowth is scalable which
is challenging for the CoreApriori and AC-Close to
complete the processing within a reasonable time.

 Figure 7 Performance of AFI mining algorithms on

FoodMart with εr = 50% and εc = 50%.

 Figure 8 Scalability of AFI mining algorithms on
Retail with varying transaction length and εr = 50%

and εc = 50% and apx_sup = 0.09%.

 Figure 9 Scalability of AFI mining algorithms on

Retail with varying transaction size and εr = 50% and
εc = 50% and apx_sup = 0.09%.

 Figure 10 Scalability of AFI mining algorithms on
T10I4D100K with varying transaction length and εr

= 50% and εc = 50% and apx_sup = 0.50%.

Figure 11 Scalability of AFI mining algorithms on
T10I4D100K with varying transaction size and εr =

50% and εc = 50% and apx_sup = 0.50%.

Figures 4-7 show the processing time of algorithms
on Retail, BMSWebView1, FoodMart and T10I4D100K.
Figures 9 and 11 show the performance of
algorithms on varying database size. Figures 8 and
10 show the performance of algorithms on varying
average transaction length.

Figures 4, 8 and 9 provide performance of all
algorithms on Retail database. The results show Apx-
PatternGrowth mines complete set of itemsets in less
processing time than CoreApriori, AC-Close, and Apx-
MultiTree. On databases with long transactions, the
performance of Apx-PatternGrowth is scalable which
is challenging for the CoreApriori and AC-Close to
complete the processing within a reasonable time.

imate FP-tree which maps transactions on common
branches when multiple transactions share similar
set of items. Thus, the size of database during item-
set mining becomes substantially small which helps
in efficiently computing support of itemsets. (2) The
mining approach of proposed algorithm is not Apri-
ori-based because the proposed algorithm generates

Information Technology and Control 2021/4/50642

candidate itemsets from conditional patterns of Apx-
FP-tree by applying pattern-growth approach. This
substantially reduces the combinations of candidate
itemsets as the pattern-growth makes sure the algo-
rithm never generates any candidate itemset which
does not exist in the transactions of database. We im-
plemented and analyzed the performance of Apx-Pat-
ternGrowth with the existing AFI mining algorithms

References
1. Agrawal, R., Srikant, R. Fast Algorithms for Mining

Association Rules. Proceedings of 20th Internation-
al Conference on VLDB, 1994, pages 487-499. https://
dl.acm.org/doi/10.5555/645920.672836

2. Baek, Y., Yun, U., Kim, H., Kim, J., Vo, B., Truong, T. C., Deng,
Z. H. Approximate High Utility Itemset Mining in Noisy
Environments. Knowledge Based Systems, 2021, 212,
106596. https://doi.org/10.1016/j.knosys.2020.106596

3. Bashir, S. An Efficient Pattern Growth Approach for
Mining Fault Tolerant Frequent Itemsets. Expert Sys-
tems with Applications, 2020, 143, 113046. https://doi.
org/10.1016/j.eswa.2019.113046

4. Bashir, S., Baig, A. R. Max-FTP: Mining Maximal
Fault-Tolerant Frequent Patterns from Databases. Pro-
ceedings of 24th British National Conference on Data-
bases, BNCOD 24, Glasgow, UK, July 3-5, 2007, 4587 of
Lecture Notes in Computer Science, 235-246, Springer.
https://doi.org/10.1007/978-3-540-73390-4_26

5. Bashir, S., Halim, Z., and Baig, A. R. Mining Fault Toler-
ant Frequent Patterns Using Pattern Growth Approach.
Proceedings of 6th ACS/IEEE International Confer-
ence on Computer Systems and Applications, AICCSA
2008, Doha, Qatar, March 31 - April 4, 2008, 172-179.
https://doi.org/10.1109/AICCSA.2008.4493532

6. Bodon, F. A Fast APRIORI Implementation. Proceedings
of FIMI '03, Frequent Itemset Mining Implementations,
ICDM 2003 Workshop on Frequent Itemset Mining Im-
plementations, 19th December 2003, Florida, USA.

7. Burdick, D., Calimlim, M., Flannick, J., Gehrke, J., Yiu,
T. MAFIA: A Maximal Frequent Itemset Algorithm.
IEEE Transactions on Knowledge and Data Engi-
neering, 2005, 17, 1490-1504. https://doi.org/10.1109/
TKDE.2005.183

8. Chen, R., Zhao, S., Liu, M. A Fast Approach for Up-Scal-
ing Frequent Itemsets. IEEE Access, 2020, 8, 97141-
97151. https://doi.org/10.1109/ACCESS.2020.2995719

9. Chen, S., Nie, L., Tao, X., Li, Z., Zhao, L. Approximation of
Probabilistic Maximal Frequent Itemset Mining Over
Uncertain Sensed Data. IEEE Access, 2020, 8, 97529-
97539. https://doi.org/10.1109/ACCESS.2020.2997409

10. Cheng, H., Yu, P. S., Han, J. AC-Close: Efficiently Min-
ing Approximate Closed Itemsets by Core Pattern
Recovery. Proceedings of the 6th IEEE International
Conference on Data Mining (ICDM 2006), 18-22 De-
cember 2006, Hong Kong, China, 839-844. https://doi.
org/10.1109/ICDM.2006.10

11. Cheng, H., Yu, P. S., Han, J. Approximate Frequent
Itemset Mining in the Presence of Random Noise. Soft
Computing for Knowledge Discovery and Data Mining,
Springer 2008, 363-389. https://doi.org/10.1007/978-0-
387-69935-6_15

12. Cheung, Y.-L., Fu, A. W.-C. Mining Frequent Itemsets
Without Support Threshold: With and Without Item
Constraints. IEEE Transactions on Knowledge and
Data Engineering, 2004, 16, 1052-1069. https://doi.
org/10.1109/TKDE.2004.44

13. Creighton, C., Hanash, S. Mining Gene Expression Da-
tabases for Association Rules. Bioinformatics (Oxford,
England), 2003, 19(1), 79-86. https://doi.org/10.1093/
bioinformatics/19.1.79

14. Tripathia, D., Nigam, B., Edla, D. R. A novel Web Fraud
Detection Technique Using Association Rule Mining.
Procedia Computer Science, 2017, 115, 274-281. https://
doi.org/10.1016/j.procs.2017.09.135

15. Fung, B. C. M., Wang, K., Ester, M. Hierarchical Docu-
ment Clustering Using Frequent Itemsets. Proceedings
of the Third SIAM International Conference on Data
Mining, San Francisco, CA, USA, May 1-3, 2003, 59-70.
https://doi.org/10.1137/1.9781611972733.6

16. Gan, W., Lin, J. C.-W., Fournier-Viger, P., Chao, H.-C.,
Zhan, J. Mining of Frequent Patterns with Multiple Min-
imum Supports. Engineering Applications of Artificial

on several benchmark databases of varying database
size and transaction length. Our results show the pro-
posed algorithm mines complete AFIs in less process-
ing time and scalable on large databases. For future
work, there any many interesting directions to explore
including mining only top k approximate itemsets
without support threshold, mining maximal AFIs and
mining sequential AFIs using pattern growth.

643Information Technology and Control 2021/4/50

Intelligence, 2017, 60, 83-96. https://doi.org/10.1016/j.
engappai.2017.01.009

17. Han, J., Cheng, H., Xin, D., Yan, X. Frequent Pattern Min-
ing: Current Status and Future Directions. Data Mining
and Knowledge Discovery, 2007, 15, 55-86. https://doi.
org/10.1007/s10618-006-0059-1

18. Han, J., Pei, J. Pattern-Growth Methods. Frequent
Pattern Mining Springer, 2014, 65-81. https://doi.
org/10.1007/978-3-319-07821-2_3

19. Han, J., Pei, J., Yin, Y. Mining Frequent Patterns With-
out Candidate Generation. Proceedings of the 2000
ACM SIGMOD International Conference on Manage-
ment of Data, May 16-18, 2000, Dallas, Texas, USA.,
1-12. https://doi.org/10.1145/335191.335372

20. Han, J., Pei, J., Yin, Y., Mao, R. Mining Frequent Pat-
terns Without Candidate Generation: A Frequent-Pat-
tern Tree Approach. Data Mining and Knowledge
Discovery, 2004, 8, 53-87. https://doi.org/10.1023/B:DA-
MI.0000005258.31418.83

21. Huynh-Thi-Le, Q., Le, T., Vo, B., Le, B. An Efficient and
Effective Algorithm for Mining Top-Rank-k Frequent
Patterns. Expert Systems with Applications, 2015, 42,
156-164. https://doi.org/10.1016/j.eswa.2014.07.045

22. Iváncsy, R., Vajk, I. Frequent Pattern Mining in Web Log
Data. Acta Polytechnica Hungaria, 2006, 3. http://citese-
erx.ist.psu.edu/viewdoc/summary?doi=10.1.1.101.4559

23. Jiang, F., Leung, C. K., Zhang, H. B-Mine: Frequent Pat-
tern Mining and Its Application to Knowledge Discovery
from Social Networks. Proceedings of Web Technologies
and Applications, 18th Asia-Pacific Web Conference,
Suzhou, China, September 23-25, 2016, 316-328. https://
doi.org/10.1007/978-3-319-45814-4_26

24. Koh, J.-L., Yo, P.-W. An Efficient Approach for Mining
Fault-Tolerant Frequent Patterns Based on Bit Vector
Representations. Proceedings of Database Systems for
Advanced Applications, 10th International Conference,
Beijing, China, April 17-20, 2005, 568-575. https://doi.
org/10.1007/11408079_51

25. Koh, J.-L., Tu, Y.-L. A Tree-Based Approach for Ef-
ficiently Mining Approximate Frequent Itemsets.
Proceedings of Fourth International Conference on
Research Challenges in Information Science (RCIS),
2010. https://doi.org/10.1109/RCIS.2010.5507360

26. Kosters, W. A., Pijls, W. Apriori, a Depth First Imple-
mentation. Proceedings of FIMI '03, Frequent Itemset
Mining Implementations, ICDM 2003 Workshop on
Frequent Itemset Mining Implementations, 19th De-
cember 2003, Florida, USA.

27. Lee, G., Lin, Y.-T. A Study on proportional Fault-Toler-
ant Data Mining. Proceedings of 2006 Int. Conf. Inno-
vations in Information Technology, 2006, Dubai, UAE.
https://doi.org/10.1109/INNOVATIONS.2006.301951

28. Lee, G., Peng, S.-L., Lin, Y.-T. Proportional Fault-Tol-
erant Data Mining with Applications to Bioinformat-
ics. Information Systems Frontiers, 2009, 11, 461-469.
https://doi.org/10.1007/s10796-009-9158-z

29. Liu, G., Lu, H., Yu, J. X., Wang, W., Xiao, X. AFOPT: An
Efficient Implementation of Pattern Growth Approach.
Proceedings of FIMI '03, Frequent Itemset Mining
Implementations, ICDM 2003 Workshop on Frequent
Itemset Mining Implementations, 19th December
2003, Florida, USA.

30. Liu, J., Paulsen, S., Sun, X., Wang, W., Nobel, A., Prins,
J. Mining approximate Frequent Itemsets in the Pres-
ence of Noise: Algorithm and Analysis. Proceedings of
the Sixth SIAM International Conference on Data Min-
ing, April 20-22, 2006, Bethesda, MD, USA, 407-418.
https://doi.org/10.1137/1.9781611972764.36

31. Liu, S., Poon, C. K. On Mining Proportional Fault-Tol-
erant Frequent Itemsets. Proceedings of 19th Interna-
tional Conference on Database Systems for Advanced
Applications, Bali, Indonesia, April 21-24, 2014, 342-
356. https://doi.org/10.1007/978-3-319-05810-8_23

32. Liu, S., Poon, C. K. On Mining Approximate and Ex-
act Fault-Tolerant Frequent Itemsets. Knowledge and
Information Systems, 2018, 55, 361-391. https://doi.
org/10.1007/s10115-017-1079-4

33. Mallik, S., Mukhopadhyay, A., Maulik, U. Ranwar:
Rank-Based Weighted Association Rule Mining from
Gene Expression and Methylation Data. IEEE Trans-
actions on NanoBioscience, 2015, 14, 59-66. https://doi.
org/10.1109/TNB.2014.2359494

34. Moosavi, S. A., Jalali, M., Misaghian, N., Shamshirband,
S., Anisi, M. H. Community Detection in Social Net-
works Using User Frequent Pattern Mining. Knowledge
and Information Systems, 2017, 51, 159-186. https://doi.
org/10.1007/s10115-016-0970-8

35. Rehman, S.-R., Ashraf, J., Habib, A., Salam, A. Top-k
Miner: Top-k identical Frequent Itemsets Discovery
Without User Support Threshold. Knowledge and
Information Systems, 2016, 48, 741-762. https://doi.
org/10.1007/s10115-015-0907-7

36. Uno, T., Kiyomi, M., Arimura, H. LCM ver. 2: Effi-
cient Mining Algorithms for Frequent/Closed/Max-
imal Itemsets. Proceedings of FIMI '04, IEEE ICDM
Workshop on Frequent Itemset Mining Implemen-

Information Technology and Control 2021/4/50644

tations, Brighton, UK, November 1, 2004. https://doi.
org/10.1145/1133905.1133916

37. Vo, B., Pham, S., Le, T., Deng, Z.-H. A Novel Approach
for Mining Maximal Frequent Patterns. Expert Sys-
tem with Applications, 2017, 73, 178-186. https://doi.
org/10.1016/j.eswa.2016.12.023

38. Yu, X., Korkmaz, T. Heavy Path Based Super-Sequence
Frequent Pattern Mining on Web Log Dataset. Artificial
Intelligence Research, 2015, 4. https://doi.org/10.5430/
air.v4n2p1

39. Yu, X., Li, Y., Wang, H. Mining Approximate Frequent
Patterns from Noisy Databases. Proceedings of 10th
International Conference on Broadband and Wireless
Computing, Communication and Applications (BWC-
CA), 2015. https://doi.org/10.1109/BWCCA.2015.29

40. Zhang, W., Yoshida, T., Tang, X., Wang, Q. Text Cluster-
ing Using Frequent Itemsets. Knowledge Based Sys-
tems, 2010, 23, 379-388. https://doi.org/10.1016/j.kno-
sys.2010.01.011

This article is an Open Access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

