
769Information Technology and Control 2021/4/50

Analyzing Isolation in
Mobile Systems

ITC 4/50
Information Technology
and Control
Vol. 50 / No. 4 / 2021
pp. 769-785
DOI 10.5755/j01.itc.50.4.29031

Analyzing Isolation in Mobile Systems

Received 2021/05/01 Accepted after revision 2021/10/01

 http://dx.doi.org/10.5755/j01.itc.50.4.29031

HOW TO CITE: Hong, Z., Jiang, J.-M., Shu, H. (2021). Analyzing Isolation in Mobile Systems. Information Technology and Control, 50(4),
769-785. https://doi.org/10.5755/j01.itc.50.4.29031

Corresponding authors: fjfzhz@fjnu.edu.cn, jjm@cuit.edu.cn

Zhong Hong
College of Computer and Cyber Security, Fujian Normal University, Fuzhou 350007, China;
e-mail: fjfzhz@fjnu.edu.cn

Jian-Min Jiang, Hongping Shu
College of Software Engineering, Chengdu University of Information Technology, Chengdu 610103, China;
e-mails: jjm@cuit.edu.cn, shp@cuit.edu.cn

As a safety-critical issue in complex mobile systems, isolation requires two or more mobile objects not to ap-
pear in the same place simultaneously. To ensure such isolation, a scheduling policy is needed to control and
coordinate the movement of mobile objects. Unfortunately, existing task scheduling theories fails in providing
effective solutions, because it is hardly possible to decompose a complex mobile system into multiple indepen-
dent tasks. To solve this problem, a more fine-grained event scheduling is proposed in this paper to generate
scheduling policies which can ensure the isolation of mobile objects. After defining event scheduling based on
event-based formal models called dependency structures, a new event scheduling theory for mobile systems is
developed accordingly. Then an algorithm for generating an event scheduling policy is proposed to implement
the required isolation. Simulation experiments are conducted to prove the result of our theoretical analysis and
show the effectiveness and scalability of the approach.
KEYWORDS: Mobility, Isolation, Scheduling Policy, Ambient, Collision Deadlock.

1. Introduction
In safety-critical mobile systems like intelligent
transportation systems (ITS) and unmanned trans-
portation systems, there is a compelling need to
guarantee the safety and security of such systems,

which has become the subject of intense research
worldwide. In these systems, isolation requires two
or more mobile objects not to appear in the same
place simultaneously. For example, consider a sce-

Information Technology and Control 2021/4/50770

nario where several driverless vehicles need to cross
a road inter-section without traffic lights. To pre-
vent from potential collisions, these vehicles must
pass through the intersection in some order, under
the control of certain scheduling policy. In other
words, they must be isolated from each other during
the whole process. Thus an effective scheduling the-
ory is needed to generate a scheduling policy so as to
ensure the isolation relationships among mobile ob-
jects in such systems.
Task scheduling theories, e.g, [25], [6], [31], [38], [23],
[24], [33], have been studied for decades under the
strong assumption that each scheduled task is inde-
pendent of the others. The later research on sched-
uling theories, e.g., [38], [23], [24], [33], [27], [22],
dives deep into task scheduling and schedulability
analysis, especially in cyber-physical systems [20].
Task scheduling mainly considers how to generate
the optimal scheduling policies while schedulability
analysis aims to check if there exists the possibility of
constraint violations during the system’s evolvement
process. However, due to the inherent complexity of
scheduling, existing work is far from enough to solve
the isolation problems. Since mobile objects and en-
vironments are closely connected and intensively in-
teract in a mobile system, it is hardly possible to sepa-
rate a complex mobile system into independent tasks.
Thus we cannot directly obtain a scheduling policy by
using existing methods and techniques. Therefore,
developing a new scheduling theory for complex mo-
bile systems has become the most emergent matter.
To solve the complex scheduling problems, Jiang et al.
[18] have proposed event scheduling, which is more
fine-grained than task scheduling. An event is gener-
ally the occurrence of an action or activity, and a task
(usually in the forms of threads, processes, or com-
plex activities) may consist of several events. A com-
plex scheduling problem can be decomposed into sev-
eral event scheduling sub-problems, while it is unable
to be divided into independent tasks. An event-based
formal model called a dependency structure [18], [17],
[15], [14] has been chosen to model complex mobile
systems because it can not only conveniently express
the concurrency, synchronization and loop, but also
directly model mobility without the need for further
refinement [18]. Inspired by the ambient calculus
[10], two kinds of special moving events, namely, en-
tering and exiting an ambient, have been proposed in

[18] for modeling mobility. So whether these events
occur simultaneously in the same place (ambient) is
employed to express the isolation relations among
mobile objects.
Contribution. This paper makes the following con-
tributions:
 _ A novel notion of a schedule is introduced based

on the execution process of a mobile system, which
is different from that based on the priority in [17].
It shortens the length of scheduling sequences
and improves the efficiency of obtaining such a
scheduling sequence.

 _ The isolation of mobile objects in a complex mobile
system is formally defined and the avoidance of
collision deadlocks during the isolation control
process is discussed in detail.

 _ A new algorithm is proposed for automatically
generating a schedule, providing support for the
implementation of safety isolation in a mobile
system.

 _ The approach is especially applied to solving the
problems of intersection isolation in real systems,
so as to prove its correctness and effectiveness.

Structure. The remainder of this article is structured
as follows. Section 2 gives an overview of the related
work. Section 3 presents a typical intersection sce-
nario as a running example. Section 4 introduces the
dependency structure used as a system model. Section
5 defines the notion of a schedule and Section 6 dis-
cusses the decomposition and composition of sched-
uling. Section 7 defines the notion of isolation. Section
8 derives an algorithm to automatically generate a
schedule. Section 9 gives a case study and some exper-
iments, followed by conclusion in Section 10.

2. Related Work
In this section, the related work is introduced and dis-
cussed, from the aspects of scheduling and intersec-
tion isolation respectively.

2.1. Related Work on Scheduling
Since the first introduction by Liu and Layland [25]
in 1973 on the Rate Monotonic (RM) Scheduling
Algorithm, scheduling has been widely studied and
applied in many different areas. Specifically, the re-

771Information Technology and Control 2021/4/50

al-time scheduling theory has been divided into sev-
eral important categories: fixed priority scheduling
(e.g. [35]), dynamic priority scheduling (e.g. [9]),
soft real-time scheduling (e.g. [2]) and feedback
scheduling (e.g. [28]). Unlike traditional computing
systems, cyber-physical systems (CPS) are integra-
tions of computation, networking, and physical pro-
cesses, which have become a hot topic of researches
in recent years. Due to limited space, only the most
related work on the scheduling of CPS will be dis-
cussed below.
For a class of CPS whose behaviors are regulated by
feedback control laws, Zhang et al. [38] co-design the
control law and the task scheduling algorithm for
predictable performance and power consumption
for both the computing and the physical systems.
To support scheduling in real-time CPS, Kim et
al. [19] extend the fork-join parallel task model by
applying the task stretch transformation. In the lit-
erature [30], Schneider et al. present a multi-layered
schedule synthesis scheme for mixed-criticality cy-
ber-physical systems (MCCPS) so as to jointly sched-
ule deadline-critical, and QoC-critical tasks at dif-
ferent scheduling layers. Liu et al. [26] dive deep into
the characteristics of temporal data dissemination in
vehicular CPS and propose a scheduling algorithm to
analyze the time bound for serving requests.
Besides the above work, there also exist some re-
searches, which firstly provide a metric model, then
propose a scheduling algorithm and finally improve
the algorithm using different methods. Li and Negi
[23], [24] contribute to the scheduling for CPS by
identifying and addressing a general class of sched-
uling-type applications for physical networks. He
considers the class of optimal scheduling algorithms
in the quasi-static regime. Tang et al. [33] propose an
abstract heat flow model to describe thermal interfer-
ence in a distributed CPS and derive a unified sched-
uling and verification methodology based on it.
As mentioned before, these existing work always in-
vestigates the scheduling problems based on tradi-
tional task scheduling, and the efforts hardly reason
about scheduling. Based on more fine-grained event
scheduling, Jiang et al. [16] attempt to model and ana-
lyze isolation from the perspective of mobility, which
is the most related to this work. However, their work
focuses on fixed priority event scheduling and gener-

ates a priority scheduling sequence by computing an
execution sequence of a system, which do not consid-
er event scheduling with a loop. In this work, we ex-
plore dynamic event scheduling and generate a sched-
uling sequence based on the states of a system. The
generated scheduling sequence may contain a loop.
Thus this work is actually an extension of [16] aiming
to solve the safety isolation problems in complex mo-
bile systems, which is original and different from all
these related work.

2.2. Related Work on Intersection Isolation

To avoid potential collisions and other faults at inter-
sections while maximizing the throughput, research-
ers from worldwide have developed various intersec-
tion isolation approaches for vehicles so as to ensure
their safety passage.
The first category of protocols are agent-based and
reservation-based. In the literature [12], Dresner and
Stone present a protocol named Autonomous Inter-
section Management (AIM) for fully autonomous
vehicles so that they could reserve conflict-free tra-
jectories in advance by calling ahead to a reserva-
tion manager agent at the intersection, which can
effectively reduce the delay of vehicles caused by
intersections but might introduce a single point of
failure for its heavy reliance on the communications
between the vehicles and the manager agent. This
work is then extended to be compatible with partial-
ly automated vehicles in [32]. Lee and Park [21] also
provide an agent-based approach but modeling such
problem as a Constrained Nonlinear Optimization
Problem, which is solved by using parallel compu-
tations of three optimization methods. Besides, Per-
ronnet et al. [29] focus on the deadlock prevention
under real-time conditions in a network of intersec-
tions and propose a reservation-based hierarchical
approach to improve the overall throughput without
deadlock.
The second category of protocols are priority-based,
in which vehicles with higher priority are allowed to
cross the conflicting areas prior to those with lower
priority. Several spatio-temporal intersection pro-
tocols (STIP) are proposed by Azimi et al. [7], which
assign priorities to vehicles according to their arrival
times at the intersection. Such priority-based inter-
section protocols are extended by Aoki and Rajkumar

Information Technology and Control 2021/4/50772

[4] to merge protocol by using both V2V communica-
tions and in-vehicle perception systems, which also
realize the coordination between autonomous vehi-
cles and human-driven vehicles.
The third category of protocols are derived from the
Ballroom Intersection Protocol (BRIP) [8], in which,
a specific spatio-temporal pattern is tailored to each
particular intersection so that all vehicles cross-
ing the intersection must follow it. Based on BRIP,
Aoki and Rajkumar [3] present a more general and
fault-tolerant version named the Configurable Syn-
chronous Intersection Protocol (CSIP), which is
more robust even in the case of GPS inaccuracies and
other failures. Moreover, the introduction of inter-ve-
hicular distances makes CSIP much more acceptable
and comfortable to human passengers.
In addition, Wu et al. [36] regard the problem of inter-
section control as a new variant of the classic mutual
exclusion problem rather than an optimization prob-
lem, and design both centralized and distributed algo-
rithms to solve such a problem. This method is easy
and simple because it avoids the involvement of tradi-
tional optimization process. Besides traditional static
road intersections, Aoki and Rajkumar [5] study Dy-
namic Intersections (DI) and present a cooperative
dynamic intersection protocol to avoid vehicle colli-
sions at DI.
Compared with these existing intersection control
approaches, our work offers a totally different solu-
tion based on formal methods, which provides a sol-
id theoretic foundation and supports analyzing and
reasoning at a higher abstract level. Moreover, our
approach can be more general and less dependent
on communication, which can be widely applied for
nearly any sort of complicated driving contexts that
may be encountered in the real world.

3. Running Example
Here we present a typical autonomous driving scenar-
io (see Figure 1) as a running example, where four au-
tonomous vehicles A, B, C and D need to pass through
an intersection, which is separated into a number of
small cells. Each cell is marked with a unique identi-
fier as shown in Figure 1. At the current time, the four
vehicles A, B, C and D are preparing to cross the inter-
section along the routes c2 → c6 → c10 → c14, c8 → c7

→ c6 → c5, c15 → c11 → c7 → c3 and c9 → c10 → c11 →
c12, respectively.
Similar to the concept introduced by the ambient
calculus [10], here we consider the cells as ambients
where mobile objects can get in and out at their will.
Obviously, in this running example system, each cell
can be regarded as an ambient and the vehicles A, B,
C and D are four mobile objects which can enter or
exit these grid cells when moving along their routes.
The notations  and  are used here to denote the
set of ambients and the set of mobile objects respec-
tively. Thus the event of a mobile object M (M Î )
entering an ambient A (A Î ) is denoted by enM

A.
In fact, it is enough to only use the two movement
events (entering and exiting events) for specifying the
mobility in such a mobile system [18], [17]. To further
simplify modeling specification, in this work we only
consider the entering events because the event of en-
tering one ambient naturally means the event of ex-
iting the previously occupied ambient. Thus, we have
the following movement events for the running ex-
ample system: enA

c2, enA
c6, enA

c10, enA
c14, enB

c8, enB
c7, enB

c6, enB
c5,

enC
c15, enC

c11, enC
c7, enC

c3, enD
c9, enD

c10, enD
c11, enD

c12.

4. System Model
In this section, a fine-grained event-based formal
model called dependency structure [18], [17], [16] is
briefly introduced as a system model for modeling

Figure 1
A running example with four vehicles crossing one
intersection (from the literature [7])

Compared with these existing intersection control
approaches, our work offers a totally different
solution based on formal methods, which
provides a solid theoretic foundation and
supports analyzing and reasoning at a higher
abstract level. Moreover, our approach can be
more general and less dependent on
communication, which can be widely applied for
nearly any sort of complicated driving contexts
that may be encountered in the real world.

3. Running Example
Here we present a typical autonomous driving
scenario (see Figure 1) as a running example,
where four autonomous vehicles A, B, C and D
need to pass through an intersection, which is
separated into a number of small cells. Each cell is
marked with a unique identifier as shown in
Figure 1. At the current time, the four vehicles A,
B, C and D are preparing to cross the intersection
along the routes c2 → c6 → c10 → c14, c8 → c7 →
c6 → c5, c15 → c11 → c7 → c3 and c9 → c10 → c11
→ c12, respectively.

Similar to the concept introduced by the ambient
calculus [10], here we consider the cells as
ambients where mobile objects can get in and out
at their will. Obviously, in this running example
system, each cell can be regarded as an ambient
and the vehicles A, B, C and D are four mobile
objects which can enter or exit these grid cells
when moving along their routes.

The notations  and  are used here to denote
the set of ambients and the set of mobile objects
respectively. Thus the event of a mobile object M
(M Î ) entering an ambient A (A Î ) is
denoted by enM

A . In fact, it is enough to only use
the two movement events (entering and exiting
events) for specifying the mobility in such a
mobile system [18], [17]. To further simplify
modeling specification, in this work we only
consider the entering events because the event of
entering one ambient naturally means the event of
exiting the previously occupied ambient. Thus, we
have the following movement events for the
running example system: enA

c2, enA
c6, enA

c10, enA
c14, enB

c8,
enB

c7, enB
c6, enB

c5, enC
c15, enC

c11, enC
c7, enC

c3, enD
c9, enD

c10, enD
c11, enD

c12.

4. System Model
In this section, a fine-grained event-based formal
model called dependency structure [18], [17], [16] is
briefly introduced as a system model for modeling

Figure 1

A running example with four vehicles crossing one
intersection (from the literature [7]).

complex mobile systems. An event set (a set of
events) is used as an essential element of
dependency structure model. Here the notations 2X

and |X| are used to respectively denote the power
set and the size of an event set X. Next comes the
definition of a dependency structure.

4.1 Definition
Definition 4.1 A dependency structure (DS) is a
tuple <ξ, , , , , , , > with
-ξ, a finite set of events,
- Í 2ξ , the set of initially available event sets,

- Í 2ξ\{f} ×2ξ\{f}, the transformation relation,

- Í 2ξ , the synchronism relation such that " X∈:
|X| > 1,
- Í 2ξ , the choice relation such that " X∈:
|X| > 1,
- Í 2ξ\{f} ×2ξ\{f}, the priority relation,

-:ξ→{1,2,3,…}, the capacity function, and

- Í 2ξ, the set of finally available event sets.

A dependency structure model can be graphically
expressed by using a dependency structure
diagram. For example, the dependency structure of
the above running example is illustrated in Figure
2.

4.2 Execution Semantics
In a dependency structure, a system only runs
according to its transformation dependencies, and
the execution of each transformation dependency
may lead to the change in state. Thus a state of a
system is defined as follows:

Definition 4.2.1 Let DS = <ξ, , , , , , , > be a
dependency structure. A state S of DS is a tuple

773Information Technology and Control 2021/4/50

complex mobile systems. An event set (a set of
events) is used as an essential element of dependen-
cy structure model. Here the notations 2X and |X| are
used to respectively denote the power set and the size
of an event set X. Next comes the definition of a de-
pendency structure.

4.1. Definition
Definition 4.1. A dependency structure (DS) is a tu-
ple <ξ, I, T, S, C, P, W, F> with
 _ ξ, a finite set of events,
 _ I Í 2ξ, the set of initially available event sets,
 _ T Í 2ξ\{f} ×2ξ\{f}, the transformation relation,
 _ S Í 2ξ, the synchronism relation such that " X∈S:

|X| > 1,
 _ C Í 2ξ, the choice relation such that " X∈C:

|X| > 1,
 _ P Í 2ξ\{f} ×2ξ\{f}, the priority relation,
 _ W:ξ→{1,2,3,…}, the capacity function, and
 _ F Í 2ξ, the set of finally available event sets.

A dependency structure model can be graphically ex-
pressed by using a dependency structure diagram. For
example, the dependency structure of the above run-
ning example is illustrated in Figure 2.

4.2. Execution Semantics
In a dependency structure, a system only runs ac-
cording to its transformation dependencies, and the
execution of each transformation dependency may
lead to the change in state. Thus a state of a system is
defined as follows:
Definition 4.2.1. Let DS = <ξ, I, T, S, C, P, W, F> be a
dependency structure. A state S of DS is a tuple
〈∆, F, Γ〉 where Δ Í ξ is the set of currently available
events, F is the availability function from Δ to the set
Z* of nonnegative integers and Γ Í T is the set of acti-
vated transformation dependencies satisfying for all
dependencies (X,Y) Î T => X Í Δ. The initial state of
DS is defined as S0

 = 〈∆0, F0, Γ0〉 such that ∆0 = ÈCÎI X, "
e Î ∆0 ∶F0(e) = |{(X,Y ) Î T | e Î X }| and Γ0 = {(X,Y  )
| X Î I, (X,Y  ) Î T}.
Except for transformation dependency, other con-
straints (synchronism, choice and priority) can only
control the execution of such a system. The synchro-
nism sets specify the control of synchronization wait-
ing and data merge, while the choice sets express the

exclusive choice control and priorities control the
occurrence order of the events. Thus, the execution
semantics of a dependency structure can be defined
as follows.
Definition 4.2.2. Let DS = <ξ, I, T, S, C, P, W, F> be a
dependency structure and S1

 = 〈∆1, F1, Γ1〉, S2
 = 〈∆2, F2,

Γ2〉 be two of its states.
S1 can evolve into S2 by executing a transformation
dependency (A,B), denoted S1 ®(A,B) S2, if the following
conditions hold:
1 (A,B) Î Γ1 ,
2 (E,F) Î Γ1 : F B,
3 ∆2

 = { e Î ∆1 | e Ï A Ú (e Î A Ù F1(e) – (1 + x) > 0) } È B,
4 " e Î ∆2: F2(e) £W(e)

 〈∆, F, Γ〉 where Δ Í ξ is the set of currently
available events, F is the availability function from
Δ to the set * of nonnegative integers and Γ Í 
is the set of activated transformation dependencies
satisfying for all dependencies (X,Y) Î  => X

Í Δ. The initial state of DS is defined as S0 = 〈∆0,
F0, Γ0〉 such that ∆0 = ÈCÎ X, " e Î ∆0 ∶F0(e) =

|{(X,Y) Î  | e Î X }| and Γ0 = {(X,Y) | X Î ,

(X,Y) Î }.

Except for transformation dependency, other
constraints (synchronism, choice and priority)
can only control the execution of such a system.
The synchronism sets specify the control of
synchronization waiting and data merge, while
the choice sets express the exclusive choice control
and priorities control the occurrence order of the
events. Thus, the execution semantics of a
dependency structure can be defined as follows.

Definition 4.2.2 Let DS = <ξ, , , , , , , > be
a dependency structure and S1 = 〈∆1, F1, Γ1〉 , S2 =
〈∆2, F2, Γ2〉 be two of its states.
S1 can evolve into S2 by executing a transformation
dependency (A,B), denoted S1 (A,B)

 ® S2, if the
following conditions hold:
(1) (A,B) Î Γ1 ,
(2) (E,F) Î Γ1 : F B,
(3) ∆2 = { e Î ∆1 | e Ï A Ú (e Î A Ù F1(e) – (1 + x) >
0) } È B,
(4) " e Î ∆2: F2(e) £(e)

F1(e) – (1 + x), e Î A\B
F1(e), e Î ∆1\(A È B)

Ù F2(e) = F1(e) – (1 + x) + y, e Î A Ç B
F1(e) + y, e Î (∆1\A) Ç B
y, e Î B \∆1

where y = |{(X,Y) Î  | X Ç B ¹ f}| and x = |

{(A,X) Î  | $e Î X, $e' Î B, $C Î  : e ¹ e'Ù {e,

e'} Í C}| , and
(5) Γ2 = (Γ1 \ ({(A,B)} È B)) È B È B, where B =

{(B,X) | (B,X) Î }, B = {(X,Y) Î  | X Î , X Î

∆1 È B, B Í X, Y Í ξ} and B = {(W,X) Î  | W

Í ξ, $e Î X, $e' Î B, $C Î  : e ¹ e'Ù {e, e'} Í C}.

According to the definition, all possible states of a
dependency structure can be computed one by
one. For a more detailed explanation of
dependency structure, please refer to the

 literatures [18], [17], [16], [11].

4.3 Definition of Properties
Some properties are defined here, which will be
used in the subsequent sections to analyze the
behaviors of a mobile system.

Definition 4.3.1 DS = <ξ, , , , , , , > be a
dependency structure and S0 be the initial state of
DS.

(1) A state S is said to be reachable from S‘, denoted
as S‘S, if there exist the states S‘1, …, S‘n-1 such

that S‘ d‘1
 ® S‘1…S‘n-1 d‘n

 ® S, (d‘i Î , i Î {1,…,n}). A
state S is said to be reachable in DS if there exist the
states S1, …, Sn-1 such that S0 d1

® S1…Sn-1 dn
® S, (di Î ,

i Î {1,…,n}). Sta(DS) denotes the set of all reachable
states in DS.

(2) Let S = á∆, F, Γñ Î Sta(DS). S is said to be
terminated in DS if Γ = f and " e Î ∆: F(e) = 0 Ù e Î
ÈCÎX. S is said to be dead in DS if S is not
terminated and there does not exist a state S‘ such
that SS‘. DS is said to be weakly terminated if and
only if for all S Î Sta(DS), S is terminated or there
exists a terminated state St Î Sta(DS) such that
S‘St. DS is said to be dead (deadlocked) if and only
if $S Î Sta(DS): S is dead. DS is said to be deadlock-
free if and only if S Î Sta(DS): S is dead.

(3) A trace of DS is a sequence s = d1 …dn (di Î , i

Î {1,…,n}) such that there exist the states S1, …, Sn

such that S0 d1
® S1…Sn-1 dn

® Sn. n is the length of s.
s and`s are respectively defined as the set of all
dependencies in the trace s and the set of event sets
in s, that is, s = {d1,…, dn} and`s = { A Í ξ |$ (C, D)
Î s : A = C Ú A = D}. Tr(DS) denotes the set of all
traces of all traces of DS.

(4) DS is said to be bounded if " e Î ξ: (e) is finite.

4.4 Modeling Mobile Systems
Based on the dependency structure model
introduced above, the (mobility) behavior of a
complex mobile system can be easily modeled,
because in such a system, every two subsequent
entering events of a single object in fact form a
transformation dependency. Thus, the behavior of
the running example system can be represented as
DSrun = <ξ, , , , , , , >, where

where y = |{(X,Y  ) Î T | X Ç B ¹ f}| and x = | {(A,X)
Î T | $e Î X, $e' Î B, $C Î C : e ¹ e'Ù {e, e'} Í
C}| , and

5 Γ2 = (Γ1 \ ({(A,B)} È BC)) È BT È BS, where BT = {(B,X)
| (B,X) Î T}, BS = {(X,Y ) Î T | X Î S, X Î ∆1 È B,
B Í X, Y   Í ξ} and BC = {(W,X) Î T | W Í ξ, $e Î
X, $e' Î B, $C Î C : e ¹ e'Ù {e, e'} Í C}.

According to the definition, all possible states of a de-
pendency structure can be computed one by one. For
a more detailed explanation of dependency structure,
please refer to the literatures [18], [17], [16], [11].

4.3. Definition of Properties

Some properties are defined here, which will be used
in the subsequent sections to analyze the behaviors of
a mobile system.
Definition 4.3.1. DS = <ξ, I, T, S, C, P, W, F> be a de-
pendency structure and S0 be the initial state of DS.
1 A state S is said to be reachable from S¢, denoted as

S¢S, if there exist the states S¢1, …, S¢n-1 such that
S¢ ®d¢1 S¢1…S¢n-1 ®d¢n S, (d¢i Î T, i Î {1,…,n}). A state S
is said to be reachable in DS if there exist the states
S1, …, Sn-1 such that S0 ®d1 S1…Sn-1 ®dn S, (di Î T, i Î
{1,…,n}). Sta(DS) denotes the set of all reachable
states in DS.

Information Technology and Control 2021/4/50774

2 Let S = á∆, F, Γñ Î Sta(DS). S is said to be terminat-
ed in DS if Γ = f and " e Î ∆: F(e) = 0 Ù e Î ÈCÎFX.
S is said to be dead in DS if S is not terminated and
there does not exist a state S ¢ such that SS ¢. DS is
said to be weakly terminated if and only if for all S Î
Sta(DS), S is terminated or there exists a terminat-
ed state St Î Sta(DS) such that S ¢St. DS is said to
be dead (deadlocked) if and only if $S Î Sta(DS): S
is dead. DS is said to be deadlock-free if and only if
S Î Sta(DS): S is dead.

3 A trace of DS is a sequence s = d1 …dn (di Î T,
i Î {1,…,n}) such that there exist the states S1, …, Sn
such that S0 ® d1 S1…Sn-1 ®dn Sn. n is the length of s. s
and`s are respectively defined as the set of all de-
pendencies in the trace s and the set of event sets
in s, that is, s = {d1,…, dn} and`s = { A Í ξ |$ (C, D)
Î s : A = C Ú A = D}. Tr(DS) denotes the set of all
traces of all traces of DS.

4 DS is said to be bounded if " e Î ξ: W(e) is finite.

4.4. Modeling Mobile Systems

Based on the dependency structure model introduced
above, the (mobility) behavior of a complex mobile
system can be easily modeled, because in such a sys-
tem, every two subsequent entering events of a sin-
gle object in fact form a transformation dependency.
Thus, the behavior of the running example system can
be represented as DSrun = <ξ, I, T, S, C, P, W, F>, where

ξ = { enA
c2, enA

c6, enA
c10, enA

c14, enB
c8, enB

c7, enB
c6, enB

c5, enC
c15, en

C
c11,

enC
c7, enC

c3, enD
c9, enD

c10, enD
c11, enD

c12},
 = {{enA

c2}, {enB
c8}, {enC

c15}, {enD
c9}},

 = {({enA
c2},{enA

c6}), ({enA
c6},{enA

c10}), ({enA
c10},{en

A
c14}), ({en

B
c8},

{enB
c7}), ({enB

c7},{enB
c6}), ({enB

c6},{en
B
c5}), ({enC

c15},{enC
c11}), ({enC

c11},
{enC

c7 }), ({enC
c7 },{enC

c3 }), ({enD
c9 },{enD

c10}), ({enD
c10},{enD

c11}),
({enD

c11},{enD
c12})} ,

 = f ,  = f,  = f, " e Î ξ, (e) = ∞, and

 = {{enA
c14}, {enB

c5}, {enC
c3}, {enD

c12}}.
For simplicity, a mobile system DS that For simplicity, a mobile system DS that con-
tains mobile objects M1, …,Mm Î  and ambients
A1,…,An  Î  can also be denoted by DS = << M1,…,
Mm, A1,…,An >>. Let [DS] denote the set of mobile
objects and ambients in DS and itself-that is,
[DS] = { M1,…,Mm, A1,…,An ,DS}. The notation
DSx ÌDS is used to denote that DSx is a mobile ob-
ject or ambient of DS.

5. Scheduling
In this section, the notion of a schedule is defined
based on the execution process of a mobile system,
and the approach for generating a schedule is dis-
cussed accordingly.
Definition 5.1. Let DS = <ξ, I, T, S, C, P, W, F> be a de-
pendency structure.
A sequence s = X1…Xn (Xi Í ξ, i Î {1,…,n}) is called a
schedule in DS if and only if there exist the states S
= <∆, F, Γ>, S1 = <∆1, F1, Γ1>, …, Sn = <∆n, Fn, Γn> in
DS such that S S1… Sn and Xi Ç ∆i = Xi for all
i Î {1,…,n}.
`s denotes the set of all event sets in the schedule s =
X1…Xn, that is,`s = { X1,…,Xn }.
A schedule is an ordered event set sequence, where
the events in the preceding event set occur prior to
those behind. The scheduler of a system is in fact a
controller or coordinator, which restricts the behav-
ior of such a system to ensure that all given schedul-
ing requirements are met [1].
For example, in Figure 1 a schedule s1 = {enB

c6}{enB
c5}

{enA
c6} can guarantee that the vehicles A and B do not

collide in the cell c6. Similarly, a schedule s2 = {enA
c10}

{enA
c14}{enD

c10} can prevent the two vehicles A and D
from any possible collision in the cell c10.
Theorem 5.1. Let DS = <ξ, I, T, S, C, P, W, F> be a
dependency structure and let SX be the set of all the
schedule in DS. For all s = X1…Xn Î SX, there exists a
trace s = (A1,B1) (A2,B2) … (Am,Bm) Î Tr(DS) such that

Figure 2
The dependency structure model of the running system

ξ = { enA
c2, enA

c6, enA
c10, enA

c14, enB
c8, enB

c7, enB
c6, enB

c5, enC
c15, en

C
c11,

enC
c7, enC

c3, enD
c9, enD

c10, enD
c11, enD

c12},
 = {{enA

c2}, {enB
c8}, {enC

c15}, {enD
c9}},

 = {({enA
c2},{enA

c6}), ({enA
c6},{enA

c10}), ({enA
c10},{en

A
c14}), ({en

B
c8},

{enB
c7}), ({enB

c7},{enB
c6}), ({enB

c6},{en
B
c5}), ({enC

c15},{enC
c11}), ({enC

c11

},{enC
c7 }), ({enC

c7 },{enC
c3 }), ({enD

c9 },{enD
c10}), ({enD

c10},{enD
c11}),

({enD
c11},{enD

c12})} ,
 = f ,  = f,  = f, " e Î ξ, (e) = ∞, and

 = {{enA
c14}, {enB

c5}, {enC
c3}, {enD

c12}}.
For simplicity, a mobile system DS that
contains mobile objects M1, …,Mm Î and
ambients A1,…,An Î can also be denoted by DS
= << M1,…,Mm, A1,…,An >>. Let [DS] denote the
set of mobile objects and ambients in DS and
itself-that is, [DS] = { M1,…,Mm, A1,…,An ,DS}.
The notation DSx ÌDS is used to denote that
DSx is a mobile object or ambient of DS.
Figure 2

The dependency structure model of the running system.

5. Scheduling
In this section, the notion of a schedule is defined
based on the execution process of a mobile system,
and the approach for generating a schedule is
discussed accordingly.

Definition 5.1 Let DS = <ξ, , , , , , , > be a
dependency structure.
A sequence s = X1…Xn (Xi Í ξ, i Î {1,…,n}) is
called a schedule in DS if and only if there exist the
states S = <∆, F, Γ>, S1 = <∆1, F1, Γ1>, …, Sn = <∆n,
Fn, Γn> in DS such that S S1… Sn and Xi Ç

∆i = Xi for all i Î {1,…,n}.
`s denotes the set of all event sets in the schedule s
= X1…Xn, that is, `s = { X1,…,Xn }.

A schedule is an ordered event set sequence,
where the events in the preceding event set

occur prior to those behind. The scheduler of a
system is in fact a controller or coordinator, which
restricts the behavior of such a system to ensure
that all given scheduling requirements are met [1].

For example, in Figure 1 a schedule s1 = {enB
c6}{enB

c5}
{enA

c6} can guarantee that the vehicles A and B do not
collide in the cell c6. Similarly, a schedule s2 = {enA

c10

}{enA
c14}{enD

c10} can prevent the two vehicles A and D
from any possible collision in the cell c10.

Theorem 5.1 Let DS = <ξ, , , , , , , > be a
dependency structure and let SX be the set of all the
schedule in DS. For all s = X1…Xn Î SX, there exists

a trace s = (A1,B1) (A2,B2) … (Am,Bm) Î Tr(DS) such
that "i, j Î {1,…,n}, $i‘, j‘ Î {1,…,m}: i < j => i‘ < j‘ Ù
(Xi = Bi‘ Ù Xj = Bj‘).

Proof According to Definition 5.1 and Definition
4.3.1, every schedule in DS is a part of some trace
in DS. Therefore, the result holds obviously.

The theorem states that any schedule is necessarily
a part of a trace in the system. For instance, the
schedule s1 = {enB

c6}{enB
c5}{enA

c6} corresponds to the trace
s = ({enB

c8},{enB
c7})({enB

c7},{enB
c6})({enB

c6},{enB
c5})({enA

c2 },{enA
c6 }),

which guarantees that the two vehicles A and B are
collision-free in the running example system.

Theorem 5.2 Let DS = <ξ, , , , , , , > be a
dependency structure. Given a sequence s = X1…Xn

(Xi Í ξ, i Î {1,…,n}), if there exists a trace s =
(A1,B1) (A2,B2) … (Am,Bm) Î Tr(DS) such that "i, j Î
{1,…,n}, $i‘, j‘ Î {1,…,m}: i < j => i‘ < j‘ Ù (Xi = Bi‘ Ù Xj

= Bj‘), then s is a schedule in DS.

Proof According to Definition 4.3.1, any trace in DS
is actually a path that the modeled system can
execute along. Thus we can schedule the execution
process of the system. By Definition 5.1, the
sequence of event sets in the trace forms a schedule
in DS.

The theorem shows that by computing the traces of
the modeled system, we can generate proper
schedules according to some given constraints and
check whether a given event set sequence is a
feasible (sometimes called schedulable [37])
schedule. For example, if we require that the
running example system should run along the trace
s = ({enB

c8}, {enB
c7})({enB

c7},{enB
c6})({enC

c15},{enC
c11})({enC

c11},{enC
c7}),

then by Definition 5.1, the sequence {enB
c8}{enB

c7}{enB
c6

}{enC
c11}{enC

c7 } forms a feasible schedule that ensures
that the two vehicles B and C do not enter the same
cell c7 at the same time. On the contrary, as for the
sequence {enB

c7}{enB
c5}{enB

c6}, since there does not exist a

775Information Technology and Control 2021/4/50

"i, j Î {1,…,n}, $i¢, j¢ Î {1,…,m}: i < j => i¢ < j¢ Ù (Xi = Bi‘

Ù Xj = Bj¢).
Proof. According to Definition 5.1 and Definition
4.3.1, every schedule in DS is a part of some trace in
DS. Therefore, the result holds obviously.
The theorem states that any schedule is necessarily a
part of a trace in the system. For instance, the schedule
s1 = {enB

c6}{enB
c5}{enA

c6} corresponds to the trace s =
({enB

c8},{enB
c7})({enB

c7},{enB
c6})({enB

c6},{enB
c5})({enA

c2},{enA
c6}),

which guarantees that the two vehicles A and B are
collision-free in the running example system.
Theorem 5.2. Let DS = <ξ, I, T, S, C, P, W, F> be a de-
pendency structure. Given a sequence s = X1…Xn (Xi Í
ξ, i Î {1,…,n}), if there exists a trace s = (A1,B1) (A2,B2)
… (Am,Bm) Î Tr(DS) such that "i, j Î {1,…,n}, $i¢, j¢ Î
{1,…,m}: i < j => i¢ < j¢ Ù (Xi = Bi¢

 Ù Xj = Bj¢), then s is a
schedule in DS.
Proof. According to Definition 4.3.1, any trace in DS
is actually a path that the modeled system can execute
along. Thus we can schedule the execution process of
the system. By Definition 5.1, the sequence of event
sets in the trace forms a schedule in DS.
The theorem shows that by computing the trac-
es of the modeled system, we can generate proper
schedules according to some given constraints and
check whether a given event set sequence is a feasi-
ble (sometimes called schedulable [37]) schedule.
For example, if we require that the running example
system should run along the trace s = ({enB

c8}, {enB
c7})

({enB
c7},{enB

c6})({enC
c15},{enC

c11})({enC
c11},{enC

c7}), then by
Definition 5.1, the sequence {enB

c8}{enB
c7}{enB

c6}{enC
c11}

{enC
c7} forms a feasible schedule that ensures that the

two vehicles B and C do not enter the same cell c7 at
the same time. On the contrary, as for the sequence
{enB

c7}{enB
c5}{enB

c6}, since there does not exist a trace
that contains the sequence in the running example
system, by Definition 5.1, such a sequence cannot be-
come a feasible schedule.
For convenience, given a dependency structure DS and
a set of schedules SX, the restriction of DS to the sched-
ules in SX denoted by DSûSX. That is to say, DSûSX means
the behavior of the system modeled by DS is restricted
to the schedules in SX or the dependency structure DS
runs under the control of the schedules in SX.
Proposition 5.2. Let DS = <ξ, I, T, S, C, P, W, F> be a
dependency structure and let SX be the set of all the
schedules in DS. Then

1 Sta(DSûSX) Í Sta(DS), and
2 Tr(DSûSX) Í Tr(DS).
Proof. This result obviously holds.
The proposition shows that the states and traces of
scheduled system are part of those of the original sys-
tem, respectively.

6. Decomposition and Composition
of Scheduling
In this section, the decomposition and composition of
scheduling are further discussed.
Definition 6.1. Let DS = <ξ, I, T, S, C, P, W, F> be a
dependency structure and let t = X1…Xn, t¢ = Y 1…Y m be
two schedules of DS.
1 A schedule t¢ is called a sub-schedule of t, denoted

by t¢

trace that contains the sequence in the running
example system, by Definition 5.1, such a
sequence cannot become a feasible schedule.

For convenience, given a dependency structure DS
and a set of schedules SX, the restriction of DS to
the schedules in SX denoted by DSûSX. That is to
say, DSûSX means the behavior of the system
modeled by DS is restricted to the schedules in SX
or the dependency structure DS runs under the
control of the schedules in SX.

Proposition 5.2 Let DS = <ξ, , , , , , , > be
a dependency structure and let SX be the set of all
the schedules in DS. Then
(1) Sta(DSûSX) Í Sta(DS), and
(2) Tr(DSûSX) Í Tr(DS).
Proof This result obviously holds.

The proposition shows that the states and traces of
scheduled system are part of those of the original
system, respectively.

6. Decomposition and
Composition of Scheduling
In this section, the decomposition and
composition of scheduling are further discussed.

Definition 6.1 Let DS = <ξ, , , , , , , > be a
dependency structure and let t = X1…Xn, t‘ =
Y1…Ym be two schedules of DS.
(1) A schedule t‘ is called a sub-schedule of t,
denoted by t‘  t , if and only if there exists a
monotonically increasing successive sequence of
integers r1, … ,rm such that Υi = Xri for all i Î {1,
…,m}.
(2) t’ is composable with t if and only if there exist
the states S1 = <∆1, F1, Γ1>, S2 = <∆2, F2, Γ2> Î
Sta(DS) such that S1S2 and Υm Í ∆1 Ù X1 Í ∆2.
The composition of t’ with t, denoted by t’t, is the
sequence Y1…Ym X1…Xn.

A sub-schedule of a schedule is in fact an ordered
part extracted from the original schedule. A
composition of one schedule and another means
that the occurrences of the events in the last event
set of the former schedule should be prior to those
in the first event set of the latter during the
system’s execution process.

Theorem 6.1 Let DS be a dependency structure.
(1) If s is a schedule in DS, then for all s’  s , s’ is
a schedule in DS.

(2) If s, s’ are two schedules in DS and s’ is
composable with s, then s’s is a schedule in DS.

Proof (1) By Definition 5.1, the sequence s = X1…Xn
is a schedule means that there exist the states S =
<∆, F, Γ>, S1 = <∆1, F1, Γ1>, …, Sn = <∆n, Fn, Γn> in
DS such that S S1… Sn and Xi Ç ∆i = Xi for all
i Î {1,…,n}. For all s’  s, assume s'= Y1…Ym. By
Definition 6.1, since s’ is a monotonically increasing
sequence of event sets in the sequence s, there exist
the states S‘ = <∆‘, F‘, Γ‘>, S1‘ = <∆1‘, F1‘, Γ1‘>, …,
Sm‘ = <∆m‘, Fm‘, Γm‘> in DS such that S‘ S1‘…
Sm‘ and Y i Ç ∆i‘ = Y i for all i Î {1,…,m}. Therefore,
by Definition 5.1, s’ is a schedule in DS.

(2) The proof is similar to (1).

Theorem 6.1(1) states that a schedule can be
decomposed into multiple sub-schedules while
Theorem 6.1(2) shows that the composition of
scheduling can be preserved under certain
conditions.

7. Isolation Control and Collision
Deadlock
In this section, the notion of isolation in a mobile
system is firstly introduce on the basis of the
dependency structure model, then the undesirable
collision deadlock states are explored in details.

Definition 7.1 Let DS = <ξ, , , , , , , > be a

dependency structure. A sequence o = A1…An (Ai Î

2ξ, i Î {1,…,n}) is called an occurrence sequence in DS
if and only if there exist the states S, S1, …, Sn

ÎSta(DS) and the event sets B1, …, Bn Î2ξ such that
S (B1,A1)

 ® S1…Sn-1 (Bn,An)
 ® Sn. OcSq(DS) denotes the set of all

the occurrence sequences in DS.
The restriction of  to the occurrence sequence o =
B1…Bn is defined as ­O = { A Î  |$B Î{ B1, …, Bn
}, $ M Î : enM

A Î B }.

When objects move about inside a typical mobile
system, the successive occurrences of movement
events (i.e., entering and exiting an ambient)
naturally form an occurrence sequence. Such a
sequence may involve the movement process of
several mobile objects, and relate to multiple
ambients that have been passed through. Here we
use ­O to refer to the set that contains all the
ambients which are involved in the occurrence
sequence o.

 t, if and only if there exists a monotonically
increasing successive sequence of integers r1, … ,rm
such that Y i = Xri

 for all i Î {1, …,m}.
2 t¢ is composable with t if and only if there exist the

states S1 = <∆1, F1, Γ1>, S2 = <∆2, F2, Γ2> Î Sta(DS)
such that S1S2 and Y m Í ∆1 Ù X1 Í ∆2. The com-
position of t¢ with t, denoted by t¢t, is the sequence
Y1…Ym X1…Xn.

A sub-schedule of a schedule is in fact an ordered part
extracted from the original schedule. A composition
of one schedule and another means that the occur-
rences of the events in the last event set of the former
schedule should be prior to those in the first event set
of the latter during the system’s execution process.
Theorem 6.1. Let DS be a dependency structure.
1 If s is a schedule in DS, then for all s¢

trace that contains the sequence in the running
example system, by Definition 5.1, such a
sequence cannot become a feasible schedule.

For convenience, given a dependency structure DS
and a set of schedules SX, the restriction of DS to
the schedules in SX denoted by DSûSX. That is to
say, DSûSX means the behavior of the system
modeled by DS is restricted to the schedules in SX
or the dependency structure DS runs under the
control of the schedules in SX.

Proposition 5.2 Let DS = <ξ, , , , , , , > be
a dependency structure and let SX be the set of all
the schedules in DS. Then
(1) Sta(DSûSX) Í Sta(DS), and
(2) Tr(DSûSX) Í Tr(DS).
Proof This result obviously holds.

The proposition shows that the states and traces of
scheduled system are part of those of the original
system, respectively.

6. Decomposition and
Composition of Scheduling
In this section, the decomposition and
composition of scheduling are further discussed.

Definition 6.1 Let DS = <ξ, , , , , , , > be a
dependency structure and let t = X1…Xn, t‘ =
Y1…Ym be two schedules of DS.
(1) A schedule t‘ is called a sub-schedule of t,
denoted by t‘  t , if and only if there exists a
monotonically increasing successive sequence of
integers r1, … ,rm such that Υi = Xri for all i Î {1,
…,m}.
(2) t’ is composable with t if and only if there exist
the states S1 = <∆1, F1, Γ1>, S2 = <∆2, F2, Γ2> Î
Sta(DS) such that S1S2 and Υm Í ∆1 Ù X1 Í ∆2.
The composition of t’ with t, denoted by t’t, is the
sequence Y1…Ym X1…Xn.

A sub-schedule of a schedule is in fact an ordered
part extracted from the original schedule. A
composition of one schedule and another means
that the occurrences of the events in the last event
set of the former schedule should be prior to those
in the first event set of the latter during the
system’s execution process.

Theorem 6.1 Let DS be a dependency structure.
(1) If s is a schedule in DS, then for all s’  s , s’ is
a schedule in DS.

(2) If s, s’ are two schedules in DS and s’ is
composable with s, then s’s is a schedule in DS.

Proof (1) By Definition 5.1, the sequence s = X1…Xn
is a schedule means that there exist the states S =
<∆, F, Γ>, S1 = <∆1, F1, Γ1>, …, Sn = <∆n, Fn, Γn> in
DS such that S S1… Sn and Xi Ç ∆i = Xi for all
i Î {1,…,n}. For all s’  s, assume s'= Y1…Ym. By
Definition 6.1, since s’ is a monotonically increasing
sequence of event sets in the sequence s, there exist
the states S‘ = <∆‘, F‘, Γ‘>, S1‘ = <∆1‘, F1‘, Γ1‘>, …,
Sm‘ = <∆m‘, Fm‘, Γm‘> in DS such that S‘ S1‘…
Sm‘ and Y i Ç ∆i‘ = Y i for all i Î {1,…,m}. Therefore,
by Definition 5.1, s’ is a schedule in DS.

(2) The proof is similar to (1).

Theorem 6.1(1) states that a schedule can be
decomposed into multiple sub-schedules while
Theorem 6.1(2) shows that the composition of
scheduling can be preserved under certain
conditions.

7. Isolation Control and Collision
Deadlock
In this section, the notion of isolation in a mobile
system is firstly introduce on the basis of the
dependency structure model, then the undesirable
collision deadlock states are explored in details.

Definition 7.1 Let DS = <ξ, , , , , , , > be a

dependency structure. A sequence o = A1…An (Ai Î

2ξ, i Î {1,…,n}) is called an occurrence sequence in DS
if and only if there exist the states S, S1, …, Sn

ÎSta(DS) and the event sets B1, …, Bn Î2ξ such that
S (B1,A1)

 ® S1…Sn-1 (Bn,An)
 ® Sn. OcSq(DS) denotes the set of all

the occurrence sequences in DS.
The restriction of  to the occurrence sequence o =
B1…Bn is defined as ­O = { A Î  |$B Î{ B1, …, Bn
}, $ M Î : enM

A Î B }.

When objects move about inside a typical mobile
system, the successive occurrences of movement
events (i.e., entering and exiting an ambient)
naturally form an occurrence sequence. Such a
sequence may involve the movement process of
several mobile objects, and relate to multiple
ambients that have been passed through. Here we
use ­O to refer to the set that contains all the
ambients which are involved in the occurrence
sequence o.

 s, s¢ is a
schedule in DS.

2 If s, s’ are two schedules in DS and s’ is composable
with s, then s’s is a schedule in DS.

Proof.
1 By Definition 5.1, the sequence s = X1…Xn is a sched-

ule means that there exist the states S = <∆, F, Γ>,
S1 = <∆1, F1, Γ1>, …, Sn = <∆n, Fn, Γn> in DS such that
S S1… Sn and Xi Ç ∆i = Xi for all i Î {1,…,n}.
For all s’

trace that contains the sequence in the running
example system, by Definition 5.1, such a
sequence cannot become a feasible schedule.

For convenience, given a dependency structure DS
and a set of schedules SX, the restriction of DS to
the schedules in SX denoted by DSûSX. That is to
say, DSûSX means the behavior of the system
modeled by DS is restricted to the schedules in SX
or the dependency structure DS runs under the
control of the schedules in SX.

Proposition 5.2 Let DS = <ξ, , , , , , , > be
a dependency structure and let SX be the set of all
the schedules in DS. Then
(1) Sta(DSûSX) Í Sta(DS), and
(2) Tr(DSûSX) Í Tr(DS).
Proof This result obviously holds.

The proposition shows that the states and traces of
scheduled system are part of those of the original
system, respectively.

6. Decomposition and
Composition of Scheduling
In this section, the decomposition and
composition of scheduling are further discussed.

Definition 6.1 Let DS = <ξ, , , , , , , > be a
dependency structure and let t = X1…Xn, t‘ =
Y1…Ym be two schedules of DS.
(1) A schedule t‘ is called a sub-schedule of t,
denoted by t‘  t , if and only if there exists a
monotonically increasing successive sequence of
integers r1, … ,rm such that Υi = Xri for all i Î {1,
…,m}.
(2) t’ is composable with t if and only if there exist
the states S1 = <∆1, F1, Γ1>, S2 = <∆2, F2, Γ2> Î
Sta(DS) such that S1S2 and Υm Í ∆1 Ù X1 Í ∆2.
The composition of t’ with t, denoted by t’t, is the
sequence Y1…Ym X1…Xn.

A sub-schedule of a schedule is in fact an ordered
part extracted from the original schedule. A
composition of one schedule and another means
that the occurrences of the events in the last event
set of the former schedule should be prior to those
in the first event set of the latter during the
system’s execution process.

Theorem 6.1 Let DS be a dependency structure.
(1) If s is a schedule in DS, then for all s’  s , s’ is
a schedule in DS.

(2) If s, s’ are two schedules in DS and s’ is
composable with s, then s’s is a schedule in DS.

Proof (1) By Definition 5.1, the sequence s = X1…Xn
is a schedule means that there exist the states S =
<∆, F, Γ>, S1 = <∆1, F1, Γ1>, …, Sn = <∆n, Fn, Γn> in
DS such that S S1… Sn and Xi Ç ∆i = Xi for all
i Î {1,…,n}. For all s’  s, assume s'= Y1…Ym. By
Definition 6.1, since s’ is a monotonically increasing
sequence of event sets in the sequence s, there exist
the states S‘ = <∆‘, F‘, Γ‘>, S1‘ = <∆1‘, F1‘, Γ1‘>, …,
Sm‘ = <∆m‘, Fm‘, Γm‘> in DS such that S‘ S1‘…
Sm‘ and Y i Ç ∆i‘ = Y i for all i Î {1,…,m}. Therefore,
by Definition 5.1, s’ is a schedule in DS.

(2) The proof is similar to (1).

Theorem 6.1(1) states that a schedule can be
decomposed into multiple sub-schedules while
Theorem 6.1(2) shows that the composition of
scheduling can be preserved under certain
conditions.

7. Isolation Control and Collision
Deadlock
In this section, the notion of isolation in a mobile
system is firstly introduce on the basis of the
dependency structure model, then the undesirable
collision deadlock states are explored in details.

Definition 7.1 Let DS = <ξ, , , , , , , > be a

dependency structure. A sequence o = A1…An (Ai Î

2ξ, i Î {1,…,n}) is called an occurrence sequence in DS
if and only if there exist the states S, S1, …, Sn

ÎSta(DS) and the event sets B1, …, Bn Î2ξ such that
S (B1,A1)

 ® S1…Sn-1 (Bn,An)
 ® Sn. OcSq(DS) denotes the set of all

the occurrence sequences in DS.
The restriction of  to the occurrence sequence o =
B1…Bn is defined as ­O = { A Î  |$B Î{ B1, …, Bn
}, $ M Î : enM

A Î B }.

When objects move about inside a typical mobile
system, the successive occurrences of movement
events (i.e., entering and exiting an ambient)
naturally form an occurrence sequence. Such a
sequence may involve the movement process of
several mobile objects, and relate to multiple
ambients that have been passed through. Here we
use ­O to refer to the set that contains all the
ambients which are involved in the occurrence
sequence o.

 s, assume s'= Y1…Ym. By Definition 6.1,
since s’ is a monotonically increasing sequence of
event sets in the sequence s, there exist the states S‘
= <∆¢, F¢, Γ¢>, S1¢ = <∆1¢, F1¢, Γ1¢>, …, Sm¢ = <∆m¢, Fm¢,

Information Technology and Control 2021/4/50776

Γm¢> in DS such that S¢ S1¢… Sm¢ and Y i Ç ∆i¢ =
Y i for all i Î {1,…,m}. Therefore, by Definition 5.1, s’
is a schedule in DS.

2 The proof is similar to (1).
Theorem 6.1(1) states that a schedule can be decom-
posed into multiple sub-schedules while Theorem
6.1(2) shows that the composition of scheduling can
be preserved under certain conditions.

7. Isolation Control and Collision
Deadlock
In this section, the notion of isolation in a mobile sys-
tem is firstly introduce on the basis of the dependency
structure model, then the undesirable collision dead-
lock states are explored in details.
Definition 7.1. Let DS = <ξ, I, T, S, C, P, W, F> be a
dependency structure. A sequence o = A1…An (Ai Î 2ξ,
i Î {1,…,n}) is called an occurrence sequence in DS if and
only if there exist the states S, S1, …, Sn ÎSta(DS) and the
event sets B1, …, Bn Î2ξ such that S ®

(B1,A1)
 S1…Sn-1 ®

(Bn,An)
 Sn.

OcSq(DS) denotes the set of all the occurrence se-
quences in DS.
The restriction of  to the occurrence sequence o
= B1…Bn is defined as  ↑ O = { A Î  |$B Î{ B1, …, Bn },
$ M Î : enM

A Î B }.
When objects move about inside a typical mobile sys-
tem, the successive occurrences of movement events
(i.e., entering and exiting an ambient) naturally form
an occurrence sequence. Such a sequence may involve
the movement process of several mobile objects, and
relate to multiple ambients that have been passed
through. Here we use  ↑O to refer to the set that con-
tains all the ambients which are involved in the occur-
rence sequence o.
Proposition 7.1. Let DS be a dependency structure.
Then " o = A1… An Î OcSq(DS), there exists a trace
σ = (B1,B2)(B2,B3)…(Bm-1,Bm) Î Tr(DS) such that
$iÎ{1,…,m}, "jÎ{2,…,n}: (A1= Bi) Ù (Aj= Bi + j - 1).
Proof. This result obviously holds.
Proposition 7.1 states that all occurrence sequences
in a dependency structure can be obtained if we have
all the traces of it computed in advance.
Definition 7.2. Let DS be a dependency structure, A Î

, M1, M2 Î  and A, M1, M2 Ì DS.
M1 is said to be isolated from M2 for A in DS, denoted
by M1 ◦A M2, iff either " o Î OcSq(DS), A Ï ↑O , or "
o = B1…Bn Î OcSq(DS), ($ X Î ,  {enM2

A} Î{ B1,…,Bn}:
B1 ={ enM1

A } Ù B1 ={ enM1
X  }) Ú ($ Y Î , { enM1

A  } Î
{ B1,…, Bn}: B1 ={ enM2

A  } Ù B1 ={ enM2
Y  }).

This definition in fact shows that if M1 is isolated from
M2 for the ambient A, one of the following three cases
must have occurred: (1) neither M1 nor M2 enter A , (2)
only one of the two mobile objects, that is, either M1 or
M2 enters A , and (3) both M1 and M2 enter A , but one
will not enter until the other exits A. In other words,
M1 and M2 are strictly forbidden to appear at the same
ambient simultaneously, and one ambient can only ac-
commodate one mobile object at a time [18].
Obviously, in the real world, mobile objects are not
born to be isolated. Hence extra scheduling control
must be imposed so as to guarantee such a mobile
system can meet the isolation requirements and run
safely.
Theorem 7.1. Let DS be a dependency structure, A Î
, M1, M2 Î  and A, M1, M2 Ì DS. Let SX be a set of
schedules.
If "S = <∆, F, Γ> Î Sta(DSûSX): {enM1

A, enM2
A  } Ú ∆, then

M1 is isolated from M2 for A in DSûSX.
Proof. (Proof by Contradiction) Assume M1 is not
isolated from M2 for A in DSûSX. By Definition 7.1 and
Definition 7.2, M1 and M2 can enter the ambient at the
same time. By Definition 4.2.1 and Definition 4.2.2,
there exists a state S = <∆, F, Γ> Î Sta(DSûSX) such
that {enM1

A, enM2
A  } Í ∆. This contradicts the condition

"S = <∆, F, Γ> Î Sta(DSûSX): {enM1
A, enM2

A  } Ú ∆.
The theorem states that, by checking the states of
the target dependency structure that runs under the
restriction of certain schedules, it can be decided
whether two mobile objects are isolated or not for a
given ambient.
Theorem 7.2. Let DS = <ξ, I, T, S, C, P, W, F> be a de-
pendency structure and S0 = <∆0, F0, Γ0> be the initial
state of DS.
If there exist a sequence s = A1… An (Ai Î 2ξ, i Î
{1,…,n}), the event sets B1,…,Bn Î 2ξ and the states S1 =
<∆1, F1, Γ1>, …, Sn = <∆n, Fn, Γn> Î Sta(DS) such that

S0 ®
(B1,A1)

 S1…Sn-1 ®
(Bn,An)

 Sn, and Sn is terminated, then
1 the sequence s is a schedule in DS,
2 DSû{s} is weakly terminated, and

777Information Technology and Control 2021/4/50

3 " M, N Î , " X Î : "i Î{1,…,n}, {enM
X, enN

X } Ú ∆i
=> M, N are isolated from each other for X in DSû{s}.

Proof
1 By Definition 5.1, this result is straightforward.
2 By Definition 4.3.1, the sequence s is actually a

trace. Moreover, DSû{s} is the dependency structure
that only runs along the trace s, that is, Sta(DSû{s})
={ S0, S1,…, Sn}. Since Sn is terminated, by Definition
4.3.1, DSû{s} is weakly terminated.

3 By Theorem 7.1, this result holds.
Theorem 7.2 in fact presents a schedule generating
approach, which can generate scheduling policies to
meet the requirements of isolation in a mobile sys-
tem. For example, in the running example system,
there exists the schedule s = {enA

c2}{enA
c6}{enA

c10} {enA
c14}

{enC
c15}{enC

c11}{enC
c7}{enC

c3}{enB
c8}{enB

c7}{enB
c6}{enB

c5}{enD
c9}

{enD
c10}{enD

c11}{enD
c12} which can ensure the four vehi-

cles A, B, C and D safely cross the road interaction
without collision.

Figure 3
A collision deadlock scenario (from the literature [7])

Proposition 7.1 Let DS be a dependency structure.
Then " o = A1…An Î OcSq(DS), there exists a trace
s = (B1,B2)(B2,B3)…(Bm-1,Bm) Î Tr(DS) such that
$iÎ{1,…,m}, "jÎ{2,…,n}: (A1= Bi) Ù (Aj= Bi + j - 1).

Proof This result obviously holds.

Proposition 7.1 states that all occurrence
sequences in a dependency structure can be
obtained if we have all the traces of it computed in
advance.

Definition 7.2 Let DS be a dependency structure,
A Î , M1, M2 Î  and A, M1, M2 ÌDS.
M1 is said to be isolated from M2 for A in DS,
denoted by M1 ◦A M2 , iff either " o Î OcSq(DS), A
Ï ­O , or " o = B1…Bn Î OcSq(DS), ($ X Î , 
{enM2

A } Î{ B1,…,Bn }: B1 ={ enM1
A } Ù B1 ={ enM1

X }) Ú ($ Y Î
, { enM1

A } Î{ B1,…,Bn }: B1 ={ enM2
A } Ù B1 ={ enM2

Y }).

This definition in fact shows that if M1 is isolated
from M2 for the ambient A, one of the following
three cases must have occurred: (1) neither M1 nor
M2 enter A , (2) only one of the two mobile objects,
that is, either M1 or M2 enters A , and (3) both M1
and M2 enter A , but one will not enter until the
other exits A. In other words, M1 and M2 are
strictly forbidden to appear at the same ambient
simultaneously, and one ambient can only
accommodate one mobile object at a time [18].
Obviously, in the real world, mobile objects are
not born to be isolated. Hence extra scheduling
control must be imposed so as to guarantee such a
mobile system can meet the isolation requirements
and run safely.

Theorem 7.1 Let DS be a dependency structure, A
Î , M1, M2 Î  and A, M1, M2 ÌDS. Let SX be
a set of schedules.
If "S = <∆, F, Γ> Î Sta(DSûSX): {enM1

A , enM2
A }  ∆，

then M1 is isolated from M2 for A in DSûSX.
Proof (Proof by Contradiction) Assume M1 is not
isolated from M2 for A in DSûSX. By Definition 7.1
and Definition 7.2, M1 and M2 can enter the
ambient at the same time. By Definition 4.2.1 and
Definition 4.2.2, there exists a state S = <∆, F, Γ>
Î Sta(DSûSX) such that {en M1

A , en M2
A } Í ∆. This

contradicts the condition "S = <∆, F, Γ> Î

Sta(DSûSX): {enM1
A , enM2

A }  ∆.

The theorem states that, by checking the states of
the target dependency structure that runs under
the restriction of certain schedules, it can be
decided whether two mobile objects are isolated
or not for a given ambient.

Figure 3

A collision deadlock scenario (from the literature [7]).

Theorem 7.2 Let DS = <ξ, , , , , , , > be a
dependency structure and S0 = <∆0, F0, Γ0> be the
initial state of DS.
If there exist a sequence s == A1…An (Ai Î 2ξ, i Î
{1,…,n}), the event sets B1,…,Bn Î 2ξ and the states S1
= <∆1, F1, Γ1>, …, Sn = <∆n, Fn, Γn> Î Sta(DS) such
that S0 (B1,A1)

 ® S1…Sn-1 (Bn,An)
 ® Sn, and Sn is terminated, then

(1) the sequence s is a schedule in DS,
(2) DSû{s} is weakly terminated, and
(3) " M, N Î , " X Î : "i Î{1,…,n}, {enM

X , enN
X } 

∆i => M, N are isolated from each other for X in
DSû{s}.

Proof (1) By Definition 5.1, this result is
straightforward.
(2) By Definition 4.3.1, the sequence s is actually a
trace. Moreover, DSû{s} is the dependency structure
that only runs along the trace s, that is, Sta(DSû{s}) ={
S0, S1,…, Sn}. Since Sn is terminated, by Definition
4.3.1, DSû{s} is weakly terminated.
(3) By Theorem 7.1, this result holds.

Theorem 7.2 in fact presents a schedule generating
approach, which can generate scheduling policies
to meet the requirements of isolation in a mobile
system. For example, in the running example
system, there exists the schedule s = {enA

c2}{enA
c6}{enA

c10}
{enA

c14}{enC
c15}{enC

c11}{enC
c7 }{enC

c3 }{enB
c8}{enB

c7}{enB
c6}{enB

c5}{enD
c9 }

{enD
c10}{enD

c11}{enD
c12} which can ensure the four vehicles

A, B, C and D safely cross the road interaction
without collision.

Nevertheless, when several mobile objects are
required to be isolated from each other for certain
ambients in a mobile system, the risk of deadlock
may possibly occur. For instance, in the running
example, when vehicles A, B, C and D have
respectively occupied the cells c6, c7, c11 and c10
(see Figure 3) [7], none of these four vehicles are
able to move after that, otherwise collision will
happen inevitably. Such a deadlock is not the kind
of deadlock (deadlocked state) in common sense

Definition 7.3. Let DS = <ξ, I, T, S, C, P, W, F> be a de-
pendency structure. A state S = <∆, F, Γ> Î Sta(DS)
is said to be collision-deadlocked if and only if
1 S is not terminated,
2 " M1, M2 Î , A Î  : {enM1

A, enM2
A} Ú ∆ , and

3 " S' = <∆', F', Γ'> Î Sta(DS): S→S' => $M, N Î ,
$B Î : {enM

B, enN
B } Í ∆' Ù (enM

BÎ∆ Ú enN
BÎ∆).

A collision-deadlocked state indicates that the system
can further evolve into other states (i.e., not termi-
nated) and the mobile objects in such a system do not
collide with each other in the current state. However,
once one of these objects proceeds to move, it will in-
evitably collide with one of the other in an ambient,
which are not the results we expected. Obviously,
a complex mobile system may have a big chance of
reaching such a collision-deadlocked state if we do
not schedule the moving of these objects in advance.
Theorem 7.3. Let DS = <ξ, I, T, S, C, P, W, F> be a de-
pendency structure and SX be the set of schedules in
DS. Then "M, N Î , "A Î : M, N are isolated from
each other for A in DSû SX => " S Î Sta(DSû SX): S is not
collision-deadlocked.
Proof. (Proof by Contradiction) Assume $S Î Sta(DSû SX):
S is collision-deadlocked. When the system reaches
the state S, by Definition 7.3, there exists a mobile ob-
ject such that if the mobile object continues to move,
the system will enter a collision state. By Definition
7.2, $M, N Î , $A Î : M, N are not isolated from
each other for A in DSû SX. This contradicts the condi-
tion.
The theorem states that if a mobile system can ensure
the isolation of its mobile objects, it should not possi-
bly enter a collision-deadlocked state. The idea will be
used in the next section for developing an algorithm
for automatically generating schedules.

8. Algorithm
In this section, based on the theoretical analysis above,
we have developed an algorithm (see Algorithm 1) for
automatically generating a schedule, which can help to
ensure the safety isolation of mobile objects in a mobile
system. The input of the algorithm is the mobile sys-
tem itself, including the dependency structure model,
its initial state S0, m mobile objects and n ambients.

Nevertheless, when several mobile objects are re-
quired to be isolated from each other for certain am-
bients in a mobile system, the risk of deadlock may
possibly occur. For instance, in the running example,
when vehicles A, B, C and D have respectively occu-
pied the cells c6, c7, c11 and c10 (see Figure 3) [7], none
of these four vehicles are able to move after that, oth-
erwise collision will happen inevitably. Such a dead-
lock is not the kind of deadlock (deadlocked state) in
common sense (see Definition 4.3.1), but is caused
by collision avoidance. Therefore, such a deadlock is
called a collision deadlock.

Information Technology and Control 2021/4/50778

The output either is the generated schedule seq, or
concludes that a schedule is non-existent because the
system reaches a collision-deadlocked state or abnor-
mally terminates.
The computing process are described as follows:
1 Check whether S0 is collision-deadlocked. If true,

it means that the system can not evolve in its initial
state, thus a schedule is non-existent and the algo-
rithm exits (lines 5-7). Otherwise, push S0 and the
pre-dependency set of each activated transforma-
tion dependency onto the stack st one by one (lines
8-10).

2 Enter a while loop as long as the stack st is not
empty (line 11).

3 Pop an element off the stack st and store the
pre-dependency set (X) as an element of a schedule
(lines 12-14).

4 Check whether the current state is terminated. If that
is the case, then a schedule is completely generated
and the algorithm exits the while loop (lines 15-16).

5 Check whether the current state is collision- dead-
locked. If true, then the pre-dependency set (X)
cannot be contained in the generated schedule.
The algorithm continues to start the next iteration
(lines 18-19).

6 Otherwise, compute the new states according to
the current state and the currently activated trans-
formation dependencies. The new states and their
corresponding pre-dependency sets are pushed
onto the stack st if the states meet the require-
ments of isolation (lines 22-29). If there does not
exist a new state that is pushed onto the stack, the
corresponding pre-dependency set is not an ele-
ment of the schedule (lines 30-32).

7 When the while loop ends, check whether the cur-
rent state is not terminated. If true, it means that the
algorithm does not compute a feasible schedule (line
37); otherwise, a schedule is generated (line 39).

The complexity of the algorithm above is 2|T| where
T is the transformation relation of the dependency
structure DS. Except for this, the complexities of the
other parts are all linear time. Fortunately, given an
intersection or roundabout scenarios of intelligent
transportation systems, the computation usually in-
volves a limited number of events. Thus there exists
ample time for modern computing devices to gener-
ate a feasible schedule (see Section 9.2).

Algorithm 1: Scheduling sequence generation
Input:

DS = <ξ, I, T, S, C, P, W, F> a mobile system,
S0 = <∆0, F0, Γ0> the initial state of DS,
MO = { M1, …, Mm} m mobile objects,
IA = { A1, …, An} n ambients

Output
A schedule seq or non-existent.

1 let st be a stack;
2 let seq be a list of event sets;
3 let f lag be a boolean variable;
4 seq: = empty; st: = empty; f lag = false; i ← 0;
5 if <∆0, F0, Γ0> is collision-deadlocked then
6 return non-existent;
7 end
8 for each (A, B) Î Γ0 do
9 st.push(<∆0, F0, Γ0, A>);
10 end
11 while st is not empty do
12 <∆, F, Γ, X> = st.pop();
13 seq[i]: = X ;
14 i = i + 1;
15 if <∆, F, Γ> is terminated then
16 Exit;
17 else
18 if <∆, F, Γ> is collision-deadlocked then
19 i = i - 1; Continue;
20 else
21 f lag = false;
22 for each (X , B) Î Γ do
23 if <∆, F, Γ> ®

(X,B)
 <∆', F', Γ'> and

  M, NÎ MO, AÎ IA: enM
A, enN

A    Î∆'
 then
24 for each (A' , B') ÎΓ' do
25 st.push(<∆', F', Γ', A'>);
26 end
27 f lag = true;
28 end
29 end
30 if f lag = = false then
31 i = i - 1;
32 end
33 end
34 end
35 end
36 if <∆, F, Γ> is not terminated then
37 return non-existent;
38 else
39 return seq;
40 end

779Information Technology and Control 2021/4/50

To accurately evaluate the effectiveness and scal-
ability of the algorithm, we have implemented it and
incorporated it into DSTool (see Figure 7)–a proto-
type tool we developed to support the constructing
and reasoning of dependency structure models. The
latest version of DSTool is developed using JavaS-
cript, which makes it capable of running directly on
most of the major browsers without extra installation.

9. Experiment
In this section, a case study of a fully-automated con-
tainer terminals (ACT) is presented, and a series of
simulation experiments have been conducted by em-
ploying the scheduling policies generation algorithm
to evaluate and demonstrate the effectiveness and
scalability of our event-based scheduling approach.

9.1. Fully-Automated Container Terminal
Here we present a typical ACT like QQCT (Qingdao
Qianwan container terminal, see Figure 4), whose lay-
out is graphically presented in Figure 5. To meet the
challenges of booming marine container transportation,
the terminal employs automation equipments, such as
quay cranes (QCs), automatic guided vehicles (AGVs)
and automated stacking cranes (ASCs), to support the
loading and discharging of containers. As major means
of horizontal transport between the QCs and ASCs,
AGVs move around to deliver containers. It is obvious-
ly that these vehicles should be effectively isolated from
each other so as to ensure their safety and efficiency.
In the same way as the running example, the whole
terminal area is divided into multiple grid cells, each
of which is regarded as an ambient and marked with
a unique identifier. Suppose there exist five AGVs A,
B, C, D and E which have been assigned different de-
livery jobs (see Figure 5). To carry out the discharg-
ing operations, the vehicle A receives an inbound
container from the QC in c2 and prepares to bring it
to the delivery location in c55 where the container is
planned to be stacked. So does the vehicle B, prepar-
ing to deliver its consignment from c4 to c51. Mean-
while, the loading on board is concurrently in prog-
ress, which requires the vehicles C, D and E to deliver
their loadings from ASCs in the cells c52, c56, c59 to
the QCs in the cells c10, c8, c6, respectively. Accord-
ing to certain traffic rules and protocols set by the

Figure 4
Qingdao Qianwan container terminal (QQCT) in China

Figure 5
The layout of a typical ACT

input of the algorithm is the mobile system itself,
including the dependency structure model, its
initial state S0, m mobile objects and n ambients.
The output either is the generated schedule seq,
or concludes that a schedule is non-existent
because the system reaches a collision-deadlocked
state or abnormally terminates.

The computing process are described as follows:

(1) Check whether S0 is collision-deadlocked. If
true, it means that the system can not evolve in its
initial state, thus a schedule is non-existent and
the algorithm exits (lines 5-7). Otherwise, push S0
and the pre-dependency set of each activated
transformation dependency onto the stack st one
by one (lines 8-10).
(2) Enter a while loop as long as the stack st is not
empty (line 11).
(3) Pop an element off the stack st and store the
pre-dependency set (X) as an element of a
schedule (lines 12-14).
(4) Check whether the current state is terminated.
If that is the case, then a schedule is completely
generated and the algorithm exits the while loop
(lines 15-16).
(5) Check whether the current state is collision-
deadlocked. If true, then the pre-dependency set
(X) cannot be contained in the generated schedule.
The algorithm continues to start the next iteration
(lines 18- 19).
(6) Otherwise, compute the new states according
to the current state and the currently activated
transformation dependencies. The new states and
their corresponding pre-dependency sets are
pushed onto the stack st if the states meet the
requirements of isolation (lines 22-29). If there
does not exist a new state that is pushed onto the
stack, the corresponding pre-dependency set is
not an element of the schedule (lines 30-32).
(7) When the while loop ends, check whether the
current state is not terminated. If true, it means
that the algorithm does not compute a feasible
schedule (line 37); otherwise, a schedule is
generated (line 39).

The complexity of the algorithm above is 2||

where  is the transformation relation of the
dependency structure DS. Except for this, the
complexities of the other parts are all linear time.
Fortunately, given an intersection or roundabout
scenarios of intelligent transportation systems, the
computation usually involves a limited number of
events. Thus there exists ample time for modern
computing devices to generate a feasible schedule
(see Section 9.2).

To accurately evaluate the effectiveness and
scalability of the algorithm, we have implemented it
and incorporated it into DSTool (see Figure 7)–a
prototype tool we developed to support the
constructing and reasoning of dependency
structure models. The latest version of DSTool is
developed using JavaScript, which makes it capable
of running directly on most of the major browsers
without extra installation.

9. Experiment
In this section, a case study of a fully-automated
container terminals (ACT) is presented, and a
series of simulation experiments have been
conducted by employing the scheduling policies
generation algorithm to evaluate and demonstrate
the effectiveness and scalability of our event-based
scheduling approach.
Figure 4

Qingdao Qianwan container terminal (QQCT) in China.

Figure 5

The layout of a typical ACT.

input of the algorithm is the mobile system itself,
including the dependency structure model, its
initial state S0, m mobile objects and n ambients.
The output either is the generated schedule seq,
or concludes that a schedule is non-existent
because the system reaches a collision-deadlocked
state or abnormally terminates.

The computing process are described as follows:

(1) Check whether S0 is collision-deadlocked. If
true, it means that the system can not evolve in its
initial state, thus a schedule is non-existent and
the algorithm exits (lines 5-7). Otherwise, push S0
and the pre-dependency set of each activated
transformation dependency onto the stack st one
by one (lines 8-10).
(2) Enter a while loop as long as the stack st is not
empty (line 11).
(3) Pop an element off the stack st and store the
pre-dependency set (X) as an element of a
schedule (lines 12-14).
(4) Check whether the current state is terminated.
If that is the case, then a schedule is completely
generated and the algorithm exits the while loop
(lines 15-16).
(5) Check whether the current state is collision-
deadlocked. If true, then the pre-dependency set
(X) cannot be contained in the generated schedule.
The algorithm continues to start the next iteration
(lines 18- 19).
(6) Otherwise, compute the new states according
to the current state and the currently activated
transformation dependencies. The new states and
their corresponding pre-dependency sets are
pushed onto the stack st if the states meet the
requirements of isolation (lines 22-29). If there
does not exist a new state that is pushed onto the
stack, the corresponding pre-dependency set is
not an element of the schedule (lines 30-32).
(7) When the while loop ends, check whether the
current state is not terminated. If true, it means
that the algorithm does not compute a feasible
schedule (line 37); otherwise, a schedule is
generated (line 39).

The complexity of the algorithm above is 2||

where  is the transformation relation of the
dependency structure DS. Except for this, the
complexities of the other parts are all linear time.
Fortunately, given an intersection or roundabout
scenarios of intelligent transportation systems, the
computation usually involves a limited number of
events. Thus there exists ample time for modern
computing devices to generate a feasible schedule
(see Section 9.2).

To accurately evaluate the effectiveness and
scalability of the algorithm, we have implemented it
and incorporated it into DSTool (see Figure 7)–a
prototype tool we developed to support the
constructing and reasoning of dependency
structure models. The latest version of DSTool is
developed using JavaScript, which makes it capable
of running directly on most of the major browsers
without extra installation.

9. Experiment
In this section, a case study of a fully-automated
container terminals (ACT) is presented, and a
series of simulation experiments have been
conducted by employing the scheduling policies
generation algorithm to evaluate and demonstrate
the effectiveness and scalability of our event-based
scheduling approach.
Figure 4

Qingdao Qianwan container terminal (QQCT) in China.

Figure 5

The layout of a typical ACT.

port authority, once a job is assigned to a particular
AGV, the path from the loading point to the unloading
point is predetermined solely by using the interme-
diate nodes. For example, as shown in Figure 5, A is
required to take the path c2 → c12 → c22 → c23 →
c24 → c25 → c35 → c45 → c55, and B does the path
c4 → c14 → c13 → c12 → c11 → c21 → c31 → c41 →
c51. Similarly, the vehicles C, D and E are demanded
to move along the paths c52 → c42 → c32 →c33 →
c34 → c35 → c36 → c37 → c38 → c39 → c40 → c30
→ c20 → c10, c56 → c57 → c47 → c37 → c27 → c17
→ c7 → c8 and c59 → c49 → c39 → c29 → c19 → c18
→ c17 → c16 → c6, respectively. Obviously, there exist

Information Technology and Control 2021/4/50780

some intersections (e.g. c12, c17, c35, c37, c39) in the
predetermined paths of different vehicles. In order to
prevent possible collision, congestion and deadlocks
in the yard, AGVs need to be isolated from each oth-
er for the whole terminal area, especially for those
intersection cells. Using dependency structures, the
behavior of such a mobile system can be modeled as
DSACT = <ξ, I, T, S, C, P, W, F> where
ξ = { enA

c2, en  Ac12, enA
c22, enA

c23, enA
c24, enA

c25, enA
c35, enA

c45, enA
c55,

enB
c4, enB

c14, enB
c13, enB

c12, enB
c11, enB

c21, enB
c31, enB

c41, enB
c51, enC

c52,
enC

c42, enC
c32, enC

c33, enC
c34, enC

c35, enC
c36, enC

c37, enC
c38, enC

c39, enC
c40,

enC
c30, enC

c20, enC
c10, enD

c56, enD
c57, enD

c47, enD
c37, enD

c27, enD
c17, enD

c7,
enD

c8, enE
c59, enE

c49, enE
c39, enE

c29, enE
c19, enE

c18, enE
c17, enE

c16, enE
c6},

I = {{enA
c2}, {enB

c4}, {enC
c52}, {enD

c52}, {enE
c59}},

T = {({enA
c2},{enA

c12}), ({enA
c12},{enA

c22}), ({enA
c22},{enA

c23}),
({enA

c23},{enA
c24}), ({enA

c24},{enA
c25}), ({enA

c25},{enA
c35}), ({enA

c35},
{enA

c45}), ({enA
c45},{enA

c55}), ({enB
c4},{enB

c14}), ({enB
c14},{enB

c13}),
({enB

c13},{enB
c12}), ({enB

c12},{enB
c11}), ({enB

c11},{enB
c21}), ({enB

c21},
{enB

c31}), ({enB
c31},{enB

c41}), ({enB
c41},{enB

c51}), ({enC
c52},{enC

c42}),
({enC

c42},{enC
c32}), ({enC

c32},{enC
c33}), ({enC

c33},{enC
c34}), ({enC

c34},
{enC

c35}),({enC
c35},{ enC

c36}), ({enC
c36},{enC

c37}), ({enC
c37},{enC

c38}),
({enC

c38},{enC
c39}), ({enC

c39},{enC
c40}), ({enC

c40},{enC
c30}), ({enC

c30},
{enC

c20}), ({enC
c20},{enC

c10}), ({enD
c56},{enD

c57}), ({enD
c57},{enD

c47}),
({enD

c47},{enD
c37}), ({enD

c37},{enD
c27}), ({enD

c27},{enD
c17}), ({enD

c17},
{enD

c7}),({enD
c7},{enD

c8}), ({enE
c59},{ enE

c49}), ({enE
c49},{enE

c39}),
({enE

c39},{enE
c29}), ({enE

c29},{enE
c19}), ({enE

c19},{enE
c18}), ({enE

c18},
{enE

c17}), ({enE
c17},{enE

c16}), ({enE
c16},{enE

c6})},
S = f, C = f, P = f, " e Î ξ, W(e) = ∞, and
F = {{enA

c55}, {enB
c51}, {enC

c10}, {enD
c8}, {enE

c6}}.
Using the algorithm above (see Algorithm 1), a sched-
uling sequence can be conveniently obtained which
can guarantee the isolation of AGVs in this terminal,
like the one below:

s = {enA
c2}   {enA

c12}   {enA
c22}   {enB

c4}   {enB
c14}   {enB

c13}   {enB
c12}   {enB

c11}    {enB
c21}

{enB
c31}  {enB

c41}  {enB
c51}  {enA

c23}  {enA
c24}  {enA

c25}  {enA
c35}  {enA

c45}  {enA
c55}

{enC
c52}  {enC

c42}  {enC
c32}  {enC

c33}  {enC
c34}  {enC

c35}  {enC
c36}  {enC

c37}  {enC
c38}

{enD
c56}  {enD

c57}  {enD
c47}  {enD

c37}  {enD
c27}  {enD

c17}  {enD
c7}  {enD

c8}  {enC
c39}

{enC
c40}  {enE

c59}  {enE
c49}  {enE

c39}  {enE
c29}  {enE

c19}  {enE
c18}  {enE

c17}  {enE
c16}

{enE
c69}{enC

c30}{enC
c20}{enC

c10},
Under the control of the generated schedule, the ve-
hicle B will arrive at its destination first, then will the
vehicle A, after that are the vehicles D, E and C in se-
quence.
In practical application, besides isolation, the sched-
uling of AGVs must take into account many other
constraints and conditions, such as to maximize the
QCs’ productivity by reducing their delays, to mini-
mize the CO2 emissions by reducing the empty-travel
distances of the AGVs, etc. Based on these concerns,
we can further improve the algorithm to generate the
most optimal schedule in a more efficient way.

9.2. Scalability Evaluation
For performance evaluations, a total of more than
600000 simulation experiments are conducted in five
batches by using the latest version (91.0.4472) of Goo-
gle Chrome, on a standard windows laptop with an
Intel(R) Core(TM) i7-4600U CPU and 12 GB of mem-
ory. In each batch, a square area composed of a fixed
number of cells (that are 15×15,20×20,25×25,30×30
and 35×35 separately) is created to model the ACT
and a variable numbers of AGVs are emulated to move
in such an area (see Figure 7 for example). Every time
when the number of AGVs and the upper limit of the
length of their travelling paths are given, the moving
paths of all AGVs are randomly determined, thus all of
the necessarily isolated cells (i.e., intersection cells)
are determined. Then the scheduling generating algo-
rithm (Algorithm 1) are carried out to generate a feasi-
ble schedule which can guarantee the safety isolation
of the AGVs in the whole area (or conclude that such
a schedule is non-existent). Such a simulation is rep-
licated again and again with AGVs’ number ranging
from 2 to 14, and the time spent in generating a sched-
ule and the corresponding test case are recorded in
CSV format each time for further detailed analysis.
The main results of the experiments are presented as
follows. Table 1 lists the average time spent in gener-
ating a schedule under different number of vehicles in
different size of areas, while Table 2 does the maximum
time. Note that all statistics are in milliseconds. Based

Figure 6
The dependency structure model of part of a fully-
automated container terminal

9.1 Fully-Automated Container Terminal
Here we present a typical ACT like QQCT
(Qingdao Qianwan container terminal, see Figure
4), whose layout is graphically presented in Figure
5. To meet the challenges of booming marine
container transportation, the terminal employs
automation equipments, such as quay cranes
(QCs), automatic guided vehicles (AGVs) and
automated stacking cranes (ASCs), to support the
loading and discharging of containers. As major
means of horizontal transport between the QCs
and ASCs, AGVs move around to deliver
containers. It is obviously that these vehicles
should be effectively isolated from each other so
as to ensure their safety and efficiency.

In the same way as the running example, the
whole terminal area is divided into multiple grid
cells, each of which is regarded as an ambient and
marked with a unique identifier. Suppose there
exist 5 AGVs A, B, C, D and E which have been
assigned different delivery jobs (see Figure 5). To
carry out the discharging operations, the vehicle A
receives an inbound container from the QC in c2
and prepares to bring it to the delivery location in
c55 where the container is planned to be stacked.
So does the vehicle B, preparing to deliver its
consignment from c4 to c51. Meanwhile, the
loading on board is concurrently in progress,
which requires the vehicles C, D and E to deliver
their loadings from ASCs in the cells c52, c56, c59
to the QCs in the cells c10, c8, c6, respectively.
According to certain traffic rules and protocols set
by the port authority, once a job is assigned to a
particular AGV, the path from the loading point to
the unloading point is predetermined solely by
using the intermediate nodes. For example, as
shown in Figure 5, A is required to take the path
c2 → c12 → c22 → c23 → c24 → c25 → c35 → c45
→ c55, and B does the path c4 → c14 → c13 → c12
→ c11 → c21 → c31 → c41 → c51. Similarly, the
vehicles C, D and E are demanded to move along
the paths c52 → c42 → c32 → c33 → c34 → c35 →
c36 → c37 → c38 → c39 → c40 → c30 → c20 → c10,
c56 → c57 → c47 → c37 → c27 → c17 → c7 → c8
and c59 → c49 → c39 → c29 → c19 → c18 → c17 → c16
→ c6, respectively. Obviously, there exist some
intersections (e.g. c12, c17, c35, c37, c39) in the
predetermined paths of different vehicles. In order
to prevent possible collision, congestion and
deadlocks in the yard, AGVs need to be isolated
from each other for the whole terminal area,
especially for those intersection cells. Using
dependency structures, the behavior of such a
mobile system can be modeled as DSACT = <ξ,
, , , , , , > where

ξ = { enA
c2, enA

c12, enA
c22, enA

c23, enA
c24, enA

c25, enA
c35, enA

c45, enA
c55,

enB
c4, enB

c14, enB
c13, enB

c12, enB
c11, enB

c21, enB
c31, enB

c41, enB
c51, enC

c52,
enC

c42, enC
c32, enC

c33, enC
c34, enC

c35, enC
c36, enC

c37, enC
c38, enC

c39, enC
c40,

enC
c30, enC

c20, enC
c10, enD

c56, enD
c57, enD

c47, enD
c37, enD

c27, enD
c17, enD

c7,
enD

c8, enE
c59, enE

c49, enE
c39, enE

c29, enE
c19, enE

c18, enE
c17, enE

c16, enE
c6},

 = {{enA
c2}, {enB

c4}, {enC
c52}, {enD

c52}, {enE
c59}},

 = {({enA
c2},{enA

c12}), ({enA
c12},{enA

c22}), ({enA
c22},{enA

c23}),
({enA

c23},{enA
c24}), ({enA

c24},{enA
c25}), ({enA

c25},{enA
c35}), ({enA

c35},
{enA

c45}), ({enA
c45},{enA

c55}), ({enB
c4},{enB

c14}), ({enB
c14},{enB

c13}),
 ({enB

c13},{enB
c12}), ({enB

c12},{enB
c11}), ({enB

c11},{enB
c21}), ({enB

c21},
{enB

c31}), ({enB
c31},{enB

c41}), ({enB
c41},{enB

c51}), ({enC
c52},{enC

c42}),
({enC

c42},{enC
c32}), ({enC

c32},{enC
c33}), ({enC

c33},{enC
c34}), ({enC

c34},
{enC

c35}),({enC
c35},{ enC

c36}), ({enC
c36},{enC

c37}), ({enC
c37},{enC

c38}),
 ({enC

c38},{enC
c39}), ({enC

c39},{enC
c40}), ({enC

c40},{enC
c30}), ({enC

c30},
{enC

c20}), ({enC
c20},{enC

c10}), ({enD
c56},{enD

c57}), ({enD
c57},{enD

c47}),
 ({enD

c47},{enD
c37}), ({enD

c37},{enD
c27}), ({enD

c27},{enD
c17}), ({enD

c17},
{enD

c7}),({enD
c7},{enD

c8}), ({enE
c59},{ en

E
c49}), ({enE

c49},{enE
c39}),

 ({enE
c39},{enE

c29}), ({enE
c29},{enE

c19}), ({enE
c19},{enE

c18}), ({enE
c18},

{enE
c17}), ({enE

c17},{enE
c16}), ({enE

c16},{enE
c6})} ,

 = f ,  = f,  = f, " e Î ξ, (e) = ∞, and

 = {{enA
c55}, {enB

c51}, {enC
c10}, {enD

c8}, {enE
c6}}.

Using the algorithm above (see Algorithm 1), a
scheduling sequence can be conveniently obtained
which can guarantee the isolation of AGVs in this
terminal, like the one below:
Figure 6

The dependency structure model of part of a fully-
automated container terminal.

s = {enA
c2}{enA

c12}{enA
c22}{enB

c4}{enB
c14}{enB

c13}{enB
c12}{enB

c11}{enB
c21}

{enB
c31}{enB

c41}{enB
c51}{enA

c23}{enA
c24}{enA

c25}{enA
c35}{enA

c45}{enA
c55}

{enC
c52} {enC

c42}{enC
c32}{enC

c33}{enC
c34}{enC

c35}{enC
c36}{enC

c37}{enC
c38}

{enD
c56}{enD

c57}{enD
c47}{enD

c37}{enD
c27}{enD

c17}{enD
c7}{enD

c8}{enC
c39}

{enC
c40}{enE

c59}{enE
c49}{enE

c39}{enE
c29}{enE

c19}{enE
c18}{enE

c17}{enE
c16}

{enE
c69}{enC

c30}{enC
c20}{enC

c10},

Under the control of the generated schedule, the
vehicle B will arrive at its destination first, then will
the vehicle A, after that are the vehicles D, E and C
in sequence.

In practical application, besides isolation, the
scheduling of AGVs must take into account many
other constraints and conditions, such as to

781Information Technology and Control 2021/4/50

Figure 7
The DS Tool

maximize the QCs’ productivity by reducing their
delays, to minimize the CO2 emissions by
reducing the empty-travel distances of the AGVs,
etc. Based on these concerns, we can further
improve the algorithm to generate the most
optimal schedule in a more efficient way.

9.2 Scalability Evaluation
For performance evaluations, a total of more than
600000 simulation experiments are conducted in
five batches by using the latest version (91.0.4472)
of Google Chrome, on a standard windows laptop
with an Intel(R) Core(TM) i7-4600U CPU and 12
GB of memory. In each batch, a square area
composed of a fixed number of cells (that are
15×15,20×20,25×25,30×30 and 35×35 separately) is
created to model the ACT and a variable numbers
of AGVs are emulated to move in such an area
(see Figure 7 for example). Every time when the
number of AGVs and the upper limit of the length
of their travelling paths are given, the moving
paths of all AGVs are randomly determined, thus
all of the necessarily isolated cells (i.e., intersection
cells) are determined. Then the scheduling
generating algorithm (Algorithm 1) are carried out
to generate a feasible schedule which can
guarantee the safety isolation of the AGVs in the
whole area (or conclude that such a schedule is
non-existent). Such a simulation is replicated
again and again with AGVs’ number ranging from
2 to 14, and the time spent in generating a
schedule and the corresponding test case are
recorded in CSV format each time for further
detailed analysis.
Figure 7

The DS Tool.

The main results of the experiments are presented
as follows. Table 1 lists the average time spent in
generating a schedule under different number of

vehicles in different size of areas, while Table 2
does the maximum time. Note that all statistics are
in milliseconds. Based on the data collected, Figures
8-9 intuitively illustrate the feasibility and
scalability of the approach. Figure 8 shows the
average time spent in generating a schedule in
different size of areas, and Figure 9 compares the
average time spent with the maximum time spent
in a standard 20×20 square area as a typical
example. Evidently, as the number of vehicles
increases, the average time spent in generating a
schedule grows accordingly (see Figure 8), while
the maximum time spent is further higher than the
average time (see Figure 9).

This conclusion can be well explained as follows, by
Figures 10-11.
Firstly, given the upper limit of the length of the
paths, once the size of the area (i.e., the amount of
cells) is determined, the vehicular traffic capacity in
such an area is considered to be constant. The more
vehicles you arrange in the area, the more
intersections that may appear on their paths, which
makes the vehicles more likely to collide with each
other. Hence it takes the algorithm more time to
explore much more states to find a feasible
schedule, which is confirmed by the statistics
shown in Figure 10. Besides that, it is also
noticeable that under the same conditions a larger
area can accommodate more vehicles than smaller
ones so that the schedule can be generated more
quickly, as indicated in Figure 8.
Secondly, as shown in Figure 11, when the number
of vehicles increases, the probability of non-existent
of schedule (i.e., isolation failure caused by path
conflict) grows significantly, which forces the
algorithm to iterate over nearly all possible states
before making a final decision, resulting in the
significant increase in computing time, especially
the maximum time. From the massive simulation
cases we collected, it is not difficult to find out that
the maximum time spent usually comes from the
cases where the number of intersections is great and
all paths intersect with each other sometimes may
even lead to the non-existence of a schedule.
However, fortunately, complex cases like these are
only a small part of all generated cases so that the
average time spent turns out to be much lower than
the maximum time (confirmed by Figure 11).
In addition, it is also worth mentioning that a
drastic increase can be observed in the maximum
time spent as the number of vehicles reaches or
exceeds a certain threshold. For example, when the
number of vehicles reaches 9 in a 20×20 area, as
shown in Figure 9. Similar changes can also be
found in the results for 15×15,25×25,30×30 and
35×35 areas (see Table 2), which is supposed to be

on the data collected, Figures 8-9 intuitively illustrate
the feasibility and scalability of the approach. Figure 8
shows the average time spent in generating a schedule
in different size of areas, and Figure 9 compares the
average time spent with the maximum time spent in a
standard 20×20 square area as a typical example. Evi-
dently, as the number of vehicles increases, the average
time spent in generating a schedule grows accordingly
(see Figure 8), while the maximum time spent is fur-
ther higher than the average time (see Figure 9).
This conclusion can be well explained as follows, by
Figures 10-11.
Firstly, given the upper limit of the length of the paths,
once the size of the area (i.e., the amount of cells) is
determined, the vehicular traffic capacity in such an
area is considered to be constant. The more vehicles
you arrange in the area, the more intersections that

Table 1
Average time spent in generating a schedule(in milliseconds)

2 3 4 5 6 7 8 9 10 11 12 13 14

15 × 15 6.46 13.49 17.96 20.98 22.4 24.88 35.59 91.88 271.62 1010.7 − − −

20 × 20 3.91 10.18 14.17 18.23 20.12 21.99 26.16 41.64 127.48 436.09 1234.3 2340.71 5645.93

25 × 25 2.94 6.43 11.85 15.55 20.87 22.83 24.50 29.52 46.1 121.39 197.49 499.83 1415.27

30 × 30 1.94 9.37 10.78 15.69 20.45 23.78 24.43 24.91 61.88 65.07 83.57 104.74 236.7

35 × 35 1.44 4.01 7.48 10.83 14.65 17.68 20.32 24.38 25.97 31.34 33.64 46.01 63.14

Vehicle Number

Size of area

Note that ”-” means being omitted because of the insufficiency of the samples.

Table 2
Maximum time spent in generating a schedule (in milliseconds)

 2 3 4 5 6 7 8 9 10 11 12 13 14

15 × 15 113 332 1150 1228 1249 2513 29837 42909 84237 115174 − − −

20 × 20 44 157 193 269 318 375 1214 10923 52366 106521 149194 124421 239505

25 × 25 35 35 53 65 120 672 531 2803 15669 54328 64646 99292 285744

30 × 30 38 37 52 54 66 217 734 969 31107 39536 80774 62067 95376

35 × 35 29 31 36 40 39 43 88 85 512 3536 7508 14425 65614

Vehicle Number

Size of area

Note that ”-” means being omitted because of the insufficiency of the samples and data in bold text indicates where the drastic increases occur.

Information Technology and Control 2021/4/50782

may appear on their paths, which makes the vehicles
more likely to collide with each other. Hence it takes
the algorithm more time to explore much more states
to find a feasible schedule, which is confirmed by the
statistics shown in Figure 10. Besides that, it is also
noticeable that under the same conditions a larger
area can accommodate more vehicles than small-
er ones so that the schedule can be generated more
quickly, as indicated in Figure 8.
Secondly, as shown in Figure 11, when the number of
vehicles increases, the probability of non-existent of
schedule (i.e., isolation failure caused by path conflict)
grows significantly, which forces the algorithm to iter-
ate over nearly all possible states before making a final
decision, resulting in the significant increase in com-
puting time, especially the maximum time. From the
massive simulation cases we collected, it is not difficult
to find out that the maximum time spent usually comes
from the cases where the number of intersections is
great and all paths intersect with each other some-
times may even lead to the non-existence of a schedule.
However, fortunately, complex cases like these are only
a small part of all generated cases so that the average
time spent turns out to be much lower than the maxi-
mum time (confirmed by Figure 11).
In addition, it is also worth mentioning that a dras-
tic increase can be observed in the maximum time
spent as the number of vehicles reaches or exceeds a
certain threshold. For example, when the number of
vehicles reaches 9 in a 20×20 area, as shown in Fig-
ure 9. Similar changes can also be found in the results
for 15×15,25×25,30×30 and 35×35 areas (see Table 2),
which is supposed to be the result of some kind of ve-
hicle saturation in the bounded area.
In order to enhance algorithm performance, sever-
al optimizing methods are applied in the actual al-
gorithm implementation. To simplify the input, the
length of the AGVs’ moving paths can be reduced by
only considering the intersection cells. Moreover,
those paths can be further split into several inde-
pendent (non-overlapping) groups so that a di-
vide-and-conquer strategy can be employed to ac-
celerate the schedule generation. In addition, some
typical collision-deadlock states can be recognized in
advance by directly using certain common patterns.
Due to the high dimensionality of complex search
spaces and the inherent performance limitation of
JavaScript and browsers, in extreme cases (e.g., when

Table 1

Average time spent in generating a schedule(in milliseconds)
V eh icle Number

Size of area 2 3 4 5 6 7 8 9 10 11 12 13 14

15 × 15 6.46 13.49 17.96 20.98 22.4 24.88 35.59 91.88 271.62 1010.7 − − −
20 × 20 3.91 10.18 14.17 18.23 20.12 21.99 26.16 41.64 127.48 436.09 1234.3 2340.71 5645.93

25 × 25 2.94 6.43 11.85 15.55 20.87 22.83 24.50 29.52 46.1 121.39 197.49 499.83 1415.27

30 × 30 1.94 9.37 10.78 15.69 20.45 23.78 24.43 24.91 61.88 65.07 83.57 104.74 236.7

35 × 35 1.44 4.01 7.48 10.83 14.65 17.68 20.32 24.38 25.97 31.34 33.64 46.01 63.14
Note that ”-” means being omitted because of the insufficiency of the samples.
Table 2

Maximum time spent in generating a schedule (in milliseconds)
Veh icle Number

Size of area 2 3 4 5 6 7 8 9 10 11 12 13 14

15 × 15 113 332 1150 1228 1249 2513 29837 42909 84237 115174 − − −
20 × 20 44 157 193 269 318 375 1214 10923 52366 106521 149194 124421 239505

25 × 25 35 35 53 65 120 672 531 2803 15669 54328 64646 99292 285744

30 × 30 38 37 52 54 66 217 734 969 31107 39536 80774 62067 95376

35 × 35 29 31 36 40 39 43 88 85 512 3536 7508 14425 65614
Note that ”-” means being omitted because of the insufficiency of the samples and data in bold text indicates where the drastic
increases occur.

Figure 8

Average time spent in generating a schedule in
different sizes of areas.

the result of some kind of vehicle saturation in
the bounded area.

In order to enhance algorithm performance,
several optimizing methods are applied in the
actual algorithm implementation. To simplify
the input, the length of the AGVs’ moving
paths can be reduced by only considering the
intersection cells. Moreover, those paths can be
further split into several independent (non-
overlapping) groups so that a divide-and-

Figure 9

Average and maximum time spent in generating a schedule
under different number of vehicles in a 20 × 20 square area.

conquer strategy can be employed to accelerate the
schedule generation. In addition, some typical
collision-deadlock states can be recognized in advance
by directly using certain common patterns. Due to the
high dimensionality of complex search spaces and the
inherent performance limitation of JavaScript and
browsers, in extreme cases (e.g., when the AGVs’
number exceeds 11 in a 15×15 area), the simulation is

Figure 8
Average time spent in generating a schedule in different
sizes of areas

Figure 9
Average and maximum time spent in generating a schedule
under different number of vehicles in a 20 × 20 square area

783Information Technology and Control 2021/4/50

Figure 10
Relationship between the number of intersections in the
vehicles’ paths when the number of vehicles is 10 in a
20×20 square area

Figure 11
Probability of non-existent scheduling under different
number of vehicles in different sizes of areas

Figure 10
Relationship between the number of intersections in
the vehicles’ paths when the number of vehicles is 10
in a 20×20 square area.

still time-consuming, preventing it from being
executed enough times. Consequently, this part
of results are not convincing which are not
presented in the illustration.

Despite all this, as shown in Figure 9, in a 20×20
area, when the number of vehicles is less than 9,
the algorithm can always generate a schedule
(or conclude the schedule is non-existent) in
less than 1.5 seconds, which is efficient enough
for most autonomous driving scenarios
according to the report [13]. Because in the case
of autonomous driving, a vehicle only needs to
consider a very limited area around it. In that
case, it only needs to consider at most 8 vehicles
which are the nearest to it in all directions.

10. Conclusion

In this paper, a novel approach to analyzing
and implementing the safety isolation of mobile
objects in a complex mobile system is proposed,
which employs a more fine-grained event-
based formal model called Dependency
Structure. Thus an automatic schedule
generating algorithm is provided and
implemented to generate the isolation
scheduling policies in such a mobile system.
Simulation experiments are conducted to solve
the intersection isolation problems in a concrete
intelligent traffic system and the result
demonstrates the effectiveness and scalability of
our approach.
In general, our results are mainly twofold:

(1) Finer-grained event scheduling is more
applicable for complex scheduling problems in

complex mobile systems than traditional task
Figure 11

Probability of non-existent scheduling under different
number of vehicles in different sizes of areas.

scheduling.

(2) The safety isolation of mobile objects in complex
mobile systems can be achieved by using a schedule
generated automatically by an algorithm.

Since intersection isolation (collision avoidance) is
only one particular form of the concept of isolation,
the work here is just the beginning. Future research
will further extend and optimize the isolation control
theory and scheduling generation policies of the
complex concurrent mobile system, and we wish it to
be finally applied for real-world intelligent
transportation systems, such as the Chinese train
control system [34], to ensure their safety operations.

Acknowledgement
This work is supported by National Natural Science
Foundation of China (61772004), Scientific Research
Foundation for Advanced Talents of Chengdu
University of Information Technology (KYTZ202009),
and Sichuan Major Science and Technology Special
Program under Grant (2017GZDZX0002).

References
1. Altisen, K., Gö ßler, G., Sifakis, J. Scheduler Modeling

Based on the Controller Synthesis Paradigm. Real-time
Systems, 2002, 23(1-2), 55–84.
https://doi.org/10.1023/ A:1015346419267

2. Anderson, J. H., Bud, V., Devi, U. C. An EDF-based
Restricted-migration Scheduling Algorithm for
Multiprocessor Soft Real-time Systems. Real-Time
Systems, 2008, 38(2), 85–131.
https://doi.org/10.1007 /s11241-007-9035-0

the AGVs’ number exceeds 11 in a 15×15 area), the
simulation is still time-consuming, preventing it from
being executed enough times. Consequently, this part
of results are not convincing which are not presented
in the illustration.
Despite all this, as shown in Figure 9, in a 20×20 area,
when the number of vehicles is less than 9, the algo-

Figure 10
Relationship between the number of intersections in
the vehicles’ paths when the number of vehicles is 10
in a 20×20 square area.

still time-consuming, preventing it from being
executed enough times. Consequently, this part
of results are not convincing which are not
presented in the illustration.

Despite all this, as shown in Figure 9, in a 20×20
area, when the number of vehicles is less than 9,
the algorithm can always generate a schedule
(or conclude the schedule is non-existent) in
less than 1.5 seconds, which is efficient enough
for most autonomous driving scenarios
according to the report [13]. Because in the case
of autonomous driving, a vehicle only needs to
consider a very limited area around it. In that
case, it only needs to consider at most 8 vehicles
which are the nearest to it in all directions.

10. Conclusion

In this paper, a novel approach to analyzing
and implementing the safety isolation of mobile
objects in a complex mobile system is proposed,
which employs a more fine-grained event-
based formal model called Dependency
Structure. Thus an automatic schedule
generating algorithm is provided and
implemented to generate the isolation
scheduling policies in such a mobile system.
Simulation experiments are conducted to solve
the intersection isolation problems in a concrete
intelligent traffic system and the result
demonstrates the effectiveness and scalability of
our approach.
In general, our results are mainly twofold:

(1) Finer-grained event scheduling is more
applicable for complex scheduling problems in

complex mobile systems than traditional task
Figure 11

Probability of non-existent scheduling under different
number of vehicles in different sizes of areas.

scheduling.

(2) The safety isolation of mobile objects in complex
mobile systems can be achieved by using a schedule
generated automatically by an algorithm.

Since intersection isolation (collision avoidance) is
only one particular form of the concept of isolation,
the work here is just the beginning. Future research
will further extend and optimize the isolation control
theory and scheduling generation policies of the
complex concurrent mobile system, and we wish it to
be finally applied for real-world intelligent
transportation systems, such as the Chinese train
control system [34], to ensure their safety operations.

Acknowledgement
This work is supported by National Natural Science
Foundation of China (61772004), Scientific Research
Foundation for Advanced Talents of Chengdu
University of Information Technology (KYTZ202009),
and Sichuan Major Science and Technology Special
Program under Grant (2017GZDZX0002).

References
1. Altisen, K., Gö ßler, G., Sifakis, J. Scheduler Modeling

Based on the Controller Synthesis Paradigm. Real-time
Systems, 2002, 23(1-2), 55–84.
https://doi.org/10.1023/ A:1015346419267

2. Anderson, J. H., Bud, V., Devi, U. C. An EDF-based
Restricted-migration Scheduling Algorithm for
Multiprocessor Soft Real-time Systems. Real-Time
Systems, 2008, 38(2), 85–131.
https://doi.org/10.1007 /s11241-007-9035-0

rithm can always generate a schedule (or conclude
the schedule is non-existent) in less than 1.5 seconds,
which is efficient enough for most autonomous driv-
ing scenarios according to the report [13]. Because in
the case of autonomous driving, a vehicle only needs
to consider a very limited area around it. In that case,
it only needs to consider at most 8 vehicles which are
the nearest to it in all directions.

10. Conclusion
In this paper, a novel approach to analyzing and imple-
menting the safety isolation of mobile objects in a com-
plex mobile system is proposed, which employs a more
fine-grained event-based formal model called Depen-
dency Structure. Thus an automatic schedule generat-
ing algorithm is provided and implemented to generate
the isolation scheduling policies in such a mobile sys-
tem. Simulation experiments are conducted to solve
the intersection isolation problems in a concrete in-
telligent traffic system and the result demonstrates the
effectiveness and scalability of our approach.
In general, our results are mainly twofold:
1 Finer-grained event scheduling is more applicable

for complex scheduling problems in complex mo-
bile systems than traditional task scheduling.

2 The safety isolation of mobile objects in complex
mobile systems can be achieved by using a sched-
ule generated automatically by an algorithm.

Since intersection isolation (collision avoidance) is
only one particular form of the concept of isolation,
the work here is just the beginning. Future research
will further extend and optimize the isolation control
theory and scheduling generation policies of the com-
plex concurrent mobile system, and we wish it to be fi-
nally applied for real-world intelligent transportation
systems, such as the Chinese train control system
[34], to ensure their safety operations.

Acknowledgement
This work is supported by National Natural Science
Foundation of China (61772004), Scientific Research
Foundation for Advanced Talents of Chengdu Uni-
versity of Information Technology (KYTZ202009),
and Sichuan Major Science and Technology Special
Program under Grant (2017GZDZX0002).

Information Technology and Control 2021/4/50784

References
1. Altisen, K., Go¨ ßler, G., Sifakis, J. Scheduler Modeling

Based on the Controller Synthesis Paradigm. Real-time
Systems, 2002, 23(1-2), 55-84. https://doi.org/10.1023/
A:1015346419267

2. Anderson, J. H., Bud, V., Devi, U. C. An EDF-based Re-
stricted-migration Scheduling Algorithm for Multi-
processor Soft Real-time Systems. Real-Time Systems,
2008, 38(2), 85-131. https://doi.org/10.1007 /s11241-
007-9035-0

3. Aoki, S., Rajkumar, R. A Configurable Synchronous
Intersec- tion Protocol for Self-driving Vehicles. 23rd
IEEE International Conference on Embedded and Re-
al-Time Computing Systems and Applications, (RTC-
SA 2017), Hsinchu, Taiwan, August 16-18, 2017, 1-11.
https://doi.org/10.1109/RTCSA.2017. 8046306

4. Aoki, S., Rajkumar, R. A Merging Protocol for Self-driv-
ing Vehicles. Proceedings of the 8th International Con-
ference on Cyber-Physical Systems, (ICCPS 2017),
Pittsburgh, Pennsylvania, USA, April 18-20, 2017, 219-
228. https://doi.org/ 10.1145/3055004.3055028

5. Aoki, S., Rajkumar, R. R. Dynamic Intersections and
Self-driving Vehicles. Proceedings of the 9th ACM/IEEE
In- ternational Conference on Cyber-Physical Systems,
(ICCP- S 2018), Porto, Portugal, April 11-13, 2018, 320-
330. https://doi.org/10.1109/ICCPS.2018.00038

6. Audsley, N. C., Burns, A., Wellings, A. J. Deadline Mono-
tonic Scheduling Theory and Application. Control
Engineering Practice, 1993, 1(1), 71-78. https://doi.
org/10.1016/0967-0661 (93) 92105-D

7. Azimi, S. R., Bhatia, G., Rajkumar, R., Mudalige, P. STIP:
Spatio-temporal Intersection Protocols for Autono-
mous Vehicles. ACM/IEEE International Conference
on Cyber-Physical Systems, (ICCPS 2014), Berlin, Ger-
many, April 14-17, 2014, 1-12. https://doi.org/10.1109/
ICCPS.2014.6843706

8. Azimi, S. R., Bhatia, G., Rajkumar, R., Mudalige, P. Ball-
room Intersection Protocol: Synchronous Autonomous
Driving at Intersections. 21st IEEE International Con-
ference on Embedded and Real-Time Computing Sys-
tems and Applications, (RTCSA 2015), Hong Kong, Chi-
na, August 19-21, 2015, 167-175. https://doi.org/10.1109/
RTCSA.2015.20

9. Biondi, A., Buttazzo, G. C. Modeling and Analysis of
Engine Control Tasks Under Dynamic Priority Sched-
uling. IEEE Transactions on Industrial Informat-
ics, 2018, 14(10), 4407-4416. https://doi.org/10.1109/
TII.2018.2791939

10. Cardelli, L., Gordon, A. D. Mobile Ambients. In: Nivat,
M. (Ed.), Foundations of Software Science and Compu-
tation Structure, Lecture Notes in Computer Science,
1378, Springer, Lecture Notes in Com puter Science,
1998, 140-155. https://doi.org/10.1007/BFb0053547

11. Chen, H., Jiang, J., Hong, Z. Lin, L. Decomposition of UML
Activity Diagrams. Software: Practice and Experience,
2018, 48(1), 105-122. https://doi.org/10.1002/spe.2519

12. Dresner, K. M., Stone, P. A Multiagent Approach to Au-
tonomous Intersection Management. Journal of artifi-
cial intelligence research, 2008, 31, 591-656. https://doi.
org/10.1613/jair.2502

13. Jernigan, J. D., Kodaman, M. F. An Investigation of the
Utility and Accuracy of the Table of Speed and Stopping
Distances Specified in the Code of Virginia. Technical
Report, Virginia Transportation Research Council, 2001

14. Jiang, J., Zhang, S., Gong, P., Hong, Z. Configuring
Business Process Models. ACM SIGSOFT Software
Engineering Notes, 2013, 38(4), 1-10. https://doi.
org/10.1145/2492248.2492267

15. Jiang, J., Zhu, H., Li, Q., Zhang, S., Gong, P., Hong, Z.
Configuration of Services based on Virtualization. 2014
Theoretical Aspects of Software Engineering Confer-
ence, (TASE 2014), Changsha, China, September 1-3,
2014, 177-184. https://doi.org/10.1109/TASE.2014.28

16. Jiang, J.-M., Zhu, H., Li, Q., Zhao, Y., Hong, Z., Zhang, S.,
Gong, P. Isolation Modeling and Analysis Based on Mo-
bility. ACM Transactions on Software Engineering and
Methodology (TOSEM), 2019, 28(2), 10:1-10:31. https://
doi.org/10.1145/3306606

17. Jiang, J.-M., Zhu, H., Li, Q., Zhao, Y., Zhao, L., Zhang, S.,
Gong, P., Hong, Z. Analyzing Event-based Scheduling in
Concurrent Reactive Systems. ACM Transactions on
Embedded Computing Systems (TECS), 2015, 14(4),
86. https://doi.org/10.1145/2783438

18. Jiang, J.-M., Zhu, H., Li, Q., Zhao, Y., Zhao, L., Zhang,
S., Gong, P., Hong, Z., Chen, D. Event-Based Mobili-
ty Modeling and Analysis. ACM Transactions on Cy-
ber-Physical Systems, 2017, 1(2), 9:1-9:32. https://doi.
org/ 10.1145/2823353

19. Kim, J., Kim, H., Lakshmanan, K., Rajkumar, R. Paral-
lel Scheduling for Cyber-physical Systems: Analysis
and Case Study on a Self-driving Car. ACM/IEEE 4th
International Conference on Cyber-Physical Sys-
tems (with CPS Week 2013), (ICCPS 2013), Philadel-
phia, PA, USA, April 8-11, 2013, 31-40. http://doi.acm.
org/10.1145/2502524.2502530

785Information Technology and Control 2021/4/50

20. Kim, K.-D., Kumar, P. R. Cyber-Physical Systems: A
Perspective at the Centennial. Proceedings of the
IEEE, 2012, 100(Special Centennial Issue), 1287-1308.
https://doi.org/10.1109/JPROC.2012.2189792

21. Lee, J., Park, B. Development and Evaluation of a Cooper-
ative Vehicle Intersection Control Algorithm Under the
Connected Vehicles Environment. IEEE Transactions
on Intelligent Transportation Systems, 2012, 13(1), 81-
90. https://doi.org/10.1109/TITS.2011.2178836

22. Lee, J., Shin, K. G. Development and Use of a New Task
Model for Cyber-physical Systems: A Real-Time Sched-
uling Perspective. Journal of Systems and Software, 2017,
126, 45-56. http s://doi.org/10.1016/j.jss.2017.01.004

23. Li, Q. Scheduling in Cyber-Physical Systems, 2012. Dis-
sertation

24. Li, Q., Negi, R. Maximal Scheduling in Wireless Ad Hoc
Networks with Hypergraph Interference Models. IEEE
Transactions on Vehicular Technology, 2012, 61(1),
297-310. https://doi.org/10.1109/TVT.2011.2176520

25. Liu, C. L., Layland, J. W. Scheduling Algorithms for
Multipro- gramming in a Hard-real-time Environment.
Journal of the ACM, 1973, 20(1), 46-61. https://doi.
org/10.1145/321738.321743

26. Liu, K., Lee, V. C. S., Ng, J. K., Son, S. H., Sha, E. H. Sched-
uling Temporal Data with Dynamic Snapshot Consis-
tency Requirement in Vehicular Cyber-Physical Sys-
tems. ACM Transactions on Em- bedded Computing
Systems (TECS), 2014, 13(5s), 163:1-163:21. https://doi.
org/10.1145/2629546

27. Martini, D. D., Benetti, G., Vedova, M. L. D., Facchinet-
ti, T. Adaptive Real-time Scheduling of Cyber-Physical
Energy Systems. ACM Transactions on Cyber-Phys-
ical Systems, 2017, 1(4), 20:1-20:25. https://doi.
org/10.1145/3047412

28. Pattanayak, P., Kumar, P. Quantized Feedback Schedul-
ing for MIMO-OFDM Broadcast Networks with Sub-
carrier Clustering. Ad Hoc Networks, 2017, 65, 26-37.
https://doi.org/10.1016/j.adhoc.2017.07.007

29. Perronnet, F., Buisson, J., Lombard, A., Abbas-Turki,
A., Ah- mane, M., El Moudni, A. Deadlock Prevention
of Self-Driving Vehicles in a Network of Intersections.
IEEE Transactions on Intelligent Transportation Sys-
tems, 2019, 20(11), 4219-4233. https://doi.org/10.1109/
TITS.2018.2886247

30. Schneider, R., Goswami, D., Masrur, A., Becker,
M., Chakraborty, S. Multi-layered Scheduling of
Mixed-criticality Cyber-physical Systems. Journal
of Systems Architecture, 2013, 59(10-D), 1215- 1230.
https://doi.org/10.1016/j.sysarc.2013.09.003

31. Stankovic, J. A., Spuri, M., Ramamritham, K., Buttazzo,
G. Deadline Scheduling for Real-time Systems: EDF
and Related Algorithms. The Springer Internation-
al Series in Engineering and Computer Science, 460,
Springer Science & Business Media, 1998. https://doi.
org/10.1007/978-1-4615-5535-3

32. Stone, P., Zhang, S., Au, T.-C. Autonomous Intersection
Man- agement for Semi-Autonomous Vehicles. Rout-
ledge Handbook of Transportation, 2015, 116-132

33. Tang, Q., Gupta, S. K. S., Varsamopoulos, G. A Uni-
fied Methodology for Scheduling in Distributed Cy-
ber-Physical Systems. ACM Transactions on Embed-
ded Computing Systems (TECS) Special Section on
CAPA'09, Special Section on WHS'09, and Special
Section VCPSS' 09, 2012, 11(S2), 57:1-57:25. https://doi.
org/10.1145/2331147.2331162

34. Wang, H., Schmid, F., Chen, L., Roberts, C., Xu, T. A
Topology-Based Model for Railway Train Control Sys-
tems. IEEE Transactions on Intelligent Transportation
Systems, 2013, 14(2), 819-827. https://doi.org/10.1109/
TITS.2012.2237509

35. Wang, T., Homsi, S., Niu, L., Ren, S., Bai, O., Quan, G.,
Qiu, M. Harmonicity-Aware Task Partitioning for Fixed
Priority Scheduling of Probabilistic Real-Time Tasks
on Multi-Core Platforms. ACM Transactions on Em-
bedded Computing Systems, 2017, 16(4), 101:1-101:21.
https://doi.org/10.1145/3064813

36. Wu, W., Zhang, J., Luo, A., Cao, J. Distributed Mutual Ex-
clusion Algorithms for Intersection Traffic Control. IEEE
Transactions on Parallel and Distributed Systems, 2015,
26(1), 65-74. https://doi.org/10.1109/TPDS.2013.2297097

37. Xu, D., He, X., Deng, Y. Compositional Schedulability Anal-
ysis of Real-Time Systems Using Time Petri Nets. IEEE
Transactions on Software Engineering, 2002, 28(10), 984-
996. https://doi.org/10.1109/TSE.2002.1041054

38. Zhang, F., Szwaykowska, K., Wolf, W. H., III, V. J. M. Task
Scheduling for Control Oriented Requirements for Cy-
ber-physical systems, Proceedings of the 29th IEEE Re-
al-Time Systems Symposium, (RTSS 2008), Barcelona,
Spain, 30 November - 3 December, 2008, 47-56. https://
doi.org/10.1109/RTSS.2008.52

This article is an Open Access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

