
Information Technology and Control 2021/4/50808

A Reduced Variable
Neighborhood Search Approach
to the Heterogeneous Vector
Bin Packing Problem

ITC 4/50
Information Technology
and Control
Vol. 50 / No. 4 / 2021
pp. 808-826
DOI 10.5755/j01.itc.50.4.29009

A Reduced Variable Neighborhood Search Approach to
the Heterogeneous Vector Bin Packing Problem

Received 2021/04/27 Accepted after revision 2021/11/25

 http://dx.doi.org/10.5755/j01.itc.50.4.29009

HOW TO CITE: Stakić Ð., Živković, M., Anokić, A. (2021). A Reduced Variable Neighborhood Search Approach to the Heterogeneous
Vector Bin Packing Problem. Information Technology and Control, 50(4), 808-826. https://doi.org/10.5755/j01.itc.50.4.29009

Corresponding author: djordje.stakic@ekof.bg.ac.rs

Ðorde Stakić
University of Belgrade, Faculty of Economics, Kamenička 6, 11 000 Belgrade, Serbia;
e-mail: djordje.stakic@ekof.bg.ac.rs

Miodrag Živković
University of Belgrade, Faculty of Mathematics, Studentski trg 16, 11 000 Belgrade, Serbia;
e-mail: ezivkovm@matf.bg.ac.rs

Ana Anokić
Academy of Technical and Art Applied Studies Belgrade, School of Applied Studies for Information and
Communication Technologies, Zdravka Čelara 16, 11 000 Belgrade, Serbia; e-mail: ana.anokic@ict.edu.rs

The two-dimensional heterogeneous vector bin packing problem (2DHet-VBPP) consists of packing the set
of items into the set of various type bins, respecting their two resource limits. The problem is to minimize the
total cost of all bins. The problem, known to be NP-hard, can be formulated as a pure integer linear program,
but optimal solutions can be obtained by the CPLEX Optimizer engine only for small instances. This paper pro-
poses a metaheuristic approach to the 2DHet-VBPP, based on Reduced variable neighborhood search (RVNS).
All RVNS elements are adapted to the considered problem and many procedures are designed to improve ef-
ficiency of the method. As the Two-dimensional Homogeneous-VBPP (2DHom-VBPP) is more often treated,
we considered also a special version of the RVNS algorithm to solve the 2DHom-VBPP. The results obtained
and compared to both CPLEX results and results on benchmark instances from literature, justify the use of the
RVNS algorithm to solve large instances of these optimization problems.
KEYWORDS: Two-dimensional heterogeneous vector bin packing problem, Variable neighborhood search,
Container transport, Optimization, Metaheuristics.

809Information Technology and Control 2021/4/50

1. Introduction
The two-dimensional heterogeneous vector bin pack-
ing problem (2DHet-VBPP) can be stated as follows
(see Han et al. [13], where the name M2BP — multi-
type two-dimensional bin packing problem, was
used): given the N pairs (2 -dimensional items) and
the finite number of bin types, characterized by the
capacity and the cost, the problem is to select bins and
pack all items into these bins, so that the total cost is
minimized and the resource constraints are met.
The problem 2DHet-VBPP is a special case of the
Vector bin packing problem (VBPP) (see Garey et al.
[11]), where bins and items are vectors of dimension

.N The problem Homogeneous VBPP (Hom-VBPP) is
a special case of the 2DHet-VBPP when there is only
one type of bins. The decision variant of the Hom-
VBPP is NP-complete (see [12]), hence the VBPP is
computationally a hard problem.
Han et al. [13] stated the following problems related to
the 2DHet-VBPP:
 _ assignment of computer processes to processors,

taking into account the two resources, processing
time and memory;

 _ assignment of robots to working stations;
 _ file placement for multi-device storage system.

Gabay and Zaourar [10] considered the Virtual ma-
chine placement problem, which is extended by ad-
ditional constraints into the Machine reassignment
problem.
Bin packing is related to the container transport, as
well. According to Notteboom [25], every year hun-
dreds of millions of containers have been transported
worldwide. Therefore, an efficient optimization of the
container transport and packing is very valuable from
the global perspectives on environmental concern
and minimization of costs. For details about the con-
tainer transport and related problems, refer to Bort-
feldt and Wäscher [5], who are focused on the con-
straints of packing items into containers. Problems
are classified into the minimization and maximiza-
tion problem types. Among them, the 2DHet-VBPP
appears under the name Multiple Bin-Size Bin Pack-
ing Problem (MBSBPP) and it is described as packing
a strongly heterogeneous set of cargo into a weakly
heterogeneous assortment of containers so that the
price of the used containers is minimized. From the
163 papers considered in [5], 12 of them dealt with

MBSBPP, while 23 papers used weight limits for the
container-related constraints and only 2 combined
weight limits with some additional constraints in the
MBSBPP. Packing the set of items into the set of con-
tainers in order to minimize the total cost, taking into
account the limits of containers and weights and vol-
umes of items, is considered in [29], [35], [34].
The exact optimization methods cannot solve larger
instances of NP-hard problems. Therefore, the heu-
ristic method is a reasonable choice to deal with the
2DHet-VBPP. Han et al. [13] considered the three ap-
proaches to the 2DHet-VBPP: a simple greedy heu-
ristic named First Fit by Ordered Deviation (FFOD),
Simulated annealing (SA) and Column generation
(CG). The fastest method was FFOD, but with the
solutions with the largest gap from the best ones; SA
was slower, but with a smaller gap. Exact solutions
could not be obtained for the instances with more
than 50 items. Gabay and Zaourar [10] considered 34
greedy heuristic methods to solve the 2DHet-VBPP,
classified into: item centric, bin centric and bin bal-
ancing heuristics for the decision variant of the
VBPP where the final goal was to answer the question
whether the given items could be placed into bins or
not. Three metaheuristic methods, based on Greedy
Randomized Adaptive Search Procedure (GRASP)
metaheuristics, are developed by Stakić et al. [34]:
Basic GRASP, Uniform GRASP and Reactive GRASP
method; the Uniform GRASP method outperformed
the remaining two. Stakić et al. [35] used a variant
of Variable neighborhood search (VNS) to solve the
2DHet-VBPP.
As mentioned earlier, homogeneous variant of the
problem was more considered in literature and there
are many benchmarks for the 2DHom-VBPP. Approx-
imation algorithms and optimal solutions for some
instances of 2DHom-VBPP were represented by
Shachnai and Tamir in [32]. In addition, the authors
showed that for a single bin the problem was solvable
in pseudo-polynomial time. Alves et al. [1] applied the
concept of dual-feasible functions to reach fast lower
bounds for the 2DHom-VBPP extending 1-dimension-
al functions to the m-dimensional case. The authors
analyzed different families of functions. A multi-start
iterated local search heuristic, relaying on simple
neighborhoods and problem-tailored shaking proce-
dures, was developed by Masson et al. [22] as a solu-

Information Technology and Control 2021/4/50810

tion approach for two problems, multi-capacity bin
packing and machine reassignment problem. Turky et
al. [36] developed Hyper-heuristic framework based
on automatically selecting local search algorithm and
the internal operators to solve 2DHom-VBPP denot-
ed as Multi-Capacity Bin Packing Problem (MCBPP).
Brunch-and-Price exact algorithms were applied by
Heßler et al. [19] to several vector packing problems,
among which the 2DHom-VBPP was considered. The
authors used the underlying column-generation pro-
cedure with the extended master program stabilized
by dual-optimal inequalities that were added from the
beginning or dynamically. Branch-cut-and-price al-
gorithms, defined as models for VRPSolver (a generic
solver for vehicle routing problems) were applied to
the classical bin packing problem, as well as vector
packing, variable sized bin packing, and variable sized
bin packing with optional items by Pessoa et al. [28].
A consistent neighborhood search was developed for
solving the one-dimensional bin packing problem and
then applied to the 2DHom-VBPP by Buljubašić and
Vasquez [7]. Panigrahy et al. [26] analysed variants of
the heuristics inspired by the first-fit decreasing algo-
rithm and propose a new geometric heuristic algorithm
without a significant decrease in performance. Arin-
ghieri et al. [2] developed the two heuristics: greedy
and neighborhood search algorithm for the same prob-
lem. Sophisticated branch-cut-and-price algorithms
were proposed by Pessoa et al. [27] for solving vehicle
routing, assignment and bin packing problems, includ-
ing the 2DHom-VBPP. In the early work of Spieksma
[33] a branch-and-bound algorithm for 2DHom-VBPP
was described, but it provided optimal solutions only
for small-size instances. However, some instances
published in [33] were later used as benchmarks. Wei
et al. [37] developed a branch-and-bound method with
dynamic programming which, after eliminating con-
flicts between two items through branching, solves
the two-constraint knapsack problem at leaf nodes
using dynamic programming. Brandao and Pedroso
[6] presented an exact method based on an arc-flow
formulation with side constraints for bin packing, in-
cluding 2DHom-VBPP, and cutting stock problems. In
their method, all the patterns formed a very compact
graph to which a graph compression algorithm was
applied in order to reduce the size of a graph without
weakening the model. Each of the 34 greedy heuristics
implemented by Gabay and Zaourar [10] were applied

to each fixed set of items and bins of the considered
2DHom-VBPP. Then, a binary search procedure was
used to find the minimal number of bins for the consid-
ered set of items among all the solutions obtained by
these heuristics. Due to the simple implementation of
these heuristics, the approach is not time consuming,
but it cannot be applied to heterogenous case. Caprara
and Toth [8] analyzed several lower bounds and intro-
duced heuristic and exact algorithm for 2DHom-VBPP.
Additional information considering different bin
packing problems and solution approaches can be
found in the work of Christensen et al. [9]. In [9] au-
thors considered Geometric bin packing and Vector
bin packing problems. Within the second type they
discussed offline and online vector bin packing, Vec-
tor knapsack, Vector scheduling and Vector covering
problems. The specific 2DHom-VBPP with different
categories of products (standard, cooled and frozen)
that require separated zones in a truck while avoiding
splitting orders with several goals (minimizing the
total number of trucks, the number of refrigerated
trucks which contain frozen and standard products
and minimizing splitting), was considered by Heßler
et al. [20]. Another variant of 2DHom-VBPP, where
a price of a bin depends on the total mass of items in
it, was considered and solved using a memetic algo-
rithm by Hu et al. [21]. 2D-VBPP appeared in a sched-
uling problem considered by Billaut et al. [4]. Namely,
two-dimensional jobs (with duration and consump-
tion) consume a perishable resource stored in vials.
The goal is to schedule the jobs on a single machine
so that the maximum lateness does not exceed a giv-
en threshold and the number of vials required for
processing all the jobs is minimized. The two-step
approach embedding a Recovering Beam Search algo-
rithm for the initial solution and a metaheuristic algo-
rithm are proposed for the considered problem. The
variable neighborhood search algorithm is developed
for solving the bin packing problem (BPP) with com-
patible categories by Santos et al. [31]. A recent sur-
vey by Munien and Ezugwu [24] on different solution
approaches for the 1DHom-VBPP represents The fit-
ness-dependent optimizer (FDO), Cuckoo search via
Lévy flights, Whale optimization algorithm (WOA),
Squirrel search algorithm and Genetic algorithms as
successful metaheuristic approaches to this type of
the Bin packing problem. Another review by Ramos
et al. [30] on grouping problems, among which is bin

811Information Technology and Control 2021/4/50

packing as well, classify the applied metaheuristics
as: Neighborhood searches, Evolutionary algorithms,
Swarm intelligence algorithms.
Here we present a more efficient metaheuristic ap-
proach to the 2DHet-VBPP, based on the Reduced
variable neighborhood search (RVNS). The algorithm
is tested on both of 2DHet-VBPP and 2DHom-VBPP
instances, and the results are compared to [2], [6], [34],
[19], [10], [36]. The main contribution of our work is a
new solution approach, a variant of a VNS metaheuris-
tics, for a less considered problem, 2DHet-VBPP.
Having in mind that exact methods can solve only
small-size instances in the case of NP-hard problems
and population based metaheuristics, as genetic algo-
rithms, consequently provide a large number of unfea-
sible solutions, we develop a systematic single solution
metaheuristic method. The adaption of our method to
the more considered 2DHom-VBPP is successful com-
pared to the benchmarks and provides a several new
optimal solutions for the instances from the literature.
The rest of the paper is organized as follows: the pro-
posed RVNS method is described in Section 2, the ex-
perimental results are presented in Section 3, Section
4 states the conclusion.

2. The Proposed RVNS Algorithm
In order to present the mathematical formulation of
the 2DHet-VBPP and introduce the proposed solu-
tion method, the precise designations are used. If n is
an integer, let [] = {1,2, , }n n . Further:
 _ (,)i im V denotes the two dimensions of item i ,

[]i N∈ .
 _ (,)t tLm LV denotes the capacity of bins of type t ,

[]t nt∈ .
 _

tC denotes the price of bins of type t , []t nt∈ .
 _

tLn denotes the upper bound on the number of bins
of type t , []t nt∈ .

 _ = 1ijtp if item []i n∈ is packed in the j th bin
([]tj Ln∈) of type []t nt∈ ; otherwise = 0ijtp .

 _ = 1jtk if the j th bin, []tj Ln∈ , of type []t nt∈ is
used; otherwise = 0jtk .

The optimization problem 2DHet-VBPP is to

=1 =1
minimize =

Lnnt t

jt t
t j

C k C⋅∑∑ (1)

=1 =1
subject to = 1, []

Lnnt t

ijt
t j

p i n∈∑∑ (2)

=1
(,) (,),

n

ijt i i jt t t
i

p m V k Lm LV⋅ ≤ ⋅∑
[], []tt nt j Ln∈ ∈

{0,1}, [], [], []ijt tp i n t nt j Ln∈ ∈ ∈ ∈

{0,1}, [], []jt tk t nt j Ln∈ ∈ ∈

(3)

The objective function C (1) represents the total costs
of used bins. Constraints (2) ensure that each item is
packed into exactly one bin. Constraints (3) ensure
that bin capacities are not exceeded.
A precise mathematical model can be used by the ex-
act optimization solver. However, it is a well known
fact that only small instances of NP-hard optimiza-
tion problems can be solved exactly. A common ap-
proach is to develop an efficient metaheuristic algo-
rithm that will be successful with larger instances of
the considered problem.
Variable neighborhood search (VNS) is a well-known
metaheuristic method, introduced by Hansen and
Mladenović [14]-[18], [23] and widely used to solve
various continuous and combinatorial optimization
problems (as well as BPP by Santos et al. [31]), see
Algorithm 1. Starting with the initial solution, the ba-
sic VNS algorithm loops repeat the three main steps:
Shaking phase, Local search and Move or Not step, un-
til the termination criterion is reached.

4 Ð. Stakić et al.

The algorithm is tested on both of 2DHet-VBPP
and 2DHom-VBPP instances, and the results are
compared to [2,6,10,19,34,36]. The main contri-
bution of our work is a new solution approach, a
variant of a VNS metaheuristics, for a less consid-
ered problem, 2DHet-VBPP. Having in mind that
exact methods can solve only small-size instances
in the case of NP-hard problems and population
based metaheuristics, as genetic algorithms, con-
sequently provide a large number of unfeasible
solutions, we develop a systematic single solu-
tion metaheuristic method. The adaption of our
method to the more considered 2DHom-VBPP is
successful compared to the benchmarks and pro-
vides a several new optimal solutions for the in-
stances from the literature.

The rest of the paper is organized as follows:
the proposed RVNS method is described in Sec-
tion 2, the experimental results are presented in
Section 3, Section 4 states the conclusion.

2. The proposed RVNS algorithm

In order to present the mathematical formu-
lation of the 2DHet-VBPP and introduce the pro-
posed solution method, the precise designations
are used. If n is an integer, let [n] = {1,2, . . . ,n}.
Further:

• (mi,Vi) denotes the two dimensions of
item i, i ∈ [N].

• (Lmt ,LVt) denotes the capacity of bins of
type t, t ∈ [nt].

• Ct denotes the price of bins of type t,
t ∈ [nt].

• Lnt denotes the upper bound on the
number of bins of type t, t ∈ [nt].

• pi jt = 1 if item i ∈ [n] is packed in the jth
bin (j ∈ [Lnt]) of type t ∈ [nt]; otherwise
pi jt = 0.

• k jt = 1 if the jth bin, j ∈ [Lnt], of type
t ∈ [nt] is used; otherwise k jt = 0.

The optimization problem 2DHet-VBPP is to

minimize C =
nt

∑
t=1

Lnt

∑
j=1

k jt ·Ct (1)

subject to
nt

∑
t=1

Lnt

∑
j=1

pi jt = 1, i ∈ [n] (2)

n

∑
i=1

pi jt · (mi,Vi)≤ k jt · (Lmt ,LVt),

t ∈ [nt], j ∈ [Lnt] (3)

pi jt ∈ {0,1}, i ∈ [n], t ∈ [nt], j ∈ [Lnt]

k jt ∈ {0,1}, t ∈ [nt], j ∈ [Lnt]

The objective function C (1) represents the
total costs of used bins. Constraints (2) ensure
that each item is packed into exactly one bin. Con-
straints (3) ensure that bin capacities are not ex-
ceeded.

A precise mathematical model can be used
by the exact optimization solver. However, it is
a well known fact that only small instances of
NP-hard optimization problems can be solved ex-
actly. A common approach is to develop an effi-
cient metaheuristic algorithm that will be success-
ful with larger instances of the considered prob-
lem.

Variable neighborhood search (VNS) is a
well-known metaheuristic method, introduced by
Hansen and Mladenović [14] - [18], [23] and
widely used to solve various continuous and com-
binatorial optimization problems (as well as BPP
by Santos et al. [31]), see Algorithm 1. Starting
with the initial solution, the basic VNS algorithm
loops repeat the three main steps: Shaking phase,
Local search and Move or Not step, until the ter-
mination criterion is reached.

Algorithm 1 basic VNS

procedure VNS(Problem Data,rmax)
Generate initial solution S;
repeat

r ← 1;
while r ≤ rmax do

S′ ← Shake(S,r); //Shaking phase
S′′ ← Local Search(S′); //Local search
if f (S′′)< f (S) then //Move or Not

S ← S′′;
r ← 1;

else
r ← r+1;

until The termination criterion is satisfied

After generating the initial solution S (in-
cumbent), the first VNS step (called Shaking
phase), directs the search to different points in

Information Technology and Control 2021/4/50812

After generating the initial solution S (incumbent),
the first VNS step (called Shaking phase), directs the
search to different points in the search space, enabling
the diversification of the search process. The solution
S ′, obtained in this phase, is passed to the second step
(Local search), the aim of which is to reach the local
optimum in the neighborhood of S ′ . The best solution
S ′′, obtained during Local search, is compared to the
incumbent S , and the better one is preserved as new
S by Move or Not VNS step. If S ′′ is not better than S ,
the search continues from S , and the counter r of it-
erations without improvement is incremented. As the
termination criterion, there might be used the maxi-
mum number of iterations without improvement, the
maximum running time, etc. In the presented VNS
implementation, a running time limit maxt was used as
the termination criterion.
As the neighbourhood of a 2DHet-VBPP feasible solu-
tion is very large and complicated, the Reduced VNS
(RVNS, see Hansen et al. [15], [18]) was used, the vari-
ant obtained from the basic VNS by omitting the Lo-
cal search step.

2.1. Solution Representation and Objective
Function Calculation
During the 2DHet-VBPP solution process, a sequence
of states (feasible solutions) is considered. Let n de-
note the number of items. If S is a state, then let

()nBin S denote the number of bins corresponding to
S , and let *n denote some upper bound on the number
of items that can be placed into one bin. The state S is
uniquely represented by a pair (,)S a , where
 _ S is an integer *n n× matrix. The row j of S

corresponds to bin j. If > 0i , then [,] =S j k i
means that the item i is the k-th item in the bin j;
 otherwise the number of items in the bin j is less
than k , where , []j i n∈ , *[]k n∈ .

 _ a is an array of length n . If [] > 0a k , then []a k is the
type of the k th bin, otherwise () <nBin kS .

Assuming that the weight and volume of each item
is less than the corresponding limit of bin, we have

()nBin n≤S . A somewhat better upper bound *n is
expressed by

1 1 1=1 =1
min , ,max max max

k k

j t j t
t n k n k nj jt

m Lm V LV
≤ ≤ ≤ ≤ ≤ ≤

 
′ ′≤ ≤ 

 
∑ ∑ (4)

where 1 2' ' 'nm m m≤ ≤ ≤ is the sorted permutation
of 1{ , , }nm m and 1 2' ' 'nV V V≤ ≤ ≤ is the sorted
permutation of 1{ , , }nV V . Namely, for each bin type
t we consider the minimum of the two numbers (in
the parenthesis) - the maximum number of items that
can be placed in the bin of type t respecting the limit
in weight and the limit in volume. The largest of these
minimum values over the set of all bin types is n*, the
maximal number of items that can be placed in bin of
each type.
Let (,) = ()nBin S a nBin S , where S is the state corre-
sponding to (,)S a . From the definition, it follows that
the i th row of S is all-zero if > (,)i nBin S a . The ob-
jective function value corresponding to (,)S a is indi-
cated by

(,)

[]
=1

= (,) = .
nBin S a

a j
j

C f S a C∑

Example 1. Consider the instance with = 10n items
and with = 3nt bin types specified by Tables 1 and 2.
We can suppose that volumes are measured in 3m ,
that weights are measured in tons, and that the price
of using a bin is in euros.

Table 1
Example 2DHet-VBPP instance: items

i 1 2 3 4 5 6 7 8 9 10

()im t 13 5 6 9 9 4 4 10 7 4

3()iV m 1 8 23 9 3 21 24 24 17 1

Table 2
Example 2DHet-VBPP instance: bins

i 1 2 3

()iLm t 25.8 24.5 24.5

3()iLV m 30 60 70

()iC EUR 1594 2470 2483

From (4) it follows that the matrix S corresponding
to any feasible solution has at most * = 5n columns.
The optimal solution (optS , opta), obtained by CPLEX,
uses (optnBin S ,) = 3opta bins, and it is presented by

n*

n*

n*

n*

n*

813Information Technology and Control 2021/4/50

1 9 10 0 0
= 2 3 5 6 0 , = [1,2,2].

4 7 8 0 0
opt optS a

 
 
 
  

The first bin is of type 1, and the remaining two are
of type 2 . The optimal solution puts, for example,
the three items with the indices 1, 9 and 10 into
the first bin. Their vectors (,)i im V are (13,1), (7,17)
and (4,1), respectively. The sum of these three vec-
tors is (24,19), which is lexicographically less than
the capacity 1 1(,) = (25.8,30)Lm LV . The four items
2, 3, 5, 6 are placed in bin 2 , and the three remain-
ing items 4, 7, 8 are placed in the bin 3. The objec-
tive function value for the optimal solution is hence

= (,) = 1594 2 2470 = 6534opt opt optC f S a + ⋅ EUR.

2.2. Generating the Initial Solution
The initial solution is generated using the simple
greedy algorithm, similar to decreasing-first-fit heu-
ristic for the 1D bin packing problem. The type of all
bins in the initial solution is set to 1. The pairs (,)i im V
are sorted lexicographically in a decreasing order.
Following this order, each item is placed into the first
(from the beginning) bin in which it fits. If it is not
possible to place the current item into any of the al-
ready used bins, then it is placed in a new, empty bin.
Example 2. Consider the instance from Example
1. The indices of the lexicographically sorted list of
items are (1,8, 4,5,9,3,2,7,6,10). The order in which
items are placed into 5 bins by the first-fit rule is
shown in Table 3.

Table 3
Example 2DHet-VBPP instance: generating initial solution

i 1 8 4 5 9 3 2 7 6 10

im 13 10 9 9 7 6 5 4 4 4

iV 1 24 9 3 17 23 8 24 21 1

bin index(j) 1 1 2 2 2 3 4 5 4 3

sum for bin jim 13 23 9 18 25 6 5 4 9 10

sum for bin jiV 1 25 9 12 29 23 8 24 29 24

The fourth row indicates the chosen bin index, and
the corresponding entries in the next two rows show
the sums of the first and the second coordinates of

items placed into this bin until this step. Hence, the
components of the initial solution (initS , inita) are:

1 8 0
4 5 9

= 3 10 0 , = [1,1,1,1,1].
2 6 0
7 0 0

init initS a

 
 
 
 
 
 
  

The objective function value initC corre-
sponding to the initial solution (initS , inita) is

= (,) = 5 1594 = 7970init init initC f S a ⋅ EUR, which is
1436 EUR more than the corresponding optimal value
shown in Example 1.

2.3. The RVNS Algorithm
What follows is the list of certain terms and their des-
ignations, as well as a description of a number of sim-
ple procedures.
 _ Let (,)random a b denotes randomly generated

integer value from the interval [,]a b .
 _ Let ()nBin S denotes the number of bins in the

solution corresponding to the matrix S .
 _ Let (,)nItem S j denotes the number of items

in the bin j , which is the part of the solution
corresponding to the matrix S .

 _ Let
=1

(,) = (,)n
ija i ii j

load S j p m V⋅∑ denotes the total
load of the bin j , which is the part of the solution
corresponding to the matrix S .

 _ Let (,)f S a denotes the value of the objective
function.

 _ Let (,)nFBin S a denotes the the number of
full bins, i.e. the number of bins j , such that

(,) = (,)a aj j
load S j Lm LV .

 _ Let 1 1 2 2(, , , ,)Swap S j i j i denotes the procedure (see
Algorithm 2)

If 1j , 2j > 0, then
If 1i > 0 and 2i > 0, then swap (if possible) the

item 1i from the bin 1j and the item 2i from
the bin 2j ;

If
1i = 0 and 2i > 0, then transfer (if possible) the

item 2i from the bin 2j into the bin 1j ;
If 2i = 0 and 1i > 0, then transfer (if possible) the

item 1i from the bin 1j into the bin 2j ;
If 1i = 2i = 0, then do nothing;

Information Technology and Control 2021/4/50814
8 Ð. Stakić et al.

Algorithm 2 The proposed RVNS algorithm

procedure RVNS(Problem Data,rmax, tmax)
Generate initial solution (S,a);
repeat

r ← 1;
while r ≤ rmax do

(S′,a′)← (S,a); //Shaking phase
for (k ← 1;k ≤ r;k++) do

//randomly change type of randomly chosen bin
(j, t)← (random(1,nBin(S′)),random(1,nt));
if (load(S′, j)≤ capacity(t)) then a′(j)← t;
// swap two randomly chosen items from two randomly chosen bins
(j1, j2)← (random(0,nBin(S′)),random(0,nBin(S′)));
(i1, i2)← (random(0,nItem(S′, j1)),random(0,nItem(S′, j2)));
S′ ← Swap(S′, j1, i1, j2, i2);

for (k ← 1;k ≤ r;k++) do
j ← random(1,nBin(S′)); // attempt to empty the randomly chosen bin
S′ ← EmptyAMAP(S′, j);

if (S′,a) is not changed then
r ← r+1;
continue;

(S′′,a′′)← sorted(S′,a′); //Improvement
for (iter ← 1; iter ≤ niter; iter++) do

for (j ← 1; j ≤ nBin(S′′); j++) do
for (i ← nItem(S′′, j); i ≥ 1; i−−) do

for (k ← nBin(S′′);k ≥ 1;k−−) do
if (Trans f erOrSwap(S′′, j, i,k)) then

break;
if (EmptyBin(S′′, j)) then

(S′′,a′′)← sorted(S′′,a′′);
(S′′,a′′)← Improve By Type(S′′,a′′);
if f (S′′,a′′)< f (S,a) then //Move or Not

(S,a)← (S′′,a′′);
r ← 1;

else
if (f (S′′,a′′) = f (S,a) and nFBin(S′′)≥ nFBin(S)) then

(S,a)← sorted(S′′,a′′);
r ← r+1;

until SessionTime ≥ tmax

the triple for loop by j, i and k with the body
Trans f erOrSwap(S′′, j, i,k) are performed in or-
der to reduce the number of bins by moving the
items, the largest first, to the more loaded bins.
In this process, completely full bins are skipped.

sorted(S′′,a′′).
After the Improvement step, all the bins are

checked, and if possible, replaced by a smaller
cost bin type (ImproveByType(S′′,a′′) step), after
which the Move or Not step follows:

815Information Technology and Control 2021/4/50

If 1j = 0, 2j > 0, and 2i > 0, then increment ()nBin S ,
and transfer the item 2i from the bin 2j into the
new empty bin;
If 2j = 0, 1j > 0, and 1i > 0, then increment ()nBin S ,
and transfer the item 1i from the bin 1j into the new
empty bin;
If 1j = 2j = 0, then do nothing.

 _ Let (,)EmptyAMAP S j denotes the transfer (as
much as possible) of items from the jth bin,

[()]j nBin S∈ , into all other bins [()] \{ }i nBin S j∈
starting from the last one. After (,)EmptyAMAP S j
is applied, the bin j might be emptied.

 _ Let (,)sorted S a denotes the procedure which sorts
the items in each bin of the solution in increasing
order according to their volume, as well as the set
of bins according to the total volume of their load.

 _ Let (, , ,)TransferOrSwap S j i k denotes the
procedure that

 _ if the item i from the bin j fits into bin k, then
move it from the bin j into bin k ;

 _ otherwise, for all the items l, [(,)]l nItem S k∈
in the bin k , try to swap the item i from the bin
j and the item l from the bin k until the first

such swap occurs; in that case it return True;
otherwise, return False. More precisely, in
order to empty (if possible) the considered bin,
it is allowed to replace an item only by the one
with a smaller volume. As in the shaking phase,
this move is also performed if the bin can be
partially emptied.

For the specification of the proposed RVNS algo-
rithm, see Algorithm 2. The unsuccessful shakings
counter r is initialized to 1. The body of the main loop
is repeated until the counter r reaches the limit maxr .
The counter is incremented if the execution of the
body leads to no improvement; otherwise, r is reset to
1. Passing the r loop is repeated while the limit of the
session time maxt is reached. The body of the main loop
consists of:
 _ the Shaking phase
 _ the Improvement step
 _ the Move or Not step

The Shaking phase of our RVNS algorithm starts from
feasible solution (,)S a′ ′ obtained as a copy of the cur-
rent best solution (,)S a . The Shaking phase consists

of the following moves, as described in Algorithm 2.
1 Repeat r times the following two steps

a Change the type of one randomly selected bin
[()]j nBin S ′∈ to randomly selected type t , if pos-

sible, i.e. if (,) (,)t tload S j Lm LV′ ≤ (in other words,
set []a j t′ ←); otherwise do nothing.

b Choose a random pair of different bins
1 2, {0} [()]j j nBin S ′∈ ∪ (independently, from

the uniform distributions). Choose a ran-
dom pair of items 1 1{0} [(,)]i nItem S j′∈ ∪ and

2 2{0} [(,)]i nItem S j′∈ ∪ (independently, from the
uniform distributions). Perform the procedure

1 1 2 2(, , , ,)Swap S j i j i′ in order to change the solution
(,)S a′ ′ (the probability to choose 1 = 0i , for exam-
ple, equals to ()()11/ ', 1nItem S j +).

2 Execute the procedure (,)EmptyAMAP S j′ r times,
for r randomly chosen bins j .

In case the solution (,)S a′ ′ is not changed after the
Shaking phase, the Shaking phase is repeated, with r
incremented. Otherwise, the Improvement step fol-
lows.
The Improvement step is the replacement for the
Local search phase in VNS algorithm. This step is
a reduced version of the local search, because the
complete local search here is too complex. One can
alternatively consider the Improvement step as
the final part of the shaking phase. The sorted copy

(,)sorted S a′ ′ of (,)S a′ ′ is saved as (,)S a′′ ′′ . Starting
from the first bin (the least loaded one) in (,)S a′′ ′′ ,
niter iterations of the triple for loop by j , i and k with
the body (, , ,)TransferOrSwap S j i k′′ are performed
in order to reduce the number of bins by moving the
items, the largest first, to the more loaded bins. In this
process, completely full bins are skipped. After ex-
iting the j loop, it is checked if the bin j is empty (it
is possible that the bin j is not empty); if it is empty,
then (,)S a′′ ′′ is replaced by (,)sorted S a′′ ′′ .
After the Improvement step, all the bins are checked,
and if possible, replaced by a smaller cost bin type
((,)ImproveByType S a′′ ′′ step), after which the Move
or Not step follows:
 _ If (,) < (,)f S a f S a′′ ′′ , then (,)S a is replaced by

(,)S a′′ ′′ , and the counter r is reset;
 _ Otherwise, if (,) = (,)f S a f S a′′ ′′ and (,) > (,)nFBin S a nFBin S a′′ ′′

(,) > (,)nFBin S a nFBin S a′′ ′′ , then (,)S a is replaced by (,)S a′′ ′′ ,
and the counter r is incremented. This small

Information Technology and Control 2021/4/50816

modification of the classic Move or Not phase
in VNS method performs better, as it enables a
diversification of the search, by starting from the
different solution even if it has the same objective
function value.

 _ otherwise, r is incremented.

When the time limit maxt is reached, our RVNS algo-
rithm stops, returning the best solution found. It is a
straightforward task to generalize this algorithm to
the case of arbitrary dimension.

2.4. The Adaptation of the Proposed RVNS
Methods for Hom-VBPP

Regarding the fact that numerous papers have been
published studying the 2DHom-VBPP, the RVNS al-
gorithm is also adapted to solve the 2DHom-VBPP. In
fact, the 2DHom-VBPP is a special case of the 2DHet-
VBPP, where all the bins are of the same type, i.e. = 1nt
. Hence, in the shaking step the first move (changing
the type of a randomly selected bin) is skipped. As the
objective function value is proportional to the num-
ber of used bins, it can be replaced by the number of
bins used, see (1):

1

1
=1

= .
Ln

j
j

C k′ ∑ (5)

There is a simple lower bound for this objective func-
tion considered by Gabay and Zaourar [10]:

= max , .i im V
l

Lm LV

     
    
     

  (6)

If =C l∞′ , then the objective function value C′ is opti-
mal. Following [10], we used this fact in some cases to
prove the optimality of the objective function value.

3. The Experimental Results
The newly generated 2DHet-VBPP instances and the
2CBP set of 2DHom-VBPP benchmark instances pro-
vided by Caprara and Toth [8] are used to evaluate the
RVNS algorithm. The proposed RVNS algorithm is
implemented in C programming language. All exper-
imental results were obtained using Intel Xeon CPU

E5-2620 v3, 2.40 GHz with 32GB RAM memory, un-
der Linux operating system. CPLEX 12.6.2 solver was
used to solve some smaller instances. Before proceed-
ing to the evaluation, we performed tests in order to
adequately choose the value of the parameters niter
and maxr .

3.1. 2DHet-VBPP Instances
The ensuing part of the paper describes the bench-
mark 2DHet-VBPP used to evaluate the RVNS algo-
rithm.
In fact, to the best of our knowledge, there are no other
published benchmark instances for the 2DHet-VBPP.
Instead, the methods used to generate instances are
described.
 _ Han et al. [13] used a data set of 550 instances.

They involved 4 types of bins with different costs:
10 , 8 , 7 , and 6 $, while the considered numbers of
items were: 30 , 40 , 50 , 75 , and 100 . The average
item sizes of instances were 5% , 10% or 20% of
the corresponding bin capacity. The update rate of
item's size (an item can slightly increase its size)
were chosen to be 1% , 2%, 3% , 4% or 5%. Out of
75 different combinations, the authors selected 55,
and generated 10 instances for each combination,
creating the data set of 550 instances. The first
and the second item dimensions were generated
following the uniform distribution, and the
exponential distribution, respectively.

 _ Gabay and Zaourar [10] generated the total of 4500
instances, the 100 instances in each combination
of:

 _ the 5 classes with different input data (Random
uniform, Random uniform with rare resources,
Correlated capacities, Correlated capacities and
requirements and Similar items and bins);

 _ the number of bins (10 , 30 or 100);
 _ the number of dimensions (2 , 5 or 10).

The values for both dimensions of items were gen-
erated following a uniform distribution with limits
depending on the class of data. The 2DHet-VBPP
problem on these instances was treated as a decision
problem - whether the items could be placed in the
given bins set, or not.
 _ The two data sets, the set of 6 small and the 7

large instances were considered by Stakić et al.
[35], and the set of large instances was extended

817Information Technology and Control 2021/4/50

with 3 more instances by the same first author
[34]. The data related to the items were uniformly
generated at random within the specific range,
while the data related to bins were real-life values
corresponding to the properties of the containers
that were involved, see Table 2.

 _ The 10 large instances were considered in [34].

What follows is a description of our newly generat-
ed 2DHet-VBPP instances. The bin types were fixed
— they corresponded to three container types: 20′
container, 40′ container and 40′ higher container, and
their costs were the prices of transport from Shangai
to Belgrade by Rajković et al. [29], see Table 2. The
same type of bins were used in [34] and [35]. Six small
instances with 10, 11, 12 , 13 , 15 and 20 items, as well
as 50 randomly generated large instances were con-
sidered. Weights and volumes of items were random-
ly uniformly chosen integer values from [1,15] tons
and 3[1, 25]m , respectively. The set of large instances
had 5 instances with each of the following numbers
of items: 50 , 70 , 100 , 120 , 150 , 200 , 350 , 500 , 750
and 1000 .1 We assumed that the number of available
bins for each type was infinite, i.e. it was equal to the
number of items.

3.2. Choosing the Parameter Values
Our RVNS algorithm depends on the following three
parameters:
 _

maxr - the upper bound on the number of shaking
steps without any improvement,

 _ niter - the number of iterations in improvement
phase,

 _
maxt - the maximal running time.

The parameter values are experimentally determined
for maxr and niter . For the parameter tuning tests, we
selected a subset of 10 generated large instances that
included one instance for each considered number of
items.
First, different values for maxr are considered. Let x 
denote x rounded down to the nearest integer. We
decided to try with linear functions = 0.05maxr kn ,
1 10k≤ ≤ . In our preliminary tests, formula

= 0.25maxr n  showed the best performance, so we
decided to use this formula and test the 10 values for
parameter {1, ,10}niter∈  . For each such value, the
RVNS algorithm was run 10 times on each instance,
with the running time limit of 20 s. The parameter
tuning tests for niter are shown in Table 4, where

Table 4
Parameter tuning tests for niter

n

niter 50 70 100 120 150 200 350 500 750 1000

 1 31517 47094 64291 65906 86423 120226 209653 296247 444569 596963

 2 31517 47094 64291 65906 85586 119402 207966 294560 443719 595395

 3 31517 47094 64291 65906 85586 119389 208803 294560 442151 594545

 4 31517 47094 63454 65906 85586 119389 207248 293723 440477 593721

 5 31517 47094 63454 65906 85586 119389 207248 293723 440477 593708

 6 31517 46257 63454 65906 85586 119389 207248 292886 440477 592871

 7 31517 47094 63454 65906 85586 119389 207248 292886 440477 592884

 8 31517 47094 63454 65906 85586 119389 207248 293723 440477 592871

 9 31517 47094 63454 65906 85586 119389 207248 293723 440477 592871

 10 31517 47094 63454 65906 85586 119389 207248 292886 440477 592871

1 for the set of instances see https://doi.org/10.5281/zenodo.5319708

Information Technology and Control 2021/4/50818

the best objective function value is bolded for each
instance. As it can be seen from Table 4, the value for
parameter = 6niter provided the best solutions on all
10 tested instances.
Using this value = 6niter we tested the described for-
mulae for maxr on the same set of instances and with
the same time limit. The results are shown in Table 5.
Having in mind that the expression = 0.25maxr n  of-
fers the largest number of best solutions on this set of
instances, we have confirmed and fixed = 0.25maxr n 
as the parameter value in the RVNS algorithm.
When it comes to the parameter maxt , the maximal run-
ning time, we used standard values 1s, 10 s, 60s, 360 s
and 1440 s, which provide a fair comparison with the
results from literature.

3.3. 2DHet-VBPP

In order to compare different approaches to the
2DHet-VBPP, we treated the 6 small and the 50 large
instances (see section 3.1)
 _ by the exact solver CPLEX v. 12.6.2. applied to the

2DHet-VBPP PILP model (see Section 1), with the
time limit set to 1800 s,

 _ by the RVNS algorithm, and

 _ by a slightly modified version of the U-GRASP
algorithm (Greedy Randomized Adaptive Search
Procedure, see Stakić et al. [34]).

 The time limit to the RVNS and U-GRASP was set to
1s for small instances, and to 60 s for large instanc-
es. Both these algorithms were repeated 30 times for
each instance, and the best obtained result was reg-
istered. In order to estimate the stability of these two
algorithms, for each instance the average percentage
gap

30

1 30=1

1 30

1
min30 100%

min

i i
ii

i
i

C C

C
≤ ≤

≤ ≤

−
×

∑

of the solutions 1 2 30, , ,C C C obtained in 30 runs was
also registered.
Table 6 shows the optimal solutions and the corre-
sponding CPLEX running times for small instanc-
es with 20n ≤ ; the instances are identified by the
corresponding number n of items. Our RVNS and
U-GRASP implementations reached all these optimal
solutions in much shorter time in all the 30 runs for
each instance.

Table 5
Parameter tuning tests for maxr

 n
maxr

50 70 100 120 150 200 350 500 750 1000

0.05n  32354 47931 64291 66743 86423 121063 209640 295397 442151 596219

0.10n  31517 47094 63454 65906 86423 120226 208803 292886 441314 593708

0.15n  31517 47094 63454 65906 86423 120226 208803 293723 441314 593708

0.20n  31517 47094 63454 65906 85586 119389 207248 293723 440477 593708

0.25n  31517 46257 63454 65906 85586 119389 207248 292886 440477 592871

0.30n  31517 47094 63454 65906 85586 119389 207248 293723 440477 592871

0.35n  31517 47094 63454 65906 85586 119389 207248 293723 440477 592871

0.40n  31517 47107 63454 65906 85586 119389 207979 292886 440477 592871

0.45n  31517 47094 63454 65906 85586 119389 208803 293723 440477 593708

0.50n  31517 47094 63454 65906 85586 119389 207966 293723 440477 592871

819Information Technology and Control 2021/4/50

Table 6
Results on small instances

Table 7 shows the results obtained for large instanc-
es with 50n ≥ . The i th instance with n items is de-

Instance (n) opt. sol. ()Time s

10 6534 0.10

11 7252 0.06

12 8846 0.06

13 9722 0.15

15 12047 0.35

20 13786 6.15

Table 7
Comparison of results on large instances

Instance CPLEX 1800s RVNS 1s RVNS 60s U-GRASP 60s

_n i best LB best (%)gap best (%)gap best (%)gap

50_1 31530 30398.95 31517 1.7 31517 0 31543 2.59

50_2 31491 29368.89 30615 0.3 30615 0 31359 0.45

50_3 32577 30721.37 31009 5.03 31009 0.99 32577 0.03

50_4 27624 26393.31 26761 2.5 26761 0 27611 0.15

50_5 28500 27382.4 28500 0 28500 0 28513 0.04

70_1 47996 45349.16 47107 1.9 46257 2.06 47996 1.42

70_2 44624 42550 43761 2.36 43761 0.57 45487 0.21

70_3 43564 41353.78 42675 1.57 42675 0 43551 1.67

70_4 43577 40751.86 41957 1.49 41957 0 43722 1

70_5 43932 41871.11 43030 1.05 43030 0 44637 0.38

100_1 65048 62834.24 64291 0.83 63454 0.7 66787 1.05

100_2 61453 58350.92 58996 1.61 58996 0 62329 1.04

100_3 58812 55537.24 56329 1.75 56329 0 59675 1.13

100_4 64654 61209.88 62184 2.16 62171 0.85 64641 2.01

100_5 64444 60751.35 62666 0.97 61961 0.46 66196 1.56

120_1 69252 65301.77 65906 1.66 65906 0 70102 1.73

120_2 79355 74939.4 76859 1.27 76009 1.14 81055 0.87

120_3 76206 72707.13 74560 0.94 73723 0.76 77004 1.02

120_4 72269 69002.17 69799 2.15 69773 0.64 75747 1.05

120_5 73526 70048.06 71043 1.66 71043 0.12 75278 1.2

150_1 88958 84667.92 86423 0.81 85586 0.16 90606 1.76

noted by _n i , 1 5i≤ ≤ . For each instance, the CPLEX
solution (with the time limit set to 1800s) and the cor-
responding lower bound were obtained. The CPLEX
solution was improved by using the same initial solu-
tion as for the RVNS, see section 2.2. Furthermore, for
 _ RVNS with the time limit set to 1s ,
 _ RVNS with the time limit set to 60s , and
 _ U-GRASP with the time limit set to 60s ,

the best of 30 solutions and the corresponding gap
are listed. It is worth mentioning that with 30 con-
secutive runs the total RVNS running time was 30
s and 1800 s for each instance, respectively. The best
objective function value among the obtained solu-
tions is shown in bold.

Information Technology and Control 2021/4/50820

Instance CPLEX 1800s RVNS 1s RVNS 60s U-GRASP 60s

_n i best LB best (%)gap best (%)gap best (%)gap

150_2 94787 91176.05 92291 1 92291 0 97205 1.57

150_3 88437 84982.07 86778 0.26 85941 0 90150 1.14

150_4 93911 89060.07 90684 1.24 89847 0.56 95624 0.76

150_5 89650 85053.45 86436 0.74 86436 0 91547 0.96

200_1 124394 118014.1 120239 0.59 119389 0.12 127965 1.69

200_2 123137 116939.4 118995 0.5 118158 0.05 128302 1.53

200_3 126496 121239.4 123230 1.2 122393 0.3 133294 1.48

200_4 119428 111622.5 113863 0.25 113026 0 120674 0.85

200_5 125436 119045.8 121281 0.47 120431 0.14 130759 1.44

350_1 225215 206110.5 207979 1.11 206411 0.45 225810 1.15

350_2 227514 210898.4 213940 0.69 212253 0.12 230856 0.79

350_3 217797 201371.7 202168 1.41 202155 0.01 218965 0.77

350_4 219702 206178.2 208308 0.62 207471 0 225105 0.87

350_5 219023 207275.7 209197 1.22 208347 0.01 226621 0.67

500_1 318066 291891.1 294560 0.56 292886 0.14 322001 0.67

500_2 339309 294525 296364 0.67 295527 0.01 323463 1.05

500_3 361838 284648.9 286616 0.81 284929 0.25 312945 1.07

500_4 382560 308367.5 312765 0.71 310215 0.26 338112 0.91

500_5 319323 290365.4 293150 0.53 291476 0.08 318523 0.68

750_1 546742 439092.3 443825 0.42 439640 0.18 482636 1.02

750_2 537178 442327.9 445842 0.52 443318 0.18 487296 1.55

750_3 554712 443803.6 447467 0.47 445062 0.05 491759 0.77

750_4 548336 442099.5 447184 0.6 442986 0.13 487524 0.83

750_5 551524 448636.8 452394 0.67 449857 0.07 494006 1

1000_1 739616 0 597906 0.46 592871 0.05 655885 0.76

1000_2 733240 0 589508 0.55 582799 0.14 643442 0.67

1000_3 750774 0 606806 0.51 598529 0.42 664521 1.06

1000_4 728458 0 601589 0.35 594999 0.18 657215 1.05

1000_5 744398 0 606640 1.23 599094 0.07 661608 0.63

Table 7 (continued)

As expected, the CPLEX algorithm could not find
the exact solutions within the time constraint. Ta-
ble 7 shows that for all these instances the RVNS al-
gorithm with the time limit of 60 s reached the best
solutions. The average percentage gap was less than
1% and 0.5% , when the time limit was 1s and 60 s,

respectively, for most of the instances. The U-GRASP
algorithm with the time limit of 60 s provided stable,
but lower quality solutions for all these instances.
In an additional experiment, we tried to solve these
large instances using the CPLEX solver, taking as
the initial solution the best RVNS solution. With the

821Information Technology and Control 2021/4/50

running time extended to 1h and using all 8 cores, not
even one solution was improved. However, CPLEX
proved that the obtained RVNS solution for the in-
stance 50_5 was optimal.
Having in mind the small difference between the lower
bound and objective function value of RVNS solutions,
an additional effort was made to prove the optimality
of some solutions from Table 7. Taking into account
the costs of using the considered three types of bins
(1594, 2470, 2483), the total cost function can be ex-
pressed as: = 1594 2470 2483C a b c+ + , where a, b and
c denote the number of bins for each of the three types.
Let LB denotes the lower bound of the objective func-
tion value obtained by the CPLEX and RVNS denotes
the objective function value of the best RVNS solu-
tion. For each instance, we generated the set of triples
(, ,)a b c that satisfied the relation LB C RVNS≤ ≤
with the additional constraint ensuring that the total
capacity of bins from (, ,)a b c was enough for packing
all items of the considered instance in terms of weight
and volume, i.e. 25.8 24.5 24.5im a b c≤ + +∑ and

30 60 70iV a b c≤ + +∑ . If there was exactly one triple
(, ,)a b c that fulfilled these conditions, the correspond-
ing value =C RVNS would be the objective function
value of the optimal solution. Using this method, the
optimality of the solutions for the following instanc-
es was proved: 50_3, 50_4 , 100_1, 100_2 , 120_1 and
350_1, which resulted in 7 optimal solutions, includ-
ing the instance 50_5, provided by our RVNS.
With an additional extension of the CPLEX running
time from 1h to 5 h and using all 8 cores, there were no
changes in LB or obtained CPLEX solutions for all in-
stances, except with 1000 items, where the LB values
were improved to 591583.60 for 1000_1, 581894.37
for 1000_2 , 597452.82 for 1000_3 , 594256.58 for
1000_4 and 597665.20 in the case of the instance
1000_5 . These lower bounds are very close to the ob-
jective function value of our RVNS solutions.
As the CPLEX couldn't prove the optimality or ob-
tain better solutions in comparison to our RVNS, we
extended significantly the running time for RVNS to
360 s for each run, total 3 h for 30 consecutive runs.
We obtained better solution for the following 4 in-
stances: 100_5 (61124), 500_4 (309378), 750_3 (
444225) and 750_5 (449020). An additional exten-
sion of running time per each RVNS run from 360 s
to 1440 s leads to the improvement of the solution for
the instance 1000_3 (597692). Finally, for these 5 in-

stances, we ran the CPLEX again, starting with these
new best found solutions. However, for 5 h of running
time and using all 8 cores, these solutions and the
corresponding lower bounds were not improved. The
optimality of the obtained solutions was not proved
for those 5 instances.

3.4. 2DHom-VBPP
There are several published sets of benchmark in-
stances for 2DHom-VBPP. We used the data set 2CBP
of 400 instances, see Caprara and Toth [8]. These
instances are divided in classes (the first three class-
es were introduced by Spieksma [33]); each class
consists of 4 groups of 10 instances with the same
number of items. For example, in classes denoted by
1, 2, ,9 , these 4 groups include instances with 25,
50, 100 , and 200 items, respectively. The exception
is the last class, denoted by 10 , which has 4 groups
of instances, with 24, 51, 99 and 201 items, respec-
tively. An instance is solved if its optimal solution is
found, i.e. if the solution is equal to the correspond-
ing lower bound (6) (see Caprara and Toth [8]). The
benchmark authors solved 212 instances. In the
work of Brandao and Pedroso [6] the 330 instances
were solved2. Out of the 70 unsolved instances, the
52 instances were solved by Gabay and Zaourar [10].
Having in mind the total number of solved instances
from the set 2CBP, the best results were achieved by
Heßler et al. [19] where 370 of 400 instances were
solved; the unsolved 30 instances include 200 items
and belong to classes: 1, 4, 5, 9, and 10. On the other
hand, Pessoa et al. [27] solved 35 of 40 instances
from this set, considering only the first four classes: 1,
4, 5 and 9. In the work of Aringhieri et al. [2] and Turky
et al. [36], authors treated all 200 instances from the
following 5 classes: 1, 6, 7, 9, and 10, solving 133 and
119 instances, respectively.
With the four different time limits 1s, 10 s, 60 s and
360 s for a single RVNS run, we tested our adapted
RVNS algorithm (Section 2) by running it 30 times
for each 2CBP instance. Let (,)o i j denote the num-
ber of solved instances in the group j of the class
i , if the time limit for a single RVNS run was set to
360 s, (,) [10] [4]i j ∈ × . Under the four different time
constraints, the total number

10 4

=1 =1
(,)

i j
o i j∑ ∑ of in-

2 https://research.fdabrandao.pt/research/vpsolver/results/
2cbp.html#2cbp

Information Technology and Control 2021/4/50822

stances solved by RVNS was 315,331,345 and 356 ,
respectively. Out of the 70 unsolved instances by
Brandao and Pedroso [6], the 59 instances were
solved by RVNS with the time limit of 360 s for each
RVNS run. They belong to 6 groups (,) [10] [4]i j ∈ ×
marked with "*" in Table 8. Gabay and Zaourar [10]
solved 52 of these 70 instances, which means that
among these 59 optimal solutions obtained by our
RVNS, 7 of them were new.
Table 8 lists the numbers (,)o i j , accompanied with
the number of solved instances in [6], (,) [10] [4]i j ∈ × .
The number of items corresponding to class i, group
j equals the first (second) component of the pair for

classes 1 9− (for the class 10), (,) [10] [4]i j ∈ × .
Some instances solved in [6] were not solved by
RVNS; they are marked by "#". With the running time
limit extended from 360 s to 1440 s, the number of
solved instances increased from 356 to 365 (the 6
new instances in the group (1, 4) , one new instance
in the group (4, 4) and two in (6,3)). Namely, of 70
unsolved instances, our RVNS solved 59 for the time
limit of 360 s and another one for 1440 s. Finally, there
are instances, marked by "+ " in Table 8, that were not
solved in the group (9, 4) , either in [6], or by the RVNS.
These instances are regarded as very difficult and Wei
et al. [37]were the first who succeeded in solving 1 out
of 10 instances in this group.

The main contribution of this research is finding of
59 and 7 new optimal solutions among the 70 in-
stances from the data set 2CBP , which were not
solved in [6] and [10], respectively. Considering the
entire set 2CBP of 400 instances, our RVNS solved
356 instances, while in [6] and [10], the total number
of solved instances was 330 and 249 , respectively. In
[6], the imposed time limit was 12 h for each instance,
although the optimal solutions were obtained in
shorter running time. The extension of the time limit
in our RVNS to 12 h resulted in the total of 365 opti-
mal solutions on the considered set of 400 instances.
These results are displayed in Figure 1.

Table 8
The number of Hom-VBPP instances from 2CBP solved to optimality by the adapted RVNS method with the imposed
time limit of 360 s, compared to that of [6]

j :
n :

i

1 2 3 4

(25,24) (50,51) (100,99) (200,201)

[6] RVNS [6] RVNS [6] RVNS [6] RVNS

1 10 10 10 10 10 6 # 10 3 #

2 10 10 10 10 10 10 10 10

3 10 10 10 10 10 10 10 10

4 10 10 0 10 * 0 10 * 0 9 *

5 10 10 0 10 * 0 10 * 0 10 *

6 10 10 10 10 10 3 # 10 0 #

7 10 10 10 10 10 7 # 10 9 #

8 10 10 10 10 10 10 10 10

9 10 10 10 10 10 10 0 0 +

10 10 10 10 10 10 10 10 9

Figure 1
Comparison of different solution approaches on 2CBP

14 Ð. Stakić et al.

classes (the first three classes were introduced by
Spieksma [33]); each class consists of 4 groups of
10 instances with the same number of items. For
example, in classes denoted by 1, 2, . . . ,9, these
4 groups include instances with 25, 50, 100, and
200 items, respectively. The exception is the last
class, denoted by 10, which has 4 groups of in-
stances, with 24, 51, 99 and 201 items, respec-
tively. An instance is solved if its optimal solu-
tion is found, i.e. if the solution is equal to the
corresponding lower bound 6 (see Caprara and
Toth [8]). The benchmark authors solved 212 in-
stances. In the work of Brandao and Pedroso [6]
the 330 instances were solved 2. Out of the 70 un-
solved instances, the 52 instances were solved by
Gabay and Zaourar [10]. Having in mind the to-
tal number of solved instances from the set 2CBP,
the best results were achieved by Heßler et al. [19]
where 370 of 400 instances were solved; the un-
solved 30 instances include 200 items and belong
to classes: 1, 4, 5, 9, and 10. On the other hand,
Pessoa et al. [27] solved 35 of 40 instances from
this set, considering only the first four classes: 1,
4, 5 and 9. In the work of Aringhieri et al. [2] and
Turky et al. [36], authors treated all 200 instances
from the following 5 classes: 1, 6, 7, 9, and 10,
solving 133 and 119 instances, respectively.

With the four different time limits 1s, 10s,
60s and 360s for a single RVNS run, we tested our
adapted RVNS algorithm (Section 2) by running
it 30 times for each 2CBP instance. Let o(i, j) de-
note the number of solved instances in the group
j of the class i, if the time limit for a single RVNS
run was set to 360s, (i, j) ∈ [10]× [4]. Under the
four different time constraints, the total number
∑10

i=1 ∑4
j=1 o(i, j) of instances solved by RVNS

was 315,331,345 and 356, respectively. Out of
the 70 unsolved instances by Brandao and Pe-
droso [6], the 59 instances were solved by RVNS
with the time limit of 360s for each RVNS run.
They belong to 6 groups (i, j) ∈ [10]× [4] marked
with ”*” in Table 8. Gabay and Zaourar [10]
authors solved 52 of these 70 instances, which
means that among these 59 optimal solutions ob-
tained by our RVNS, 7 of them were new.

2https://research.fdabrandao.pt/
research/vpsolver/results/2cbp.html#2cbp

Table 8 lists the numbers o(i, j), accompa-
nied with the number of solved instances in [6],
(i, j) ∈ [10]× [4]. The number of items corre-
sponding to class i, group j equals the first (sec-
ond) component of the pair for classes 1− 9 (for
the class 10), (i, j) ∈ [10]× [4].

Some instances solved in [6] were not solved
by RVNS; they are marked by ”#”. With the run-
ning time limit extended from 360s to 1440s, the
number of solved instances increased from 356
to 365 (the 6 new instances in the group (1,4),
one new instance in the group (4,4) and two in
(6,3)). Namely, of 70 unsolved instances, our
RVNS solved 59 for the time limit of 360s and an-
other one for 1440s. Finally, there are instances,
marked by "+" in Table 8, that were not solved
in the group (9,4), either in [6], or by the RVNS.
These instances are regarded as very difficult and
Wei et al. [37] were the first who succeeded in
solving 1 out of 10 instances in this group.

The main contribution of this research is
finding of 59 and 7 new optimal solutions among
the 70 instances from the data set 2CBP, which
were not solved in [6] and [10], respectively.
Considering the entire set 2CBP of 400 instances,
our RVNS solved 356 instances, while in [6] and

330 and 249, respectively. In [6], the imposed
time limit was 12h for each instance, although the
optimal solutions were obtained in shorter run-
ning time. The extension of the time limit in our
RVNS to 12h resulted in the total of 365 optimal
solutions on the considered set of 400 instances.
These results are displayed in Figure 1.

Figure 1. Comparison of different solution
approaches on 2CBP

As shown in Table 8, our RVNS solved

823Information Technology and Control 2021/4/50

As shown in Table 8, our RVNS solved the total num-
ber of 157 instances belonging to classes 1, 6, 7, 9, and
10 (selected and considered as more challenging in [2]
and [36]), outperforming both the number of 113 from
[2] and 119 solutions obtained in [36], see Figure 2.
Using the time limit of 3600 s as Heßler et al. [19], the
authors solved 370 of 400 instances, which is 14 and
5 more instances compared to our RVNS for time lim-
it of 360 s and 1440 s, respectively. However, when it
comes to the 50 larger instances from the classes: 1, 4,
5, 9 and 10, our RVNS was more successful in obtaining
31 solutions, compared to 20 solutions from [19], as
displayed in Figure 3. On the set of 40 instances with
200 items belonging to classes: 1, 4, 5, and 9, our RVNS
solved 22 instances for 360 s and 29 for the time limit
of 1440 s, which is less then 35 solutions obtained in
[27]. However, having in mind that our RVNS is pri-

marily designed for solving 2D-Het VBPP, it is overall
comparable with the most successful solution meth-
ods of 2D-Hom VBPP on 2CBP .
Another set of instances with larger demands is in-
cluded in this comparative analysis. Namely, Heßler
et al. [19] proposed a set of 400 instances3 that is ob-
tained from the 2CBP in the following way. For each
item an uniformly random number is generated from
the set [1,...,100] as its frequency, resulting in the in-
stance that has significantly larger number of items.
The solution method developed in [19], which was
very successful on 2CBP , showed a poor performance
on this new data set, solving only 119 out of 400 in-
stances. Therefore, the authors in [19] developed a
special solution method for this type of the problem
to solve 324 of 400 instances obtained in such a way.
From the available lower and upper bounds for these
400 instances, it can be seen that 339 of them have
known optimal solutions, obtained by several solu-
tion approaches. Another contribution of our RVNS
algorithm is improvement of the obtained results on
some of the remaining 61 instances without optimal
solution from this new data set. These results are
presented in Table 9. Instance's name is contained in
the first column, the corresponding number of items
in the second, while the next two columns show the
known lower and upper bounds of the solution. The
objective function value of the new best solution ob-
tained by our RVNS within the time limit of 1s, 10 s,
60 s, 360 s and 1440 s are represented in the next five
columns, respectively. RVNS solutions that improved
the corresponding upper bound are bolded.
As it can be seen in Table 9 our RVNS improved the
solutions of the 14 instances obtaining smaller ob-
jective function value than the corresponding upper
bound. Among these instances, the 10 new optimal
solutions (marked by "*") are reached, 4 for the time
limit of 10 s, 3 more for 60 s and another 3 for 1440 s.
For these instances, tests are not repeated with in-
creased time limit after the optimal solution is ob-
tained, i.e. when our RVNS solution coincident with
the corresponding lower bound. Therefore, the ad-
aptation of our RVNS algorithm for 2D-HomVBPP
made another contribution.4

RVNS Approach to the Het-VBPP 15

Table 8. The number of Hom-VBPP instances from 2CBP solved to optimality by the adapted RVNS
method with the imposed time limit of 360s, compared to that of [6]

j: 1 2 3 4
n: (25,24) (50,51) (100,99) (200,201)

i [6] RVNS [6] RVNS [6] RVNS [6] RVNS

1 10 10 10 10 10 6 # 10 3 #
2 10 10 10 10 10 10 10 10
3 10 10 10 10 10 10 10 10
4 10 10 0 10 * 0 10 * 0 9 *
5 10 10 0 10 * 0 10 * 0 10 *
6 10 10 10 10 10 3 # 10 0 #
7 10 10 10 10 10 7 # 10 9 #
8 10 10 10 10 10 10 10 10
9 10 10 10 10 10 10 0 0 +

10 10 10 10 10 10 10 10 9

the total number of 157 instances belonging to
classes 1, 6, 7, 9, and 10 (selected and considered
as more challenging in [2] and [36]), outperform-
ing both the number of 133 from [2] and 119 so-
lutions obtained in [36], see Figure 2. Using the
time limit of 3600s as Heßler et al [19], the au-
thors solved 370 of 400 instances, which is 14 and
5 more instances compared to our RVNS for time
limit of 360s and 1440s, respectively. However,
when it comes to the 50 larger instances from the
classes: 1, 4, 5, 9 and 10, our RVNS was more
successful in obtaining 31 solutions, compared to
20 solutions from [19], as displayed in Figure 3.
On the set of 40 instances with 200 items belong-
ing to classes: 1, 4, 5, and 9, our RVNS solved
22 instances for 360s and 29 for the time limit of
1440s, which is less then 35 solutions obtained
in [27]. However, having in mind that our RVNS
is primarily designed for solving 2D-Het VBPP,
it is overall comparable with the most successful
solution methods of 2D-Hom VBPP on 2CBP.

Another set of instances with larger demands
is included in this comparative analysis. Namely,
Heßler et al. [19] proposed a set of 400 instances 3

that is obtained from the 2CBP in the following
way. For each item an uniformly random num-
ber is generated from the set [1, ...,100] as its
frequency, resulting in the instance that has sig-

3https://logistik.bwl.uni-mainz.de/
forschung/benchmarks/

Figure 2. Comparison of different solution
approaches on instances from

classes 1, 6, 7, 9 and 10 of 2CBP

Figure 3. Comparison of our RVNS and [19]

nificantly larger number of items. The solution
method developed in [19], which was very suc-
cessful on 2CBP, showed a poor performance on

RVNS Approach to the Het-VBPP 15

Table 8. The number of Hom-VBPP instances from 2CBP solved to optimality by the adapted RVNS
method with the imposed time limit of 360s, compared to that of [6]

j: 1 2 3 4
n: (25,24) (50,51) (100,99) (200,201)

i [6] RVNS [6] RVNS [6] RVNS [6] RVNS

1 10 10 10 10 10 6 # 10 3 #
2 10 10 10 10 10 10 10 10
3 10 10 10 10 10 10 10 10
4 10 10 0 10 * 0 10 * 0 9 *
5 10 10 0 10 * 0 10 * 0 10 *
6 10 10 10 10 10 3 # 10 0 #
7 10 10 10 10 10 7 # 10 9 #
8 10 10 10 10 10 10 10 10
9 10 10 10 10 10 10 0 0 +

10 10 10 10 10 10 10 10 9

the total number of 157 instances belonging to
classes 1, 6, 7, 9, and 10 (selected and considered
as more challenging in [2] and [36]), outperform-
ing both the number of 133 from [2] and 119 so-
lutions obtained in [36], see Figure 2. Using the
time limit of 3600s as Heßler et al [19], the au-
thors solved 370 of 400 instances, which is 14 and
5 more instances compared to our RVNS for time
limit of 360s and 1440s, respectively. However,
when it comes to the 50 larger instances from the
classes: 1, 4, 5, 9 and 10, our RVNS was more
successful in obtaining 31 solutions, compared to
20 solutions from [19], as displayed in Figure 3.
On the set of 40 instances with 200 items belong-
ing to classes: 1, 4, 5, and 9, our RVNS solved
22 instances for 360s and 29 for the time limit of
1440s, which is less then 35 solutions obtained
in [27]. However, having in mind that our RVNS
is primarily designed for solving 2D-Het VBPP,
it is overall comparable with the most successful
solution methods of 2D-Hom VBPP on 2CBP.

Another set of instances with larger demands
is included in this comparative analysis. Namely,
Heßler et al. [19] proposed a set of 400 instances 3

that is obtained from the 2CBP in the following
way. For each item an uniformly random num-
ber is generated from the set [1, ...,100] as its
frequency, resulting in the instance that has sig-

3https://logistik.bwl.uni-mainz.de/
forschung/benchmarks/

Figure 2. Comparison of different solution
approaches on instances from

classes 1, 6, 7, 9 and 10 of 2CBP

Figure 3. Comparison of our RVNS and [19]

nificantly larger number of items. The solution
method developed in [19], which was very suc-
cessful on 2CBP, showed a poor performance on

Figure 2
Comparison of different solution approaches on instances
from classes 1, 6, 7, 9 and 10 of 2CBP

Figure 3
Comparison of our RVNS and [19]

3 https://logistik.bwl.uni-mainz.de/forschung/benchmarks/
4 for new solutions on these 14 instances see https://doi.
org/10.5281/zenodo.5321272

Information Technology and Control 2021/4/50824

Table 9
Comparison of results on large instances

Instance n(items) LB UB RVNS 1s RVNS 10s RVNS 60s RVNS 360s RVNS 1440s

CL_04_100_06 5089 627 628 691 628 627 * / /

CL_04_100_08 5089 642 645 687 643 642 * / /

CL_04_200_01 10229 1293 1297 1453 1373 1308 1294 1293 *

CL_05_100_06 5089 314 315 322 314 * / / /

CL_05_100_08 5089 321 323 322 321 * / / /

CL_05_100_10 5089 327 328 333 327 * / / /

CL_05_200_02 10141 624 629 682 633 628 627 627

CL_05_200_03 10157 630 635 708 646 634 633 633

CL_05_200_04 10141 630 631 670 635 631 631 630 *

CL_05_200_05 10141 632 640 704 646 634 633 632 *

CL_05_200_06 10141 626 630 686 630 627 627 627

CL_05_200_07 10157 630 636 715 644 636 635 634

CL_05_200_08 10141 635 640 681 635 * / / /

CL_05_200_10 10141 632 635 690 633 632 * / /

4. Conclusion
The metaheuristic RVNS (Variable Neighborhood
Search) based algorithm was used to solve the 2D
vector bin packing problem, in its heterogeneous
2D-HetVBPP and homogeneous 2D-HomVBPP vari-
ant, because the exact solution using standard math-
ematical model and CPLEX solver is not possible for
larger instances, and the approximate solutions ob-
tained in limited time are of a poor quality. The set
of 6 small 2D-HetVBPP instances (with up to 20
items) and the 50 large 2D-HetVBPP instances (with
up to 1000 items) was prepared and used to test the
efficiency of the algorithm. The specialized version of
the algorithm solved some new instances (compared
to results in [2], [6], [10], [19], [27], [36]) of the bench-

mark set 2CBP [8] and the set of instances with larger
demands [19]. More precisely,
 _ on 400 instances of the data set 2CBP [8], our

solution approach solved 356 for 360 s and 365
for 1440 s of running time,

 _ 400 instances of the data set from [19], with
61 unsolved instances with the known upper
and lower bounds, we provided 10 new optimal
solutions and 4 new upper bounds.

Acknowledgement
The authors are thankful to anonymous referees for
insightful comments that contributed to the improve-
ment of the paper.

References
1. Alves, C., de Carvalho, J. V., Clautiaux, F., Rietz, J. Mul-

tidimensional Dual-Feasible Functions and Fast Low-
er Bounds for the Vector Packing Problem. European
Journal of Operational Research, 2014, 233(1), 43-63.
hhttps://doi.org/10.1016/j.ejor.2013.08.011

2. Aringhieri, R., Duma, D., Grosso, A., Hosteins, P. Simple
but Effective Heuristics for the 2-Constraint Bin Pack-
ing Problem. Journal of Heuristics, 2018, 24(3), 345-
357. https://doi.org/10.1007/s10732-017-9326-0

825Information Technology and Control 2021/4/50

3. Baker, B. M. Ayechew, M. A. A Genetic Algorithm for
the Vehicle Routing Problem. Computers & Operations
Research, 2003, 30, 787-800. https://doi.org/10.1016/
S0305-0548(02)00051-5

4. Billaut, J. C., Della Croce, F., Grosso, A. A Single Machine
Scheduling Problem with Two-Dimensional Vector
Packing Constraints. European Journal of Operational
Research, 2015, 243(1), 75-81. https://doi.org/10.1016/j.
ejor.2014.11.036

5. Bortfeldt, A., Wäscher, G. Constraints in Container
Loading-A State-of-the-Art Review. European Journal
of Operational Research, 2013, 229(1), 1-20. https://doi.
org/10.1016/j.ejor.2012.12.006

6. Brandao, F., Pedroso, J. P. Bin Packing and Related Prob-
lems: General Arc-Flow Formulation with Graph Com-
pression. Computers & Operations Research, 2016, 69,
56-67. https://doi.org/10.1016/j.cor.2015.11.009

7. Buljubašić, M., Vasquez, M. Consistent Neighborhood
Search for One-Dimensional Bin Packing and Two-Di-
mensional Vector Packing. Computers & Operations
Research, 2016, 76, 12-21. https://doi.org/10.1016/j.
cor.2016.06.009

8. Caprara, A., Toth, P. Lower Bounds and Algorithms for
the 2-Dimensional Vector Packing Problem. Discrete
Applied Mathematics, 2001, 111(3), 231-262. https://
doi.org/10.1016/S0166-218X(00)00267-5

9. Christensen, H. I., Khan, A., Pokutta, S., Tetali, P. Approx-
imation and Online Algorithms for Multidimensional
Bin Packing: A Survey. Computer Science Review, 2017,
24, 63-79. https://doi.org/10.1016/j.cosrev.2016.12.001

10. Gabay, M., Zaourar, S. Vector Bin Packing with Hetero-
geneous Bins: Application to the Machine Reassign-
ment Problem. Annals of Operations Research, 2016,
2-16, 242(1), 161-194. https://doi.org/10.1007/s10479-
015-1973-7

11. Garey, M. R., Graham, R. L., Johnson, D. S., Yao, A. C.
C. Resource Constrained Scheduling as Generalized
Bin Packing. Journal of Combinatorial Theory Series
A, 1976, 21(3), 257-298. https://doi.org/10.1016/0097-
3165(76)90001-7

12. Garey, M. R., Johnson, D. S. Computers and Intractabil-
ity: A Guide to Np-Completeness, 1979.

13. Han, B. T., Diehr, G., Cook, J. S. Multiple-Type, Two-Di-
mensional Bin Packing Problems: Applications and Al-
gorithms. Annals of Operations Research, 1994, 50(1),
239-261. https://doi.org/10.1007/BF02085642

14. Hansen, P., Mladenović, N. Variable Neighborhood
Search: Principles and Applications. European Journal

of Operational Research, 2001, 130(3), 449-467. https://
doi.org/10.1016/S0377-2217(00)00100-4

15. Hansen, P., Mladenović, N. Variable Neighborhood
Search. In: Burke, E. K., Graham, R. D. (Eds.) Search
Methodologies: Introductory Tutorials in Optimization
and Decision Support Techniques, Springer-Verlag,
New York, 2014, 313-337. https://doi.org/10.1007/978-
1-4614-6940-7_12

16. Hansen, P., Mladenović, N., Pérez, J. A. Variable Neigh-
bourhood Search: Methods and Applications. Annals of
Operations Research, 2010, 175(1), 367-407. https://doi.
org/10.1007/s10479-009-0657-6

17. Hansen, P., Mladenović, N., Todosijević R., Hanafi, S.
Variable Neighborhood Search: Basics and Variants.
EURO Journal on Computational Optimization, 2017,
5(3), 423-454. https://doi.org/10.1007/s13675-016-
0075-x

18. Hansen, P., Mladenović, N., Brimberg, J., Pérez, J. A. M.
Variable Neighborhood Search. In Handbook of meta-
heuristics, 2019, Springer, Cham, 57-97. https://doi.
org/10.1007/0-306-48056-5_6

19. Heßler, K., Gschwind, T., Irnich, S. Stabilized Branch-
and-Price Algorithms for Vector Packing Problems. Eu-
ropean Journal of Operational Research, 2018, 271(2),
401-419. https://doi.org/10.1016/j.ejor.2018.04.047

20. Heßler, K., Irnich, S., Kreiter, T., Pferschy, U. Bin Packing
with Lexicographic Objectives for Loading Weight-and
Volume-Constrained Trucks in a Direct-Shipping Sys-
tem. OR Spectrum, 2021, 1-43. https://doi.org/10.1007/
s00291-021-00628-x

21. Hu, Q., Wei, L., Lim, A. The Two-Dimensional Vector
Packing Problem with General Costs. Omega, 2018, 74,
59-69. https://doi.org/10.1016/j.omega.2017.01.006

22. Masson, R., Vidal, T., Michallet, J., Penna, P. H. V., Petruc-
ci, V., Subramanian, A., Dubedout, H. An Iterated Lo-
cal Search Heuristic for Multi-Capacity Bin Packing
and Machine Reassignment Problems. Expert Systems
with Applications, 2013, 40(13), 5266-5275. https://doi.
org/10.1016/j.eswa.2013.03.037

23. Mladenović, N., Hansen, P. Variable Neighborhood
Search. Computers & Operations Research, 1997,
24(11), 1097-1100. https://doi.org/10.1016/S0305-
0548(97)00031-2

24. Munien, C., Ezugwu, A. E. Metaheuristic Algorithms
for One-Dimensional Bin-Packing Problems: A Sur-
vey of Recent Advances and Applications. Journal of
Intelligent Systems, 2021, 30(1), 636-663. https://doi.
org/10.1515/jisys-2020-0117

Information Technology and Control 2021/4/50826

25. Notteboom, T. E. Container Shipping and Ports: An
Overview. Review of network economics, 2004, 3(2), 86
-106. https://doi.org/10.2202/1446-9022.1045

26. Panigrahy, R., Talwar, K., Uyeda, L., Wieder, U. Heuris-
tics for Vector Bin Packing. Research. Microsoft. com.
Technical report, Microsoft Research, 2011

27. Pessoa, A., Sadykov, R., Uchoa, E., Vanderbeck, F. A
Generic Exact Solver for Vehicle Routing and Related
Problems. Mathematical Programming, 2020, 183(1),
483-523. https://doi.org/10.1007/s10107-020-01523-z

28. Pessoa, A., Sadykov, R., Uchoa, E. Solving Bin Packing
Problems Using VRPSolver Models. In Operations Re-
search Forum, 2021, (Vol. 2, No. 2, pp. 1-25). Spring-
er International Publishing. https://doi.org/10.1007/
s43069-020-00047-8

29. Rajković, R., Zrnić, N., Stakić, Đ., Sedmak, A., Kirin, S.
An Approach to Determine Optimal Number of Con-
tainers for Cargo Stacking in Function of Transporta-
tion Cost. In: Proceedings - 6th International Sympo-
sium on Industrial Engineering - SIE 2015, 24th-25th
September 2015, Belgrade, Serbia, 300-303.

30. Ramos-Figueroa, O., Quiroz-Castellanos, M., Mezu-
ra-Montes, E., Schütze, O. Metaheuristics to Solve
Grouping Problems: A Review and a Case Study. Swarm
and Evolutionary Computation, 2020, 53, 100643.
https://doi.org/10.1016/j.swevo.2019.100643

31. Santos, L. F. M., Iwayama, R. S., Cavalcanti, L. B., Turi,
L. M., de Souza Morais, F. E., Mormilho, G., Cunha, C. B.
A Variable Neighborhood Search Algorithm for the Bin
Packing Problem with Compatible Categories. Expert

Systems with Applications, 2019, 124, 209-225. https://
doi.org/10.1016/j.eswa.2019.01.052

32. Shachnai, H., Tamir, T. Approximation Schemes for
Generalized Two-Dimensional Vector Packing with
Application to Data Placement. Journal of Discrete
Algorithms, 2012, 10, 35-48. https://doi.org/10.1016/j.
jda.2011.07.001

33. Spieksma F. C. R. A Branch-and-Bound Algorithm for
the Two-Dimensional Vector Packing Problem. Com-
puters & Operations Research, 1994, 21(1), 19-25,
https://doi.org/10.1016/0305-0548(94)90059-0

34. Stakić, Đ., Anokić, A., Jovanović, R. Comparison of Dif-
ferent GRASP Algorithms for the Heterogeneous Vector
Bin Packing Problem. In: 2019 China-Qatar Internation-
al Workshop on Artificial Intelligence and Applications
to Intelligent Manufacturing (AIAIM), IEEE, 2019, 63-
70. https://doi.org/10.1109/AIAIM.2019.8632779

35. Stakić, Đ., Živković, M., Anokić, A., Rajković, R. Solving
the Problem of Packing Packages in the Containers with
the Limitation of Mass and the Volume by VNS Method.
In: XLV Symposium on Operational Research, Zlatibor,
Serbia, September 2018, 112-117.

36. Turky, A., Sabar, N. R., Dunstall, S., Song, A. Hyper-Heu-
ristic Local Search for Combinatorial Optimisation
Problems. Knowledge-Based Systems, 2020, 205, 106-
264. https://doi.org/10.1016/j.knosys.2020.106264

37. Wei, L., Lai, M., Lim, A., Hu, Q. A Branch-and-Price Al-
gorithm for the Two-Dimensional Vector Packing Prob-
lem. European Journal of Operational Research, 2020,
281(1), 25-35. https://doi.org/10.1016/j.ejor.2019.08.024

This article is an Open Access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

