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The two-dimensional heterogeneous vector bin packing problem (2DHet-VBPP) consists of packing the set 
of items into the set of various type bins, respecting their two resource limits. The problem is to minimize the 
total cost of all bins. The problem, known to be NP-hard, can be formulated as a pure integer linear program, 
but optimal solutions can be obtained by the CPLEX Optimizer engine only for small instances. This paper pro-
poses a metaheuristic approach to the 2DHet-VBPP, based on Reduced variable neighborhood search (RVNS). 
All RVNS elements are adapted to the considered problem and many procedures are designed to improve ef-
ficiency of the method. As the Two-dimensional Homogeneous-VBPP (2DHom-VBPP) is more often treated, 
we considered also a special version of the RVNS algorithm to solve the 2DHom-VBPP. The results obtained 
and compared to both CPLEX results and results on benchmark instances from literature, justify the use of the 
RVNS algorithm to solve large instances of these optimization problems. 
KEYWORDS: Two-dimensional heterogeneous vector bin packing problem, Variable neighborhood search, 
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1. Introduction
The two-dimensional heterogeneous vector bin pack-
ing problem (2DHet-VBPP) can be stated as follows 
(see Han et al. [13], where the name M2BP — multi-
type two-dimensional bin packing problem, was 
used): given the N  pairs ( 2 -dimensional items) and 
the finite number of bin types, characterized by the 
capacity and the cost, the problem is to select bins and 
pack all items into these bins, so that the total cost is 
minimized and the resource constraints are met.
The problem 2DHet-VBPP is a special case of the 
Vector bin packing problem (VBPP) (see Garey et al. 
[11]), where bins and items are vectors of dimension 

.N  The problem Homogeneous VBPP (Hom-VBPP) is 
a special case of the 2DHet-VBPP when there is only 
one type of bins. The decision variant of the Hom-
VBPP is NP-complete (see [12]), hence the VBPP is 
computationally a hard problem.
Han et al. [13] stated the following problems related to 
the 2DHet-VBPP:  
 _ assignment of computer processes to processors, 

taking into account the two resources, processing 
time and memory; 

 _ assignment of robots to working stations; 
 _ file placement for multi-device storage system. 

Gabay and Zaourar [10] considered the Virtual ma-
chine placement problem, which is extended by ad-
ditional constraints into the Machine reassignment 
problem.
Bin packing is related to the container transport, as 
well. According to Notteboom [25], every year hun-
dreds of millions of containers have been transported 
worldwide. Therefore, an efficient optimization of the 
container transport and packing is very valuable from 
the global perspectives on environmental concern 
and minimization of costs. For details about the con-
tainer transport and related problems, refer to Bort-
feldt and Wäscher [5], who are focused on the con-
straints of packing items into containers. Problems 
are classified into the minimization and maximiza-
tion problem types. Among them, the 2DHet-VBPP 
appears under the name Multiple Bin-Size Bin Pack-
ing Problem (MBSBPP) and it is described as packing 
a strongly heterogeneous set of cargo into a weakly 
heterogeneous assortment of containers so that the 
price of the used containers is minimized. From the 
163 papers considered in [5], 12 of them dealt with 

MBSBPP, while 23 papers used weight limits for the 
container-related constraints and only 2 combined 
weight limits with some additional constraints in the 
MBSBPP. Packing the set of items into the set of con-
tainers in order to minimize the total cost, taking into 
account the limits of containers and weights and vol-
umes of items, is considered in [29], [35], [34].
The exact optimization methods cannot solve larger 
instances of NP-hard problems. Therefore, the heu-
ristic method is a reasonable choice to deal with the 
2DHet-VBPP. Han et al. [13] considered the three ap-
proaches to the 2DHet-VBPP: a simple greedy heu-
ristic named First Fit by Ordered Deviation (FFOD), 
Simulated annealing (SA) and Column generation 
(CG). The fastest method was FFOD, but with the 
solutions with the largest gap from the best ones; SA 
was slower, but with a smaller gap. Exact solutions 
could not be obtained for the instances with more 
than 50 items. Gabay and Zaourar [10] considered 34 
greedy heuristic methods to solve the 2DHet-VBPP, 
classified into: item centric, bin centric and bin bal-
ancing heuristics for the decision variant of the 
VBPP where the final goal was to answer the question 
whether the given items could be placed into bins or 
not. Three metaheuristic methods, based on Greedy 
Randomized Adaptive Search Procedure (GRASP) 
metaheuristics, are developed by Stakić et al. [34]: 
Basic GRASP, Uniform GRASP and Reactive GRASP 
method; the Uniform GRASP method outperformed 
the remaining two. Stakić et al. [35] used a variant 
of Variable neighborhood search (VNS) to solve the 
2DHet-VBPP.
As mentioned earlier, homogeneous variant of the 
problem was more considered in literature and there 
are many benchmarks for the 2DHom-VBPP. Approx-
imation algorithms and optimal solutions for some 
instances of 2DHom-VBPP were represented by 
Shachnai and Tamir in [32]. In addition, the authors 
showed that for a single bin the problem was solvable 
in pseudo-polynomial time. Alves et al. [1] applied the 
concept of dual-feasible functions to reach fast lower 
bounds for the 2DHom-VBPP extending 1-dimension-
al functions to the m-dimensional case. The authors 
analyzed different families of functions. A multi-start 
iterated local search heuristic, relaying on simple 
neighborhoods and problem-tailored shaking proce-
dures, was developed by Masson et al. [22] as a solu-
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tion approach for two problems, multi-capacity bin 
packing and machine reassignment problem. Turky et 
al. [36] developed Hyper-heuristic framework based 
on automatically selecting local search algorithm and 
the internal operators to solve 2DHom-VBPP denot-
ed as Multi-Capacity Bin Packing Problem (MCBPP). 
Brunch-and-Price exact algorithms were applied by 
Heßler et al. [19] to several vector packing problems, 
among which the 2DHom-VBPP was considered. The 
authors used the underlying column-generation pro-
cedure with the extended master program stabilized 
by dual-optimal inequalities that were added from the 
beginning or dynamically. Branch-cut-and-price al-
gorithms, defined as models for VRPSolver (a generic 
solver for vehicle routing problems) were applied to 
the classical bin packing problem, as well as vector 
packing, variable sized bin packing, and variable sized 
bin packing with optional items by Pessoa et al. [28]. 
A consistent neighborhood search was developed for 
solving the one-dimensional bin packing problem and 
then applied to the 2DHom-VBPP by Buljubašić and 
Vasquez [7]. Panigrahy et al. [26] analysed variants of 
the heuristics inspired by the first-fit decreasing algo-
rithm and propose a new geometric heuristic algorithm 
without a significant decrease in performance. Arin-
ghieri et al. [2] developed the two heuristics: greedy 
and neighborhood search algorithm for the same prob-
lem. Sophisticated branch-cut-and-price algorithms 
were proposed by Pessoa et al. [27] for solving vehicle 
routing, assignment and bin packing problems, includ-
ing the 2DHom-VBPP. In the early work of Spieksma 
[33] a branch-and-bound algorithm for 2DHom-VBPP 
was described, but it provided optimal solutions only 
for small-size instances. However, some instances 
published in [33] were later used as benchmarks. Wei 
et al. [37] developed a branch-and-bound method with 
dynamic programming which, after eliminating con-
flicts between two items through branching, solves 
the two-constraint knapsack problem at leaf nodes 
using dynamic programming. Brandao and Pedroso 
[6] presented an exact method based on an arc-flow 
formulation with side constraints for bin packing, in-
cluding 2DHom-VBPP, and cutting stock problems. In 
their method, all the patterns formed a very compact 
graph to which a graph compression algorithm was 
applied in order to reduce the size of a graph without 
weakening the model. Each of the 34  greedy heuristics 
implemented by Gabay and Zaourar [10] were applied 

to each fixed set of items and bins of the considered 
2DHom-VBPP. Then, a binary search procedure was 
used to find the minimal number of bins for the consid-
ered set of items among all the solutions obtained by 
these heuristics. Due to the simple implementation of 
these heuristics, the approach is not time consuming, 
but it cannot be applied to heterogenous case. Caprara 
and Toth [8] analyzed several lower bounds and intro-
duced heuristic and exact algorithm for 2DHom-VBPP.
Additional information considering different bin 
packing problems and solution approaches can be 
found in the work of Christensen et al. [9]. In [9] au-
thors considered Geometric bin packing and Vector 
bin packing problems. Within the second type they 
discussed offline and online vector bin packing, Vec-
tor knapsack, Vector scheduling and Vector covering 
problems. The specific 2DHom-VBPP with different 
categories of products (standard, cooled and frozen) 
that require separated zones in a truck while avoiding 
splitting orders with several goals (minimizing the 
total number of trucks, the number of refrigerated 
trucks which contain frozen and standard products 
and minimizing splitting), was considered by Heßler 
et al. [20]. Another variant of 2DHom-VBPP, where 
a price of a bin depends on the total mass of items in 
it, was considered and solved using a memetic algo-
rithm by Hu et al. [21]. 2D-VBPP appeared in a sched-
uling problem considered by Billaut et al. [4]. Namely, 
two-dimensional jobs (with duration and consump-
tion) consume a perishable resource stored in vials. 
The goal is to schedule the jobs on a single machine 
so that the maximum lateness does not exceed a giv-
en threshold and the number of vials required for 
processing all the jobs is minimized. The two-step 
approach embedding a Recovering Beam Search algo-
rithm for the initial solution and a metaheuristic algo-
rithm are proposed for the considered problem. The 
variable neighborhood search algorithm is developed 
for solving the bin packing problem (BPP) with com-
patible categories by Santos et al. [31]. A recent sur-
vey by Munien and Ezugwu [24] on different solution 
approaches for the 1DHom-VBPP represents The fit-
ness-dependent optimizer (FDO), Cuckoo search via 
Lévy flights, Whale optimization algorithm (WOA), 
Squirrel search algorithm and Genetic algorithms as 
successful metaheuristic approaches to this type of 
the Bin packing problem. Another review by Ramos 
et al. [30] on grouping problems, among which is bin 
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packing as well, classify the applied metaheuristics 
as: Neighborhood searches, Evolutionary algorithms, 
Swarm intelligence algorithms.
Here we present a more efficient metaheuristic ap-
proach to the 2DHet-VBPP, based on the Reduced 
variable neighborhood search (RVNS). The algorithm 
is tested on both of 2DHet-VBPP and 2DHom-VBPP 
instances, and the results are compared to [2], [6], [34], 
[19], [10], [36]. The main contribution of our work is a 
new solution approach, a variant of a VNS metaheuris-
tics, for a less considered problem, 2DHet-VBPP. 
Having in mind that exact methods can solve only 
small-size instances in the case of NP-hard problems 
and population based metaheuristics, as genetic algo-
rithms, consequently provide a large number of unfea-
sible solutions, we develop a systematic single solution 
metaheuristic method. The adaption of our method to 
the more considered 2DHom-VBPP is successful com-
pared to the benchmarks and provides a several new 
optimal solutions for the instances from the literature.
The rest of the paper is organized as follows: the pro-
posed RVNS method is described in Section 2, the ex-
perimental results are presented in Section 3, Section 
4 states the conclusion.

2. The Proposed RVNS Algorithm
In order to present the mathematical formulation of 
the 2DHet-VBPP and introduce the proposed solu-
tion method, the precise designations are used. If n  is 
an integer, let [ ] = {1,2, , }n n . Further:
 _ ( , )i im V  denotes the two dimensions of item i , 

[ ]i N∈ . 
 _ ( , )t tLm LV  denotes the capacity of bins of type t , 

[ ]t nt∈ . 
 _

tC  denotes the price of bins of type t , [ ]t nt∈ . 
 _

tLn  denotes the upper bound on the number of bins 
of type t , [ ]t nt∈ . 

 _ = 1ijtp  if item [ ]i n∈  is packed in the j th bin  
( [ ]tj Ln∈ ) of type [ ]t nt∈ ; otherwise = 0ijtp . 

 _ = 1jtk  if the j th bin, [ ]tj Ln∈ , of type [ ]t nt∈  is 
used; otherwise = 0jtk . 

The optimization problem 2DHet-VBPP is to 

=1 =1
minimize =

Lnnt t

jt t
t j

C k C⋅∑∑ (1)

=1 =1
subject to = 1, [ ]

Lnnt t

ijt
t j

p i n∈∑∑ (2)

=1
( , ) ( , ),

n

ijt i i jt t t
i

p m V k Lm LV⋅ ≤ ⋅∑
[ ], [ ]tt nt j Ln∈ ∈

{0,1}, [ ], [ ], [ ]ijt tp i n t nt j Ln∈ ∈ ∈ ∈

{0,1}, [ ], [ ]jt tk t nt j Ln∈ ∈ ∈

(3)

The objective function C  (1) represents the total costs 
of used bins. Constraints (2) ensure that each item is 
packed into exactly one bin. Constraints (3) ensure 
that bin capacities are not exceeded.
A precise mathematical model can be used by the ex-
act optimization solver. However, it is a well known 
fact that only small instances of NP-hard optimiza-
tion problems can be solved exactly. A common ap-
proach is to develop an efficient metaheuristic algo-
rithm that will be successful with larger instances of 
the considered problem.
Variable neighborhood search (VNS) is a well-known 
metaheuristic method, introduced by Hansen and 
Mladenović [14]-[18], [23] and widely used to solve 
various continuous and combinatorial optimization 
problems (as well as BPP by Santos et al. [31]), see 
Algorithm 1. Starting with the initial solution, the ba-
sic VNS algorithm loops repeat the three main steps: 
Shaking phase, Local search and Move or Not step, un-
til the termination criterion is reached.

4 Ð. Stakić et al.

The algorithm is tested on both of 2DHet-VBPP
and 2DHom-VBPP instances, and the results are
compared to [2,6,10,19,34,36]. The main contri-
bution of our work is a new solution approach, a
variant of a VNS metaheuristics, for a less consid-
ered problem, 2DHet-VBPP. Having in mind that
exact methods can solve only small-size instances
in the case of NP-hard problems and population
based metaheuristics, as genetic algorithms, con-
sequently provide a large number of unfeasible
solutions, we develop a systematic single solu-
tion metaheuristic method. The adaption of our
method to the more considered 2DHom-VBPP is
successful compared to the benchmarks and pro-
vides a several new optimal solutions for the in-
stances from the literature.

The rest of the paper is organized as follows:
the proposed RVNS method is described in Sec-
tion 2, the experimental results are presented in
Section 3, Section 4 states the conclusion.

2. The proposed RVNS algorithm

In order to present the mathematical formu-
lation of the 2DHet-VBPP and introduce the pro-
posed solution method, the precise designations
are used. If n is an integer, let [n] = {1,2, . . . ,n}.
Further:

• (mi,Vi) denotes the two dimensions of
item i, i ∈ [N].

• (Lmt ,LVt) denotes the capacity of bins of
type t, t ∈ [nt].

• Ct denotes the price of bins of type t,
t ∈ [nt].

• Lnt denotes the upper bound on the
number of bins of type t, t ∈ [nt].

• pi jt = 1 if item i ∈ [n] is packed in the jth
bin ( j ∈ [Lnt ]) of type t ∈ [nt]; otherwise
pi jt = 0.

• k jt = 1 if the jth bin, j ∈ [Lnt ], of type
t ∈ [nt] is used; otherwise k jt = 0.

The optimization problem 2DHet-VBPP is to

minimize C =
nt

∑
t=1

Lnt

∑
j=1

k jt ·Ct (1)

subject to
nt

∑
t=1

Lnt

∑
j=1

pi jt = 1, i ∈ [n] (2)

n

∑
i=1

pi jt · (mi,Vi)≤ k jt · (Lmt ,LVt),

t ∈ [nt], j ∈ [Lnt ] (3)

pi jt ∈ {0,1}, i ∈ [n], t ∈ [nt], j ∈ [Lnt ]

k jt ∈ {0,1}, t ∈ [nt], j ∈ [Lnt ]

The objective function C (1) represents the
total costs of used bins. Constraints (2) ensure
that each item is packed into exactly one bin. Con-
straints (3) ensure that bin capacities are not ex-
ceeded.

A precise mathematical model can be used
by the exact optimization solver. However, it is
a well known fact that only small instances of
NP-hard optimization problems can be solved ex-
actly. A common approach is to develop an effi-
cient metaheuristic algorithm that will be success-
ful with larger instances of the considered prob-
lem.

Variable neighborhood search (VNS) is a
well-known metaheuristic method, introduced by
Hansen and Mladenović [14] - [18], [23] and
widely used to solve various continuous and com-
binatorial optimization problems (as well as BPP
by Santos et al. [31]), see Algorithm 1. Starting
with the initial solution, the basic VNS algorithm
loops repeat the three main steps: Shaking phase,
Local search and Move or Not step, until the ter-
mination criterion is reached.

Algorithm 1 basic VNS

procedure VNS(Problem Data,rmax)
Generate initial solution S;
repeat

r ← 1;
while r ≤ rmax do

S′ ← Shake(S,r); //Shaking phase
S′′ ← Local Search(S′); //Local search
if f (S′′)< f (S) then //Move or Not

S ← S′′;
r ← 1;

else
r ← r+1;

until The termination criterion is satisfied

After generating the initial solution S (in-
cumbent), the first VNS step (called Shaking
phase), directs the search to different points in
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After generating the initial solution S  (incumbent), 
the first VNS step (called Shaking phase), directs the 
search to different points in the search space, enabling 
the diversification of the search process. The solution 
S ′, obtained in this phase, is passed to the second step 
(Local search), the aim of which is to reach the local 
optimum in the neighborhood of S ′ . The best solution 
S ′′, obtained during Local search, is compared to the 
incumbent S , and the better one is preserved as new 
S  by Move or Not VNS step. If S ′′ is not better than S , 
the search continues from S , and the counter r  of it-
erations without improvement is incremented. As the 
termination criterion, there might be used the maxi-
mum number of iterations without improvement, the 
maximum running time, etc. In the presented VNS 
implementation, a running time limit maxt  was used as 
the termination criterion.
As the neighbourhood of a 2DHet-VBPP feasible solu-
tion is very large and complicated, the Reduced VNS 
(RVNS, see Hansen et al. [15], [18]) was used, the vari-
ant obtained from the basic VNS by omitting the Lo-
cal search step.

2.1. Solution Representation and Objective 
Function Calculation
During the 2DHet-VBPP solution process, a sequence 
of states (feasible solutions) is considered. Let n de-
note the number of items. If S  is a state, then let 

( )nBin S   denote the number of bins corresponding to 
S , and let *n  denote some upper bound on the number 
of items that can be placed into one bin. The state S  is 
uniquely represented by a pair ( , )S a , where  
 _ S  is an integer *n n×  matrix. The row j of S  

corresponds to bin j. If > 0i , then [ , ] =S j k i 
means that the item i  is the k-th item in the bin j; 
 otherwise the number of items in the bin j  is less 
than k , where , [ ]j i n∈ , *[ ]k n∈ . 

 _ a is an array of length n . If [ ] > 0a k , then [ ]a k  is the 
type of the k th bin, otherwise ( ) <nBin kS . 

Assuming that the weight and volume of each item 
is less than the corresponding limit of bin, we have 

( )nBin n≤S . A somewhat better upper bound *n  is 
expressed by 

1 1 1=1 =1
min , ,max max max

k k

j t j t
t n k n k nj jt

m Lm V LV
≤ ≤ ≤ ≤ ≤ ≤

 
′ ′≤ ≤ 

 
∑ ∑ (4)

where 1 2' ' 'nm m m≤ ≤ ≤  is the sorted permutation 
of 1{ , , }nm m  and 1 2' ' 'nV V V≤ ≤ ≤  is the sorted 
permutation of 1{ , , }nV V . Namely, for each bin type 
t  we consider the minimum of the two numbers (in 
the parenthesis) - the maximum number of items that 
can be placed in the bin of type t  respecting the limit 
in weight and the limit in volume. The largest of these 
minimum values over the set of all bin types is n*, the 
maximal number of items that can be placed in bin of 
each type.
Let ( , ) = ( )nBin S a nBin S , where S  is the state corre-
sponding to ( , )S a . From the definition, it follows that 
the i th row of S  is all-zero if > ( , )i nBin S a . The ob-
jective function value corresponding to ( , )S a  is indi-
cated by 

( , )

[ ]
=1

= ( , ) = .
nBin S a

a j
j

C f S a C∑

Example 1. Consider the instance with = 10n  items 
and with = 3nt  bin types specified by Tables 1 and 2. 
We can suppose that volumes are measured in 3m , 
that weights are measured in tons, and that the price 
of using a bin is in euros.

Table 1 
Example 2DHet-VBPP instance: items 

i 1 2 3 4 5 6 7 8 9 10

( )im t 13 5 6 9 9 4 4 10 7 4

3( )iV m 1 8 23 9 3 21 24 24 17 1

Table 2
Example 2DHet-VBPP instance: bins

i  1 2 3

( )iLm t  25.8 24.5 24.5

3( )iLV m  30 60 70

( )iC EUR  1594 2470 2483

From (4) it follows that the matrix S  corresponding 
to any feasible solution has at most * = 5n  columns. 
The optimal solution ( optS , opta ), obtained by CPLEX, 
uses ( optnBin S , ) = 3opta  bins, and it is presented by

n*

n*

n*

n*

n*
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1 9 10 0 0
= 2 3 5 6 0 , = [1,2,2].

4 7 8 0 0
opt optS a

 
 
 
  

The first bin is of type 1, and the remaining two are 
of type 2 . The optimal solution puts, for example, 
the three items with the indices 1, 9  and 10  into 
the first bin. Their vectors ( , )i im V  are (13,1), (7,17) 
and (4,1), respectively. The sum of these three vec-
tors is (24,19), which is lexicographically less than 
the capacity 1 1( , ) = (25.8,30)Lm LV . The four items 
2, 3, 5, 6 are placed in bin 2 , and the three remain-
ing items 4, 7, 8 are placed in the bin 3. The objec-
tive function value for the optimal solution is hence 

= ( , ) = 1594 2 2470 = 6534opt opt optC f S a + ⋅  EUR.

2.2. Generating the Initial Solution
The initial solution is generated using the simple 
greedy algorithm, similar to decreasing-first-fit heu-
ristic for the 1D bin packing problem. The type of all 
bins in the initial solution is set to 1. The pairs ( , )i im V  
are sorted lexicographically in a decreasing order. 
Following this order, each item is placed into the first 
(from the beginning) bin in which it fits. If it is not 
possible to place the current item into any of the al-
ready used bins, then it is placed in a new, empty bin.
Example 2. Consider the instance from Example 
1. The indices of the lexicographically sorted list of 
items are (1,8, 4,5,9,3,2,7,6,10). The order in which 
items are placed into 5  bins by the first-fit rule is 
shown in Table 3.

Table 3
Example 2DHet-VBPP instance: generating initial solution

i 1 8 4 5 9 3 2 7 6 10

im 13 10 9 9 7 6 5 4 4 4

iV 1 24 9 3 17 23 8 24 21 1

bin index(j) 1 1 2 2 2 3 4 5 4 3

sum for bin jim 13 23 9 18 25 6 5 4 9 10

sum for bin jiV 1 25 9 12 29 23 8 24 29 24 

The fourth row indicates the chosen bin index, and 
the corresponding entries in the next two rows show 
the sums of the first and the second coordinates of 

items placed into this bin until this step. Hence, the 
components of the initial solution ( initS , inita ) are:

1 8 0
4 5 9

= 3 10 0 , = [1,1,1,1,1].
2 6 0
7 0 0

init initS a

 
 
 
 
 
 
  

The objective function value initC  corre-
sponding to the initial solution ( initS , inita ) is 

= ( , ) = 5 1594 = 7970init init initC f S a ⋅  EUR, which is 
1436 EUR more than the corresponding optimal value 
shown in Example 1.

2.3. The RVNS Algorithm
What follows is the list of certain terms and their des-
ignations, as well as a description of a number of sim-
ple procedures.  
 _ Let ( , )random a b  denotes randomly generated 

integer value from the interval [ , ]a b . 
 _ Let ( )nBin S  denotes the number of bins in the 

solution corresponding to the matrix S . 
 _ Let ( , )nItem S j  denotes the number of items 

in the bin j , which is the part of the solution 
corresponding to the matrix S . 

 _ Let 
=1

( , ) = ( , )n
ija i ii j

load S j p m V⋅∑  denotes the total 
load of the bin j , which is the part of the solution 
corresponding to the matrix S . 

 _ Let ( , )f S a  denotes the value of the objective 
function. 

 _ Let ( , )nFBin S a  denotes the the number of 
full bins, i.e. the number of bins j , such that 

( , ) = ( , )a aj j
load S j Lm LV . 

 _ Let 1 1 2 2( , , , , )Swap S j i j i  denotes the procedure (see 
Algorithm 2)  

If  1j , 2j  > 0, then  
If 1i  > 0 and 2i  > 0, then swap (if possible) the 

item 1i  from the bin 1j  and the item 2i  from 
the bin 2j ; 

If 
1i  = 0 and 2i  > 0, then transfer (if possible) the 

item 2i  from the bin 2j  into the bin 1j ; 
If 2i  = 0 and 1i  > 0, then transfer (if possible) the 

item 1i  from the bin 1j  into the bin 2j ; 
If 1i  = 2i  = 0, then do nothing; 
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Algorithm 2 The proposed RVNS algorithm

procedure RVNS(Problem Data,rmax, tmax)
Generate initial solution (S,a);
repeat

r ← 1;
while r ≤ rmax do

(S′,a′)← (S,a); //Shaking phase
for (k ← 1;k ≤ r;k++) do

//randomly change type of randomly chosen bin
( j, t)← (random(1,nBin(S′)),random(1,nt));
if (load(S′, j)≤ capacity(t)) then a′( j)← t;
// swap two randomly chosen items from two randomly chosen bins
( j1, j2)← (random(0,nBin(S′)),random(0,nBin(S′)));
(i1, i2)← (random(0,nItem(S′, j1)),random(0,nItem(S′, j2)));
S′ ← Swap(S′, j1, i1, j2, i2);

for (k ← 1;k ≤ r;k++) do
j ← random(1,nBin(S′)); // attempt to empty the randomly chosen bin
S′ ← EmptyAMAP(S′, j);

if (S′,a) is not changed then
r ← r+1;
continue;

(S′′,a′′)← sorted(S′,a′); //Improvement
for (iter ← 1; iter ≤ niter; iter++) do

for ( j ← 1; j ≤ nBin(S′′); j++) do
for (i ← nItem(S′′, j); i ≥ 1; i−−) do

for (k ← nBin(S′′);k ≥ 1;k−−) do
if (Trans f erOrSwap(S′′, j, i,k)) then

break;
if (EmptyBin(S′′, j)) then

(S′′,a′′)← sorted(S′′,a′′);
(S′′,a′′)← Improve By Type(S′′,a′′);
if f (S′′,a′′)< f (S,a) then //Move or Not

(S,a)← (S′′,a′′);
r ← 1;

else
if ( f (S′′,a′′) = f (S,a) and nFBin(S′′)≥ nFBin(S)) then

(S,a)← sorted(S′′,a′′);
r ← r+1;

until SessionTime ≥ tmax

the triple for loop by j, i and k with the body
Trans f erOrSwap(S′′, j, i,k) are performed in or-
der to reduce the number of bins by moving the
items, the largest first, to the more loaded bins.
In this process, completely full bins are skipped.

sorted(S′′,a′′).
After the Improvement step, all the bins are

checked, and if possible, replaced by a smaller
cost bin type (ImproveByType(S′′,a′′) step), after
which the Move or Not step follows:
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If 1j = 0, 2j  > 0, and 2i  > 0, then increment ( )nBin S , 
and transfer the item 2i  from the bin 2j  into the 
new empty bin; 
If 2j = 0, 1j  > 0, and 1i  > 0, then increment ( )nBin S , 
and transfer the item 1i  from the bin 1j  into the new 
empty bin; 
If 1j  = 2j  = 0, then do nothing. 

 _ Let ( , )EmptyAMAP S j  denotes the transfer (as 
much as possible) of items from the jth bin, 

[ ( )]j nBin S∈ , into all other bins [ ( )] \{ }i nBin S j∈  
starting from the last one. After ( , )EmptyAMAP S j  
is applied, the bin j  might be emptied. 

 _ Let ( , )sorted S a  denotes the procedure which sorts 
the items in each bin of the solution in increasing 
order according to their volume, as well as the set 
of bins according to the total volume of their load. 

 _ Let ( , , , )TransferOrSwap S j i k  denotes the 
procedure that  

 _ if the item i  from the bin j  fits into bin k, then 
move it from the bin j into bin k ; 

 _ otherwise, for all the items l, [ ( , )]l nItem S k∈
in the bin k , try to swap the item i  from the bin 
j and the item l  from the bin k  until the first 

such swap occurs; in that case it return True; 
otherwise, return False. More precisely, in 
order to empty (if possible) the considered bin, 
it is allowed to replace an item only by the one 
with a smaller volume. As in the shaking phase, 
this move is also performed if the bin can be 
partially emptied.

For the specification of the proposed RVNS algo-
rithm, see Algorithm 2. The unsuccessful shakings 
counter r  is initialized to 1. The body of the main loop 
is repeated until the counter r  reaches the limit maxr . 
The counter is incremented if the execution of the 
body leads to no improvement; otherwise, r  is reset to 
1. Passing the r  loop is repeated while the limit of the 
session time maxt  is reached. The body of the main loop 
consists of:  
 _ the Shaking phase 
 _ the Improvement step 
 _ the Move or Not step 

The Shaking phase of our RVNS algorithm starts from 
feasible solution ( , )S a′ ′  obtained as a copy of the cur-
rent best solution ( , )S a . The Shaking phase consists 

of the following moves, as described in Algorithm 2.  
1 Repeat r  times the following two steps  

a Change the type of one randomly selected bin 
[ ( )]j nBin S ′∈  to randomly selected type t , if pos-

sible, i.e. if ( , ) ( , )t tload S j Lm LV′ ≤  (in other words, 
set [ ]a j t′ ← ); otherwise do nothing. 

b Choose a random pair of different bins 
1 2, {0} [ ( )]j j nBin S ′∈ ∪  (independently, from 

the uniform distributions). Choose a ran-
dom pair of items 1 1{0} [ ( , )]i nItem S j′∈ ∪  and 

2 2{0} [ ( , )]i nItem S j′∈ ∪  (independently, from the 
uniform distributions). Perform the procedure 

1 1 2 2( , , , , )Swap S j i j i′  in order to change the solution 
( , )S a′ ′  (the probability to choose 1 = 0i , for exam-
ple, equals to ( )( )11/ ',  1nItem S j + ). 

2 Execute the procedure ( , )EmptyAMAP S j′  r  times, 
for r  randomly chosen bins j . 

In case the solution ( , )S a′ ′  is not changed after the 
Shaking phase, the Shaking phase is repeated, with r  
incremented. Otherwise, the Improvement step fol-
lows.
The Improvement step is the replacement for the 
Local search phase in VNS algorithm. This step is 
a reduced version of the local search, because the 
complete local search here is too complex. One can 
alternatively consider the Improvement step as 
the final part of the shaking phase. The sorted copy 

( , )sorted S a′ ′  of ( , )S a′ ′  is saved as ( , )S a′′ ′′ . Starting 
from the first bin (the least loaded one) in ( , )S a′′ ′′ , 
niter  iterations of the triple for loop by j , i  and k  with 
the body ( , , , )TransferOrSwap S j i k′′  are performed 
in order to reduce the number of bins by moving the 
items, the largest first, to the more loaded bins. In this 
process, completely full bins are skipped. After ex-
iting the j loop, it is checked if the bin j  is empty (it 
is possible that the bin j is not empty); if it is empty, 
then ( , )S a′′ ′′  is replaced by ( , )sorted S a′′ ′′ .
After the Improvement step, all the bins are checked, 
and if possible, replaced by a smaller cost bin type  
( ( , )ImproveByType S a′′ ′′  step), after which the Move 
or Not step follows:  
 _ If ( , ) < ( , )f S a f S a′′ ′′ , then ( , )S a  is replaced by 

( , )S a′′ ′′ , and the counter r  is reset; 
 _ Otherwise, if ( , ) = ( , )f S a f S a′′ ′′  and  ( , ) > ( , )nFBin S a nFBin S a′′ ′′  

( , ) > ( , )nFBin S a nFBin S a′′ ′′ , then ( , )S a  is replaced by ( , )S a′′ ′′ , 
and the counter r  is incremented. This small 
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modification of the classic Move or Not phase 
in VNS method performs better, as it enables a 
diversification of the search, by starting from the 
different solution even if it has the same objective 
function value. 

 _ otherwise, r  is incremented. 

When the time limit maxt  is reached, our RVNS algo-
rithm stops, returning the best solution found. It is a 
straightforward task to generalize this algorithm to 
the case of arbitrary dimension.

2.4. The Adaptation of the Proposed RVNS 
Methods for Hom-VBPP

Regarding the fact that numerous papers have been 
published studying the 2DHom-VBPP, the RVNS al-
gorithm is also adapted to solve the 2DHom-VBPP. In 
fact, the 2DHom-VBPP is a special case of the 2DHet-
VBPP, where all the bins are of the same type, i.e. = 1nt
. Hence, in the shaking step the first move (changing 
the type of a randomly selected bin) is skipped. As the 
objective function value is proportional to the num-
ber of used bins, it can be replaced by the number of 
bins used, see (1):

1

1
=1

= .
Ln

j
j

C k′ ∑ (5)

There is a simple lower bound for this objective func-
tion considered by Gabay and Zaourar [10]: 

= max , .i im V
l

Lm LV

     
    
     

   (6)

If =C l∞′ , then the objective function value C′  is opti-
mal. Following [10], we used this fact in some cases to 
prove the optimality of the objective function value.

3. The Experimental Results
The newly generated 2DHet-VBPP instances and the 
2CBP set of 2DHom-VBPP benchmark instances pro-
vided by Caprara and Toth [8] are used to evaluate the 
RVNS algorithm. The proposed RVNS algorithm is 
implemented in C programming language. All exper-
imental results were obtained using Intel Xeon CPU 

E5-2620 v3, 2.40 GHz with 32GB RAM memory, un-
der Linux operating system. CPLEX 12.6.2 solver was 
used to solve some smaller instances. Before proceed-
ing to the evaluation, we performed tests in order to 
adequately choose the value of the parameters niter  
and maxr .

3.1. 2DHet-VBPP Instances
The ensuing part of the paper describes the bench-
mark 2DHet-VBPP used to evaluate the RVNS algo-
rithm.
In fact, to the best of our knowledge, there are no other 
published benchmark instances for the 2DHet-VBPP. 
Instead, the methods used to generate instances are 
described.  
 _ Han et al. [13] used a data set of 550  instances. 

They involved 4  types of bins with different costs: 
10 , 8 , 7 , and 6 $, while the considered numbers of 
items were: 30 , 40 , 50 , 75 , and 100 . The average 
item sizes of instances were 5% , 10%  or 20% of 
the corresponding bin capacity. The update rate of 
item's size (an item can slightly increase its size) 
were chosen to be 1% , 2%, 3% , 4% or 5%. Out of 
75 different combinations, the authors selected 55, 
and generated 10 instances for each combination, 
creating the data set of 550 instances. The first 
and the second item dimensions were generated 
following the uniform distribution, and the 
exponential distribution, respectively. 

 _ Gabay and Zaourar [10] generated the total of 4500  
instances, the 100  instances in each combination 
of:  

 _ the 5  classes with different input data (Random 
uniform, Random uniform with rare resources, 
Correlated capacities, Correlated capacities and 
requirements and Similar items and bins); 

 _ the number of bins (10 , 30  or 100 ); 
 _  the number of dimensions ( 2 , 5  or 10 ). 

The values for both dimensions of items were gen-
erated following a uniform distribution with limits 
depending on the class of data. The 2DHet-VBPP 
problem on these instances was treated as a decision 
problem - whether the items could be placed in the 
given bins set, or not. 
 _ The two data sets, the set of 6  small and the 7  

large instances were considered by Stakić et al. 
[35], and the set of large instances was extended 
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with 3  more instances by the same first author 
[34]. The data related to the items were uniformly 
generated at random within the specific range, 
while the data related to bins were real-life values 
corresponding to the properties of the containers 
that were involved, see Table 2. 

 _ The 10  large instances were considered in [34]. 

What follows is a description of our newly generat-
ed 2DHet-VBPP instances. The bin types were fixed 
— they corresponded to three container types: 20′  
container, 40′ container and 40′ higher container, and 
their costs were the prices of transport from Shangai 
to Belgrade by Rajković et al. [29], see Table 2. The 
same type of bins were used in  [34] and  [35]. Six small 
instances with 10, 11, 12 , 13 , 15  and 20  items, as well 
as 50  randomly generated large instances were con-
sidered. Weights and volumes of items were random-
ly uniformly chosen integer values from [1,15]  tons 
and 3[1, 25]m , respectively. The set of large instances 
had 5  instances with each of the following numbers 
of items: 50 , 70 , 100 , 120 , 150 , 200 , 350 , 500 , 750  
and 1000 .1 We assumed that the number of available 
bins for each type was infinite, i.e. it was equal to the 
number of items.

3.2. Choosing the Parameter Values
Our RVNS algorithm depends on the following three 
parameters:  
 _

maxr  - the upper bound on the number of shaking 
steps without any improvement, 

 _ niter  - the number of iterations in improvement 
phase, 

 _
maxt  - the maximal running time. 

The parameter values are experimentally determined 
for maxr  and niter . For the parameter tuning tests, we 
selected a subset of 10  generated large instances that 
included one instance for each considered number of 
items.
First, different values for maxr  are considered. Let x   
denote x  rounded down to the nearest integer. We 
decided to try with linear functions = 0.05maxr kn , 
1 10k≤ ≤ . In our preliminary tests, formula 

= 0.25maxr n   showed the best performance, so we 
decided to use this formula and test the 10  values for 
parameter {1, ,10}niter∈  . For each such value, the 
RVNS algorithm was run 10  times on each instance, 
with the running time limit of 20 s. The parameter 
tuning tests for niter  are shown in Table 4, where 

Table 4
Parameter tuning tests for niter  

     
n

niter 50  70  100  120  150  200  350  500  750  1000  

 1 31517 47094 64291 65906 86423 120226 209653 296247 444569 596963 

 2 31517 47094 64291 65906 85586 119402 207966 294560 443719 595395 

 3 31517 47094 64291 65906 85586 119389 208803 294560 442151 594545 

 4 31517 47094 63454 65906 85586 119389 207248 293723 440477 593721 

 5 31517 47094 63454 65906 85586 119389 207248 293723 440477 593708 

 6 31517 46257 63454 65906 85586 119389 207248 292886 440477 592871 

 7 31517 47094 63454 65906 85586 119389 207248 292886 440477 592884 

 8 31517 47094 63454 65906 85586 119389 207248 293723 440477 592871 

 9 31517 47094 63454 65906 85586 119389 207248 293723 440477 592871 

 10 31517 47094 63454 65906 85586 119389 207248 292886 440477 592871 

1  for the set of instances see https://doi.org/10.5281/zenodo.5319708
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the best objective function value is bolded for each 
instance. As it can be seen from Table 4, the value for 
parameter = 6niter  provided the best solutions on all 
10  tested instances.
Using this value = 6niter  we tested the described for-
mulae for maxr  on the same set of instances and with 
the same time limit. The results are shown in Table 5. 
Having in mind that the expression = 0.25maxr n   of-
fers the largest number of best solutions on this set of 
instances, we have confirmed and fixed = 0.25maxr n   
as the parameter value in the RVNS algorithm.
When it comes to the parameter maxt , the maximal run-
ning time, we used standard values 1s, 10 s, 60s, 360 s 
and 1440 s, which provide a fair comparison with the 
results from literature.

3.3.  2DHet-VBPP

In order to compare different approaches to the 
2DHet-VBPP, we treated the 6  small and the 50  large 
instances (see section 3.1)  
 _ by the exact solver CPLEX v. 12.6.2. applied to the 

2DHet-VBPP PILP model (see Section 1), with the 
time limit set to 1800 s, 

 _ by the RVNS algorithm, and 

 _ by a slightly modified version of the U-GRASP 
algorithm (Greedy Randomized Adaptive Search 
Procedure, see Stakić et al. [34]).

 The time limit to the RVNS and U-GRASP was set to 
1s for small instances, and to 60 s for large instanc-
es. Both these algorithms were repeated 30  times for 
each instance, and the best obtained result was reg-
istered. In order to estimate the stability of these two 
algorithms, for each instance the average percentage 
gap 

30

1 30=1

1 30

1
min30 100%

min

i i
ii

i
i

C C

C
≤ ≤

≤ ≤

−
×

∑

of the solutions 1 2 30, , ,C C C  obtained in 30  runs was 
also registered.
Table 6 shows the optimal solutions and the corre-
sponding CPLEX running times for small instanc-
es with 20n ≤ ; the instances are identified by the 
corresponding number n  of items. Our RVNS and 
U-GRASP implementations reached all these optimal 
solutions in much shorter time in all the 30  runs for 
each instance.

Table 5
Parameter tuning tests for maxr  

               n 
maxr  

50 70 100 120 150 200 350 500 750 1000

0.05n   32354 47931 64291 66743 86423 121063 209640 295397 442151 596219

0.10n  31517 47094 63454 65906 86423 120226 208803 292886 441314 593708

0.15n   31517 47094 63454 65906 86423 120226 208803 293723 441314 593708

0.20n  31517 47094 63454 65906 85586 119389 207248 293723 440477 593708

0.25n   31517 46257 63454 65906 85586 119389 207248 292886 440477 592871

0.30n   31517 47094 63454 65906 85586 119389 207248 293723 440477 592871

0.35n   31517 47094 63454 65906 85586 119389 207248 293723 440477 592871

0.40n   31517 47107 63454 65906 85586 119389 207979 292886 440477 592871

0.45n   31517 47094 63454 65906 85586 119389 208803 293723 440477 593708

0.50n   31517 47094 63454 65906 85586 119389 207966 293723 440477 592871
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Table 6
Results on small instances

Table 7 shows the results obtained for large instanc-
es with 50n ≥ . The i th instance with n  items is de-

Instance ( n ) opt. sol. ( )Time s

10 6534 0.10

11 7252 0.06

12 8846 0.06

13 9722 0.15

15 12047 0.35

20 13786 6.15

Table 7
Comparison of results on large instances

Instance CPLEX 1800s RVNS 1s RVNS 60s U-GRASP 60s

_n i best LB best (%)gap best (%)gap best (%)gap

50_1 31530 30398.95 31517 1.7 31517 0 31543 2.59

50_2 31491 29368.89 30615 0.3 30615 0 31359 0.45

50_3 32577 30721.37 31009 5.03 31009 0.99 32577 0.03

50_4 27624 26393.31 26761 2.5 26761 0 27611 0.15

50_5 28500 27382.4 28500 0 28500 0 28513 0.04

70_1 47996 45349.16 47107 1.9 46257 2.06 47996 1.42

70_2 44624 42550 43761 2.36 43761 0.57 45487 0.21

70_3 43564 41353.78 42675 1.57 42675 0 43551 1.67

70_4 43577 40751.86 41957 1.49 41957 0 43722 1

70_5 43932 41871.11 43030 1.05 43030 0 44637 0.38

100_1 65048 62834.24 64291 0.83 63454 0.7 66787 1.05

100_2 61453 58350.92 58996 1.61 58996 0 62329 1.04

100_3 58812 55537.24 56329 1.75 56329 0 59675 1.13

100_4 64654 61209.88 62184 2.16 62171 0.85 64641 2.01

100_5 64444 60751.35 62666 0.97 61961 0.46 66196 1.56

120_1 69252 65301.77 65906 1.66 65906 0 70102 1.73

120_2 79355 74939.4 76859 1.27 76009 1.14 81055 0.87

120_3 76206 72707.13 74560 0.94 73723 0.76 77004 1.02

120_4 72269 69002.17 69799 2.15 69773 0.64 75747 1.05

120_5 73526 70048.06 71043 1.66 71043 0.12 75278 1.2

150_1 88958 84667.92 86423 0.81 85586 0.16 90606 1.76

noted by _n i , 1 5i≤ ≤ . For each instance, the CPLEX 
solution (with the time limit set to 1800s) and the cor-
responding lower bound were obtained. The CPLEX 
solution was improved by using the same initial solu-
tion as for the RVNS, see section 2.2. Furthermore, for  
 _ RVNS with the time limit set to 1s , 
 _ RVNS with the time limit set to 60s , and 
 _ U-GRASP with the time limit set to 60s , 

the best of 30  solutions and the corresponding gap 
are listed. It is worth mentioning that with 30  con-
secutive runs the total RVNS running time was 30
s and 1800 s for each instance, respectively. The best 
objective function value among the obtained solu-
tions is shown in bold.
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Instance CPLEX 1800s RVNS 1s RVNS 60s U-GRASP 60s

_n i best LB best (%)gap best (%)gap best (%)gap

150_2 94787 91176.05 92291 1 92291 0 97205 1.57

150_3 88437 84982.07 86778 0.26 85941 0 90150 1.14

150_4 93911 89060.07 90684 1.24 89847 0.56 95624 0.76

150_5 89650 85053.45 86436 0.74 86436 0 91547 0.96

200_1 124394 118014.1 120239 0.59 119389 0.12 127965 1.69

200_2 123137 116939.4 118995 0.5 118158 0.05 128302 1.53

200_3 126496 121239.4 123230 1.2 122393 0.3 133294 1.48

200_4 119428 111622.5 113863 0.25 113026 0 120674 0.85

200_5 125436 119045.8 121281 0.47 120431 0.14 130759 1.44

350_1 225215 206110.5 207979 1.11 206411 0.45 225810 1.15

350_2 227514 210898.4 213940 0.69 212253 0.12 230856 0.79

350_3 217797 201371.7 202168 1.41 202155 0.01 218965 0.77

350_4 219702 206178.2 208308 0.62 207471 0 225105 0.87

350_5 219023 207275.7 209197 1.22 208347 0.01 226621 0.67

500_1 318066 291891.1 294560 0.56 292886 0.14 322001 0.67

500_2 339309 294525 296364 0.67 295527 0.01 323463 1.05

500_3 361838 284648.9 286616 0.81 284929 0.25 312945 1.07

500_4 382560 308367.5 312765 0.71 310215 0.26 338112 0.91

500_5 319323 290365.4 293150 0.53 291476 0.08 318523 0.68

750_1 546742 439092.3 443825 0.42 439640 0.18 482636 1.02

750_2 537178 442327.9 445842 0.52 443318 0.18 487296 1.55

750_3 554712 443803.6 447467 0.47 445062 0.05 491759 0.77

750_4 548336 442099.5 447184 0.6 442986 0.13 487524 0.83

750_5 551524 448636.8 452394 0.67 449857 0.07 494006 1

1000_1 739616 0 597906 0.46 592871 0.05 655885 0.76

1000_2 733240 0 589508 0.55 582799 0.14 643442 0.67

1000_3 750774 0 606806 0.51 598529 0.42 664521 1.06

1000_4 728458 0 601589 0.35 594999 0.18 657215 1.05

1000_5 744398 0 606640 1.23 599094 0.07 661608 0.63

Table 7 (continued)

As expected, the CPLEX algorithm could not find 
the exact solutions within the time constraint. Ta-
ble 7 shows that for all these instances the RVNS al-
gorithm with the time limit of 60 s reached the best 
solutions. The average percentage gap was less than 
1%  and 0.5% , when the time limit was 1s and 60 s, 

respectively, for most of the instances. The U-GRASP 
algorithm with the time limit of 60 s provided stable, 
but lower quality solutions for all these instances.
In an additional experiment, we tried to solve these 
large instances using the CPLEX solver, taking as 
the initial solution the best RVNS solution. With the 
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running time extended to 1h and using all 8  cores, not 
even one solution was improved. However, CPLEX 
proved that the obtained RVNS solution for the in-
stance 50_5  was optimal.
Having in mind the small difference between the lower 
bound and objective function value of RVNS solutions, 
an additional effort was made to prove the optimality 
of some solutions from Table 7. Taking into account 
the costs of using the considered three types of bins 
(1594, 2470, 2483), the total cost function can be ex-
pressed as: = 1594 2470 2483C a b c+ + , where a, b and 
c denote the number of bins for each of the three types. 
Let LB  denotes the lower bound of the objective func-
tion value obtained by the CPLEX and RVNS  denotes 
the objective function value of the best RVNS solu-
tion. For each instance, we generated the set of triples 
( , , )a b c  that satisfied the relation LB C RVNS≤ ≤  
with the additional constraint ensuring that the total 
capacity of bins from ( , , )a b c  was enough for packing 
all items of the considered instance in terms of weight 
and volume, i.e. 25.8 24.5 24.5im a b c≤ + +∑  and 

30 60 70iV a b c≤ + +∑ . If there was exactly one triple 
( , , )a b c  that fulfilled these conditions, the correspond-
ing value =C RVNS would be the objective function 
value of the optimal solution. Using this method, the 
optimality of the solutions for the following instanc-
es was proved: 50_3, 50_4 , 100_1, 100_2 , 120_1 and 
350_1, which resulted in 7  optimal solutions, includ-
ing the instance 50_5, provided by our RVNS.
With an additional extension of the CPLEX running 
time from 1h to 5 h and using all 8  cores, there were no 
changes in LB or obtained CPLEX solutions for all in-
stances, except with 1000  items, where the LB values 
were improved to 591583.60  for 1000_1, 581894.37  
for 1000_2 , 597452.82  for 1000_3 , 594256.58  for 
1000_4  and 597665.20  in the case of the instance 
1000_5 . These lower bounds are very close to the ob-
jective function value of our RVNS solutions.
As the CPLEX couldn't prove the optimality or ob-
tain better solutions in comparison to our RVNS, we 
extended significantly the running time for RVNS to 
360 s for each run, total 3 h for 30  consecutive runs. 
We obtained better solution for the following 4  in-
stances: 100_5  ( 61124 ), 500_4  ( 309378 ), 750_3  (
444225 ) and 750_5  ( 449020 ). An additional exten-
sion of running time per each RVNS run from 360 s 
to 1440 s leads to the improvement of the solution for 
the instance 1000_3  ( 597692 ). Finally, for these 5  in-

stances, we ran the CPLEX again, starting with these 
new best found solutions. However, for 5  h of running 
time and using all 8  cores, these solutions and the 
corresponding lower bounds were not improved. The 
optimality of the obtained solutions was not proved 
for those 5  instances.

3.4.  2DHom-VBPP
There are several published sets of benchmark in-
stances for 2DHom-VBPP. We used the data set 2CBP 
of 400  instances, see Caprara and Toth [8]. These 
instances are divided in classes (the first three class-
es were introduced by Spieksma [33]); each class 
consists of 4  groups of 10  instances with the same 
number of items. For example, in classes denoted by 
1,  2, ,9 , these 4  groups include instances with 25,  
50,  100 , and 200  items, respectively. The exception 
is the last class, denoted by 10 , which has 4  groups 
of instances, with 24,  51,  99  and 201  items, respec-
tively. An instance is solved if its optimal solution is 
found, i.e. if the solution is equal to the correspond-
ing lower bound (6) (see Caprara and Toth [8]). The 
benchmark authors solved 212  instances. In the 
work of Brandao and Pedroso [6] the 330  instances 
were solved2. Out of the 70  unsolved instances, the 
52  instances were solved by Gabay and Zaourar [10]. 
Having in mind the total number of solved instances 
from the set 2CBP, the best results were achieved by 
Heßler et al. [19] where 370  of 400  instances were 
solved; the unsolved 30  instances include 200  items 
and belong to classes: 1, 4, 5, 9, and 10. On the other 
hand, Pessoa et al. [27] solved 35  of 40  instances 
from this set, considering only the first four classes: 1, 
4, 5 and 9. In the work of Aringhieri et al. [2] and Turky 
et al. [36], authors treated all 200  instances from the 
following 5  classes: 1, 6, 7, 9, and 10, solving 133  and 
119  instances, respectively.
With the four different time limits 1s, 10 s, 60 s and 
360 s for a single RVNS run, we tested our adapted 
RVNS algorithm (Section 2) by running it 30  times 
for each 2CBP instance. Let ( , )o i j  denote the num-
ber of solved instances in the group j  of the class 
i , if the time limit for a single RVNS run was set to 
360 s, ( , ) [10] [4]i j ∈ × . Under the four different time 
constraints, the total number 

10 4

=1 =1
( , )

i j
o i j∑ ∑  of in-

2 https://research.fdabrandao.pt/research/vpsolver/results/ 
2cbp.html#2cbp
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stances solved by RVNS was 315,331,345  and 356 , 
respectively. Out of the 70  unsolved instances by 
Brandao and Pedroso [6], the 59  instances were 
solved by RVNS with the time limit of 360 s for each 
RVNS run. They belong to 6  groups ( , ) [10] [4]i j ∈ ×  
marked with "*" in Table 8. Gabay and Zaourar [10] 
solved 52  of these 70  instances, which means that 
among these 59  optimal solutions obtained by our 
RVNS, 7  of them were new.
Table 8 lists the numbers ( , )o i j , accompanied with 
the number of solved instances in [6], ( , ) [10] [4]i j ∈ × . 
The number of items corresponding to class i, group 
j  equals the first (second) component of the pair for 

classes 1 9−  (for the class 10), ( , ) [10] [4]i j ∈ × .
Some instances solved in [6] were not solved by 
RVNS; they are marked by "#". With the running time 
limit extended from 360 s to 1440 s, the number of 
solved instances increased from 356  to 365  (the 6  
new instances in the group (1, 4) , one new instance 
in the group (4, 4)  and two in (6,3)). Namely, of 70  
unsolved instances, our RVNS solved 59  for the time 
limit of 360 s and another one for 1440 s. Finally, there 
are instances, marked by "+ " in Table 8, that were not 
solved in the group (9, 4) , either in [6], or by the RVNS. 
These instances are regarded as very difficult and Wei 
et al. [37]were the first who succeeded in solving 1 out 
of 10  instances in this group.

The main contribution of this research is finding of 
59  and 7  new optimal solutions among the 70  in-
stances from the data set 2CBP , which were not 
solved in [6] and [10], respectively. Considering the 
entire set 2CBP  of 400  instances, our RVNS solved 
356  instances, while in  [6] and [10], the total number 
of solved instances was 330  and 249 , respectively. In 
[6], the imposed time limit was 12 h for each instance, 
although the optimal solutions were obtained in 
shorter running time. The extension of the time limit 
in our RVNS to 12 h resulted in the total of 365  opti-
mal solutions on the considered set of 400  instances. 
These results are displayed in Figure 1.

Table 8
The number of Hom-VBPP instances from 2CBP  solved to optimality by the adapted RVNS method with the imposed 
time limit of 360 s, compared to that of [6]

j : 
n : 

i

1 2 3 4

(25,24) (50,51) (100,99) (200,201)

[6] RVNS [6] RVNS [6] RVNS [6] RVNS

1 10 10 10 10  10 6 # 10 3 #

2 10 10 10 10 10 10 10 10  

3 10 10 10 10 10 10 10 10

4 10 10 0 10 * 0 10 * 0 9 * 

5 10 10 0 10 * 0 10 * 0 10 * 

6 10 10 10 10 10 3 # 10 0 # 

7 10 10 10 10 10 7 # 10 9 # 

8 10 10 10 10  10 10 10 10  

9 10 10 10 10  10 10 0 0 + 

10 10 10 10 10  10 10  10 9  

Figure 1
Comparison of different solution approaches on 2CBP

14 Ð. Stakić et al.

classes (the first three classes were introduced by
Spieksma [33]); each class consists of 4 groups of
10 instances with the same number of items. For
example, in classes denoted by 1, 2, . . . ,9, these
4 groups include instances with 25, 50, 100, and
200 items, respectively. The exception is the last
class, denoted by 10, which has 4 groups of in-
stances, with 24, 51, 99 and 201 items, respec-
tively. An instance is solved if its optimal solu-
tion is found, i.e. if the solution is equal to the
corresponding lower bound 6 (see Caprara and
Toth [8]). The benchmark authors solved 212 in-
stances. In the work of Brandao and Pedroso [6]
the 330 instances were solved 2. Out of the 70 un-
solved instances, the 52 instances were solved by
Gabay and Zaourar [10]. Having in mind the to-
tal number of solved instances from the set 2CBP,
the best results were achieved by Heßler et al. [19]
where 370 of 400 instances were solved; the un-
solved 30 instances include 200 items and belong
to classes: 1, 4, 5, 9, and 10. On the other hand,
Pessoa et al. [27] solved 35 of 40 instances from
this set, considering only the first four classes: 1,
4, 5 and 9. In the work of Aringhieri et al. [2] and
Turky et al. [36], authors treated all 200 instances
from the following 5 classes: 1, 6, 7, 9, and 10,
solving 133 and 119 instances, respectively.

With the four different time limits 1s, 10s,
60s and 360s for a single RVNS run, we tested our
adapted RVNS algorithm (Section 2) by running
it 30 times for each 2CBP instance. Let o(i, j) de-
note the number of solved instances in the group
j of the class i, if the time limit for a single RVNS
run was set to 360s, (i, j) ∈ [10]× [4]. Under the
four different time constraints, the total number
∑10

i=1 ∑4
j=1 o(i, j) of instances solved by RVNS

was 315,331,345 and 356, respectively. Out of
the 70 unsolved instances by Brandao and Pe-
droso [6], the 59 instances were solved by RVNS
with the time limit of 360s for each RVNS run.
They belong to 6 groups (i, j) ∈ [10]× [4] marked
with ”*” in Table 8. Gabay and Zaourar [10]
authors solved 52 of these 70 instances, which
means that among these 59 optimal solutions ob-
tained by our RVNS, 7 of them were new.

2https://research.fdabrandao.pt/
research/vpsolver/results/2cbp.html#2cbp

Table 8 lists the numbers o(i, j), accompa-
nied with the number of solved instances in [6],
(i, j) ∈ [10]× [4]. The number of items corre-
sponding to class i, group j equals the first (sec-
ond) component of the pair for classes 1− 9 (for
the class 10), (i, j) ∈ [10]× [4].

Some instances solved in [6] were not solved
by RVNS; they are marked by ”#”. With the run-
ning time limit extended from 360s to 1440s, the
number of solved instances increased from 356
to 365 (the 6 new instances in the group (1,4),
one new instance in the group (4,4) and two in
(6,3)). Namely, of 70 unsolved instances, our
RVNS solved 59 for the time limit of 360s and an-
other one for 1440s. Finally, there are instances,
marked by "+" in Table 8, that were not solved
in the group (9,4), either in [6], or by the RVNS.
These instances are regarded as very difficult and
Wei et al. [37] were the first who succeeded in
solving 1 out of 10 instances in this group.

The main contribution of this research is
finding of 59 and 7 new optimal solutions among
the 70 instances from the data set 2CBP, which
were not solved in [6] and [10], respectively.
Considering the entire set 2CBP of 400 instances,
our RVNS solved 356 instances, while in [6] and

330 and 249, respectively. In [6], the imposed
time limit was 12h for each instance, although the
optimal solutions were obtained in shorter run-
ning time. The extension of the time limit in our
RVNS to 12h resulted in the total of 365 optimal
solutions on the considered set of 400 instances.
These results are displayed in Figure 1.
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As shown in Table 8, our RVNS solved
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As shown in Table 8, our RVNS solved the total num-
ber of 157  instances belonging to classes 1, 6, 7, 9, and 
10 (selected and considered as more challenging in [2] 
and [36]), outperforming both the number of 113  from 
[2] and 119 solutions obtained in [36], see Figure  2. 
Using the time limit of 3600 s as Heßler et al. [19], the 
authors solved 370  of 400  instances, which is 14  and 
5  more instances compared to our RVNS for time lim-
it of 360 s and 1440 s, respectively. However, when it 
comes to the 50  larger instances from the classes: 1, 4, 
5, 9 and 10, our RVNS was more successful in obtaining 
31 solutions, compared to 20  solutions from [19], as 
displayed in Figure 3. On the set of 40  instances with 
200  items belonging to classes: 1, 4, 5, and 9, our RVNS 
solved 22  instances for 360 s and 29  for the time limit 
of 1440 s, which is less then 35  solutions obtained in 
[27]. However, having in mind that our RVNS is pri-

marily designed for solving 2D-Het VBPP, it is overall 
comparable with the most successful solution meth-
ods of 2D-Hom VBPP on 2CBP .
Another set of instances with larger demands is in-
cluded in this comparative analysis. Namely, Heßler 
et al. [19] proposed a set of 400  instances3 that is ob-
tained from the 2CBP  in the following way. For each 
item an uniformly random number is generated from 
the set [1,...,100]  as its frequency, resulting in the in-
stance that has significantly larger number of items. 
The solution method developed in [19], which was 
very successful on 2CBP , showed a poor performance 
on this new data set, solving only 119  out of 400  in-
stances. Therefore, the authors in [19] developed a 
special solution method for this type of the problem 
to solve 324  of 400  instances obtained in such a way. 
From the available lower and upper bounds for these 
400  instances, it can be seen that 339  of them have 
known optimal solutions, obtained by several solu-
tion approaches. Another contribution of our RVNS 
algorithm is improvement of the obtained results on 
some of the remaining 61  instances without optimal 
solution from this new data set. These results are 
presented in Table 9. Instance's name is contained in 
the first column, the corresponding number of items 
in the second, while the next two columns show the 
known lower and upper bounds of the solution. The 
objective function value of the new best solution ob-
tained by our RVNS within the time limit of 1s, 10 s, 
60 s, 360 s and 1440 s are represented in the next five 
columns, respectively. RVNS solutions that improved 
the corresponding upper bound are bolded.
As it can be seen in Table 9 our RVNS improved the 
solutions of the 14  instances obtaining smaller ob-
jective function value than the corresponding upper 
bound. Among these instances, the 10  new optimal 
solutions (marked by "*") are reached, 4 for the time 
limit of 10 s, 3  more for 60 s and another 3  for 1440 s. 
For these instances, tests are not repeated with in-
creased time limit after the optimal solution is ob-
tained, i.e. when our RVNS solution coincident with 
the corresponding lower bound. Therefore, the ad-
aptation of our RVNS algorithm for 2D-HomVBPP 
made another contribution.4
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Table 8. The number of Hom-VBPP instances from 2CBP solved to optimality by the adapted RVNS
method with the imposed time limit of 360s, compared to that of [6]

j: 1 2 3 4
n: (25,24) (50,51) (100,99) (200,201)

i [6] RVNS [6] RVNS [6] RVNS [6] RVNS

1 10 10 10 10 10 6 # 10 3 #
2 10 10 10 10 10 10 10 10
3 10 10 10 10 10 10 10 10
4 10 10 0 10 * 0 10 * 0 9 *
5 10 10 0 10 * 0 10 * 0 10 *
6 10 10 10 10 10 3 # 10 0 #
7 10 10 10 10 10 7 # 10 9 #
8 10 10 10 10 10 10 10 10
9 10 10 10 10 10 10 0 0 +

10 10 10 10 10 10 10 10 9

the total number of 157 instances belonging to
classes 1, 6, 7, 9, and 10 (selected and considered
as more challenging in [2] and [36]), outperform-
ing both the number of 133 from [2] and 119 so-
lutions obtained in [36], see Figure 2. Using the
time limit of 3600s as Heßler et al [19], the au-
thors solved 370 of 400 instances, which is 14 and
5 more instances compared to our RVNS for time
limit of 360s and 1440s, respectively. However,
when it comes to the 50 larger instances from the
classes: 1, 4, 5, 9 and 10, our RVNS was more
successful in obtaining 31 solutions, compared to
20 solutions from [19], as displayed in Figure 3.
On the set of 40 instances with 200 items belong-
ing to classes: 1, 4, 5, and 9, our RVNS solved
22 instances for 360s and 29 for the time limit of
1440s, which is less then 35 solutions obtained
in [27]. However, having in mind that our RVNS
is primarily designed for solving 2D-Het VBPP,
it is overall comparable with the most successful
solution methods of 2D-Hom VBPP on 2CBP.

Another set of instances with larger demands
is included in this comparative analysis. Namely,
Heßler et al. [19] proposed a set of 400 instances 3

that is obtained from the 2CBP in the following
way. For each item an uniformly random num-
ber is generated from the set [1, ...,100] as its
frequency, resulting in the instance that has sig-

3https://logistik.bwl.uni-mainz.de/
forschung/benchmarks/
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4 for new solutions on these 14 instances see https://doi.
org/10.5281/zenodo.5321272
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Table 9
Comparison of results on large instances 

Instance n(items) LB UB RVNS 1s RVNS 10s RVNS 60s RVNS 360s RVNS 1440s

CL_04_100_06 5089 627 628 691 628  627 * / /

CL_04_100_08 5089 642 645 687 643 642 * / /

CL_04_200_01 10229 1293 1297 1453 1373  1308  1294 1293 *

CL_05_100_06 5089 314 315 322 314 *  / / /

CL_05_100_08 5089 321 323 322 321 *  / / /

CL_05_100_10 5089 327 328 333 327 *  / / /

CL_05_200_02 10141 624 629 682 633  628  627 627

CL_05_200_03 10157 630 635 708 646  634  633 633

CL_05_200_04 10141 630 631 670 635  631  631 630 *

CL_05_200_05 10141 632 640 704 646  634  633 632 *

CL_05_200_06 10141 626 630 686 630  627  627 627

CL_05_200_07 10157 630 636 715 644  636  635  634

CL_05_200_08 10141 635 640 681 635  *  /   /   /

CL_05_200_10 10141 632 635 690 633  632  *  /  /

4. Conclusion
The metaheuristic RVNS (Variable Neighborhood 
Search) based algorithm was used to solve the 2D 
vector bin packing problem, in its heterogeneous 
2D-HetVBPP and homogeneous 2D-HomVBPP vari-
ant, because the exact solution using standard math-
ematical model and CPLEX solver is not possible for 
larger instances, and the approximate solutions ob-
tained in limited time are of a poor quality. The set 
of 6  small 2D-HetVBPP instances (with up to 20  
items) and the 50  large 2D-HetVBPP instances (with 
up to 1000  items) was prepared and used to test the 
efficiency of the algorithm. The specialized version of 
the algorithm solved some new instances (compared 
to results in [2], [6], [10], [19], [27], [36]) of the bench-

mark set 2CBP [8] and the set of instances with larger 
demands [19]. More precisely,  
 _ on 400  instances of the data set 2CBP [8], our 

solution approach solved 356  for 360 s and 365  
for 1440 s of running time, 

 _ 400  instances of the data set from [19], with 
61  unsolved instances with the known upper 
and lower bounds, we provided 10  new optimal 
solutions and 4  new upper bounds. 
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