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Quantization and compression of neural network parameters using the uniform scalar quantization is carried 
out in this paper. The attractiveness of the uniform scalar quantizer is reflected in a low complexity and rela-
tively good performance, making it the most popular quantization model. We present a design approach for the 
memoryless Laplacian source with zero-mean and unit variance, which is based on iterative rule and uses the 
minimal mean-squared error distortion as a performance criterion. In addition, we derive closed-form expres-
sions for SQNR (Signal to Quantization Noise Ratio) in a wide dynamic range of variance of input data. To show 
effectiveness on real data, the proposed quantizer is used to compress the weights of neural networks using 
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bit rates from 9 to 16 bps (bits/sample) instead of standardly used 32 bps full precision bit rate. The impact of 
weights compression on the NN (neural network) performance is analyzed, indicating good matching with the 
theoretical results and showing negligible decreasing of the prediction accuracy of the NN even in the case of 
high variance-mismatch between the variance of NN weights and the variance used for the design of quantizer, 
if the value of the bit-rate is properly chosen according to the rule proposed in the paper. The proposed method 
could be possibly applied in some of the edge-computing frameworks, as simple uniform quantization models 
contribute to faster inference and data transmission.
KEYWORDS: Uniform scalar quantization, variance-mismatch quantization, Laplacian distribution, quan-
tized neural network, multilayer perceptron, MNIST database.

1. Introduction
In recent times, a significant interest has been direct-
ed to the neural networks (NNs), mainly owing to the 
availability of powerful hardware [33]. The attractive-
ness of NNs lies in the increased potentiality to re-
solve challenges occurring in different research areas 
[33]. Some specific applications of NN can be found in 
papers [25−27, 29−31], where some promising results 
have been achieved. Namely, the implementations 
in image processing and virtual reality environment 
have been performed in [25] and [26], respectively. 
In addition, application of NN in image classification 
has been investigated in [27], where the ship classifi-
cation problem is considered. The paper [29] applies 
NN to create the controller within automatic control 
system, while paper [31] considers a pointer NN for 
purpose of vehicle routing. In [30], the use of NN has 
been done in the context of solving four-class motor 
imagery classification problem. 
The state-of-the-art neural networks (NNs) designed 
for tasks such as speech processing [5], image classi-
fication [15] and object recognition [28], just to name 
a few, represent very complex NN architectures, with 
a large number of parameters, requiring expensive 
computational and storage resources. On the oth-
er hand, high complexity can be a limiting factor for 
application in portable and edge computing devices 
with limited memory and processing power, or in la-
tency-critical services. Hence, the compression of 
NN is required. To this end, the quantization is com-
monly employed, where the NN parameters (weights, 
biases, etc.), typically stored in 32-bits floating point 
format (full precision), are mapped to the fixed-point 
representations using lower bit lengths.
The influence of parameters quantization on the 
NN model performance is an active area of research, 

where the NN parameters have been quantized with 
16-bits [20, 32], 8-bits [1, 9], 4-bits [3] or 2-bits [4]. 
Moreover, ternary [34] and binary (1-bit) quantiza-
tion [10, 22] have also been taken into account. It has 
been shown that representations using higher num-
ber of bits (e.g. 8 to 16 bits) provide comparable per-
formance with respect to full precision case, while 
performance deteriorates with decrease of code-word 
length (e.g. 2 to 4 bits); however, still offering compet-
itive performance with very high compression ratios.
In the above-mentioned papers, the uniform scalar 
quantization (USQ) has dominantly been used. USQ 
was theoretically considered in [8, 13, 18, 19, 23, 24]. 
The main advantage of USQ is the design simplicity 
accompanied with relatively good performance when 
compared to more complex non-uniform quantiza-
tion. Nevertheless, a detailed design process of the 
quantizer, taking into account the assumed statis-
tical distribution of NN parameters, is missing in 
above mentioned papers [1, 4, 9, 10, 20, 32, 34] about 
quantization of NN parameters. In this paper we de-
sign USQ for compression of NN weights assuming 
Laplacian distribution of weights and bit rates from 
9 to 16 bps. Namely, the Laplacian probability density 
function (PDF) has already been proved as a relevant 
model for various data including NN weights [2, 11], 
speech [7, 13] or images [13]. It is important to em-
phasize that we decided to consider a high-resolution 
quantization where one can expect a high level of re-
constructed data quality. However, this not holds true 
in case when variance of the input data and the vari-
ance for which quantizer is designed are mismatched 
(assumes the utilization of non-adaptive quantizers), 
since this mismatch effect can cause a serious degra-
dation in data quality. This fact motivated the authors 
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to focus the research at discovering how the degree of 
mismatch affects the performance of NN. In addition, 
using the proposed range of bit rates, compression ra-
tios up to 3.56:1 can be achieved.
The analysis conducted in this paper is organized in 
two directions: development of theoretical model of 
USQ using asymptotic formulas (since the number 
of quantization levels N is large), making the design 
process simple; and implementation of the designed 
USQ for compression of NN weights. The main con-
tributions of the paper are:
 _ A simple iterative design method of USQ for the 

memoryless Laplacian source with zero-mean and 
unit variance is proposed. 

 _ The influence of the granular and overload dis-
tortions on SQNR for different values of variance 
are estimated, based on the derived closed-form 
expressions for performance evaluation in a wide 
dynamic range of variance of input data.  

 _ The designed USQ is applied for quantization 
of weights of a neural network (Multi-Layer 
Perceptron) used for classification of images 
from MNIST database [21], showing very good 
matching between theoretical and experimental 
results. It should be highlighted that the variance-
mismatched scenario (that often occurs in 
practice), meaning the mismatch between the 
variance of NN weights and the variance used 
for the design of the quantizer, is analyzed. 
This variance mismatched scenario has not 
been considered in any of previous papers from 
literature, related to the quantization of neural 
networks. 

 _ A connection between SQNR of weights 
quantization and prediction accuracy of NN is 
shown and threshold for SQNR that assures a 
negligible decrease of the prediction accuracy is 
established for the specific NN. This is another 
new result that has not been presented in 
literature yet.

 _ It is shown that the significant decrease of the bit-
rate R used for representation of weights, obtained 
by weights quantization, will produce a negligible 
decrease of NN prediction accuracy even in the 
case of high degree of the variance mismatch, if the 
value of the bit-rate R is chosen in an appropriate 
way, according to the rule provided in the paper.   

The rest of the paper is organized as follows. Section 2 
provides a detailed description of USQ and proposes a 
simple design method. In Section 3, the performance of 
USQ in a variance mismatched scenario is analyzed. In 
Section 4, the application of the designed USQ in neu-
ral networks is presented and the obtained results are 
discussed. Finally, Section 5 concludes the paper. 

2. Uniform Scalar Quantization
In this section we will design USQ for the symmetric 
zero-mean Laplacian PDF defined with [13]:

 
 

 

simple; and implementation of the designed USQ 
for compression of NN weights. The main 
contributions of the paper are: 

- A simple iterative design method of USQ for the 
memoryless Laplacian source with zero-mean and 
unit variance is proposed.  

- The influence of the granular and overload 
distortions on SQNR for different values of 
variance are estimated, based on the derived 
closed-form expressions for performance 
evaluation in a wide dynamic range of variance of 
input data.   

- The designed USQ is applied for quantization of 
weights of a neural network (Multi-Layer 
Perceptron) used for classification of images from 
MNIST database [21], showing very good 
matching between theoretical and experimental 
results. It should be highlighted that the variance-
mismatched scenario (that often occurs in 
practice), meaning the mismatch between the 
variance of NN weights and the variance used for 
the design of the quantizer, is analyzed. This 
variance mismatched scenario has not been 
considered in any of previous papers from 
literature, related to the quantization of neural 
networks.  

- A connection between SQNR of weights 
quantization and prediction accuracy of NN is 
shown and threshold for SQNR that assures a 
negligible decrease of the prediction accuracy is 
established for the specific NN. This is another 
new result that hasn’t been presented in literature 
yet. 

- It is shown that the significant decrease of the bit-
rate R used for representation of weights, obtained 
by weights quantization, will produce a negligible 
decrease of NN prediction accuracy even in the 
case of high degree of the variance mismatch, if 
the value of the bit-rate R is chosen in an 
appropriate way, according to the rule provided in 
the paper.    

The rest of the paper is organized as follows. 
Section 2 provides a detailed description of USQ 
and proposes a simple design method. In Section 
3, the performance of USQ in a variance 
mismatched scenario is analyzed. In Section 4, the 
application of the designed USQ in neural 
networks is presented and the obtained results are 
discussed. Finally, Section 5 concludes the paper.  

 

2. Uniform Scalar Quantization 
In this section we will design USQ for the symmetric 

zero-mean Laplacian PDF defined with [13]: 














−=

qq
q

x
xq

σσ
σ

2
exp

2
1),( ,    (1) 

where 2
qσ  denotes signal variance. Without 

losing of generality, the design of USQ will be 
done for the unit variance 2

qσ  = 1, that is a 
standard approach in literature [13]. Due to the 
symmetry of the considered PDF, designed N-
level USQ will have thresholds ix  and 
representation levels iy  symmetrical around 
zero: ,∆⋅= ixi  ii xx −=− , ( =i 2/,...,0 N ), 

,)2/1( ∆⋅−= iyi  ii yy −=− , ( =i 2/,...,1 N ) 
where Nx /2 max=∆  denotes the quantization 
step-size. Let ],[ maxmax xx−  denote the support 
region of USQ, where the upper threshold of 
the support region maxx  is also known as the 
maximal amplitude of the quantizer. To 
completely define USQ it is sufficient to know 
only one of these two parameters ( maxx  or ∆ ), 
since all required quantization parameters can 
be derived from them. The design goal of USQ 
is therefore constrained to determine the 
optimal value of the parameter maxx  (or ∆ ), for 
the assumed input data distribution and 
established performance criteria. 

Performance of a quantizer can be expressed 
by distortion D [8, 13] that represents the 
mean-square error occurred during 
quantization. Calculating distortion of USQ for 
data modeled with the Laplacian PDF in this 
section, we assume the variance-matched 
situation [8, 13, 16] which means that the 
variance 2

pσ  of the data being quantized is 

equal to the variance 12 =qσ  used for the 
design of USQ. Since USQ divides the real line 
(i.e. the range of the input data values) into two 
regions: granular region defined in 

],[ maxmax xx− and overload region defined in 
),(),( maxmax +∞∪−−∞ xx , the introduced 

distortion D is composed of the granular 
distortion (denoted as gD ) and overload 
distortion (denoted as ovD ). These components 
of distortion can be evaluated according to [8, 
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where 2
qσ  denotes signal variance. Without 

losing of generality, the design of USQ will be 
done for the unit variance 2

qσ  = 1, that is a 
standard approach in literature [13]. Due to the 
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maximal amplitude of the quantizer. To 
completely define USQ it is sufficient to know 
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since all required quantization parameters can 
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where )1,()( =≡ qxqxq σ . On the other hand, since N 
is high, it is appropriate to apply the asymptotic 
quantization theory [13], where the following holds 
for the components of the distortion:  
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The quantizer designed in this way is referred to as 
the asymptotic USQ. 

Together with distortion, another quantity to 
express performance of the quantizer is SQNR 
defined as [8, 13]: 
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Equation (6) shows that distortion is a function 
of maxx . Therefore, the aim is to discover the optimal 
value of maxx  for which distortion is minimal. 

Lemma 1. The optimal value of maxx of the 
asymptotic USQ can be obtained using the following 
iterative rule: 

( )
( )

2
1

max
max

1 3log
2 2

i
i

Nx
x

+  
=   

 
.  (8) 

Proof. By determining the first derivation of 
distortion given by Eq. (6) with respect to maxx  and 
equaling it with zero we obtain: 
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which shows that maxx  can be specified iteratively, 
thus concluding the proof. As a good starting point 
of this iterative process we can choose 

Nx ln2)0(
max = , that was proposed in [12] as an 

approximate solution for maxx  of USQ. In this way, 
applying the iterative process, we calculate maxx  in a 

more accurate manner than in [12].  

Applying the previous iterative algorithm (8), 
we calculate optimal values of maxx  for bit-
rates 9 ≤ R [bps] ≤ 16, where NR 2log= ; the 
generated codeword contains one bit for sign 
and R-1 bits for magnitude of the source 
sample. For those optimal maxx  we calculate 
SQNR using (7). Calculated values of maxx  and 
SQNR are presented in Table 1. Dependences 
of optimal values of maxx  and SQNR on the bit-
rate R are shown in Figure 1.  
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It can be seen that as R increases, both curves 
linearly increase with approximately constant 
slope. In particular, the slope of nearly 5.5 
dB/bit has been observed in case of SQNR. 

To show validity of the iterative process 
defined with (8), we can also perform 
numerical optimization of maxx  for some 
specific value of R, by calculating SQNR for 
different values of maxx and finding the optimal 
value of maxx that gives the maximal SQNR. 
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It can be seen that as R increases, both curves 
linearly increase with approximately constant 
slope. In particular, the slope of nearly 5.5 
dB/bit has been observed in case of SQNR. 

To show validity of the iterative process 
defined with (8), we can also perform 
numerical optimization of maxx  for some 
specific value of R, by calculating SQNR for 
different values of maxx and finding the optimal 
value of maxx that gives the maximal SQNR. 
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It can be seen that as R increases, both curves 
linearly increase with approximately constant 
slope. In particular, the slope of nearly 5.5 
dB/bit has been observed in case of SQNR. 

To show validity of the iterative process 
defined with (8), we can also perform 
numerical optimization of maxx  for some 
specific value of R, by calculating SQNR for 
different values of maxx and finding the optimal 
value of maxx that gives the maximal SQNR. 
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more accurate manner than in [12].  
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we calculate optimal values of maxx  for bit-
rates 9 ≤ R [bps] ≤ 16, where NR 2log= ; the 
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and R-1 bits for magnitude of the source 
sample. For those optimal maxx  we calculate 
SQNR using (7). Calculated values of maxx  and 
SQNR are presented in Table 1. Dependences 
of optimal values of maxx  and SQNR on the bit-
rate R are shown in Figure 1.  
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It can be seen that as R increases, both curves 
linearly increase with approximately constant 
slope. In particular, the slope of nearly 5.5 
dB/bit has been observed in case of SQNR. 

To show validity of the iterative process 
defined with (8), we can also perform 
numerical optimization of maxx  for some 
specific value of R, by calculating SQNR for 
different values of maxx and finding the optimal 
value of maxx that gives the maximal SQNR. 

(6)

The quantizer designed in this way is referred to as 
the asymptotic USQ.
Together with distortion, another quantity to express 
performance of the quantizer is SQNR defined as [8, 13]:
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It can be seen that as R increases, both curves 
linearly increase with approximately constant 
slope. In particular, the slope of nearly 5.5 
dB/bit has been observed in case of SQNR. 

To show validity of the iterative process 
defined with (8), we can also perform 
numerical optimization of maxx  for some 
specific value of R, by calculating SQNR for 
different values of maxx and finding the optimal 
value of maxx that gives the maximal SQNR. 

(7)

Equation (6) shows that distortion is a function of 
xmax. Therefore, the aim is to discover the optimal val-
ue of xmax  for which distortion is minimal.

Lemma 1. The optimal value of xmax of the asymptotic 
USQ can be obtained using the following iterative rule:
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rates 9 ≤ R [bps] ≤ 16, where NR 2log= ; the 
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sample. For those optimal maxx  we calculate 
SQNR using (7). Calculated values of maxx  and 
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rate R are shown in Figure 1.  
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It can be seen that as R increases, both curves 
linearly increase with approximately constant 
slope. In particular, the slope of nearly 5.5 
dB/bit has been observed in case of SQNR. 

To show validity of the iterative process 
defined with (8), we can also perform 
numerical optimization of maxx  for some 
specific value of R, by calculating SQNR for 
different values of maxx and finding the optimal 
value of maxx that gives the maximal SQNR. 

(8)

Proof. By determining the first derivation of distor-
tion given by Eq. (6) with respect to xmax and equaling 
it with zero we obtain:

  

where )1,()( =≡ qxqxq σ . On the other hand, since N 
is high, it is appropriate to apply the asymptotic 
quantization theory [13], where the following holds 
for the components of the distortion:  
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Equation (6) shows that distortion is a function 
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Lemma 1. The optimal value of maxx of the 
asymptotic USQ can be obtained using the following 
iterative rule: 

( )
( )

2
1

max
max

1 3log
2 2

i
i

Nx
x

+  
=   

 
.  (8) 

Proof. By determining the first derivation of 
distortion given by Eq. (6) with respect to maxx  and 
equaling it with zero we obtain: 

( )max
max2

max

2
2 exp 2 0

3
xD x

x N
∂

= − − =
∂

.  (9) 

Therefore, maxx can be calculated as: 

2

max
max

1 3log
2 2

Nx
x

 
=   

 
,  (10) 
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thus concluding the proof. As a good starting point 
of this iterative process we can choose 
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max = , that was proposed in [12] as an 

approximate solution for maxx  of USQ. In this way, 
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more accurate manner than in [12].  
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sample. For those optimal maxx  we calculate 
SQNR using (7). Calculated values of maxx  and 
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It can be seen that as R increases, both curves 
linearly increase with approximately constant 
slope. In particular, the slope of nearly 5.5 
dB/bit has been observed in case of SQNR. 

To show validity of the iterative process 
defined with (8), we can also perform 
numerical optimization of maxx  for some 
specific value of R, by calculating SQNR for 
different values of maxx and finding the optimal 
value of maxx that gives the maximal SQNR. 

(9)

Therefore, xmax can be calculated as:

  

where )1,()( =≡ qxqxq σ . On the other hand, since N 
is high, it is appropriate to apply the asymptotic 
quantization theory [13], where the following holds 
for the components of the distortion:  
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Equation (6) shows that distortion is a function 
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thus concluding the proof. As a good starting point 
of this iterative process we can choose 
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It can be seen that as R increases, both curves 
linearly increase with approximately constant 
slope. In particular, the slope of nearly 5.5 
dB/bit has been observed in case of SQNR. 

To show validity of the iterative process 
defined with (8), we can also perform 
numerical optimization of maxx  for some 
specific value of R, by calculating SQNR for 
different values of maxx and finding the optimal 
value of maxx that gives the maximal SQNR. 

(10)

which shows that xmax can be specified iteratively, 
thus concluding the proof. As a good starting point of 
this iterative process we can choose 
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is high, it is appropriate to apply the asymptotic 
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Equation (6) shows that distortion is a function 
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It can be seen that as R increases, both curves 
linearly increase with approximately constant 
slope. In particular, the slope of nearly 5.5 
dB/bit has been observed in case of SQNR. 

To show validity of the iterative process 
defined with (8), we can also perform 
numerical optimization of maxx  for some 
specific value of R, by calculating SQNR for 
different values of maxx and finding the optimal 
value of maxx that gives the maximal SQNR. 
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for xmax of USQ. In this way, applying the iterative 
process, we calculate xmax  in a more accurate manner 
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Equation (6) shows that distortion is a function 
of maxx . Therefore, the aim is to discover the optimal 
value of maxx  for which distortion is minimal. 

Lemma 1. The optimal value of maxx of the 
asymptotic USQ can be obtained using the following 
iterative rule: 

( )
( )

2
1

max
max

1 3log
2 2

i
i

Nx
x

+  
=   

 
.  (8) 

Proof. By determining the first derivation of 
distortion given by Eq. (6) with respect to maxx  and 
equaling it with zero we obtain: 

( )max
max2

max

2
2 exp 2 0

3
xD x

x N
∂

= − − =
∂

.  (9) 

Therefore, maxx can be calculated as: 

2

max
max

1 3log
2 2

Nx
x

 
=   

 
,  (10) 

which shows that maxx  can be specified iteratively, 
thus concluding the proof. As a good starting point 
of this iterative process we can choose 

Nx ln2)0(
max = , that was proposed in [12] as an 

approximate solution for maxx  of USQ. In this way, 
applying the iterative process, we calculate maxx  in a 

more accurate manner than in [12].  

Applying the previous iterative algorithm (8), 
we calculate optimal values of maxx  for bit-
rates 9 ≤ R [bps] ≤ 16, where NR 2log= ; the 
generated codeword contains one bit for sign 
and R-1 bits for magnitude of the source 
sample. For those optimal maxx  we calculate 
SQNR using (7). Calculated values of maxx  and 
SQNR are presented in Table 1. Dependences 
of optimal values of maxx  and SQNR on the bit-
rate R are shown in Figure 1.  
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It can be seen that as R increases, both curves 
linearly increase with approximately constant 
slope. In particular, the slope of nearly 5.5 
dB/bit has been observed in case of SQNR. 

To show validity of the iterative process 
defined with (8), we can also perform 
numerical optimization of maxx  for some 
specific value of R, by calculating SQNR for 
different values of maxx and finding the optimal 
value of maxx that gives the maximal SQNR. 
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optimization of xmax is shown in Figure 2 for R = 9 bps. 
Obtained pair of optimal values (xmax, SQNR) perfectly 
matches with the corresponding values from Table 1 
obtained by the iterative process (8), proving its validity. 
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It can be seen that as R increases, both curves 
linearly increase with approximately constant 
slope. In particular, the slope of nearly 5.5 
dB/bit has been observed in case of SQNR. 

To show validity of the iterative process 
defined with (8), we can also perform 
numerical optimization of maxx  for some 
specific value of R, by calculating SQNR for 
different values of maxx and finding the optimal 
value of maxx that gives the maximal SQNR. Figure 2

SQNR dependence on xmax for the proposed USQ with N = 512 
levels (R = 9 bps)
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If we want to design USQ for some referent variance 

12 ≠qσ , the maximal amplitude should be calculated 
as  

maxmax xx q
q ⋅= σσ ,                                                  (11) 

where maxx  represents the maximal amplitude from 
Table 1 obtained for the unit variance 12 =qσ .  

 

3. Uniform Scalar Quantizer in a 
Wide Dynamic Range 

Let us consider a real situation that USQ designed 
for the Laplacian PDF )1,( =qxq σ  is applied for 
quantization of data with Laplacian PDF ),( pxq σ , 
i.e. we have variance mismatch: applied-to variance 

2
pσ  differs from designed-for variance 12 =qσ . 

Parameters of the quantizer ( maxx , ix , iy ) are the 
same as in Section 2, since they are determined for 

12 =qσ during the design process of USQ. However, 
the variance mismatch will cause deterioration of 
performance (increasing of distortion and 
decreasing of SQNR) [16, 17]. It will be examined 
below.  
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If we define the degree of mismatch 
=ρ qp σσ /  as in [16], the total distortion 

becomes: 
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Figure 3 analyzes SQNR of the optimal 
asymptotic USQ as a function of the degree of 
mismatch ρ in the range (-30 dB, 30 dB) for 
different bit rates (ranging from 9 to 16 bps).  
 

Figure 3 

SQNR versus ρ in wide dynamic range of input 
data variances, for the proposed USQ with 
different bit rates (the optimal values of maxx  
from Table 1are used). 
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This numerical optimization of maxx is shown in 
Figure 2 for R = 9 bps. Obtained pair of optimal 
values ( maxx , SQNR) perfectly matches with the 
corresponding values from Table 1 obtained by the 
iterative process (8), proving its validity.  
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SQNR dependence on maxx for the proposed USQ with 
N = 512 levels (R = 9 bps). 
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asymptotic USQ as a function of the degree of 
mismatch ρ in the range (-30 dB, 30 dB) for 
different bit rates (ranging from 9 to 16 bps).  
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This numerical optimization of maxx is shown in 
Figure 2 for R = 9 bps. Obtained pair of optimal 
values ( maxx , SQNR) perfectly matches with the 
corresponding values from Table 1 obtained by the 
iterative process (8), proving its validity.  
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If we want to design USQ for some referent variance 

12 ≠qσ , the maximal amplitude should be calculated 
as  

maxmax xx q
q ⋅= σσ ,                                                  (11) 
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Table 1 obtained for the unit variance 12 =qσ .  
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for the Laplacian PDF )1,( =qxq σ  is applied for 
quantization of data with Laplacian PDF ),( pxq σ , 
i.e. we have variance mismatch: applied-to variance 

2
pσ  differs from designed-for variance 12 =qσ . 
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the design process of USQ. However, the variance 
mismatch will cause deterioration of performance 
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In the case of the variance mismatch, both the granu-
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This numerical optimization of maxx is shown in 
Figure 2 for R = 9 bps. Obtained pair of optimal 
values ( maxx , SQNR) perfectly matches with the 
corresponding values from Table 1 obtained by the 
iterative process (8), proving its validity.  
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If we want to design USQ for some referent variance 

12 ≠qσ , the maximal amplitude should be calculated 
as  
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Table 1 obtained for the unit variance 12 =qσ .  

 

3. Uniform Scalar Quantizer in a 
Wide Dynamic Range 

Let us consider a real situation that USQ designed 
for the Laplacian PDF )1,( =qxq σ  is applied for 
quantization of data with Laplacian PDF ),( pxq σ , 
i.e. we have variance mismatch: applied-to variance 

2
pσ  differs from designed-for variance 12 =qσ . 

Parameters of the quantizer ( maxx , ix , iy ) are the 
same as in Section 2, since they are determined for 

12 =qσ during the design process of USQ. However, 
the variance mismatch will cause deterioration of 
performance (increasing of distortion and 
decreasing of SQNR) [16, 17]. It will be examined 
below.  

In the case of the variance mismatch, both the 
granular gD  and the overload ovD  distortions will 

depend on 2
pσ : 
























 −
−−=

= ∫

p

x

ppg

x
N

x

dxxq
N

x
D

σ

σσ

max
2

2
max

max

0
2

2
max

2
exp1

3

),(2
3

)(

,  (12) 











−=

−= ∫
+∞

p
p

x
ppov

x

dxxqxxD

σ
σ

σσ

max2

max

2
max

2
exp

),()(2)(

.   (13) 

If we define the degree of mismatch 
=ρ qp σσ /  as in [16], the total distortion 

becomes: 

2 2
2 max max max

2 2 2 2

( ) ( ) ( )

2exp 1 .
3 3

p g p ov p

p

D D D

x x x
N N

σ σ σ

σ
ρ ρ ρ

= +

   
= + − −        

(14) 

Based on (15), we can express SQNR as: 
2

10

2 2
max max max

10 2 2 2 2

SQNR( ) 10log
( )

2
10log exp 1 .

3 3

p

pD

x x x
N N

σ
ρ

σ

ρρ ρ

 
=   

 
   
 = − + − −       

     

(15)  

Figure 3 analyzes SQNR of the optimal 
asymptotic USQ as a function of the degree of 
mismatch ρ in the range (-30 dB, 30 dB) for 
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This numerical optimization of maxx is shown in 
Figure 2 for R = 9 bps. Obtained pair of optimal 
values ( maxx , SQNR) perfectly matches with the 
corresponding values from Table 1 obtained by the 
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If we want to design USQ for some referent variance 

12 ≠qσ , the maximal amplitude should be calculated 
as  
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If we define the degree of mismatch =ρ qp σσ /  as in 
[16], the total distortion becomes:

 
 

 

This numerical optimization of maxx is shown in 
Figure 2 for R = 9 bps. Obtained pair of optimal 
values ( maxx , SQNR) perfectly matches with the 
corresponding values from Table 1 obtained by the 
iterative process (8), proving its validity.  
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If we want to design USQ for some referent variance 

12 ≠qσ , the maximal amplitude should be calculated 
as  
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Table 1 obtained for the unit variance 12 =qσ .  
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same as in Section 2, since they are determined for 

12 =qσ during the design process of USQ. However, 
the variance mismatch will cause deterioration of 
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Figure 4
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We can see in Figure 3 that, as expected, higher SQNR 
values is obtained as the bit rate R increases. Note that 
SQNR peaks for a variance matched case ( 22

qp σσ = , 
ρ = 1, corresponding to 0 dB point in log-scale), but 
substantially drops if variances are not matched, de-
creasing more rapidly for ρ > 1 ( 22

qp σσ > ) than for ρ < 
1 ( 22

qp σσ < ), due to the dominancy of overload distor-
tion for 02 >pσ dB as we will see from Figure 4. 
Let us define gSQNR  that depends only on gD , as well 
as SQNRov that depends only on Dov, using (12) and (13):

  

quantization noise ratio (SQNR, gSQNR and ovSQNR ) 
versus ρ for the proposed USQ (for R = 9 bps). 
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We can see in Figure 3 that, as expected, higher 
SQNR values is obtained as the bit rate R increases. 
Note that SQNR peaks for a variance matched case 
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qp σσ = , ρ = 1, corresponding to 0 dB point in log-
scale), but substantially drops if variances are not 
matched, decreasing more rapidly for ρ > 1 
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qp σσ > ) than for ρ < 1 ( 22
qp σσ < ), due to the 

dominancy of overload distortion for 02 >pσ dB as 
we will see from Figure4.  
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that are shown in Figure 4, together with the curve 
of total SQNR defined with (15) that takes into 
account the total distortion D, with the aim to 
examine the influence of the granular distortion gD  
and the overload distortion ovD  on SQNR. We can 
see very good matching of SQNR and gSQNR  for 

1<<ρ , as well as very good matching of SQNR and 

ovSQNR  for 1>>ρ . We can conclude the following 
from Figure 4: 

- for 1<<ρ , the granular distortion gD  is dominant 
and SQNR can be approximated with gSQNR ; since 

( ) 1/2exp max <<− ρx for 1<<ρ , it follows from (16) 

that: 
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N
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ρ
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- for 1>>ρ , the overload distortion ovD  is 
dominant and SQNR can be approximated 
with ovSQNR  defined with (17); 

- in small range of ρ around 1 (i.e. 0 dB), both 
distortion components contribute to total 
SQNR, hence the full expression (15) should be 
used.  

In order to compare performance of the 
designed USQ, we employ the quantizer (the 
uniform one) used in fixed-point format 
representations [6, 14], conducting the analysis 
for R = 9 bps. In particular, the generated 
codeword of baseline quantizer consists of one 
bit reserved for sign (s = 1), n bits reserved for 
integer part and m bits reserved for fractional 
part of the fixed-point number. The maximal 
amplitude of this quantizer, denoted as xmaxfp, 
can be calculated as: 
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∑ refers to the integer part 

of the fixed-point number, while the term 

1
2

m
i

i

−

=
∑  reffers to the fractional part of the fixed-

point number. For the purpose of analysis, two 
cases will be considered: 

1) s = 1, n = 4, m = 4, and 

2) s = 1, n = 5, m = 3. 

Note that the expression defined with (15) is 
also relevant for performance evaluation of the 
baseline quantizer. The results are depicted in 
Figure 5. It can be observed that the proposed 
USQ significantly outperforms both versions of 
the baseline quantizer in terms of achieved 
SQNR values in a selected range of interest,      
ρ ∈  [-20 dB, 0 dB]. 
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We can see in Figure 3 that, as expected, higher 
SQNR values is obtained as the bit rate R increases. 
Note that SQNR peaks for a variance matched case 
( 22

qp σσ = , ρ = 1, corresponding to 0 dB point in log-
scale), but substantially drops if variances are not 
matched, decreasing more rapidly for ρ > 1 
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qp σσ > ) than for ρ < 1 ( 22
qp σσ < ), due to the 

dominancy of overload distortion for 02 >pσ dB as 
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of total SQNR defined with (15) that takes into 
account the total distortion D, with the aim to 
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We can see in Figure 3 that, as expected, higher 
SQNR values is obtained as the bit rate R increases. 
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qp σσ = , ρ = 1, corresponding to 0 dB point in log-
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that are shown in Figure 4, together with the curve 
of total SQNR defined with (15) that takes into 
account the total distortion D, with the aim to 
examine the influence of the granular distortion gD  
and the overload distortion ovD  on SQNR. We can 
see very good matching of SQNR and gSQNR  for 

1<<ρ , as well as very good matching of SQNR and 

ovSQNR  for 1>>ρ . We can conclude the following 
from Figure 4: 

- for 1<<ρ , the granular distortion gD  is dominant 
and SQNR can be approximated with gSQNR ; since 

( ) 1/2exp max <<− ρx for 1<<ρ , it follows from (16) 
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- for 1>>ρ , the overload distortion ovD  is 
dominant and SQNR can be approximated 
with ovSQNR  defined with (17); 

- in small range of ρ around 1 (i.e. 0 dB), both 
distortion components contribute to total 
SQNR, hence the full expression (15) should be 
used.  

In order to compare performance of the 
designed USQ, we employ the quantizer (the 
uniform one) used in fixed-point format 
representations [6, 14], conducting the analysis 
for R = 9 bps. In particular, the generated 
codeword of baseline quantizer consists of one 
bit reserved for sign (s = 1), n bits reserved for 
integer part and m bits reserved for fractional 
part of the fixed-point number. The maximal 
amplitude of this quantizer, denoted as xmaxfp, 
can be calculated as: 
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cases will be considered: 

1) s = 1, n = 4, m = 4, and 

2) s = 1, n = 5, m = 3. 

Note that the expression defined with (15) is 
also relevant for performance evaluation of the 
baseline quantizer. The results are depicted in 
Figure 5. It can be observed that the proposed 
USQ significantly outperforms both versions of 
the baseline quantizer in terms of achieved 
SQNR values in a selected range of interest,      
ρ ∈  [-20 dB, 0 dB]. 
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representations [6, 14], conducting the analysis 
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distortion components contribute to total 
SQNR, hence the full expression (15) should be 
used.  

In order to compare performance of the 
designed USQ, we employ the quantizer (the 
uniform one) used in fixed-point format 
representations [6, 14], conducting the analysis 
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scale), but substantially drops if variances are not 
matched, decreasing more rapidly for ρ > 1 
( 22

qp σσ > ) than for ρ < 1 ( 22
qp σσ < ), due to the 

dominancy of overload distortion for 02 >pσ dB as 
we will see from Figure4.  

Let us define gSQNR  that depends only on gD , as 
well as ovSQNR  that depends only on ovD , using 
(12) and (13): 

























−−

=











=

ρ

ρ

σ

max2
max

22

10

2

10

2
exp1

3log10

log10SQNR

x
x

N

Dg

p
g

,   (16) 

e
x

Dov

p
ov 10

max
2

10 log
210

log10SQNR
ρ

σ
=










= , (17) 

that are shown in Figure 4, together with the curve 
of total SQNR defined with (15) that takes into 
account the total distortion D, with the aim to 
examine the influence of the granular distortion gD  
and the overload distortion ovD  on SQNR. We can 
see very good matching of SQNR and gSQNR  for 

1<<ρ , as well as very good matching of SQNR and 

ovSQNR  for 1>>ρ . We can conclude the following 
from Figure 4: 

- for 1<<ρ , the granular distortion gD  is dominant 
and SQNR can be approximated with gSQNR ; since 

( ) 1/2exp max <<− ρx for 1<<ρ , it follows from (16) 

that: 

max
10

3log20SQNR
x

N
g

ρ
= ;         (18) 

- for 1>>ρ , the overload distortion ovD  is 
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SQNR values is obtained as the bit rate R increases. 
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- for 1>>ρ , the overload distortion ovD  is 
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distortion components contribute to total 
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that are shown in Figure 4, together with the curve 
of total SQNR defined with (15) that takes into 
account the total distortion D, with the aim to 
examine the influence of the granular distortion gD  
and the overload distortion ovD  on SQNR. We can 
see very good matching of SQNR and gSQNR  for 

1<<ρ , as well as very good matching of SQNR and 

ovSQNR  for 1>>ρ . We can conclude the following 
from Figure 4: 

- for 1<<ρ , the granular distortion gD  is dominant 
and SQNR can be approximated with gSQNR ; since 

( ) 1/2exp max <<− ρx for 1<<ρ , it follows from (16) 

that: 
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- for 1>>ρ , the overload distortion ovD  is 
dominant and SQNR can be approximated 
with ovSQNR  defined with (17); 

- in small range of ρ around 1 (i.e. 0 dB), both 
distortion components contribute to total 
SQNR, hence the full expression (15) should be 
used.  

In order to compare performance of the 
designed USQ, we employ the quantizer (the 
uniform one) used in fixed-point format 
representations [6, 14], conducting the analysis 
for R = 9 bps. In particular, the generated 
codeword of baseline quantizer consists of one 
bit reserved for sign (s = 1), n bits reserved for 
integer part and m bits reserved for fractional 
part of the fixed-point number. The maximal 
amplitude of this quantizer, denoted as xmaxfp, 
can be calculated as: 
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1
2

m
i

i

−

=
∑  reffers to the fractional part of the fixed-

point number. For the purpose of analysis, two 
cases will be considered: 

1) s = 1, n = 4, m = 4, and 

2) s = 1, n = 5, m = 3. 

Note that the expression defined with (15) is 
also relevant for performance evaluation of the 
baseline quantizer. The results are depicted in 
Figure 5. It can be observed that the proposed 
USQ significantly outperforms both versions of 
the baseline quantizer in terms of achieved 
SQNR values in a selected range of interest,      
ρ ∈  [-20 dB, 0 dB]. 
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We can see in Figure 3 that, as expected, higher 
SQNR values is obtained as the bit rate R increases. 
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4. Application in Neural Networks 
This section deals with the application of the 
developed USQ for compression of NN weights and 
analyzes the effects of quantization to the 
performance of NN for the image classification task. 

As a proof of concept, we use Multi-Layer 
Perceptron (MLP) [33] that consists of input and 
output layers, with the goal to perform post-training 
quantization (i.e. to quantize the learned weights). 
The input of the NN is fed with the MNIST database 
[21], containing 60000 monochrome images of hand-
written single digits of dimension 28 × 28 pixels, 
where 50000 images are used for training and 10000 
images for validation. Note that the employed NN 
deals with the classification of grayscale images of 
hand-written digits into the corresponding category 
(0−9). Thus, input layer and output layer are 
constituted by 784 (28 × 28) and 10 (the number of 
digits) nodes, respectively. Softmax activation 
function is used at the output layer, while the 
learning rate and batch size are set to 0.5 and 250, 
respectively.  

 
Figure 6 

The histogram of weights of trained NN. 
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The employed NN is trained for 20 epochs 
achieving the prediction accuracy of 90.84%. 
The histogram of learned weights (total 
number amounts to 784 × 10 = 7840) is depicted 
in Figure 6. Observe that distribution of 
weights can be approximated well by the 
Laplacian PDF with the mean value very close 
to zero. 

Let ∑ =
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i iw wW 1
22 )/1(σ  denote the variance of 

weights. Let )/1( WD w = ∑ =
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i
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denote distortion obtained by the quantization 
of weights using USQ, where W is total 
number of weights, iw  is the original and q

iw  
is the quantized value of i-th weight. As 
performance measure for quantization of 
weights we can use wSQNR  defined as: 
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In practice, the variance of NN weights can 
vary in wide range, hence the variance 
mismatch can occur between the variance of 
weights and the variance used for the design of 
USQ. Hence, our aim is to examine the 
influence of this variance mismatch on the 
prediction accuracy of NN, applying the 
following procedure: 

- firstly, design USQ for a specific value of R 
from 9 to 16 bps, for the variance equal to the 
variance of the learned weights (i.e. 22

wq σσ = ), 
using (12); 
- starting from the original set of learned 
weights with the variance 2

wσ , make another 

set of weights with the variance 22
wσρ  by 

multiplication of each original weight with ρ ; 
- perform variance mismatched quantization of 
weights with the variance 22

wσρ using USQ 

designed for the variance 2
wσ ; 

- calculate wSQNR  for the variance 
mismatched quantization; 
- apply the quantized weights for classification 
purposes on the test data (10000 images form 
MNIST database [21]);  
-calculate the prediction accuracy of NN with 
the quantized weights; just to recall, the 
prediction accuracy score obtained without 
quantization was 90.84%. 

4. Application in Neural Networks
This section deals with the application of the devel-
oped USQ for compression of NN weights and ana-
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The employed NN is trained for 20 epochs 
achieving the prediction accuracy of 90.84%. 
The histogram of learned weights (total 
number amounts to 784 × 10 = 7840) is depicted 
in Figure 6. Observe that distribution of 
weights can be approximated well by the 
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In practice, the variance of NN weights can 
vary in wide range, hence the variance 
mismatch can occur between the variance of 
weights and the variance used for the design of 
USQ. Hence, our aim is to examine the 
influence of this variance mismatch on the 
prediction accuracy of NN, applying the 
following procedure: 

- firstly, design USQ for a specific value of R 
from 9 to 16 bps, for the variance equal to the 
variance of the learned weights (i.e. 22

wq σσ = ), 
using (12); 
- starting from the original set of learned 
weights with the variance 2

wσ , make another 

set of weights with the variance 22
wσρ  by 

multiplication of each original weight with ρ ; 
- perform variance mismatched quantization of 
weights with the variance 22

wσρ using USQ 

designed for the variance 2
wσ ; 

- calculate wSQNR  for the variance 
mismatched quantization; 
- apply the quantized weights for classification 
purposes on the test data (10000 images form 
MNIST database [21]);  
-calculate the prediction accuracy of NN with 
the quantized weights; just to recall, the 
prediction accuracy score obtained without 
quantization was 90.84%. 

lyzes the effects of quantization to the performance of 
NN for the image classification task.
As a proof of concept, we use Multi-Layer Perceptron 
(MLP) [33] that consists of input and output layers, 
with the goal to perform post-training quantization 
(i.e. to quantize the learned weights). The input of the 
NN is fed with the MNIST database [21], containing 
60000 monochrome images of hand-written single 
digits of dimension 28 × 28 pixels, where 50000 imag-
es are used for training and 10000 images for testing. 
Note that the employed NN deals with the classifica-
tion of grayscale images of hand-written digits into 
the corresponding category (0−9). Thus, input layer 
and output layer are constituted by 784 (28 × 28) and 
10 (the number of digits) nodes, respectively. Softmax 
activation function is used at the output layer, while 
the learning rate and batch size are set to 0.5 and 250, 
respectively. 
The employed NN is trained for 20 epochs achieving 
the prediction accuracy of 90.84%. The histogram of 
learned weights (total number amounts to 784 × 10 = 
7840) is depicted in Figure 6. Observe that distribu-
tion of weights can be approximated well by the La-
placian PDF with the mean value very close to zero.
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USQ, where W is total number of weights, iw  is the 
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As performance measure for quantization of weights 
we can use wSQNR  defined as:
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The employed NN is trained for 20 epochs 
achieving the prediction accuracy of 90.84%. 
The histogram of learned weights (total 
number amounts to 784 × 10 = 7840) is depicted 
in Figure 6. Observe that distribution of 
weights can be approximated well by the 
Laplacian PDF with the mean value very close 
to zero. 
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In practice, the variance of NN weights can 
vary in wide range, hence the variance 
mismatch can occur between the variance of 
weights and the variance used for the design of 
USQ. Hence, our aim is to examine the 
influence of this variance mismatch on the 
prediction accuracy of NN, applying the 
following procedure: 

- firstly, design USQ for a specific value of R 
from 9 to 16 bps, for the variance equal to the 
variance of the learned weights (i.e. 22

wq σσ = ), 
using (12); 
- starting from the original set of learned 
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wσ , make another 
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designed for the variance 2
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- calculate wSQNR  for the variance 
mismatched quantization; 
- apply the quantized weights for classification 
purposes on the test data (10000 images form 
MNIST database [21]);  
-calculate the prediction accuracy of NN with 
the quantized weights; just to recall, the 
prediction accuracy score obtained without 
quantization was 90.84%. 
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amine the influence of this variance mismatch on the 
prediction accuracy of NN, applying the following 
procedure:
 _ firstly, design USQ for a specific value of R from 9 to 

16 bps, for the variance equal to the variance of the 
learned weights (i.e. 22

wq σσ = ), using (8);
 _ starting from the original set of learned weights 

with the variance 2
wσ , make another set of weights 

with the variance 22
wσρ  by multiplication of each 

original weight with ρ;
 _ perform variance mismatched quantization 

of weights with the variance 22
wσρ  using USQ 

designed for the variance 2
wσ ;

 _ calculate wSQNR  for the variance mismatched 
quantization;

 _ apply the quantized weights for classification 
purposes on the test data (10000 images form 
MNIST database [21]); 

 _ calculate the prediction accuracy of NN with the 
quantized weights; just to recall, the prediction 
accuracy score obtained without quantization was 
90.84%.

The previous procedure can be repeated for different 
values of ρ , as well as for all values of R from 9 to 16 
bps.
Based on the previous procedure, the influences of 
the variance mismatch on the quality of quantization 
of NN weights (i.e. on wSQNR ), as well as on the pre-
diction accuracy of NN with quantized weights can be 
found, as being shown in Figures 7 and 8, respectively, 
for different values of ρ and in the range of the bit-
rate R from 9 to 16 bps. 
We can see from Figure 7 that wSQNR  approximately 
linearly increases with R for a given ρ, while the high-
est wSQNR is achieved for ρ = 0 dB (variance matched 
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Figure 8 

The prediction accuracy for image classification task 
applied on the MNIST dataset, after quantization of NN 
weights with different variances, using the designed 
USQ. 
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We can see from Figure 7 that wSQNR  
approximately linearly increases with R for a given 
ρ, while the highest wSQNR is achieved for ρ = 0 dB 
(variance matched scenario), as expected. Note also, 

for a given R and ρ, that wSQNR  from Figure 7 
matches very well with the theoretical SQNR 
presented in Figure 3. 

For this specific MLP neural network it is 
empirically found that the decreasing of the 
prediction accuracy of the network due to 
quantization of weights is neglecting if 

wSQNR  ≥ 16 dB for quantization of weights. 
Based on (15), we can theoretically found 
ranges of ρ  where SQNR ≥ 16 dB, that is 
shown in Table 2 for the bit-rates R from 9 to 
16 bps. 
 

Table 2 

The range of ρ [dB] where SQNR ≥ 16 dB, for 
different values of R. 
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[bps] 

The range of ρ  where SQNR ≥ 16 
dB 

9 (-25.02, 9.63) [dB] 
10 (-30.09, 10.57) [dB] 
11 (-35.25, 11.43) [dB] 
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14 (-51.14, 13.60) [dB] 
15 (-56.54, 14.23) [dB] 
16 (-61.98, 14.81) [dB] 
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derive the following conclusions: 

- for ρ [dB] = 0 dB (i.e. ρ = 1), we obtain the 
wSQNR  much higher than 16 dB for all 9 ≤ R 

[bps] ≤ 16 (Figure 7), providing excellent 
accuracy for all considered bit-rates (Figure 8), 
almost the same as accuracy in the full 
precision case; this is also theoretically 
expected, since it follows from Table 2 that       
ρ [dB] = 0 dB is acceptable for all considered 
bit-rates; 
- for ρ [dB] = -50 dB (i.e. ρ = 0.003), we have 

wSQNR  ≥ 16 dB for R ≥ 14 bps (Figure 7); also, 
accuracy becomes acceptable for R ≥ 14 bps, 
while for R < 14 bps there is a significant drop 
of accuracy (Figure 8); this is fully in line with 
theoretical results presented in Table 2 where ρ 
[dB] = -50 dB is acceptable for R ≥ 14 bps; 
- for ρ [dB] = -34 dB (i.e. ρ = 0.02), we have 

wSQNR  ≥ 16 dB and negligible loss of accuracy 
for R ≥ 11 bps, but having drop of accuracy for 
R < 11 bps; this is fully in line with theoretical 
results from Table 2; 
- for ρ [dB] = -25 dB (i.e. ρ = 0.056), we have 

wSQNR  ≥ 16 dB and negligible loss of accuracy 
for all 9 ≤ R [bps] ≤ 16, being fully in line with 
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We can see from Figure 7 that wSQNR  
approximately linearly increases with R for a given 
ρ, while the highest wSQNR is achieved for ρ = 0 dB 
(variance matched scenario), as expected. Note also, 

for a given R and ρ, that wSQNR  from Figure 7 
matches very well with the theoretical SQNR 
presented in Figure 3. 

For this specific MLP neural network it is 
empirically found that the decreasing of the 
prediction accuracy of the network due to 
quantization of weights is neglecting if 

wSQNR  ≥ 16 dB for quantization of weights. 
Based on (15), we can theoretically found 
ranges of ρ  where SQNR ≥ 16 dB, that is 
shown in Table 2 for the bit-rates R from 9 to 
16 bps. 
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different values of R. 
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[bps] ≤ 16 (Figure 7), providing excellent 
accuracy for all considered bit-rates (Figure 8), 
almost the same as accuracy in the full 
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while for R < 14 bps there is a significant drop 
of accuracy (Figure 8); this is fully in line with 
theoretical results presented in Table 2 where ρ 
[dB] = -50 dB is acceptable for R ≥ 14 bps; 
- for ρ [dB] = -34 dB (i.e. ρ = 0.02), we have 

wSQNR  ≥ 16 dB and negligible loss of accuracy 
for R ≥ 11 bps, but having drop of accuracy for 
R < 11 bps; this is fully in line with theoretical 
results from Table 2; 
- for ρ [dB] = -25 dB (i.e. ρ = 0.056), we have 
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scenario), as expected. Note also, for a given R and ρ, 
that wSQNR  from Figure 7 matches very well with 
the theoretical SQNR presented in Figure 3.
For this specific MLP neural network it is empirically 
found that the decreasing of the prediction accuracy 
of the network due to quantization of weights is ne-
glecting if wSQNR  ≥ 16 dB for quantization of weights. 
Based on (15), we can theoretically found ranges of ρ 
where SQNR ≥ 16 dB, that is shown in Table 2 for the 
bit-rates R from 9 to 16 bps.
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From Figures 7 and 8 and from Table 2 we can derive 
the following conclusions:
 _ for ρ [dB] = 0 dB (i.e. ρ = 1), we obtain the wSQNR  

much higher than 16 dB for all 9 ≤ R [bps] ≤ 16 
(Figure 7), providing excellent accuracy for all 
considered bit-rates (Figure 8), almost the same 
as accuracy in the full precision case; this is also 
theoretically expected, since it follows from Table 
2 that  ρ [dB] = 0 dB is acceptable for all considered 
bit-rates;

 _ for ρ [dB] = -50 dB (i.e. ρ = 0.003), we have wSQNR  
≥ 16 dB for R ≥ 14 bps (Figure 7); also, accuracy 
becomes acceptable for R ≥ 14 bps, while for R 
< 14 bps there is a significant drop of accuracy 
(Figure 8); this is fully in line with theoretical 
results presented in Table 2 where ρ [dB] = -50 dB 
is acceptable for R ≥ 14 bps;

 _ for ρ [dB] = -34 dB (i.e. ρ = 0.02), we have wSQNR  ≥ 
16 dB and negligible loss of accuracy for R ≥ 11 bps, 
but having drop of accuracy for R < 11 bps; this is 
fully in line with theoretical results from Table 2;

 _ for ρ [dB] = -25 dB (i.e. ρ = 0.056), we have wSQNR  
≥ 16 dB and negligible loss of accuracy for all 9 ≤ R 
[bps] ≤ 16, being fully in line with theoretical results 
from Table 2 where ρ [dB] = -25 dB is acceptable for 
all considered bit-rates;

 _ for ρ [dB] = 13 dB (i.e. ρ = 4.467), we have 
wSQNR  ≥ 16 dB and negligible loss of accuracy 

for all 9 ≤ R [bps] ≤ 16; in this case, experimental 
results are slightly better than theoretical results 
from Table 2;

Table 2
The range of ρ [dB] where SQNR ≥ 16 dB, for different 
values of R

R [bps] The range of ρ where SQNR ≥ 16 dB

9 (-25.02, 9.63) [dB]

10 (-30.09, 10.57) [dB]

11 (-35.25, 11.43) [dB]

12 (-40.50, 12.21) [dB]

13 (-45.79, 12.94) [dB]

14 (-51.14, 13.60) [dB]

15 (-56.54, 14.23) [dB]

16 (-61.98, 14.81) [dB]

 _ for ρ [dB] = 20 dB (i.e. ρ = 10), we have wSQNR < 16 
dB and drop of accuracy for all 9 ≤ R [bps] ≤ 16; this 
is fully in line with theoretical results from Table 2 
where ρ [dB] = 20 dB is not acceptable for any of the 
considered bit-rates.

We can see that there is a very good matching between 
experimental results (shown in Figures 7 and 8) and 
theoretical predictions presented in Table 2. Also, we 
can see that the variance mismatch is acceptable in 
much wider range for negative ρ [dB] than for positive 
one.
We can conclude that the range of acceptable degree 
of the variance mismatch ρ depends on the bit-rate R. 
Increasing R allows wider range of the variance mis-
match degree ρ (decreasing the compression ratio on 
the other hand). Hence, the bit-rate R should be cho-
sen based on the range of the degree of the variance 
mismatch ρ for the specific application. We can define 
the following rule: we should choose the smallest R 
that allows maintaining of high prediction accuracy 
for given range of ρ for the specific application.  
Finally, we provide the results in case of the baseline 
quantizer approach discussed in [6, 14], taking into 
account R = 9 bps. SQNR versus ρ, obtained from real 
data (weights), can be found in Figure 9, where good 
agreement with theoretical results in Figure 5 is ob-
served. On the other hand, the prediction accuracy 
scores can be found in Figure 10, indicating that MLP 
achieves better performance in case of using the USQ 
proposed in this paper. 

Figure 9
SQNRw of the proposed and baseline USQ for bit rate R = 9 bps 
and different values of ρ 
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Figure 10 

The prediction accuracy scores of MLP in image 
classification task in case when the proposed and 
two versions of baseline USQ (R = 9 bps) are 
applied, for different values of ρ. 
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5. Conclusion 
In this paper, USQ was designed for the 
Laplacian PDF and implemented for 
quantization of weights of MLP neural 
network. Firstly, the quantizer was designed 
for a reference variance and its performance 
was evaluated for both variance-matched and 
variance mismatched cases. Especially, it 
should be highlighted that we proposed a very 
efficient iterative algorithm for calculation of 
the most important parameter of the quantizer 

maxx . Then, the designed USQ was applied for 
quantization of weights of MLP used for 
classification of images from MNIST database. 
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Figure 10
The prediction accuracy scores of MLP in image classification 
task in case when the proposed and two versions of baseline 
USQ (R = 9 bps) are applied, for different values of ρ
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5. Conclusion 
In this paper, USQ was designed for the 
Laplacian PDF and implemented for 
quantization of weights of MLP neural 
network. Firstly, the quantizer was designed 
for a reference variance and its performance 
was evaluated for both variance-matched and 
variance mismatched cases. Especially, it 
should be highlighted that we proposed a very 
efficient iterative algorithm for calculation of 
the most important parameter of the quantizer 

maxx . Then, the designed USQ was applied for 
quantization of weights of MLP used for 
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5. Conclusion
In this paper, USQ was designed for the Laplacian 
PDF and implemented for quantization of weights 
of MLP neural network. Firstly, the quantizer was 
designed for a reference variance and its perfor-
mance was evaluated for both variance-matched and 
variance mismatched cases. Especially, it should be 
highlighted that we proposed a very efficient itera-
tive algorithm for calculation of the most important 
parameter of the quantizer maxx . Then, the designed 

USQ was applied for quantization of weights of MLP 
used for classification of images from MNIST data-
base. It was shown a very good matching between ex-
perimental and theoretical results. Also, it was shown 
that almost the same prediction accuracy of the net-
work can be achieved using quantized weights with 
significant decreasing of the bit-rate R [bps] as in the 
full precision case. Connection between SQNR of 
weights quantization and prediction accuracy of the 
neural network was established. Furthermore, the 
variance mismatched quantization of weights was 
considered (that is very important in practical appli-
cations where the variance mismatch often occurs), 
showing that even in this case a negligible decrease 
of accuracy can be achieved by choosing appropriate 
value of the bit-rate R. Acceptable ranges of the degree 
of the variance mismatch ρ [dB] are calculated for all 
considered bit-rates 9 ≤ R [bps] ≤ 16 and the rule for 
choosing the right value of the bit-rate R was defined: 
the smallest value of R that allows maintaining of high 
prediction accuracy for given range of ρ[dB] for the 
specific application should be chosen. In addition, the 
benefit of the proposed USQ over the baseline quan-
tizers available in the literature has also been shown.
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