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1.  Introduction 
The basic purpose of an algorithm used in the robot 
path planning process is to determine a valid path 
from the start to the goal position of the robot in its 
configuration space. Robot configuration space im-
plies an approach that fully defines the location of a 
robot, that is, all its degrees of freedom [24], in the 
environment in which it moves and performs tasks. 
In the case of multi-robot path planning, the situa-
tion is much more complicated since the growth of 
the joint configuration space is exponentially pro-
portional to the number of robots [19]. Therefore, 
single-robot path planning techniques cannot be 
applied in the case of a multi-robot system without 
some adaptation.
Generally speaking, there are two approaches that 
can be applied to algorithms designed for planning the 
path of a multi-robot system [36]. The first approach 
involves a coupled technique that treats the multi-ro-
bot system as a single entity so that the paths of all ro-
bots of that system are calculated simultaneously and 
coordinated in the joint configuration space. There-
fore, this approach can guarantee the completeness of 
the solution (all paths will be calculated if a solution 
is possible), but its disadvantages are that it is diffi-
cult to apply to a large number of robots and usually 
does not provide a solution in real time. The second 
approach involves a decoupled technique that, within 
a multi-robot system, first calculates the path of each 
individual robot independently of the others, and then 
applies some method of motion coordination to avoid 
conflict situations. This approach is fast and usually 
provides a real-time solution, but its disadvantages 
are that it cannot guarantee the completeness of the 
solution, as well as that movement of multiple robots 
along independently calculated paths can cause con-
flicting situations that cannot be solved.
This paper discusses an autonomous cloud-based 
multi-robot system designed to perform highly repet-
itive tasks in a dynamic environment such as a mod-
ern megastore. In robotics, the method often used to 
calculate the path involves the use of an algorithm for 
planning rough path on global level integrated with 
an algorithm for planning precise path on local level 
[11]. In complex environments such as a megastore, 
algorithm for planning the path on global level defines 
path that do not take into account crowds and other 

constraints. Therefore, a human-aware algorithm for 
planning takes into account the crowds (as well as 
other limitations not covered by this paper) on local 
level and defines a valid local path. Such solutions are 
common, but if the algorithm for planning the path on 
global level does not fully take into account crowds, 
this can reduce the efficiency of the entire system and 
increase the risk of the task [2]. In addition, in some 
situations a local planner cannot solve the problem, so 
it is necessary to replan the path on global level during 
the robot motion. These situations are specially con-
sidered in this paper because they can significantly 
slow the robot and cause at the same time increasing 
the total paths length.
In order to construct a crowd-sensitive global plan-
ner, knowledge about the crowds global changes or 
behavior is required. This is not always feasible, be-
cause over time the crowds can behave differently. In 
some cases, crowd density has a relatively repeatable 
dynamic of change on daily, weekly or some other 
time basis. For instance, in some part of the store the 
crowd is likely to be larger every day in the morning, 
in the second one every weekend, in the third one for 
holidays or special events. Therefore, it is desirable 
that robots should be capable to predict crowd densi-
ty change, whenever and wherever possible, in order 
to improve the efficiency of task and motion planning. 
To this end, the implementation of fuzzy inference 
system (FIS) is proposed, which should ensure that in 
the initial phase of planning the global planner takes 
into consideration the crowds whose density change 
is predictable. The goal is to penalize the path passing 
through the high-cluttered parts of the store propor-
tionately to the crowd density.
In addition to using FIS, robots have the ability to 
learn online in order to reuse detection of unexpect-
ed long-lasting changes (that do not move/change for 
a certain period of time) in environment structures 
from previous iterations for more efficient task and 
motion planning in the next iteration. The changes 
that are referred to here are, for example, accidentally 
spilled larger quantities of goods that occupy certain 
parts of the store for some time, temporarily blocked 
or opened passages, etc. To this end, it is proposed to 
use the learning algorithm based on the online statis-
tical estimation of changes in the environment.



359Information Technology and Control 2021/2/50

D* Lite is applied as graph-based algorithm for plan-
ning the path on global level. In this paper, it is adapt-
ed so that it can be used to plan the path of a multi-ro-
bot system. A decoupled path planning technique 
is applied with robots motion coordination to avoid 
conflict situations.
As it is known, graph based algorithms require a cost 
map of the robot environment to operate on. Conse-
quently, one of the approaches to improve path plan-
ning is to generate a smart cost map. The cost map is 
used to store various information about the environ-
ment that affects the robots motion. This area has 
not been sufficiently studied, especially in the case 
of crowded environment, and provides many op-
portunities for further research. In that context, the 
contribution of this paper is reflected in the original 
application of FIS to exploit predictable changes in 
crowd density (in spatio-temporal domain), in order 
to generate smart cost map to improve autonomous 
robot path planning in crowded environment. In ad-
dition, it is also proposed a learning algorithm that 
has the same purpose as the FIS, but exploits data 
of other characteristics. This learning algorithm is 
based on the M-out-of-N detector, which is most 
commonly used in radar technology. In this case, the 
original application of this technique is presented to 
detect the presence or absence of an obstacle in a cell 
of smart cost map.
In summary, the common goal of applying fuzzy log-
ic and online learning is to generate a smart cost map 
that is used for defining path in the initial planning 
phase so that they are similar to the real ones to a 
feasible extent. This will be an attempt to reduce the 
number of paths corrections during robots motion 
and thus to improve system efficiency. Replanning 
the paths increases the execution time of the task to 
a lesser or larger extent, often implies robots delays, 
degrades path quality as well as overall performance 
of the system. As a result, it can be expected that the 
total length of the paths will be reduced (the sum of 
the path length of all robots in all iterations in one cy-
cle), making them on average “smoother” in terms of 
a smaller number of sharp changes in direction (eas-
ier to follow by robots). The aim is also to reduce the 
risk in path planning, which refers to the movement 
of humans and robots in the same environment, that 
is, to ensure an amount of safe space between robots 
and crowds. That improves the overall performance 

of the system. The same idea can be implemented in 
industrial and other similar environments.

2. Related Work
Graph-based techniques are used with both algo-
rithms - algorithms for planning the path for sin-
gle-robot and algorithms for planning the path for 
multi-robot system. M* algorithm [35] is based on 
the search for path in joint configuration space with 
dimensionality gradation depending on the need for 
motion coordination. In [4] A* algorithm for multi-ro-
bot path planning is proposed using decoupled ap-
proach and priorities. A lattice variant of A* algorithm 
for planning the path for multi-robot system is pro-
posed in [8].  D* is an incremental algorithm widely 
used for path planning in a completely unknown or 
partially known environment, both for single robot 
and for multi-robot systems [6]. A multi-agent ver-
sion of D* Lite, which is a variant of D* [18], is pro-
posed in [1].  Another approach to apply D* Lite for 
planning the path for multi-robot system with imple-
mented concept of parallel processing is proposed in 
[30]. Here, during the planning, other robots, except 
the origin, are considered as obstacles.
In addition to the above mentioned, in recent years one 
of the main directions of research in robotics is appli-
cation of different learning techniques to robot path 
planning, in order to improve its efficiency. In [29] a 
mission coordination architecture is proposed, which 
executes planning the path through check-points and 
assigning priorities, based on statistical estimation of 
changes in the environment with purpose to improve 
the replanning process. The robot motion planner pro-
posed in [20, 25, 43] uses a formed database that stores 
segments of the local paths depending on the geomet-
ric shape of the obstacles, in order to form a global path 
based on them depending on the specific situation. An-
other learning based method to reuse information from 
previous motion plans, the environment, and types of 
the obstacles is presented in [15]. Path planning using 
experience is also proposed in [14, 32, 33], where so-
called experience graphs are introduced, which in fact 
represent a path network from previous iterations. 
This approach is very useful in the environment which 
possesses a significant amount of underlying structure 
that is under-utilized in a classic path planning and 
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mobile manipulation. If there is no experience plan-
ning is done from the beginning, of course. In [5] and 
[9], the concept of learning based on the experience of 
trajectories in high-dimensional space is described, 
and this knowledge is used by robots for planning in 
the next iterations. An interesting approach of using 
learned maneuvers from previous situations that re-
quired avoiding collisions with obstacles in order to 
improve planning in subsequent iterations is consid-
ered in [34]. In [28] the concept of robot path planning 
using external preferences and suggestions by the user 
is addressed.
When using graph based algorithms, researchers of-
ten focus on smart cost map to improve path planning 
process. In [12] it is described how the clever design 
of a grid based cost map contributes to the robustness 
of the system in a real application. This approach 
used so-called combined cost map. It incorporates a 
cost map derived from known static obstacles, as well 
as a cost map based on the structure of roads in the 
environment and other available information about 
terrain that can affect the robots motion. Dynamic 
obstacles in this cost map are presented as a high cost 
region around the obstacle to ensure a safe distance. 
In [26] a cost map based on probability is presented, 
which takes into account the uncertainty of terrain 
characteristics for each grid cell in the map. The fi-
nal cost map allows the calculation of the optimal 
path between the two points in the environment, as 
well as the distribution of likely paths between the 
points. To construct a crowd-sensitive path planner 
based on smart cost map is a special challenge. In [40] 
it is presented approach based on learning the cost 
map that best defines previously observed motion 
and trajectories of pedestrians. This approach uses a 
cost map at the beginning of the process that ignores 
predictions of future pedestrian locations. Then, in 
such a map, robot paths are planned, at the same time 
pedestrian trajectories are simulated (on the basis of 
previous observations), and based on that, new costs 
are defined in a cost map proportional to the hin-
drance probability at each cell. The paper [37] pres-
ents similar cloud-based path planning concept using 
D* Lite algorithm, but there the implementation of 
Multi-criteria decision making (MCDM) using Full 
consistency method (FUCOM) for improvement the 
efficiency of path planning is proposed. The applica-
tion of MCDM using FUCOM provides an adaptive 

approach to path planning, in terms of optimizing the 
global cost map taking into account all factors affect-
ing the robots motion in the environment and having 
in mind a mission specificity that requires the man-
agement of risks arising from different sources. In [2] 
two algorithms (CUSUM-A* and Risk-A*) that learn 
a cost map in crowded environments and plan from 
it are described. These algorithms continuously up-
grade crowd models based on current observations. 
The CUSUM-A* algorithm uses in the path planning 
process prior knowledge of changes in the crowds in 
the spatio-temporal domain, while Risk-A* focuses 
on optimizing path costs in terms of human-robot in-
teractions.
Based on the analysis of the literature, it can be con-
cluded that the smart cost map is a good approach 
to improve robots’ path planning in general, even in 
environments they share with humans. Despite the 
unpredictability of human movement, it can often be 
stated that in public objects, especially in stores and 
similar environments, crowd density has a relatively 
repeatable dynamic of change (in spatio-temporal do-
main), that can be used to generate smart cost maps 
to improve robot path planning. The existing liter-
ature does not sufficiently consider this issue. The 
same can be said for the application of learning al-
gorithms to improve robot path planning in crowded 
environments. Keeping that in mind, the tendency of 
this paper is to contribute to overcoming mentioned 
research gap.

3. System Overview
Multi-robot systems have many applications and the 
field of application is constantly expanding. For the 
purpose of performing mission successfully, the allo-
cation of tasks among the robots in multi-robot sys-
tem, path planning and motion coordination must be 
primarily defined. With the aim of a wider application 
of a group of robots, they need to be as simple as pos-
sible, energy efficient, low cost, and at the same time 
to perform the assigned tasks reliably. Clearly, some 
of these requirements are conflicting. The solution 
can be based on cloud technology. With the applica-
tion of cloud technology, it can be achieved that the 
multi-robot system uses the capacities and resources 
of the cloud (information, memory, communication 
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and other) [3, 13]. In practice, this usually means that 
the cloud processes a large amount of data, while ro-
bots, as cloud service users, receive the necessary 
data and information that enables them to perform 
tasks [7, 16]. Let’s take the modern megastore as a typ-
ical example of a complex dynamic system, where the 
flow of goods and money takes place and where peo-
ple are present as customers and employees. In such 
a system, a group of robots may first be intended for 
smart logistics i.e. to perform tasks such as: goods de-
livery (delivery robots), autonomous goods handling 
(manipulation robots), autonomous scouting (scout 
robots), cleaning (cleaning service robots), info ser-
vice (info robots), shopping assistance (shopping ro-
bot assistant), etc. Planning and executing the above 
tasks at the same time involves great resources for 
data processing. For these reasons, the environment 
of modern megastore can be considered as one of the 
possible scenarios where a multi-robot system based 
on cloud technology can be deployed. In order for this 
complex system to perform tasks with sufficient reli-
ability in the cloud environment, the megastore must 
have an appropriate information infrastructure, that 
it is fully covered with a distributed network of differ-
ent sensors, as well as with wireless communication 
between the participants of all involved processes. 
Any change in the environment is identified on the 
cloud level, processed and necessary information re-
lated to the changes is exchanged between networked 
clients. This approach makes possible to organize the 
performing of different tasks in megastore with syn-
chronized accomplishment and to manage collabora-
tive strategies of multi-robot system. One of the basic 
tasks in given model of high automated megastore is 
planning the path of robots in presence of static and 
moving obstacles. For example, the typical mission 
that can be put to robot in charge is to transport goods 
from the warehouse to the store in advance specified 
place, for the required time, moving along the path 
that is most favourable in terms of multiple criteria. 
This is just one of the complex tasks in the described 
scenario relocated from the robot level to the cloud 
level and as such it represents the focus of this work. 
For the needs of Matlab simulation of an autonomous 
multi-robot system designed to perform highly repet-
itive tasks of goods transport from the warehouse to 
the store and other tasks in complex dynamic envi-
ronment, such as a modern megastore, a cloud-based 

architecture has been designed, which consists of 
the following modules: Data base, Store, Goods flow, 
Warehouse, System manager and Robots (Figure 1).

Figure 1
Block diagram of the system architecture
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The module “Data base” is intended to provide a 
store and warehouse map (free fields, dynamic and 
static obstacles, shelves with goods), as well as in-
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shelves in the store and in the warehouse. 

The module “Store” simulates a dynamic environ-
ment in the store in sense of appearance and move-
ments of the buyers. The number of buyers is given 
as an initial parameter in the phase of initialization, 
while their moving is of a random nature. This mod-
ule also simulates the changes in environment in the 
sense of blocking certain initially free cells or releas-
ing the initially blocked transits. The initial map of 
the store and warehouse is shown in Figure 2. 

The module “Goods flow” monitors picking of the 
goods from the shelves in the store and purchase of 
the same (with the cash register verification). This 
module also processes the loss of the goods due to the 
expiration date and/or damaging etc., updates the list 
and schedule of goods in the store and generates the 
goods amendments. 

The module “Warehouse” monitors the situation in 
the warehouse and delivery dynamics (updates the 
list and schedule of warehoused goods). 

The module “Robots” in a simulated environment 
represents robots that move along defined paths, ob-
serve the environment with their sensors, and perform 
assigned tasks. In this case, the system consists of 
three robots for the transport of goods (homogeneous 
system). 

The module “System manager” is a cloud level. It 
is designed to perform the most complicated tasks, 
primarily related to data processing and activity co-
ordination, which ensure the successful functioning 
of multi-robot system, for example: receipt of the 

requests for adding the goods to the shelves in the 
store, making the plan of transport the goods from the 
warehouse to the store (in accordance to the received 
requests for adding the goods to the shelves, the 
number of available robots and optimization criteria), 
making the plan of engaging the available robots with 
the start and goal positions of each robot, planning or 
replanning the path of robots, application of the fuzzy 
inference system and learning algorithm in order to 
improve the path planning efficiency, motion coordi-
nation, finding a solution to conflicting situations, 
map update with gathered data. 
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The load of each module in one iteration of a ran-
domly selected scenario is given in Figure 3. 

Based on Figure 3, it can be concluded that the 
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tem and learning algorithm, path planning and re-
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The module “Robots” in a simulated environment 
represents robots that move along defined paths, ob-
serve the environment with their sensors, and per-
form assigned tasks. In this case, the system consists 
of three robots for the transport of goods (homoge-
neous system).
The module “System manager” is a cloud level. It 
is designed to perform the most complicated tasks, 
primarily related to data processing and activity co-
ordination, which ensure the successful functioning 
of multi-robot system, for example: receipt of the re-
quests for adding the goods to the shelves in the store, 
making the plan of transport the goods from the ware-
house to the store (in accordance to the received re-
quests for adding the goods to the shelves, the number 
of available robots and optimization criteria), mak-
ing the plan of engaging the available robots with the 
start and goal positions of each robot, planning or re-
planning the path of robots, application of the fuzzy 
inference system and learning algorithm in order to 
improve the path planning efficiency, motion coor-
dination, finding a solution to conflicting situations, 
map update with gathered data.
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Figure 3. Gantt chart of operations allocation between the modules. 

A direct consequence of this is the unloading of 
robots as they are able to use cloud services. 

Since the mentioned architecture is of a modular 
type, it can be adapted for various other applications. 
This may include increasing the number of robots in 
a system, of heterogeneous or homogenous type. 

4. Improvement of Multi-Robot Path Planning 

4.1. Some Properties of D* Lite Algorithm 

 In order to plan the robot motion, the environment 
map can be presented as a 2D uniform resolution 
occupancy grid. In this grid, each cell is assigned a 
traversal cost greater than zero, which represents the 
difficulty of entering that cell. This grid is usually 
approximated as a discrete graph and some graph-
based search technique can be applied for path plan-
ning. One of the techniques by which this can be per-
formed is to define the centre of each cell as a single 
node in the corresponding graph. Adjacent nodes are 
connected with the edges. Edge cost is usually adopt-
ed as some combination of the traversal cost of nodes 
it connects and the edge length [11]. Generally speak-
ing, the purpose of robot path planning algorithms, 
including those from the A* family, is to find a path 
from start to goal position with minimal total cost. 

The A* algorithm calculates a path assuming that 
the graph in which the search is performed is static, 
i.e. not to change. However, the real situation is usu-
ally often such that the environment in which the 
robot moves is only partially known or even com-
pletely unknown. In this case, path planning process 

is usually done assuming that parts of the environ-
ment that are unknown at that moment are free to 
pass, while the robot observes the environment dur-
ing its motion and the map is updated on the basis of 
this data. In addition, changes in the environment 
may occur during the robot motion. In both cases, the 
environment map available for mission planning is 
dynamic and therefore the graph used for path plan-
ning also changes. A consequence of this may be that 
the solution generated by the A* algorithm is not 
optimal or even not valid. In order to avoid this, in 
the mentioned cases A* algorithm resets the search 
process (expansion of the cells) and calculates the 
path from the beginning (relative to the current posi-
tion of the robot), without the possibility of using the 
search results from the previous steps. These prob-
lems are more effectively solved by so-called incre-
mental algorithms (an extension of A* algorithm), 
bearing in mind that when changes in the environ-
ment map are detected, they use the results from the 
previous search steps to calculate a new one or to 
correct an existing path if necessary. D* Lite belongs 
to these algorithms [17]. 

D* Lite is a variant of the more famous D* algo-
rithm. It is at least as efficient as the D*, and differs 
from it by algorithmic steps and is simpler in this 
respect. D* Lite works by generating an initial solu-
tion basically in a similar way as the A* algorithm. 
Then, if changes in the environment are detected, D* 
Lite performs a replanning process to check the cur-
rent solution and, if necessary, to correct it or calcu-
late the new one with the maximum possible use of 
search results from previous iterations. In other words, 
if a graph change occurs D* Lite does not reset the 
search (does not return that process to the beginning). 
This makes D* Lite significantly more efficient than 
the basic A* algorithm. 

D* Lite unlike basic version of A* searches path 
from sgoal to sstart. During operation, D* Lite generates 
and updates the value of the following functions that 
characterize cell s: 

• g(s), the minimum cost of moving from sgoal to s 
found so far; 

• h(s) or heuristic value, estimates the minimum 
cost of moving from s to sstart. Using heuristic value 
ensures that the search tree is directed toward the 
most optimistic cells in terms of belonging to the 
optimal path from start to goal cell (this speeds up the 
search); 

• f(s) = g(s) + h(s), estimates the minimum cost 
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A direct consequence of this is the unloading of robots 
as they are able to use cloud services.
Since the mentioned architecture is of a modular 
type, it can be adapted for various other applications. 
This may include increasing the number of robots in a 
system, of heterogeneous or homogenous type.

4. Improvement of Multi-Robot Path 
Planning
4.1. Some Properties of D* Lite Algorithm
 In order to plan the robot motion, the environment 
map can be presented as a 2D uniform resolution oc-
cupancy grid. In this grid, each cell is assigned a tra-
versal cost greater than zero, which represents the 
difficulty of entering that cell. This grid is usually ap-
proximated as a discrete graph and some graph-based 
search technique can be applied for path planning. 
One of the techniques by which this can be performed 
is to define the centre of each cell as a single node in 
the corresponding graph. Adjacent nodes are con-
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nected with the edges. Edge cost is usually adopted 
as some combination of the traversal cost of nodes it 
connects and the edge length [11]. Generally speaking, 
the purpose of robot path planning algorithms, in-
cluding those from the A* family, is to find a path from 
start to goal position with minimal total cost.
The A* algorithm calculates a path assuming that the 
graph in which the search is performed is static, i.e. 
not to change. However, the real situation is usually 
often such that the environment in which the robot 
moves is only partially known or even completely un-
known. In this case, path planning process is usually 
done assuming that parts of the environment that are 
unknown at that moment are free to pass, while the 
robot observes the environment during its motion 
and the map is updated on the basis of this data. In ad-
dition, changes in the environment may occur during 
the robot motion. In both cases, the environment map 
available for mission planning is dynamic and there-
fore the graph used for path planning also changes. 
A consequence of this may be that the solution gen-
erated by the A* algorithm is not optimal or even not 
valid. In order to avoid this, in the mentioned cases A* 
algorithm resets the search process (expansion of the 
cells) and calculates the path from the beginning (rel-
ative to the current position of the robot), without the 
possibility of using the search results from the previ-
ous steps. These problems are more effectively solved 
by so-called incremental algorithms (an extension 
of A* algorithm), bearing in mind that when changes 
in the environment map are detected, they use the 
results from the previous search steps to calculate a 
new one or to correct an existing path if necessary. D* 
Lite belongs to these algorithms [17].
D* Lite is a variant of the more famous D* algorithm. 
It is at least as efficient as the D*, and differs from it 
by algorithmic steps and is simpler in this respect. D* 
Lite works by generating an initial solution basically 
in a similar way as the A* algorithm. Then, if chang-
es in the environment are detected, D* Lite performs 
a replanning process to check the current solution 
and, if necessary, to correct it or calculate the new 
one with the maximum possible use of search results 
from previous iterations. In other words, if a graph 
change occurs D* Lite does not reset the search (does 
not return that process to the beginning). This makes 
D* Lite significantly more efficient than the basic A* 
algorithm.

D* Lite unlike basic version of A* searches path from 
sgoal to sstart. During operation, D* Lite generates and 
updates the value of the following functions that 
characterize cell s:
 _ g(s), the minimum cost of moving from sgoal to s 

found so far;
 _ h(s) or heuristic value, estimates the minimum 

cost of moving from s to sstart. Using heuristic value 
ensures that the search tree is directed toward the 
most optimistic cells in terms of belonging to the 
optimal path from start to goal cell (this speeds up 
the search);

 _ f(s) = g(s) + h(s), estimates the minimum cost of 
moving from sstart via s to sgoal;

 _ rhs(s) = mins’∈Succ(s)(c(s, s’) + g(s’)) or rhs(s) = 0 
if s = sgoal, one step lookahead estimate of s and 
represents path cost derived from looking at the 
g values of its neighbors. In implementation, each 
cell maintains a pointer to the cell from which it 
derives its rhs value, so the robot should follow the 
pointers from its current cell to pursue an optimal 
path to the goal.

The pseudocode of of D* Lite is shown in Algorithm 1 
[22] and its main steps will be explained below. During 
the path searching, D* Lite classifies cells as consis-
tent if g(s) = rhs(s), or inconsistent in other case. Cells 
that are inconsistent can be overconsistent (if g(s) > 
rhs(s)) or underconsistent (if g(s) < rhs(s)). Similar to 
other algorithms from the A* and D* family, D* Lite 
generates and updates OPEN list (set of inconsistent 
cells) to perform efficient expansion of these cells 
and develop a search tree. Expansion of cells (the cell 
becomes expanded when it is removed from OPEN 
list) is based on the key function as in line 8, while 
its value is defined as in line 1. Initializing the D* Lite 
algorithm involves defining the goal cell parameters 
so that it becomes inconsistent and inserted into the 
OPEN list (lines 15-17). The planner then calculates 
the minimum cost path by calling the ComputePath() 
function (line 19). The robot moves along the calcu-
lated path (sstart is also updated). If some changes in 
the environment occur during the motion of the ro-
bot within the range of its sensor, the algorithm up-
dates the rhs parameters of all cells directly affected 
by the change and inserts those cells that become in-
consistent in the OPEN list (lines 20-23). After that, 
it performs checking/replanning the path by recall-
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ing the ComputePath() function. Line 18 essentially 
means that in a real implementation the planner ends 
its work when it becomes sstart = sgoal (when the robot 
reaches the goal cell).

Algorithm 1: D* Lite algorithm (basic version)

key(s)
return [min(g(s), rhs(s)) + h(sstart, s); min(g(s), rhs(s))];
UpdateCell(s)
02. if s was not visited before
03.     g(s) = ∞;
04. if (s ≠ sgoal) rhs(s) = mins’∈Succ(s)(c(s, s’) + g(s’)); 
05. if (s ∈ OPEN) remove s from OPEN;
06. if (g(s) ≠  rhs(s)) insert s into OPEN with key(s);
ComputePath()
07. while (mins∈OPEN(key(s)) < key(sstart) OR rhs(sstart) ≠ g(sstart))
08.     remove cell s with the minimum key from OPEN;
09. if (g(s) > rhs(s))
10.     g(s) = rhs(s);
11.     for all s’ ∈ Pred(s) UpdateCell(s’);
12. else
13.     g(s) = ∞;
14.     for all s’ ∈ Pred(s) ∪ {s} UpdateCell(s’);
Main()
15. g(sstart) = rhs(sstart) = ∞; g(sgoal) = ∞;

16. rhs(sgoal) = 0; OPEN = ∅;
17. insert sgoal into OPEN with key(sgoal);
18. forever
19. ComputePath();
20.     wait for changes in edge costs;
21.      for all directed edges (u, v) with changed edge costs
22.          Update the edge cost c(u, v);
23.          UpdateCell(u);

If the edge costs are equal to the lengths of the cor-
responding transitions, then D* Lite generates the 
path of the least cost which in this case is also the 
shortest path in the graph-representation of the en-
vironment. 
A measure of the efficiency of algorithms that per-
form path planning based on graph search is the num-
ber of expanded nodes [21, 22]. By expanding a fewer 
cells, the algorithm comes to the solution (calculates 
the path) faster. Analyzing from the aspect of D* Lite 
algorithm, any detected change in the environment 
during the motion of the robot leads to calling the 

function for checking the validity of the current path 
and to correct it if necessary. Within any particular 
execution of this function no one cell is expanded 
more than twice [23]. Multiplying the calling of this 
function generally causes a cumulative increase in 
the total number of expanded cells in planning/re-
planning process.

4.2. Fuzzy Inference System
The megastore environment usually involves static 
structures, such as walls and shelves, whose location 
is apriori known and they are not considered as par-
ticular challenge for generating the path of robots. On 
other side, people (workers and/or buyers) that move 
relatively unpredictably can slow or stop the robots, 
increasing their travel time and total paths length. 
Modern technologies provide a relatively simple 
monitoring of statistics on the average popularity in 
some location depending on the time. One of the ex-
amples of statistical data processing in this regard is 
Google’s Popular times graph. This graph shows how 
busy some location typically is during different times 
of the day and it is based on the average number of vis-
itors over the last several weeks.
From the aspect of robots path planning in crowded 
and complex environment, such as megastore, chang-
es in crowd density or the average number of buyers 
per unit of the time are important information, be-
cause they can affect navigation costs, as it was men-
tioned. If dynamic of change of crowd density in store 
or its parts is relatively repeatable over time (for ex-
ample at a daily or weekly level), this can be used to 
improve the efficiency of task and motion planning 
for robots that operate in this environment. Having 
that in mind, in this paper the application of fuzzy 
inference system is proposed in order to regulate the 
change in the traversal cost of the cells in the map to 
follow the patterns of change in the crowd density. 
In our approach, traversal cost of the cells depends 
on the time (i.e. iteration number of the robots en-
gagement) and the distance of the cells from the pre-
defined part of the store. In this way, D* Lite will gen-
erate initial path through the areas that are expected 
to be high-cluttered only when open space or other 
more favorable options are not available.
Suppose that the map of store (Figure 2) is presented as 
a discrete grid of 16x16 cells, intended for planning the 
path on global level. In order to present the proposed 
concept for improvement of path planning in this me-
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gastore scenario, our approach makes assumption that 
in one part of store - around the third row of shelves 
(Figure 2), the dynamic of change of crowd density is 
relatively repeatable on a daily level. From the aspect 
of the search algorithm, a larger number of buyers in 
some part of the store mean higher probability of occu-
pancy of appropriate cells in map. Therefore, the repet-
itive statistics is supposed to be as follows:
 _ probability of occupancy of the cells nearest to the 

third row of shelves depending on the iteration 
number (part of the day) is as shown in Figure 4,

Figure 4 
Probability of occupancy of the cells nearest to the third row of shelves depending on the time

Figure 5
Block diagram of fuzzy inference system for calculating the traversal cost of the cells
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- moving away from the third row of shelves for 
one cell in all directions the probability of occu-
pancy decreases by 33%. 

Also, it is supposed that the time between two con-
secutive iterations of engagement of a multi-robot 
system for transport of goods is approximately con-
stant - about 10 minutes. Working time of megastore 
is from 6h to 23h, so the total number of iterations of 
the engagement of the multi-robot system is about 
100. 
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 _ moving away from the third row of shelves for one 
cell in all directions the probability of occupancy 
decreases by 33%.

Also, it is supposed that the time between two con-
secutive iterations of engagement of a multi-robot 
system for transport of goods is approximately con-
stant - about 10 minutes. Working time of mega-
store is from 6h to 23h, so the total number of itera-
tions of the engagement of the multi-robot system is  
about 100.

Block diagram of the proposed fuzzy inference system 
is shown in Figure 5.
The fuzzy membership functions for the input lin-
guistic variables, as well as the output linguistic vari-
able are given in Figure 6.
The fuzzy rules for determining the traversal cost of 
cells in the map are constructed as in Table 1.

Fuzzy logic techniques are efficient in solving com-
plex, ill-defined problems that are characterized by 
uncertainty of environment and fuzziness of infor-
mation [36, 37]. Taking into account that disturbanc-
es and noises are common sources of uncertainties, it 
can be concluded that from the aspect of fuzzy imple-
mentation this system is highly resistant to noise and 
disturbance [38, 39, 40].
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Figure 6
Fuzzy membership functions
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(b) Input variable 2 “distance of the cell to the third row of shelves (in number of cells)” 

(c) Output variable “traversal cost of the cell”
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Table 1
Fuzzy rules table for calculating the traversal cost of the cells in the map

Rule number Fuzzy input 1 Fuzzy input 2 Fuzzy output

1 morning small distance medium cost

2 morning not small distance small cost

3 noon small distance large cost

4 noon medium distance medium cost

5 noon large distance small cost

6 afternoon small distance medium cost

7 afternoon not small distance small cost

8 evening - small cost

Connection type “AND”

4.3. Online Learning
In addition to fuzzy inference system, it is proposed 
to integrate in considered architecture, under the in-
troduced assumptions, an online learning algorithm 
based on binary moving-window or M-out-of-N detec-
tor [10]. With this learning-based approach, we will try 
to obtain reusing data collected with robots’ sensors 
from previous iterations whenever possible, in order to 
additionally improve the performance of multi-robot 
system with every execution of repetitive tasks
 As the robots travel and observe the environment, 
they update the map. The updating of the map in es-
sence depends on the number of robots, their paths, 
as well as the range of sensors. In order to apply pro-
posed learning algorithm, status of each cell of map 
observed by iterations of robots engagement is pre-
sented as binary time series of “0” (free cell) and “1” 
(blocked cell). The moving-window slides on these 
bits and the change of the start cell status (status 
according to the basic map) for the initial path gen-
eration process in the first subsequent iteration is 
declared when test statistics satisfies the following: 
there exist at least M of N bits of the opposite value in 
regard to the actual bit value, where N is the window 
length (Figure 7). Applied to specific case, this means 
that if in the N successive iterations an obstacle is de-
tected M times in a cell that should be free according 
to the basic map, then during generation process of 
the initial path in the first subsequent iteration this 

cell is declared as blocked. In general, the same logic 
is applied to cells that should be blocked according to 
the basic map. Of course, there will be iterations that 
some cells are outside of the sensors range of all ro-
bots, so at the end of these iterations statuses as in the 
start (basic) map are assigned to them (with the aim 
of statistical estimation in the learning algorithm).

Figure 7
Block diagram of learning system

The fuzzy rules for determining the traversal cost 
of cells in the map are constructed as in Table 1. 
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sensors from previous iterations whenever possible, 
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ing to the basic map, then during generation process 
of the initial path in the first subsequent iteration this 
cell is declared as blocked. In general, the same logic 
is applied to cells that should be blocked according to 
the basic map. Of course, there will be iterations that 
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bots, so at the end of these iterations statuses as in the 
start (basic) map are assigned to them (with the aim 
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Figure 7. Block diagram of learning system. 

This detector provides the forgetting of past itera-
tions, which is regulated by window length N. Pa-
rameter M is adjusted according to the specific envi-
ronment, depending on the period of engagement of 
robots and expected changes in the environment. 

Suggested learning system has a simple structure 
and therefore it is very easy to be implemented. After 
each iteration, “System Manager” performs the anal-
ysis of detected changes in the environment, as well 
as the analysis of the effects of applying the learning 
algorithm in previous iterations. The results of these 
analysis can be used in further upgrading of the pro-
posed concept to correct the application of the learn-
ing algorithm (in terms of correction the values of 
parameters M and N, etc). 

The resistance of this segment of the system to the 
influence of disturbances and noises mostly depends 
on the probability of detection PD and false alarm PF 
of the applied M-out-of-N detector, which will be 
defined below [10]. 

If the probability of detection of single cell status 
changing in map by robot’s sensors, i.e. bit status 
changing in learning algorithm in each of N single 
bits is pd, then the probability of declaring a initial bit 
status changing in at list M out of N bits, is: 
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Similarly, if the probability of false alarm per sin-
gle cell status changing in map by robot’s sensors is 
pfa, then the probability of declaring a false alarm in 

This detector provides the forgetting of past itera-
tions, which is regulated by window length N. Pa-
rameter M is adjusted according to the specific envi-
ronment, depending on the period of engagement of 
robots and expected changes in the environment.
Suggested learning system has a simple structure and 
therefore it is very easy to be implemented. After each 
iteration, “System Manager” performs the analysis of 
detected changes in the environment, as well as the 
analysis of the effects of applying the learning algo-
rithm in previous iterations. The results of these anal-
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ysis can be used in further upgrading of the proposed 
concept to correct the application of the learning al-
gorithm (in terms of correction the values of parame-
ters M and N, etc).
The resistance of this segment of the system to the 
influence of disturbances and noises mostly depends 
on the probability of detection PD and false alarm PF 
of the applied M-out-of-N detector, which will be de-
fined below [10].
If the probability of detection of single cell status 
changing in map by robot’s sensors, i.e. bit status 
changing in learning algorithm in each of N single bits 
is pd, then the probability of declaring a initial bit sta-
tus changing in at list M out of N bits, is:
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Similarly, if the probability of false alarm per single 
cell status changing in map by robot’s sensors is pfa, 
then the probability of declaring a false alarm in at 
least M out of N bits, resulting in the declaration of a 
false initial bit status changing, is:
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In real systems, PD and PF depend on the characteristics 
of the robot’s sensors, but also on the characteristics of 
the multi-robot system and the environment in which 
the robots move, and it is usually valid that pd ≫ pfa.

5. Simulation, Results and Discussion
The simulation was organized completely in accor-
dance with Figure 1 and the description of the system 
architecture given in Section 3.
All modules are included, but some processes can be 
underlined as specific from the aspect of the topic of 
this paper, as follows:
 _ checking the shelves and determining the percent-

age of their fullness with goods after the specified 
intervals,

 _ generating a notification if the shelf fullness is low-
er than the preset level,

 _ planning of engagement the available robots for 
goods transport from the warehouse to the store 

with the specification of the start and the goal po-
sitions of each robot,

 _ planning/replanning of robots paths,
 _ implementation of fuzzy inference system and 

learning algorithm with a purpose of improvement 
the path planning efficiency,

 _ motion coordination,
 _ solving a conflict situations and updating of envi-

ronment map based on information collected with 
robots sensors.

These are the most complicated and time consuming 
tasks, so they are performed on cloud level in simula-
tion (Figure 1).
In order to test the characteristics of the proposed ap-
proach for improvement the efficiency of path plan-
ning on global level, we applied it to a large number of 
various data sets in simulated megastore scenario. The 
map of store in accordance with Section 4.2. is repre-
sented as a discrete 16x16 grid. To apply graph-based 
search technique, it is adopted that the robot can move 
from an unblocked cell to one of the eight neighboring 
cells, if it is also unblocked (eight-connected graph). 
The costs of edges are obtained by multiplying of the 
traversal cost of the cell in which the robot makes the 
move and the length of the edge (one for orthogonal 
movements or √2 for diagonal movements), while the 
costs of edges into obstacles are infinite.
The information about environment changing is not 
apriori available to robots and system manager. As 
the robots move from start to goal locations, they re-
ceive new information concerning the traversability 
of surrounding cells within sensor range (one cell in 
all directions).
Fuzzy system and learning algorithm were tested sepa-
rately to simplify the analysis of the effect of their appli-
cation. This approach is applied because these two sys-
tems work independently and are designed to improve 
path planning by exploiting different information from 
the environment and its dynamics. With this in mind, 
in a real situation they would not interfere with each 
other, but the effects of their application would collec-
tively contribute to the improvement of path planning. 
The cloud approach has always been applied, both in 
the case of the fuzzy system application and in the case 
of the learning algorithm application.
In order to test fuzzy inference system presented in 
Section 4.2., the probability of occupancy of the cells 
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nearest to the third row of shelves depending on the 
iteration number was exactly as on the graph in the 
Figure 4, but with the possibility of deviation in each 
iteration of ± 20% (to test at the same time the robust-
ness of the system and the proposed method from the 
aspect of fuzzy implementation). Also, moving away 
from the third row of shelves for one cell in all direc-
tions the probability of occupancy decreases by 33%. 
The traversal costs of the cells are defined in accor-
dance with the Figure 6.
The results of robots path planning in the phase of 
goods transport from the warehouse to the store, in 
iterations that present the effects of using fuzzy infer-
ence system, are shown in Figure 8.
Dashed line represents initially computed path, while 
continuous line is final path. These two lines do not 

match in general case, having in mind that during the 
robot motion along the initial path the changes in an 
environment are detected which can require the cor-
rection of the motion plan.
The situation shown in Figure 8 a) and Figure 8 b) 
implies the time when the crowd in the observed part 
of the store is not large, so the fuzzy inference system 
defines relatively low traversal cost of the appropriate 
cells in the map. In this case, D* Lite algorithm gen-
erates the same initial solution regardless of whether 
or not fuzzy logic is applied. There is no correction of 
global path, also. On the other side, in Figure 8 c) and 
Figure 8 d), path planning in situation of the largest 
crowd density is presented. It can be seen that Robot 
1 was forced to make two corrections of the path (on 
global level) in the situation without using the fuzzy 
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crowd density is presented. It can be seen that Robot 
1 was forced to make two corrections of the path (on 
global level) in the situation without using the fuzzy 
inference system. The assumption is that a local 
planner cannot solve this problem in a safe way so a 
path replanning on global level is needed. In the situ-
ation with the application of the fuzzy inference sys-
tem there was no correction of the path. Also, it can 
be concluded that path in situation without using the 
fuzzy inference system is quite risky from the aspect 
of the human-robot interactions. 

We have run several cycles with 100 consecutive 
iterations in every cycle and calculated mean total 
paths length per cycle. We got that the mean total 
paths length per cycle in the situation with the im-
plementation of the fuzzy system is shorter for about 
2% compared to the option without the application of 
a fuzzy system. 

 Also, the simulation experiments for testing learn-
ing approach were conducted in the same map and 
discrete grid. Two scenarios are presented in Figure 9. 
In scenario I there is one obstacle that occupied sev-
eral cells with occupancy-time T1=30T, where T is 
time between two consecutive iterations of robots 
engagement. In scenario II three obstacles appeared 
with occupancy-times T21, T22 and T23 
(T21≠T22≠T23) with duration between 10T and 35T. 
The parameters of binary moving-window detector 
are set to M=3 and N=5. 
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inference system. The assumption is that a local plan-
ner cannot solve this problem in a safe way so a path 
replanning on global level is needed. In the situation 
with the application of the fuzzy inference system 
there was no correction of the path. Also, it can be 
concluded that path in situation without using the 
fuzzy inference system is quite risky from the aspect 
of the human-robot interactions.
We have run several cycles with 100 consecutive iter-
ations in every cycle and calculated mean total paths 
length per cycle. We got that the mean total paths 
length per cycle in the situation with the implementa-
tion of the fuzzy system is shorter for about 2% com-
pared to the option without the application of a fuzzy 
system.

Figure 10  
Path planning results without using learning algorithm and with using learning algorithm
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Figure 10.  Path planning results without using learning algorithm 
and with using learning algorithm. 

For every scenario we have run several cycles with 
100 consecutive iterations in every cycle and calcu-
lated mean expanded cells and mean total paths 
length per cycle. 

The results of robots path planning in the phase of 
transport of goods from the warehouse to the store, 
for scenarios I and II in iterations that present the 
effects of using learning algorithm, are shown in Fig-
ure 10. 

The statistics for described scenarios is shown in 
Table 2. 
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Mean total paths length reduction with using learning algorithm 

Scenario 

Mean total paths length per cycle of 
100 iterations Reduction 

(%) without learning 
algorithm 

with learning 
algorithm 

I 4342 4289 1,22% 
II 4558 4391 3,66% 

 
Based on Table 2, it can be concluded that mean 

total paths lengths are significantly reduced with us-
ing learning algorithm (Figure 10 b and Figure 10 d), 
compared to situations when learning is not applied 
(Figure 10 a and Figure 10 c). This is because the 
application of learning algorithm, as well as the fuzzy 
inference system, provides an adaptive approach to 
path calculating by D* Lite, with taking into account 
the experience in early planning phase. In this way 
the creation of smart cost map is achieved, so that the 
initial paths on global level are searched with predict-
ed changes in the environment.  

The robustness of the system and the proposed 
method from the aspect of learning algorithm imple-
mentation depends in general on probability of detec-
tion and false alarm of applied M-out-of-N detector 
and this problem is considered in Section 4.3. 

6. Conclusions 

In this paper an autonomous cloud-based multi-
robot system designed to execute highly repetitive 
tasks in a dynamic environment such as a modern 
megastore is considered. Cloud level is intended for 
performing the most demanding operations related to 
data processing, allocation of tasks between robots, 
application of the fuzzy inference system and learn-
ing algorithm, path planning and replanning, motion 
coordination, etc. A direct consequence of this is the 
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II 4558 4391 3,66% 

 
Based on Table 2, it can be concluded that mean 

total paths lengths are significantly reduced with us-
ing learning algorithm (Figure 10 b and Figure 10 d), 
compared to situations when learning is not applied 
(Figure 10 a and Figure 10 c). This is because the 
application of learning algorithm, as well as the fuzzy 
inference system, provides an adaptive approach to 
path calculating by D* Lite, with taking into account 
the experience in early planning phase. In this way 
the creation of smart cost map is achieved, so that the 
initial paths on global level are searched with predict-
ed changes in the environment.  

The robustness of the system and the proposed 
method from the aspect of learning algorithm imple-
mentation depends in general on probability of detec-
tion and false alarm of applied M-out-of-N detector 
and this problem is considered in Section 4.3. 

6. Conclusions 

In this paper an autonomous cloud-based multi-
robot system designed to execute highly repetitive 
tasks in a dynamic environment such as a modern 
megastore is considered. Cloud level is intended for 
performing the most demanding operations related to 
data processing, allocation of tasks between robots, 
application of the fuzzy inference system and learn-
ing algorithm, path planning and replanning, motion 
coordination, etc. A direct consequence of this is the 

Also, the simulation experiments for testing learning 
approach were conducted in the same map and dis-
crete grid. Two scenarios are presented in Figure 9. 
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In scenario I there is one obstacle that occupied 
several cells with occupancy-time T1=30T, where 
T is time between two consecutive iterations of 
robots engagement. In scenario II three obstacles 
appeared with occupancy-times T21, T22 and T23 
(T21≠T22≠T23) with duration between 10T and 
35T. The parameters of binary moving-window de-
tector are set to M=3 and N=5.
For every scenario we have run several cycles with 
100 consecutive iterations in every cycle and cal-
culated mean expanded cells and mean total paths 
length per cycle.
The results of robots path planning in the phase of 
transport of goods from the warehouse to the store, for 
scenarios I and II in iterations that present the effects 
of using learning algorithm, are shown in Figure 10.
The statistics for described scenarios is shown in 
Table 2.

Based on Table 2, it can be concluded that mean to-
tal paths lengths are significantly reduced with us-
ing learning algorithm (Figure 10 b and Figure 10 d), 
compared to situations when learning is not applied 
(Figure 10 a and Figure 10 c). This is because the ap-
plication of learning algorithm, as well as the fuzzy 
inference system, provides an adaptive approach to 
path calculating by D* Lite, with taking into account 
the experience in early planning phase. In this way 
the creation of smart cost map is achieved, so that the 
initial paths on global level are searched with predict-
ed changes in the environment. 
The robustness of the system and the proposed meth-
od from the aspect of learning algorithm implemen-
tation depends in general on probability of detection 
and false alarm of applied M-out-of-N detector and 
this problem is considered in Section 4.3.

6. Conclusions
In this paper an autonomous cloud-based multi-robot 
system designed to execute highly repetitive tasks in a 
dynamic environment such as a modern megastore is 
considered. Cloud level is intended for performing the 
most demanding operations related to data process-
ing, allocation of tasks between robots, application of 
the fuzzy inference system and learning algorithm, 
path planning and replanning, motion coordination, 
etc. A direct consequence of this is the unloading of 
robots because they are users of cloud services in this 
architecture.
D* Lite is applied as algorithm for path planning on 
global level, taking into account its high efficiency in 
environments that are partially known or completely 
unknown. In order to further improve path planning 
process in complex and crowded environment, imple-
mentation of smart cost map based on fuzzy inference 
system and learning algorithm is proposed.
Proposed concept substantially reduces the total 
paths length. This makes preconditions for energy 
saving, as well as for increasing the average speed of 
the robots, so that they reach the destination for a 
shorter time and perform tasks more efficiently. Also, 
the risk in path planning related to the human-robot 
interactions can be reduced.
The important advantage of the system is simplicity 
of implementation. Its main disadvantage is sensitiv-
ity of the communication loss.
A perspective for future works would be to implement 
some advanced machine learning techniques in com-
bination with multi-criteria decision making meth-
ods, in order to reinforce smart cost map intended 
for path planning. The idea is based on the fact that a 
dynamic environment may have, besides crowds and 
obstacles, other specifics that affect the robots mo-
tion [41, 42] and that are desirable to consider in the 
initial planning process.
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with learning 
algorithm

I 4342 4289 1,22%
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