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Power allocation plays a pivotal role in improving the communication performance of interference-limited 
wireless network (IWN). However, the optimization of power allocation is usually formulated as a mixed-inte-
ger non-linear programming (MINLP) problem, which is hard to solve. Whale optimization algorithm (WOA) 
has recently gained the attention of the researcher as an efficient method to solve a variety of optimization 
problems. WOA algorithm also has the disadvantages of low convergence accuracy and easy to fall into local op-
timum. To solve the above problems, we propose Cosine Compound Whale Optimization Algorithm (CCWOA). 
First of all, its unique cosine nonlinear convergence factor can balance the rate of the whole optimization pro-
cess and prevent the convergence speed from being too fast. Secondly, the inertia weight and sine vector can 
increase the probability of jumping out of the local optimal solution. Finally, the Archimedean spiral can reduce 
the risk of losing the optimal solution. A representative benchmark function is selected to test the convergence 
rate of CCWOA algorithm and the optimization performance of jumping out of local optimum. Compared with 
the representative algorithms PFP and GAP, the optimization effect of CCWOA is almost consistent with the 
above two algorithms, and even exceeds 4% - 6% in numerical value. The advantage of CCWOA is that it has 
lower algorithm complexity, which has a good advantage when the network computing resources are fixed. In 
addition, the optimization effect of CCWOA is higher than that of WOA, which lays a good foundation for fur-
ther application of swarm intelligence optimization algorithm in network resource allocation.
KEYWORDS: Interference network, Power allocation, WOA, Archimedes spiral, Nonlinear convergence factor.
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1. Introduction
The wireless networks have been widely used in ci-
vilian and military fields, and people rely on wireless 
networks to transmit crucial private information. 
Due to broadcasting nature of wireless channel, how 
to ensure the security of communication with eaves-
droppers become a great challenge [13, 21]. Security 
is a crucial issue in constructing and maintaining 
wireless communication networks. Shannon’s paper 
[25] describes an unusual case now called an eaves-
dropping channel. In this case, the legitimate senders 
want to communicate securely with the legitimate 
receivers in the eaves-dropper’s presence. Senders 
hope to transmit confidential information to receiv-
ers. However, it is difficult to rule out the influence 
of eavesdroppers on communication. Eavesdroppers 
may illegally extract information from an ongoing 
transmission without being detected [3, 18].
The physical layer security is becoming an emerging 
research direction. It is a way to use the transmis-
sion channel’s inherent randomness to ensure safe-
ty, which is more reliable than traditional key-based 
encryption algorithms [28]. Wyner first mentions the 
concept of physical layer security [33]. Scholar studies 
the security of single input and single out-put eaves-
dropping channels and analyzes the physical layer se-
curity issues [29]. Scholar aims to optimize the secre-
cy throughput of wireless network with the presence 
of eavesdroppers, which is the difference between 
user throughput and eavesdropper throughput. Opti-
mizing security energy efficiency (SEE) is also an im-
portant research goal indicated by the ratio of secrecy 
throughput to total network power consumption [22]. 
Thus far, the security researches of physical layer are  
mainly divided into two directions: optimizing secre-
cy throughput and improving security energy efficien-
cy. Follow up research on physical layer security are 
based on it. Using ground terminals to transmit arti-
ficial noise can improve the confidential throughput 
of system by influencing the capacity of eavesdrop-
ping channel [9, 15]. In [9, 35], to increase the channel 
throughput of legal channel, coordination and coop-
eration is employed in the broadcast channel. In [31, 
38], scholars study beamforming technology, which 
by designing the direction of transmitted signal, sig-
nal received by the legitimate receiver is enhanced. 
It not only improves the throughput of legal channel, 

but also reduces the throughput of eavesdropping 
channel. In [26], a path-following procedures (PFP) 
of low complexity and rapid convergence is developed 
to achieve optimal power allocation in multi-user 
interference networks. [29] and [30] describe power 
control algorithms that maximize SEE in decode for-
ward and amplify forward relay networks, assuming 
that channel state information (CSI) is available. In 
[12], scholars propose a distributed power control 
algorithm for maximizing SEE direction finding re-
lay protection. In [32], a general algorithm procedure 
(GAP) embedded with an iterative power allocation 
algorithm (IPAA) is proposed, which solves the basic 
trade-off between energy efficiency (EE) and spectral 
efficiency (SE).
Intelligent optimization algorithm is a kind of me-
ta-heuristic algorithm. Because of its simple struc-
ture and low computational complexity, it has been 
widely used to optimize resources in wireless net-
works, such as power allocation for spectrum and 
energy efficiency. In [7], MOMGWO was proposed to 
solve the multi-objective optimization problem in the 
spectrum sensing field of cognitive radio networks. In 
[37], a new Ant Colony System is proposed for com-
puting the node-disjoint optimal transmission ener-
gy consumption route for coded cooperative mobile 
networks. The author uses the WOA to control the 
parameters (weights and biases) in the training feed-
forward neural network [2].
In the communication network, how to ensure the 
secure communication between the two parties has 
always been a research hotpot. In this paper, we use 
an interference-restricted information transfer mod-
el to ensure the communication quality of legitimate 
users. The task of this paper is to optimize the mini-
mum secure throughput (MST) of eavesdropper and 
SEE of transmission link by using CCWOA to control 
power allocation.
WOA is an intelligent optimization algorithm pro-
posed by Mirjalili, which imitates the hunting behavior 
of humpback whales [19]. WOA has been widely used 
in various fields because of its unique optimization 
mechanism [14]. However, WOA and GWO [20], RFO 
[23], MPA [36] intelligent optimization algorithms 
have similar shortcomings, such as premature con-
vergence and easy to fall into local optimization [5]. To 
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overcome them, [36] introduce some chaotic variables, 
which combine the parameters of WOA with the chaot-
ic map, effectively improves the convergence accuracy. 
To improve the local search ability, a hybrid algorithm 
combining tabu search and WOA is proposed in [1]. 
[10] uses reverse learning for initialization and offers 
an opposition -based whale optimization algorithm to 
enhance the search space’s algorithm exploration. The 
above improvements only improve the performance of 
a single aspect, and few people study the overall opti-
mization. This provides a new direction for improving 
the overall performance of WOA in the future.
We analyze the search mechanism of WOA and find 
that its search mechanism has defects. With the in-
crease of the number of iterations, the linear conver-
gence factor of WOA will lead to premature conver-
gence and easy to fall into local optimum. Therefore, 
when WOA is used in large-scale mixed nonlinear 
programming problems, such as network resources, it 
is not suitable to solve multiple optimization values. 
Based on the improvement direction, CCWOA pro-
poses two improvement strategies. 
1 The contribution lies in the use of a new type of 

convergence factor-cosine vector, convergence 
rate problem in the iterative process of nonlinear 
equilibrium. We are also inspired by the parti-
cle swarm optimization (PSO), the idea of inertia 
weight is introduced into this algorithm, which can 
adjust the best position of whale in time. 

2 Then, replace the logarithmic spiral in the original 
WOA with an equidistant Archimedean spiral. The 
equidistant spiral can reduce the risk of losing the 
optimum whale position due to the iteration step 
too large of the logarithmic spiral. On the one hand, 
the new sine vector will increase the randomness 
of selection and enhance the probability of finding 
the global optimum.

2. System Model and Problem 
Description

2.1. System Model
As shown in Figure 1, an IWN is composed of M sin-
gle antenna transmitters and M users. Each group of 
communication links consists of a transmitter and a 

user. Single-antenna transmitter hopes to transmit 
confidential information to user secretly. Confidential 
information is denoted as iS . It is required that eaves-
dropper can get information as few as possible when 
the IWN is working. Secrecy throughput is used as per-
formance indicator. It includes optimizing the MST of 
the eavesdropper and the SEE of legitimate receivers.
Denote by iP the transmit power of transmitter i  
and 1( , , )T

MP P P=  . Assume that
jih  represents the 

channel gain from transmitter j  to user i . The re-
ceived signal at user i  is

,M
i ii i i ji j j ij i

y h PS h P S n
≠

= + +∑ (1)

where 2(0, )i in σ∈  is additive noise.
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Suppose that an eavesdropper exists in the communica-
tion link, which is also receives signal from transmit-
ters. Denote by ieh channel gain from transmitters i to 
eavesdropper, receive signal at the eavesdropper is 

1

M
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formation throughput of user i  is 
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When eavesdropping channel is regarded as part of the 
communication link, assuming its channel gain ieh is 
known [32]. The eavesdropping throughput of eaves-
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h P
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the secrecy throughput for eavesdropping are defined as 
max{ ( ) ( ),0}i if p g p− . Concurrently, energy efficiency 
is the ratio of throughput total network power consump-
tion. The trade-off between EE and spectral SE can 
maximize SEE under the constraints of minimum rate 
requirements and transmit power budget. The total link 
power consumption totP

 
mainly has two parts: transmis-

sion power consumption iP  and circuit power consump-
tion C

iP , so the total power consumption is defined as 

1
( ) ( )M c

tot i i ii
P p p pξ

=
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(5)
                         

 

In a network, we consider optimizing the following two 
fundamental issues. 
2.2  Problem Analysis 

(1). The MST problem can be formulated as fol-
lows 

1, ,

max

max ( ) min [ ( ) ( )]

. . 0 , 1, , ,

i ii Mp

i i

p R p p

s t p p i M
=

Φ = −Γ

≤ ≤ ∀ =

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(6)

                              
 

where max
iP represents the peak transmit power of 

user i . 
(2). The SEE trade-off optimization problem can 
be formulated as follows 

1
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M
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where req
iR represents the minimum rate required 

by user i  and the unit of q  is bits/Joule/Hz. 

MST is a Mixed Integer Nonlinear Programming 
(MINLP) problem in which the CSI transmitted 
between the transmitter and the eavesdropper is 
exponentially distributed. The path tracking algo-
rithm is proposed to solve MST problem [16]. 
The difference between two convex functions is 
used to represent confidentiality rate ( )i pΦ .In 
each iteration, information throughput ( )if p and 
eavesdropping throughput ( )ig p are respectively 
determined by the lower limit ( ) ( )t

iR p  and upper 
limit ( ) ( )t

i pΓ approximate. The path tracking algo-
rithm initialize a feasible solution (0)p , and solve 
the following convex optimization problem in t  
iterations. 

( ) ( )

1, ,
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max ( ) min ( )

. .0 1, ,

t t
ii Mp

i i

p p
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The condition for stopping the iteration is 
( ) ( 1) ( )| ( ) / |t t t ε−Φ −Φ Φ ≤ , where ε  is a set param-

eter. 
For the SEE trade-off optimization problem, bi-
section method and successive approximation 
method are used to solve the problem. The q  val-
ue is improved by the following: 
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max ( ) ( ).M
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=
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GAP [32] can solve the above problem by solving 
a standard convex optimization problem succes-
sively in each iteration. The condition for stop-
ping the iteration is ( )
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whale searching for an optimal. Based on WOA, 
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2. Whale Optimization Algorithm  
WOA is a new population based bionic intelligent algo-
rithm that establishes a mathematical search model 
based on simulated humpback whales' bubble net hunt-
ing behavior. WOA abstracts three procedures: includ-
ing encircling prey, random searching, and spiral posi-
tion updating. 
3.1  Surrounding Prey 
First, humpback whales need to locate their prey, but 
target prey's position in three-dimensional space cannot 
be predicted in advance. In WOA, it is assumed that the 
current optimal whale position is target prey. Hump-
back whale will update its position to current optimal 
during the iteration process. This behavior is formulated 
as a mathematical model. 

*| ( ) ( ) |,D C X t X t= ⋅ −                                    (11)  
*( 1) ( )X t X t A D+ = − ⋅ ,                                 (12) 

             
 

where D  is the distance vector between current opti-
mal and individual whale, and * ( )X t  is the current op-
timal position vector, ( )X t  is the position vector of 
current individual whale, t  is the number of itera-
tions, A  and C  are coefficient vectors. the formula is 
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where a  is called the convergence factor,  which linear-
ly decreases from 2 to 0 as the number of iterations t  
increases, Update with max2(1 / )a t T= − . r  is a uni-
formly distributed random vector, ]1,0[∈r , and maxT is 
the maximum number of iterations.  
3.2  Bubble Nets Prey on Prey 
At this stage, bubble nets predation includes shrinking 
and spiral position renewal. The shrinking is achieved 
by reducing the value of in formula 13. Mathematical 
model of the spiral position update is described as 

bl *( 1) `e cos(2 ) ( )X t D l X tπ+ = ⋅ ⋅ + ,            
(15)

                    
 

where *` | ( ) ( ) |D X t X t= −  is the distance vector between 
individual whale and current optimal, b is a constant, 
and ]11[ ，−∈l . 

Whale shrink encircling circle while moving 
along the spiral path. In order to simulate this 
synchronization process, WOA select the same 
probability p  for contraction and spiral position 
update. Mathematical model is expressed as fol-
lows 
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3.3  Exploring New Prey 

When | | 1A > ,it indicates that whale has deviated 
from the shrinking, which whale needs to ran-
domly select the position of a whale to replace the 
target prey to update its position. Humpback 
whale is forced to leave the target prey, by which 
WOA can expand the search space and realize 
global search.  Mathematical model is as follows  
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where randX is the randomly selected position vec-
tor of individual whale. 

 
4. Improvement 
WOA only provides each parameter's basic set-
ting and fundamental strategy choice, and the 
original algorithm is not enough to solve MINLP 
problems. Therefore, we propose Cosine Com-
pound Whale Optimization Algorithm (CCWOA). 
4.1 Nonlinear Convergence Factor and Inertia 
Weight 
WOA is a metaheuristic algorithm based on popu-
lation iteration, its advantage is that it can con-
verges quickly in the iterative process. The devel-
opment and exploration ability of WOA largely 
depends on the change of convergence factor a . 
The convergence speed is slow and it is unable to 
calculate high complexity when a  decreases line-
arly in the iteration. Analysis displays that a larger 
convergence factor is more capable of global 
search and a smaller convergence factor is more 
suit-able for local development. In the evolution-
ary search process of WOA, convergence factor 
a decreases linearly with the number of iterations, 
which can not fully reflect the actual optimization 
search process [17]. Because cosine function is 
nonlinear in the period interval [8], we consider 
that factor a decreases to a small value with itera-
tion in the early stage of search, and increases 
slowly in the later stage. Factor a  is defined as 
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(19) 

where maxa and mina are the variables of the con-
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parameters of maxa and mina will also affect conver-
gence factor. The selection of parameters will be 
specified in the experimental part, t  is the current 
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original algorithm is not enough to solve MINLP 
problems. Therefore, we propose Cosine Com-
pound Whale Optimization Algorithm (CCWOA). 
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Weight 
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lation iteration, its advantage is that it can con-
verges quickly in the iterative process. The devel-
opment and exploration ability of WOA largely 
depends on the change of convergence factor a . 
The convergence speed is slow and it is unable to 
calculate high complexity when a  decreases line-
arly in the iteration. Analysis displays that a larger 
convergence factor is more capable of global 
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where randX is the randomly selected position vec-
tor of individual whale. 

 
4. Improvement 
WOA only provides each parameter's basic set-
ting and fundamental strategy choice, and the 
original algorithm is not enough to solve MINLP 
problems. Therefore, we propose Cosine Com-
pound Whale Optimization Algorithm (CCWOA). 
4.1 Nonlinear Convergence Factor and Inertia 
Weight 
WOA is a metaheuristic algorithm based on popu-
lation iteration, its advantage is that it can con-
verges quickly in the iterative process. The devel-
opment and exploration ability of WOA largely 
depends on the change of convergence factor a . 
The convergence speed is slow and it is unable to 
calculate high complexity when a  decreases line-
arly in the iteration. Analysis displays that a larger 
convergence factor is more capable of global 
search and a smaller convergence factor is more 
suit-able for local development. In the evolution-
ary search process of WOA, convergence factor 
a decreases linearly with the number of iterations, 
which can not fully reflect the actual optimization 
search process [17]. Because cosine function is 
nonlinear in the period interval [8], we consider 
that factor a decreases to a small value with itera-
tion in the early stage of search, and increases 
slowly in the later stage. Factor a  is defined as 
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and exploring prey mechanism. The fitness function for 
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2. Whale Optimization Algorithm  
WOA is a new population based bionic intelligent algo-
rithm that establishes a mathematical search model 
based on simulated humpback whales' bubble net hunt-
ing behavior. WOA abstracts three procedures: includ-
ing encircling prey, random searching, and spiral posi-
tion updating. 
3.1  Surrounding Prey 
First, humpback whales need to locate their prey, but 
target prey's position in three-dimensional space cannot 
be predicted in advance. In WOA, it is assumed that the 
current optimal whale position is target prey. Hump-
back whale will update its position to current optimal 
during the iteration process. This behavior is formulated 
as a mathematical model. 
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algorithm is not enough to solve MINLP problems. 
Therefore, we propose Cosine Compound Whale Op-
timization Algorithm (CCWOA).

4.1. Nonlinear Convergence Factor and 
Inertia Weight
WOA is a metaheuristic algorithm based on popula-
tion iteration, its advantage is that it can converges 
quickly in the iterative process. The development 
and exploration ability of WOA largely depends on 
the change of convergence factor a . The convergence 
speed is slow and it is unable to calculate high com-
plexity when a  decreases linearly in the iteration. 
Analysis displays that a larger convergence factor is 
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gence factor is more suit-able for local development. 
In the evolutionary search process of WOA, conver-
gence factor a decreases linearly with the number of 
iterations, which can not fully reflect the actual opti-
mization search process [17]. Because cosine function 
is nonlinear in the period interval [8], we consider 
that factor a decreases to a small value with iteration 
in the early stage of search, and increases slowly in 
the later stage. Factor a  is defined as
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ary search process of WOA, convergence factor 
a decreases linearly with the number of iterations, 
which can not fully reflect the actual optimization 
search process [17]. Because cosine function is 
nonlinear in the period interval [8], we consider 
that factor a decreases to a small value with itera-
tion in the early stage of search, and increases 
slowly in the later stage. Factor a  is defined as 
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where maxa and mina are the variables of the con-
trol the parameters. The difference in the selection 
parameters of maxa and mina will also affect conver-
gence factor. The selection of parameters will be 
specified in the experimental part, t  is the current 
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where maxa and mina are the variables of the control the 
parameters. The difference in the selection parame-
ters of maxa and mina will also affect convergence factor. 
The selection of parameters will be specified in the 
experimental part, t  is the current iteration number, 

maxT is the maximum iteration number. The new con-
vergence factor a can slow down the convergence effi-
ciency at the beginning, and then increase nonlinear-
ly. Experiments show that it has better convergence 
characteristics than other periodic functions when 
applied to the convergence factor. max/t T in original 
WOA can be defined as convergence efficiency.
From formulas (12) and (16), it can be known that the 
original WOA does not consider the attractiveness of 
prey to guide different whales for position updates 
during the iteration process. The new whale position 
is only determined by the current target whale po-
sition and the global optimal whale position, which 
easily leads to algorithm falling into the local opti-
mum. Inspired by PSO, we use the inertia weight idea 
in PSO to reconstruct local optimum position. At the 
beginning of the iteration, optimal position is adjust-
ed with a larger weight coefficient to expand search 
field. At the later of the iteration, a smaller weight 
coefficient is used to fine tune the optimal position 
to achieve rapid convergence. The specific improve-
ment formula is as follows.
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                 where maxa and mina are variables , n is the weight coef-
ficient. 
4.2  Improved Spiral update Position Model 
In the original WOA, spiral update position in formula 
(15) uses a logarithmic spiral update method. In [27], 
Archimedes spiral is used instead of logarithmic spiral, 
and we refer to this spiral updating method. When spi-
ral updates position, step distance may exceed search 
range, logarithmic spiral is to gather the population to-
gether quickly. In this process, best whale's position 
may be lost due to the iteration step too large. Archi-
medes spiral is a trajectory generated by a point, leav-
ing a fixed point at a constant speed while rotating 
around the fixed point at a fixed angular velocity [27]. 
After the spiral pitch exceeds range, search space can 
still be traversed uniformly, reducing the possibility of 
losing best whale position. Formula [38] is further im-
proved as. 

*( 1) ` cos(2 ) ( ).X t D bl l X tπ+ = ⋅ ⋅ +
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By analyzing the formula (23), we can find local opti-
mum in the current space by uniformly traversing 
search space. It is difficult to guarantee that it is the 
global optimum in the whole space. For this problem, 
the algorithm design adds sine ( )X t .The value of sine 
belongs to interval [-1, 1],  which is equivalent to add-
ing  random value. The randomness of whale ( )X t po-
sition is enlarged and the probability of jumping out of 
local optimal solution is improved. Therefore,  adding 
sine ( )X t to the formula (23), sine global search can 
assist the local development of cosine,  greatly reducing 
the blind spots in optimization and avoiding the loss of 

optimal. The local development of cosine will 
make up for the slow convergence speed of the 
global search of sine, which effectively improves 
algorithm's efficiency. The specific formula for 
improvement is as follows.  
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Algorithm 1 CCWOA's pseudo code 

Initialize the whale population 1t = ,i=1, ..., N,  
the number of iterations 1t = , the maximum 
number of iterations maxT . 
Calculate the search whale's fitness and deter-
mine the best search whale * ( )X t . 

for 1k = to M do 
Update the convergence factor a ,the con-

stant variables A and C , the helical constant 
l and the probability p . 

if 0.5p < then 

if | | 1A < then 
Update D according to formulas 11, 17 and 

update in 18. 
else  
Update D and randX according to 23. 
Update X according to 21. 
end if 
else  
Update the current whale position, X and 

D according to formulas 22 and 24. 
end if 
end for 
Calculate the fitness of each whale and up-

date the best whale position. 
Carried out  at 1t t= + . 
Until maxt T> ,determine whether the termi-

nation conditions are met. 
Output optimal. 

Based on WOA, CCWOA introduces a new con-
vergence factor to speed up the surrounding prey's 
speed, which adds inertial weight to optimize the 
new whale position. In the process of narrowing 
the en-circling circle of the spiral, the archiedean 
spiral introduced can uniformly find the better so-
lution in the current environment. The random 
value of the sine will increase the probability of 
jumping out of the local optimum. The CCWOA 
has been dramatically improved in accelerating 
convergence's accuracy and jumping out of the 
local optimum. According to the above descrip-
tion,  the pseudocode of the CCWOA is shown in 
algorithm 1 below. 
4.3  Analysis of the Complexity of the Improved 
Algorithm 
In WOA, the computational complexity of calcu-
lating fitting function is ( )O N Dim⋅ . N is whale 
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algorithm's efficiency. The specific formula for 
improvement is as follows.  
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Algorithm 1 CCWOA's pseudo code 

Initialize the whale population 1t = ,i=1, ..., N,  
the number of iterations 1t = , the maximum 
number of iterations maxT . 
Calculate the search whale's fitness and deter-
mine the best search whale * ( )X t . 

for 1k = to M do 
Update the convergence factor a ,the con-

stant variables A and C , the helical constant 
l and the probability p . 

if 0.5p < then 

if | | 1A < then 
Update D according to formulas 11, 17 and 

update in 18. 
else  
Update D and randX according to 23. 
Update X according to 21. 
end if 
else  
Update the current whale position, X and 

D according to formulas 22 and 24. 
end if 
end for 
Calculate the fitness of each whale and up-

date the best whale position. 
Carried out  at 1t t= + . 
Until maxt T> ,determine whether the termi-

nation conditions are met. 
Output optimal. 

Based on WOA, CCWOA introduces a new con-
vergence factor to speed up the surrounding prey's 
speed, which adds inertial weight to optimize the 
new whale position. In the process of narrowing 
the en-circling circle of the spiral, the archiedean 
spiral introduced can uniformly find the better so-
lution in the current environment. The random 
value of the sine will increase the probability of 
jumping out of the local optimum. The CCWOA 
has been dramatically improved in accelerating 
convergence's accuracy and jumping out of the 
local optimum. According to the above descrip-
tion,  the pseudocode of the CCWOA is shown in 
algorithm 1 below. 
4.3  Analysis of the Complexity of the Improved 
Algorithm 
In WOA, the computational complexity of calcu-
lating fitting function is ( )O N Dim⋅ . N is whale 

(21)

 
 

 

iteration number, maxT is the maximum iteration num-
ber. The new convergence factor a can slow down the 
convergence efficiency at the beginning, and then in-
crease nonlinearly. Experiments show that it has better 
convergence characteristics than other periodic func-
tions when applied to the convergence factor. max/t T in 
original WOA can be defined as convergence efficien-
cy. 
From formulas (12) and (16), it can be known that the 
original WOA does not consider the attractiveness of 
prey to guide different whales for position updates dur-
ing the iteration process. The new whale position is on-
ly determined by the current target whale position and 
the global optimal whale position, which easily leads to 
algorithm falling into the local optimum. Inspired by 
PSO, we use the inertia weight idea in PSO to recon-
struct local optimum position. At the beginning of the 
iteration, optimal position is adjusted with a larger 
weight coefficient to expand search field. At the later of 
the iteration, a smaller weight coefficient is used to fine 
tune the optimal position to achieve rapid convergence. 
The specific improvement formula is as follows. 
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                 where maxa and mina are variables , n is the weight coef-
ficient. 
4.2  Improved Spiral update Position Model 
In the original WOA, spiral update position in formula 
(15) uses a logarithmic spiral update method. In [27], 
Archimedes spiral is used instead of logarithmic spiral, 
and we refer to this spiral updating method. When spi-
ral updates position, step distance may exceed search 
range, logarithmic spiral is to gather the population to-
gether quickly. In this process, best whale's position 
may be lost due to the iteration step too large. Archi-
medes spiral is a trajectory generated by a point, leav-
ing a fixed point at a constant speed while rotating 
around the fixed point at a fixed angular velocity [27]. 
After the spiral pitch exceeds range, search space can 
still be traversed uniformly, reducing the possibility of 
losing best whale position. Formula [38] is further im-
proved as. 
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By analyzing the formula (23), we can find local opti-
mum in the current space by uniformly traversing 
search space. It is difficult to guarantee that it is the 
global optimum in the whole space. For this problem, 
the algorithm design adds sine ( )X t .The value of sine 
belongs to interval [-1, 1],  which is equivalent to add-
ing  random value. The randomness of whale ( )X t po-
sition is enlarged and the probability of jumping out of 
local optimal solution is improved. Therefore,  adding 
sine ( )X t to the formula (23), sine global search can 
assist the local development of cosine,  greatly reducing 
the blind spots in optimization and avoiding the loss of 

optimal. The local development of cosine will 
make up for the slow convergence speed of the 
global search of sine, which effectively improves 
algorithm's efficiency. The specific formula for 
improvement is as follows.  
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Algorithm 1 CCWOA's pseudo code 

Initialize the whale population 1t = ,i=1, ..., N,  
the number of iterations 1t = , the maximum 
number of iterations maxT . 
Calculate the search whale's fitness and deter-
mine the best search whale * ( )X t . 

for 1k = to M do 
Update the convergence factor a ,the con-

stant variables A and C , the helical constant 
l and the probability p . 

if 0.5p < then 

if | | 1A < then 
Update D according to formulas 11, 17 and 

update in 18. 
else  
Update D and randX according to 23. 
Update X according to 21. 
end if 
else  
Update the current whale position, X and 

D according to formulas 22 and 24. 
end if 
end for 
Calculate the fitness of each whale and up-

date the best whale position. 
Carried out  at 1t t= + . 
Until maxt T> ,determine whether the termi-

nation conditions are met. 
Output optimal. 

Based on WOA, CCWOA introduces a new con-
vergence factor to speed up the surrounding prey's 
speed, which adds inertial weight to optimize the 
new whale position. In the process of narrowing 
the en-circling circle of the spiral, the archiedean 
spiral introduced can uniformly find the better so-
lution in the current environment. The random 
value of the sine will increase the probability of 
jumping out of the local optimum. The CCWOA 
has been dramatically improved in accelerating 
convergence's accuracy and jumping out of the 
local optimum. According to the above descrip-
tion,  the pseudocode of the CCWOA is shown in 
algorithm 1 below. 
4.3  Analysis of the Complexity of the Improved 
Algorithm 
In WOA, the computational complexity of calcu-
lating fitting function is ( )O N Dim⋅ . N is whale 

(22)

where maxa and mina are variables , n is the weight co-
efficient.

4.2. Improved Spiral Update Position Model
In the original WOA, spiral update position in formula 
(15) uses a logarithmic spiral update method. In [27], 
Archimedes spiral is used instead of logarithmic spi-
ral, and we refer to this spiral updating method. When 
spiral updates position, step distance may exceed 
search range, logarithmic spiral is to gather the pop-
ulation together quickly. In this process, best whale’s 
position may be lost due to the iteration step too large. 
Archimedes spiral is a trajectory generated by a point, 
leaving a fixed point at a constant speed while rotating 
around the fixed point at a fixed angular velocity [27]. 
After the spiral pitch exceeds range, search space can 
still be traversed uniformly, reducing the possibility 
of losing best whale position. Formula [38] is further 
improved as.

 
 

 

iteration number, maxT is the maximum iteration num-
ber. The new convergence factor a can slow down the 
convergence efficiency at the beginning, and then in-
crease nonlinearly. Experiments show that it has better 
convergence characteristics than other periodic func-
tions when applied to the convergence factor. max/t T in 
original WOA can be defined as convergence efficien-
cy. 
From formulas (12) and (16), it can be known that the 
original WOA does not consider the attractiveness of 
prey to guide different whales for position updates dur-
ing the iteration process. The new whale position is on-
ly determined by the current target whale position and 
the global optimal whale position, which easily leads to 
algorithm falling into the local optimum. Inspired by 
PSO, we use the inertia weight idea in PSO to recon-
struct local optimum position. At the beginning of the 
iteration, optimal position is adjusted with a larger 
weight coefficient to expand search field. At the later of 
the iteration, a smaller weight coefficient is used to fine 
tune the optimal position to achieve rapid convergence. 
The specific improvement formula is as follows. 

max min max( ) ( ) cos( / ),n t a a t T= − ⋅
                            

(20)
                 

*( ) ( ) 0.5 | | 1,X t n X t A D p A= ⋅ − ⋅ < ≤
                   

(21) 

( ) 0.5 | | 1,randX t n X A D p A= ⋅ − ⋅ < >
                   

(22) 

                 where maxa and mina are variables , n is the weight coef-
ficient. 
4.2  Improved Spiral update Position Model 
In the original WOA, spiral update position in formula 
(15) uses a logarithmic spiral update method. In [27], 
Archimedes spiral is used instead of logarithmic spiral, 
and we refer to this spiral updating method. When spi-
ral updates position, step distance may exceed search 
range, logarithmic spiral is to gather the population to-
gether quickly. In this process, best whale's position 
may be lost due to the iteration step too large. Archi-
medes spiral is a trajectory generated by a point, leav-
ing a fixed point at a constant speed while rotating 
around the fixed point at a fixed angular velocity [27]. 
After the spiral pitch exceeds range, search space can 
still be traversed uniformly, reducing the possibility of 
losing best whale position. Formula [38] is further im-
proved as. 
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By analyzing the formula (23), we can find local opti-
mum in the current space by uniformly traversing 
search space. It is difficult to guarantee that it is the 
global optimum in the whole space. For this problem, 
the algorithm design adds sine ( )X t .The value of sine 
belongs to interval [-1, 1],  which is equivalent to add-
ing  random value. The randomness of whale ( )X t po-
sition is enlarged and the probability of jumping out of 
local optimal solution is improved. Therefore,  adding 
sine ( )X t to the formula (23), sine global search can 
assist the local development of cosine,  greatly reducing 
the blind spots in optimization and avoiding the loss of 

optimal. The local development of cosine will 
make up for the slow convergence speed of the 
global search of sine, which effectively improves 
algorithm's efficiency. The specific formula for 
improvement is as follows.  
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Algorithm 1 CCWOA's pseudo code 

Initialize the whale population 1t = ,i=1, ..., N,  
the number of iterations 1t = , the maximum 
number of iterations maxT . 
Calculate the search whale's fitness and deter-
mine the best search whale * ( )X t . 

for 1k = to M do 
Update the convergence factor a ,the con-

stant variables A and C , the helical constant 
l and the probability p . 

if 0.5p < then 

if | | 1A < then 
Update D according to formulas 11, 17 and 

update in 18. 
else  
Update D and randX according to 23. 
Update X according to 21. 
end if 
else  
Update the current whale position, X and 

D according to formulas 22 and 24. 
end if 
end for 
Calculate the fitness of each whale and up-

date the best whale position. 
Carried out  at 1t t= + . 
Until maxt T> ,determine whether the termi-

nation conditions are met. 
Output optimal. 

Based on WOA, CCWOA introduces a new con-
vergence factor to speed up the surrounding prey's 
speed, which adds inertial weight to optimize the 
new whale position. In the process of narrowing 
the en-circling circle of the spiral, the archiedean 
spiral introduced can uniformly find the better so-
lution in the current environment. The random 
value of the sine will increase the probability of 
jumping out of the local optimum. The CCWOA 
has been dramatically improved in accelerating 
convergence's accuracy and jumping out of the 
local optimum. According to the above descrip-
tion,  the pseudocode of the CCWOA is shown in 
algorithm 1 below. 
4.3  Analysis of the Complexity of the Improved 
Algorithm 
In WOA, the computational complexity of calcu-
lating fitting function is ( )O N Dim⋅ . N is whale 

(23)

By analyzing the formula (23), we can find local op-
timum in the current space by uniformly traversing 
search space. It is difficult to guarantee that it is the 
global optimum in the whole space. For this problem, 
the algorithm design adds sine ( )X t .The value of sine 
belongs to interval [-1, 1],  which is equivalent to add-
ing  random value. The randomness of whale ( )X t po-
sition is enlarged and the probability of jumping out of 
local optimal solution is improved. Therefore,  adding 
sine ( )X t to the formula (23), sine global search can 
assist the local development of cosine,  greatly reduc-
ing the blind spots in optimization and avoiding the 
loss of optimal. The local development of cosine will 
make up for the slow convergence speed of the global 
search of sine, which effectively improves algorithm’s 
efficiency. The specific formula for improvement is as 
follows. 

 
 

 

iteration number, maxT is the maximum iteration num-
ber. The new convergence factor a can slow down the 
convergence efficiency at the beginning, and then in-
crease nonlinearly. Experiments show that it has better 
convergence characteristics than other periodic func-
tions when applied to the convergence factor. max/t T in 
original WOA can be defined as convergence efficien-
cy. 
From formulas (12) and (16), it can be known that the 
original WOA does not consider the attractiveness of 
prey to guide different whales for position updates dur-
ing the iteration process. The new whale position is on-
ly determined by the current target whale position and 
the global optimal whale position, which easily leads to 
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PSO, we use the inertia weight idea in PSO to recon-
struct local optimum position. At the beginning of the 
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weight coefficient to expand search field. At the later of 
the iteration, a smaller weight coefficient is used to fine 
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4.2  Improved Spiral update Position Model 
In the original WOA, spiral update position in formula 
(15) uses a logarithmic spiral update method. In [27], 
Archimedes spiral is used instead of logarithmic spiral, 
and we refer to this spiral updating method. When spi-
ral updates position, step distance may exceed search 
range, logarithmic spiral is to gather the population to-
gether quickly. In this process, best whale's position 
may be lost due to the iteration step too large. Archi-
medes spiral is a trajectory generated by a point, leav-
ing a fixed point at a constant speed while rotating 
around the fixed point at a fixed angular velocity [27]. 
After the spiral pitch exceeds range, search space can 
still be traversed uniformly, reducing the possibility of 
losing best whale position. Formula [38] is further im-
proved as. 
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By analyzing the formula (23), we can find local opti-
mum in the current space by uniformly traversing 
search space. It is difficult to guarantee that it is the 
global optimum in the whole space. For this problem, 
the algorithm design adds sine ( )X t .The value of sine 
belongs to interval [-1, 1],  which is equivalent to add-
ing  random value. The randomness of whale ( )X t po-
sition is enlarged and the probability of jumping out of 
local optimal solution is improved. Therefore,  adding 
sine ( )X t to the formula (23), sine global search can 
assist the local development of cosine,  greatly reducing 
the blind spots in optimization and avoiding the loss of 

optimal. The local development of cosine will 
make up for the slow convergence speed of the 
global search of sine, which effectively improves 
algorithm's efficiency. The specific formula for 
improvement is as follows.  
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Algorithm 1 CCWOA's pseudo code 

Initialize the whale population 1t = ,i=1, ..., N,  
the number of iterations 1t = , the maximum 
number of iterations maxT . 
Calculate the search whale's fitness and deter-
mine the best search whale * ( )X t . 

for 1k = to M do 
Update the convergence factor a ,the con-

stant variables A and C , the helical constant 
l and the probability p . 

if 0.5p < then 

if | | 1A < then 
Update D according to formulas 11, 17 and 

update in 18. 
else  
Update D and randX according to 23. 
Update X according to 21. 
end if 
else  
Update the current whale position, X and 

D according to formulas 22 and 24. 
end if 
end for 
Calculate the fitness of each whale and up-

date the best whale position. 
Carried out  at 1t t= + . 
Until maxt T> ,determine whether the termi-

nation conditions are met. 
Output optimal. 

Based on WOA, CCWOA introduces a new con-
vergence factor to speed up the surrounding prey's 
speed, which adds inertial weight to optimize the 
new whale position. In the process of narrowing 
the en-circling circle of the spiral, the archiedean 
spiral introduced can uniformly find the better so-
lution in the current environment. The random 
value of the sine will increase the probability of 
jumping out of the local optimum. The CCWOA 
has been dramatically improved in accelerating 
convergence's accuracy and jumping out of the 
local optimum. According to the above descrip-
tion,  the pseudocode of the CCWOA is shown in 
algorithm 1 below. 
4.3  Analysis of the Complexity of the Improved 
Algorithm 
In WOA, the computational complexity of calcu-
lating fitting function is ( )O N Dim⋅ . N is whale 

(24)

Algorithm 1. CCWOA’s pseudo code

Initialize the whale population 1t = ,i=1, ..., N,  the 
number of iterations 1t = , the maximum number of 
iterations maxT .

Calculate the search whale’s fitness and deter-mine 
the best search whale * ( )X t .
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for 1k = to M do
Update the convergence factor a ,the constant 

variables A and C , the helical constant l and the 
probability p .

if 0.5p < then
if | | 1A < then
Update D according to formulas 11, 17 and up-

date in 18.
else 
Update D and randX according to 23.
Update X according to 21.
end if
else 
Update the current whale position, X and D ac-

cording to formulas 22 and 24.
end if
end for
Calculate the fitness of each whale and update 

the best whale position.
Carried out  at 1t t= + .
Until maxt T> ,determine whether the termina-

tion conditions are met.
Output optimal.

Based on WOA, CCWOA introduces a new conver-
gence factor to speed up the surrounding prey’s speed, 
which adds inertial weight to optimize the new whale 
position. In the process of narrowing the en-circling 
circle of the spiral, the archiedean spiral introduced 
can uniformly find the better solution in the current 
environment. The random value of the sine will in-
crease the probability of jumping out of the local op-
timum. The CCWOA has been dramatically improved 
in accelerating convergence’s accuracy and jumping 
out of the local optimum. According to the above de-
scription,  the pseudocode of the CCWOA is shown in 
algorithm 1 below.

4.3.  Analysis of the Complexity of the 
Improved Algorithm
In WOA, the computational complexity of calculating 
fitting function is ( )O N Dim⋅ . N  is whale popula-
tions and Dim is the dimension of search agent [37]. 
In each iteration, updating the position vectors of all 
whales requires ( )O N Dim⋅ complexity, so the com-

putational complexity of WOA is max( )O N Dim T⋅ ⋅ . 
Among them, maxT is the maximum number of itera-
tions. According to the pseudo code of CCWOA above, 
newly added nonlinear convergence factor and iner-
tia weight mainly increase the calculation amount of 

max( )O N Dim T⋅ ⋅ . Although the newly added sinusoidal 
whale position increases the probability of jumping 
out of the local optimum, it also increases the amount 
of calculation of max( )O N T⋅ .The computational com-
plexity of CCWOA is max max( )O N Dim T N T⋅ ⋅ + ⋅ . If we 
encounter high-dimensional problems in real net-
work communication, such as the interference en-
vironment considered in this paper, the calculation 
amount of max( )O N T⋅ can be ignored, so the calcula-
tion complexity of CCWOA and WOA are approxi-
mately the same.

5. Simulation Experiment and Result 
Analysis
In order to verify the power allocation optimization 
capability of CCWOA in IWN, we consider to test 
from the following three aspects.
1 This paper tests the computational power of 

CCWOA by adopting 8 classical benchmark func-
tions in Table 1. Benchmark functions can be di-
vided into two groups: unimodal, multimodal func-
tions. Functions 1( )f x to 4 ( )f x are typical unimodal 
because they have only one global optimum. These 
functions allow to evaluate the exploitation capa-
bility of the investigated metaheuristic algorithms. 
The functions 5 ( )f x to 8 ( )f x are multimodal func-
tions. Unlike unimodal functions, multimodal 
functions include many local optimum whose 
number increases exponentially with the problem 
size. By comparing the optimization capabilities of 
CCWOA, WOA, GWO and MPA in 8 functions, the 
improved algorithm’s advantages and disadvantag-
es are explained.

2 We compare this algorithm with other power allo-
cation algorithms in interference network, and re-
search the optimization performance of the algo-
rithm as a whole. First, the same initial parameters 
are set to ensure the scientific performance of the 
experiment. The initial population of whales is N , 
the maximum iteration number is maxT , the iter-
ation number is t . It is compared with the GWO, 
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Table 1
Testing functions

WOA, PFP and MPA on the MST optimization. 
Meanwhile, it compares with the GAP, WOA and 
CCWOA on the balance of SEE.

3 We test the different improved sub strategies of the 
algorithm, and analyze the influence of different sub 
strategies on the final optimization performance. 
For the variables maxa and mina used in a and inertia 
weight, we design to choose different parameter val-
ues. Different values will have a significant impact on 
the rate of convergence, so finding the appropriate 
parameter value is one of the key points of our study.
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5.1. Comparison of Benchmark Functions

We analyzed the results of CCWOA, WOA, GWO, and 
MPA after 30 independent experiment runs. Experi-
ments record the average, and standard deviations for 
the best fitness of the benchmark function.The exper-
imental results are shown in Table 2. 
After 30 experiments, the best fitness values for 
CCWOA, WOA, GWO, and MPA were used to plot 
convergence curves and observe differences between 
the four algorithms, as shown in Figure 2,3.
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Table 2
Performance comparison between WOA and CCWOA

Function
WOA CCWOA MPA GWO

AVE STD AVE STD AVE STD AVE STD

F1  2.378E-75 2.833E-73 3.04E-149 8.19E-147 6.154E-24 6.145E-23 4.248E-28 1.049E-27

F2 1.942E-51 1.847E-50 9.734E-65 1.114E-65 3.156E-13 4.449E-12 1.587E-17 5.368E-17

F3 77.098 77.229 2.02E-119 6.16E-117 5.716E-09 6.729E-08 6.515E-07 3.133E-06

F4 27.788 27.877 28.435 28.495 26.049 25.342 27.149 27.166

F5 0.451 0.612 2.220E-16 3.586E-14 1.110E-18 2.220e-17 0.342 0.378

F6 0.004 0.005 9.798E-07 1.362E-06 7.600E-09 1.487E-08 0.021 0.032

F7 0.307 0.342 2.571E-07 3.452E-06 0.057 0.045 0.539 0.513

F8 -7.139 -7.123 -10.153 -10.239 -10.153 -10.324 -7.983 -8.181

Figure 2
Unimodal function

 
 

 

performance. For the variables maxa and mina used in 
a and inertia weight, we design to choose different pa-
rameter values. Different values will have a significant 
impact on the rate of convergence, so finding the ap-
propriate parameter value is one of the key points of our 
study. 
5.1  Comparison of Benchmark Functions 
We analyzed the results of CCWOA, WOA, GWO, and 

MPA after 30 independent experiment runs. Ex-
periments record the average, and standard devia-
tions for the best fitness of the benchmark func-
tion.The experimental results are shown in Table 
2. After 30 experiments, the best fitness values for 
CCWOA, WOA, GWO, and MPA were used to 
plot convergence curves and observe differences 
between the four algorithms, as shown in Figure 
2,3.
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F3 77.098 77.229 2.02E-119 6.16E-117 5.716E-09 6.729E-08 6.515E-07 3.133E-06 

F4 27.788 27.877 28.435 28.495 26.049 25.342 27.149 27.166 

F5 0.451 0.612 2.220E-16 3.586E-14 1.110E-18 2.220e-17 0.342 0.378 

F6 0.004 0.005 9.798E-07 1.362E-06 7.600E-09 1.487E-08 0.021 0.032 

F7 0.307 0.342 2.571E-07 3.452E-06 0.057 0.045 0.539 0.513 

F8 -7.139 -7.123 -10.153 -10.239 -10.153 -10.324 -7.983 -8.181 
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It can be seen from the data in table 2 and the bench-
mark functions in figures 2 and 3 that compared with 
the other three algorithms, CCWOA algorithm has 
good performance in optimization speed and con-
vergence results. At the same time, it is not difficult 
to find that for functions 1 4~f f , GWO and MPA are 
better than WOA, and they are slightly worse than 
CCWOA. Since 1 4~f f  are unimodal functions, table 2 
and figures 2 and 3 can show that CCWOA is effective 
in solving most single optimal problems. Among the 
four algorithms in 7f  function, CCWOA is the best, 
MPA is the second, and WOA is better than GWO. 
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The convergence curves of CCWOA and MPA in 5f  
and 6f  functions are almost the same, and the opti-
mization speed is fast decreasing, which shows that 
the optimization effect of the two algorithms is very 
good. The optimization effect of WOA and GWO is 
much lower than the above two. It is worth noting that 
the best score of CCWOA is slightly lower than that of 
MPA. However, in the 8f  function, CCWOA and MPA 
get the same optimal score.
On the whole, the optimization effect of CCWOA on 
benchmark function is significant, and CCWOA can 
improve the accuracy of solving the problem and the 
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stability of the algorithm. At the same time, it can be 
seen that the optimization performance of MPA in

5f and 6f benchmark function is slightly better. The 
design and optimization principles of these two algo-
rithms are quite different, and the ability of multi val-
ue optimization needs to be further studied.

5.2. Performance Comparison in Power 
Allocation in Interference Networks
5.2.1. Performance Comparison in MST
This paper uses the same optimized power allocation 
simulation parameters in [26],  which the initial fea-
sible point (0)

ip of the path tracking process is initial-
ized randomly:
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Meanwhile, (0) 0ip = represents the minimum transmit 
power of user is i , [0,1]ρ ∈ .The initial whale popula-
tion size is 30N = , the maximum number of iterations 

max 500T = , the number of runs 50 times. 

Compared with GWO, WOA, PFP and MPA,  it is op-
timized on the minimum  secrecy throughput. The ex-
perimental results are shown in Figure 4. 
Figure 4 is a comparison of the MST in the communica-
tion link where the eavesdropper is legally present. The 
higher the MST rate, the smaller the eavesdropping 
throughput in the link, and the larger the user's security 
throughput. The link communication safety factor that 
represents transmission information is higher. As can be 
seen from Figure 4, the throughput rate of CCWOA is 
higher than that of the original WOA. It is proved that 
the introduced a and inertia weight are effective, which 
can make the algorithm have good optimization accura-
cy.  
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Comparison of five algorithms for MST optimiza-
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In Figure 4, we can also see that the MST of 
GWO is lower than that of WOA and CCWOA, 
because the gray wolf population has a strict hier-
archy. Individuals can't update their targets ran-
domly. When exploring prey, they need to report 
to the high level nodes every time, which reduces 
the overall efficiency. Meanwhile, the optimiza-
tion effect of MPA is similar to GWO. It can be 
seen that MPA has obvious rate pause and slow 
down in the previous iteration, and then increases. 
In the early stage of MPA, Brownian motion and 
Lévy movement are used to explore prey to max-
imize the encounter with the optimal value. This 
also leads to the bad effect of MST optimized by 
MPA. The throughput rate of PFP is approximate-
ly the same as that of CCWOA, and is higher than 
that of WOA. PFP is a path tracing algorithm. In 
each iteration, the solution of the previous convex 
problem needs to be called, which increases the 
amount of information processing. In WOA, 
humpback whales update their positions synchro-
nously according to the best whale position, which 
is not affected by the gradient.  
In the interference network scenario considered in 
this paper, the computational complexity of PFP is 

2 2.5 3.5
max( ( ))O T N N N⋅ ⋅ + [32]. Moreover, 

max 9T =  and 30N = . According to the conclusion 
in Section 3.3, the computational complexity of 
WOA and CCWOA is approximately 

max( )O T Dim N⋅ ⋅  when dealing with high dimen-
sional problems such as interference net-work 
scenes. max 16T =  and 30N = . It can be seen that 
the computational complexity of WOA and 
CCWOA is significantly lower than that of PFP. 
Furthermore, the MST of CCWOA is faster than 
WOA. Based on the above analysis, CCWOA has 
a better performance than other algorithms when 
optimizing the power allocation problem in inter-
ference networks. 
5.2.2  Performance Comparison in SEE  
Moreover, the SEE can also fully reflect the per-
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This also leads to the bad effect of MST optimized by 
MPA. The throughput rate of PFP is approximately 
the same as that of CCWOA, and is higher than that 
of WOA. PFP is a path tracing algorithm. In each it-
eration, the solution of the previous convex problem 
needs to be called, which increases the amount of 
information processing. In WOA, humpback whales 
update their positions synchronously according to 
the best whale position, which is not affected by the 
gradient. 
In the interference network scenario considered in 
this paper, the computational complexity of PFP is 

2 2.5 3.5
max( ( ))O T N N N⋅ ⋅ + [32]. Moreover, max 9T =  and 
30N = . According to the conclusion in Section 3.3, 

the computational complexity of WOA and CCWOA 
is approximately max( )O T Dim N⋅ ⋅  when dealing with 
high dimensional problems such as interference net-
work scenes. max 16T =  and 30N = . It can be seen that 
the computational complexity of WOA and CCWOA 
is significantly lower than that of PFP. Furthermore, 
the MST of CCWOA is faster than WOA. Based on 
the above analysis, CCWOA has a better performance 
than other algorithms when optimizing the power al-
location problem in interference networks.

5.2.2. Performance Comparison in SEE 
Moreover, the SEE can also fully reflect the perfor-
mance of the algorithm. The tradeoff between EE and 
SE can be expressed by maximizing SEE under the 
constraints of minimum rate requirement and trans-
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mission power budget. Energy efficiency is the ratio of 
throughput to total network power consumption. High 
energy efficiency means an increase in throughput, with 
the total power consumption of network unchanged. 
When the maximum iteration times maxT and popula-
tion size n  are the same, CCWOA and WOA compare 
the advantages and disadvantages of the two algorithms 
in dealing with SEE  problems. As shown in Figure 5.

Figure 5
The ability of CCWOA and WOA to obtain SEE

Figure 6
CCWOA optimizes the consequent of Energy Efficiency
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Figure 5 displays the situation of CCWOA and WOA in 
dealing with the security energy allocation efficiency in 
each iteration. Score is proportional to the optimization 
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the SEE of CCWOA is about 4% higher than that of 
WOA, when the number of iterations stopped is ap-
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In order to analyze the influence of different sub 
strategies of CCWOA on the performance of the 
algorithm. The algorithm is divided into four sub-
strategies 1 4C C− , by which the degree of data 
rate optimization of different sub-strategies is ana-
lyzed. In the experiment, 1C is set to only change 
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gorithm. The algorithm is divided into four sub-strat-
egies 1 4C C− , by which the degree of data rate opti-
mization of different sub-strategies is analyzed. In 
the experiment, 1C is set to only change the conver-
gence factor a , 2C is set to introduce only the inertial 
weight n , 3C is set to replace the logarithmic spiral 
with Archimedes spiral and the sine vector is added, 
and 4C is set to the improved full CCWOA. This sec-
tion sets the same parameters as above, compares the 
impact of 1 4C C− on power allocation. The result is 
shown in Figure 7.

Figure 7
The degree of impact of different sub-strategies on 
performance in CCWOA

Table 3
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Figure 7 describes the impact of different sub-strategies 
on the data rate. It can be seen that 4C has the best per-
formance for optimizing the data rate, and 2C has less 
impact on the algorithm performance. The 1C and 

3C have a general increase in the optimized data rate, 
which indicates that the nonlinear convergence factor, 
spiral model and sine vector have a significant impact 
on the optimization of algorithm. Under the same para-
meters and environment, the overall CCWOA has faster 
convergence speed, which displays the rationality and 
effectiveness of algorithm combined with three im-
proved  methods. 
When designing the nonlinear convergence factor a , we 
set maxa and mina as variables, and record max min( )a a−  
as r . r is mainly to balance the role of global explora-
tion and local development. It has a significant impact 
on the convergence rate of the overall iteration when 
r is selected with a different value. According to the 
[16], when [0,1.4]r∈ ,  the search position will not 
move out of dimensional range, and r can play a nor-
mal regulatory role in this interval. This section divides 
the interval [0,1.4] into four sub-intervals, as shown in 
Table 3. The specific experimental results are shown in 
Figure 8. 

Table  3 
Interval division 

Condition name Subinterval 

Case-a [0,0.3] 

Case-b [0.4,0.6] 
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6. Conclusion and Future Work
Aiming at the communication security problem in the 
interference network, this paper uses an improved 
WOA to optimize the power allocation of the network. 
The efficiency of channel-safe signal transmission is 
effectively enhanced. We draw on the experience of 
strengthening the swarm intelligence algorithm and 
analyze the WOA search mechanism. Meanwhile, a 
CCWOA that uses cosine vector nonlinear conver-
gence factor, increases inertia weight, and improves 
spiral search path is proposed. It is found that the con-
vergence performance of CCWOA is better than that 
of WOA by testing on 8 benchmark functions. Com-
pared with existing algorithms, CCWOA has a obvi-
ous optimization effect on performance indicators, 
such as MST and SEE. Then analyze the sub-strate-
gies in turn and compare the impact of different im-
provements on the algorithm. It is concluded that the 
improvement of algorithm not only makes the search-
ing of agents more purposeful, but also prevents the 
algorithm from falling into local optimum. This indi-
cates the rationality and effectiveness of CCWOA in 
power allocation. 

The cosine nonlinear convergence factor of CCWOA is 
effective in global multi-objective optimization. How-
ever, there are more possibilities for the selection of the 
convergence factor. In the future work, we will try to use 
properly the sine cosine mixed nonlinear convergence 
factor reasonably without changing the original effect 
of the convergence factor. The spiral method used in 
the development stage also has the possibility of fur-
ther expansion. From the design level of the algorithm, 
it can also include mutation and other evolutionary 
operations. In addition, in the future work, we plan to 
build a memetic algorithm framework, which integrates 
Q-learning with CCWOA. The purpose is to store the 
location of each prey in the Q table. With the increase 
of learning times, the location of prey will be more ac-
curate. For swarm intelligence optimization algorithm 
group, we hope the emergence of CCWOA algorithm can 
provide some ideas and directions for future research.
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