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Due to the complexity of the interference operation environment of wire rope, the detection signals are usually 
weak and coupled in time-frequency domain, which makes the defect difficult to recognize, while the signal char-
acterizations in phase space are also needed to be studied. Combining the nonlinear dynamic feature identifica-
tion theories, phase space characteristics and chaotic features of wire rope defect detection signals are mainly 
investigated in this paper. First, principles of phase space reconstruction method for wire rope detection signals 
are presented by the chaotic dynamic indexes calculation of embedded dimension and delay time. Second, the 
change trends of the correlation dimension, approximate entropy and Lyapunov index of different phase space 
reconstructed wire rope defect detection signals are studied through the nonlinear simulation and analysis. Fi-
nally, a phase space reconstruction algorithm based on improved SVD is proposed, and the new algorithm is also 
compared with traditional signal processing methods. These results obtained by 6 groups of experiments were 
also evaluated and compared by the parameters of signal-to-noise ratio (SNR) and phase space trajectory chart, 
which manifests that the improved algorithm not only can increase the weak detection signal SNR to about 2.3dB 
of wire rope effectively, but also demonstrate the feasibility of the proposed methods in application.
KEYWORDS: Singular value decomposition (SVD), Phase space reconstruction, Weak signal, Denoising method.
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1. Introduction
As one of the most frequently applied ferromagnetic 
objects in practical engineering, steel wire rope plays 
an important role in loading in various fields such as, 
elevator, coal mine and ocean platform. However, the 
sophisticated working conditions and interferenc-
es make the defect detection signals very weak and 
mixed with strand and electromagnetic noises, which 
makes the wire rope defect, especially for the weak 
and inner damages such as the corrosion and wire 
break, difficult to inspect and distinguish. Besides, the 
common digital signal processing methods and weak 
defect recognition techniques, such as the lowpass 
filtering and single Hilbert transform, can hard to ex-
tract the weak defect features, and the chaotic char-
acterization of wire rope defect detection signals also 
need to be investigated. As a consequence, the weak 
defect detection and signal processing are significant 
in safety guarantee and wire rope operation. Seeking 
for a valid and feasible weak signal processing method 
is also very important.  
In the perspective of the dynamic characteristics re-
search for wire rope detection system, researchers 
studied the nonlinear dynamics of the transverse, 
longitudinal and coupled vibration without external 
periodic driving forces for the wire rope in the friction 
hoist system by designing related experiments. They 
revealed the essence that the transverse vibration 
was a forced vibration while the longitudinal vibra-
tion was a complex random vibration state combining 
the time-frequency analysis for the vibration signals, 
and also pointed out that the vibration amplitude and 
strength deviation depended on the linear trend of the 
driving force frequency and characterized the nonlin-
ear multi-order natural frequency features [8]. Italian 
scholars [1] studied the nonlinear dynamic models of 
the wire rope isolators on the basis of the Bouc-Wen 
model, and they revealed the frequency response rule 
of the wire rope under different vibrational excitation 
conditions through numerical simulations and exper-
iments. Aiming at the problems of P-bifurcation in 
the noisy and bistable fractional-order system as well 
as the stochastic resonance, the case was mainly stud-
ied when the fractional order was within the interval 
of (0,2], and the stochastic resonance characteristics 
within the range of upper and lower harmonic fre-
quency were revealed by the nonlinear harmonic re-
sponse theory [36]. Researchers [31] used the method 

of fractional order stochastic resonance and optimal 
fractional order calculations to achieve the effective 
identification and characterization for the original 
weak signals, and the validity of the fractional order 
method and its low-frequency weak signal detection 
characteristics were verified through the operation 
of numerical calculations and approximate analytical 
solution. In addition, based on the study of time-de-
lay feedback monostatic and bistable stochastic res-
onance models, scholars [19] achieved the effective 
output of periodic low-noise and weak defect signals 
by selecting appropriate time-delay parameters, feed-
back strengths and computational steps, combining 
the band-pass filtering, improved power spectral 
kurtosis index and adaptive minimum-entropy based 
convolution model. Researchers [10] also proposed 
a multi-frequency and multi-scale based stochastic 
resonance detection model and method by apply-
ing the multi-stable stochastic resonance models of 
wavelet transform and parameter compensation, and 
when the amplitudes of the multi-scale and wavelet 
reconstructed signals were adjusted timely, the de-
tectability of the weak low-frequency signals could 
be improved. Thus, the weak defect signals hid with-
in the strong background noises could be extracted. 
Considering the non-stationary characteristics of the 
weak defect signals, when the time-frequency dis-
tribution under each decomposition scale was used 
as the modulation system and its transient energy 
distribution characteristics were studied, the effec-
tive information detection such as the amplitude and 
frequency of the multi-scale and frequency weak de-
fect signals could be achieved eventually [11]. In the 
perspective of weak signal detection in steady-state 
system, Siliang Lu and Qingbo He [21] studied the un-
derdamped, variable step and second-order stochas-
tic resonance system deeply by selecting appropriate 
underdamped coefficients and the calculation steps, 
and achieved the optimal matched output for weak 
periodic signals under noisy environment conditions. 
Compared with traditional stochastic resonance sys-
tem and methods, this proposed method has lower 
noise output after the second filtering, better band-
pass filtering effect and anti-noise performance.
The emergence of the chaos theory has made the 
detection of weak signals under strong background 
noise conditions and the characterization of their 
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dynamics a research hotspot. Since the duffing oscil-
lators are mainly applied in the chaotic systems to de-
tect weak signals [9, 13], researchers [30] investigated 
the bifurcation behavior of duffing oscillators and the 
feasibility of weak signal detection by taking advan-
tage of the noise immunity of chaotic systems and the 
sensitivity of specific detection signals, and proposed 
a principle of periodic frequency-locked weak signal 
detection based on intermittent chaos. By using the 
chaotic systems evaluation indexes such as the Lya-
punov index in the linear differential equation, the 
bifurcation threshold for weak signal chaos detec-
tion system can be determined. Moreover, according 
to Takens embedding theorem [34], the phase space 
reconstruction and modeling is the key of weak signal 
detection. Therefore, many researches in the aspect 
of embedded dimension calculation, model structure 
correction and parameter space optimization have 
been reported [25]. Based on the study of chaotic phe-
nomenon, researchers [16] proposed a new trajecto-
ry decision function and discovered two phenomena 
of clockwise and counterclockwise stochastic res-
onance, where they achieved the detection of weak 
signals with unknown frequency components. Aim-
ing at the defect detection of acoustic emission stress 
signals, researchers found that the defect gradually 
expanded, penetrated and fractured in the high stress 
stage, thus the acoustic emission was generated and 
higher stress energy was released, while the system 
output was presented as chaotic characteristic at the 
initial stage of stress loading, and it gradually became 
ordered as the loading process progresses and deep-
ened [20, 17]. 
In the theoretical study of phase space reconstruc-
tion, researchers [27] proposed an improved defect 
growth and lifetime prediction model based on phase 
space distortions, combined with a multi-dimension-
al autoregressive model and a time-segmentation 
algorithm, the real-time residual lifetime predic-
tion and defect diagnosis on multi-time scales were 
achieved. As for the nonlinear, acyclic and non-ran-
dom vibration defect signals, the identification of de-
fect states and key components of defect information 
were achieved by using pseudo-phase trajectories 
and correlation dimension analysis [37]. In the per-
spective of weak signal detection by duffing oscilla-
tor, researchers [22] carried out a comprehensive and 
systematic study on the noise effects in the behavior 

of periodic driving force dynamics and weak signal 
detection mechanism of duffing oscillators based on 
phase trajectory curves. From the perspective of the 
improvement and optimization of duffing oscillator 
model, researchers [38] proposed a van der Poel-duff-
ing oscillator model to study the effects of noise in-
tensity, detected signal frequency and phase shift on 
the output detected signal under strong background 
noise environment. Aiming at the limitation of the 
weak signal detection of the duffing system, the initial 
phase and periodic driving force influence laws are 
combined with Lyapunov index and other evaluation 
indexes to obtain the optimal threshold parameters 
for the dynamical state transition [35]. Besides, as the 
chaotic systems are deeply studied, scholars [33] pro-
posed a Mathieu-Duffing oscillator detection model, 
which realizes weak signal detection under multipli-
cation noisy conditions by solving the phase of Mel-
nikov equation and detecting the transition ampli-
tude between large-scale periodic motion and chaos 
weak signal detection. The feasibility of the duffing 
oscillator weak signal detection method based on cy-
clic boundary counting method and short-time Fouri-
er transform state identification parameters was also 
investigated [12].
Due to the development of optimization theory and 
the deep study of nonlinear dynamics theory, re-
searchers have successively proposed a weak signal 
detection method based on the sinusoidal chaotic at-
tractor [24], which utilized Chua's circuit and chaot-
ic synchronization characteristics, combining with 
adaptive and MUSIC algorithms to estimate the fre-
quency and phase angle information of weak defect  
signals in strong noise environments, Finally, based 
on the phase difference between the reference signal 
and actual signal, effective detection and estimation 
of weak defect signal amplitude in secondary syn-
chronous system was realized. In addition, scholars 
[26] proposed an unsaturated monostable stochas-
tic resonance weak signal detection method based 
on the traditional model, and further improved the 
anti-noise performance of the model by the con-
struction of the segmented monostable potential 
function model. As for the adjustment of stochastic 
resonance parameters, the adaptive parameter ad-
justment model and weak signal detection method 
[18] were investigated, and efficient estimation for 
the Kramers escape rate and other parameters are 
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realized. Other optimization models and methods 
may include the strong coupled duffing-van der Poel 
oscillator, long and short term memory model for 
weak signal detection [32], the particle swarm op-
timization stochastic resonance model [14] and the 
approximate fractional integrator stochastic reso-
nance model [15], which all further improved the ac-
curacy and precision of weak signal detection in low 
SNR environments. 
Besides, many optimization methods have also been 
proposed to reduce the computing resources and 
balance the exploration capability through the coop-
erative mechanism [28], differential evolution algo-
rithms [5] and linear population size reduction strat-
egy [29]. To overcome the slow convergence speed, 
poor global search ability, an improved quantum-in-
spired cooperative co-evolution algorithm based on 
combining the strategies  of cooperative co-evolu-
tion and a new airport gate allocation optimization 
method were proposed in [2]. Besides, an improved 
differential evolution algorithm with neighborhood 
mutation operators and opposition-based learning 
developed in [3], as well as the differential evolution 
algorithm with wavelet basis function and optimal 
mutation strategy [5], the improved quantum evolu-
tionary algorithms [6] and mixing multiple strategies 
[4], which all exhibit high accuracy and reliability as 
well as fast convergence speed when compared with 
other methods in parameter extracting and optimiza-
tion, and showed great potential in solving complex 
airport gate assignment problems.
In order to solve the signal processing problems and 
challenges of weak defect detection in wire rope, the 
novelty and main contribution of this paper are as fol-
lows, first, the chaotic dynamic features of the origi-
nal wire rope detection signals are analyzed from the 
perspective of phase space reconstruction, the calcu-
lation methods for embedded dimension and delay 
time are introduced. Afterwards, simulation analysis 
regarding to the reconstructed phase space and the 
evaluation indexes of wire rope weak signal such as 
the number of correlation dimension, approximate 
entropy and the maximum Lyapunov index are con-
ducted, where the change rules of the chaotic dynam-
ic characterizations from different wire rope testing 
signals are presented. Finally, a weak signal detection 
algorithm based on phase space reconstruction and 
improved SVD is proposed. The experimental veri-

fication reveals the feasibility of the detection signal 
SNR and phase trajectory diagram in the weak defect 
signal characterizing and identifying under strong 
background noise conditions. Additionally, the lim-
itations of the proposed method as well as the future 
work are discussed.  The meaning of each variable 
appeared in the following sections are listed and ex-
plained in Table 1, such as,

Table 1
Meaning of each variable

Variable Meaning Variable Meaning

x(i) Time series 
signal

λ Threshold

y(i) Reconstructed 
phase space H Heaviside 

function

yN(i) Nearest neighbor 
point of y(i) m Dimension 

number

Rm(i)
Distance between 
a point and its 
neighbor

n Length of the 
time series

∆R

Interval between 
a point and the 
next near neigh-
bor point

N
Length of the 
reconstructed 
space

Fm(i)
Percentage of the 
near-neighbor 
point

τ Time delay

S(m, N, r, t)
Autocorrelation 
term of a time 
series

Dim Correlation 
dimension

C(m, N, r, t)
Overall correla-
tion of a time 
series

S(i) m-dimensional 
vector

D Embedded 
dimension AE(m, λ) Approximate 

entropy

σ
Distance between 
the initial 
neighboring points

Ly Lyapunov 
index

A Decomposition 
matrix U Left matrix

S Singular value 
matrix V Right matrix
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2. Principles and Methods
According to the definition of embedded dimension in-
troduced by Whitney et al., when there is a differentia-
ble system of S, there must also exists an embedded S 
that keeps its attractor the same topological structure 
as the dynamical system. Based on the above-men-
tioned inference, Takens et al. further expanded and 
proposed the idea of phase space reconstruction ap-
plying the time delay for univariate time series, which 
achieved the intuitive judgement for the system mo-
tion state by reconstructing the phase space trajec-
tory. However, the parameter selection for time delay 
of τ and embedded dimension of D is the key to judge 
whether the system motion state is stable, periodic or 
chaotic from the phase space trajectory within the pro-
cess of phase space reconstruction. 
Likewise, when the phase space reconstructed di-
mension is smaller than the embedded dimension, 
the false near-neighbor point will be generated, 
which is caused by that the nonadjacent points in the 
attractors are overlapped in the process of dimension 
reduction mapping. Similarly, when the phase space 
reconstructed dimension number was bigger than the 
embedded dimension, the false projection or mapping 
would be produced on account of that the original ad-
jacent points in the attractor start to keep away from 
each other in the process of dimension raising. There-
fore, if the abrupt change just happens in the adjacent 
points of the attractor, the phase space dimension is 
equal to the embedded dimension. Specifically, as-
suming that the time series of x(i) could be recon-
structed as a phase space,

Specifically, assuming that the time series of x(i) could be reconstructed as a phase space, 
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The interval between the phase space reconstructed 
point and the next near neighbor point is obtained as,

2 2
1 ( ) ( ) ( ) ( )NN

m mR R i R i x i mn x i mn+∆ = − = + − + . (5)

To find the best embedded dimension, assuming that 
the critical points satisfy Rm+1(i) = Rm(i), and the Rm

2(i) 
is assumed to be the same as the mean diameter of the 
attractor, namely,

2

1 1

1 1ˆ ( ) ( ) ( )
N N

m
i j

R i x i x j
N N= =

= −∑ ∑ . (6)

According to the definition of the false near neighbor 
point, the following condition should be satisfied when 
it occurred,

m 2

( ) ( )
( ) 10%

( )

NN

m

x i mn x i mn
F i

R i
+ − +

= ≥ . (7)

When m is bigger than a certain of threshold and the 
percentage of the near-neighbor point of Fm(i) is re-
duced to 0 and gradually remains stable, the thresh-
old of m is the optimal embedded dimension (FNN 
method). 
To eliminate the nonlinear dependence and correlation 
of the time delay calculation method to system variables, 
the C-C method can be considered. According to its 
principles, when the autocorrelation term of a time se-
ries S(m, N, r, t) was eliminated, It could be expressed as,

1

1( , , , ) ( ( , / , , ) (1, / , , )),
t

m
i i

i
S m N r t C m N t r t C N t r t

t =

= −∑
(8)

where, the overall correlation C(m, N, r, t) of the time 
series denotes the probability that the one-norm of the 
upper bound of a point in the time series of si is not big-
ger than r. The specific description can be expressed as,

1

2( , , , ) ( )
( 1) i j

i j M
C m N r t H r s s

M M ≤ < ≤

= − −
− ∑ , (9)

where, M=N-(m-1)t denotes the number of points in 
the m dimensional embedded reconstructed phase 
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space, H represents the information entropy of the 
time series signal of s(t), and when the time series 
length of N approaches to infinity, we can get,

2

1( , , ) ( ( , , ) (1, , ))
t

m
i i

i
S m r t C m r t C r t

t =

= −∑ . (10)

If the time series signals are independent identically 
distributed and ri is selected appropriately,

( , , ) max[ ( , , )] min[ ( , , )]i iS m r t S m r t S m r t∆ = − . (11)

The best delay time could be obtained when ΔS 
reaches to a local minimum or crosses through the 
zero point for the first time, this method is particu-
larly suitable for the calculation of delay time under a 
small amount of data condition in the wire rope defect 
detection.
Except for the reconstructed phase space dimension 
mentioned above, the correlation dimension is also 
an intuitive evaluation parameter that characterizes 
the attractor information of the inspected time series, 
and it is also an important index that reflects the free-
dom and complexity of a dynamic system. The earli-
est method of calculating the correlation dimension 
is the Gp method, which assumes that the correlation 
integral of a time series signal Si with a threshold of λ  
is described as (which is similar to overall correlation 
mentioned above),

1 1

2( ) ( )
( 1)

N N

i j
i j

i j

C H S S
N N = =

≠

λ = λ − −
− ∑∑ , (12)

where, H denotes the Heaviside function, and 
i jS S−  is the Euclidean distance between the time 

series points of Si and S j,

0 ( 0)
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s

H s
s
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=  >
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Therefore, when the threshold of λ was chosen appro-
priately, the correlation dimension of Dim could be 
obtained. 

0

lg ( )lim
lg
CDim

λ→

λ
=

λ
. (14)

Actually, when the embedded dimension of m was 
gradually increased and the slope in the linear section 

of the changing curves between C(λ) and λ remained 
stable without any change, the embedded dimension 
is the correlation dimension of the reconstructed 
phase space.
Unlike the correlation dimension mentioned above, 
another important index in phase space reconstruc-
tion that measures the vector aggregation extent of 
high-dimensional space is the approximate entropy. 
Likewise, it can also evaluate the complexity of a time 
series system in a statistical mode. Assuming that the 
m-dimensional vector composed of a time series sig-
nal x(i) was represented as S(i), namely,

( ) [ ( ), ( 1),..., ( 1)]S i x i x i x i m= + + − . (15)

The distance between two different vectors of x (i-k) 
and x ( j-k) is,

0,1,..., 1
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D S i S j x i k x j k

= −
= + − + . (16)

Similarly, when the threshold parameter of λ is appro-
priately set and the numbers of the distance less than 
λ is counted up for a m-dimensional reconstructed 
phase space system, the reciprocal probability could 
be obtained and calculated as a ratio of, 
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m
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− +
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The logarithmic mean value is further calculated as,
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1
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N m
m

i
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R
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− +

=

λ
Φ λ =

− +
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The final formula of the approximate entropy is ob-
tained as,

1( , ) ( ) ( )m mAE m +λ = Φ λ −Φ λ (19)

The Lyapunov index is an important evaluation pa-
rameter that measures the stability of a system state 
or orbital state in phase space reconstruction. As-
suming that the mapping of a one-dimensional and 
discrete time series of s0 is F(s0), after several itera-
tions and mappings, two initially adjacent states are 
gradually separated in the chaotic motion, and their 
mapping space states as well as the iteration process 
can be represented as,
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where, σ  is the distance between the initial neigh-
boring points and Ly is the average separation index 
in every iteration. After n times of iteration and map-
ping, the distance between two adjacent points be-
comes, 

0( )
0 0( ) ( )nLy s n ne F s F sσ = +σ − . (21)

Considering the limit situation, that is to say, 
, then we can get,
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Observed from Eq. (2.22), it could be deduced that in 
the limit case, Ly(s0) is independent of the initial val-
ue s0. Thus, Eq. (2.22) can be further simplified as,
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Thus, the Lyapunov index is obtained as Ly. On the 
other hand, when n=1, the distance between two adja-
cent points in the phase space satisfies,

( ) (0) Lytt eσ = σ . (24)

Similarly, we can get,
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When the phase space is n-dimensional, the Lyapun-
ov index can be expressed as,
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The maximum value of Lyi is usually taken as the max-
imum Lyapunov index. When the index is bigger than 

0, the distance between the adjacent points will grad-
ually become larger, and the system will also gradual-
ly evolve into a chaotic state. When the index is less 
than 0, the distance between the adjacent points will 
decrease and eventually evolve into a stable point, and 
the system can be judged as a stable periodic motion.
Hankel matrix transformation is the key of singular 
value decomposition (SVD) in various applications 
such as signal denoising, data compression. However, 
traditional single SVD can hardly satisfy the require-
ment of weak feature extraction and defect signal 
recognition under the background of multi-source 
interferences of wire rope detecting conditions. Ac-
cording to the above-mentioned calculation results 
of these evaluation indexes, it can be found that a 
single phase space reconstruction method is also dif-
ficult to achieve the dynamics features and weak de-
fect signals recognition in wire rope defect detection. 
Therefore, an improved phase space reconstruction 
algorithm based on SVD denoising is considered to 
further investigate the dynamic system character-
izations and defect recognition performance in the 
wire rope defect detection. Assuming that the Hankel 
matrix A is composed of the original wire rope defect 
detection signal of s(i), which can be represented as,
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The further decomposition of matrix A (m×n) by SVD 
could be expressed as,
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The further decomposition of matrix A (m×n) by SVD 
could be expressed as, 
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where, U and V are orthogonal matrixes with the orders 
of m and n, respectively, the singular value matrix 
decomposed from matrix A is a diagonal matrix with an 
order of i, where i=min (m,n) and o is a zero matrix. The 
diagonal matrix of Σ  composed of various eigenvalues 
can be expressed as,  

1 2( , ,..., )idiagΣ = λ λ λ .              (2.29) 
The singular value decomposition for matrix A could be 
further simplified as, 
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Where, u and v are the elements of the matrixes of U and 
V, respectively, λ is the singular value obtained from the 
SVD decomposition. Obviously, the decomposed 
singular value of λ contains not only the information of 
the wire rope defect detection signal, but also the 
information of the interference noise. Generally, the 
original defect signal can be reconstructed by zero setting 
for the noise term in the singular value. However, the 
matrixes of U and V also contain part of the noise and 
useful defect signal information.  
Therefore, an improved SVD denoising and phase space 
reconstruction combined wire rope defect detection and 
signal recognition method is proposed, the schematic 
diagram of the principles for the proposed algorithm and 
method is shown in Fig. 1.  
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Figure 1  
Schematic diagram of an improved SVD-based phase 
space reconstruction algorithm. 

Specific steps of the algorithm are as follows,  
First, the wire rope original signal of S is 
reconstructed to form the multi-dimensional 
original detection data matrix of A, then the 
reconstructed matrix of A is decomposed by SVD. 
Thus, the left decomposed orthogonal matrix of U, 
singular value matrix of S1 and the right orthogonal 
matrix of V are obtained, respectively.  
Second, in order to obtain more information of the 
defect detection signal and eliminate the noise 
interferences, the optimal left matrix of U, singular 
value matrix of S1 and the right matrix of V can be 
obtained using the POD optimal algorithm, 
respectively. Then, the Hankel matrix of the 
original signal could be reconstructed and updated 
as A2, where the SNR of the new reconstructed 
signals are further compared. If it is less than a 
threshold of k, the matrix reconstruction is 
continued again until that the new reconstructed 
signal SNR satisfies SNR > k.  

(28)

where, U and V are orthogonal matrixes with the or-
ders of m and n, respectively, the singular value ma-
trix decomposed from matrix A is a diagonal matrix 
with an order of i, where i=min (m,n) and o is a zero 
matrix. The diagonal matrix of Σ  composed of vari-
ous eigenvalues can be expressed as, 
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Where, u and v are the elements of the matrixes of U 
and V, respectively, λ is the singular value obtained 
from the SVD decomposition. Obviously, the decom-
posed singular value of λ contains not only the infor-
mation of the wire rope defect detection signal, but 
also the information of the interference noise. Gener-
ally, the original defect signal can be reconstructed by 
zero setting for the noise term in the singular value. 
However, the matrixes of U and V also contain part of 
the noise and useful defect signal information. 
Therefore, an improved SVD denoising and phase 
space reconstruction combined wire rope defect de-
tection and signal recognition method is proposed, 
the schematic diagram of the principles for the pro-
posed algorithm and method is shown in Fig. 1. 
Specific steps of the algorithm are as follows, 
 _ First, the wire rope original signal of S is 

reconstructed to form the multi-dimensional 
original detection data matrix of A, then the 
reconstructed matrix of A is decomposed by SVD. 
Thus, the left decomposed orthogonal matrix of U, 
singular value matrix of S1 and the right orthogonal 
matrix of V are obtained, respectively. 
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the defect detection signal and eliminate the noise 
interferences, the optimal left matrix of U, singular 
value matrix of S1 and the right matrix of V can 
be obtained using the POD optimal algorithm, 
respectively. Then, the Hankel matrix of the 
original signal could be reconstructed and updated 
as A2, where the SNR of the new reconstructed 
signals are further compared. If it is less than 
a threshold of k, the matrix reconstruction is 
continued again until that the new reconstructed 
signal SNR satisfies SNR > k. 

 _ Third, the C-C method and FNN method are 
applied to calculate the delay time and the 
embedded dimension of the reconstructed signals. 
Thereafter, the phase space of the SVD processed 

time series signal of S2 is reconstructed, and 
the trajectory diagram as well as the SNRs of 
the reconstructed phase space parameters are 
obtained. Finally, the wire rope defect detection 
signals and defect information could be identified 
according to these parameters and indexes. 

As for the computation complexity, according to the 
schematic diagram of the proposed method shown in 
Fig. 1, it can be found that most of the computation 
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Schematic diagram of an improved SVD-based phase 
space reconstruction algorithm. 

Specific steps of the algorithm are as follows,  
First, the wire rope original signal of S is 
reconstructed to form the multi-dimensional 
original detection data matrix of A, then the 
reconstructed matrix of A is decomposed by SVD. 
Thus, the left decomposed orthogonal matrix of U, 
singular value matrix of S1 and the right orthogonal 
matrix of V are obtained, respectively.  
Second, in order to obtain more information of the 
defect detection signal and eliminate the noise 
interferences, the optimal left matrix of U, singular 
value matrix of S1 and the right matrix of V can be 
obtained using the POD optimal algorithm, 
respectively. Then, the Hankel matrix of the 
original signal could be reconstructed and updated 
as A2, where the SNR of the new reconstructed 
signals are further compared. If it is less than a 
threshold of k, the matrix reconstruction is 
continued again until that the new reconstructed 
signal SNR satisfies SNR > k.  
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is based on the calculation for 1D time series signal 
of S(n) with a length of n, where the time complexi-
ty of the algorithm is O(n). However, when the time 
series signal were reconstructed into a m×n matrix, 
the time complexity is O(m×n). Then, further SVD 
transformation indicates that the matrix is decom-
posed into a multiplying form with the time com-
plexity of O(m2n), and the subsequent calculation 
steps in the proposed algorithms manifest that the 
reconstructed matrix of S2(n) is mainly considered 
with a time complexity of O(n).  Consequently, the 
overall computation complexity of the proposed 
method is the maximum value of O(m2n).  

3. Simulations
According to the wire rope detection signal char-
acteristics, three different wire rope defect detec-
tion signals of S1, S2and S3 are mainly selected as the 
original data for phase space reconstruction, where 
each group of the defect data is composed of 10 small 
datasets (matrix data size 10×1000). Combining the 
principles of GP algorithm and the calculation results 
mentioned in Eq. (12) and Eq. (14), the relationship 
curves between the correlation integral and the near 
neighbor radius are obtained, as shown in Fig. 2(a). 
Thus, the correlation dimensions of different wire 
rope defect detection signals could be obtained by 
fitting the correlation integral curves and the origi-
nal data. The calculation results of these correlation 
dimensions from three different wire rope detection 
signals and datasets are shown in Fig. 2(b). 
It can be found that the correlation dimensions of 
three different wire rope defect detection signals and 
datasets are located between 2.2 and 3.8, and little 
fluctuations for the correlation dimensions from dif-
ferent datasets of signal 2 are observed, while lager 
fluctuations for the correlation dimensions of differ-
ent detection datasets from signal 3 can be noticed, 
which indicates that the dynamic system of signal 3 
has higher degrees of freedom and complexity.
Furthermore, according to the calculation princi-
ples of the approximate entropy and the above-men-
tioned results in Eq. (19), the approximate entropies 
for these three different wire rope detection signals 
(3×10 groups of datasets) are obtained, as shown in 
Fig. 3. It can be concluded that these 10 datasets in 

Figure 2 
The calculation result for the correlation integral and 
correlation dimension. (a) A typical correlation integral 
curve for signal 1 and dataset 1; (b) Three different change 
rules of the correlation dimension for the original wire 
rope detection signals 1 to 3

  

Third, the C-C method and FNN method are applied to 
calculate the delay time and the embedded dimension of 
the reconstructed signals. Thereafter, the phase space of 
the SVD processed time series signal of S2 is 
reconstructed, and the trajectory diagram as well as the 
SNRs of the reconstructed phase space parameters are 
obtained. Finally, the wire rope defect detection signals 
and defect information could be identified according to 
these parameters and indexes.  
As for the computation complexity, according to the 
schematic diagram of the proposed method shown in Fig. 
1, it can be found that most of the computation is based 
on the calculation for 1D time series signal of S(n) with 
a length of n, where the time complexity of the algorithm 
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with a time complexity of O(n).  Consequently, the 
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obtained, as shown in Fig. 3. It can be concluded 
that these 10 datasets in signal 3 all show relatively 
stable changing trends, while most of the 
approximate entropies calculated from the dataset 
in signal 1 are relatively larger. That is to say, the 
densities between different datasets are relatively 
higher and the time series is also more complex. 
However, only 5 to7 approximate entropies 
obtained from the corresponding datasets in signal 
2 are larger, which means that the probability of 
generating a new pattern in the dynamic motion is 
also higher. 
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3 with different datasets. 
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signal 3 all show relatively stable changing trends, 
while most of the approximate entropies calculated 
from the dataset in signal 1 are relatively larger. That 
is to say, the densities between different datasets are 
relatively higher and the time series is also more com-
plex. However, only 5 to7 approximate entropies ob-
tained from the corresponding datasets in signal 2 are 
larger, which means that the probability of generating 
a new pattern in the dynamic motion is also higher.
Similarly, according to the principle of small data cal-
culation aforementioned, the Maximal Lyapunov in-
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Figure 3
Approximate entropy calculation results for signals 1 to 3 
with different datasets

Figure 4
Results of the Lyapunov Index. (a) Log Lyapunov index 
curve; (b) Lyapunov index variation laws for three different 
detection original signals

  

ln ( )jL k  and k t∆ , and the maximum Lyapunov 
index can be obtained by the curve fitting method. It can 
also be observed that as the time interval or the step size 
increases, the logarithm of the Lyapunov index for signal 
1 also increases in the initial stage and gradually 
fluctuates later. In addition, the further calculation results 
of the maximum Lyapunov index for three different wire 
rope detection signals and datasets are shown in Fig. 4(b). 
The results manifest that the maximum Lyapunov index 
fluctuates greatly among different datasets of signal 1, 
especially for dataset 5, where the index is smaller and its 
dynamic state and chaotic orbit are more stable. While 
the other datasets are similar to that of the signal 2 and 
signal 3 datasets, and the Maximal Lyapunov index is in 
a small range of 0.1 to 0.35, which also indicates that 
these datasets have better consistency.  
 

                 

             
Figure 4 
Results of the Lyapunov Index. (a) Log Lyapunov index curve; 
(b) Lyapunov index variation laws for three different detection 
original signals. 

4. Experimental Results 
According to the principles of magnetic flux leakage 
(MFL) testing for wire rope defects, when a MFL testing 
device containing the magnetizing source of a pair of 
permanent magnets and the magnetic connecting bridge of 
a magnetic yoke composed of an armature is sanning along 
the axial direction of the specimen of wire rope with a 
diameter of Φ 28mm, and if any defect such as the wire 
broken, corrosion and abrasion is encountered, the 
magnetic flux within the body of the wire rope would be 
leaked due to the sudden change of the relative magnetic 
permeability in the position of the defect, as shown in Fig. 
5. Consequently, the magnetic flux leakage can be captured 
through the magnetic sensitive element of the sensors 
installed below the magnetic yoke with a lift-off distance 
of about 1-5 mm. When the magnetic signals are 

transformed into voltage signals and transfered to the 
signal preprocessing circuit of lowpass filtering and 
the data acquisition (DAQ) modules, the original 
defect signals and information could be gotten. 
Actually, six groups of the original data for typical 
wire rope defect detection with different SNRs and 
defect information are obtained.  

 
Figure 5  
Experimental apparatus and principles for signal 
acquisition and processing. 

Furthermore, the comparison of the denoised signals 
calculated by the improved SVD based phase space 
reconstruction algorithm illustrated in Fig. 1 is 
shown in Fig. 6. 

 

  

  
Figure 6  
Comparison of signal processing results before and after 
the phase space reconstruction. (a) Detection signal 1;(b) 
Signal 2; (c) Signal 3; (d) Signal 4; (e) Signal 5; (f) Signal 
6. 

Explanatorily, the results shown in Fig. 6(a) to 6(f) 
are the comparison results of signal 1 to signal 6 of 
wire rope defect detection. The blue curve is the 
original wire rope defect detection signal obtained 
under different working conditions with various 
noises and interference of vibration, while the red 
curve is the corresponding wire rope defect 
detection signal processed by the improved 
algorithm. it can be observed that, the denoised 
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dex can be calculated from different datasets of three 
groups of wire rope defect detection signals, as shown 
in Fig. 4. Considering the Eq. (26), Fig. 4(a) shows the 
relationship curves between ln ( )jL k  and k t∆ , and 
the maximum Lyapunov index can be obtained by the 
curve fitting method. It can also be observed that as the 
time interval or the step size increases, the logarithm 
of the Lyapunov index for signal 1 also increases in the 
initial stage and gradually fluctuates later. In addition, 
the further calculation results of the maximum Lya-
punov index for three different wire rope detection 
signals and datasets are shown in Fig. 4(b). The results 
manifest that the maximum Lyapunov index fluctu-
ates greatly among different datasets of signal 1, espe-
cially for dataset 5, where the index is smaller and its 
dynamic state and chaotic orbit are more stable. While 
the other datasets are similar to that of the signal 2 and 
signal 3 datasets, and the Maximal Lyapunov index is 
in a small range of 0.1 to 0.35, which also indicates that 
these datasets have better consistency. 

4. Experimental Results
According to the principles of magnetic flux leakage 
(MFL) testing for wire rope defects, when a MFL test-
ing device containing the magnetizing source of a pair 
of permanent magnets and the magnetic connecting 
bridge of a magnetic yoke composed of an armature 
is sanning along the axial direction of the specimen of 
wire rope with a diameter of Φ 28mm, and if any de-
fect such as the wire broken, corrosion and abrasion is 
encountered, the magnetic flux within the body of the 
wire rope would be leaked due to the sudden change of 
the relative magnetic permeability in the position of 
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netic sensitive element of the sensors installed below 
the magnetic yoke with a lift-off distance of about 1-5 
mm. When the magnetic signals are transformed into 
voltage signals and transfered to the signal prepro-
cessing circuit of lowpass filtering and the data acqui-
sition (DAQ) modules, the original defect signals and 
information could be gotten. Actually, six groups of the 
original data for typical wire rope defect detection with 
different SNRs and defect information are obtained. 
Furthermore, the comparison of the denoised signals 
calculated by the improved SVD based phase space 
reconstruction algorithm illustrated in Fig. 1 is shown 
in Fig. 6.
Explanatorily, the results shown in Fig. 6(a) to 6(f ) are 
the comparison results of signal 1 to signal 6 of wire 
rope defect detection. The blue curve is the original 
wire rope defect detection signal obtained under dif-
ferent working conditions with various noises and in-
terference of vibration, while the red curve is the cor-
responding wire rope defect detection signal processed 
by the improved algorithm. it can be observed that, the 
denoised signals processed by the improved SVD based 

Figure 6 
Comparison of signal processing results before and after the phase space reconstruction. (a) Detection signal 1;(b) Signal 
2; (c) Signal 3; (d) Signal 4; (e) Signal 5; (f ) Signal 6

algorithm features less baseline noise and interferences, 
which could be particularly found from the comparison 
results shown in Fig. 6(a), (b), (c) and (d). The further 
comparison results of the SNR, delay time and embed-
ded dimension of the reconstructed phase space for 
wire rope defect detection signals before and after pro-
cessed by the proposed algorithm are shown in Table 2.

Table 2 
Comparison of the evaluation indexes before and after 
processed by the improved algorithm

Detection signal 1 2 3 4 5 6

SNR-before -8.2 -5.9 -5.7 -2.1 1.4 -0.9

SNR-after -6.7 -5.9 -3.9 1.4 3.7 1.4

Delay time-before 5 5 4 3 5 7

Delay time-after 5 10 5 4 5 4

Embedded 
dimension-before 3 4 4 4 4 4

Embedded 
dimension-after 4 3 4 4 4 4
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also be observed that as the time interval or the step size 
increases, the logarithm of the Lyapunov index for signal 
1 also increases in the initial stage and gradually 
fluctuates later. In addition, the further calculation results 
of the maximum Lyapunov index for three different wire 
rope detection signals and datasets are shown in Fig. 4(b). 
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It can be seen from Table 2 that the delay time of the 
reconstructed phase space processed by the improved 
algorithm has been increased from 5s to 10s for the de-
tection signal 2 among the 6 groups of typical wire rope 
defect detection signals. While the embedded dimension 
of the phase space is reduced from 4 to 3, and the SNR is 
increased from -5.9782dB to -5.9741dB. As a compari-
son, the delay time of the reconstructed phase space for 
the detection signal 6 is shortened from 7s to 4s, while 
the embedded dimension remains unchanged and the 
SNR of the detected signal processed by the improved 
algorithm is increased from -0.9121dB to 1.4757dB. 
Besides, comparison results between different signal 
denoising methods such as the Empiric Mode Decom-
position (EMD), lowpass (LP) and median filtering, 
Hilbert transform and wavelet denoising reported in 
related researhes were also compared, and the SNR 
calculation results were presented in Table 3.
It can be observed that, most of the decomposition 
components by EMD have lower SNRs compared 
with the original 6 groups of testing signals, except 
the component of Imf6. However, although Imf6 has 
bigger SNRs than than of the original testing signal, 
further signals of Imfs for these six groups of signals 
shown in Fig. 7 indicates that these Imf6 components 
can hardly be recognized in defect features.

Table 3 
SNR comparison results by different signal denoising 
methods

Detection 
signal 1 2 3 4 5 6

Original -8.2 -5.9 -5.7 -2.1 1.4 -0.9

EMD 
[40]

Imf1 -1.55   -7.55   -14.06   -7.51   -12.82    -7.03   

Imf2 -7.44   -3.94    -6.38   -5.99   0.16  -4.23   

Imf3 -4.36   8.26   -8.33  -3.03   -10.05   -1.23   

Imf4 -1.94    -1.57   -3.46    -8.07   -6.83    -6.81   

Imf5 2.21   -1.68    0.99    -0.85    1.79   -4.99    

Imf6 21.88 0.18 7.88 7.11 20.32 2.69

LP [23] -8.25 -5.97 -5.60 -1.27 1.56 -0.32

Median [22] -10.82 -6.53 -9.64 -0.25 0.69 -4.05

Hilbert [39] -8.25 -5.98 -5.77 -2.17 1.48 -0.91

Wavelet [7] -10.37 -3.05 0.67 -11.35 -15.02 -1.11

Figure 7 
EMD components of Imf6 for six different wire rope testing signals

Similar results can also be found in the LP, median 
filtering signal, Hilbert transformed and wavelet de-
noisied signal SNR values. Namely, all of these signal 
processing methods are unavailable for weak wire 
rope signal detection and defect recognition.
On the other hand, the SNR comparison results ex-

tracted from these 6 groups of typical wire rope de-
tection signals before and after processed by the pro-
posed algorithm are shown in Fig. 8.
Observed by the changing trend curves of SNRs shown 
in Fig. 8, it can be found that all the SNRs calculation 
results processed and denoised by the improved algo-
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Figure 8 
SNR comparison results before and after processed by the 
improved algorithm

  

signals processed by the improved SVD based algorithm 
features less baseline noise and interferences, which 
could be particularly found from the comparison results 
shown in Fig. 6(a), (b), (c) and (d). The further 
comparison results of the SNR, delay time and embedded 
dimension of the reconstructed phase space for wire rope 
defect detection signals before and after processed by the 
proposed algorithm are shown in Table 2. 
Table 2  
Comparison of the evaluation indexes before and after 
processed by the improved algorithm. 
Detection signal 1 2 3 4 5 6 

SNR-before -8.2 -5.9 -5.7 -2.1 1.4 -0.9 
SNR-after -6.7 -5.9 -3.9 1.4 3.7 1.4 

Delay time-before 5 5 4 3 5 7 

Delay time-after 5 10 5 4 5 4 

Embedded 
dimension-before 3 4 4 4 4 4 

Embedded 
dimension-after 4 3 4 4 4 4 

It can be seen from Table 2 that the delay time of the 
reconstructed phase space processed by the improved 
algorithm has been increased from 5s to 10s for the 
detection signal 2 among the 6 groups of typical wire 
rope defect detection signals. While the embedded 
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It can be observed that, most of the decomposition 
components by EMD have lower SNRs compared 
with the original 6 groups of testing signals, except 
the component of Imf6. However, although Imf6 
has bigger SNRs than than of the original testing 
signal, further signals of Imfs for these six groups 
of signals shown in Fig. 7 indicates that these Imf6 
components can hardly be recognized in defect 
features, such as, 
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rithms are higher than that of these six groups of orig-
inal signals for wire rope defect detection. Besides, 
the SNRs calculated from these six groups of signals 
processed by the improved algorithms all feature an 
increasing trend followed by a decrease gradient, as 
well as these original signals. In short, these SNRs 
calculation results demonstrated the effectiveness of 
the SVD based phase space reconstruction algorithm 
preliminarily, especially for its superiority in weak 
signal denoising. 
On the other hand, in order to verify the phase space 
characteristics of the output detection signals, three 
groups of typical phase space trajectory curves of 
the wire rope detection signals before and after pro-
cessed by the improved algorithm were calculated, 
respectively, as shown in Fig. 9. Specifically, Fig. 
9(a), (c) and (e) are the phase space trajectory curves 
of the original wire rope detection signals, while Fig. 
9(b), (d) and (f ) are the calculation results processed 
by the improved algorithm. It can be found that the 
reconstructed phase space is symmetrically distrib-
uted, the diagonal part in the histogram is the phase 
space of the original signals, while the phase trajec-
tories on these two sides are distributed with differ-
ent delay times.
Comparing the results of the first group of wire rope 
detection signals shown in Fig. 9(a) and (b), it can 
be found that before the improved algorithm is ap-
plied, the embedded dimension of the original wire 
rope detection signal is 4, the phase space trajectory 

is presented as a near-periodic state and mixed with 
many density points and interferences in the center 
location. After processed by the proposed improved 
algorithm, the embedded dimension of the phase 
space is 3, and the processed signals feature more 
prominent peaks. The defect information can be ef-
fectively and clearly identified, and the phase space 
trajectory curves are characterized with periodic 
states. Furthermore, less noise and chaos character-
istics are mixed within the phase space trajectory, 
and a periodic attractor shape is exhibited. Similarly, 
although the other two groups of wire rope detection 
signals features stronger noise, and only one peak is 
shown in the original signal, the phase space trajec-
tory is densely distributed, and the external phase 
trajectory curve is distributed discretely, as shown in 
Fig. 9(c) and (e). However, two peaks are expressed 
in the wire rope detection signals processed by the 
improved algorithm. Namely, two closely distributed 
defects can be effectively identified, and the external 
interference components in the phase space trajec-
tories are also reduced, and the distribution pattern 
of the phase space trajectory center is more uniform, 
as shown in the Fig. 9(d) and (f ). In conclusion, the 
phase space trajectory distribution results further 
demonstrated the effectiveness of the improved 
algorithm in wire rope defect detection signal pro-
cessing and defect information recognition.

5. Conclusion and Discussion
Summarily, the concrete calculation methods for 
chaotic dynamics parameters of embedded dimen-
sion and delay time are introduced, and the chaotic 
dynamic characterizations of wire rope inspection 
signals are mainly analyzed and studied in this paper 
from the perspective of phase space reconstruction. 
Combining the calculation principles of different 
chaos evaluation parameters such as the correlation 
dimension, approximate entropy and the maximum 
Lyapunov index, the simulations are conducted re-
garding to three typical wire rope defect detection 
signals, where the characterizations of different wire 
rope inspection signals in the phase space were re-
vealed. Naturally, an improved SVD and phase space 
reconstruction based wire rope weak signal detection 
and defect recognition method is proposed. Further-
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Figure 9
Phase space trajectory diagram before and after processed by the improved algorithm; (a) Results for original signal 1; (b) 
Results for processed signal 1; (c) Results for original signal 2; (d) results for processed signal 2; (e) Results for original 
signal 3; (f ) Results for processed signal 3

(a) (b)

(c) (d)

(e) (f )
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more, the principle of the proposed algorithm and 
method are elaborated and explained by the compar-
ison study. Moreover, the feasibility of the improved 
algorithm in the wire rope defect detection and weak 
signal recognition is also verified through the time 
and space domain, as well as the phase space trajec-
tory analysis.
As for the limitations of the proposed method, it may 
lies in two aspects, one is that although the SNRs of 
the weak defect inspection signals are improved com-
pared with the original signals, the interferences of 

strand and electromagnetic noises are still strong, 
which makes the weak defect hard to identify espe-
cially under extreme service conditions. Another 
shortcoming is that the shape and size of the recon-
structed phase space may affect the validity and dis-
tinguishing results of the weak wire rope signal pro-
cessing method when the chaotic dynamic indexes of 
delay time and embedded dimension are set unsuit-
ably. Besides, how to further improve the real-time 
performance of the proposed method is also the fu-
ture work.
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