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Due to the increased disease occurrence rates in humans, the need for the Automated Disease Diagnosis (ADD) 
systems is also raised. Most of the ADD systems are proposed to support the doctor during the screening and de-
cision making process. This research aims at developing a Computer Aided Disease Diagnosis (CADD) scheme 
to categorize the brain tumour of 2D MRI slices into Glioblastoma/Glioma class with better accuracy. The main 
contribution of this research work is to develop a CADD system with Convolutional-Neural-Network (CNN) 
supported segmentation and classification. The proposed CADD framework consist of the following phases; 
(i) Image collection and resizing, (ii) Automated tumour segmentation using VGG-UNet, (iv) Deep-feature 
extraction using VGG16 network, (v) Handcrafted feature extraction, (vi) Finest feature choice by firefly-al-
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gorithm, and (vii) Serial feature concatenation and binary classification. The merit of the executed CADD is 
confirmed using an investigation realized using the benchmark as well as clinically collected brain MRI slices. 
In this work, a binary classification with a 10-fold cross validation is implemented using well known classifiers 
and the results attained with the SVM-Cubic (accuracy >98%) is superior. This result confirms that the combi-
nation of CNN assisted segmentation and classification helps to achieve enhanced disease detection accuracy.
KEYWORDS: Brain tumour, MRI, VGG16, VGG-UNet, Firefly-algorithm, SVM-Cubic classifier.

1. Introduction
Due to various uncontrollable reasons, the disease 
occurrence rates in humans are gradually growing 
worldwide. The diseases in internal body organs are 
considered more acute compared to the diseases in 
external organs. In human physiology, the brain is one 
of the vital internal organ and also the prime part in 
Central Nervous System (CNS) and the abnormality/
disease in brain is one of the chief medical emergency 
[1-3]. The brain abnormality is due to various reasons 
and the brain tumour is one of the leading causes of 
abnormality in CNS.
The various class of Brain Tumour (BT) based on the 
dimension and the orientation is clearly discussed in 
[4] and this report also suggests various clinical treat-
ment procedures for the BT, such as surgery, radiation 
therapy, and chemotherapy. In humans, the tumours, 
such as Low-Grade-Glioma (LGG) and Glioblasto-
ma-Multiforme (GBM) causes a severe problem in 
CNS and the efficient recognition of these tumour 
cases are very essential to plan and implement appro-
priate treat process. The LGG begins in glial-cells of 
the CNS and rigorously affects the normal activity of 
CNS based on the orientation and progression rate. 
The GBM is one of the harsh condition, normally oc-
curs in the chief part of the CNS (brain/ spinal cord) 
and the untreated GBM may lead to various problems, 
like headaches, nausea, vomiting and seizures [5-7].
The screening of the BT can be performed using sig-
nal-assisted-methodologies (recording and exam-
ining the electroencephalogram) and image-assist-
ed-procedures (recording the brain section using 
radiological imaging). The BT detection with imaging 
practice helps to reach a healthier diagnosis com-
pared to signal supported techniques [8-10]. 
In the literature, a number of image processing proce-
dures are proposed and implemented to evaluate the 
BT using MRI slices of varied modalities. The MRI 
slice with axial-view is widely considered by the re-

searchers and doctors to evaluate the abnormality, 
since the brain section seen in the axial-view is clear 
compared to sagittal- and coronal-view [11,12].
The clinical level detection of the BT using the cho-
sen MRI slice is a challenging task during the mass 
screening operation and classifying the BT into 
GBM/LGG is necessary during the decision making 
and treatment planning process. When, the number 
of MRI slices to be diagnosed increases, then a Com-
puter-Aided-Detection (CAD) can be implemented to 
reduce the burden and the report obtained from the 
CAD along with the categorized images are submit-
ted for doctor’s perusal. The CAD report combined 
with the findings by the doctor will help in taking the 
firm decision regarding the BT class and the possible 
treatment procedure to be implemented to recover 
the patient.
The proposed research aims at developing an appro-
priate Computer Aided Disease Diagnosis (CADD) 
scheme to segment and categorize the BT existing in 
the T2 modality brain MRI slice. The proposed CADD 
framework consist of the following stages; (i) Two-di-
mensional slice extraction and resizing (224x224x3 
pixels), (ii) Deep-Feature (DF) extraction with 
VGG16, (iii) VGG-UNet assisted tumour mining, (iv) 
Handcrafted-feature (HF) extraction, (v) Dominant 
feature selection using Firefly-Algorithm, (vi) Serial 
features concatenation, and (vii) Binary classification 
with a 10-fold cross confirmation.
The performance of the proposed CADD is tested and 
authenticated using benchmark as well as clinically 
collected MRI. The main purpose of the benchmark 
images (T2 modality MRI slices with LGG/GBM) is 
to train the VGG16 and VGG-UNet for the proposed 
task. The result attained with the proposed study con-
firms that the developed CADD helps in achieving a 
better accuracy with the benchmark (96.04%) as well 
as clinical images (98.89%).
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The main contribution of this research includes:
1 Implementation of CNN supported segmentation 

and classification for the brain MRI assessment;
2 Extracting the deep as well as all the possible hand-

crafted features; 
3 Firefly algorithm supported dominant feature se-

lection  and binary classification.
This research is prepared as follows; Section 2 pres-
ents the context, Section 3 discusses the implement-
ed methodology, Section 4 and 5 depicts the exper-
imental results and discussions. The conclusion of 
this research is specified in Section 6.

2. Related Works
Due to its significance, a significant number of BT di-
agnosis systems are proposed and applied by the re-
searchers using, traditional, Machine-Learning (ML) 
and Deep-Learning (DL) approaches [1-3].  In most 
of the CAD schemes, ML/`DL methods are applied 
to classify the brain MRI slices based on the disease 
conditions.
The ML based BT detection directly implements a 
scheme with the following phases; MRI processing 
and resizing, feature extraction, feature selection, 
classifier implementation and validation [12]. In few 
existing ML technique, the extraction and evaluation 
of the BT section is also presented [14].  The ML ap-
proaches implemented in earlier research offered a 
satisfactory classification result on the benchmark as 
well as the clinical grade MRI slices (94.51%) when 
a binary classification is employed to categorize the 
MRI slices into healthy/disease class [10]. The DL 
supported approaches helped to achieve a better 
result during the binary as well as the multi-class 
categorization of the brain MRI slices [7,8]. The ear-
lier works on BT detection confirmed that, the DL 
schemes implemented with the DF and combined DF 
and HF (DF+HF) will offer a better detection accura-
cy. The works presented in [11] evident the need for 
DF+HF in order to enhance the disease detection.
The recent work discussed in [11] implemented a se-
rial concatenation of DL and HF to enhance the per-
formance of VGG19 architecture and the implement-
ed technique helps in achieving a better classification 
accuracy with benchmark (98.00%) and clinical data-
base (98.17%) MRI slices of T2 modality. The existing 

works in the literature [15-17] confirmed the need for 
combining the segmentation, HF extraction and DF 
extraction methodologies to enhance the overall ac-
curacy of the disease detection system.
Hence, in this work a CADD framework is developed by 
combining the automated segmentation and classifica-
tion scheme to improve the BT categorization accura-
cy and the proposed work is experienced and authen-
ticated using the benchmark and clinical grade brain 
MRI slices of T2 modality. In this work, a pre-trained 
VGG16 architecture is considered and its segmenta-
tion/classification performance is initially trained, 
tested and validated using the TCIA dataset with GBM/
LGG image cases. Later, the BT detection performance 
of VGG16 is then confirmed using the clinically collect-
ed brain MRI slices. The attained result with the pro-
posed CADD confirms that, the implemented VGG16 
architecture offers a better BT detection accuracy.
In the earlier works, brain MRI segmentation  and 
classification [9] is seperately discussed by the re-
searchers. Further, the existing brain MRI slices are 
classified using the machine-learning [10] and/or 
deep-learning [11] methods. The chied motivation of 
the proposed research is to implement the CNN based 
joint segmentation and classifcation to enhance the 
disease detection accuracy for the benchmark as well 
as the clinical grade images.Further, to improve the 
classification accuracy, the optimally selected hand-
crafted features are combined with the deep-features 
and a binary classifier is implemented to categorize 
the images. This work aimed to implement a novel 
CADD system to classifiy the brain abnormality into 
LGG/GBM class using the benchmark as well as the 
clinically obtained MRI slices of real patients. 

3. Methodology
The disease detection performance of every CAD 
unit depends on the tactic considered to execute the 
particular system. In this work, the BT detection is 
achieved using a novel CADD unit developed and im-
plemented using the pre-trained Convolutional-Neu-
ral-Network (CNN) scheme.

 3.1. Disease Detection Framework
The CADD unit considered to detect and categorize 
the BT of brain MRI slices is depicted in Figure 1.  
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Initially, a 3D image of the brain MRI is collected 
from the patients and then a 3D to 2D conversion 
is implemented using ITK-Snap software [18]. The 
extracted 2D slices are then resized to 224x224x3 
pixels (recommended image dimension for VGG16). 
The resized images are then considered for the fea-
ture extraction task. The BT segment and the DF are 
extracted by employing a trained VGG-UNet and the 
HF are extracted using methods, such as GLCM, Hu, 
and LBP with different weights.  After extracting the 
essential features, the dominant feature vector for 
DF and HF is selected using the Firefly-Algorithm 
and the selected features are sorted and combined 
using the serial feature concatenation technique 
discussed in [11]. The concatenated features are 
then considered to train, test and validate the binary 
classifiers, which helps to categorize the brain MRI 
slices into GBM and LGG class.

Figure 1
Proposed CADD framework to examine brain MRI slices

Figure 2
Sample test images collected from TCIA database
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Figure 3
Sample T2 modality brain MRI slices of clinical database

Table 1
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3.3 CNN Segmentation and Feature 
Extraction 

The image segmentation is one of the proven 
approaches, widely adopted to extract the 
abnormal section from the test image for 
further assessment [22, 23]. Automated 
segmentation is widely adopted compared to 
semi-automated and traditional procedures 
and hence, in the proposed work, CNN 
supported segmentation is implemented to 
extract the BT segment from the considered 
brain MRI slices. 

3.4 VGG-UNet Implementation  

The automated segmentation using UNet is 
initially proposed in [24]. This scheme 
included a encoder-decoder section to 
categorize the image components based on its 
pixel and for the medical image assessment, a 
binary classification is employed to extract 
the abnormal section. In this work, the VGG-

[22, 23]. Automated segmentation is widely adopted 
compared to semi-automated and traditional proce-
dures and hence, in the proposed work, CNN support-
ed segmentation is implemented to extract the BT 
segment from the considered brain MRI slices.

3.4. VGG-UNet Implementation 
The automated segmentation using UNet is initially 
proposed in [24]. This scheme included a encoder-de-
coder section to categorize the image components 
based on its pixel and for the medical image assess-
ment, a binary classification is employed to extract 
the abnormal section. In this work, the VGG-UNet 
scheme depicted in Figure 4 is employed to extract 
the BT with better accuracy. The essential informa-
tion on VGG-UNet can be accessed from [25-27]. The 
initial part (encoder) of VGG-UNet consists of the 
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traditional VGG16 scheme with operations, such as 
convolution, ReLU and max pool. 
The outcome of the encoder section presents the DF 
with a value of 1x4096 which is then stored separate-
ly for further assessment. The extracted DF are then 
normalized and processed with the UNet decoder 
unit. The number of layers in encoder as well as de-
coder is unique (5 layers) and the final layer of decod-
er is then given to a SoftMax classifier which imple-
ments a binary classification to separate the BT with 
background using a Signoid-activation-function. 
This BT segment is then considered to extract the 
GLCM features.

3.5. Deep-Features 
The total number of DF extracted is very large 
(1x4096) and hence three fully-connected-layers 
(FCL) with 50% dropout are considered to get a re-
duced feature with dimension 1x1024. All these fea-
tures are then sorted based on their rank and later a 
FA assisted feature selection is then implemented to 
overcome the over-fitting problem, commonly orig-
inate in binary classification. Equation (1) presents 
the feature-vector attained from VGG-UNet and 

Figure 4
VGG-UNet implemented to extract the tumour from MRI slices
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3.6 Handcrafted-Features  

The earlier works [11, 16, 17, 23] confirmed 
that the combination of DF and HF (DF+HF) 
will improve the performance of deep-
learning system. In this work, the essential 
HF from the brain MRI slices are mined using 
the well known methods such as GLCM [3, 
10, 29], Hu [3, 10, 30] and LBP [31, 32]. The 
GLCM is widely adopted due to its superior 
performance and the essential GLCM 
parameters of the MRI slices are extracted 
from the segmented BT by VGG-UNet. 
Similar procedure is implemented to extract 
the Hu moments. Equation (3) and Equation 
(4) present the extracted GLCM and Hu 
features.  

LCM (1x25) (1,1) (1,2)

(1,25)

1 , ,...,GHF GLCM GLCM
GLCM

=
(3) 

)7,1(Hu,...,)2,1(Hu,)1,1(Hu(1x7)u H2HF = .     (4) 

The LBP provides the important information 
regarding the gray-scale picture under 
assessment and the LBP with different weight 
discussed in [32] is adopted to extract the 
pixel information of MRI slices with 
GBM/LGG. In this work, the weights, such as 
W=1, 2, 3, and 4 are considered to enhance 
the image and from each image, 1x59 number 
of features are extracted. The LBP features 
considered in this work are depicted in 
Equation (5): 

 (1x236) (1,59) (1,59)

(1,59) (1,59)

3 1 2
3 4

LBPHF LBP LBP
LBP LBP

= +

+ + . 
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The total number of HF collected with 
GLCM, Hu and LBP is shown in Equation (6); 

(1 268) LCM (1x25) u (1x7)
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1 2
3

x G H
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3.6 Firefly-Algorithm Based Feature 
Selection and Serial Fusion 

The feature reduction process plays a vital 
role during in ML and DL based classification 
and to avoid the over-fitting problem, it is 
necessary to identify the dominant features 
using an appropriate approach. The feature 
reduction can be implemented using 
traditional statistical approaches (Student’s t-
test) [3, 12] and heuristic algorithm assisted 
techniques [17, 22]. In this work, the feature 
reduction for DF and HF are implemented 
using the FA algorithm and the reduced 
features are then serially combined as 

Equation (2) depicts the feature-vector after the FCL 
dropout.

 
 

 

UNet scheme depicted in Figure 4 is employed to 
extract the BT with better accuracy. The essential 
information on VGG-UNet can be accessed from 
[25-27]. The initial part (encoder) of VGG-UNet 
consists of the traditional VGG16 scheme with 
operations, such as convolution, ReLU and max 
pool.  

The outcome of the encoder section presents the 
DF with a value of 1x4096 which is then stored 
separately for further assessment. The extracted 
DF are then normalized and processed with the 
UNet decoder unit. The number of layers in 
encoder as well as decoder is unique (5 layers) and 
the final layer of decoder is then given to a 
SoftMax classifier which implements a binary 
classification to separate the BT with background 
using a Signoid-activation-function. This BT 
segment is then considered to extract the GLCM 
features. 

Figure 4 

 VGG-UNet implemented to extract the tumour 
from MRI slices 

 
3.5 Deep-Features  

The total number of DF extracted is very large 
(1x4096) and hence three fully-connected-layers 
(FCL) with 50% dropout are considered to get a 
reduced feature with dimension 1x1024. All these 
features are then sorted based on their rank and 
later a FA assisted feature selection is then 
implemented to overcome the over-fitting 
problem, commonly originate in binary 
classification. Equation (1) presents the feature-
vector attained from VGG-UNet and Equation (2) 
depicts the feature-vector after the FCL dropout. 

 (1x4096) (1,1)

(1,2)

(1,4096)

,
,...,

VGG UnetFV VGG Unet
VGG Unet
VGG Unet

− = −

−

−

  (1) 

)1024,1(DF,...,)2,1(DF ,)1,1(DF(1x1024) FDFV = . (2) 

3.6 Handcrafted-Features  

The earlier works [11, 16, 17, 23] confirmed 
that the combination of DF and HF (DF+HF) 
will improve the performance of deep-
learning system. In this work, the essential 
HF from the brain MRI slices are mined using 
the well known methods such as GLCM [3, 
10, 29], Hu [3, 10, 30] and LBP [31, 32]. The 
GLCM is widely adopted due to its superior 
performance and the essential GLCM 
parameters of the MRI slices are extracted 
from the segmented BT by VGG-UNet. 
Similar procedure is implemented to extract 
the Hu moments. Equation (3) and Equation 
(4) present the extracted GLCM and Hu 
features.  

LCM (1x25) (1,1) (1,2)

(1,25)

1 , ,...,GHF GLCM GLCM
GLCM

=
(3) 

)7,1(Hu,...,)2,1(Hu,)1,1(Hu(1x7)u H2HF = .     (4) 
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The feature reduction process plays a vital role during 
in ML and DL based classification and to avoid the 
over-fitting problem, it is necessary to identify the 
dominant features using an appropriate approach. The 
feature reduction can be implemented using tradition-
al statistical approaches (Student’s t-test) [3, 12] and 
heuristic algorithm assisted techniques [17, 22]. In this 
work, the feature reduction for DF and HF are imple-
mented using the FA algorithm and the reduced fea-
tures are then serially combined as discussed in [33]. 
The FA feature selection is implemented as follows;
Let us consider there exist feature vectors 

  

discussed in [33].  

The FA feature selection is implemented as 
follows; 

Let us consider there exist feature vectors GBMFV  
and; let this vector is with a value 
of { }N1,0LGGFV,GBMFV ∈ . The FA then performs 
a feature wise assessment and computes the 
Hamming-Distance (HD) as in Equation (7):. 
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where N=1024 in DF and N=268 in HF 

The difference in values between features is 
expressed as in Equation (8); 
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The fitness function then assigned as in Equation 
(9):  
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The )LGGFV,GBMFV( maxHD is then evaluated to 
decide the features and 
if 0)LGGFV,GBMFV( maxHD ≈ , then the particular 
feature is discarded and 
if max  ( , ) 0,GBM LGGHD FV FV ≠  then the 
corresponding feature is selected and a new 
feature vector is formed. The proposed procedure 
is graphically presented in Figure 5 and the FA 
with optimally assigned parameters will help to 
identify the new feature vector. 
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In this work, the FA with Brownian-Distribution is 
considered and other essential parameters are 
assigned as follows; number of fireflies=30, search 
dimension = total features, iterations=2500 and 

other FA parameter information can be 
accessed from [34]. 

The FA based feature selection helped to get 
DF vector with a dimension of 1x427 and HF 
with a dimension of 1x193. These features are 
serially combined to get a new fused-feature-
vector (FFV) depicted in Equation (10). This 
FFV is then considered to train, test and 
validate the binary classifiers considered in 
the developed CADD unit. 
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3.7 Classifier Implementation and 
Performance Validation 

The performance of the medical data 
assessment using the developed CADD 
depends on the employed classifiers. Binary 
classification is implemented in the proposed 
work to classify the MRI slices into 
GBM/LGG class for benchmark as well as 
clinical data. To achieve this task, the 
classifiers existing in the literature, such as 
SoftMax, SVM with various kernels (Linear, 
RBF, and Cubic) [3, 12, 33, 35-37], DA (Linear, 
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the developed CADD depends on the employed classi-
fiers. Binary classification is implemented in the pro-
posed work to classify the MRI slices into GBM/LGG 
class for benchmark as well as clinical data. To achieve 
this task, the classifiers existing in the literature, such 
as SoftMax, SVM with various kernels (Linear, RBF, 
and Cubic) [3, 12, 33, 35-37], DA (Linear, and Quadrat-
ic) [12,33] and KNN (Fine, and Cubic) [12,33] are em-
ployed to accomplish the task.  The earlier research 
also presents the similar medical image assessment 
tasks which implemented classifiers [38-41].
The performance of the classifier is then assessed 
by recording the confusion-matrix values, such as 
true-positive (TP), true-negative (TN), false-positive 
(FP), false-negative (FN), accuracy (ACC), precision 
(PRE), sensitivity (SEN), specificity (SPE) and neg-
ative predictive value (NPV) [3, 11]. Based on these 
values, the performance of proposed CADD with a 
chosen binary classifier is confirmed. 

4. Experimental Results
This section presents the experimental outcome at-
tained with the proposed work. The experimental in-
vestigation is implemented using a workstation with 

Intel I5 2.5GHz processor with 16GB RAM and 2GB 
VRAM equipped with MATLAB®.
Initially, the essential number of MRI slices is extract-
ed from benchmark as well as the clinical dataset as 
discussed in Table 1 and every image is then resized 
into 3x224x224  pixels to implement the selected 
CNN scheme. Initially, the VGG-UNet is implement-
ed to extract the BT segment from the considered test 
images. The VGG-UNet depicted in Figure 4 is initially 
trained for the considered image data using the origi-
nal and augmented benchmark images and after the 
training, the segmentation performance of VGG-UN-
et is then validated using the benchmark and clinical 
grade MRI slices. Figure 6 depicts the result attained 
for GBM class clinical MRI and in this image Figure 
6(a) to (d) shows the various layer outputs of VGG-UN-
et and Figure 6(e) and (f ) depicts the identified section 
(heatmap) and extracted section by the decoder’s Soft-
Max unit. Similar result is then attained with other val-
idation images considered in this work.  
The encoder section of the VGG-UNet also helps to 
extract the essential DF with a dimension of 1x4096 
and this feature value is then initially reduced to 
1x1024 features using the FCL and further this DF is 
reduced to 1x427 using the FA based feature reduc-
tion technique. After collecting the essential DF vec-
tor, the necessary HF are then collected with GLCM 
and Hu moments.  To get the LBP from the test imag-
es, various weight values (W=1,2,3 and 4) are imple-
mented and the corresponding outcome attained with 
GBM and LGG class images are presented in Figure 
7. From every LBP image, a feature value with dimen-
sion 1x59 is then extracted and all these features are 
combined together to get the essential feature value 
for LBP (1x236).
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noted that, the overall performance offered by the 
SVM-RBF in the case of DF (Figure 8(a)) and the per-
formance by SVM-Cubic is better for DF+HF. This 
outcome confirms that, the classification accuracy of 
the CADD is improved due to the DF+HF compared to 
the classification accuracy by DF alone. 
Related practice is then repeated with the clinical 
MRI dataset and the attained results are present-
ed in Table 3. From Table 3, it can be noted that the 
SVM-Cubic classifier helped to achieve better clas-
sification accuracy with DF and DF+HF feature vec-
tors. The confusion matrix presented in Figure 9 (a) 
and (b) also confirms the eminence of the SVM-Cu-
bic classifier compared to other methods. Further, the 
Receiver Operating Characteristic (ROC) curve pre-
sented in Figure 9(c) confirms that the SVM-Cubic 
offers better result with DF+HF compared to other 
SVM, DA, KNN and SoftMax classifiers considered in 
this work.
The overall performance of the CADD is then present-
ed in Figure 10 using the Glyph-plot and this figure 
also confirms that the performance of the SSM-Cubic 
is better with the clinical images for DF and DF+HF. 
These results confirm that, proposed CNN based seg-
mentation and SVM classification is clinically note-
worthy and the developed CADD can be considered to 
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Table 3 

Brain tumour detection performance of CADD with 
clinical images  
Features Classifier TP FN TN FP ACC PRE SEN SPE NPV 

D
F 

SoftMax 82 8 84 6 92.22 93.18 91.11 93.33 91.30 

SVM-Linear 85 5 81 9 92.22 90.43 94.44 90.00 94.19 

SVM-RBF 83 7 80 10 90.56 89.25 92.22 88.89 91.95 

SVM-Cubic 85 5 83 7 93.33 92.39 94.44 92.22 94.32 

DA-Linear 81 9 86 4 92.78 95.29 90.00 95.56 90.53 

DA-Quadratic 83 7 85 5 93.33 94.32 92.22 94.44 92.39 

KNN-Fine 84 6 82 8 92.22 91.30 93.33 91.11 93.18 

KNN-Cubic 86 4 81 9 92.78 90.53 95.56 90.00 95.29 

D
F+

H
F 

SoftMax 85 5 85 5 94.44 94.44 94.44 94.44 94.44 

SVM-Linear 86 4 88 2 96.67 97.73 95.56 97.78 95.65 

SVM-RBF 88 2 87 3 97.22 96.70 97.78 96.67 97.75 

SVM-Cubic 89 1 89 1 98.89 98.88 98.88 98.88 98.88 

DA-Linear 86 4 85 5 95.00 94.51 95.56 94.44 95.51 

DA-Quadratic 89 1 88 2 98.33 97.80 98.89 97.78 98.88 

KNN-Fine 88 2 89 1 98.33 98.88 97.78 98.89 97.80 

KNN-Cubic 88 2 88 2 97.78 97.78 97.78 97.78 97.78 
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SVM-Cubic performance for clinical MRI database 
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Related practice is then repeated with the 
clinical MRI dataset and the attained results are 
presented in Table 3. From Table 3, it can be 
noted that the SVM-Cubic classifier helped to 
achieve better classification accuracy with DF 
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matrix presented in Figure 9 (a) and (b) also 
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classifier compared to other methods. Further, 
the Receiver Operating Characteristic (ROC) 
curve presented in Figure 9(c) confirms that the 
SVM-Cubic offers better result with DF+HF 
compared to other SVM, DA, KNN and 
SoftMax classifiers considered in this work. 
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Related practice is then repeated with the 
clinical MRI dataset and the attained results are 
presented in Table 3. From Table 3, it can be 
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Related practice is then repeated with the 
clinical MRI dataset and the attained results are 
presented in Table 3. From Table 3, it can be 
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classifier compared to other methods. Further, 
the Receiver Operating Characteristic (ROC) 
curve presented in Figure 9(c) confirms that the 
SVM-Cubic offers better result with DF+HF 
compared to other SVM, DA, KNN and 
SoftMax classifiers considered in this work. 

Figure 10 

Glyph-plot generated using the classifier 
performance for clinical MRI database 

 

SoftMax SVM-Linear SVM-RBF SVM-Cubic

DA-Linear DA-Quadratic KNN-Fine KNN-Cubic

 

(a) DF 

SoftMax SVM-Linear SVM-RBF SVM-Cubic

DA-Linear DA-Quadratic KNN-Fine KNN-Cubic

 

(b) DF+HF 

The overall performance of the CADD is then 
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Figure 10
Glyph-plot generated using the classifier performance for clinical MRI database

examine the clinical level MRI slices collected from 
real patients.
The main contribution of the proposed work is that, 
it has developed a CNN assisted CADD system which 
is used to detect and classify the BT into GBM/LGG 
with better accuracy. The proposed approach helped 
to attain a classification accuracy of >98% on the 
clinically collected images. The future extent of 
this work includes; (i) Improving the performance 
of VGG-UNet using VGG19 scheme, (ii) Compar-
ing the performance of VGG-UNet with other CNN 
segmentation methods existing in the literature and 
(iii) Testing and validating the performance of pro-
posed CADD using the brain MRI of modalities, such 
as T1, T1C and Flair.

6. Conclusion
The chief intention of this research is to develop a 
CNN supported CADD unit to categorize the brain 
MRI slices into GBM/LGG class. This work developed 
the CADD system using; (i) VGG-UNet assisted seg-
mentation and DF extraction, (ii) HF extraction using 
GLCM, Hu and LBP, (iii) Dominant feature selection 
using FA, and (iv) Feature fusion and validation us-
ing various binary classifiers. The performance of the 
proposed CADD is separately tested using the TCIA 
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Related practice is then repeated with the 
clinical MRI dataset and the attained results are 
presented in Table 3. From Table 3, it can be 
noted that the SVM-Cubic classifier helped to 
achieve better classification accuracy with DF 
and DF+HF feature vectors. The confusion 
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classifier compared to other methods. Further, 
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Table 3 

Brain tumour detection performance of CADD with 
clinical images  
Features Classifier TP FN TN FP ACC PRE SEN SPE NPV 

D
F 

SoftMax 82 8 84 6 92.22 93.18 91.11 93.33 91.30 

SVM-Linear 85 5 81 9 92.22 90.43 94.44 90.00 94.19 

SVM-RBF 83 7 80 10 90.56 89.25 92.22 88.89 91.95 

SVM-Cubic 85 5 83 7 93.33 92.39 94.44 92.22 94.32 

DA-Linear 81 9 86 4 92.78 95.29 90.00 95.56 90.53 

DA-Quadratic 83 7 85 5 93.33 94.32 92.22 94.44 92.39 

KNN-Fine 84 6 82 8 92.22 91.30 93.33 91.11 93.18 

KNN-Cubic 86 4 81 9 92.78 90.53 95.56 90.00 95.29 

D
F+

H
F 

SoftMax 85 5 85 5 94.44 94.44 94.44 94.44 94.44 

SVM-Linear 86 4 88 2 96.67 97.73 95.56 97.78 95.65 

SVM-RBF 88 2 87 3 97.22 96.70 97.78 96.67 97.75 

SVM-Cubic 89 1 89 1 98.89 98.88 98.88 98.88 98.88 

DA-Linear 86 4 85 5 95.00 94.51 95.56 94.44 95.51 

DA-Quadratic 89 1 88 2 98.33 97.80 98.89 97.78 98.88 

KNN-Fine 88 2 89 1 98.33 98.88 97.78 98.89 97.80 

KNN-Cubic 88 2 88 2 97.78 97.78 97.78 97.78 97.78 
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(c) ROC curve for DF+HF 

Related practice is then repeated with the 
clinical MRI dataset and the attained results are 
presented in Table 3. From Table 3, it can be 
noted that the SVM-Cubic classifier helped to 
achieve better classification accuracy with DF 
and DF+HF feature vectors. The confusion 
matrix presented in Figure 9 (a) and (b) also 
confirms the eminence of the SVM-Cubic 
classifier compared to other methods. Further, 
the Receiver Operating Characteristic (ROC) 
curve presented in Figure 9(c) confirms that the 
SVM-Cubic offers better result with DF+HF 
compared to other SVM, DA, KNN and 
SoftMax classifiers considered in this work. 

Figure 10 

Glyph-plot generated using the classifier 
performance for clinical MRI database 
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The overall performance of the CADD is then 
presented in Figure 10 using the Glyph-plot 
and this figure also confirms that the 

(a) DF (b) DF+HF

and clinical MRI dataset and the result attained with 
the proposed scheme substantiate that, proposed 
work assist to accomplish better classification accu-
racy on the TCIA as well as the benchmark dataset. 
The classifier attained with the clinical grade MRI 
using the DF and DF+HF with a ten-fold cross vali-
dation confirms that, proposed CADD system offers 
better outcome with SVM-Cubic classifier compared 
to other binary classifiers. In future, this CADD can be 
adopted to inspect the clinically collected brain MRI 
slices of T2 modality.
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