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In the era of big data, information overload problems are becoming increasingly prominent. It is challenging 
for machines to understand, compress and filter massive text information through the use of artificial intel-
ligence technology. The emergence of automatic text summarization mainly aims at solving the problem of 
information overload, and it can be divided into two types: extractive and abstractive. The former finds some 
key sentences or phrases from the original text and combines them into a summarization; the latter needs a 
computer to understand the content of the original text and then uses the readable language for the human to 
summarize the key information of the original text. This paper presents a two-stage optimization method for 
automatic text summarization that combines abstractive summarization and extractive summarization. First, 
a sequence-to-sequence model with the attention mechanism is trained as a baseline model to generate initial 
summarization. Second, it is updated and optimized directly on the ROUGE metric by using deep reinforce-
ment learning (DRL). Experimental results show that compared with the baseline model, Rouge-1, Rouge-2, 
and Rouge-L have been increased on the LCSTS dataset and CNN/DailyMail dataset.
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1. Introduction
Artificial intelligence technology is in a period of rap-
id development, and its application in various indus-
tries is becoming increasingly common. From medi-
cal diagnosis to social networks, and from intelligent 
education to news media, specific application cases of 
artificial intelligence can be seen everywhere. In peo-
ple’s daily lives, we are facing information overload, 
and how to deal with massive data information in lim-
ited time has become a problem. Using computers to 
understand natural language can filter useless and re-
dundant information and only retain key information 
feedback to users. This specific application is called 
automatic text summarization. It uses a computer to 
summarize the whole text, helping users understand 
the core semantics of the original text directly by 
reading the abstract. Therefore, the machine learn-
ing model that automatically extracts summaries can 
quickly extract key information from massive texts, 
saving users valuable time. The emergence of auto-
matic text summarization not only reduces informa-
tion overload but also saves the high cost of manual 
text summarization.
Automatic text summarization is mainly divided into 
two types of methods. The extractive summarization 
technique extracts several key sentences from the 
original text and then forms a single abstract. The ab-
stractive summarization technique understands the 
semantics of the original text and summarizes and 
induces the subject matter using a human-readable 
language. At present, extractive summarization is rel-
atively easy to implement, so it is more widely used. 
The abstractive summarization requires the ability of 
the computer to understand the original text, so it has 
higher technical requirements.
Traditional extractive summarization techniques have 
two types: graph-based sorting methods and artificial 
feature-based methods. Based on the graph sorting 
method, each sentence in the document is used as a 
node of the graph, and calculate the similarity between 
sentences, and the value of the similarity is used as the 
weight of the edge to construct the graph model. Then, 
the PageRank algorithm [36] is used to solve each sen-
tence score; finally, the highest scores are output as a 
summarization. The representative algorithms are 
TextRank [30] and LexRank [11]. The artificial fea-
ture-based method usually builds a model based on 

the length of each sentence, whether the sentence 
contains the title words. The representative algorithm 
is TextTeaser. With the rise of deep learning and its 
powerful feature representation ability, an increasing 
number of extractive summarization techniques are 
proposed, and excellent results have been obtained. 
Extractive summarization techniques do not need to 
consider the extracted summarization syntax and se-
mantic problems. However, since the extracted sum-
marization is only the combination of the original sen-
tences, there are often problems such as inconsistency 
and information redundancy. Comparatively speaking, 
abstractive summarization is more convenient for 
humans to understand. The emergence of the deep 
learning-based sequence generation model [2] makes 
abstractive summarization a research hotspot. The se-
q2seq model [5] is applied as a benchmark model in the 
abstractive summarization task, and many deep learn-
ing models are emerging. The best results have been 
achieved on the corresponding datasets.
Aiming at the insufficient utilization of contextual 
semantic information, the insufficient semantic un-
derstanding of the attention mechanism, and the low 
accuracy of text summarization in the previous text 
summarization algorithms, this paper proposes an 
automatic summarization optimization algorithm, 
which first uses the seq2seq model with an attention 
mechanism [45] as the basic model for initial sum-
marization generation and then uses depth enhance-
ment learning to optimize the initial summarization 
directly through the ROUGE evaluation criteria 
[23]. The abstract generated by the base model is an 
abstractive summarization, and the optimization al-
gorithm proposed selects the word output distribu-
tion of the base model in the decoding stage and the 
words of the top-k highest probability distributions 
that constitute the attention distribution of the origi-
nal word as action spaces for enhanced learning. The 
initial summarization is optimized by the enhanced 
learning technique.
The main contributions of this paper are as follows:
1 This paper presents a two-stage optimization 

method for automatic text summarization that 
combines abstractive summarization and ex-
tractive summarization for the first time.
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2 First, a sequence-to-sequence model with the at-
tention mechanism is trained as a baseline model 
to generate initial summarization. Second, it is up-
dated and optimized directly on the ROUGE met-
ric by using deep reinforcement learning (DRL). 

3  Compared with the basic model, Rouge-1, Rouge-2, 
and Rouge-L have been increased on the LCSTS 
dataset and CNN/DailyMail dataset. Therefore, 
the effect of the optimized method improved. 

2. Related Work

2.1. Seq2seq Model
The seq2seq model is widely used in natural language 
processing [6, 34, 17]. The seq2seq model consists 
mainly of an encoder and a decoder. The encoder uses 
a cyclic neural network (RNN) such as the long short-
term memory network [18] (LSTM) to encode the 
input sequence into a vector of fixed dimensions, and 
the decoder then uses RNN to decode the vector to 
produce an output sequence. Applying the attention 
mechanism [2] to the seq2seq model, it is possible to 
assign different weights to different parts of the input 
sequence during sequence generation. In natural lan-
guage tasks, the seq2seq model typically uses a fixed 
vocabulary of input and output, which results in a 
poor representation of words that appear outside the 
vocabulary. The method of pointing to some unusual 
words or subsequences in an input sequence through 
a decoder network and then copying them directly 
into the output sequence [47, 24] can largely solve this 
problem. Gulcehre [13] and Merity [29] applied this 
pointing mechanism to the decoding process; then, 
the model can not only generate vocabularies in the 
vocabulary but also output uncommon words.

2.2. Reinforcement Learning and Sequence 
Generation
The emergence of Alpha Go has created consider-
able interest in artificial intelligence. Reinforcement 
learning is the most important technology in Alpha 
Go, which is a learning control strategy framework 
through computer algorithms. Given the agent and in-
teraction environment [42], the agent can be trained 
to learn a strategy through reinforcement learning so 
that it can obtain the maximum reward. Compared 

with the traditional supervised learning method, re-
inforcement learning can be used to solve the prob-
lem when the agent has to perform discrete actions 
or when the optimization process is not defined. The 
process for optimizing sequence generation problems 
directly through metrics such as BELU, ROUGE, and 
METEOR is not divisible, so reinforcement learning 
can be applied to sequence generation tasks.
To achieve direct optimization of task evaluation cri-
teria, Ranzato [38] used the REINFORCE algorithm 
[48] to train a cyclic neural network-based model for 
sequence generation tasks compared to tradition-
al supervised learning. The results of the enhanced 
learning training method have been significantly 
improved. Bahdanau [1] proposed an evaluation-de-
cision method to train neural network generation 
sequences, use a decision network to predict output 
actions, and then use an evaluation network to evalu-
ate the value of the decision-making network to gen-
erate actions while also making the training process 
more stable. Rennie [39] proposed a self-assessment 
sequence generation training method without an ad-
ditional decision network, and the evaluation results 
in the picture title generation task were significantly 
improved. Guo [15] proposed an iterative decoding 
output sequence based on the depth Q network [32] 
(DQN) training the sequence-to-sequence learning 
task. Guo’s method [15] stimulates the automatic 
text summarization optimization method, generates 
an initial summarization and candidate action space 
through a seq2seq model with an attention mecha-
nism, and directly optimizes the initial summariza-
tion evaluation standard (ROUGE) using DQN.

2.3. Automatic Text Summarization
Automated abstract research focuses on two areas: 
text [9, 35, 27] and speech [50, 51]. Although the ab-
stractive summarization study has made some prog-
ress, most of the outstanding performance summari-
zation models are still based on extractive methods. 
Traditional extractive summarization methods are 
mostly based on a greedy search [3] and graph model 
methods [11]. Kageback [21] implemented document 
summarization generation by deploying a recursive 
autoencoder [43]. Yin [49] used a convolutional neu-
ral network to minimize the objective function based 
on diversity and importance, and select sentences to 
generate summaries. Nallapati [34] adjusted a ques-
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tion and answer dataset of DeepMind [17] to a sum-
marization dataset, the CNN/DailyMail dataset, and 
proposed the first benchmark model of the abstrac-
tive summarization on this dataset. On this dataset, 
Cheng and Lapata [5] proposed an attention-oriented 
encoder-decoder framework for abstract extraction. 
Nallapati [33] also proposed an model, which con-
structs a hierarchical cyclic neural network to select 
and extract original sentences.
Although the extractive summarization method is 
simpler and has some errors, there are also problems 
such as inconsistent semantics of the abstractive 
summarization context and unclear references. The 
generalized approach is freer and more in line with 
human writing and thinking patterns and can gen-
erate new and diverse sentences. With the advent of 
neural network-based text generation models [36], 
abstractive summarization technology is becoming 
a research hotspot. Rush [40] proposed an attention 
model with a convolutional encoder. On the CNN/
DailyMail dataset, Chen[4] proposed a novel atten-
tion mechanism and applied it to the summarization 
generation model. On the CNN/DailyMail dataset, 
Nallapati [34] constructed a hierarchical network 
structure model using a hierarchical attention mech-
anism and pointer functions. On the same dataset, 
See [41] proposed a pointer network and additionally 
used a loss term for the attention-coverage mecha-
nism in the loss function of its model. Patel [37] stud-
ied on abstractive and extractive content rundown 
strategies. Kejun [22] proposed an improved word 
vector generation technique and an abstractive auto-
matic summarization model. Minaee [31] discussed 
more than 150 deep learning based models for text 
classification.
This paper proposed the automatic text summariza-
tion optimization method. First, the initial summa-
rization is generated and the candidate action space 
required for reinforcement learning by deploying a 
seq2seq model. The action candidate space is divided 
into two parts. One part is generated by the decoder of 
the seq2seq model. This process can be regarded as an 
abstractive summarization method. The other part is 
generated by the attention mechanism of the seq2seq 
model, which can be seen as an extractive summari-
zation method. Second, DQN [32] is used to learn a 
strategy to directly optimize the initial summariza-
tion to obtain the maximum reward (ROUGE score).

3. Modeling
This section mainly introduces the automatic text 
summarization optimization model, which is based 
on DQN. DQN is deployed through a cyclic neural 
network (GRU-RNN) with a gated recurrent unit 
[7] (GRU) in an encoder-decoder architecture. First, 
the pretraining phase is actually a parameter train-
ing of the seq2seq model (the lower half of Figure 1) 
with the attention mechanism through maximum 
likelihood estimation (MLE) and generates the ini-
tial summarization after reaching the convergence 
state (i.e., 
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Figure 1 
The optimization model for automatic text summarization
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This paper introduces the encoder-decoder frame-
work to the automatic summarization problem takes 
the pure data-driven approach and trains the automat-
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el of this paper, this model generates the initial summa-
rization and candidate action space of the DQN model.
Encoder: The network gated unit can better express 
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where W and b represent hyperparameters of the GRU; 
xt represents the input word vector at time t; ht denotes 
the hidden layer vector σ (∙) ; tanh(∙) is the activation 
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The forward GRU generates a hidden layer vector 
representation of each corresponding word vector of 
the forward sequence, while the backward GRU gen-
erates the hidden layer vector of each corresponding 
word vector of the reverse sequence.
Forward GRU generates forward sequences, and the 
hidden layer vector of each corresponding word vec-
tor represents ht

f, while backward GRU generates the 
hidden layer vector ht

b of each corresponding word 
vector of the reverse sequence.
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The input sequence of the original text is used as the 
input of the encoder, and the hidden layer representa-
tion of each position is generated by the encoder. The 
semantic representation c of the input sequence can be 
directly assigned by the last hidden layer of the encod-
er, i.e., c = hm, or it can can be the linear representation 
of the last hidden layer.
Decoder and Attention mechanism: The semantic 
feature representation of the input sequence generat-
ed by the encoder is decoded as the initial input state 
of the decoder out of the target text sequence, i.e., 
the summarization. The decoder is essentially a lan-
guage model. This article also uses a one-way GRU, as 
shown in the lower right part of Figure 1. c is decoded 
by the decoder so it must contain all the information 
in the original sequence. Additionally, in the process 
of generating a text sequence, each word is generated 
using the same semantic vector. Obviously, this meth-
od is too simple.
To solve the abovementioned problems, a feasible solu-
tion is to introduce an attention mechanism. The at-
tention mechanism gives different attention weights to 
different input words at each decoding time and gener-
ating each word. The semantic representation c at each 
time in the decoding process adaptively selects the 
most appropriate context information for the target 
yi to be output at the current time. Specifically, we use 
aij to measure the correlation of the encoder's hidden 
layer representation hj at time j and decoding at time i. 
Finally, the context information ci input by the decoder 
at time i is equal to the hidden layer of the encoder at all 
times, which represents the weighted sum of hj and aij.
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the model of equation (1) can be expressed as 
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the target vocabulary iy . A softmax function is usually 
used to map a hidden layer vector into a probability 
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where zw  represents the weight matrix. 

3.3. DQN Decoding 
The four components of the reinforcement learning 
model are described in detail: states, actions, strategies, 
and rewards. Automatically generate semantic features 
of the input sequence by deploying a recurrent neural 
network with a coder-decoder architecture with a 
gated unit. DQN directly uses these features to learn 
the Q-value function to estimate future rewards and to 
maximize future long-term rewards by optimizing 
model parameters. 

Given the abstract text sequence 
1 j m,..., ...,x x x< >  and 

the target sequence 1 j,..., y ..., Ny y< > (source text and 
target summarization in Figure 1), the Bi-GRU encoder 
encodes the entire input sequence into a fixed-
dimensional semantic vector that is decoded as the 
initial input vector of the decoder to generate the actual 
initial summarization sequence 0 0 0

1ˆ ˆ ˆy ,..., y ..., yj T< > . In 
the decoding process, the decoder sequentially 
generates a hidden layer state representation 

1 j< ,..., ,..., Ns s s > . 
Status: At each iteration step i of DQN decoding, 

the summarization text input sequence 
1 j m,..., ...,x x x< >  and the actual summarization 

sequence 1ˆ ˆ ˆy ,..., y ..., yi i i
j T< >  are used as DQN internal 

states. When i=0, the initial summarization generated 
by the decoder consists of the vocabulary of the 
maximum output probability of each time decoder. 

Action: In the decoding stage of the decoder, the 
hidden layer vector is mapped to the probability 
distribution of V vocabularies in the vocabulary by a 
softmax function. At the same time, it also produces the 
attention weight distribution of the summarization text 
sequence at each time. The vocabulary that generates 
the vocabulary probability distribution and the first k 
maximum probabilities of the attention distribution are 
selected as the candidate action space (size 2k) for each 
time DQN, as shown in Figure 1. The action candidate 
set generated by the seq2seq model encoding-decoding 
is an "abstractive summarization" generation process, 
and the action candidate set generated at each time 
based on the summarization original attention 
distribution can be regarded as an extractive 
summarization process. 

Strategy: Given the current state, i.e., the current 
iteration step summarization sequence 

1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > , and the action space at each time, the 

DQN learns and estimates the value function (Q-value) 
at each time of the current state and selects the action of 
the maximum Q-value at each time as the output. More 
specifically, in the i-th iteration step at time t, the DQN 
selects the action tyi

  to replace the state tŷi  
corresponding to the time s. Therefore, this process will 
result in an update of the state, i.e., a new state 

+1 +1 +1
1ˆ ˆ ˆy ,..., y ..., yi i i

j T< > . 
Reward: In iteration step i, the ROUGE score of the 

current summarization sequence 1ˆ ˆ ˆy ,..., y ..., yi i i
j T< >  and 

the reference summarization 1 j,..., y ..., Ny y< >  is set to 
cr . The DQN selects actions based on the current policy. 

This process generates a new state +1 +1 +1
1ˆ ˆ ˆy ,..., y ..., yi i i

j T< > , 
which is the optimized summarization. The ROUGE 
score of the abstract versus the real abstract is r, so the 
reward for the DQN's current action is 

n creward=r -r .                                       (14) 
Parameter training: The DQN parameter training 

is a process of minimizing the loss function. In the 
actual training process, Two networks are used to 
improve the stability[21]: A Q-value estimate with the 
parameter θ  original network and a target network 
with parameter θ  generates the target q-value during 
the Q-value learning update process. 
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process can be seen as training the DQN to predict 
future rewards. 
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the maximum Q-value at each time as the output. More 
specifically, in the i-th iteration step at time t, the DQN 
selects the action tyi

  to replace the state tŷi  
corresponding to the time s. Therefore, this process will 
result in an update of the state, i.e., a new state 
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1ˆ ˆ ˆy ,..., y ..., yi i i

j T< > . 
Reward: In iteration step i, the ROUGE score of the 

current summarization sequence 1ˆ ˆ ˆy ,..., y ..., yi i i
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the reference summarization 1 j,..., y ..., Ny y< >  is set to 
cr . The DQN selects actions based on the current policy. 

This process generates a new state +1 +1 +1
1ˆ ˆ ˆy ,..., y ..., yi i i

j T< > , 
which is the optimized summarization. The ROUGE 
score of the abstract versus the real abstract is r, so the 
reward for the DQN's current action is 

n creward=r -r .                                       (14) 
Parameter training: The DQN parameter training 

is a process of minimizing the loss function. In the 
actual training process, Two networks are used to 
improve the stability[21]: A Q-value estimate with the 
parameter θ  original network and a target network 
with parameter θ  generates the target q-value during 
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Action: In the decoding stage of the decoder, the 
hidden layer vector is mapped to the probability 
distribution of V vocabularies in the vocabulary by a 
softmax function. At the same time, it also produces the 
attention weight distribution of the summarization text 
sequence at each time. The vocabulary that generates 
the vocabulary probability distribution and the first k 
maximum probabilities of the attention distribution are 
selected as the candidate action space (size 2k) for each 
time DQN, as shown in Figure 1. The action candidate 
set generated by the seq2seq model encoding-decoding 
is an "abstractive summarization" generation process, 
and the action candidate set generated at each time 
based on the summarization original attention 
distribution can be regarded as an extractive 
summarization process. 

Strategy: Given the current state, i.e., the current 
iteration step summarization sequence 

1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > , and the action space at each time, the 

DQN learns and estimates the value function (Q-value) 
at each time of the current state and selects the action of 
the maximum Q-value at each time as the output. More 
specifically, in the i-th iteration step at time t, the DQN 
selects the action tyi

  to replace the state tŷi  
corresponding to the time s. Therefore, this process will 
result in an update of the state, i.e., a new state 

+1 +1 +1
1ˆ ˆ ˆy ,..., y ..., yi i i

j T< > . 
Reward: In iteration step i, the ROUGE score of the 

current summarization sequence 1ˆ ˆ ˆy ,..., y ..., yi i i
j T< >  and 

the reference summarization 1 j,..., y ..., Ny y< >  is set to 
cr . The DQN selects actions based on the current policy. 

This process generates a new state +1 +1 +1
1ˆ ˆ ˆy ,..., y ..., yi i i

j T< > , 
which is the optimized summarization. The ROUGE 
score of the abstract versus the real abstract is r, so the 
reward for the DQN's current action is 

n creward=r -r .                                       (14) 
Parameter training: The DQN parameter training 

is a process of minimizing the loss function. In the 
actual training process, Two networks are used to 
improve the stability[21]: A Q-value estimate with the 
parameter θ  original network and a target network 
with parameter θ  generates the target q-value during 
the Q-value learning update process. 
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set generated by the seq2seq model encoding-decoding 
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distribution can be regarded as an extractive 
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set generated by the seq2seq model encoding-decoding 
is an "abstractive summarization" generation process, 
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distribution can be regarded as an extractive 
summarization process. 

Strategy: Given the current state, i.e., the current 
iteration step summarization sequence 
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j T< > , and the action space at each time, the 

DQN learns and estimates the value function (Q-value) 
at each time of the current state and selects the action of 
the maximum Q-value at each time as the output. More 
specifically, in the i-th iteration step at time t, the DQN 
selects the action tyi

  to replace the state tŷi  
corresponding to the time s. Therefore, this process will 
result in an update of the state, i.e., a new state 
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Reward: In iteration step i, the ROUGE score of the 
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which is the optimized summarization. The ROUGE 
score of the abstract versus the real abstract is r, so the 
reward for the DQN's current action is 
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Parameter training: The DQN parameter training 

is a process of minimizing the loss function. In the 
actual training process, Two networks are used to 
improve the stability[21]: A Q-value estimate with the 
parameter θ  original network and a target network 
with parameter θ  generates the target q-value during 
the Q-value learning update process. 
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where zw  represents the weight matrix. 

3.3. DQN Decoding 
The four components of the reinforcement learning 
model are described in detail: states, actions, strategies, 
and rewards. Automatically generate semantic features 
of the input sequence by deploying a recurrent neural 
network with a coder-decoder architecture with a 
gated unit. DQN directly uses these features to learn 
the Q-value function to estimate future rewards and to 
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softmax function. At the same time, it also produces the 
attention weight distribution of the summarization text 
sequence at each time. The vocabulary that generates 
the vocabulary probability distribution and the first k 
maximum probabilities of the attention distribution are 
selected as the candidate action space (size 2k) for each 
time DQN, as shown in Figure 1. The action candidate 
set generated by the seq2seq model encoding-decoding 
is an "abstractive summarization" generation process, 
and the action candidate set generated at each time 
based on the summarization original attention 
distribution can be regarded as an extractive 
summarization process. 

Strategy: Given the current state, i.e., the current 
iteration step summarization sequence 

1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > , and the action space at each time, the 

DQN learns and estimates the value function (Q-value) 
at each time of the current state and selects the action of 
the maximum Q-value at each time as the output. More 
specifically, in the i-th iteration step at time t, the DQN 
selects the action tyi

  to replace the state tŷi  
corresponding to the time s. Therefore, this process will 
result in an update of the state, i.e., a new state 
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the reference summarization 1 j,..., y ..., Ny y< >  is set to 
cr . The DQN selects actions based on the current policy. 

This process generates a new state +1 +1 +1
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which is the optimized summarization. The ROUGE 
score of the abstract versus the real abstract is r, so the 
reward for the DQN's current action is 
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Parameter training: The DQN parameter training 

is a process of minimizing the loss function. In the 
actual training process, Two networks are used to 
improve the stability[21]: A Q-value estimate with the 
parameter θ  original network and a target network 
with parameter θ  generates the target q-value during 
the Q-value learning update process. 
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where zw  represents the weight matrix. 
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maximize future long-term rewards by optimizing 
model parameters. 

Given the abstract text sequence 
1 j m,..., ...,x x x< >  and 

the target sequence 1 j,..., y ..., Ny y< > (source text and 
target summarization in Figure 1), the Bi-GRU encoder 
encodes the entire input sequence into a fixed-
dimensional semantic vector that is decoded as the 
initial input vector of the decoder to generate the actual 
initial summarization sequence 0 0 0

1ˆ ˆ ˆy ,..., y ..., yj T< > . In 
the decoding process, the decoder sequentially 
generates a hidden layer state representation 

1 j< ,..., ,..., Ns s s > . 
Status: At each iteration step i of DQN decoding, 

the summarization text input sequence 
1 j m,..., ...,x x x< >  and the actual summarization 

sequence 1ˆ ˆ ˆy ,..., y ..., yi i i
j T< >  are used as DQN internal 

states. When i=0, the initial summarization generated 
by the decoder consists of the vocabulary of the 
maximum output probability of each time decoder. 

Action: In the decoding stage of the decoder, the 
hidden layer vector is mapped to the probability 
distribution of V vocabularies in the vocabulary by a 
softmax function. At the same time, it also produces the 
attention weight distribution of the summarization text 
sequence at each time. The vocabulary that generates 
the vocabulary probability distribution and the first k 
maximum probabilities of the attention distribution are 
selected as the candidate action space (size 2k) for each 
time DQN, as shown in Figure 1. The action candidate 
set generated by the seq2seq model encoding-decoding 
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where zw  represents the weight matrix. 

3.3. DQN Decoding 
The four components of the reinforcement learning 
model are described in detail: states, actions, strategies, 
and rewards. Automatically generate semantic features 
of the input sequence by deploying a recurrent neural 
network with a coder-decoder architecture with a 
gated unit. DQN directly uses these features to learn 
the Q-value function to estimate future rewards and to 
maximize future long-term rewards by optimizing 
model parameters. 

Given the abstract text sequence 
1 j m,..., ...,x x x< >  and 

the target sequence 1 j,..., y ..., Ny y< > (source text and 
target summarization in Figure 1), the Bi-GRU encoder 
encodes the entire input sequence into a fixed-
dimensional semantic vector that is decoded as the 
initial input vector of the decoder to generate the actual 
initial summarization sequence 0 0 0

1ˆ ˆ ˆy ,..., y ..., yj T< > . In 
the decoding process, the decoder sequentially 
generates a hidden layer state representation 

1 j< ,..., ,..., Ns s s > . 
Status: At each iteration step i of DQN decoding, 

the summarization text input sequence 
1 j m,..., ...,x x x< >  and the actual summarization 

sequence 1ˆ ˆ ˆy ,..., y ..., yi i i
j T< >  are used as DQN internal 

states. When i=0, the initial summarization generated 
by the decoder consists of the vocabulary of the 
maximum output probability of each time decoder. 

Action: In the decoding stage of the decoder, the 
hidden layer vector is mapped to the probability 
distribution of V vocabularies in the vocabulary by a 
softmax function. At the same time, it also produces the 
attention weight distribution of the summarization text 
sequence at each time. The vocabulary that generates 
the vocabulary probability distribution and the first k 
maximum probabilities of the attention distribution are 
selected as the candidate action space (size 2k) for each 
time DQN, as shown in Figure 1. The action candidate 
set generated by the seq2seq model encoding-decoding 
is an "abstractive summarization" generation process, 
and the action candidate set generated at each time 
based on the summarization original attention 
distribution can be regarded as an extractive 
summarization process. 

Strategy: Given the current state, i.e., the current 
iteration step summarization sequence 

1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > , and the action space at each time, the 

DQN learns and estimates the value function (Q-value) 
at each time of the current state and selects the action of 
the maximum Q-value at each time as the output. More 
specifically, in the i-th iteration step at time t, the DQN 
selects the action tyi

  to replace the state tŷi  
corresponding to the time s. Therefore, this process will 
result in an update of the state, i.e., a new state 

+1 +1 +1
1ˆ ˆ ˆy ,..., y ..., yi i i

j T< > . 
Reward: In iteration step i, the ROUGE score of the 

current summarization sequence 1ˆ ˆ ˆy ,..., y ..., yi i i
j T< >  and 

the reference summarization 1 j,..., y ..., Ny y< >  is set to 
cr . The DQN selects actions based on the current policy. 

This process generates a new state +1 +1 +1
1ˆ ˆ ˆy ,..., y ..., yi i i

j T< > , 
which is the optimized summarization. The ROUGE 
score of the abstract versus the real abstract is r, so the 
reward for the DQN's current action is 

n creward=r -r .                                       (14) 
Parameter training: The DQN parameter training 

is a process of minimizing the loss function. In the 
actual training process, Two networks are used to 
improve the stability[21]: A Q-value estimate with the 
parameter θ  original network and a target network 
with parameter θ  generates the target q-value during 
the Q-value learning update process. 
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where zw  represents the weight matrix. 
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distribution can be regarded as an extractive 
summarization process. 
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distribution can be regarded as an extractive 
summarization process. 
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set generated by the seq2seq model encoding-decoding 
is an "abstractive summarization" generation process, 
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based on the summarization original attention 
distribution can be regarded as an extractive 
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Using the decoder with the attention mechanism, 
the model of equation (1) can be expressed as 

i 0 i 1 ip( |{ ,..., }, ; ) ( )y y y x g sθ− = ,                 (12) 

where ( )g ⋅  is a function that outputs the probability of 
the target vocabulary iy . A softmax function is usually 
used to map a hidden layer vector into a probability 
distribution of V categories (i.e., vocabulary) of the 
vocabulary: 
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where zw  represents the weight matrix. 

3.3. DQN Decoding 
The four components of the reinforcement learning 
model are described in detail: states, actions, strategies, 
and rewards. Automatically generate semantic features 
of the input sequence by deploying a recurrent neural 
network with a coder-decoder architecture with a 
gated unit. DQN directly uses these features to learn 
the Q-value function to estimate future rewards and to 
maximize future long-term rewards by optimizing 
model parameters. 

Given the abstract text sequence 
1 j m,..., ...,x x x< >  and 

the target sequence 1 j,..., y ..., Ny y< > (source text and 
target summarization in Figure 1), the Bi-GRU encoder 
encodes the entire input sequence into a fixed-
dimensional semantic vector that is decoded as the 
initial input vector of the decoder to generate the actual 
initial summarization sequence 0 0 0

1ˆ ˆ ˆy ,..., y ..., yj T< > . In 
the decoding process, the decoder sequentially 
generates a hidden layer state representation 

1 j< ,..., ,..., Ns s s > . 
Status: At each iteration step i of DQN decoding, 

the summarization text input sequence 
1 j m,..., ...,x x x< >  and the actual summarization 

sequence 1ˆ ˆ ˆy ,..., y ..., yi i i
j T< >  are used as DQN internal 

states. When i=0, the initial summarization generated 
by the decoder consists of the vocabulary of the 
maximum output probability of each time decoder. 

Action: In the decoding stage of the decoder, the 
hidden layer vector is mapped to the probability 
distribution of V vocabularies in the vocabulary by a 
softmax function. At the same time, it also produces the 
attention weight distribution of the summarization text 
sequence at each time. The vocabulary that generates 
the vocabulary probability distribution and the first k 
maximum probabilities of the attention distribution are 
selected as the candidate action space (size 2k) for each 
time DQN, as shown in Figure 1. The action candidate 
set generated by the seq2seq model encoding-decoding 
is an "abstractive summarization" generation process, 
and the action candidate set generated at each time 
based on the summarization original attention 
distribution can be regarded as an extractive 
summarization process. 

Strategy: Given the current state, i.e., the current 
iteration step summarization sequence 

1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > , and the action space at each time, the 

DQN learns and estimates the value function (Q-value) 
at each time of the current state and selects the action of 
the maximum Q-value at each time as the output. More 
specifically, in the i-th iteration step at time t, the DQN 
selects the action tyi

  to replace the state tŷi  
corresponding to the time s. Therefore, this process will 
result in an update of the state, i.e., a new state 

+1 +1 +1
1ˆ ˆ ˆy ,..., y ..., yi i i

j T< > . 
Reward: In iteration step i, the ROUGE score of the 

current summarization sequence 1ˆ ˆ ˆy ,..., y ..., yi i i
j T< >  and 

the reference summarization 1 j,..., y ..., Ny y< >  is set to 
cr . The DQN selects actions based on the current policy. 

This process generates a new state +1 +1 +1
1ˆ ˆ ˆy ,..., y ..., yi i i

j T< > , 
which is the optimized summarization. The ROUGE 
score of the abstract versus the real abstract is r, so the 
reward for the DQN's current action is 

n creward=r -r .                                       (14) 
Parameter training: The DQN parameter training 

is a process of minimizing the loss function. In the 
actual training process, Two networks are used to 
improve the stability[21]: A Q-value estimate with the 
parameter θ  original network and a target network 
with parameter θ  generates the target q-value during 
the Q-value learning update process. 
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where zw  represents the weight matrix. 

3.3. DQN Decoding 
The four components of the reinforcement learning 
model are described in detail: states, actions, strategies, 
and rewards. Automatically generate semantic features 
of the input sequence by deploying a recurrent neural 
network with a coder-decoder architecture with a 
gated unit. DQN directly uses these features to learn 
the Q-value function to estimate future rewards and to 
maximize future long-term rewards by optimizing 
model parameters. 

Given the abstract text sequence 
1 j m,..., ...,x x x< >  and 

the target sequence 1 j,..., y ..., Ny y< > (source text and 
target summarization in Figure 1), the Bi-GRU encoder 
encodes the entire input sequence into a fixed-
dimensional semantic vector that is decoded as the 
initial input vector of the decoder to generate the actual 
initial summarization sequence 0 0 0

1ˆ ˆ ˆy ,..., y ..., yj T< > . In 
the decoding process, the decoder sequentially 
generates a hidden layer state representation 

1 j< ,..., ,..., Ns s s > . 
Status: At each iteration step i of DQN decoding, 

the summarization text input sequence 
1 j m,..., ...,x x x< >  and the actual summarization 

sequence 1ˆ ˆ ˆy ,..., y ..., yi i i
j T< >  are used as DQN internal 

states. When i=0, the initial summarization generated 
by the decoder consists of the vocabulary of the 
maximum output probability of each time decoder. 

Action: In the decoding stage of the decoder, the 
hidden layer vector is mapped to the probability 
distribution of V vocabularies in the vocabulary by a 
softmax function. At the same time, it also produces the 
attention weight distribution of the summarization text 
sequence at each time. The vocabulary that generates 
the vocabulary probability distribution and the first k 
maximum probabilities of the attention distribution are 
selected as the candidate action space (size 2k) for each 
time DQN, as shown in Figure 1. The action candidate 
set generated by the seq2seq model encoding-decoding 
is an "abstractive summarization" generation process, 
and the action candidate set generated at each time 
based on the summarization original attention 
distribution can be regarded as an extractive 
summarization process. 

Strategy: Given the current state, i.e., the current 
iteration step summarization sequence 

1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > , and the action space at each time, the 

DQN learns and estimates the value function (Q-value) 
at each time of the current state and selects the action of 
the maximum Q-value at each time as the output. More 
specifically, in the i-th iteration step at time t, the DQN 
selects the action tyi

  to replace the state tŷi  
corresponding to the time s. Therefore, this process will 
result in an update of the state, i.e., a new state 
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Reward: In iteration step i, the ROUGE score of the 
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the reference summarization 1 j,..., y ..., Ny y< >  is set to 
cr . The DQN selects actions based on the current policy. 

This process generates a new state +1 +1 +1
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j T< > , 
which is the optimized summarization. The ROUGE 
score of the abstract versus the real abstract is r, so the 
reward for the DQN's current action is 
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Parameter training: The DQN parameter training 

is a process of minimizing the loss function. In the 
actual training process, Two networks are used to 
improve the stability[21]: A Q-value estimate with the 
parameter θ  original network and a target network 
with parameter θ  generates the target q-value during 
the Q-value learning update process. 
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In the training process, in every C update training, 
the parameter θ  of the original network is assigned to 
the parameters of the target network, i.e., ˆ=θ θ . 
Additionally, experience pool technology[25] is used in 
training to store the experience of each iteration step. 
DQN selects the action of maximum Q to maximize 

future expectations. In the initial stage of training, 
DQN randomly selects actions with probability ε [20] 
to ensure sufficient exploration of the state space. Its 
specific parameter training process is referenced in 
algorithm 1. 

Algorithm 1. Automatic text summarization optimization algorithm． 

1. Random parameters initialize the encoder and decoder of the seq2seq model; 

2. Pretrain the seq2seq model given the training set, i.e.the original and real summarization sequence pairs; 

3. for epoch = [1, U] do 

4.   for each x X∈ and y Y∈ (The length of l) do 

5.     The original sequence x  is input to the pretrained seq2seq model to generate an initial summarization sequence 0ŷ  and an 

action candidate space A ; 

6.     for iteration i = 1, 2l do 

7.       if the value is less than ε  

8.         Randomly select an action ia (i.e.,  word) from the action space A  at time t; 

9.       else 

10.         Calculate the Q-value function ( , ; )Q s a θ , let action ia = arg max ( , ; )a Q s a θ ; 

11.       end if 

12.       Using the action ia  instead of generating the element (word) corresponding to the time of the summarization sequence iŷ  a 

new summarization sequence i+1ŷ  is generated; 

13.       Calculate the similarity between the newly summarization sequence i+1ŷ  and the real summarization sequence y and return 

the reward ir ; 

14.       Store state experience 1[ , , , ]i i i is a r s +  to experience pool D, where i iˆs =<x, y >  

15.       Randomly sample batch state experience 1[ , , , ]i i i is a r s +  from experience pool D; 

16.       if ir σ>  

17.         i iq  = r ; This round of iterative update ends; 

18.       else 

19.         1ˆ ˆq = r max ( , ; )i i i
a Q s aλ θ+
′ ′+  

20.       end if 

21.       Perform the optimization on the objective function 2(q ( , ; ))i i iQ s a θ−  with respect to the parameter θ ; 

22.       Update the parameters every C iterations of the iteration, let ˆ=θ θ  

23.     end for 

24.   end for 

25. end for 
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training to store the experience of each iteration step. 
DQN selects the action of maximum Q to maximize 

future expectations. In the initial stage of training, 
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In the training process, in every C update training, 
the parameter θ  of the original network is assigned to 
the parameters of the target network, i.e., ˆ=θ θ . 
Additionally, experience pool technology[25] is used in 
training to store the experience of each iteration step. 
DQN selects the action of maximum Q to maximize 

future expectations. In the initial stage of training, 
DQN randomly selects actions with probability ε [20] 
to ensure sufficient exploration of the state space. Its 
specific parameter training process is referenced in 
algorithm 1. 
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In the training process, in every C update training, 
the parameter θ  of the original network is assigned to 
the parameters of the target network, i.e., ˆ=θ θ . 
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DQN selects the action of maximum Q to maximize 
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In the training process, in every C update training, 
the parameter θ  of the original network is assigned to 
the parameters of the target network, i.e., ˆ=θ θ . 
Additionally, experience pool technology[25] is used in 
training to store the experience of each iteration step. 
DQN selects the action of maximum Q to maximize 

future expectations. In the initial stage of training, 
DQN randomly selects actions with probability ε [20] 
to ensure sufficient exploration of the state space. Its 
specific parameter training process is referenced in 
algorithm 1. 
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In the training process, in every C update training, 
the parameter θ  of the original network is assigned to 
the parameters of the target network, i.e., ˆ=θ θ . 
Additionally, experience pool technology[25] is used in 
training to store the experience of each iteration step. 
DQN selects the action of maximum Q to maximize 

future expectations. In the initial stage of training, 
DQN randomly selects actions with probability ε [20] 
to ensure sufficient exploration of the state space. Its 
specific parameter training process is referenced in 
algorithm 1. 
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1. Random parameters initialize the encoder and decoder of the seq2seq model; 

2. Pretrain the seq2seq model given the training set, i.e.the original and real summarization sequence pairs; 

3. for epoch = [1, U] do 

4.   for each x X∈ and y Y∈ (The length of l) do 

5.     The original sequence x  is input to the pretrained seq2seq model to generate an initial summarization sequence 0ŷ  and an 

action candidate space A ; 

6.     for iteration i = 1, 2l do 
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8.         Randomly select an action ia (i.e.,  word) from the action space A  at time t; 

9.       else 

10.         Calculate the Q-value function ( , ; )Q s a θ , let action ia = arg max ( , ; )a Q s a θ ; 

11.       end if 
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15. Randomly sample batch state experience 

 
 

 

In the training process, in every C update training, 
the parameter θ  of the original network is assigned to 
the parameters of the target network, i.e., ˆ=θ θ . 
Additionally, experience pool technology[25] is used in 
training to store the experience of each iteration step. 
DQN selects the action of maximum Q to maximize 

future expectations. In the initial stage of training, 
DQN randomly selects actions with probability ε [20] 
to ensure sufficient exploration of the state space. Its 
specific parameter training process is referenced in 
algorithm 1. 
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2. Pretrain the seq2seq model given the training set, i.e.the original and real summarization sequence pairs; 
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4. Experiments
This section details the summarization of the evalu-
ation indicators, datasets and automatic summariza-
tion generation-related comparison algorithms and 
tests our methods on two datasets (LCSTS and CNN/
DailyMail).

4.1. Evaluation
In this paper, the ROUGE [23] evaluation system is 
used to automatically evaluate the summarization. 
ROUGE evaluates the quality of the summarization 
between the reference summarization and the sum-
marization generated by the abstract system. ROUGE 
includes a series of evaluation methods. The summa-
rization task usually uses ROUGE-N and ROUGE-L.
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where n is the length of the n-gram, which takes 1 and 2 
in this evaluation. 

The formula for calculating accuracy P, recall rate R 
and F of ROUGE-L is as follows: 
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where X is a reference summarization and has a length 
of m, Y is summarization generated by the system, the 
length is n, ( )LCS ⋅  is used to measure the longest 
common subsequence and β  is a hyperparameter. 

4.2. Dataset 
LCSTS dataset[19]: LCSTS is a Chinese short text 
summarization dataset. Each piece of data was collected 
from Sina Weibo in the form of a {short news, 
summarization} pair. The dataset includes PARTI, 
PARTII, and PARTIII. The specific statistical 
information is shown in Table 1. In this paper, using the 
same settings as in [14]. 
CNN/DailyMail dataset: The CNN/DailyMail dataset is 
an artificially generated summarization dataset 
constructed by Herman [18] based on news articles. This 
dataset can be obtained directly from GitHub. This 
paper uses the Stanford CoreNLP tool [28] to preprocess 
the data. We set the maximum length of the abstract text 

and the corresponding summarization to 400 and 100. 

Table 1 

Statistics of the LCSTS Dataset 

LCSTS PARTⅠ PART Ⅱ PART Ⅲ 

Quantity 2400059 10666 1106 
Quantity( 3′≥
) 

- 8685 725 

4.3. Experiment Setup 
The encoder is built using a single-layer bidirectional Bi-
GRU as the base module. In addition, a backward GRU 
and a forward GRU of the decoder are used together to 
form our DQN. The number of GRU hidden layers is set 
to 256. Model network parameters are initialized using a 
uniform distribution of intervals [-0.1, 0.1]. The learning 
rate and batch size are set to 0.05 and 32, respectively. 
We first pretrain the base model on a given dataset until 
it reaches a convergence state and then train the DQN. 
In the initial stage of DQN training, the state space 
exploration parameter is set to 1.0, and the step is 
gradually reduced to 0.1 in 1,000 steps. Given that the 
length of the output sequence is l, its DQN iteration 
number is set to 2l [15]. The iteration termination 
threshold is set to 0.9. The DQN experience pool size is 
set to 200,000, the reward discount factor is set to 0.9, 
and the action space size is set to 20; that is, the 10 most 
likely words from the vocabulary output distribution 
and the attention distribution are chosen. 

In the LCSTS dataset, the first 50,000 words in the 
training set were selected to form a vocabulary. Other 
words were uniformly represented by the <UNK> tag, 
and the word vector dimension was set to 200. 

On the CNN/DailyMail dataset, the first 25,000 
most frequently appeared words were selected to form 
the vocabulary, and other words were uniformly 
represented by the <UNK> tag. The word vector 
dimension is set to 128. 

4.4. Experimental Results and Analysis 
1) Evaluation results on the LCSTS dataset: 
Except for the "Bi-GRU + Distraction" method, the 

method and comparison method use the basic unit after 
the word segmentation as the word vector to input to 
the model. The experimental results are shown in Table 
2, where "Bi-GRU" represents the basic model of this 
paper. Additionally, an attention mechanism is used in 
the decoding process to generate the final abstract by 
using a beam search and decoding with a width of 10. 
“DQN” represents the optimization model; that is, the 
results of the basic model are optimized by the depth Q 
network. On this dataset, the comparison methods we 
use are as follows. 

RNN: the benchmark model first proposed by Hu 
[19] on the LCSTS dataset only uses a recurrent neural 
network as the implementation summarization of the 

(16)
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where n is the length of the n-gram, which takes 1 and 2 
in this evaluation. 

The formula for calculating accuracy P, recall rate R 
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where X is a reference summarization and has a 
length of m, Y is summarization generated by the sys-
tem, the length is n, LCS(∙)  is used to measure the lon-
gest common subsequence and β  is a hyperparameter.

4.2. Dataset
LCSTS dataset[19]: LCSTS is a Chinese short text 
summarization dataset. Each piece of data was col-
lected from Sina Weibo in the form of a {short news, 
summarization} pair. The dataset includes PARTI, 
PARTII, and PARTIII. The specific statistical infor-
mation is shown in Table 1. In this paper, using the 
same settings as in [14].

Table 1
Statistics of the LCSTS Dataset

LCSTS PART I PART II PART III

Quantity 2400059 10666 1106

Quantity (≥3') - 8685 725

CNN/DailyMail dataset: The CNN/DailyMail data-
set is an artificially generated summarization dataset 
constructed by Herman [18] based on news articles. 
This dataset can be obtained directly from GitHub. 
This paper uses the Stanford CoreNLP tool [28] to 
preprocess the data. We set the maximum length of 
the abstract text and the corresponding summariza-
tion to 400 and 100.

4.3. Experiment Setup
The encoder is built using a single-layer bidirectional 
Bi-GRU as the base module. In addition, a backward 
GRU and a forward GRU of the decoder are used to-
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gether to form our DQN. The number of GRU hidden 
layers is set to 256. Model network parameters are ini-
tialized using a uniform distribution of intervals [-0.1, 
0.1]. The learning rate and batch size are set to 0.05 and 
32, respectively. We first pretrain the base model on a 
given dataset until it reaches a convergence state and 
then train the DQN. In the initial stage of DQN training, 
the state space exploration parameter is set to 1.0, and 
the step is gradually reduced to 0.1 in 1,000 steps. Given 
that the length of the output sequence is l, its DQN iter-
ation number is set to 2l [15]. The iteration termination 
threshold is set to 0.9. The DQN experience pool size is 
set to 200,000, the reward discount factor is set to 0.9, 
and the action space size is set to 20; that is, the 10 most 
likely words from the vocabulary output distribution 
and the attention distribution are chosen.
In the LCSTS dataset, the first 50,000 words in the 
training set were selected to form a vocabulary. Other 
words were uniformly represented by the <UNK> tag, 
and the word vector dimension was set to 200.
On the CNN/DailyMail dataset, the first 25,000 most 
frequently appeared words were selected to form the 
vocabulary, and other words were uniformly repre-
sented by the <UNK> tag. The word vector dimension 
is set to 128.

4.4. Experimental Results and Analysis
1 Evaluation results on the LCSTS dataset:
Except for the “Bi-GRU + Distraction” method, the 
method and comparison method use the basic unit af-
ter the word segmentation as the word vector to input 
to the model. The experimental results are shown in 
Table 2, where “Bi-GRU” represents the basic model 
of this paper. Additionally, an attention mechanism 
is used in the decoding process to generate the final 
abstract by using a beam search and decoding with a 
width of 10. “DQN” represents the optimization mod-
el; that is, the results of the basic model are optimized 
by the depth Q network. On this dataset, the compari-
son methods we use are as follows.
RNN: the benchmark model first proposed by Hu [19] 
on the LCSTS dataset only uses a recurrent neural 
network as the implementation summarization of the 
encoder and decoder.
RNN context: A reinforcement model proposed by Hu 
[19]. The difference is that in the decoding process, all 
hidden layer states of the encoder are input to the de-
coder as context.

COPYNET: A replication mechanism was proposed 
by Gu [14] and incorporated into sequence-to-se-
quence learning. COPYNET can combine the repli-
cation mechanism with the sequence generation pro-
cess of the traditional decoder so that it can directly 
select the corresponding subsequence.
Bi-GRU + Distraction: A novel attention mecha-
nism method proposed by Chen [4], which differs 
from the above method in that the test result is 
based on characters as a basic unit, that is, a Chi-
nese character.
The basic model “Bi-GRU” used in this paper and the 
“RNN context” method used by Hu [19] are based on 
GRU construction. Unlike the latter, our basic mod-
el constructs an encoder and also adds attention 
mechanisms in the decoding process. Therefore, our 
base model performs better than the “RNN context” 
method. The “COPYNET” method and the “Bi-GRU 
+ Distraction” method can be seen as introducing a 
replication mechanism and a new attention mech-
anism on top of our basic model. Our optimization 
model “DQN” introduces the optimization process of 
reinforcement learning to achieve the initial summa-
rization of the basic model. From the experimental 
results, we can conclude that our optimization model 
achieves the best results.
2 Evaluation results on the CNN/DailyMail dataset:
As seen in Table 3, the comparison method we used 
includes some methods used on LCSTS data, includ-
ing TextRank [30], LexRank [11], Luhn[26], Edmund-
son [10], LSA [44], Sum-basic [15] and KL-sum [16]. 
The experimental results of these methods can be 
achieved through the open source tool SUMY.

Table 2
Result on the LCSTS Dataset

Methods Rouge-1 Rouge-2 Rouge-L

RNN 17.7 8.5 15.8

RNN context 26.8 16.1 24.1

COPYNET 35.0 22.3 32.0

Bi-GRU + Distraction 35.2 22.1 32.5

Bi-GRU 28.4 19.2 28.5

DQN 35.7 22.6 32.8
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Table 3
Result on the CNN/DailyMail Dataset

Methods Rouge-1 Rouge-2 Rouge-L

Luhn 23.2 7.2 15.5

Edmundson 24.5 8.2 16.7

LSA 21.2 6.2 14.0

LexRank 26.1 7.9 17.7

TextRank 23.3 7.7 15.8

Sum-basic 22.9 5.5 14.8

KL-sum 20.7 5.9 13.7

Bi-GRU+ Distraction 27.1 8.2 18.3

Bi-GRU 19.3 5.3 14.8

DQN 27.2 9.6 18.7

From the experimental results, we can conclude that 
our optimization model achieves the best results. 
In the two datasets, the optimization effect in the 
ROUGE-1 evaluation was significantly higher than 
that of ROUGE-2 and ROUGE-L. Since our DQN 
model is more likely to be rewarded for selecting an 
individual action from the action candidate space 
each time in the iterative optimization summariza-
tion, the ROUGE-1 score is more likely to be updated.

5. Conclusions
This paper proposes a reinforcement text summari-
zation optimization method based on deep enhanced 
learning. An attention mechanism-based seq2seq 
model is used to generate the initial summarization 
and the action candidate space required for reinforce-
ment learning, and then the deep Q network is used to 
optimize the initial summarization on the action can-
didate space. The experimental results show that the 
effect of the optimized method obviously improved. 
Since the results generated by the base model limit 
the final performance of our optimization method, 
in future work, we consider applying reinforcement 
learning directly to optimize the parameters of the 
base model to obtain better results.
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