
Information Technology and Control 2021/3/50458

Automatic Text
Summarization Using Deep
Reinforcement Learning
and Beyond

ITC 3/50
Information Technology
and Control
Vol. 50 / No. 3 / 2021
pp. 458-469
DOI 10.5755/j01.itc.50.3.28047

Automatic Text Summarization Using Deep Reinforcement Learning and Beyond

Received 2020/11/20 Accepted after revision 2021/06/17

 http://dx.doi.org/10.5755/j01.itc.50.3.28047

HOW TO CITE: Sun, G., Wang, Z., Zhao, J. (2021). Automatic Text Summarization Using Deep Reinforcement Learning and Beyond.
Information Technology and Control, 50(3), 458-469. https://doi.org/10.5755/j01.itc.50.3.28047

Corresponding author: wzxfync@ 163.com

Gang Sun, Zhongxin Wang
School of Computer and Information Engineering, Fuyang Normal University, Fuyang 236037, China

Jia Zhao
School of Computer and Information Engineering, Fuyang Normal University, Fuyang 236037, China;
Computer Science and Information Engineering, Hefei University of Technology, Hefei 230009, China

In the era of big data, information overload problems are becoming increasingly prominent. It is challenging
for machines to understand, compress and filter massive text information through the use of artificial intel-
ligence technology. The emergence of automatic text summarization mainly aims at solving the problem of
information overload, and it can be divided into two types: extractive and abstractive. The former finds some
key sentences or phrases from the original text and combines them into a summarization; the latter needs a
computer to understand the content of the original text and then uses the readable language for the human to
summarize the key information of the original text. This paper presents a two-stage optimization method for
automatic text summarization that combines abstractive summarization and extractive summarization. First,
a sequence-to-sequence model with the attention mechanism is trained as a baseline model to generate initial
summarization. Second, it is updated and optimized directly on the ROUGE metric by using deep reinforce-
ment learning (DRL). Experimental results show that compared with the baseline model, Rouge-1, Rouge-2,
and Rouge-L have been increased on the LCSTS dataset and CNN/DailyMail dataset.
KEYWORDS: AI, DRL, ROUGE metric, text summarization, LCSTS dataset, CNN/DailyMail dataset.

mailto:obodovskiy58@gmail.com

459Information Technology and Control 2021/3/50

1. Introduction
Artificial intelligence technology is in a period of rap-
id development, and its application in various indus-
tries is becoming increasingly common. From medi-
cal diagnosis to social networks, and from intelligent
education to news media, specific application cases of
artificial intelligence can be seen everywhere. In peo-
ple’s daily lives, we are facing information overload,
and how to deal with massive data information in lim-
ited time has become a problem. Using computers to
understand natural language can filter useless and re-
dundant information and only retain key information
feedback to users. This specific application is called
automatic text summarization. It uses a computer to
summarize the whole text, helping users understand
the core semantics of the original text directly by
reading the abstract. Therefore, the machine learn-
ing model that automatically extracts summaries can
quickly extract key information from massive texts,
saving users valuable time. The emergence of auto-
matic text summarization not only reduces informa-
tion overload but also saves the high cost of manual
text summarization.
Automatic text summarization is mainly divided into
two types of methods. The extractive summarization
technique extracts several key sentences from the
original text and then forms a single abstract. The ab-
stractive summarization technique understands the
semantics of the original text and summarizes and
induces the subject matter using a human-readable
language. At present, extractive summarization is rel-
atively easy to implement, so it is more widely used.
The abstractive summarization requires the ability of
the computer to understand the original text, so it has
higher technical requirements.
Traditional extractive summarization techniques have
two types: graph-based sorting methods and artificial
feature-based methods. Based on the graph sorting
method, each sentence in the document is used as a
node of the graph, and calculate the similarity between
sentences, and the value of the similarity is used as the
weight of the edge to construct the graph model. Then,
the PageRank algorithm [36] is used to solve each sen-
tence score; finally, the highest scores are output as a
summarization. The representative algorithms are
TextRank [30] and LexRank [11]. The artificial fea-
ture-based method usually builds a model based on

the length of each sentence, whether the sentence
contains the title words. The representative algorithm
is TextTeaser. With the rise of deep learning and its
powerful feature representation ability, an increasing
number of extractive summarization techniques are
proposed, and excellent results have been obtained.
Extractive summarization techniques do not need to
consider the extracted summarization syntax and se-
mantic problems. However, since the extracted sum-
marization is only the combination of the original sen-
tences, there are often problems such as inconsistency
and information redundancy. Comparatively speaking,
abstractive summarization is more convenient for
humans to understand. The emergence of the deep
learning-based sequence generation model [2] makes
abstractive summarization a research hotspot. The se-
q2seq model [5] is applied as a benchmark model in the
abstractive summarization task, and many deep learn-
ing models are emerging. The best results have been
achieved on the corresponding datasets.
Aiming at the insufficient utilization of contextual
semantic information, the insufficient semantic un-
derstanding of the attention mechanism, and the low
accuracy of text summarization in the previous text
summarization algorithms, this paper proposes an
automatic summarization optimization algorithm,
which first uses the seq2seq model with an attention
mechanism [45] as the basic model for initial sum-
marization generation and then uses depth enhance-
ment learning to optimize the initial summarization
directly through the ROUGE evaluation criteria
[23]. The abstract generated by the base model is an
abstractive summarization, and the optimization al-
gorithm proposed selects the word output distribu-
tion of the base model in the decoding stage and the
words of the top-k highest probability distributions
that constitute the attention distribution of the origi-
nal word as action spaces for enhanced learning. The
initial summarization is optimized by the enhanced
learning technique.
The main contributions of this paper are as follows:
1 This paper presents a two-stage optimization

method for automatic text summarization that
combines abstractive summarization and ex-
tractive summarization for the first time.

Information Technology and Control 2021/3/50460

2 First, a sequence-to-sequence model with the at-
tention mechanism is trained as a baseline model
to generate initial summarization. Second, it is up-
dated and optimized directly on the ROUGE met-
ric by using deep reinforcement learning (DRL).

3 Compared with the basic model, Rouge-1, Rouge-2,
and Rouge-L have been increased on the LCSTS
dataset and CNN/DailyMail dataset. Therefore,
the effect of the optimized method improved.

2. Related Work

2.1. Seq2seq Model
The seq2seq model is widely used in natural language
processing [6, 34, 17]. The seq2seq model consists
mainly of an encoder and a decoder. The encoder uses
a cyclic neural network (RNN) such as the long short-
term memory network [18] (LSTM) to encode the
input sequence into a vector of fixed dimensions, and
the decoder then uses RNN to decode the vector to
produce an output sequence. Applying the attention
mechanism [2] to the seq2seq model, it is possible to
assign different weights to different parts of the input
sequence during sequence generation. In natural lan-
guage tasks, the seq2seq model typically uses a fixed
vocabulary of input and output, which results in a
poor representation of words that appear outside the
vocabulary. The method of pointing to some unusual
words or subsequences in an input sequence through
a decoder network and then copying them directly
into the output sequence [47, 24] can largely solve this
problem. Gulcehre [13] and Merity [29] applied this
pointing mechanism to the decoding process; then,
the model can not only generate vocabularies in the
vocabulary but also output uncommon words.

2.2. Reinforcement Learning and Sequence
Generation
The emergence of Alpha Go has created consider-
able interest in artificial intelligence. Reinforcement
learning is the most important technology in Alpha
Go, which is a learning control strategy framework
through computer algorithms. Given the agent and in-
teraction environment [42], the agent can be trained
to learn a strategy through reinforcement learning so
that it can obtain the maximum reward. Compared

with the traditional supervised learning method, re-
inforcement learning can be used to solve the prob-
lem when the agent has to perform discrete actions
or when the optimization process is not defined. The
process for optimizing sequence generation problems
directly through metrics such as BELU, ROUGE, and
METEOR is not divisible, so reinforcement learning
can be applied to sequence generation tasks.
To achieve direct optimization of task evaluation cri-
teria, Ranzato [38] used the REINFORCE algorithm
[48] to train a cyclic neural network-based model for
sequence generation tasks compared to tradition-
al supervised learning. The results of the enhanced
learning training method have been significantly
improved. Bahdanau [1] proposed an evaluation-de-
cision method to train neural network generation
sequences, use a decision network to predict output
actions, and then use an evaluation network to evalu-
ate the value of the decision-making network to gen-
erate actions while also making the training process
more stable. Rennie [39] proposed a self-assessment
sequence generation training method without an ad-
ditional decision network, and the evaluation results
in the picture title generation task were significantly
improved. Guo [15] proposed an iterative decoding
output sequence based on the depth Q network [32]
(DQN) training the sequence-to-sequence learning
task. Guo’s method [15] stimulates the automatic
text summarization optimization method, generates
an initial summarization and candidate action space
through a seq2seq model with an attention mecha-
nism, and directly optimizes the initial summariza-
tion evaluation standard (ROUGE) using DQN.

2.3. Automatic Text Summarization
Automated abstract research focuses on two areas:
text [9, 35, 27] and speech [50, 51]. Although the ab-
stractive summarization study has made some prog-
ress, most of the outstanding performance summari-
zation models are still based on extractive methods.
Traditional extractive summarization methods are
mostly based on a greedy search [3] and graph model
methods [11]. Kageback [21] implemented document
summarization generation by deploying a recursive
autoencoder [43]. Yin [49] used a convolutional neu-
ral network to minimize the objective function based
on diversity and importance, and select sentences to
generate summaries. Nallapati [34] adjusted a ques-

461Information Technology and Control 2021/3/50

tion and answer dataset of DeepMind [17] to a sum-
marization dataset, the CNN/DailyMail dataset, and
proposed the first benchmark model of the abstrac-
tive summarization on this dataset. On this dataset,
Cheng and Lapata [5] proposed an attention-oriented
encoder-decoder framework for abstract extraction.
Nallapati [33] also proposed an model, which con-
structs a hierarchical cyclic neural network to select
and extract original sentences.
Although the extractive summarization method is
simpler and has some errors, there are also problems
such as inconsistent semantics of the abstractive
summarization context and unclear references. The
generalized approach is freer and more in line with
human writing and thinking patterns and can gen-
erate new and diverse sentences. With the advent of
neural network-based text generation models [36],
abstractive summarization technology is becoming
a research hotspot. Rush [40] proposed an attention
model with a convolutional encoder. On the CNN/
DailyMail dataset, Chen[4] proposed a novel atten-
tion mechanism and applied it to the summarization
generation model. On the CNN/DailyMail dataset,
Nallapati [34] constructed a hierarchical network
structure model using a hierarchical attention mech-
anism and pointer functions. On the same dataset,
See [41] proposed a pointer network and additionally
used a loss term for the attention-coverage mecha-
nism in the loss function of its model. Patel [37] stud-
ied on abstractive and extractive content rundown
strategies. Kejun [22] proposed an improved word
vector generation technique and an abstractive auto-
matic summarization model. Minaee [31] discussed
more than 150 deep learning based models for text
classification.
This paper proposed the automatic text summariza-
tion optimization method. First, the initial summa-
rization is generated and the candidate action space
required for reinforcement learning by deploying a
seq2seq model. The action candidate space is divided
into two parts. One part is generated by the decoder of
the seq2seq model. This process can be regarded as an
abstractive summarization method. The other part is
generated by the attention mechanism of the seq2seq
model, which can be seen as an extractive summari-
zation method. Second, DQN [32] is used to learn a
strategy to directly optimize the initial summariza-
tion to obtain the maximum reward (ROUGE score).

3. Modeling
This section mainly introduces the automatic text
summarization optimization model, which is based
on DQN. DQN is deployed through a cyclic neural
network (GRU-RNN) with a gated recurrent unit
[7] (GRU) in an encoder-decoder architecture. First,
the pretraining phase is actually a parameter train-
ing of the seq2seq model (the lower half of Figure 1)
with the attention mechanism through maximum
likelihood estimation (MLE) and generates the ini-
tial summarization after reaching the convergence
state (i.e.,

functions. On the same dataset, See [41] proposed a
pointer network and additionally used a loss term for
the attention-coverage mechanism in the loss function
of its model. Patel [37] studied on abstractive and
extractive content rundown strategies. Kejun [22]
proposed an improved word vector generation
technique and an abstractive automatic summarization
model. Minaee [31] discussed more than 150 deep
learning based models for text classification.

This paper proposed the automatic text
summarization optimization method. First, the initial
summarization is generated and the candidate action
space required for reinforcement learning by deploying
a seq2seq model. The action candidate space is divided
into two parts. One part is generated by the decoder of
the seq2seq model. This process can be regarded as an
abstractive summarization method. The other part is
generated by the attention mechanism of the seq2seq
model, which can be seen as an extractive
summarization method. Second, DQN [32] is used to
learn a strategy to directly optimize the initial
summarization to obtain the maximum reward
(ROUGE score).

3. Modeling
This section mainly introduces the automatic text
summarization optimization model, which is based on
DQN. DQN is deployed through a cyclic neural
network (GRU-RNN) with a gated recurrent unit [7]
(GRU) in an encoder-decoder architecture. First, the
pretraining phase is actually a parameter training of the
seq2seq model (the lower half of Figure 1) with the
attention mechanism through maximum likelihood
estimation (MLE) and generates the initial
summarization after reaching the convergence state
(i.e., 0 0 0

1 , ,j Ny y y< > in the figure). In addition, the
candidate action space of the DQN (i.e., DQN is the
action apace in Figure 1, generated by the attention
mechanism and decoder). Second, in the DQN iterative
decoding stage, the parameters of the DQN are
initialized using pretrained parameter values. This
phase is an iterative decoding process. DQN learns a
certain strategy, selects actions from the action space,
and implements iterative optimization of the initial
summarization to obtain the maximum reward. The
reward is the ROUGE score obtained by the similarity
between the summarization generated by DQN and the
real summarization in the iterative process.

3.1. Automatics Summarization Modeling
Let the vocabulary be Ω , and its vocabulary size be
| | VΩ = ． x is set to represent an input sentence
containing a sequence of m words, that is,

1 m[,...,]x x=x . Among them, each word ix ∈Ω．The
task of the automatic summarization is to generate a target
sequence of length n words 1[,...,]Ny y y= , such that

arg max (|)yy P y x= where N m< .
The automatic summarization model can be

represented as a function (y|x)=P(y|x;)P θ with
parameter θ , where θ is trained by maximizing the
conditional probability of the {sentence-abstract} pairs
in the training set. More specifically, given the last
generated word, the training model generates the next
word of the abstract.

0 1
0

(|x;) (| { ,..., }, ;).
N

t t
t

P y p y y y xθ θ−
=

=∏ (1)

Since (1) is difficult to solve, in practice, we
instantiate this target in a serialized way, turning the
original objective function into

0 1
0

() max log (|{ ,..., }, ;).
N

t t
t

L p y y y x
θ

θ θ−
=

= ∑ (2)

This paper uses an encoder-decoder framework to
model the conditional probability of (1).

3.2. Seq2seq Model
The encoder encodes the observed sample sequence X
into the variable Z, and the decoder decodes the
hidden variable Z into an output target sequence Y.
The traditional seq2seq model encodes regardless of
how long the sequence of observation samples is into a
fixed-dimensional hidden variable Z. Obviously, such
an operation limits the ability of the seq2seq model.
Therefore, Bahdanau [2] proposed a recurrent neural
network search model. On the decoder side, using a
hidden layer forward network, an adaptive method is
used to calculate the weight of each word in the
observation sequence X and the output target sequence
Y.

This paper introduces the encoder-decoder
framework to the automatic summarization problem
takes the pure data-driven approach and trains the
automatic summarization end-to-end model. As the
basic model of this paper, this model generates the
initial summarization and candidate action space of the
DQN model.

Encoder: The network gated unit can better
express the long-term and short-term dependence. In
this paper, a cyclic neural network with a gated
recurrent unit (GRU [8]) is used as the basic module for
constructing a document encoder. A GRU consists of u
and r:

 in the figure). In addition, the
candidate action space of the DQN (i.e., DQN is the
action apace in Figure 1, generated by the attention
mechanism and decoder). Second, in the DQN iter-
ative decoding stage, the parameters of the DQN are
initialized using pretrained parameter values. This
phase is an iterative decoding process. DQN learns a
certain strategy, selects actions from the action space,
and implements iterative optimization of the initial
summarization to obtain the maximum reward. The
reward is the ROUGE score obtained by the similarity
between the summarization generated by DQN and
the real summarization in the iterative process.

3.1. Automatics Summarization Modeling
Let the vocabulary be Ω, and its vocabulary size be
|Ω| = V. x is set to represent an input sentence contain-
ing a sequence of m words, that is, x = [x1 ,..., xm] . Among
them, each word xi ÎΩ. The task of the automatic sum-
marization is to generate a target sequence of length
n words y = [y1,..., yN], such that y = arg maxy P(y|x)
where N < m .
The automatic summarization model can be repre-
sented as a function P(y|x) = P(y|x; θ) with parameter
θ, where θ is trained by maximizing the conditional
probability of the {sentence-abstract} pairs in the
training set. More specifically, given the last generat-
ed word, the training model generates the next word
of the abstract.

functions. On the same dataset, See [41] proposed a
pointer network and additionally used a loss term for
the attention-coverage mechanism in the loss function
of its model. Patel [37] studied on abstractive and
extractive content rundown strategies. Kejun [22]
proposed an improved word vector generation
technique and an abstractive automatic summarization
model. Minaee [31] discussed more than 150 deep
learning based models for text classification.

This paper proposed the automatic text
summarization optimization method. First, the initial
summarization is generated and the candidate action
space required for reinforcement learning by deploying
a seq2seq model. The action candidate space is divided
into two parts. One part is generated by the decoder of
the seq2seq model. This process can be regarded as an
abstractive summarization method. The other part is
generated by the attention mechanism of the seq2seq
model, which can be seen as an extractive
summarization method. Second, DQN [32] is used to
learn a strategy to directly optimize the initial
summarization to obtain the maximum reward
(ROUGE score).

3. Modeling
This section mainly introduces the automatic text
summarization optimization model, which is based on
DQN. DQN is deployed through a cyclic neural
network (GRU-RNN) with a gated recurrent unit [7]
(GRU) in an encoder-decoder architecture. First, the
pretraining phase is actually a parameter training of the
seq2seq model (the lower half of Figure 1) with the
attention mechanism through maximum likelihood
estimation (MLE) and generates the initial
summarization after reaching the convergence state
(i.e., 0 0 0

1 , ,j Ny y y< > in the figure). In addition, the
candidate action space of the DQN (i.e., DQN is the
action apace in Figure 1, generated by the attention
mechanism and decoder). Second, in the DQN iterative
decoding stage, the parameters of the DQN are
initialized using pretrained parameter values. This
phase is an iterative decoding process. DQN learns a
certain strategy, selects actions from the action space,
and implements iterative optimization of the initial
summarization to obtain the maximum reward. The
reward is the ROUGE score obtained by the similarity
between the summarization generated by DQN and the
real summarization in the iterative process.

3.1. Automatics Summarization Modeling
Let the vocabulary be Ω , and its vocabulary size be
| | VΩ = ． x is set to represent an input sentence
containing a sequence of m words, that is,

1 m[,...,]x x=x . Among them, each word ix ∈Ω．The
task of the automatic summarization is to generate a target
sequence of length n words 1[,...,]Ny y y= , such that

arg max (|)yy P y x= where N m< .
The automatic summarization model can be

represented as a function (y|x)=P(y|x;)P θ with
parameter θ , where θ is trained by maximizing the
conditional probability of the {sentence-abstract} pairs
in the training set. More specifically, given the last
generated word, the training model generates the next
word of the abstract.

0 1
0

(|x;) (| { ,..., }, ;).
N

t t
t

P y p y y y xθ θ−
=

=∏ (1)

Since (1) is difficult to solve, in practice, we
instantiate this target in a serialized way, turning the
original objective function into

0 1
0

() max log (|{ ,..., }, ;).
N

t t
t

L p y y y x
θ

θ θ−
=

= ∑ (2)

This paper uses an encoder-decoder framework to
model the conditional probability of (1).

3.2. Seq2seq Model
The encoder encodes the observed sample sequence X
into the variable Z, and the decoder decodes the
hidden variable Z into an output target sequence Y.
The traditional seq2seq model encodes regardless of
how long the sequence of observation samples is into a
fixed-dimensional hidden variable Z. Obviously, such
an operation limits the ability of the seq2seq model.
Therefore, Bahdanau [2] proposed a recurrent neural
network search model. On the decoder side, using a
hidden layer forward network, an adaptive method is
used to calculate the weight of each word in the
observation sequence X and the output target sequence
Y.

This paper introduces the encoder-decoder
framework to the automatic summarization problem
takes the pure data-driven approach and trains the
automatic summarization end-to-end model. As the
basic model of this paper, this model generates the
initial summarization and candidate action space of the
DQN model.

Encoder: The network gated unit can better
express the long-term and short-term dependence. In
this paper, a cyclic neural network with a gated
recurrent unit (GRU [8]) is used as the basic module for
constructing a document encoder. A GRU consists of u
and r:

(1)

Since (1) is difficult to solve, in practice, we instanti-
ate this target in a serialized way, turning the original
objective function into

Information Technology and Control 2021/3/50462

Figure 1
The optimization model for automatic text summarization

functions. On the same dataset, See [41] proposed a
pointer network and additionally used a loss term for
the attention-coverage mechanism in the loss function
of its model. Patel [37] studied on abstractive and
extractive content rundown strategies. Kejun [22]
proposed an improved word vector generation
technique and an abstractive automatic summarization
model. Minaee [31] discussed more than 150 deep
learning based models for text classification.

This paper proposed the automatic text
summarization optimization method. First, the initial
summarization is generated and the candidate action
space required for reinforcement learning by deploying
a seq2seq model. The action candidate space is divided
into two parts. One part is generated by the decoder of
the seq2seq model. This process can be regarded as an
abstractive summarization method. The other part is
generated by the attention mechanism of the seq2seq
model, which can be seen as an extractive
summarization method. Second, DQN [32] is used to
learn a strategy to directly optimize the initial
summarization to obtain the maximum reward
(ROUGE score).

3. Modeling
This section mainly introduces the automatic text
summarization optimization model, which is based on
DQN. DQN is deployed through a cyclic neural
network (GRU-RNN) with a gated recurrent unit [7]
(GRU) in an encoder-decoder architecture. First, the
pretraining phase is actually a parameter training of the
seq2seq model (the lower half of Figure 1) with the
attention mechanism through maximum likelihood
estimation (MLE) and generates the initial
summarization after reaching the convergence state
(i.e., 0 0 0

1 , ,j Ny y y< > in the figure). In addition, the
candidate action space of the DQN (i.e., DQN is the
action apace in Figure 1, generated by the attention
mechanism and decoder). Second, in the DQN iterative
decoding stage, the parameters of the DQN are
initialized using pretrained parameter values. This
phase is an iterative decoding process. DQN learns a
certain strategy, selects actions from the action space,
and implements iterative optimization of the initial
summarization to obtain the maximum reward. The
reward is the ROUGE score obtained by the similarity
between the summarization generated by DQN and the
real summarization in the iterative process.

3.1. Automatics Summarization Modeling
Let the vocabulary be Ω , and its vocabulary size be
| | VΩ = ． x is set to represent an input sentence
containing a sequence of m words, that is,

1 m[,...,]x x=x . Among them, each word ix ∈Ω．The
task of the automatic summarization is to generate a target
sequence of length n words 1[,...,]Ny y y= , such that

arg max (|)yy P y x= where N m< .
The automatic summarization model can be

represented as a function (y|x)=P(y|x;)P θ with
parameter θ , where θ is trained by maximizing the
conditional probability of the {sentence-abstract} pairs
in the training set. More specifically, given the last
generated word, the training model generates the next
word of the abstract.

0 1
0

(|x;) (| { ,..., }, ;).
N

t t
t

P y p y y y xθ θ−
=

=∏ (1)

Since (1) is difficult to solve, in practice, we
instantiate this target in a serialized way, turning the
original objective function into

0 1
0

() max log (|{ ,..., }, ;).
N

t t
t

L p y y y x
θ

θ θ−
=

= ∑ (2)

This paper uses an encoder-decoder framework to
model the conditional probability of (1).

3.2. Seq2seq Model
The encoder encodes the observed sample sequence X
into the variable Z, and the decoder decodes the
hidden variable Z into an output target sequence Y.
The traditional seq2seq model encodes regardless of
how long the sequence of observation samples is into a
fixed-dimensional hidden variable Z. Obviously, such
an operation limits the ability of the seq2seq model.
Therefore, Bahdanau [2] proposed a recurrent neural
network search model. On the decoder side, using a
hidden layer forward network, an adaptive method is
used to calculate the weight of each word in the
observation sequence X and the output target sequence
Y.

This paper introduces the encoder-decoder
framework to the automatic summarization problem
takes the pure data-driven approach and trains the
automatic summarization end-to-end model. As the
basic model of this paper, this model generates the
initial summarization and candidate action space of the
DQN model.

Encoder: The network gated unit can better
express the long-term and short-term dependence. In
this paper, a cyclic neural network with a gated
recurrent unit (GRU [8]) is used as the basic module for
constructing a document encoder. A GRU consists of u
and r:

(2)

This paper uses an encoder-decoder framework to
model the conditional probability of (1).

3.2. Seq2seq Model
The encoder encodes the observed sample sequence
X into the variable Z, and the decoder decodes the hid-
den variable Z into an output target sequence Y. The
traditional seq2seq model encodes regardless of how
long the sequence of observation samples is into a
fixed-dimensional hidden variable Z. Obviously, such
an operation limits the ability of the seq2seq model.
Therefore, Bahdanau [2] proposed a recurrent neural
network search model. On the decoder side, using a
hidden layer forward network, an adaptive method is
used to calculate the weight of each word in the obser-
vation sequence X and the output target sequence Y.
This paper introduces the encoder-decoder frame-
work to the automatic summarization problem takes
the pure data-driven approach and trains the automat-

 1(+b)t ux t uh t uu W x W hσ −= + (3)

r r 1 rr (+b)t x t h tW x W hσ −= + (4)

t 1tanh(())hx t hh t t hh W x W r h b−′ = + + (5)

t 1(1)t t t th u h u h −′= − +  , (6)

where W and b represent hyperparameters of the GRU;
tx represents the input word vector at time t; th

denotes the hidden layer vector ()σ ⋅ ; tanh()⋅ is the
activation function at the corresponding time; and  is
the bitwise multiplication operation.

The forward GRU generates a hidden layer vector
representation of each corresponding word vector of
the forward sequence, while the backward GRU
generates the hidden layer vector of each
corresponding word vector of the reverse sequence.

Forward GRU generates forward sequences, and
the hidden layer vector of each corresponding word
vector represents f

th , while backward GRU generates
the hidden layer vector b

th of each corresponding word
vector of the reverse sequence.

 t =[,]f b
t th h h . (7)

The input sequence of the original text is used as
the input of the encoder, and the hidden layer
representation of each position is generated by the
encoder. The semantic representation c of the input
sequence can be directly assigned by the last hidden
layer of the encoder, i.e., = mc h , or it can be the linear
representation of the last hidden layer.

Figure 1

Decoder and Attention mechanism: The semantic
feature representation of the input sequence generated
by the encoder is decoded as the initial input state of
the decoder out of the target text sequence, i.e., the
summarization. The decoder is essentially a language
model. This article also uses a one-way GRU, as shown
in the lower right part of Figure 1. c is decoded by the
decoder so it must contain all the information in the
original sequence. Additionally, in the process of

generating a text sequence, each word is generated
using the same semantic vector. Obviously, this
method is too simple.

To solve the abovementioned problems, a feasible
solution is to introduce an attention mechanism. The
attention mechanism gives different attention weights
to different input words at each decoding time and
generating each word. The semantic representation c at
each time in the decoding process adaptively selects the

ic summarization end-to-end model. As the basic mod-
el of this paper, this model generates the initial summa-
rization and candidate action space of the DQN model.
Encoder: The network gated unit can better express
the long-term and short-term dependence. In this
paper, a cyclic neural network with a gated recurrent
unit (GRU [8]) is used as the basic module for con-
structing a document encoder. A GRU consists of u
and r:

 1(+b)t ux t uh t uu W x W hσ −= + (3)

r r 1 rr (+b)t x t h tW x W hσ −= + (4)

t 1tanh(())hx t hh t t hh W x W r h b−′ = + + (5)

t 1(1)t t t th u h u h −′= − +  , (6)

where W and b represent hyperparameters of the GRU;
tx represents the input word vector at time t; th

denotes the hidden layer vector ()σ ⋅ ; tanh()⋅ is the
activation function at the corresponding time; and  is
the bitwise multiplication operation.

The forward GRU generates a hidden layer vector
representation of each corresponding word vector of
the forward sequence, while the backward GRU
generates the hidden layer vector of each
corresponding word vector of the reverse sequence.

Forward GRU generates forward sequences, and
the hidden layer vector of each corresponding word
vector represents f

th , while backward GRU generates
the hidden layer vector b

th of each corresponding word
vector of the reverse sequence.

 t =[,]f b
t th h h . (7)

The input sequence of the original text is used as
the input of the encoder, and the hidden layer
representation of each position is generated by the
encoder. The semantic representation c of the input
sequence can be directly assigned by the last hidden
layer of the encoder, i.e., = mc h , or it can be the linear
representation of the last hidden layer.

Figure 1
The optimization model for automatic text summarization

Decoder and Attention mechanism: The semantic
feature representation of the input sequence generated
by the encoder is decoded as the initial input state of
the decoder out of the target text sequence, i.e., the
summarization. The decoder is essentially a language
model. This article also uses a one-way GRU, as shown
in the lower right part of Figure 1. c is decoded by the
decoder so it must contain all the information in the
original sequence. Additionally, in the process of

generating a text sequence, each word is generated
using the same semantic vector. Obviously, this
method is too simple.

To solve the abovementioned problems, a feasible
solution is to introduce an attention mechanism. The
attention mechanism gives different attention weights
to different input words at each decoding time and
generating each word. The semantic representation c at
each time in the decoding process adaptively selects the

(3)

 1(+b)t ux t uh t uu W x W hσ −= + (3)

r r 1 rr (+b)t x t h tW x W hσ −= + (4)

t 1tanh(())hx t hh t t hh W x W r h b−′ = + + (5)

t 1(1)t t t th u h u h −′= − +  , (6)

where W and b represent hyperparameters of the GRU;
tx represents the input word vector at time t; th

denotes the hidden layer vector ()σ ⋅ ; tanh()⋅ is the
activation function at the corresponding time; and  is
the bitwise multiplication operation.

The forward GRU generates a hidden layer vector
representation of each corresponding word vector of
the forward sequence, while the backward GRU
generates the hidden layer vector of each
corresponding word vector of the reverse sequence.

Forward GRU generates forward sequences, and
the hidden layer vector of each corresponding word
vector represents f

th , while backward GRU generates
the hidden layer vector b

th of each corresponding word
vector of the reverse sequence.

 t =[,]f b
t th h h . (7)

The input sequence of the original text is used as
the input of the encoder, and the hidden layer
representation of each position is generated by the
encoder. The semantic representation c of the input
sequence can be directly assigned by the last hidden
layer of the encoder, i.e., = mc h , or it can be the linear
representation of the last hidden layer.

Figure 1
The optimization model for automatic text summarization

Decoder and Attention mechanism: The semantic
feature representation of the input sequence generated
by the encoder is decoded as the initial input state of
the decoder out of the target text sequence, i.e., the
summarization. The decoder is essentially a language
model. This article also uses a one-way GRU, as shown
in the lower right part of Figure 1. c is decoded by the
decoder so it must contain all the information in the
original sequence. Additionally, in the process of

generating a text sequence, each word is generated
using the same semantic vector. Obviously, this
method is too simple.

To solve the abovementioned problems, a feasible
solution is to introduce an attention mechanism. The
attention mechanism gives different attention weights
to different input words at each decoding time and
generating each word. The semantic representation c at
each time in the decoding process adaptively selects the

(4)

 1(+b)t ux t uh t uu W x W hσ −= + (3)

r r 1 rr (+b)t x t h tW x W hσ −= + (4)

t 1tanh(())hx t hh t t hh W x W r h b−′ = + + (5)

t 1(1)t t t th u h u h −′= − +  , (6)

where W and b represent hyperparameters of the GRU;
tx represents the input word vector at time t; th

denotes the hidden layer vector ()σ ⋅ ; tanh()⋅ is the
activation function at the corresponding time; and  is
the bitwise multiplication operation.

The forward GRU generates a hidden layer vector
representation of each corresponding word vector of
the forward sequence, while the backward GRU
generates the hidden layer vector of each
corresponding word vector of the reverse sequence.

Forward GRU generates forward sequences, and
the hidden layer vector of each corresponding word
vector represents f

th , while backward GRU generates
the hidden layer vector b

th of each corresponding word
vector of the reverse sequence.

 t =[,]f b
t th h h . (7)

The input sequence of the original text is used as
the input of the encoder, and the hidden layer
representation of each position is generated by the
encoder. The semantic representation c of the input
sequence can be directly assigned by the last hidden
layer of the encoder, i.e., = mc h , or it can be the linear
representation of the last hidden layer.

Figure 1
The optimization model for automatic text summarization

Decoder and Attention mechanism: The semantic
feature representation of the input sequence generated
by the encoder is decoded as the initial input state of
the decoder out of the target text sequence, i.e., the
summarization. The decoder is essentially a language
model. This article also uses a one-way GRU, as shown
in the lower right part of Figure 1. c is decoded by the
decoder so it must contain all the information in the
original sequence. Additionally, in the process of

generating a text sequence, each word is generated
using the same semantic vector. Obviously, this
method is too simple.

To solve the abovementioned problems, a feasible
solution is to introduce an attention mechanism. The
attention mechanism gives different attention weights
to different input words at each decoding time and
generating each word. The semantic representation c at
each time in the decoding process adaptively selects the

(5)

 1(+b)t ux t uh t uu W x W hσ −= + (3)

r r 1 rr (+b)t x t h tW x W hσ −= + (4)

t 1tanh(())hx t hh t t hh W x W r h b−′ = + + (5)

t 1(1)t t t th u h u h −′= − +  , (6)

where W and b represent hyperparameters of the GRU;
tx represents the input word vector at time t; th

denotes the hidden layer vector ()σ ⋅ ; tanh()⋅ is the
activation function at the corresponding time; and  is
the bitwise multiplication operation.

The forward GRU generates a hidden layer vector
representation of each corresponding word vector of
the forward sequence, while the backward GRU
generates the hidden layer vector of each
corresponding word vector of the reverse sequence.

Forward GRU generates forward sequences, and
the hidden layer vector of each corresponding word
vector represents f

th , while backward GRU generates
the hidden layer vector b

th of each corresponding word
vector of the reverse sequence.

 t =[,]f b
t th h h . (7)

The input sequence of the original text is used as
the input of the encoder, and the hidden layer
representation of each position is generated by the
encoder. The semantic representation c of the input
sequence can be directly assigned by the last hidden
layer of the encoder, i.e., = mc h , or it can be the linear
representation of the last hidden layer.

Figure 1
The optimization model for automatic text summarization

Decoder and Attention mechanism: The semantic
feature representation of the input sequence generated
by the encoder is decoded as the initial input state of
the decoder out of the target text sequence, i.e., the
summarization. The decoder is essentially a language
model. This article also uses a one-way GRU, as shown
in the lower right part of Figure 1. c is decoded by the
decoder so it must contain all the information in the
original sequence. Additionally, in the process of

generating a text sequence, each word is generated
using the same semantic vector. Obviously, this
method is too simple.

To solve the abovementioned problems, a feasible
solution is to introduce an attention mechanism. The
attention mechanism gives different attention weights
to different input words at each decoding time and
generating each word. The semantic representation c at
each time in the decoding process adaptively selects the

(6)

where W and b represent hyperparameters of the GRU;
xt represents the input word vector at time t; ht denotes
the hidden layer vector σ (∙) ; tanh(∙) is the activation
function at the corresponding time; and

 1(+b)t ux t uh t uu W x W hσ −= + (3)

r r 1 rr (+b)t x t h tW x W hσ −= + (4)

t 1tanh(())hx t hh t t hh W x W r h b−′ = + + (5)

t 1(1)t t t th u h u h −′= − +  , (6)

where W and b represent hyperparameters of the GRU;
tx represents the input word vector at time t; th

denotes the hidden layer vector ()σ ⋅ ; tanh()⋅ is the
activation function at the corresponding time; and  is
the bitwise multiplication operation.

The forward GRU generates a hidden layer vector
representation of each corresponding word vector of
the forward sequence, while the backward GRU
generates the hidden layer vector of each
corresponding word vector of the reverse sequence.

Forward GRU generates forward sequences, and
the hidden layer vector of each corresponding word
vector represents f

th , while backward GRU generates
the hidden layer vector b

th of each corresponding word
vector of the reverse sequence.

 t =[,]f b
t th h h . (7)

The input sequence of the original text is used as
the input of the encoder, and the hidden layer
representation of each position is generated by the
encoder. The semantic representation c of the input
sequence can be directly assigned by the last hidden
layer of the encoder, i.e., = mc h , or it can be the linear
representation of the last hidden layer.

Figure 1
The optimization model for automatic text summarization

Decoder and Attention mechanism: The semantic
feature representation of the input sequence generated
by the encoder is decoded as the initial input state of
the decoder out of the target text sequence, i.e., the
summarization. The decoder is essentially a language
model. This article also uses a one-way GRU, as shown
in the lower right part of Figure 1. c is decoded by the
decoder so it must contain all the information in the
original sequence. Additionally, in the process of

generating a text sequence, each word is generated
using the same semantic vector. Obviously, this
method is too simple.

To solve the abovementioned problems, a feasible
solution is to introduce an attention mechanism. The
attention mechanism gives different attention weights
to different input words at each decoding time and
generating each word. The semantic representation c at
each time in the decoding process adaptively selects the

 is the bit-
wise multiplication operation.

463Information Technology and Control 2021/3/50

The forward GRU generates a hidden layer vector
representation of each corresponding word vector of
the forward sequence, while the backward GRU gen-
erates the hidden layer vector of each corresponding
word vector of the reverse sequence.
Forward GRU generates forward sequences, and the
hidden layer vector of each corresponding word vec-
tor represents ht

f, while backward GRU generates the
hidden layer vector ht

b of each corresponding word
vector of the reverse sequence.

 1(+b)t ux t uh t uu W x W hσ −= + (3)

r r 1 rr (+b)t x t h tW x W hσ −= + (4)

t 1tanh(())hx t hh t t hh W x W r h b−′ = + + (5)

t 1(1)t t t th u h u h −′= − +  , (6)

where W and b represent hyperparameters of the GRU;
tx represents the input word vector at time t; th

denotes the hidden layer vector ()σ ⋅ ; tanh()⋅ is the
activation function at the corresponding time; and  is
the bitwise multiplication operation.

The forward GRU generates a hidden layer vector
representation of each corresponding word vector of
the forward sequence, while the backward GRU
generates the hidden layer vector of each
corresponding word vector of the reverse sequence.

Forward GRU generates forward sequences, and
the hidden layer vector of each corresponding word
vector represents f

th , while backward GRU generates
the hidden layer vector b

th of each corresponding word
vector of the reverse sequence.

 t =[,]f b
t th h h . (7)

The input sequence of the original text is used as
the input of the encoder, and the hidden layer
representation of each position is generated by the
encoder. The semantic representation c of the input
sequence can be directly assigned by the last hidden
layer of the encoder, i.e., = mc h , or it can be the linear
representation of the last hidden layer.

Figure 1
The optimization model for automatic text summarization

Decoder and Attention mechanism: The semantic
feature representation of the input sequence generated
by the encoder is decoded as the initial input state of
the decoder out of the target text sequence, i.e., the
summarization. The decoder is essentially a language
model. This article also uses a one-way GRU, as shown
in the lower right part of Figure 1. c is decoded by the
decoder so it must contain all the information in the
original sequence. Additionally, in the process of

generating a text sequence, each word is generated
using the same semantic vector. Obviously, this
method is too simple.

To solve the abovementioned problems, a feasible
solution is to introduce an attention mechanism. The
attention mechanism gives different attention weights
to different input words at each decoding time and
generating each word. The semantic representation c at
each time in the decoding process adaptively selects the

(7)

The input sequence of the original text is used as the
input of the encoder, and the hidden layer representa-
tion of each position is generated by the encoder. The
semantic representation c of the input sequence can be
directly assigned by the last hidden layer of the encod-
er, i.e., c = hm, or it can can be the linear representation
of the last hidden layer.
Decoder and Attention mechanism: The semantic
feature representation of the input sequence generat-
ed by the encoder is decoded as the initial input state
of the decoder out of the target text sequence, i.e.,
the summarization. The decoder is essentially a lan-
guage model. This article also uses a one-way GRU, as
shown in the lower right part of Figure 1. c is decoded
by the decoder so it must contain all the information
in the original sequence. Additionally, in the process
of generating a text sequence, each word is generated
using the same semantic vector. Obviously, this meth-
od is too simple.
To solve the abovementioned problems, a feasible solu-
tion is to introduce an attention mechanism. The at-
tention mechanism gives different attention weights to
different input words at each decoding time and gener-
ating each word. The semantic representation c at each
time in the decoding process adaptively selects the
most appropriate context information for the target
yi to be output at the current time. Specifically, we use
aij to measure the correlation of the encoder's hidden
layer representation hj at time j and decoding at time i.
Finally, the context information ci input by the decoder
at time i is equal to the hidden layer of the encoder at all
times, which represents the weighted sum of hj and aij.

most appropriate context information for the target iy
to be output at the current time. Specifically, we use ija
to measure the correlation of the encoder's hidden layer
representation jh at time j and decoding at time i.
Finally, the context information ic input by the
decoder at time i is equal to the hidden layer of the
encoder at all times, which represents the weighted
sum of jh and ija .

1 i(, ,)i i is f s y c−= (8)
where,

j 1
=

M

i ij jc a h
=
∑ (9)

1

exp()

exp()
ij

ij M
ikk

e
a

e
=

=
∑

 (10)

ij a 1=v tanh()T
a i a je W s U h− + . (11)

Using the decoder with the attention mechanism,
the model of equation (1) can be expressed as

i 0 i 1 ip(|{ ,..., }, ;) ()y y y x g sθ− = , (12)

where ()g ⋅ is a function that outputs the probability of
the target vocabulary iy . A softmax function is usually
used to map a hidden layer vector into a probability
distribution of V categories (i.e., vocabulary) of the
vocabulary:

z
i

zz 1

exp()
(z |) ()= ,

exp()

T
i

i V T
i

w s
p y g s

w s
θ

=

= =
∑

 (13)

where zw represents the weight matrix.

3.3. DQN Decoding
The four components of the reinforcement learning
model are described in detail: states, actions, strategies,
and rewards. Automatically generate semantic features
of the input sequence by deploying a recurrent neural
network with a coder-decoder architecture with a
gated unit. DQN directly uses these features to learn
the Q-value function to estimate future rewards and to
maximize future long-term rewards by optimizing
model parameters.

Given the abstract text sequence
1 j m,..., ...,x x x< > and

the target sequence 1 j,..., y ..., Ny y< > (source text and
target summarization in Figure 1), the Bi-GRU encoder
encodes the entire input sequence into a fixed-
dimensional semantic vector that is decoded as the
initial input vector of the decoder to generate the actual
initial summarization sequence 0 0 0

1ˆ ˆ ˆy ,..., y ..., yj T< > . In
the decoding process, the decoder sequentially
generates a hidden layer state representation

1 j< ,..., ,..., Ns s s > .
Status: At each iteration step i of DQN decoding,

the summarization text input sequence
1 j m,..., ...,x x x< > and the actual summarization

sequence 1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > are used as DQN internal

states. When i=0, the initial summarization generated
by the decoder consists of the vocabulary of the
maximum output probability of each time decoder.

Action: In the decoding stage of the decoder, the
hidden layer vector is mapped to the probability
distribution of V vocabularies in the vocabulary by a
softmax function. At the same time, it also produces the
attention weight distribution of the summarization text
sequence at each time. The vocabulary that generates
the vocabulary probability distribution and the first k
maximum probabilities of the attention distribution are
selected as the candidate action space (size 2k) for each
time DQN, as shown in Figure 1. The action candidate
set generated by the seq2seq model encoding-decoding
is an "abstractive summarization" generation process,
and the action candidate set generated at each time
based on the summarization original attention
distribution can be regarded as an extractive
summarization process.

Strategy: Given the current state, i.e., the current
iteration step summarization sequence

1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > , and the action space at each time, the

DQN learns and estimates the value function (Q-value)
at each time of the current state and selects the action of
the maximum Q-value at each time as the output. More
specifically, in the i-th iteration step at time t, the DQN
selects the action tyi

 to replace the state tŷi
corresponding to the time s. Therefore, this process will
result in an update of the state, i.e., a new state

+1 +1 +1
1ˆ ˆ ˆy ,..., y ..., yi i i

j T< > .
Reward: In iteration step i, the ROUGE score of the

current summarization sequence 1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > and

the reference summarization 1 j,..., y ..., Ny y< > is set to
cr . The DQN selects actions based on the current policy.

This process generates a new state +1 +1 +1
1ˆ ˆ ˆy ,..., y ..., yi i i

j T< > ,
which is the optimized summarization. The ROUGE
score of the abstract versus the real abstract is r, so the
reward for the DQN's current action is

n creward=r -r . (14)
Parameter training: The DQN parameter training

is a process of minimizing the loss function. In the
actual training process, Two networks are used to
improve the stability[21]: A Q-value estimate with the
parameter θ original network and a target network
with parameter θ generates the target q-value during
the Q-value learning update process.

i 2
,() [((, ;))]i i i

s aL E q Q s aθ θ= − , (15)
where 1

,
ˆ ˆ= [max (, ;) | ,]i i i

s a aq E r Q s a s aλ θ+
′ ′+ is the target

q-value, generated by the target network with the
parameter θ according to the next state 1is + . This
process can be seen as training the DQN to predict
future rewards.

(8)

where,

most appropriate context information for the target iy
to be output at the current time. Specifically, we use ija
to measure the correlation of the encoder's hidden layer
representation jh at time j and decoding at time i.
Finally, the context information ic input by the
decoder at time i is equal to the hidden layer of the
encoder at all times, which represents the weighted
sum of jh and ija .

1 i(, ,)i i is f s y c−= (8)
where,

j 1
=

M

i ij jc a h
=
∑ (9)

1

exp()

exp()
ij

ij M
ikk

e
a

e
=

=
∑

 (10)

ij a 1=v tanh()T
a i a je W s U h− + . (11)

Using the decoder with the attention mechanism,
the model of equation (1) can be expressed as

i 0 i 1 ip(|{ ,..., }, ;) ()y y y x g sθ− = , (12)

where ()g ⋅ is a function that outputs the probability of
the target vocabulary iy . A softmax function is usually
used to map a hidden layer vector into a probability
distribution of V categories (i.e., vocabulary) of the
vocabulary:

z
i

zz 1

exp()
(z |) ()= ,

exp()

T
i

i V T
i

w s
p y g s

w s
θ

=

= =
∑

 (13)

where zw represents the weight matrix.

3.3. DQN Decoding
The four components of the reinforcement learning
model are described in detail: states, actions, strategies,
and rewards. Automatically generate semantic features
of the input sequence by deploying a recurrent neural
network with a coder-decoder architecture with a
gated unit. DQN directly uses these features to learn
the Q-value function to estimate future rewards and to
maximize future long-term rewards by optimizing
model parameters.

Given the abstract text sequence
1 j m,..., ...,x x x< > and

the target sequence 1 j,..., y ..., Ny y< > (source text and
target summarization in Figure 1), the Bi-GRU encoder
encodes the entire input sequence into a fixed-
dimensional semantic vector that is decoded as the
initial input vector of the decoder to generate the actual
initial summarization sequence 0 0 0

1ˆ ˆ ˆy ,..., y ..., yj T< > . In
the decoding process, the decoder sequentially
generates a hidden layer state representation

1 j< ,..., ,..., Ns s s > .
Status: At each iteration step i of DQN decoding,

the summarization text input sequence
1 j m,..., ...,x x x< > and the actual summarization

sequence 1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > are used as DQN internal

states. When i=0, the initial summarization generated
by the decoder consists of the vocabulary of the
maximum output probability of each time decoder.

Action: In the decoding stage of the decoder, the
hidden layer vector is mapped to the probability
distribution of V vocabularies in the vocabulary by a
softmax function. At the same time, it also produces the
attention weight distribution of the summarization text
sequence at each time. The vocabulary that generates
the vocabulary probability distribution and the first k
maximum probabilities of the attention distribution are
selected as the candidate action space (size 2k) for each
time DQN, as shown in Figure 1. The action candidate
set generated by the seq2seq model encoding-decoding
is an "abstractive summarization" generation process,
and the action candidate set generated at each time
based on the summarization original attention
distribution can be regarded as an extractive
summarization process.

Strategy: Given the current state, i.e., the current
iteration step summarization sequence

1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > , and the action space at each time, the

DQN learns and estimates the value function (Q-value)
at each time of the current state and selects the action of
the maximum Q-value at each time as the output. More
specifically, in the i-th iteration step at time t, the DQN
selects the action tyi

 to replace the state tŷi
corresponding to the time s. Therefore, this process will
result in an update of the state, i.e., a new state

+1 +1 +1
1ˆ ˆ ˆy ,..., y ..., yi i i

j T< > .
Reward: In iteration step i, the ROUGE score of the

current summarization sequence 1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > and

the reference summarization 1 j,..., y ..., Ny y< > is set to
cr . The DQN selects actions based on the current policy.

This process generates a new state +1 +1 +1
1ˆ ˆ ˆy ,..., y ..., yi i i

j T< > ,
which is the optimized summarization. The ROUGE
score of the abstract versus the real abstract is r, so the
reward for the DQN's current action is

n creward=r -r . (14)
Parameter training: The DQN parameter training

is a process of minimizing the loss function. In the
actual training process, Two networks are used to
improve the stability[21]: A Q-value estimate with the
parameter θ original network and a target network
with parameter θ generates the target q-value during
the Q-value learning update process.

i 2
,() [((, ;))]i i i

s aL E q Q s aθ θ= − , (15)
where 1

,
ˆ ˆ= [max (, ;) | ,]i i i

s a aq E r Q s a s aλ θ+
′ ′+ is the target

q-value, generated by the target network with the
parameter θ according to the next state 1is + . This
process can be seen as training the DQN to predict
future rewards.

(9)

most appropriate context information for the target iy
to be output at the current time. Specifically, we use ija
to measure the correlation of the encoder's hidden layer
representation jh at time j and decoding at time i.
Finally, the context information ic input by the
decoder at time i is equal to the hidden layer of the
encoder at all times, which represents the weighted
sum of jh and ija .

1 i(, ,)i i is f s y c−= (8)
where,

j 1
=

M

i ij jc a h
=
∑ (9)

1

exp()

exp()
ij

ij M
ikk

e
a

e
=

=
∑

 (10)

ij a 1=v tanh()T
a i a je W s U h− + . (11)

Using the decoder with the attention mechanism,
the model of equation (1) can be expressed as

i 0 i 1 ip(|{ ,..., }, ;) ()y y y x g sθ− = , (12)

where ()g ⋅ is a function that outputs the probability of
the target vocabulary iy . A softmax function is usually
used to map a hidden layer vector into a probability
distribution of V categories (i.e., vocabulary) of the
vocabulary:

z
i

zz 1

exp()
(z |) ()= ,

exp()

T
i

i V T
i

w s
p y g s

w s
θ

=

= =
∑

 (13)

where zw represents the weight matrix.

3.3. DQN Decoding
The four components of the reinforcement learning
model are described in detail: states, actions, strategies,
and rewards. Automatically generate semantic features
of the input sequence by deploying a recurrent neural
network with a coder-decoder architecture with a
gated unit. DQN directly uses these features to learn
the Q-value function to estimate future rewards and to
maximize future long-term rewards by optimizing
model parameters.

Given the abstract text sequence
1 j m,..., ...,x x x< > and

the target sequence 1 j,..., y ..., Ny y< > (source text and
target summarization in Figure 1), the Bi-GRU encoder
encodes the entire input sequence into a fixed-
dimensional semantic vector that is decoded as the
initial input vector of the decoder to generate the actual
initial summarization sequence 0 0 0

1ˆ ˆ ˆy ,..., y ..., yj T< > . In
the decoding process, the decoder sequentially
generates a hidden layer state representation

1 j< ,..., ,..., Ns s s > .
Status: At each iteration step i of DQN decoding,

the summarization text input sequence
1 j m,..., ...,x x x< > and the actual summarization

sequence 1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > are used as DQN internal

states. When i=0, the initial summarization generated
by the decoder consists of the vocabulary of the
maximum output probability of each time decoder.

Action: In the decoding stage of the decoder, the
hidden layer vector is mapped to the probability
distribution of V vocabularies in the vocabulary by a
softmax function. At the same time, it also produces the
attention weight distribution of the summarization text
sequence at each time. The vocabulary that generates
the vocabulary probability distribution and the first k
maximum probabilities of the attention distribution are
selected as the candidate action space (size 2k) for each
time DQN, as shown in Figure 1. The action candidate
set generated by the seq2seq model encoding-decoding
is an "abstractive summarization" generation process,
and the action candidate set generated at each time
based on the summarization original attention
distribution can be regarded as an extractive
summarization process.

Strategy: Given the current state, i.e., the current
iteration step summarization sequence

1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > , and the action space at each time, the

DQN learns and estimates the value function (Q-value)
at each time of the current state and selects the action of
the maximum Q-value at each time as the output. More
specifically, in the i-th iteration step at time t, the DQN
selects the action tyi

 to replace the state tŷi
corresponding to the time s. Therefore, this process will
result in an update of the state, i.e., a new state

+1 +1 +1
1ˆ ˆ ˆy ,..., y ..., yi i i

j T< > .
Reward: In iteration step i, the ROUGE score of the

current summarization sequence 1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > and

the reference summarization 1 j,..., y ..., Ny y< > is set to
cr . The DQN selects actions based on the current policy.

This process generates a new state +1 +1 +1
1ˆ ˆ ˆy ,..., y ..., yi i i

j T< > ,
which is the optimized summarization. The ROUGE
score of the abstract versus the real abstract is r, so the
reward for the DQN's current action is

n creward=r -r . (14)
Parameter training: The DQN parameter training

is a process of minimizing the loss function. In the
actual training process, Two networks are used to
improve the stability[21]: A Q-value estimate with the
parameter θ original network and a target network
with parameter θ generates the target q-value during
the Q-value learning update process.

i 2
,() [((, ;))]i i i

s aL E q Q s aθ θ= − , (15)
where 1

,
ˆ ˆ= [max (, ;) | ,]i i i

s a aq E r Q s a s aλ θ+
′ ′+ is the target

q-value, generated by the target network with the
parameter θ according to the next state 1is + . This
process can be seen as training the DQN to predict
future rewards.

(10)

most appropriate context information for the target iy
to be output at the current time. Specifically, we use ija
to measure the correlation of the encoder's hidden layer
representation jh at time j and decoding at time i.
Finally, the context information ic input by the
decoder at time i is equal to the hidden layer of the
encoder at all times, which represents the weighted
sum of jh and ija .

1 i(, ,)i i is f s y c−= (8)
where,

j 1
=

M

i ij jc a h
=
∑ (9)

1

exp()

exp()
ij

ij M
ikk

e
a

e
=

=
∑

 (10)

ij a 1=v tanh()T
a i a je W s U h− + . (11)

Using the decoder with the attention mechanism,
the model of equation (1) can be expressed as

i 0 i 1 ip(|{ ,..., }, ;) ()y y y x g sθ− = , (12)

where ()g ⋅ is a function that outputs the probability of
the target vocabulary iy . A softmax function is usually
used to map a hidden layer vector into a probability
distribution of V categories (i.e., vocabulary) of the
vocabulary:

z
i

zz 1

exp()
(z |) ()= ,

exp()

T
i

i V T
i

w s
p y g s

w s
θ

=

= =
∑

 (13)

where zw represents the weight matrix.

3.3. DQN Decoding
The four components of the reinforcement learning
model are described in detail: states, actions, strategies,
and rewards. Automatically generate semantic features
of the input sequence by deploying a recurrent neural
network with a coder-decoder architecture with a
gated unit. DQN directly uses these features to learn
the Q-value function to estimate future rewards and to
maximize future long-term rewards by optimizing
model parameters.

Given the abstract text sequence
1 j m,..., ...,x x x< > and

the target sequence 1 j,..., y ..., Ny y< > (source text and
target summarization in Figure 1), the Bi-GRU encoder
encodes the entire input sequence into a fixed-
dimensional semantic vector that is decoded as the
initial input vector of the decoder to generate the actual
initial summarization sequence 0 0 0

1ˆ ˆ ˆy ,..., y ..., yj T< > . In
the decoding process, the decoder sequentially
generates a hidden layer state representation

1 j< ,..., ,..., Ns s s > .
Status: At each iteration step i of DQN decoding,

the summarization text input sequence
1 j m,..., ...,x x x< > and the actual summarization

sequence 1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > are used as DQN internal

states. When i=0, the initial summarization generated
by the decoder consists of the vocabulary of the
maximum output probability of each time decoder.

Action: In the decoding stage of the decoder, the
hidden layer vector is mapped to the probability
distribution of V vocabularies in the vocabulary by a
softmax function. At the same time, it also produces the
attention weight distribution of the summarization text
sequence at each time. The vocabulary that generates
the vocabulary probability distribution and the first k
maximum probabilities of the attention distribution are
selected as the candidate action space (size 2k) for each
time DQN, as shown in Figure 1. The action candidate
set generated by the seq2seq model encoding-decoding
is an "abstractive summarization" generation process,
and the action candidate set generated at each time
based on the summarization original attention
distribution can be regarded as an extractive
summarization process.

Strategy: Given the current state, i.e., the current
iteration step summarization sequence

1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > , and the action space at each time, the

DQN learns and estimates the value function (Q-value)
at each time of the current state and selects the action of
the maximum Q-value at each time as the output. More
specifically, in the i-th iteration step at time t, the DQN
selects the action tyi

 to replace the state tŷi
corresponding to the time s. Therefore, this process will
result in an update of the state, i.e., a new state

+1 +1 +1
1ˆ ˆ ˆy ,..., y ..., yi i i

j T< > .
Reward: In iteration step i, the ROUGE score of the

current summarization sequence 1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > and

the reference summarization 1 j,..., y ..., Ny y< > is set to
cr . The DQN selects actions based on the current policy.

This process generates a new state +1 +1 +1
1ˆ ˆ ˆy ,..., y ..., yi i i

j T< > ,
which is the optimized summarization. The ROUGE
score of the abstract versus the real abstract is r, so the
reward for the DQN's current action is

n creward=r -r . (14)
Parameter training: The DQN parameter training

is a process of minimizing the loss function. In the
actual training process, Two networks are used to
improve the stability[21]: A Q-value estimate with the
parameter θ original network and a target network
with parameter θ generates the target q-value during
the Q-value learning update process.

i 2
,() [((, ;))]i i i

s aL E q Q s aθ θ= − , (15)
where 1

,
ˆ ˆ= [max (, ;) | ,]i i i

s a aq E r Q s a s aλ θ+
′ ′+ is the target

q-value, generated by the target network with the
parameter θ according to the next state 1is + . This
process can be seen as training the DQN to predict
future rewards.

(11)

Using the decoder with the attention mechanism, the
model of equation (1) can be expressed as

most appropriate context information for the target iy
to be output at the current time. Specifically, we use ija
to measure the correlation of the encoder's hidden layer
representation jh at time j and decoding at time i.
Finally, the context information ic input by the
decoder at time i is equal to the hidden layer of the
encoder at all times, which represents the weighted
sum of jh and ija .

1 i(, ,)i i is f s y c−= (8)
where,

j 1
=

M

i ij jc a h
=
∑ (9)

1

exp()

exp()
ij

ij M
ikk

e
a

e
=

=
∑

 (10)

ij a 1=v tanh()T
a i a je W s U h− + . (11)

Using the decoder with the attention mechanism,
the model of equation (1) can be expressed as

i 0 i 1 ip(|{ ,..., }, ;) ()y y y x g sθ− = , (12)

where ()g ⋅ is a function that outputs the probability of
the target vocabulary iy . A softmax function is usually
used to map a hidden layer vector into a probability
distribution of V categories (i.e., vocabulary) of the
vocabulary:

z
i

zz 1

exp()
(z |) ()= ,

exp()

T
i

i V T
i

w s
p y g s

w s
θ

=

= =
∑

 (13)

where zw represents the weight matrix.

3.3. DQN Decoding
The four components of the reinforcement learning
model are described in detail: states, actions, strategies,
and rewards. Automatically generate semantic features
of the input sequence by deploying a recurrent neural
network with a coder-decoder architecture with a
gated unit. DQN directly uses these features to learn
the Q-value function to estimate future rewards and to
maximize future long-term rewards by optimizing
model parameters.

Given the abstract text sequence
1 j m,..., ...,x x x< > and

the target sequence 1 j,..., y ..., Ny y< > (source text and
target summarization in Figure 1), the Bi-GRU encoder
encodes the entire input sequence into a fixed-
dimensional semantic vector that is decoded as the
initial input vector of the decoder to generate the actual
initial summarization sequence 0 0 0

1ˆ ˆ ˆy ,..., y ..., yj T< > . In
the decoding process, the decoder sequentially
generates a hidden layer state representation

1 j< ,..., ,..., Ns s s > .
Status: At each iteration step i of DQN decoding,

the summarization text input sequence
1 j m,..., ...,x x x< > and the actual summarization

sequence 1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > are used as DQN internal

states. When i=0, the initial summarization generated
by the decoder consists of the vocabulary of the
maximum output probability of each time decoder.

Action: In the decoding stage of the decoder, the
hidden layer vector is mapped to the probability
distribution of V vocabularies in the vocabulary by a
softmax function. At the same time, it also produces the
attention weight distribution of the summarization text
sequence at each time. The vocabulary that generates
the vocabulary probability distribution and the first k
maximum probabilities of the attention distribution are
selected as the candidate action space (size 2k) for each
time DQN, as shown in Figure 1. The action candidate
set generated by the seq2seq model encoding-decoding
is an "abstractive summarization" generation process,
and the action candidate set generated at each time
based on the summarization original attention
distribution can be regarded as an extractive
summarization process.

Strategy: Given the current state, i.e., the current
iteration step summarization sequence

1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > , and the action space at each time, the

DQN learns and estimates the value function (Q-value)
at each time of the current state and selects the action of
the maximum Q-value at each time as the output. More
specifically, in the i-th iteration step at time t, the DQN
selects the action tyi

 to replace the state tŷi
corresponding to the time s. Therefore, this process will
result in an update of the state, i.e., a new state

+1 +1 +1
1ˆ ˆ ˆy ,..., y ..., yi i i

j T< > .
Reward: In iteration step i, the ROUGE score of the

current summarization sequence 1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > and

the reference summarization 1 j,..., y ..., Ny y< > is set to
cr . The DQN selects actions based on the current policy.

This process generates a new state +1 +1 +1
1ˆ ˆ ˆy ,..., y ..., yi i i

j T< > ,
which is the optimized summarization. The ROUGE
score of the abstract versus the real abstract is r, so the
reward for the DQN's current action is

n creward=r -r . (14)
Parameter training: The DQN parameter training

is a process of minimizing the loss function. In the
actual training process, Two networks are used to
improve the stability[21]: A Q-value estimate with the
parameter θ original network and a target network
with parameter θ generates the target q-value during
the Q-value learning update process.

i 2
,() [((, ;))]i i i

s aL E q Q s aθ θ= − , (15)
where 1

,
ˆ ˆ= [max (, ;) | ,]i i i

s a aq E r Q s a s aλ θ+
′ ′+ is the target

q-value, generated by the target network with the
parameter θ according to the next state 1is + . This
process can be seen as training the DQN to predict
future rewards.

(12)

where g(∙) nction that outputs the probability of the
target vocabulary yi. A softmax function is usually
used to map a hidden layer vector into a probability
distribution of V categories (i.e., vocabulary) of the
vocabulary:

most appropriate context information for the target iy
to be output at the current time. Specifically, we use ija
to measure the correlation of the encoder's hidden layer
representation jh at time j and decoding at time i.
Finally, the context information ic input by the
decoder at time i is equal to the hidden layer of the
encoder at all times, which represents the weighted
sum of jh and ija .

1 i(, ,)i i is f s y c−= (8)
where,

j 1
=

M

i ij jc a h
=
∑ (9)

1

exp()

exp()
ij

ij M
ikk

e
a

e
=

=
∑

 (10)

ij a 1=v tanh()T
a i a je W s U h− + . (11)

Using the decoder with the attention mechanism,
the model of equation (1) can be expressed as

i 0 i 1 ip(|{ ,..., }, ;) ()y y y x g sθ− = , (12)

where ()g ⋅ is a function that outputs the probability of
the target vocabulary iy . A softmax function is usually
used to map a hidden layer vector into a probability
distribution of V categories (i.e., vocabulary) of the
vocabulary:

z
i

zz 1

exp()
(z |) ()= ,

exp()

T
i

i V T
i

w s
p y g s

w s
θ

=

= =
∑

 (13)

where zw represents the weight matrix.

3.3. DQN Decoding
The four components of the reinforcement learning
model are described in detail: states, actions, strategies,
and rewards. Automatically generate semantic features
of the input sequence by deploying a recurrent neural
network with a coder-decoder architecture with a
gated unit. DQN directly uses these features to learn
the Q-value function to estimate future rewards and to
maximize future long-term rewards by optimizing
model parameters.

Given the abstract text sequence
1 j m,..., ...,x x x< > and

the target sequence 1 j,..., y ..., Ny y< > (source text and
target summarization in Figure 1), the Bi-GRU encoder
encodes the entire input sequence into a fixed-
dimensional semantic vector that is decoded as the
initial input vector of the decoder to generate the actual
initial summarization sequence 0 0 0

1ˆ ˆ ˆy ,..., y ..., yj T< > . In
the decoding process, the decoder sequentially
generates a hidden layer state representation

1 j< ,..., ,..., Ns s s > .
Status: At each iteration step i of DQN decoding,

the summarization text input sequence
1 j m,..., ...,x x x< > and the actual summarization

sequence 1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > are used as DQN internal

states. When i=0, the initial summarization generated
by the decoder consists of the vocabulary of the
maximum output probability of each time decoder.

Action: In the decoding stage of the decoder, the
hidden layer vector is mapped to the probability
distribution of V vocabularies in the vocabulary by a
softmax function. At the same time, it also produces the
attention weight distribution of the summarization text
sequence at each time. The vocabulary that generates
the vocabulary probability distribution and the first k
maximum probabilities of the attention distribution are
selected as the candidate action space (size 2k) for each
time DQN, as shown in Figure 1. The action candidate
set generated by the seq2seq model encoding-decoding
is an "abstractive summarization" generation process,
and the action candidate set generated at each time
based on the summarization original attention
distribution can be regarded as an extractive
summarization process.

Strategy: Given the current state, i.e., the current
iteration step summarization sequence

1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > , and the action space at each time, the

DQN learns and estimates the value function (Q-value)
at each time of the current state and selects the action of
the maximum Q-value at each time as the output. More
specifically, in the i-th iteration step at time t, the DQN
selects the action tyi

 to replace the state tŷi
corresponding to the time s. Therefore, this process will
result in an update of the state, i.e., a new state

+1 +1 +1
1ˆ ˆ ˆy ,..., y ..., yi i i

j T< > .
Reward: In iteration step i, the ROUGE score of the

current summarization sequence 1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > and

the reference summarization 1 j,..., y ..., Ny y< > is set to
cr . The DQN selects actions based on the current policy.

This process generates a new state +1 +1 +1
1ˆ ˆ ˆy ,..., y ..., yi i i

j T< > ,
which is the optimized summarization. The ROUGE
score of the abstract versus the real abstract is r, so the
reward for the DQN's current action is

n creward=r -r . (14)
Parameter training: The DQN parameter training

is a process of minimizing the loss function. In the
actual training process, Two networks are used to
improve the stability[21]: A Q-value estimate with the
parameter θ original network and a target network
with parameter θ generates the target q-value during
the Q-value learning update process.

i 2
,() [((, ;))]i i i

s aL E q Q s aθ θ= − , (15)
where 1

,
ˆ ˆ= [max (, ;) | ,]i i i

s a aq E r Q s a s aλ θ+
′ ′+ is the target

q-value, generated by the target network with the
parameter θ according to the next state 1is + . This
process can be seen as training the DQN to predict
future rewards.

(13)

where wz represents the weight matrix.

3.3. DQN Decoding
The four components of the reinforcement learning
model are described in detail: states, actions, strate-
gies, and rewards. Automatically generate semantic
features of the input sequence by deploying a recur-
rent neural network with a coder-decoder architec-
ture with a gated unit. DQN directly uses these fea-
tures to learn the Q-value function to estimate future
rewards and to maximize future long-term rewards
by optimizing model parameters.
Given the abstract text sequence <x1,..., xj ..., xm> and
the target sequence <y1,..., yj ..., yN> (source text and
target summarization in Figure 1), the Bi-GRU encod-
er encodes the entire input sequence into a fixed-di-
mensional semantic vector that is decoded as the ini-
tial input vector of the decoder to generate the actual
initial summarization sequence

most appropriate context information for the target iy
to be output at the current time. Specifically, we use ija
to measure the correlation of the encoder's hidden layer
representation jh at time j and decoding at time i.
Finally, the context information ic input by the
decoder at time i is equal to the hidden layer of the
encoder at all times, which represents the weighted
sum of jh and ija .

1 i(, ,)i i is f s y c−= (8)
where,

j 1
=

M

i ij jc a h
=
∑ (9)

1

exp()

exp()
ij

ij M
ikk

e
a

e
=

=
∑

 (10)

ij a 1=v tanh()T
a i a je W s U h− + . (11)

Using the decoder with the attention mechanism,
the model of equation (1) can be expressed as

i 0 i 1 ip(|{ ,..., }, ;) ()y y y x g sθ− = , (12)

where ()g ⋅ is a function that outputs the probability of
the target vocabulary iy . A softmax function is usually
used to map a hidden layer vector into a probability
distribution of V categories (i.e., vocabulary) of the
vocabulary:

z
i

zz 1

exp()
(z |) ()= ,

exp()

T
i

i V T
i

w s
p y g s

w s
θ

=

= =
∑

 (13)

where zw represents the weight matrix.

3.3. DQN Decoding
The four components of the reinforcement learning
model are described in detail: states, actions, strategies,
and rewards. Automatically generate semantic features
of the input sequence by deploying a recurrent neural
network with a coder-decoder architecture with a
gated unit. DQN directly uses these features to learn
the Q-value function to estimate future rewards and to
maximize future long-term rewards by optimizing
model parameters.

Given the abstract text sequence
1 j m,..., ...,x x x< > and

the target sequence 1 j,..., y ..., Ny y< > (source text and
target summarization in Figure 1), the Bi-GRU encoder
encodes the entire input sequence into a fixed-
dimensional semantic vector that is decoded as the
initial input vector of the decoder to generate the actual
initial summarization sequence 0 0 0

1ˆ ˆ ˆy ,..., y ..., yj T< > . In
the decoding process, the decoder sequentially
generates a hidden layer state representation

1 j< ,..., ,..., Ns s s > .
Status: At each iteration step i of DQN decoding,

the summarization text input sequence
1 j m,..., ...,x x x< > and the actual summarization

sequence 1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > are used as DQN internal

states. When i=0, the initial summarization generated
by the decoder consists of the vocabulary of the
maximum output probability of each time decoder.

Action: In the decoding stage of the decoder, the
hidden layer vector is mapped to the probability
distribution of V vocabularies in the vocabulary by a
softmax function. At the same time, it also produces the
attention weight distribution of the summarization text
sequence at each time. The vocabulary that generates
the vocabulary probability distribution and the first k
maximum probabilities of the attention distribution are
selected as the candidate action space (size 2k) for each
time DQN, as shown in Figure 1. The action candidate
set generated by the seq2seq model encoding-decoding
is an "abstractive summarization" generation process,
and the action candidate set generated at each time
based on the summarization original attention
distribution can be regarded as an extractive
summarization process.

Strategy: Given the current state, i.e., the current
iteration step summarization sequence

1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > , and the action space at each time, the

DQN learns and estimates the value function (Q-value)
at each time of the current state and selects the action of
the maximum Q-value at each time as the output. More
specifically, in the i-th iteration step at time t, the DQN
selects the action tyi

 to replace the state tŷi
corresponding to the time s. Therefore, this process will
result in an update of the state, i.e., a new state

+1 +1 +1
1ˆ ˆ ˆy ,..., y ..., yi i i

j T< > .
Reward: In iteration step i, the ROUGE score of the

current summarization sequence 1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > and

the reference summarization 1 j,..., y ..., Ny y< > is set to
cr . The DQN selects actions based on the current policy.

This process generates a new state +1 +1 +1
1ˆ ˆ ˆy ,..., y ..., yi i i

j T< > ,
which is the optimized summarization. The ROUGE
score of the abstract versus the real abstract is r, so the
reward for the DQN's current action is

n creward=r -r . (14)
Parameter training: The DQN parameter training

is a process of minimizing the loss function. In the
actual training process, Two networks are used to
improve the stability[21]: A Q-value estimate with the
parameter θ original network and a target network
with parameter θ generates the target q-value during
the Q-value learning update process.

i 2
,() [((, ;))]i i i

s aL E q Q s aθ θ= − , (15)
where 1

,
ˆ ˆ= [max (, ;) | ,]i i i

s a aq E r Q s a s aλ θ+
′ ′+ is the target

q-value, generated by the target network with the
parameter θ according to the next state 1is + . This
process can be seen as training the DQN to predict
future rewards.

. In
the decoding process, the decoder sequentially gener-
ates a hidden layer state representation <s1,..., sj,..., sN.
Status: At each iteration step i of DQN decoding, the
summarization text input sequence <x1,..., xj ..., xm> and
the actual summarization sequence

most appropriate context information for the target iy
to be output at the current time. Specifically, we use ija
to measure the correlation of the encoder's hidden layer
representation jh at time j and decoding at time i.
Finally, the context information ic input by the
decoder at time i is equal to the hidden layer of the
encoder at all times, which represents the weighted
sum of jh and ija .

1 i(, ,)i i is f s y c−= (8)
where,

j 1
=

M

i ij jc a h
=
∑ (9)

1

exp()

exp()
ij

ij M
ikk

e
a

e
=

=
∑

 (10)

ij a 1=v tanh()T
a i a je W s U h− + . (11)

Using the decoder with the attention mechanism,
the model of equation (1) can be expressed as

i 0 i 1 ip(|{ ,..., }, ;) ()y y y x g sθ− = , (12)

where ()g ⋅ is a function that outputs the probability of
the target vocabulary iy . A softmax function is usually
used to map a hidden layer vector into a probability
distribution of V categories (i.e., vocabulary) of the
vocabulary:

z
i

zz 1

exp()
(z |) ()= ,

exp()

T
i

i V T
i

w s
p y g s

w s
θ

=

= =
∑

 (13)

where zw represents the weight matrix.

3.3. DQN Decoding
The four components of the reinforcement learning
model are described in detail: states, actions, strategies,
and rewards. Automatically generate semantic features
of the input sequence by deploying a recurrent neural
network with a coder-decoder architecture with a
gated unit. DQN directly uses these features to learn
the Q-value function to estimate future rewards and to
maximize future long-term rewards by optimizing
model parameters.

Given the abstract text sequence
1 j m,..., ...,x x x< > and

the target sequence 1 j,..., y ..., Ny y< > (source text and
target summarization in Figure 1), the Bi-GRU encoder
encodes the entire input sequence into a fixed-
dimensional semantic vector that is decoded as the
initial input vector of the decoder to generate the actual
initial summarization sequence 0 0 0

1ˆ ˆ ˆy ,..., y ..., yj T< > . In
the decoding process, the decoder sequentially
generates a hidden layer state representation

1 j< ,..., ,..., Ns s s > .
Status: At each iteration step i of DQN decoding,

the summarization text input sequence
1 j m,..., ...,x x x< > and the actual summarization

sequence 1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > are used as DQN internal

states. When i=0, the initial summarization generated
by the decoder consists of the vocabulary of the
maximum output probability of each time decoder.

Action: In the decoding stage of the decoder, the
hidden layer vector is mapped to the probability
distribution of V vocabularies in the vocabulary by a
softmax function. At the same time, it also produces the
attention weight distribution of the summarization text
sequence at each time. The vocabulary that generates
the vocabulary probability distribution and the first k
maximum probabilities of the attention distribution are
selected as the candidate action space (size 2k) for each
time DQN, as shown in Figure 1. The action candidate
set generated by the seq2seq model encoding-decoding
is an "abstractive summarization" generation process,
and the action candidate set generated at each time
based on the summarization original attention
distribution can be regarded as an extractive
summarization process.

Strategy: Given the current state, i.e., the current
iteration step summarization sequence

1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > , and the action space at each time, the

DQN learns and estimates the value function (Q-value)
at each time of the current state and selects the action of
the maximum Q-value at each time as the output. More
specifically, in the i-th iteration step at time t, the DQN
selects the action tyi

 to replace the state tŷi
corresponding to the time s. Therefore, this process will
result in an update of the state, i.e., a new state

+1 +1 +1
1ˆ ˆ ˆy ,..., y ..., yi i i

j T< > .
Reward: In iteration step i, the ROUGE score of the

current summarization sequence 1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > and

the reference summarization 1 j,..., y ..., Ny y< > is set to
cr . The DQN selects actions based on the current policy.

This process generates a new state +1 +1 +1
1ˆ ˆ ˆy ,..., y ..., yi i i

j T< > ,
which is the optimized summarization. The ROUGE
score of the abstract versus the real abstract is r, so the
reward for the DQN's current action is

n creward=r -r . (14)
Parameter training: The DQN parameter training

is a process of minimizing the loss function. In the
actual training process, Two networks are used to
improve the stability[21]: A Q-value estimate with the
parameter θ original network and a target network
with parameter θ generates the target q-value during
the Q-value learning update process.

i 2
,() [((, ;))]i i i

s aL E q Q s aθ θ= − , (15)
where 1

,
ˆ ˆ= [max (, ;) | ,]i i i

s a aq E r Q s a s aλ θ+
′ ′+ is the target

q-value, generated by the target network with the
parameter θ according to the next state 1is + . This
process can be seen as training the DQN to predict
future rewards.

Information Technology and Control 2021/3/50464

are used as DQN internal states. When i=0, the initial
summarization generated by the decoder consists of
the vocabulary of the maximum output probability of
each time decoder.
Action: In the decoding stage of the decoder, the hid-
den layer vector is mapped to the probability distri-
bution of V vocabularies in the vocabulary by a soft-
max function. At the same time, it also produces the
attention weight distribution of the summarization
text sequence at each time. The vocabulary that gen-
erates the vocabulary probability distribution and the
first k maximum probabilities of the attention dis-
tribution are selected as the candidate action space
(size 2k) for each time DQN, as shown in Figure 1. The
action candidate set generated by the seq2seq model
encoding-decoding is an “abstractive summariza-
tion” generation process, and the action candidate set
generated at each time based on the summarization
original attention distribution can be regarded as an
extractive summarization process.
Strategy: Given the current state, i.e., the current iter-
ation step summarization sequence

most appropriate context information for the target iy
to be output at the current time. Specifically, we use ija
to measure the correlation of the encoder's hidden layer
representation jh at time j and decoding at time i.
Finally, the context information ic input by the
decoder at time i is equal to the hidden layer of the
encoder at all times, which represents the weighted
sum of jh and ija .

1 i(, ,)i i is f s y c−= (8)
where,

j 1
=

M

i ij jc a h
=
∑ (9)

1

exp()

exp()
ij

ij M
ikk

e
a

e
=

=
∑

 (10)

ij a 1=v tanh()T
a i a je W s U h− + . (11)

Using the decoder with the attention mechanism,
the model of equation (1) can be expressed as

i 0 i 1 ip(|{ ,..., }, ;) ()y y y x g sθ− = , (12)

where ()g ⋅ is a function that outputs the probability of
the target vocabulary iy . A softmax function is usually
used to map a hidden layer vector into a probability
distribution of V categories (i.e., vocabulary) of the
vocabulary:

z
i

zz 1

exp()
(z |) ()= ,

exp()

T
i

i V T
i

w s
p y g s

w s
θ

=

= =
∑

 (13)

where zw represents the weight matrix.

3.3. DQN Decoding
The four components of the reinforcement learning
model are described in detail: states, actions, strategies,
and rewards. Automatically generate semantic features
of the input sequence by deploying a recurrent neural
network with a coder-decoder architecture with a
gated unit. DQN directly uses these features to learn
the Q-value function to estimate future rewards and to
maximize future long-term rewards by optimizing
model parameters.

Given the abstract text sequence
1 j m,..., ...,x x x< > and

the target sequence 1 j,..., y ..., Ny y< > (source text and
target summarization in Figure 1), the Bi-GRU encoder
encodes the entire input sequence into a fixed-
dimensional semantic vector that is decoded as the
initial input vector of the decoder to generate the actual
initial summarization sequence 0 0 0

1ˆ ˆ ˆy ,..., y ..., yj T< > . In
the decoding process, the decoder sequentially
generates a hidden layer state representation

1 j< ,..., ,..., Ns s s > .
Status: At each iteration step i of DQN decoding,

the summarization text input sequence
1 j m,..., ...,x x x< > and the actual summarization

sequence 1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > are used as DQN internal

states. When i=0, the initial summarization generated
by the decoder consists of the vocabulary of the
maximum output probability of each time decoder.

Action: In the decoding stage of the decoder, the
hidden layer vector is mapped to the probability
distribution of V vocabularies in the vocabulary by a
softmax function. At the same time, it also produces the
attention weight distribution of the summarization text
sequence at each time. The vocabulary that generates
the vocabulary probability distribution and the first k
maximum probabilities of the attention distribution are
selected as the candidate action space (size 2k) for each
time DQN, as shown in Figure 1. The action candidate
set generated by the seq2seq model encoding-decoding
is an "abstractive summarization" generation process,
and the action candidate set generated at each time
based on the summarization original attention
distribution can be regarded as an extractive
summarization process.

Strategy: Given the current state, i.e., the current
iteration step summarization sequence

1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > , and the action space at each time, the

DQN learns and estimates the value function (Q-value)
at each time of the current state and selects the action of
the maximum Q-value at each time as the output. More
specifically, in the i-th iteration step at time t, the DQN
selects the action tyi

 to replace the state tŷi
corresponding to the time s. Therefore, this process will
result in an update of the state, i.e., a new state

+1 +1 +1
1ˆ ˆ ˆy ,..., y ..., yi i i

j T< > .
Reward: In iteration step i, the ROUGE score of the

current summarization sequence 1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > and

the reference summarization 1 j,..., y ..., Ny y< > is set to
cr . The DQN selects actions based on the current policy.

This process generates a new state +1 +1 +1
1ˆ ˆ ˆy ,..., y ..., yi i i

j T< > ,
which is the optimized summarization. The ROUGE
score of the abstract versus the real abstract is r, so the
reward for the DQN's current action is

n creward=r -r . (14)
Parameter training: The DQN parameter training

is a process of minimizing the loss function. In the
actual training process, Two networks are used to
improve the stability[21]: A Q-value estimate with the
parameter θ original network and a target network
with parameter θ generates the target q-value during
the Q-value learning update process.

i 2
,() [((, ;))]i i i

s aL E q Q s aθ θ= − , (15)
where 1

,
ˆ ˆ= [max (, ;) | ,]i i i

s a aq E r Q s a s aλ θ+
′ ′+ is the target

q-value, generated by the target network with the
parameter θ according to the next state 1is + . This
process can be seen as training the DQN to predict
future rewards.

,
and the action space at each time, the DQN learns
and estimates the value function (Q-value) at each
time of the current state and selects the action of
the maximum Q-value at each time as the output.
More specifically, in the i-th iteration step at time t,
the DQN selects the action

most appropriate context information for the target iy
to be output at the current time. Specifically, we use ija
to measure the correlation of the encoder's hidden layer
representation jh at time j and decoding at time i.
Finally, the context information ic input by the
decoder at time i is equal to the hidden layer of the
encoder at all times, which represents the weighted
sum of jh and ija .

1 i(, ,)i i is f s y c−= (8)
where,

j 1
=

M

i ij jc a h
=
∑ (9)

1

exp()

exp()
ij

ij M
ikk

e
a

e
=

=
∑

 (10)

ij a 1=v tanh()T
a i a je W s U h− + . (11)

Using the decoder with the attention mechanism,
the model of equation (1) can be expressed as

i 0 i 1 ip(|{ ,..., }, ;) ()y y y x g sθ− = , (12)

where ()g ⋅ is a function that outputs the probability of
the target vocabulary iy . A softmax function is usually
used to map a hidden layer vector into a probability
distribution of V categories (i.e., vocabulary) of the
vocabulary:

z
i

zz 1

exp()
(z |) ()= ,

exp()

T
i

i V T
i

w s
p y g s

w s
θ

=

= =
∑

 (13)

where zw represents the weight matrix.

3.3. DQN Decoding
The four components of the reinforcement learning
model are described in detail: states, actions, strategies,
and rewards. Automatically generate semantic features
of the input sequence by deploying a recurrent neural
network with a coder-decoder architecture with a
gated unit. DQN directly uses these features to learn
the Q-value function to estimate future rewards and to
maximize future long-term rewards by optimizing
model parameters.

Given the abstract text sequence
1 j m,..., ...,x x x< > and

the target sequence 1 j,..., y ..., Ny y< > (source text and
target summarization in Figure 1), the Bi-GRU encoder
encodes the entire input sequence into a fixed-
dimensional semantic vector that is decoded as the
initial input vector of the decoder to generate the actual
initial summarization sequence 0 0 0

1ˆ ˆ ˆy ,..., y ..., yj T< > . In
the decoding process, the decoder sequentially
generates a hidden layer state representation

1 j< ,..., ,..., Ns s s > .
Status: At each iteration step i of DQN decoding,

the summarization text input sequence
1 j m,..., ...,x x x< > and the actual summarization

sequence 1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > are used as DQN internal

states. When i=0, the initial summarization generated
by the decoder consists of the vocabulary of the
maximum output probability of each time decoder.

Action: In the decoding stage of the decoder, the
hidden layer vector is mapped to the probability
distribution of V vocabularies in the vocabulary by a
softmax function. At the same time, it also produces the
attention weight distribution of the summarization text
sequence at each time. The vocabulary that generates
the vocabulary probability distribution and the first k
maximum probabilities of the attention distribution are
selected as the candidate action space (size 2k) for each
time DQN, as shown in Figure 1. The action candidate
set generated by the seq2seq model encoding-decoding
is an "abstractive summarization" generation process,
and the action candidate set generated at each time
based on the summarization original attention
distribution can be regarded as an extractive
summarization process.

Strategy: Given the current state, i.e., the current
iteration step summarization sequence

1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > , and the action space at each time, the

DQN learns and estimates the value function (Q-value)
at each time of the current state and selects the action of
the maximum Q-value at each time as the output. More
specifically, in the i-th iteration step at time t, the DQN
selects the action tyi

 to replace the state tŷi
corresponding to the time s. Therefore, this process will
result in an update of the state, i.e., a new state

+1 +1 +1
1ˆ ˆ ˆy ,..., y ..., yi i i

j T< > .
Reward: In iteration step i, the ROUGE score of the

current summarization sequence 1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > and

the reference summarization 1 j,..., y ..., Ny y< > is set to
cr . The DQN selects actions based on the current policy.

This process generates a new state +1 +1 +1
1ˆ ˆ ˆy ,..., y ..., yi i i

j T< > ,
which is the optimized summarization. The ROUGE
score of the abstract versus the real abstract is r, so the
reward for the DQN's current action is

n creward=r -r . (14)
Parameter training: The DQN parameter training

is a process of minimizing the loss function. In the
actual training process, Two networks are used to
improve the stability[21]: A Q-value estimate with the
parameter θ original network and a target network
with parameter θ generates the target q-value during
the Q-value learning update process.

i 2
,() [((, ;))]i i i

s aL E q Q s aθ θ= − , (15)
where 1

,
ˆ ˆ= [max (, ;) | ,]i i i

s a aq E r Q s a s aλ θ+
′ ′+ is the target

q-value, generated by the target network with the
parameter θ according to the next state 1is + . This
process can be seen as training the DQN to predict
future rewards.

 to replace the state

most appropriate context information for the target iy
to be output at the current time. Specifically, we use ija
to measure the correlation of the encoder's hidden layer
representation jh at time j and decoding at time i.
Finally, the context information ic input by the
decoder at time i is equal to the hidden layer of the
encoder at all times, which represents the weighted
sum of jh and ija .

1 i(, ,)i i is f s y c−= (8)
where,

j 1
=

M

i ij jc a h
=
∑ (9)

1

exp()

exp()
ij

ij M
ikk

e
a

e
=

=
∑

 (10)

ij a 1=v tanh()T
a i a je W s U h− + . (11)

Using the decoder with the attention mechanism,
the model of equation (1) can be expressed as

i 0 i 1 ip(|{ ,..., }, ;) ()y y y x g sθ− = , (12)

where ()g ⋅ is a function that outputs the probability of
the target vocabulary iy . A softmax function is usually
used to map a hidden layer vector into a probability
distribution of V categories (i.e., vocabulary) of the
vocabulary:

z
i

zz 1

exp()
(z |) ()= ,

exp()

T
i

i V T
i

w s
p y g s

w s
θ

=

= =
∑

 (13)

where zw represents the weight matrix.

3.3. DQN Decoding
The four components of the reinforcement learning
model are described in detail: states, actions, strategies,
and rewards. Automatically generate semantic features
of the input sequence by deploying a recurrent neural
network with a coder-decoder architecture with a
gated unit. DQN directly uses these features to learn
the Q-value function to estimate future rewards and to
maximize future long-term rewards by optimizing
model parameters.

Given the abstract text sequence
1 j m,..., ...,x x x< > and

the target sequence 1 j,..., y ..., Ny y< > (source text and
target summarization in Figure 1), the Bi-GRU encoder
encodes the entire input sequence into a fixed-
dimensional semantic vector that is decoded as the
initial input vector of the decoder to generate the actual
initial summarization sequence 0 0 0

1ˆ ˆ ˆy ,..., y ..., yj T< > . In
the decoding process, the decoder sequentially
generates a hidden layer state representation

1 j< ,..., ,..., Ns s s > .
Status: At each iteration step i of DQN decoding,

the summarization text input sequence
1 j m,..., ...,x x x< > and the actual summarization

sequence 1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > are used as DQN internal

states. When i=0, the initial summarization generated
by the decoder consists of the vocabulary of the
maximum output probability of each time decoder.

Action: In the decoding stage of the decoder, the
hidden layer vector is mapped to the probability
distribution of V vocabularies in the vocabulary by a
softmax function. At the same time, it also produces the
attention weight distribution of the summarization text
sequence at each time. The vocabulary that generates
the vocabulary probability distribution and the first k
maximum probabilities of the attention distribution are
selected as the candidate action space (size 2k) for each
time DQN, as shown in Figure 1. The action candidate
set generated by the seq2seq model encoding-decoding
is an "abstractive summarization" generation process,
and the action candidate set generated at each time
based on the summarization original attention
distribution can be regarded as an extractive
summarization process.

Strategy: Given the current state, i.e., the current
iteration step summarization sequence

1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > , and the action space at each time, the

DQN learns and estimates the value function (Q-value)
at each time of the current state and selects the action of
the maximum Q-value at each time as the output. More
specifically, in the i-th iteration step at time t, the DQN
selects the action tyi

 to replace the state tŷi
corresponding to the time s. Therefore, this process will
result in an update of the state, i.e., a new state

+1 +1 +1
1ˆ ˆ ˆy ,..., y ..., yi i i

j T< > .
Reward: In iteration step i, the ROUGE score of the

current summarization sequence 1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > and

the reference summarization 1 j,..., y ..., Ny y< > is set to
cr . The DQN selects actions based on the current policy.

This process generates a new state +1 +1 +1
1ˆ ˆ ˆy ,..., y ..., yi i i

j T< > ,
which is the optimized summarization. The ROUGE
score of the abstract versus the real abstract is r, so the
reward for the DQN's current action is

n creward=r -r . (14)
Parameter training: The DQN parameter training

is a process of minimizing the loss function. In the
actual training process, Two networks are used to
improve the stability[21]: A Q-value estimate with the
parameter θ original network and a target network
with parameter θ generates the target q-value during
the Q-value learning update process.

i 2
,() [((, ;))]i i i

s aL E q Q s aθ θ= − , (15)
where 1

,
ˆ ˆ= [max (, ;) | ,]i i i

s a aq E r Q s a s aλ θ+
′ ′+ is the target

q-value, generated by the target network with the
parameter θ according to the next state 1is + . This
process can be seen as training the DQN to predict
future rewards.

corresponding to the time s. Therefore, this process
will result in an update of the state, i.e., a new state

most appropriate context information for the target iy
to be output at the current time. Specifically, we use ija
to measure the correlation of the encoder's hidden layer
representation jh at time j and decoding at time i.
Finally, the context information ic input by the
decoder at time i is equal to the hidden layer of the
encoder at all times, which represents the weighted
sum of jh and ija .

1 i(, ,)i i is f s y c−= (8)
where,

j 1
=

M

i ij jc a h
=
∑ (9)

1

exp()

exp()
ij

ij M
ikk

e
a

e
=

=
∑

 (10)

ij a 1=v tanh()T
a i a je W s U h− + . (11)

Using the decoder with the attention mechanism,
the model of equation (1) can be expressed as

i 0 i 1 ip(|{ ,..., }, ;) ()y y y x g sθ− = , (12)

where ()g ⋅ is a function that outputs the probability of
the target vocabulary iy . A softmax function is usually
used to map a hidden layer vector into a probability
distribution of V categories (i.e., vocabulary) of the
vocabulary:

z
i

zz 1

exp()
(z |) ()= ,

exp()

T
i

i V T
i

w s
p y g s

w s
θ

=

= =
∑

 (13)

where zw represents the weight matrix.

3.3. DQN Decoding
The four components of the reinforcement learning
model are described in detail: states, actions, strategies,
and rewards. Automatically generate semantic features
of the input sequence by deploying a recurrent neural
network with a coder-decoder architecture with a
gated unit. DQN directly uses these features to learn
the Q-value function to estimate future rewards and to
maximize future long-term rewards by optimizing
model parameters.

Given the abstract text sequence
1 j m,..., ...,x x x< > and

the target sequence 1 j,..., y ..., Ny y< > (source text and
target summarization in Figure 1), the Bi-GRU encoder
encodes the entire input sequence into a fixed-
dimensional semantic vector that is decoded as the
initial input vector of the decoder to generate the actual
initial summarization sequence 0 0 0

1ˆ ˆ ˆy ,..., y ..., yj T< > . In
the decoding process, the decoder sequentially
generates a hidden layer state representation

1 j< ,..., ,..., Ns s s > .
Status: At each iteration step i of DQN decoding,

the summarization text input sequence
1 j m,..., ...,x x x< > and the actual summarization

sequence 1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > are used as DQN internal

states. When i=0, the initial summarization generated
by the decoder consists of the vocabulary of the
maximum output probability of each time decoder.

Action: In the decoding stage of the decoder, the
hidden layer vector is mapped to the probability
distribution of V vocabularies in the vocabulary by a
softmax function. At the same time, it also produces the
attention weight distribution of the summarization text
sequence at each time. The vocabulary that generates
the vocabulary probability distribution and the first k
maximum probabilities of the attention distribution are
selected as the candidate action space (size 2k) for each
time DQN, as shown in Figure 1. The action candidate
set generated by the seq2seq model encoding-decoding
is an "abstractive summarization" generation process,
and the action candidate set generated at each time
based on the summarization original attention
distribution can be regarded as an extractive
summarization process.

Strategy: Given the current state, i.e., the current
iteration step summarization sequence

1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > , and the action space at each time, the

DQN learns and estimates the value function (Q-value)
at each time of the current state and selects the action of
the maximum Q-value at each time as the output. More
specifically, in the i-th iteration step at time t, the DQN
selects the action tyi

 to replace the state tŷi
corresponding to the time s. Therefore, this process will
result in an update of the state, i.e., a new state

+1 +1 +1
1ˆ ˆ ˆy ,..., y ..., yi i i

j T< > .
Reward: In iteration step i, the ROUGE score of the

current summarization sequence 1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > and

the reference summarization 1 j,..., y ..., Ny y< > is set to
cr . The DQN selects actions based on the current policy.

This process generates a new state +1 +1 +1
1ˆ ˆ ˆy ,..., y ..., yi i i

j T< > ,
which is the optimized summarization. The ROUGE
score of the abstract versus the real abstract is r, so the
reward for the DQN's current action is

n creward=r -r . (14)
Parameter training: The DQN parameter training

is a process of minimizing the loss function. In the
actual training process, Two networks are used to
improve the stability[21]: A Q-value estimate with the
parameter θ original network and a target network
with parameter θ generates the target q-value during
the Q-value learning update process.

i 2
,() [((, ;))]i i i

s aL E q Q s aθ θ= − , (15)
where 1

,
ˆ ˆ= [max (, ;) | ,]i i i

s a aq E r Q s a s aλ θ+
′ ′+ is the target

q-value, generated by the target network with the
parameter θ according to the next state 1is + . This
process can be seen as training the DQN to predict
future rewards.

.
Reward: In iteration step i, the ROUGE score of the
current summarization sequence

most appropriate context information for the target iy
to be output at the current time. Specifically, we use ija
to measure the correlation of the encoder's hidden layer
representation jh at time j and decoding at time i.
Finally, the context information ic input by the
decoder at time i is equal to the hidden layer of the
encoder at all times, which represents the weighted
sum of jh and ija .

1 i(, ,)i i is f s y c−= (8)
where,

j 1
=

M

i ij jc a h
=
∑ (9)

1

exp()

exp()
ij

ij M
ikk

e
a

e
=

=
∑

 (10)

ij a 1=v tanh()T
a i a je W s U h− + . (11)

Using the decoder with the attention mechanism,
the model of equation (1) can be expressed as

i 0 i 1 ip(|{ ,..., }, ;) ()y y y x g sθ− = , (12)

where ()g ⋅ is a function that outputs the probability of
the target vocabulary iy . A softmax function is usually
used to map a hidden layer vector into a probability
distribution of V categories (i.e., vocabulary) of the
vocabulary:

z
i

zz 1

exp()
(z |) ()= ,

exp()

T
i

i V T
i

w s
p y g s

w s
θ

=

= =
∑

 (13)

where zw represents the weight matrix.

3.3. DQN Decoding
The four components of the reinforcement learning
model are described in detail: states, actions, strategies,
and rewards. Automatically generate semantic features
of the input sequence by deploying a recurrent neural
network with a coder-decoder architecture with a
gated unit. DQN directly uses these features to learn
the Q-value function to estimate future rewards and to
maximize future long-term rewards by optimizing
model parameters.

Given the abstract text sequence
1 j m,..., ...,x x x< > and

the target sequence 1 j,..., y ..., Ny y< > (source text and
target summarization in Figure 1), the Bi-GRU encoder
encodes the entire input sequence into a fixed-
dimensional semantic vector that is decoded as the
initial input vector of the decoder to generate the actual
initial summarization sequence 0 0 0

1ˆ ˆ ˆy ,..., y ..., yj T< > . In
the decoding process, the decoder sequentially
generates a hidden layer state representation

1 j< ,..., ,..., Ns s s > .
Status: At each iteration step i of DQN decoding,

the summarization text input sequence
1 j m,..., ...,x x x< > and the actual summarization

sequence 1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > are used as DQN internal

states. When i=0, the initial summarization generated
by the decoder consists of the vocabulary of the
maximum output probability of each time decoder.

Action: In the decoding stage of the decoder, the
hidden layer vector is mapped to the probability
distribution of V vocabularies in the vocabulary by a
softmax function. At the same time, it also produces the
attention weight distribution of the summarization text
sequence at each time. The vocabulary that generates
the vocabulary probability distribution and the first k
maximum probabilities of the attention distribution are
selected as the candidate action space (size 2k) for each
time DQN, as shown in Figure 1. The action candidate
set generated by the seq2seq model encoding-decoding
is an "abstractive summarization" generation process,
and the action candidate set generated at each time
based on the summarization original attention
distribution can be regarded as an extractive
summarization process.

Strategy: Given the current state, i.e., the current
iteration step summarization sequence

1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > , and the action space at each time, the

DQN learns and estimates the value function (Q-value)
at each time of the current state and selects the action of
the maximum Q-value at each time as the output. More
specifically, in the i-th iteration step at time t, the DQN
selects the action tyi

 to replace the state tŷi
corresponding to the time s. Therefore, this process will
result in an update of the state, i.e., a new state

+1 +1 +1
1ˆ ˆ ˆy ,..., y ..., yi i i

j T< > .
Reward: In iteration step i, the ROUGE score of the

current summarization sequence 1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > and

the reference summarization 1 j,..., y ..., Ny y< > is set to
cr . The DQN selects actions based on the current policy.

This process generates a new state +1 +1 +1
1ˆ ˆ ˆy ,..., y ..., yi i i

j T< > ,
which is the optimized summarization. The ROUGE
score of the abstract versus the real abstract is r, so the
reward for the DQN's current action is

n creward=r -r . (14)
Parameter training: The DQN parameter training

is a process of minimizing the loss function. In the
actual training process, Two networks are used to
improve the stability[21]: A Q-value estimate with the
parameter θ original network and a target network
with parameter θ generates the target q-value during
the Q-value learning update process.

i 2
,() [((, ;))]i i i

s aL E q Q s aθ θ= − , (15)
where 1

,
ˆ ˆ= [max (, ;) | ,]i i i

s a aq E r Q s a s aλ θ+
′ ′+ is the target

q-value, generated by the target network with the
parameter θ according to the next state 1is + . This
process can be seen as training the DQN to predict
future rewards.

and the reference summarization <y1,..., yj ..., yN>
is set to rc. The DQN selects actions based on the
current policy. This process generates a new state

most appropriate context information for the target iy
to be output at the current time. Specifically, we use ija
to measure the correlation of the encoder's hidden layer
representation jh at time j and decoding at time i.
Finally, the context information ic input by the
decoder at time i is equal to the hidden layer of the
encoder at all times, which represents the weighted
sum of jh and ija .

1 i(, ,)i i is f s y c−= (8)
where,

j 1
=

M

i ij jc a h
=
∑ (9)

1

exp()

exp()
ij

ij M
ikk

e
a

e
=

=
∑

 (10)

ij a 1=v tanh()T
a i a je W s U h− + . (11)

Using the decoder with the attention mechanism,
the model of equation (1) can be expressed as

i 0 i 1 ip(|{ ,..., }, ;) ()y y y x g sθ− = , (12)

where ()g ⋅ is a function that outputs the probability of
the target vocabulary iy . A softmax function is usually
used to map a hidden layer vector into a probability
distribution of V categories (i.e., vocabulary) of the
vocabulary:

z
i

zz 1

exp()
(z |) ()= ,

exp()

T
i

i V T
i

w s
p y g s

w s
θ

=

= =
∑

 (13)

where zw represents the weight matrix.

3.3. DQN Decoding
The four components of the reinforcement learning
model are described in detail: states, actions, strategies,
and rewards. Automatically generate semantic features
of the input sequence by deploying a recurrent neural
network with a coder-decoder architecture with a
gated unit. DQN directly uses these features to learn
the Q-value function to estimate future rewards and to
maximize future long-term rewards by optimizing
model parameters.

Given the abstract text sequence
1 j m,..., ...,x x x< > and

the target sequence 1 j,..., y ..., Ny y< > (source text and
target summarization in Figure 1), the Bi-GRU encoder
encodes the entire input sequence into a fixed-
dimensional semantic vector that is decoded as the
initial input vector of the decoder to generate the actual
initial summarization sequence 0 0 0

1ˆ ˆ ˆy ,..., y ..., yj T< > . In
the decoding process, the decoder sequentially
generates a hidden layer state representation

1 j< ,..., ,..., Ns s s > .
Status: At each iteration step i of DQN decoding,

the summarization text input sequence
1 j m,..., ...,x x x< > and the actual summarization

sequence 1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > are used as DQN internal

states. When i=0, the initial summarization generated
by the decoder consists of the vocabulary of the
maximum output probability of each time decoder.

Action: In the decoding stage of the decoder, the
hidden layer vector is mapped to the probability
distribution of V vocabularies in the vocabulary by a
softmax function. At the same time, it also produces the
attention weight distribution of the summarization text
sequence at each time. The vocabulary that generates
the vocabulary probability distribution and the first k
maximum probabilities of the attention distribution are
selected as the candidate action space (size 2k) for each
time DQN, as shown in Figure 1. The action candidate
set generated by the seq2seq model encoding-decoding
is an "abstractive summarization" generation process,
and the action candidate set generated at each time
based on the summarization original attention
distribution can be regarded as an extractive
summarization process.

Strategy: Given the current state, i.e., the current
iteration step summarization sequence

1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > , and the action space at each time, the

DQN learns and estimates the value function (Q-value)
at each time of the current state and selects the action of
the maximum Q-value at each time as the output. More
specifically, in the i-th iteration step at time t, the DQN
selects the action tyi

 to replace the state tŷi
corresponding to the time s. Therefore, this process will
result in an update of the state, i.e., a new state

+1 +1 +1
1ˆ ˆ ˆy ,..., y ..., yi i i

j T< > .
Reward: In iteration step i, the ROUGE score of the

current summarization sequence 1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > and

the reference summarization 1 j,..., y ..., Ny y< > is set to
cr

This process generates a new state +1 +1 +1
1ˆ ˆ ˆy ,..., y ..., yi i i

j T< > ,
which is the optimized summarization. The ROUGE
score of the abstract versus the real abstract is r, so the
reward for the DQN's current action is

n creward=r -r . (14)
Parameter training: The DQN parameter training

is a process of minimizing the loss function. In the
actual training process, Two networks are used to
improve the stability[21]: A Q-value estimate with the
parameter θ original network and a target network
with parameter θ generates the target q-value during
the Q-value learning update process.

i 2
,() [((, ;))]i i i

s aL E q Q s aθ θ= − , (15)
where 1

,
ˆ ˆ= [max (, ;) | ,]i i i

s a aq E r Q s a s aλ θ+
′ ′+ is the target

q-value, generated by the target network with the
parameter θ according to the next state 1is + . This
process can be seen as training the DQN to predict
future rewards.

, which is the optimized summa-
rization. The ROUGE score of the abstract versus the
real abstract is r, so the reward for the DQN’s current
action is

most appropriate context information for the target iy
to be output at the current time. Specifically, we use ija
to measure the correlation of the encoder's hidden layer
representation jh at time j and decoding at time i.
Finally, the context information ic input by the
decoder at time i is equal to the hidden layer of the
encoder at all times, which represents the weighted
sum of jh and ija .

1 i(, ,)i i is f s y c−= (8)
where,

j 1
=

M

i ij jc a h
=
∑ (9)

1

exp()

exp()
ij

ij M
ikk

e
a

e
=

=
∑

 (10)

ij a 1=v tanh()T
a i a je W s U h− + . (11)

Using the decoder with the attention mechanism,
the model of equation (1) can be expressed as

i 0 i 1 ip(|{ ,..., }, ;) ()y y y x g sθ− = , (12)

where ()g ⋅ is a function that outputs the probability of
the target vocabulary iy . A softmax function is usually
used to map a hidden layer vector into a probability
distribution of V categories (i.e., vocabulary) of the
vocabulary:

z
i

zz 1

exp()
(z |) ()= ,

exp()

T
i

i V T
i

w s
p y g s

w s
θ

=

= =
∑

 (13)

where zw represents the weight matrix.

3.3. DQN Decoding
The four components of the reinforcement learning
model are described in detail: states, actions, strategies,
and rewards. Automatically generate semantic features
of the input sequence by deploying a recurrent neural
network with a coder-decoder architecture with a
gated unit. DQN directly uses these features to learn
the Q-value function to estimate future rewards and to
maximize future long-term rewards by optimizing
model parameters.

Given the abstract text sequence
1 j m,..., ...,x x x< > and

the target sequence 1 j,..., y ..., Ny y< > (source text and
target summarization in Figure 1), the Bi-GRU encoder
encodes the entire input sequence into a fixed-
dimensional semantic vector that is decoded as the
initial input vector of the decoder to generate the actual
initial summarization sequence 0 0 0

1ˆ ˆ ˆy ,..., y ..., yj T< > . In
the decoding process, the decoder sequentially
generates a hidden layer state representation

1 j< ,..., ,..., Ns s s > .
Status: At each iteration step i of DQN decoding,

the summarization text input sequence
1 j m,..., ...,x x x< > and the actual summarization

sequence 1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > are used as DQN internal

states. When i=0, the initial summarization generated
by the decoder consists of the vocabulary of the
maximum output probability of each time decoder.

Action: In the decoding stage of the decoder, the
hidden layer vector is mapped to the probability
distribution of V vocabularies in the vocabulary by a
softmax function. At the same time, it also produces the
attention weight distribution of the summarization text
sequence at each time. The vocabulary that generates
the vocabulary probability distribution and the first k
maximum probabilities of the attention distribution are
selected as the candidate action space (size 2k) for each
time DQN, as shown in Figure 1. The action candidate
set generated by the seq2seq model encoding-decoding
is an "abstractive summarization" generation process,
and the action candidate set generated at each time
based on the summarization original attention
distribution can be regarded as an extractive
summarization process.

Strategy: Given the current state, i.e., the current
iteration step summarization sequence

1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > , and the action space at each time, the

DQN learns and estimates the value function (Q-value)
at each time of the current state and selects the action of
the maximum Q-value at each time as the output. More
specifically, in the i-th iteration step at time t, the DQN
selects the action tyi

 to replace the state tŷi
corresponding to the time s. Therefore, this process will
result in an update of the state, i.e., a new state

+1 +1 +1
1ˆ ˆ ˆy ,..., y ..., yi i i

j T< > .
Reward: In iteration step i, the ROUGE score of the

current summarization sequence 1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > and

the reference summarization 1 j,..., y ..., Ny y< > is set to
cr . The DQN selects actions based on the current policy.

This process generates a new state +1 +1 +1
1ˆ ˆ ˆy ,..., y ..., yi i i

j T< > ,
which is the optimized summarization. The ROUGE
score of the abstract versus the real abstract is r, so the
reward for the DQN's current action is

n creward=r -r . (14)
Parameter training: The DQN parameter training

is a process of minimizing the loss function. In the
actual training process, Two networks are used to
improve the stability[21]: A Q-value estimate with the
parameter θ original network and a target network
with parameter θ generates the target q-value during
the Q-value learning update process.

i 2
,() [((, ;))]i i i

s aL E q Q s aθ θ= − , (15)
where 1

,
ˆ ˆ= [max (, ;) | ,]i i i

s a aq E r Q s a s aλ θ+
′ ′+ is the target

q-value, generated by the target network with the
parameter θ according to the next state 1is + . This
process can be seen as training the DQN to predict
future rewards.

. (14)

Parameter training: The DQN parameter training is a
process of minimizing the loss function. In the actual
training process, Two networks are used to improve
the stability [21]: A Q-value estimate with the param-
eter θ original network and a target network with pa-

rameter θθ generates the target q-value during the
Q-value learning update process.

most appropriate context information for the target iy
to be output at the current time. Specifically, we use ija
to measure the correlation of the encoder's hidden layer
representation jh at time j and decoding at time i.
Finally, the context information ic input by the
decoder at time i is equal to the hidden layer of the
encoder at all times, which represents the weighted
sum of jh and ija .

1 i(, ,)i i is f s y c−= (8)
where,

j 1
=

M

i ij jc a h
=
∑ (9)

1

exp()

exp()
ij

ij M
ikk

e
a

e
=

=
∑

 (10)

ij a 1=v tanh()T
a i a je W s U h− + . (11)

Using the decoder with the attention mechanism,
the model of equation (1) can be expressed as

i 0 i 1 ip(|{ ,..., }, ;) ()y y y x g sθ− = , (12)

where ()g ⋅ is a function that outputs the probability of
the target vocabulary iy . A softmax function is usually
used to map a hidden layer vector into a probability
distribution of V categories (i.e., vocabulary) of the
vocabulary:

z
i

zz 1

exp()
(z |) ()= ,

exp()

T
i

i V T
i

w s
p y g s

w s
θ

=

= =
∑

 (13)

where zw represents the weight matrix.

3.3. DQN Decoding
The four components of the reinforcement learning
model are described in detail: states, actions, strategies,
and rewards. Automatically generate semantic features
of the input sequence by deploying a recurrent neural
network with a coder-decoder architecture with a
gated unit. DQN directly uses these features to learn
the Q-value function to estimate future rewards and to
maximize future long-term rewards by optimizing
model parameters.

Given the abstract text sequence
1 j m,..., ...,x x x< > and

the target sequence 1 j,..., y ..., Ny y< > (source text and
target summarization in Figure 1), the Bi-GRU encoder
encodes the entire input sequence into a fixed-
dimensional semantic vector that is decoded as the
initial input vector of the decoder to generate the actual
initial summarization sequence 0 0 0

1ˆ ˆ ˆy ,..., y ..., yj T< > . In
the decoding process, the decoder sequentially
generates a hidden layer state representation

1 j< ,..., ,..., Ns s s > .
Status: At each iteration step i of DQN decoding,

the summarization text input sequence
1 j m,..., ...,x x x< > and the actual summarization

sequence 1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > are used as DQN internal

states. When i=0, the initial summarization generated
by the decoder consists of the vocabulary of the
maximum output probability of each time decoder.

Action: In the decoding stage of the decoder, the
hidden layer vector is mapped to the probability
distribution of V vocabularies in the vocabulary by a
softmax function. At the same time, it also produces the
attention weight distribution of the summarization text
sequence at each time. The vocabulary that generates
the vocabulary probability distribution and the first k
maximum probabilities of the attention distribution are
selected as the candidate action space (size 2k) for each
time DQN, as shown in Figure 1. The action candidate
set generated by the seq2seq model encoding-decoding
is an "abstractive summarization" generation process,
and the action candidate set generated at each time
based on the summarization original attention
distribution can be regarded as an extractive
summarization process.

Strategy: Given the current state, i.e., the current
iteration step summarization sequence

1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > , and the action space at each time, the

DQN learns and estimates the value function (Q-value)
at each time of the current state and selects the action of
the maximum Q-value at each time as the output. More
specifically, in the i-th iteration step at time t, the DQN
selects the action tyi

 to replace the state tŷi
corresponding to the time s. Therefore, this process will
result in an update of the state, i.e., a new state

+1 +1 +1
1ˆ ˆ ˆy ,..., y ..., yi i i

j T< > .
Reward: In iteration step i, the ROUGE score of the

current summarization sequence 1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > and

the reference summarization 1 j,..., y ..., Ny y< > is set to
cr . The DQN selects actions based on the current policy.

This process generates a new state +1 +1 +1
1ˆ ˆ ˆy ,..., y ..., yi i i

j T< > ,
which is the optimized summarization. The ROUGE
score of the abstract versus the real abstract is r, so the
reward for the DQN's current action is

n creward=r -r . (14)
Parameter training: The DQN parameter training

is a process of minimizing the loss function. In the
actual training process, Two networks are used to
improve the stability[21]: A Q-value estimate with the
parameter θ original network and a target network
with parameter θ generates the target q-value during

i 2
,() [((, ;))]i i i

s aL E q Q s aθ θ= −

,

 (15)

where 1
,

ˆ ˆ

= [max (, ;) | ,]i i i
s a aq E r Q s a s aλ θ+

′ ′+ is the target
q-value, generated by the target network with the
parameter θ according to the next state 1is + . This
process can be seen as training the DQN to predict
future rewards.

, (15)

where

most appropriate context information for the target iy
to be output at the current time. Specifically, we use ija
to measure the correlation of the encoder's hidden layer
representation jh at time j and decoding at time i.
Finally, the context information ic input by the
decoder at time i is equal to the hidden layer of the
encoder at all times, which represents the weighted
sum of jh and ija .

1 i(, ,)i i is f s y c−= (8)
where,

j 1
=

M

i ij jc a h
=
∑ (9)

1

exp()

exp()
ij

ij M
ikk

e
a

e
=

=
∑

 (10)

ij a 1=v tanh()T
a i a je W s U h− + . (11)

Using the decoder with the attention mechanism,
the model of equation (1) can be expressed as

i 0 i 1 ip(|{ ,..., }, ;) ()y y y x g sθ− = , (12)

where ()g ⋅ is a function that outputs the probability of
the target vocabulary iy . A softmax function is usually
used to map a hidden layer vector into a probability
distribution of V categories (i.e., vocabulary) of the
vocabulary:

z
i

zz 1

exp()
(z |) ()= ,

exp()

T
i

i V T
i

w s
p y g s

w s
θ

=

= =
∑

 (13)

where zw represents the weight matrix.

3.3. DQN Decoding
The four components of the reinforcement learning
model are described in detail: states, actions, strategies,
and rewards. Automatically generate semantic features
of the input sequence by deploying a recurrent neural
network with a coder-decoder architecture with a
gated unit. DQN directly uses these features to learn
the Q-value function to estimate future rewards and to
maximize future long-term rewards by optimizing
model parameters.

Given the abstract text sequence
1 j m,..., ...,x x x< > and

the target sequence 1 j,..., y ..., Ny y< > (source text and
target summarization in Figure 1), the Bi-GRU encoder
encodes the entire input sequence into a fixed-
dimensional semantic vector that is decoded as the
initial input vector of the decoder to generate the actual
initial summarization sequence 0 0 0

1ˆ ˆ ˆy ,..., y ..., yj T< > . In
the decoding process, the decoder sequentially
generates a hidden layer state representation

1 j< ,..., ,..., Ns s s > .
Status: At each iteration step i of DQN decoding,

the summarization text input sequence
1 j m,..., ...,x x x< > and the actual summarization

sequence 1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > are used as DQN internal

states. When i=0, the initial summarization generated
by the decoder consists of the vocabulary of the
maximum output probability of each time decoder.

Action: In the decoding stage of the decoder, the
hidden layer vector is mapped to the probability
distribution of V vocabularies in the vocabulary by a
softmax function. At the same time, it also produces the
attention weight distribution of the summarization text
sequence at each time. The vocabulary that generates
the vocabulary probability distribution and the first k
maximum probabilities of the attention distribution are
selected as the candidate action space (size 2k) for each
time DQN, as shown in Figure 1. The action candidate
set generated by the seq2seq model encoding-decoding
is an "abstractive summarization" generation process,
and the action candidate set generated at each time
based on the summarization original attention
distribution can be regarded as an extractive
summarization process.

Strategy: Given the current state, i.e., the current
iteration step summarization sequence

1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > , and the action space at each time, the

DQN learns and estimates the value function (Q-value)
at each time of the current state and selects the action of
the maximum Q-value at each time as the output. More
specifically, in the i-th iteration step at time t, the DQN
selects the action tyi

 to replace the state tŷi
corresponding to the time s. Therefore, this process will
result in an update of the state, i.e., a new state

+1 +1 +1
1ˆ ˆ ˆy ,..., y ..., yi i i

j T< > .
Reward: In iteration step i, the ROUGE score of the

current summarization sequence 1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > and

the reference summarization 1 j,..., y ..., Ny y< > is set to
cr . The DQN selects actions based on the current policy.

This process generates a new state +1 +1 +1
1ˆ ˆ ˆy ,..., y ..., yi i i

j T< > ,
which is the optimized summarization. The ROUGE
score of the abstract versus the real abstract is r, so the
reward for the DQN's current action is

n creward=r -r . (14)
Parameter training: The DQN parameter training

is a process of minimizing the loss function. In the
actual training process, Two networks are used to
improve the stability[21]: A Q-value estimate with the
parameter θ original network and a target network
with parameter θ generates the target q-value during
the Q-value learning update process.

where 1

,
ˆ ˆ= [max (, ;) | ,]i i i

s a aq E r Q s a s aλ θ+
′ ′+ is the target

q-value, generated by the target network with the
parameter θ according to the next state 1is + . This
process can be seen as training the DQN to predict
future rewards.

 is the tar-
get q-value, generated by the target network with the
parameter θ according to the next state

most appropriate context information for the target iy
to be output at the current time. Specifically, we use ija
to measure the correlation of the encoder's hidden layer
representation jh at time j and decoding at time i.
Finally, the context information ic input by the
decoder at time i is equal to the hidden layer of the
encoder at all times, which represents the weighted
sum of jh and ija .

1 i(, ,)i i is f s y c−= (8)
where,

j 1
=

M

i ij jc a h
=
∑ (9)

1

exp()

exp()
ij

ij M
ikk

e
a

e
=

=
∑

 (10)

ij a 1=v tanh()T
a i a je W s U h− + . (11)

Using the decoder with the attention mechanism,
the model of equation (1) can be expressed as

i 0 i 1 ip(|{ ,..., }, ;) ()y y y x g sθ− = , (12)

where ()g ⋅ is a function that outputs the probability of
the target vocabulary iy . A softmax function is usually
used to map a hidden layer vector into a probability
distribution of V categories (i.e., vocabulary) of the
vocabulary:

z
i

zz 1

exp()
(z |) ()= ,

exp()

T
i

i V T
i

w s
p y g s

w s
θ

=

= =
∑

 (13)

where zw represents the weight matrix.

3.3. DQN Decoding
The four components of the reinforcement learning
model are described in detail: states, actions, strategies,
and rewards. Automatically generate semantic features
of the input sequence by deploying a recurrent neural
network with a coder-decoder architecture with a
gated unit. DQN directly uses these features to learn
the Q-value function to estimate future rewards and to
maximize future long-term rewards by optimizing
model parameters.

Given the abstract text sequence
1 j m,..., ...,x x x< > and

the target sequence 1 j,..., y ..., Ny y< > (source text and
target summarization in Figure 1), the Bi-GRU encoder
encodes the entire input sequence into a fixed-
dimensional semantic vector that is decoded as the
initial input vector of the decoder to generate the actual
initial summarization sequence 0 0 0

1ˆ ˆ ˆy ,..., y ..., yj T< > . In
the decoding process, the decoder sequentially
generates a hidden layer state representation

1 j< ,..., ,..., Ns s s > .
Status: At each iteration step i of DQN decoding,

the summarization text input sequence
1 j m,..., ...,x x x< > and the actual summarization

sequence 1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > are used as DQN internal

states. When i=0, the initial summarization generated
by the decoder consists of the vocabulary of the
maximum output probability of each time decoder.

Action: In the decoding stage of the decoder, the
hidden layer vector is mapped to the probability
distribution of V vocabularies in the vocabulary by a
softmax function. At the same time, it also produces the
attention weight distribution of the summarization text
sequence at each time. The vocabulary that generates
the vocabulary probability distribution and the first k
maximum probabilities of the attention distribution are
selected as the candidate action space (size 2k) for each
time DQN, as shown in Figure 1. The action candidate
set generated by the seq2seq model encoding-decoding
is an "abstractive summarization" generation process,
and the action candidate set generated at each time
based on the summarization original attention
distribution can be regarded as an extractive
summarization process.

Strategy: Given the current state, i.e., the current
iteration step summarization sequence

1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > , and the action space at each time, the

DQN learns and estimates the value function (Q-value)
at each time of the current state and selects the action of
the maximum Q-value at each time as the output. More
specifically, in the i-th iteration step at time t, the DQN
selects the action tyi

 to replace the state tŷi
corresponding to the time s. Therefore, this process will
result in an update of the state, i.e., a new state

+1 +1 +1
1ˆ ˆ ˆy ,..., y ..., yi i i

j T< > .
Reward: In iteration step i, the ROUGE score of the

current summarization sequence 1ˆ ˆ ˆy ,..., y ..., yi i i
j T< > and

the reference summarization 1 j,..., y ..., Ny y< > is set to
cr . The DQN selects actions based on the current policy.

This process generates a new state +1 +1 +1
1ˆ ˆ ˆy ,..., y ..., yi i i

j T< > ,
which is the optimized summarization. The ROUGE
score of the abstract versus the real abstract is r, so the
reward for the DQN's current action is

n creward=r -r . (14)
Parameter training: The DQN parameter training

is a process of minimizing the loss function. In the
actual training process, Two networks are used to
improve the stability[21]: A Q-value estimate with the
parameter θ original network and a target network
with parameter θ generates the target q-value during
the Q-value learning update process.

i 2
,() [((, ;))]i i i

s aL E q Q s aθ θ= − , (15)
where 1

,
ˆ ˆ= [max (, ;) | ,]i i i

s a aq E r Q s a s aλ θ+
′ ′+ is the target

q-value, generated by the target network with the
parameter θ according to the next state 1is + . This
process can be seen as training the DQN to predict
future rewards.

. This pro-
cess can be seen as training the DQN to predict future
rewards.
In the training process, in every C update training, the
parameter θ of the original network is assigned to the
parameters of the target network, i.e.,

In the training process, in every C update training,
the parameter θ of the original network is assigned to
the parameters of the target network, i.e., ˆ=θ θ .
Additionally, experience pool technology[25] is used in
training to store the experience of each iteration step.
DQN selects the action of maximum Q to maximize

future expectations. In the initial stage of training,
DQN randomly selects actions with probability ε [20]
to ensure sufficient exploration of the state space. Its
specific parameter training process is referenced in
algorithm 1.

Algorithm 1. Automatic text summarization optimization algorithm．

1. Random parameters initialize the encoder and decoder of the seq2seq model;

2. Pretrain the seq2seq model given the training set, i.e.the original and real summarization sequence pairs;

3. for epoch = [1, U] do

4. for each x X∈ and y Y∈ (The length of l) do

5. The original sequence x is input to the pretrained seq2seq model to generate an initial summarization sequence 0ŷ and an

action candidate space A ;

6. for iteration i = 1, 2l do

7. if the value is less than ε

8. Randomly select an action ia (i.e., word) from the action space A at time t;

9. else

10. Calculate the Q-value function (, ;)Q s a θ , let action ia = arg max (, ;)a Q s a θ ;

11. end if

12. Using the action ia instead of generating the element (word) corresponding to the time of the summarization sequence iŷ a

new summarization sequence i+1ŷ is generated;

13. Calculate the similarity between the newly summarization sequence i+1ŷ and the real summarization sequence y and return

the reward ir ;

14. Store state experience 1[, , ,]i i i is a r s + to experience pool D, where i iˆs =<x, y >

15. Randomly sample batch state experience 1[, , ,]i i i is a r s + from experience pool D;

16. if ir σ>

17. i iq = r ; This round of iterative update ends;

18. else

19. 1ˆ ˆq = r max (, ;)i i i
a Q s aλ θ+
′ ′+

20. end if

21. Perform the optimization on the objective function 2(q (, ;))i i iQ s a θ− with respect to the parameter θ ;

22. Update the parameters every C iterations of the iteration, let ˆ=θ θ

23. end for

24. end for

25. end for

. Addition-
ally, experience pool technology[25] is used in train-
ing to store the experience of each iteration step. DQN
selects the action of maximum Q to maximize future
expectations. In the initial stage of training, DQN ran-
domly selects actions with probability ε [20] to ensure
sufficient exploration of the state space. Its specific pa-
rameter training process is referenced in algorithm 1.

Algorithm 1. Automatic text summarization optimization
algorithm.

1. Random parameters initialize the encoder and decoder
of the seq2seq model;

2. Pretrain the seq2seq model given the training set, i.e.the
original and real summarization sequence pairs;

3. for epoch = [1, U] do

4. for each x Î X and yÎY.(The length of l) do
5. The original sequence x is input to the pretrained

 seq2seq model to generate an initial summarization
 sequence

In the training process, in every C update training,
the parameter θ of the original network is assigned to
the parameters of the target network, i.e., ˆ=θ θ .
Additionally, experience pool technology[25] is used in
training to store the experience of each iteration step.
DQN selects the action of maximum Q to maximize

future expectations. In the initial stage of training,
DQN randomly selects actions with probability ε [20]
to ensure sufficient exploration of the state space. Its
specific parameter training process is referenced in
algorithm 1.

Algorithm 1. Automatic text summarization optimization algorithm．

1. Random parameters initialize the encoder and decoder of the seq2seq model;

2. Pretrain the seq2seq model given the training set, i.e.the original and real summarization sequence pairs;

3. for epoch = [1, U] do

4. for each x X∈ and y Y∈ (The length of l) do

5. The original sequence x is input to the pretrained seq2seq model to generate an initial summarization sequence 0ŷ and an

action candidate space A ;

6. for iteration i = 1, 2l do

7. if the value is less than ε

8. Randomly select an action ia (i.e., word) from the action space A at time t;

9. else

10. Calculate the Q-value function (, ;)Q s a θ , let action ia = arg max (, ;)a Q s a θ ;

11. end if

12. Using the action ia instead of generating the element (word) corresponding to the time of the summarization sequence iŷ a

new summarization sequence i+1ŷ is generated;

13. Calculate the similarity between the newly summarization sequence i+1ŷ and the real summarization sequence y and return

the reward ir ;

14. Store state experience 1[, , ,]i i i is a r s + to experience pool D, where i iˆs =<x, y >

15. Randomly sample batch state experience 1[, , ,]i i i is a r s + from experience pool D;

16. if ir σ>

17. i iq = r ; This round of iterative update ends;

18. else

19. 1ˆ ˆq = r max (, ;)i i i
a Q s aλ θ+
′ ′+

20. end if

21. Perform the optimization on the objective function 2(q (, ;))i i iQ s a θ− with respect to the parameter θ ;

22. Update the parameters every C iterations of the iteration, let ˆ=θ θ

23. end for

24. end for

25. end for

 and an action candidate space A;
6. for iteration i = 1, 2l do
7. if the value is less than ε
8. Randomly select an action ai (i.e., word) from the

 action space A at time t;
9. else
10. Calculate the Q-value function Q(s, a; θ), let action

 ai = arg maxaQ(s, a; θ);
11. end if

12. Using the action ai instead of generating the element
(word) corresponding to the time of the summarization
sequence

In the training process, in every C update training,
the parameter θ of the original network is assigned to
the parameters of the target network, i.e., ˆ=θ θ .
Additionally, experience pool technology[25] is used in
training to store the experience of each iteration step.
DQN selects the action of maximum Q to maximize

future expectations. In the initial stage of training,
DQN randomly selects actions with probability ε [20]
to ensure sufficient exploration of the state space. Its
specific parameter training process is referenced in
algorithm 1.

Algorithm 1. Automatic text summarization optimization algorithm．

1. Random parameters initialize the encoder and decoder of the seq2seq model;

2. Pretrain the seq2seq model given the training set, i.e.the original and real summarization sequence pairs;

3. for epoch = [1, U] do

4. for each x X∈ and y Y∈ (The length of l) do

5. The original sequence x is input to the pretrained seq2seq model to generate an initial summarization sequence 0ŷ and an

action candidate space A ;

6. for iteration i = 1, 2l do

7. if the value is less than ε

8. Randomly select an action ia (i.e., word) from the action space A at time t;

9. else

10. Calculate the Q-value function (, ;)Q s a θ , let action ia = arg max (, ;)a Q s a θ ;

11. end if

12. Using the action ia instead of generating the element (word) corresponding to the time of the summarization sequence iŷ a

new summarization sequence i+1ŷ is generated;

13. Calculate the similarity between the newly summarization sequence i+1ŷ and the real summarization sequence y and return

the reward ir ;

14. Store state experience 1[, , ,]i i i is a r s + to experience pool D, where i iˆs =<x, y >

15. Randomly sample batch state experience 1[, , ,]i i i is a r s + from experience pool D;

16. if ir σ>

17. i iq = r ; This round of iterative update ends;

18. else

19. 1ˆ ˆq = r max (, ;)i i i
a Q s aλ θ+
′ ′+

20. end if

21. Perform the optimization on the objective function 2(q (, ;))i i iQ s a θ− with respect to the parameter θ ;

22. Update the parameters every C iterations of the iteration, let ˆ=θ θ

23. end for

24. end for

25. end for

 a new summarization sequence is
generated;

13. Calculate the similarity between the newly
summarization sequence

In the training process, in every C update training,
the parameter θ of the original network is assigned to
the parameters of the target network, i.e., ˆ=θ θ .
Additionally, experience pool technology[25] is used in
training to store the experience of each iteration step.
DQN selects the action of maximum Q to maximize

future expectations. In the initial stage of training,
DQN randomly selects actions with probability ε [20]
to ensure sufficient exploration of the state space. Its
specific parameter training process is referenced in
algorithm 1.

Algorithm 1. Automatic text summarization optimization algorithm．

1. Random parameters initialize the encoder and decoder of the seq2seq model;

2. Pretrain the seq2seq model given the training set, i.e.the original and real summarization sequence pairs;

3. for epoch = [1, U] do

4. for each x X∈ and y Y∈ (The length of l) do

5. The original sequence x is input to the pretrained seq2seq model to generate an initial summarization sequence 0ŷ and an

action candidate space A ;

6. for iteration i = 1, 2l do

7. if the value is less than ε

8. Randomly select an action ia (i.e., word) from the action space A at time t;

9. else

10. Calculate the Q-value function (, ;)Q s a θ , let action ia = arg max (, ;)a Q s a θ ;

11. end if

12. Using the action ia instead of generating the element (word) corresponding to the time of the summarization sequence iŷ a

new summarization sequence i+1ŷ is generated;

13. Calculate the similarity between the newly summarization sequence i+1ŷ and the real summarization sequence y and return

the reward ir ;

14. Store state experience 1[, , ,]i i i is a r s + to experience pool D, where i iˆs =<x, y >

15. Randomly sample batch state experience 1[, , ,]i i i is a r s + from experience pool D;

16. if ir σ>

17. i iq = r ; This round of iterative update ends;

18. else

19. 1ˆ ˆq = r max (, ;)i i i
a Q s aλ θ+
′ ′+

20. end if

21. Perform the optimization on the objective function 2(q (, ;))i i iQ s a θ− with respect to the parameter θ ;

22. Update the parameters every C iterations of the iteration, let ˆ=θ θ

23. end for

24. end for

25. end for

 and the real
summarization sequence y and return the reward ri;

14. Store state experience

In the training process, in every C update training,
the parameter θ of the original network is assigned to
the parameters of the target network, i.e., ˆ=θ θ .
Additionally, experience pool technology[25] is used in
training to store the experience of each iteration step.
DQN selects the action of maximum Q to maximize

future expectations. In the initial stage of training,
DQN randomly selects actions with probability ε [20]
to ensure sufficient exploration of the state space. Its
specific parameter training process is referenced in
algorithm 1.

Algorithm 1. Automatic text summarization optimization algorithm．

1. Random parameters initialize the encoder and decoder of the seq2seq model;

2. Pretrain the seq2seq model given the training set, i.e.the original and real summarization sequence pairs;

3. for epoch = [1, U] do

4. for each x X∈ and y Y∈ (The length of l) do

5. The original sequence x is input to the pretrained seq2seq model to generate an initial summarization sequence 0ŷ and an

action candidate space A ;

6. for iteration i = 1, 2l do

7. if the value is less than ε

8. Randomly select an action ia (i.e., word) from the action space A at time t;

9. else

10. Calculate the Q-value function (, ;)Q s a θ , let action ia = arg max (, ;)a Q s a θ ;

11. end if

12. Using the action ia instead of generating the element (word) corresponding to the time of the summarization sequence iŷ a

new summarization sequence i+1ŷ is generated;

13. Calculate the similarity between the newly summarization sequence i+1ŷ and the real summarization sequence y and return

the reward ir ;

14. Store state experience 1[, , ,]i i i is a r s + to experience pool D, where i iˆs =<x, y >

15. Randomly sample batch state experience 1[, , ,]i i i is a r s + from experience pool D;

16. if ir σ>

17. i iq = r ; This round of iterative update ends;

18. else

19. 1ˆ ˆq = r max (, ;)i i i
a Q s aλ θ+
′ ′+

20. end if

21. Perform the optimization on the objective function 2(q (, ;))i i iQ s a θ− with respect to the parameter θ ;

22. Update the parameters every C iterations of the iteration, let ˆ=θ θ

23. end for

24. end for

25. end for

 to experience pool D,
where

In the training process, in every C update training,
the parameter θ of the original network is assigned to
the parameters of the target network, i.e., ˆ=θ θ .
Additionally, experience pool technology[25] is used in
training to store the experience of each iteration step.
DQN selects the action of maximum Q to maximize

future expectations. In the initial stage of training,
DQN randomly selects actions with probability ε [20]
to ensure sufficient exploration of the state space. Its
specific parameter training process is referenced in
algorithm 1.

Algorithm 1. Automatic text summarization optimization algorithm．

1. Random parameters initialize the encoder and decoder of the seq2seq model;

2. Pretrain the seq2seq model given the training set, i.e.the original and real summarization sequence pairs;

3. for epoch = [1, U] do

4. for each x X∈ and y Y∈ (The length of l) do

5. The original sequence x is input to the pretrained seq2seq model to generate an initial summarization sequence 0ŷ and an

action candidate space A ;

6. for iteration i = 1, 2l do

7. if the value is less than ε

8. Randomly select an action ia (i.e., word) from the action space A at time t;

9. else

10. Calculate the Q-value function (, ;)Q s a θ , let action ia = arg max (, ;)a Q s a θ ;

11. end if

12. Using the action ia instead of generating the element (word) corresponding to the time of the summarization sequence iŷ a

new summarization sequence i+1ŷ is generated;

13. Calculate the similarity between the newly summarization sequence i+1ŷ and the real summarization sequence y and return

the reward ir ;

14. Store state experience 1[, , ,]i i i is a r s + to experience pool D, where i iˆs =<x, y >

15. Randomly sample batch state experience 1[, , ,]i i i is a r s + from experience pool D;

16. if ir σ>

17. i iq = r ; This round of iterative update ends;

18. else

19. 1ˆ ˆq = r max (, ;)i i i
a Q s aλ θ+
′ ′+

20. end if

21. Perform the optimization on the objective function 2(q (, ;))i i iQ s a θ− with respect to the parameter θ ;

22. Update the parameters every C iterations of the iteration, let ˆ=θ θ

23. end for

24. end for

25. end for

465Information Technology and Control 2021/3/50

15. Randomly sample batch state experience

In the training process, in every C update training,
the parameter θ of the original network is assigned to
the parameters of the target network, i.e., ˆ=θ θ .
Additionally, experience pool technology[25] is used in
training to store the experience of each iteration step.
DQN selects the action of maximum Q to maximize

future expectations. In the initial stage of training,
DQN randomly selects actions with probability ε [20]
to ensure sufficient exploration of the state space. Its
specific parameter training process is referenced in
algorithm 1.

Algorithm 1. Automatic text summarization optimization algorithm．

1. Random parameters initialize the encoder and decoder of the seq2seq model;

2. Pretrain the seq2seq model given the training set, i.e.the original and real summarization sequence pairs;

3. for epoch = [1, U] do

4. for each x X∈ and y Y∈ (The length of l) do

5. The original sequence x is input to the pretrained seq2seq model to generate an initial summarization sequence 0ŷ and an

action candidate space A ;

6. for iteration i = 1, 2l do

7. if the value is less than ε

8. Randomly select an action ia (i.e., word) from the action space A at time t;

9. else

10. Calculate the Q-value function (, ;)Q s a θ , let action ia = arg max (, ;)a Q s a θ ;

11. end if

12. Using the action ia instead of generating the element (word) corresponding to the time of the summarization sequence iŷ a

new summarization sequence i+1ŷ is generated;

13. Calculate the similarity between the newly summarization sequence i+1ŷ and the real summarization sequence y and return

the reward ir ;

14. Store state experience 1[, , ,]i i i is a r s + to experience pool D, where i iˆs =<x, y >

15. Randomly sample batch state experience 1[, , ,]i i i is a r s + from experience pool D;

16. if ir σ>

17. i iq = r ; This round of iterative update ends;

18. else

19. 1ˆ ˆq = r max (, ;)i i i
a Q s aλ θ+
′ ′+

20. end if

21. Perform the optimization on the objective function 2(q (, ;))i i iQ s a θ− with respect to the parameter θ ;

22. Update the parameters every C iterations of the iteration, let ˆ=θ θ

23. end for

24. end for

25. end for

from experience pool D;

16. if ri > σ
ir σ>

17. qi = ri; This round of iterative update ends;
18. else
19.

In the training process, in every C update training,
the parameter θ of the original network is assigned to
the parameters of the target network, i.e., ˆ=θ θ .
Additionally, experience pool technology[25] is used in
training to store the experience of each iteration step.
DQN selects the action of maximum Q to maximize

future expectations. In the initial stage of training,
DQN randomly selects actions with probability ε [20]
to ensure sufficient exploration of the state space. Its
specific parameter training process is referenced in
algorithm 1.

Algorithm 1. Automatic text summarization optimization algorithm．

1. Random parameters initialize the encoder and decoder of the seq2seq model;

2. Pretrain the seq2seq model given the training set, i.e.the original and real summarization sequence pairs;

3. for epoch = [1, U] do

4. for each x X∈ and y Y∈ (The length of l) do

5. The original sequence x is input to the pretrained seq2seq model to generate an initial summarization sequence 0ŷ and an

action candidate space A ;

6. for iteration i = 1, 2l do

7. if the value is less than ε

8. Randomly select an action ia (i.e., word) from the action space A at time t;

9. else

10. Calculate the Q-value function (, ;)Q s a θ , let action ia = arg max (, ;)a Q s a θ ;

11. end if

12. Using the action ia instead of generating the element (word) corresponding to the time of the summarization sequence iŷ a

new summarization sequence i+1ŷ is generated;

13. Calculate the similarity between the newly summarization sequence i+1ŷ and the real summarization sequence y and return

the reward ir ;

14. Store state experience 1[, , ,]i i i is a r s + to experience pool D, where i iˆs =<x, y >

15. Randomly sample batch state experience 1[, , ,]i i i is a r s + from experience pool D;

16. if ir σ>

17. i iq = r ; This round of iterative update ends;

18. else

19. 1ˆ ˆq = r max (, ;)i i i
a Q s aλ θ+
′ ′+

20. end if

21. Perform the optimization on the objective function 2(q (, ;))i i iQ s a θ− with respect to the parameter θ ;

22. Update the parameters every C iterations of the iteration, let ˆ=θ θ

23. end for

24. end for

25. end for

20. end if

21. Perform the optimization on the objective function

In the training process, in every C update training,
the parameter θ of the original network is assigned to
the parameters of the target network, i.e., ˆ=θ θ .
Additionally, experience pool technology[25] is used in
training to store the experience of each iteration step.
DQN selects the action of maximum Q to maximize

future expectations. In the initial stage of training,
DQN randomly selects actions with probability ε [20]
to ensure sufficient exploration of the state space. Its
specific parameter training process is referenced in
algorithm 1.

Algorithm 1. Automatic text summarization optimization algorithm．

1. Random parameters initialize the encoder and decoder of the seq2seq model;

2. Pretrain the seq2seq model given the training set, i.e.the original and real summarization sequence pairs;

3. for epoch = [1, U] do

4. for each x X∈ and y Y∈ (The length of l) do

5. The original sequence x is input to the pretrained seq2seq model to generate an initial summarization sequence 0ŷ and an

action candidate space A ;

6. for iteration i = 1, 2l do

7. if the value is less than ε

8. Randomly select an action ia (i.e., word) from the action space A at time t;

9. else

10. Calculate the Q-value function (, ;)Q s a θ , let action ia = arg max (, ;)a Q s a θ ;

11. end if

12. Using the action ia instead of generating the element (word) corresponding to the time of the summarization sequence iŷ a

new summarization sequence i+1ŷ is generated;

13. Calculate the similarity between the newly summarization sequence i+1ŷ and the real summarization sequence y and return

the reward ir ;

14. Store state experience 1[, , ,]i i i is a r s + to experience pool D, where i iˆs =<x, y >

15. Randomly sample batch state experience 1[, , ,]i i i is a r s + from experience pool D;

16. if ir σ>

17. i iq = r ; This round of iterative update ends;

18. else

19. 1ˆ ˆq = r max (, ;)i i i
a Q s aλ θ+
′ ′+

20. end if

21. Perform the optimization on the objective function 2(q (, ;))i i iQ s a θ− with respect to the parameter θ ;

22. Update the parameters every C iterations of the iteration, let ˆ=θ θ

23. end for

24. end for

25. end for

 with respect to the parameter θ;
22. Update the parameters every C iterations of the

iteration, let

In the training process, in every C update training,
the parameter θ of the original network is assigned to
the parameters of the target network, i.e., ˆ=θ θ .
Additionally, experience pool technology[25] is used in
training to store the experience of each iteration step.
DQN selects the action of maximum Q to maximize

future expectations. In the initial stage of training,
DQN randomly selects actions with probability ε [20]
to ensure sufficient exploration of the state space. Its
specific parameter training process is referenced in
algorithm 1.

Algorithm 1. Automatic text summarization optimization algorithm．

1. Random parameters initialize the encoder and decoder of the seq2seq model;

2. Pretrain the seq2seq model given the training set, i.e.the original and real summarization sequence pairs;

3. for epoch = [1, U] do

4. for each x X∈ and y Y∈ (The length of l) do

5. The original sequence x is input to the pretrained seq2seq model to generate an initial summarization sequence 0ŷ and an

action candidate space A ;

6. for iteration i = 1, 2l do

7. if the value is less than ε

8. Randomly select an action ia (i.e., word) from the action space A at time t;

9. else

10. Calculate the Q-value function (, ;)Q s a θ , let action ia = arg max (, ;)a Q s a θ ;

11. end if

12. Using the action ia instead of generating the element (word) corresponding to the time of the summarization sequence iŷ a

new summarization sequence i+1ŷ is generated;

13. Calculate the similarity between the newly summarization sequence i+1ŷ and the real summarization sequence y and return

the reward ir ;

14. Store state experience 1[, , ,]i i i is a r s + to experience pool D, where i iˆs =<x, y >

15. Randomly sample batch state experience 1[, , ,]i i i is a r s + from experience pool D;

16. if ir σ>

17. i iq = r ; This round of iterative update ends;

18. else

19. 1ˆ ˆq = r max (, ;)i i i
a Q s aλ θ+
′ ′+

20. end if

21. Perform the optimization on the objective function 2(q (, ;))i i iQ s a θ− with respect to the parameter θ ;

22. Update the parameters every C iterations of the iteration, let ˆ=θ θ

23. end for

24. end for

25. end for

23. end for

24. end for
25. end for

4. Experiments
This section details the summarization of the evalu-
ation indicators, datasets and automatic summariza-
tion generation-related comparison algorithms and
tests our methods on two datasets (LCSTS and CNN/
DailyMail).

4.1. Evaluation
In this paper, the ROUGE [23] evaluation system is
used to automatically evaluate the summarization.
ROUGE evaluates the quality of the summarization
between the reference summarization and the sum-
marization generated by the abstract system. ROUGE
includes a series of evaluation methods. The summa-
rization task usually uses ROUGE-N and ROUGE-L.

44.. EExxppeerriimmeennttss
This section details the summarization of the evaluation
indicators, datasets and automatic summarization
generation-related comparison algorithms and tests our
methods on two datasets (LCSTS and CNN/DailyMail).

4.1. Evaluation
In this paper, the ROUGE [23] evaluation system is used
to automatically evaluate the summarization. ROUGE
evaluates the quality of the summarization between the
reference summarization and the summarization
generated by the abstract system. ROUGE includes a
series of evaluation methods. The summarization task
usually uses ROUGE-N and ROUGE-L.

n

n

{ en ummaries} gram

{Re f ummaries} gram

()

()

match n
S G S S

n
S S S

Count gram
R

Count gram
∈ ∈

∈ ∈

=
∑ ∑
∑ ∑

 (16)

n

n

{ en ummaries} gram

{ en ummaries} gram

()

()

match n
S G S S

n
S G S S

Count gram
P

Count gram
∈ ∈

∈ ∈

=
∑ ∑
∑ ∑

 (17)

2= R PF
R P
× ×
+ ,

 (18)

where n is the length of the n-gram, which takes 1 and 2
in this evaluation.

The formula for calculating accuracy P, recall rate R
and F of ROUGE-L is as follows:

R=
m

LCS（X, Y） (19)

P=
n

LCS（X, Y） (20)

2

2

(1+)= R PF
R P
β
β
× ×

+ ×
 , (21)

where X is a reference summarization and has a length
of m, Y is summarization generated by the system, the
length is n, ()LCS ⋅ is used to measure the longest
common subsequence and β is a hyperparameter.

4.2. Dataset
LCSTS dataset[19]: LCSTS is a Chinese short text
summarization dataset. Each piece of data was collected
from Sina Weibo in the form of a {short news,
summarization} pair. The dataset includes PARTI,
PARTII, and PARTIII. The specific statistical
information is shown in Table 1. In this paper, using the
same settings as in [14].
CNN/DailyMail dataset: The CNN/DailyMail dataset is
an artificially generated summarization dataset
constructed by Herman [18] based on news articles. This
dataset can be obtained directly from GitHub. This
paper uses the Stanford CoreNLP tool [28] to preprocess
the data. We set the maximum length of the abstract text

and the corresponding summarization to 400 and 100.

Table 1

Statistics of the LCSTS Dataset

LCSTS PARTⅠ PART Ⅱ PART Ⅲ

Quantity 2400059 10666 1106
Quantity(3′≥
)

- 8685 725

4.3. Experiment Setup
The encoder is built using a single-layer bidirectional Bi-
GRU as the base module. In addition, a backward GRU
and a forward GRU of the decoder are used together to
form our DQN. The number of GRU hidden layers is set
to 256. Model network parameters are initialized using a
uniform distribution of intervals [-0.1, 0.1]. The learning
rate and batch size are set to 0.05 and 32, respectively.
We first pretrain the base model on a given dataset until
it reaches a convergence state and then train the DQN.
In the initial stage of DQN training, the state space
exploration parameter is set to 1.0, and the step is
gradually reduced to 0.1 in 1,000 steps. Given that the
length of the output sequence is l, its DQN iteration
number is set to 2l [15]. The iteration termination
threshold is set to 0.9. The DQN experience pool size is
set to 200,000, the reward discount factor is set to 0.9,
and the action space size is set to 20; that is, the 10 most
likely words from the vocabulary output distribution
and the attention distribution are chosen.

In the LCSTS dataset, the first 50,000 words in the
training set were selected to form a vocabulary. Other
words were uniformly represented by the <UNK> tag,
and the word vector dimension was set to 200.

On the CNN/DailyMail dataset, the first 25,000
most frequently appeared words were selected to form
the vocabulary, and other words were uniformly
represented by the <UNK> tag. The word vector
dimension is set to 128.

4.4. Experimental Results and Analysis
1) Evaluation results on the LCSTS dataset:
Except for the "Bi-GRU + Distraction" method, the

method and comparison method use the basic unit after
the word segmentation as the word vector to input to
the model. The experimental results are shown in Table
2, where "Bi-GRU" represents the basic model of this
paper. Additionally, an attention mechanism is used in
the decoding process to generate the final abstract by
using a beam search and decoding with a width of 10.
“DQN” represents the optimization model; that is, the
results of the basic model are optimized by the depth Q
network. On this dataset, the comparison methods we
use are as follows.

RNN: the benchmark model first proposed by Hu
[19] on the LCSTS dataset only uses a recurrent neural
network as the implementation summarization of the

(16)

44.. EExxppeerriimmeennttss
This section details the summarization of the evaluation
indicators, datasets and automatic summarization
generation-related comparison algorithms and tests our
methods on two datasets (LCSTS and CNN/DailyMail).

4.1. Evaluation
In this paper, the ROUGE [23] evaluation system is used
to automatically evaluate the summarization. ROUGE
evaluates the quality of the summarization between the
reference summarization and the summarization
generated by the abstract system. ROUGE includes a
series of evaluation methods. The summarization task
usually uses ROUGE-N and ROUGE-L.

n

n

{ en ummaries} gram

{Re f ummaries} gram

()

()

match n
S G S S

n
S S S

Count gram
R

Count gram
∈ ∈

∈ ∈

=
∑ ∑
∑ ∑

 (16)

n

n

{ en ummaries} gram

{ en ummaries} gram

()

()

match n
S G S S

n
S G S S

Count gram
P

Count gram
∈ ∈

∈ ∈

=
∑ ∑
∑ ∑

 (17)

2= R PF
R P
× ×
+ ,

 (18)

where n is the length of the n-gram, which takes 1 and 2
in this evaluation.

The formula for calculating accuracy P, recall rate R
and F of ROUGE-L is as follows:

R=
m

LCS（X, Y） (19)

P=
n

LCS（X, Y） (20)

2

2

(1+)= R PF
R P
β
β
× ×

+ ×
 , (21)

where X is a reference summarization and has a length
of m, Y is summarization generated by the system, the
length is n, ()LCS ⋅ is used to measure the longest
common subsequence and β is a hyperparameter.

4.2. Dataset
LCSTS dataset[19]: LCSTS is a Chinese short text
summarization dataset. Each piece of data was collected
from Sina Weibo in the form of a {short news,
summarization} pair. The dataset includes PARTI,
PARTII, and PARTIII. The specific statistical
information is shown in Table 1. In this paper, using the
same settings as in [14].
CNN/DailyMail dataset: The CNN/DailyMail dataset is
an artificially generated summarization dataset
constructed by Herman [18] based on news articles. This
dataset can be obtained directly from GitHub. This
paper uses the Stanford CoreNLP tool [28] to preprocess
the data. We set the maximum length of the abstract text

and the corresponding summarization to 400 and 100.

Table 1

Statistics of the LCSTS Dataset

LCSTS PARTⅠ PART Ⅱ PART Ⅲ

Quantity 2400059 10666 1106
Quantity(3′≥
)

- 8685 725

4.3. Experiment Setup
The encoder is built using a single-layer bidirectional Bi-
GRU as the base module. In addition, a backward GRU
and a forward GRU of the decoder are used together to
form our DQN. The number of GRU hidden layers is set
to 256. Model network parameters are initialized using a
uniform distribution of intervals [-0.1, 0.1]. The learning
rate and batch size are set to 0.05 and 32, respectively.
We first pretrain the base model on a given dataset until
it reaches a convergence state and then train the DQN.
In the initial stage of DQN training, the state space
exploration parameter is set to 1.0, and the step is
gradually reduced to 0.1 in 1,000 steps. Given that the
length of the output sequence is l, its DQN iteration
number is set to 2l [15]. The iteration termination
threshold is set to 0.9. The DQN experience pool size is
set to 200,000, the reward discount factor is set to 0.9,
and the action space size is set to 20; that is, the 10 most
likely words from the vocabulary output distribution
and the attention distribution are chosen.

In the LCSTS dataset, the first 50,000 words in the
training set were selected to form a vocabulary. Other
words were uniformly represented by the <UNK> tag,
and the word vector dimension was set to 200.

On the CNN/DailyMail dataset, the first 25,000
most frequently appeared words were selected to form
the vocabulary, and other words were uniformly
represented by the <UNK> tag. The word vector
dimension is set to 128.

4.4. Experimental Results and Analysis
1) Evaluation results on the LCSTS dataset:
Except for the "Bi-GRU + Distraction" method, the

method and comparison method use the basic unit after
the word segmentation as the word vector to input to
the model. The experimental results are shown in Table
2, where "Bi-GRU" represents the basic model of this
paper. Additionally, an attention mechanism is used in
the decoding process to generate the final abstract by
using a beam search and decoding with a width of 10.
“DQN” represents the optimization model; that is, the
results of the basic model are optimized by the depth Q
network. On this dataset, the comparison methods we
use are as follows.

RNN: the benchmark model first proposed by Hu
[19] on the LCSTS dataset only uses a recurrent neural
network as the implementation summarization of the

(17)

44.. EExxppeerriimmeennttss
This section details the summarization of the evaluation
indicators, datasets and automatic summarization
generation-related comparison algorithms and tests our
methods on two datasets (LCSTS and CNN/DailyMail).

4.1. Evaluation
In this paper, the ROUGE [23] evaluation system is used
to automatically evaluate the summarization. ROUGE
evaluates the quality of the summarization between the
reference summarization and the summarization
generated by the abstract system. ROUGE includes a
series of evaluation methods. The summarization task
usually uses ROUGE-N and ROUGE-L.

n

n

{ en ummaries} gram

{Re f ummaries} gram

()

()

match n
S G S S

n
S S S

Count gram
R

Count gram
∈ ∈

∈ ∈

=
∑ ∑
∑ ∑

 (16)

n

n

{ en ummaries} gram

{ en ummaries} gram

()

()

match n
S G S S

n
S G S S

Count gram
P

Count gram
∈ ∈

∈ ∈

=
∑ ∑
∑ ∑

 (17)

2= R PF
R P
× ×
+

, (18)

where n is the length of the n-gram, which takes 1 and 2
in this evaluation.

The formula for calculating accuracy P, recall rate R
and F of ROUGE-L is as follows:

R=
m

LCS（X, Y） (19)

P=
n

LCS（X, Y） (20)

2

2

(1+)= R PF
R P
β
β
× ×

+ ×
 , (21)

where X is a reference summarization and has a length
of m, Y is summarization generated by the system, the
length is n, ()LCS ⋅ is used to measure the longest
common subsequence and β is a hyperparameter.

4.2. Dataset
LCSTS dataset[19]: LCSTS is a Chinese short text
summarization dataset. Each piece of data was collected
from Sina Weibo in the form of a {short news,
summarization} pair. The dataset includes PARTI,
PARTII, and PARTIII. The specific statistical
information is shown in Table 1. In this paper, using the
same settings as in [14].
CNN/DailyMail dataset: The CNN/DailyMail dataset is
an artificially generated summarization dataset
constructed by Herman [18] based on news articles. This
dataset can be obtained directly from GitHub. This
paper uses the Stanford CoreNLP tool [28] to preprocess
the data. We set the maximum length of the abstract text

and the corresponding summarization to 400 and 100.

Table 1

Statistics of the LCSTS Dataset

LCSTS PARTⅠ PART Ⅱ PART Ⅲ

Quantity 2400059 10666 1106
Quantity(3′≥
)

- 8685 725

4.3. Experiment Setup
The encoder is built using a single-layer bidirectional Bi-
GRU as the base module. In addition, a backward GRU
and a forward GRU of the decoder are used together to
form our DQN. The number of GRU hidden layers is set
to 256. Model network parameters are initialized using a
uniform distribution of intervals [-0.1, 0.1]. The learning
rate and batch size are set to 0.05 and 32, respectively.
We first pretrain the base model on a given dataset until
it reaches a convergence state and then train the DQN.
In the initial stage of DQN training, the state space
exploration parameter is set to 1.0, and the step is
gradually reduced to 0.1 in 1,000 steps. Given that the
length of the output sequence is l, its DQN iteration
number is set to 2l [15]. The iteration termination
threshold is set to 0.9. The DQN experience pool size is
set to 200,000, the reward discount factor is set to 0.9,
and the action space size is set to 20; that is, the 10 most
likely words from the vocabulary output distribution
and the attention distribution are chosen.

In the LCSTS dataset, the first 50,000 words in the
training set were selected to form a vocabulary. Other
words were uniformly represented by the <UNK> tag,
and the word vector dimension was set to 200.

On the CNN/DailyMail dataset, the first 25,000
most frequently appeared words were selected to form
the vocabulary, and other words were uniformly
represented by the <UNK> tag. The word vector
dimension is set to 128.

4.4. Experimental Results and Analysis
1) Evaluation results on the LCSTS dataset:
Except for the "Bi-GRU + Distraction" method, the

method and comparison method use the basic unit after
the word segmentation as the word vector to input to
the model. The experimental results are shown in Table
2, where "Bi-GRU" represents the basic model of this
paper. Additionally, an attention mechanism is used in
the decoding process to generate the final abstract by
using a beam search and decoding with a width of 10.
“DQN” represents the optimization model; that is, the
results of the basic model are optimized by the depth Q
network. On this dataset, the comparison methods we
use are as follows.

RNN: the benchmark model first proposed by Hu
[19] on the LCSTS dataset only uses a recurrent neural
network as the implementation summarization of the

(18)

where n is the length of the n-gram, which takes 1 and
2 in this evaluation.

The formula for calculating accuracy P, recall rate R
and F of ROUGE-L is as follows:

44.. EExxppeerriimmeennttss
This section details the summarization of the evaluation
indicators, datasets and automatic summarization
generation-related comparison algorithms and tests our
methods on two datasets (LCSTS and CNN/DailyMail).

4.1. Evaluation
In this paper, the ROUGE [23] evaluation system is used
to automatically evaluate the summarization. ROUGE
evaluates the quality of the summarization between the
reference summarization and the summarization
generated by the abstract system. ROUGE includes a
series of evaluation methods. The summarization task
usually uses ROUGE-N and ROUGE-L.

n

n

{ en ummaries} gram

{Re f ummaries} gram

()

()

match n
S G S S

n
S S S

Count gram
R

Count gram
∈ ∈

∈ ∈

=
∑ ∑
∑ ∑

 (16)

n

n

{ en ummaries} gram

{ en ummaries} gram

()

()

match n
S G S S

n
S G S S

Count gram
P

Count gram
∈ ∈

∈ ∈

=
∑ ∑
∑ ∑

 (17)

2= R PF
R P
× ×
+ ,

 (18)

where n is the length of the n-gram, which takes 1 and 2
in this evaluation.

The formula for calculating accuracy P, recall rate R
and F of ROUGE-L is as follows:

R=
m

LCS（X, Y） (19)

P=
n

LCS（X, Y） (20)

2

2

(1+)= R PF
R P
β
β
× ×

+ ×
 , (21)

where X is a reference summarization and has a length
of m, Y is summarization generated by the system, the
length is n, ()LCS ⋅ is used to measure the longest
common subsequence and β is a hyperparameter.

4.2. Dataset
LCSTS dataset[19]: LCSTS is a Chinese short text
summarization dataset. Each piece of data was collected
from Sina Weibo in the form of a {short news,
summarization} pair. The dataset includes PARTI,
PARTII, and PARTIII. The specific statistical
information is shown in Table 1. In this paper, using the
same settings as in [14].
CNN/DailyMail dataset: The CNN/DailyMail dataset is
an artificially generated summarization dataset
constructed by Herman [18] based on news articles. This
dataset can be obtained directly from GitHub. This
paper uses the Stanford CoreNLP tool [28] to preprocess
the data. We set the maximum length of the abstract text

and the corresponding summarization to 400 and 100.

Table 1

Statistics of the LCSTS Dataset

LCSTS PARTⅠ PART Ⅱ PART Ⅲ

Quantity 2400059 10666 1106
Quantity(3′≥
)

- 8685 725

4.3. Experiment Setup
The encoder is built using a single-layer bidirectional Bi-
GRU as the base module. In addition, a backward GRU
and a forward GRU of the decoder are used together to
form our DQN. The number of GRU hidden layers is set
to 256. Model network parameters are initialized using a
uniform distribution of intervals [-0.1, 0.1]. The learning
rate and batch size are set to 0.05 and 32, respectively.
We first pretrain the base model on a given dataset until
it reaches a convergence state and then train the DQN.
In the initial stage of DQN training, the state space
exploration parameter is set to 1.0, and the step is
gradually reduced to 0.1 in 1,000 steps. Given that the
length of the output sequence is l, its DQN iteration
number is set to 2l [15]. The iteration termination
threshold is set to 0.9. The DQN experience pool size is
set to 200,000, the reward discount factor is set to 0.9,
and the action space size is set to 20; that is, the 10 most
likely words from the vocabulary output distribution
and the attention distribution are chosen.

In the LCSTS dataset, the first 50,000 words in the
training set were selected to form a vocabulary. Other
words were uniformly represented by the <UNK> tag,
and the word vector dimension was set to 200.

On the CNN/DailyMail dataset, the first 25,000
most frequently appeared words were selected to form
the vocabulary, and other words were uniformly
represented by the <UNK> tag. The word vector
dimension is set to 128.

4.4. Experimental Results and Analysis
1) Evaluation results on the LCSTS dataset:
Except for the "Bi-GRU + Distraction" method, the

method and comparison method use the basic unit after
the word segmentation as the word vector to input to
the model. The experimental results are shown in Table
2, where "Bi-GRU" represents the basic model of this
paper. Additionally, an attention mechanism is used in
the decoding process to generate the final abstract by
using a beam search and decoding with a width of 10.
“DQN” represents the optimization model; that is, the
results of the basic model are optimized by the depth Q
network. On this dataset, the comparison methods we
use are as follows.

RNN: the benchmark model first proposed by Hu
[19] on the LCSTS dataset only uses a recurrent neural
network as the implementation summarization of the

(19)

44.. EExxppeerriimmeennttss
This section details the summarization of the evaluation
indicators, datasets and automatic summarization
generation-related comparison algorithms and tests our
methods on two datasets (LCSTS and CNN/DailyMail).

4.1. Evaluation
In this paper, the ROUGE [23] evaluation system is used
to automatically evaluate the summarization. ROUGE
evaluates the quality of the summarization between the
reference summarization and the summarization
generated by the abstract system. ROUGE includes a
series of evaluation methods. The summarization task
usually uses ROUGE-N and ROUGE-L.

n

n

{ en ummaries} gram

{Re f ummaries} gram

()

()

match n
S G S S

n
S S S

Count gram
R

Count gram
∈ ∈

∈ ∈

=
∑ ∑
∑ ∑

 (16)

n

n

{ en ummaries} gram

{ en ummaries} gram

()

()

match n
S G S S

n
S G S S

Count gram
P

Count gram
∈ ∈

∈ ∈

=
∑ ∑
∑ ∑

 (17)

2= R PF
R P
× ×
+ ,

 (18)

where n is the length of the n-gram, which takes 1 and 2
in this evaluation.

The formula for calculating accuracy P, recall rate R
and F of ROUGE-L is as follows:

R=
m

LCS（X, Y） (19)

P=
n

LCS（X, Y） (20)

2

2

(1+)= R PF
R P
β
β
× ×

+ ×
 , (21)

where X is a reference summarization and has a length
of m, Y is summarization generated by the system, the
length is n, ()LCS ⋅ is used to measure the longest
common subsequence and β is a hyperparameter.

4.2. Dataset
LCSTS dataset[19]: LCSTS is a Chinese short text
summarization dataset. Each piece of data was collected
from Sina Weibo in the form of a {short news,
summarization} pair. The dataset includes PARTI,
PARTII, and PARTIII. The specific statistical
information is shown in Table 1. In this paper, using the
same settings as in [14].
CNN/DailyMail dataset: The CNN/DailyMail dataset is
an artificially generated summarization dataset
constructed by Herman [18] based on news articles. This
dataset can be obtained directly from GitHub. This
paper uses the Stanford CoreNLP tool [28] to preprocess
the data. We set the maximum length of the abstract text

and the corresponding summarization to 400 and 100.

Table 1

Statistics of the LCSTS Dataset

LCSTS PARTⅠ PART Ⅱ PART Ⅲ

Quantity 2400059 10666 1106
Quantity(3′≥
)

- 8685 725

4.3. Experiment Setup
The encoder is built using a single-layer bidirectional Bi-
GRU as the base module. In addition, a backward GRU
and a forward GRU of the decoder are used together to
form our DQN. The number of GRU hidden layers is set
to 256. Model network parameters are initialized using a
uniform distribution of intervals [-0.1, 0.1]. The learning
rate and batch size are set to 0.05 and 32, respectively.
We first pretrain the base model on a given dataset until
it reaches a convergence state and then train the DQN.
In the initial stage of DQN training, the state space
exploration parameter is set to 1.0, and the step is
gradually reduced to 0.1 in 1,000 steps. Given that the
length of the output sequence is l, its DQN iteration
number is set to 2l [15]. The iteration termination
threshold is set to 0.9. The DQN experience pool size is
set to 200,000, the reward discount factor is set to 0.9,
and the action space size is set to 20; that is, the 10 most
likely words from the vocabulary output distribution
and the attention distribution are chosen.

In the LCSTS dataset, the first 50,000 words in the
training set were selected to form a vocabulary. Other
words were uniformly represented by the <UNK> tag,
and the word vector dimension was set to 200.

On the CNN/DailyMail dataset, the first 25,000
most frequently appeared words were selected to form
the vocabulary, and other words were uniformly
represented by the <UNK> tag. The word vector
dimension is set to 128.

4.4. Experimental Results and Analysis
1) Evaluation results on the LCSTS dataset:
Except for the "Bi-GRU + Distraction" method, the

method and comparison method use the basic unit after
the word segmentation as the word vector to input to
the model. The experimental results are shown in Table
2, where "Bi-GRU" represents the basic model of this
paper. Additionally, an attention mechanism is used in
the decoding process to generate the final abstract by
using a beam search and decoding with a width of 10.
“DQN” represents the optimization model; that is, the
results of the basic model are optimized by the depth Q
network. On this dataset, the comparison methods we
use are as follows.

RNN: the benchmark model first proposed by Hu
[19] on the LCSTS dataset only uses a recurrent neural
network as the implementation summarization of the

(20)

44.. EExxppeerriimmeennttss
This section details the summarization of the evaluation
indicators, datasets and automatic summarization
generation-related comparison algorithms and tests our
methods on two datasets (LCSTS and CNN/DailyMail).

4.1. Evaluation
In this paper, the ROUGE [23] evaluation system is used
to automatically evaluate the summarization. ROUGE
evaluates the quality of the summarization between the
reference summarization and the summarization
generated by the abstract system. ROUGE includes a
series of evaluation methods. The summarization task
usually uses ROUGE-N and ROUGE-L.

n

n

{ en ummaries} gram

{Re f ummaries} gram

()

()

match n
S G S S

n
S S S

Count gram
R

Count gram
∈ ∈

∈ ∈

=
∑ ∑
∑ ∑

 (16)

n

n

{ en ummaries} gram

{ en ummaries} gram

()

()

match n
S G S S

n
S G S S

Count gram
P

Count gram
∈ ∈

∈ ∈

=
∑ ∑
∑ ∑

 (17)

2= R PF
R P
× ×
+ ,

 (18)

where n is the length of the n-gram, which takes 1 and 2
in this evaluation.

The formula for calculating accuracy P, recall rate R
and F of ROUGE-L is as follows:

R=
m

LCS（X, Y） (19)

P=
n

LCS（X, Y） (20)

2

2

(1+)= R PF
R P
β
β
× ×

+ ×
 , (21)

where X is a reference summarization and has a length
of m, Y is summarization generated by the system, the
length is n, ()LCS ⋅ is used to measure the longest
common subsequence and β is a hyperparameter.

4.2. Dataset
LCSTS dataset[19]: LCSTS is a Chinese short text
summarization dataset. Each piece of data was collected
from Sina Weibo in the form of a {short news,
summarization} pair. The dataset includes PARTI,
PARTII, and PARTIII. The specific statistical
information is shown in Table 1. In this paper, using the
same settings as in [14].
CNN/DailyMail dataset: The CNN/DailyMail dataset is
an artificially generated summarization dataset
constructed by Herman [18] based on news articles. This
dataset can be obtained directly from GitHub. This
paper uses the Stanford CoreNLP tool [28] to preprocess
the data. We set the maximum length of the abstract text

and the corresponding summarization to 400 and 100.

Table 1

Statistics of the LCSTS Dataset

LCSTS PARTⅠ PART Ⅱ PART Ⅲ

Quantity 2400059 10666 1106
Quantity(3′≥
)

- 8685 725

4.3. Experiment Setup
The encoder is built using a single-layer bidirectional Bi-
GRU as the base module. In addition, a backward GRU
and a forward GRU of the decoder are used together to
form our DQN. The number of GRU hidden layers is set
to 256. Model network parameters are initialized using a
uniform distribution of intervals [-0.1, 0.1]. The learning
rate and batch size are set to 0.05 and 32, respectively.
We first pretrain the base model on a given dataset until
it reaches a convergence state and then train the DQN.
In the initial stage of DQN training, the state space
exploration parameter is set to 1.0, and the step is
gradually reduced to 0.1 in 1,000 steps. Given that the
length of the output sequence is l, its DQN iteration
number is set to 2l [15]. The iteration termination
threshold is set to 0.9. The DQN experience pool size is
set to 200,000, the reward discount factor is set to 0.9,
and the action space size is set to 20; that is, the 10 most
likely words from the vocabulary output distribution
and the attention distribution are chosen.

In the LCSTS dataset, the first 50,000 words in the
training set were selected to form a vocabulary. Other
words were uniformly represented by the <UNK> tag,
and the word vector dimension was set to 200.

On the CNN/DailyMail dataset, the first 25,000
most frequently appeared words were selected to form
the vocabulary, and other words were uniformly
represented by the <UNK> tag. The word vector
dimension is set to 128.

4.4. Experimental Results and Analysis
1) Evaluation results on the LCSTS dataset:
Except for the "Bi-GRU + Distraction" method, the

method and comparison method use the basic unit after
the word segmentation as the word vector to input to
the model. The experimental results are shown in Table
2, where "Bi-GRU" represents the basic model of this
paper. Additionally, an attention mechanism is used in
the decoding process to generate the final abstract by
using a beam search and decoding with a width of 10.
“DQN” represents the optimization model; that is, the
results of the basic model are optimized by the depth Q
network. On this dataset, the comparison methods we
use are as follows.

RNN: the benchmark model first proposed by Hu
[19] on the LCSTS dataset only uses a recurrent neural
network as the implementation summarization of the

,
(21)

where X is a reference summarization and has a
length of m, Y is summarization generated by the sys-
tem, the length is n, LCS(∙) is used to measure the lon-
gest common subsequence and β is a hyperparameter.

4.2. Dataset
LCSTS dataset[19]: LCSTS is a Chinese short text
summarization dataset. Each piece of data was col-
lected from Sina Weibo in the form of a {short news,
summarization} pair. The dataset includes PARTI,
PARTII, and PARTIII. The specific statistical infor-
mation is shown in Table 1. In this paper, using the
same settings as in [14].

Table 1
Statistics of the LCSTS Dataset

LCSTS PART I PART II PART III

Quantity 2400059 10666 1106

Quantity (≥3') - 8685 725

CNN/DailyMail dataset: The CNN/DailyMail data-
set is an artificially generated summarization dataset
constructed by Herman [18] based on news articles.
This dataset can be obtained directly from GitHub.
This paper uses the Stanford CoreNLP tool [28] to
preprocess the data. We set the maximum length of
the abstract text and the corresponding summariza-
tion to 400 and 100.

4.3. Experiment Setup
The encoder is built using a single-layer bidirectional
Bi-GRU as the base module. In addition, a backward
GRU and a forward GRU of the decoder are used to-

Information Technology and Control 2021/3/50466

gether to form our DQN. The number of GRU hidden
layers is set to 256. Model network parameters are ini-
tialized using a uniform distribution of intervals [-0.1,
0.1]. The learning rate and batch size are set to 0.05 and
32, respectively. We first pretrain the base model on a
given dataset until it reaches a convergence state and
then train the DQN. In the initial stage of DQN training,
the state space exploration parameter is set to 1.0, and
the step is gradually reduced to 0.1 in 1,000 steps. Given
that the length of the output sequence is l, its DQN iter-
ation number is set to 2l [15]. The iteration termination
threshold is set to 0.9. The DQN experience pool size is
set to 200,000, the reward discount factor is set to 0.9,
and the action space size is set to 20; that is, the 10 most
likely words from the vocabulary output distribution
and the attention distribution are chosen.
In the LCSTS dataset, the first 50,000 words in the
training set were selected to form a vocabulary. Other
words were uniformly represented by the <UNK> tag,
and the word vector dimension was set to 200.
On the CNN/DailyMail dataset, the first 25,000 most
frequently appeared words were selected to form the
vocabulary, and other words were uniformly repre-
sented by the <UNK> tag. The word vector dimension
is set to 128.

4.4. Experimental Results and Analysis
1 Evaluation results on the LCSTS dataset:
Except for the “Bi-GRU + Distraction” method, the
method and comparison method use the basic unit af-
ter the word segmentation as the word vector to input
to the model. The experimental results are shown in
Table 2, where “Bi-GRU” represents the basic model
of this paper. Additionally, an attention mechanism
is used in the decoding process to generate the final
abstract by using a beam search and decoding with a
width of 10. “DQN” represents the optimization mod-
el; that is, the results of the basic model are optimized
by the depth Q network. On this dataset, the compari-
son methods we use are as follows.
RNN: the benchmark model first proposed by Hu [19]
on the LCSTS dataset only uses a recurrent neural
network as the implementation summarization of the
encoder and decoder.
RNN context: A reinforcement model proposed by Hu
[19]. The difference is that in the decoding process, all
hidden layer states of the encoder are input to the de-
coder as context.

COPYNET: A replication mechanism was proposed
by Gu [14] and incorporated into sequence-to-se-
quence learning. COPYNET can combine the repli-
cation mechanism with the sequence generation pro-
cess of the traditional decoder so that it can directly
select the corresponding subsequence.
Bi-GRU + Distraction: A novel attention mecha-
nism method proposed by Chen [4], which differs
from the above method in that the test result is
based on characters as a basic unit, that is, a Chi-
nese character.
The basic model “Bi-GRU” used in this paper and the
“RNN context” method used by Hu [19] are based on
GRU construction. Unlike the latter, our basic mod-
el constructs an encoder and also adds attention
mechanisms in the decoding process. Therefore, our
base model performs better than the “RNN context”
method. The “COPYNET” method and the “Bi-GRU
+ Distraction” method can be seen as introducing a
replication mechanism and a new attention mech-
anism on top of our basic model. Our optimization
model “DQN” introduces the optimization process of
reinforcement learning to achieve the initial summa-
rization of the basic model. From the experimental
results, we can conclude that our optimization model
achieves the best results.
2 Evaluation results on the CNN/DailyMail dataset:
As seen in Table 3, the comparison method we used
includes some methods used on LCSTS data, includ-
ing TextRank [30], LexRank [11], Luhn[26], Edmund-
son [10], LSA [44], Sum-basic [15] and KL-sum [16].
The experimental results of these methods can be
achieved through the open source tool SUMY.

Table 2
Result on the LCSTS Dataset

Methods Rouge-1 Rouge-2 Rouge-L

RNN 17.7 8.5 15.8

RNN context 26.8 16.1 24.1

COPYNET 35.0 22.3 32.0

Bi-GRU + Distraction 35.2 22.1 32.5

Bi-GRU 28.4 19.2 28.5

DQN 35.7 22.6 32.8

467Information Technology and Control 2021/3/50

Table 3
Result on the CNN/DailyMail Dataset

Methods Rouge-1 Rouge-2 Rouge-L

Luhn 23.2 7.2 15.5

Edmundson 24.5 8.2 16.7

LSA 21.2 6.2 14.0

LexRank 26.1 7.9 17.7

TextRank 23.3 7.7 15.8

Sum-basic 22.9 5.5 14.8

KL-sum 20.7 5.9 13.7

Bi-GRU+ Distraction 27.1 8.2 18.3

Bi-GRU 19.3 5.3 14.8

DQN 27.2 9.6 18.7

From the experimental results, we can conclude that
our optimization model achieves the best results.
In the two datasets, the optimization effect in the
ROUGE-1 evaluation was significantly higher than
that of ROUGE-2 and ROUGE-L. Since our DQN
model is more likely to be rewarded for selecting an
individual action from the action candidate space
each time in the iterative optimization summariza-
tion, the ROUGE-1 score is more likely to be updated.

5. Conclusions
This paper proposes a reinforcement text summari-
zation optimization method based on deep enhanced
learning. An attention mechanism-based seq2seq
model is used to generate the initial summarization
and the action candidate space required for reinforce-
ment learning, and then the deep Q network is used to
optimize the initial summarization on the action can-
didate space. The experimental results show that the
effect of the optimized method obviously improved.
Since the results generated by the base model limit
the final performance of our optimization method,
in future work, we consider applying reinforcement
learning directly to optimize the parameters of the
base model to obtain better results.

Acknowledgement
This work is supported in part by the National Natural
Science Foundation of China under Grants 61906044
and 61672006, and in part by Big Data and Intelligent
Computing Innovation Team of Fuyang Normal Uni-
versity under Grants XDHXTD201703, and in part by
Fuyang Humanities and Social Science Research Spe-
cial Project under Grants FYSK2019QD10, and in part
by Natural Science Research Project of Fuyang Normal
University under Grants 2020XXGN01, and in part by
the key projects of natural science research in Anhui
colleges and universities under Grants KJ2019A0529,
KJ2019A0532, KJ2019A0542 and KJ2020ZD48.

References
1. Bahdanau, D., Brakel, P., Xu, K., et al. An Actor-Critic Al-

gorithm for Sequence Prediction. ArXiv preprint arX-
iv:1607.07086, 2016.

2. Bahdanau, D., Cho, K., Bengio, Y. Neural Machine Trans-
lation by Jointly Learning to Align and Translate. ArXiv
preprint arXiv:1409.0473, 2014.

3. Carbonell, J., Goldstein, J. The Use of MMR, Diversi-
ty-Based Reranking for Reordering Documents and
Producing Summaries. Proceedings of the 21st Annu-
al International ACM SIGIR Conference on Research
and Development in Information Retrieval. ACM, 1998,
335-336. https://doi.org/10.1145/290941.291025

4. Chen, Q., Zhu, X. D., Ling, Z. H., et al. Distraction-Based
Neural Networks for Modeling Document. IJCAI, 2016,
2754-2760.

5. Cheng, J., Lapata, M. Neural Summarization by Extracting
Sentences and Words. ArXiv preprint arXiv:1603.07252,
2016. https://doi.org/10.18653/v1/P16-1046

6. Chopra, S., Auli, M., Rush, A. M., et al. Abstractive Sen-
tence Summarization with Attentive Recurrent Neu-
ral Networks. HLT-NAACL, 2016, 93-98. https://doi.
org/10.18653/v1/N16-1012

7. Chung, J., Gulcehre, C., Cho, K., et al. Gated Feedback
Recurrent Neural Networks. International Conference
on Machine Learning, 2015, 2067-2075.

8. Chung, J., Gulcehre, C., Cho, K. H., et al. Empirical
Evaluation of Gated Recurrent Neural Networks on
Sequence Modeling. ArXiv preprint arXiv:1412.3555,
2014.

https://doi.org/10.1145/290941.291025
https://doi.org/10.18653/v1/P16-1046
https://doi.org/10.18653/v1/N16-1012
https://doi.org/10.18653/v1/N16-1012

Information Technology and Control 2021/3/50468

9. Das, D., Martins, A. F. T. A Survey on Automatic Text
Summarization. Literature Survey for the Language
and Statistics II course at CMU, 2007, 4, 192-195.

10. Edmundson, H. P. New Methods in Automatic Extract-
ing. Journal of the ACM (JACM), 1969, 16(2), 264-285.
https://doi.org/10.1145/321510.321519

11. Erkan G, Radev D R. Lexrank: Graph-based lexical
centrality as salience in text summarization. Journal
of Artificial Intelligence Research, 2004, 22: 457-479.
https://doi.org/10.1613/jair.1523

12. Ganesan, K., Zhai, C. X, Han, J. Opinosis: A Graph-Based
Approach to Abstractive Summarization of Highly Re-
dundant Opinions. Proceedings of the 23rd Interna-
tional Conference on Computational Linguistics, Asso-
ciation for Computational Linguistics, 2010, 340-348.

13. Gulcehre, C., Ahn, S., Nallapati, R., et al. Pointing the
Unknown Words. ArXiv preprint arXiv:1603.08148,
2016. https://doi.org/10.18653/v1/P16-1014

14. Gu, J., Lu, Z., Li, H., et al. Incorporating Copying Mech-
anism in Sequence-to-Sequence Learning. ArXiv pre-
print arXiv:1603.06393, 2016. https://doi.org/10.18653/
v1/P16-1154

15. Guo, H. Generating Text with Deep Reinforcement
Learning. ArXiv preprint arXiv:1510.09202, 2015.

16. Haghighi, A., Vanderwende, L. Exploring Content Mod-
els for Multi-Document Summarization. Proceedings
of Human Language Technologies: The 2009 Annual
Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics, Association for
Computational Linguistics, 2009, 362-370. https://doi.
org/10.3115/1620754.1620807

17. Hermann K M, Kocisky T, Grefenstette E, et al. Teach-
ing machines to read and comprehend. Advances in
Neural Information Processing Systems. 2015: 1693-
1701

18. Hochreiter, S., Schmidhuber, J. Long Short-Term Mem-
ory. Neural Computation, 1997, 9(8), 1735-1780. https://
doi.org/10.1162/neco.1997.9.8.1735

19. Hu, B., Chen, Q., Zhu, F. Lcsts: A Large Scale Chinese
Short Text Summarization Dataset. ArXiv preprint
arXiv:1506.05865, 2015. https://doi.org/10.18653/v1/
D15-1229

20. Kaelbling, L. P., Littman, M. L., Moore, A. W. An In-
troduction to Reinforcement Learning. The Biology
and Technology of Intelligent Autonomous Agents.
Springer, Berlin, Heidelberg, 1995, 90-127. https://doi.
org/10.1007/978-3-642-79629-6_5

21. Kågebäck, M., Mogren, O., Tahmasebi, N., et al. Ex-
tractive Summarization Using Continuous Vector
Space Models. Proceedings of the 2nd Workshop on
Continuous Vector Space Models and their Composi-
tionality (CVSC), 2014, 31-39. https://doi.org/10.3115/
v1/W14-1504

22. Kejun, Z., Weinan, L. I., Rong, Q., et al. Automatic Text
Summarization Scheme Based on Deep Learning. Jour-
nal of Computer Applications, 2019, 311-315.

23. Lin, C. Y. Rouge: A Package for Automatic Evaluation
of Summaries. Text summarization branches out: Pro-
ceedings of the ACL-04 workshop, 2004, 8.

24. Ling, W., Grefenstette, E., Hermann, K. M., et al. Latent
Predictor Networks for Code Generation. ArXiv pre-
print arXiv:1603.06744, 2016. https://doi.org/10.18653/
v1/P16-1057

25. Lin, L. J. Reinforcement Learning for Robots Using
Neural Networks. Carnegie-Mellon University Pitts-
burgh PA School of Computer Science, 1993.

26. Luhn, H. P. The Automatic Creation of Literature Ab-
stracts. IBM Journal of Research and Development,
1958, 2(2), 159-165. https://doi.org/10.1147/rd.22.0159

27. Mani, I. Automatic Summarization. John Benjamins
Publishing, 2001. https://doi.org/10.1075/nlp.3

28. Manning, C. D., Surdeanu, M., Bauer, J., et al. The Stan-
ford Corenlp Natural Language Processing Toolkit.
ACL (System Demonstrations), 2014, 55-60. https://doi.
org/10.3115/v1/P14-5010

29. Merity, S., Xiong, C., Bradbury, J., et al. Pointer Senti-
nel Mixture Models. ArXiv preprint arXiv:1609.07843,
2016.

30. Mihalcea, R., Tarau, P. TextRank: Bringing Order into
Tex. EMNLP, 2004, 4, 404-411.

31. Minaee, S., Kalchbrenner, N., Cambria, E. Deep Learn-
ing Based Text Classification: A Comprehensive Review
[ArXiv preprint arXiv:2004.03705, 2020.

32. Mnih, V., Kavukcuoglu, K., Silver, D., et al. Human-Level
Control Through Deep Reinforcement Learning. Na-
ture, 2015, 518(7540), 529-533. https://doi.org/10.1038/
nature14236

33. Nallapati, R., Zhai, F., Zhou, B. SummaRuNNer: A Re-
current Neural Network Based Sequence Model for
Extractive Summarization of Documents. Thirty-First
AAAI Conference on Artificial Intelligence.

34. Nallapati, R., Zhou, B., Gulcehre, C., et al. Abstractive
Text Summarization Using Sequence-to-Sequence

https://doi.org/10.1145/321510.321519
https://doi.org/10.1613/jair.1523
https://doi.org/10.18653/v1/P16-1014
https://doi.org/10.18653/v1/P16-1154
https://doi.org/10.18653/v1/P16-1154
https://doi.org/10.3115/1620754.1620807
https://doi.org/10.3115/1620754.1620807
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.18653/v1/D15-1229
https://doi.org/10.18653/v1/D15-1229
https://doi.org/10.1007/978-3-642-79629-6_5
https://doi.org/10.1007/978-3-642-79629-6_5
https://doi.org/10.3115/v1/W14-1504
https://doi.org/10.3115/v1/W14-1504
https://doi.org/10.18653/v1/P16-1057
https://doi.org/10.18653/v1/P16-1057
https://doi.org/10.1147/rd.22.0159
https://doi.org/10.1075/nlp.3
https://doi.org/10.3115/v1/P14-5010
https://doi.org/10.3115/v1/P14-5010
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236

469Information Technology and Control 2021/3/50

Rnns and Beyond. ArXiv preprint arXiv:1602.06023,
2016. https://doi.org/10.18653/v1/K16-1028

35. Nenkova, A., McKeown, K. A Survey of Text Summa-
rization Techniques. Mining Text Data, 2012, 43-76.
https://doi.org/10.1007/978-1-4614-3223-4_3

36. Page, L., Brin, S., Motwani, R., et al. The PageRank Ci-
tation Ranking: Bringing Order to the Web. Stanford
InfoLab, 1999.

37. Patel, R., Thakkar, A., Makwana, K. Comprehensive and
Evolution Study Focusing on Comparative Analysis of
Automatic Text Summarization. International Con-
ference on Information and Communication Technol-
ogy for Intelligent Systems, 2018, 383-389. https://doi.
org/10.1007/978-3-319-63645-0_43

38. Ranzato, M. A., Chopra, S., Auli, M., et al. Sequence Lev-
el Training with Recurrent Neural Networks. ArXiv
preprint arXiv:1511.06732, 2015.

39. Rennie, S. J., Marcheret, E., Mroueh, Y., et al. Self-Criti-
cal Sequence Training for Image Captioning. ArXiv pre-
print arXiv:1612.00563, 2016. https://doi.org/10.1109/
CVPR.2017.131

40. Rush, A. M., Chopra, S., Weston, J. A Neural Atten-
tion Model for Abstractive Sentence Summarization.
ArXiv preprint arXiv:1509.00685, 2015. https://doi.
org/10.18653/v1/D15-1044

41. See, A., Liu, P. J., Manning, C. D. Get to the Point:
Summarization with Pointer-Generator Networks.
ArXiv preprint arXiv:1704.04368, 2017. https://doi.
org/10.18653/v1/P17-1099

42. Silver, D., Sutton, R. S., Müller, M. Reinforcement
Learning of Local Shape in the Game of Go. IJCAI,
2007, 7, 1053-1058.

43. Socher, R., Huang, E. H., Pennin, J, et al. Dynamic Pool-
ing and Unfolding Recursive Autoencoders for Para-
phrase Detection. Advances in Neural Information Pro-
cessing Systems, 2011, 801-809.

44. Steinberger, J., Jezek, K. Using Latent Semantic Analy-
sis in Text Summarization and Summarization Evalua-
tion. Proceedings of ISIM’04, 2004, 93-100.

45. Sutskever, I., Vinyals, O., Le, Q. V. Sequence to sequence
Learning with Neural Networks. Advances in Neural
Information Processing Systems, 2014, 3104-3112.

46. Vanderwende, L., Suzuki, H., Brockett, C., et al. Beyond
SumBasic: Task-focused Summarization with Sen-
tence Simplification and Lexical Expansion. Informa-
tion Processing and Management, 2007, 43(6), 1606-
1618. https://doi.org/10.1016/j.ipm.2007.01.023

47. Vinyals, O., Fortunato, M., Jaitly, N. Pointer Networks.
Advances in Neural Information Processing Systems,
2015, 2692-2700.

48. Williams, R. J. Simple Statistical Gradient-Following
Algorithms for Connectionist Reinforcement Learning.
Machine Learning, 1992, 8(3-4), 229-256. https://doi.
org/10.1007/BF00992696

49. Yin, W., Pei, Y. Optimizing Sentence Modeling and Se-
lection for Document Summarization. IJCAI, 2015,
1383-1389.

50. Zhu, X., Penn, G. Comparing the Roles of Textual,
Acoustic and Spoken-Language Features on Sponta-
neous-Conversation Summarization. Proceedings of
the Human Language Technology Conference of the
NAACL, Companion Volume: Short Papers, Associ-
ation for Computational Linguistics, 2006, 197-200.
https://doi.org/10.3115/1614049.1614099

51. Zhu, X., Penn, G., Rudzicz, F. Summarizing Multiple
Spoken Documents: Finding Evidence from Untran-
scribed Audio. Proceedings of the Joint Conference of
the 47th Annual Meeting of the ACL and the 4th Inter-
national Joint Conference on Natural Language Pro-
cessing of the AFNLP: Volume 2-Volume 2, Association
for Computational Linguistics, 2009, 549-557. https://
doi.org/10.3115/1690219.1690223

This article is an Open Access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.1007/978-1-4614-3223-4_3
https://doi.org/10.1007/978-3-319-63645-0_43
https://doi.org/10.1007/978-3-319-63645-0_43
https://doi.org/10.1109/CVPR.2017.131
https://doi.org/10.1109/CVPR.2017.131
https://doi.org/10.18653/v1/D15-1044
https://doi.org/10.18653/v1/D15-1044
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.1016/j.ipm.2007.01.023
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://doi.org/10.3115/1614049.1614099
https://doi.org/10.3115/1690219.1690223
https://doi.org/10.3115/1690219.1690223

