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The transmission of sensitive and secret images over a public network demands effective techniques to safe-
guard and conceal the data. In this paper, a symmetric multiple color image encryption technique is proposed 
by adopting a dual permutation and dual substitution framework. Initially, the input images are combined into 
a large image and then segmented into pure-image elements. These pure-image elements are permuted using 
the elementary cellular automata Rule-30 and zigzag pattern scanning. Finally, pixel values are substituted by 
employing the circular shift method and 2D logistic map. The efficiency of this method is quantified, based on 
the unified average changing intensity (UACI), information entropy, number of pixels change rate (NPCR), key 

mailto:obodovskiy58@gmail.com


Information Technology and Control 2021/1/5056

sensitivity, key space, histogram, peak signal-to-noise ratio (PSNR) and correlation coefficient (CC) perfor-
mance metrics. The outcome of the experiments and a comparative analysis with two similar methods indicate 
that the proposed method produced high security results.
KEYWORDS: Cellular automata; chaos; substitution; permutation; mixed image elements.

1. Introduction
High speed networks and communication infrastruc-
ture in the modern digital facilitate easy and rapid 
online communication. Online, real-time commu-
nication is put to good use in telemedicine, weather 
monitoring, defense surveillance, and social media, to 
name a few. In these fields, images area primary source 
of information and, further, a massive quantum of vi-
sual content is transmitted using public networks and 
stored in the cloud. Given that such digital images may 
contain secret and sensitive information of a personal, 
financial or national nature, it is imperative to ensure 
their safety in order to stop in formation leaks. Image 
encryption is a great way to protect digital images, es-
pecially during their transmission. Image encryption 
renders meaningful images unrecognizable. Classical 
encryption techniques that work well on textual data 
do not do so on images, owing to their high correlation 
and colossal dimensions. Therefore, digital image en-
ciphering has emerged as a key area of study. Over the 
last few years, experts have proposed image ciphers 
based on the chaos theory and cellular automata. Cel-
lular automata exhibit fascinating properties like com-
plex behavior and unpredictability in terms of simple 
rules, while chaotic maps possess excellent sensitivity 
and ergodicity. Hence, the union of cellular automata 
(CA) and chaos theory-based image encryption design 
offers a superior solution for image security issues.

1.1. Related Work

Wolfram introduced the notion of using cellular au-
tomata to produce secret keys [34], and since then 
much work has been carried out on CA-based ciphers. 
Jin proposed a fast image cipher using a cellular au-
tomata-generated attractor as the encryption func-
tion [12]. In this technique, the state attractor based 
key streams contain at most eight states only. Zhang 
et al. [41], proposed a two-dimensional cellular au-
tomata-based image cryptosystem, in which balanced 
CA are used for permutation. The experiments proved 
that this technique powerful enough to withstand sta-

tistical attacks. Chai et al. proposed an image encryp-
tion and compression technique by employing CA 
and compressive sampling [5]. Their algorithm uses 
the cellular automata rule to achieve confusion. But 
the entropy values of the encrypted images are low. 
Jeyaram [11] et al. proposed a new cellular automa-
ta-based image cipher that uses a radius-2, class-III 
CA to scramble pixels. A cellular automata and DNA 
computing-based image encryption method was pre-
sented by Zhou et al. [45]. Their scheme introduces 
the Thymine DNA cellular automata and T-DNA-
CA for encryption. This algorithm has high compu-
tational overhead. Mondal et al. proposed a cellular 
automata-based image cryptosystem [19], where CA 
are adopted to produce a pseudo-random sequence 
that confronts noise attacks efficiently. Hanis [9] et 
al. presented a dual-image encryption-compression 
technique that employs cellular automata and a mod-
ified convolution technique. Their scheme utilized 
a set of CA rules to scramble pixel locations. Perales 
[21] proposed a cellular automata-based color image 
cipher, with the elementary CA Rule-45 used for key 
generation. Asadollahi et al. [2], proposed an image 
enciphering method based on cellular automata and 
the Arnold map, wherein cellular automata are used 
to change pixel values. The above schemes are de-
signed only for single-image encryption. 
Matthews [18] pointed to the application of chaos in 
encryption algorithms, and since then a slew of chaos 
theory-based image ciphers have been presented. An 
image encryption fusion and compression approach, 
based on chaos and compressive sampling, was put 
forward [17], with a 1D logistic map used to build a 
sensing matrix. Ramasamy [22] et al. introduced an 
image cipher using enhanced logistic-tend map. This 
scheme achieved both confusion and diffusion prop-
erties of an ideal cipher. A novel image cryptosystem 
that uses a 1D logistic map and random sampling was 
introduced by Zhu et al. [46]. The hardware and soft-
ware design of 1D map-based schemes are simple, but 
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the smaller key space makes the technique suscepti-
ble to brute force attacks. The RGB image cipher, us-
ing chaos and the Chinese remainder theorem, was 
introduced by Guo et al. [8]. Their technique uses a 
chaotic quantum map to shuffle the RGB image. Patro 
[20] et al. proposed a chaos theory-based multi-image 
cryptosystem whereas cross-coupled map is used for 
executing diffusion and permutation operations, with 
the results indicating that their algorithm confronts 
known plain-image and chosen plain-image attacks. 
Sui et al. [25], presented a dual image enciphering 
scheme using a logistic map and the discrete fraction-
al transform. The logistic map in this technique relo-
cates and modifies image pixel values, and the method 
demonstrates a significant resistance to conventional 
cipher image-only attacks. Sui et al. again presented 
a dual-image cipher using a fractional angular trans-
form and coupled logistic map [26], wherein the frac-
tional computation takes a much longer encryption 
time. Liu [16] et al. proposed a chaotic system-based 
dual-image cryptosystem employing S-boxes and 
a chaotic sequence for dual-image diffusion, with a 
large key space being the strength of the algorithm. 
Zhang [40] et al. presented a chaotic map and a per-
mutation model-based multiple-image cipher tech-
nique. Li et al. [14], proposed a dual-image encipher-
ing scheme by adopting the chaos theory and gyrator 
transform, in which a standard map is utilized to gen-
erate the position of the pixel scrambling area. A cycle 
shift and chaos theory-based image cipher was pro-
posed by Wang et al. [33], where pixel substitution is 
realized by the circular shift which greatly increases 
security. Zhou et al. designed a 1D logistic map and co-
sparse representation-based dual-image encryption 
scheme [44], utilizing the chaotic map to construct a 
measurement matrix. This method showed poor re-
sistance against statistical attacks. Tutueva [29] et al. 
introduced a method using adaptive chaotic map to 
construct chaos-based cipher. This scheme achieved 
larger key space. Tutueva [30] et al. again utilized 
adaptive chatic maps to create hash function. This 
novel approach effectively counters birthday attack. 
Sawlikar [24] et al. reported a dual-image encryption 
and compression scheme that undertakes two stages 
of encryption for enhanced security strength. Alfalou 
et al. [1], introduced a many-image simultaneous en-
cryption, fusion and compression scheme in which 
encryption is executed by utilizing biometric infor-

mation. A multiple-image cipher to protect medical 
images was proposed [3].  Zhong [42] et al. presented a 
dual-image cryptosystem by adopting random-phase 
encoding. Zhang [37] et al. designed a many-image 
cipher scheme utilizing the orthogonal basis matrix 
and double random-phase encoding, where images 
are encrypted in parallel. Their algorithm strongly re-
sists occlusion attacks, though the computation cost 
is higher. Xiong [36], proposed a vector decomposi-
tion-based many-image cryptosystem that uses pri-
vate keys, in addition, for enhanced security. Chen [6] 
et al. presented a multiple-image asymmetric cipher 
based on compressive sampling and feature fusion. In 
reference [43], Nanrun et al. developed a dual-image 
enciphering technique using the discrete fractional 
random transform and discrete wavelet transform. 
Zhang [39] et al. introduced a novel many-image en-
cryption scheme based on the mixed-image elements 
obtained from the many images used. Xiaoqiang et al. 
[38], again designed a multi-image cipher using chaos 
and mixed-image content. Karawia [13] et al. devel-
oped a many-image cryptosystem based on an eco-
nomic map and mixed-image elements. Most of the 
dual- and multi-image ciphers presented above are 
indented only for grayscale image encryption.

1.2. Motivation and Justification
An array of internet-based applications, such as tele-
medicine, cloud computing, and social media, transmit 
large volumes of secret images over public networks. 
The security of these sensitive images is a major con-
cern, with image encryption working best for image 
data protection. Cellular automata are very simple 
rules that generate highly complex random patterns 
that have been applied successfully in cryptograph-
ic algorithms. Chaos is a phenomenon that occurs in 
greatly sensitive, deterministic nonlinear dynamical 
systems. It is extremely difficult to predict chaos be-
havior, and chaos theory has been a good candidate for 
image encryption techniques. Circular shift operations 
can be used to perform value substitution operations 
effectively and with little computation, while zigzag 
order scanning can be used for satisfactory permuta-
tion operations. Reconstructing an original image from 
very small-sized, mixed-image elements is impossible 
without keys. All of the above has motivated the devel-
opment of a symmetric color image encryption scheme 
using cellular automata, zigzag scanning, circular 
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shifts, chaos and mixed-image elements. The proposed 
algorithm obtains good numerical results, thus demon-
strating that the new scheme is most suitable for multi-
ple color image encryptions. 

1.3. An Outline of the Proposed Work
The proposed technique consists of the following five 
main steps: a) secret keys are calculated from input 
images; b) the input images are combined into a large 
image and pure- image elements obtained by segmen-
tation; c) two-level permutation is performed using 
cellular automata and zigzag scanning; d) two-level 
substitution is performed using the circular shift and 
2D-logistic map, and e) the big encrypted image is 
segmented into smaller images.

1.4. Contribution
The contributions of our work include the following: 
a) Dual permutation – dual substitution framework: 
image encryption is performed by adopting a dual 
permutation and dual substitution framework that 
effectively dissipate the statistical structure of plain-
text and enhances confusion property; b) Key Selec-
tion: The initial configurations for cellular automata, 
the starting position for zigzag scanning, the starting 
seeds for the logistic map, and the 512-bit hash are the 
keys of this system which offers larger key space and 
withstand plaintext-based threats.

1.5. Paper Organization 
The rest of this paper is arranged as follows. Section 2 
describes the mixed-image elements, cellular autom-
ata, zigzag pattern, circular shift and 2D logistic map. 
Section 3 presents the proposed multiple color image 
enciphering and deciphering procedures. Section 4 
outlines the experimental setup. Section 5 lists and an-
alyzes, in detail, the experimental results. Section 6 dis-
cusses the results, and Section 7 concludes the paper.

2. A Basic Background 

2.1. Mixed Image Elements
Matrix algebra makes it possible to segment a matrix 
into sub-matrices and, conversely, sub-matrices can 
be combined to form a single matrix. Images are treat-
ed as matrices while processing so they can be divided 

and merged [38-39]. For instance, the input image1, 
shown in Figure 1.a, can be segmented into 64 small 
sub-images, as shown in Figure 1.b, and the sub-imag-
es joined easily. Consider that 
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 2.2 Cellular Automata  
 
Conventional science uses mathematical models 
to describe phenomena in the natural world. The 
underlying principle of cellular automata (CA) is 
the use of simple rules, in the form of programs, 
to create models that describe the world [34]. 
What is remarkable about cellular automata is 
that very simple rules produce extremely 
intricate random patterns as they evolve over 
time. More generally, CA is an array of discrete 
cells, wherein every cell is colored either black 
(1) or white (0). The content (color) of every cell 
it contains is updated parallelly at each step in its 
evolution, based on simple definite rules. The 
CA rule sets produce four classes of patterns: 
nesting, randomness, repetition and complex 
[33]. We are motivated to use the random class 
pattern in the design of our cipher. Elementary 
cellular automata (ECA) are a basic form of 
cellular automata in which the state of each cell 
depends on only three cells. The new state of a 
cell is defined by Equation (1), 

 
𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡+1 = 𝑔𝑔𝑔𝑔(𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗−1𝑡𝑡𝑡𝑡 ,𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡, 𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗+1𝑡𝑡𝑡𝑡  ),                                 (1) 
 

Where 𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡−1, 𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡and 𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡+1represent the state of cell 
j at time t-1, t and t+1, respectively, and g is the 
function that represents the rule. The rule used in 
this scheme is Rule-30 from the ECA, which 
states that every cell must be looked at in relation 
to the cell at its right. If the color of both cells 
was white in the previous step, the new color of 
the cell must be the same as the previous color of 
the cell to its left – or else, the new color must be 
the opposite [34]. Figure 2.a shows Rule-30 and 
Figure 2.b how differently Rule-30 behaves from 
its random initial state (condition). The finite 
cellular automaton is employed in the proposed 
scheme, in which cells are arranged in a ring 
structure where the right neighbor of the 
rightmost cell is the leftmost cell, and the left 
neighbor of the leftmost cell is the rightmost cell 
[12].  

 
 2.3 Zigzag Patterns 
 
The zigzag pattern used in this work carries out 
second-level pixel permutation to enhance the 
strength of the cipher. This is done by scanning 
the matrix in the zigzag manner shown in Figure 
3.a, while transforming the matrix representation 
of the image into a one-dimensional vector. In a 
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zigzag scanning pattern, the starting point is 
salient, since different starting points produce 
different permutation orders. For instance, the 
matrix shown in Figure 3.b is scanned from two 
different starting points and the results shown in 
Figure 3.c and Figure 3.d. The starting point of 
the zigzag scanning pattern is obtained from the 
input images so that every new input image has a 
different zigzag pattern. This input dependency 
of the algorithm resists chosen plaintext-based 
attacks. 
 
2.4 Circular Shift Operations 
 
Circular shift operations, which are reversible, 

change pixel values simply and efficiently [33]. 
There are two types of circular shift operations, 
left and right. In a k-bit left circular shift, each 
bit is shifted a k binary digit to the left, 
circularly. Consider an n-bit binary sequence, Bn 
= {b0,b1 …bn-2, bn-1, where 0≤ n ≤ n-1}. The 1-bit 
left circular shift operation changes the binary 
sequence as follows:{b1, b2… bn-1, b0}. For 
instance, if a four-bit sequence (1000)2 is 
circularly shifted 1-bit left, the result is (0001)2, 
that is, the decimal (8)10 is changed to the 
decimal (1)10. The k-bit left circular shift is 
employed in the proposed system to perform the 
first-level pixel value substitution.
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input images so that every new input image has a dif-
ferent zigzag pattern. This input dependency of the 
algorithm resists chosen plaintext-based attacks.

2.4. Circular Shift Operations
Circular shift operations, which are reversible, change 
pixel values simply and efficiently [33]. There are two 
types of circular shift operations, left and right. In a 
k-bit left circular shift, each bit is shifted a k binary 
digit to the left, circularly. Consider an n-bit binary 
sequence, Bn = {b0,b1 …bn-2, bn-1, where 0≤ n ≤ n-1}. The 
1-bit left circular shift operation changes the binary 
sequence as follows:{b1, b2… bn-1, b0}. For instance, if 
a four-bit sequence (1000)2 is circularly shifted 1-bit 
left, the result is (0001)2, that is, the decimal (8)10 is 
changed to the decimal (1)10. The k-bit left circular 
shift is employed in the proposed system to perform 
the first-level pixel value substitution.

2.5. The Two-Dimensional Logistic Chaotic 
Map
Chaos is a complex behavior, arising from a determin-
istic nonlinear dynamical system that exhibits the two 
special properties of unpredictability and sensitivity. 
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2.5 The Two-Dimensional Logistic Chaotic 
Map 
 
Chaos is a complex behavior, arising from a 
deterministic nonlinear dynamical system that 
exhibits the two special properties of 
unpredictability and sensitivity. It is hard to 
predict chaos behavior, and a system like this one 
is highly sensitive to the starting seeds. These 
two properties make the chaos theory most suited 
to developing ciphers. The 2D logistic map [32] 
used in the proposed system is defined in 
Equation (2). It has a best distribution than 
provided by previously proposed logistic maps. 

� 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛+1 = 𝑝𝑝𝑝𝑝1𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛(1 − 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛) + 𝑞𝑞𝑞𝑞1(𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)2

𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛+1 = 𝑝𝑝𝑝𝑝2𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛(1 − 𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛) + 𝑞𝑞𝑞𝑞2(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛2 + 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛),  (2) 

where 𝑝𝑝𝑝𝑝1, 𝑝𝑝𝑝𝑝2,𝑞𝑞𝑞𝑞1and 𝑞𝑞𝑞𝑞2  are parameters. The 2D 
logistic map behaves chaotically when the value 
of the parameters ranges between 2.75< 𝑝𝑝𝑝𝑝1≤3.4, 
2.7<𝑝𝑝𝑝𝑝2≤3.45, 0.15<𝑞𝑞𝑞𝑞1≤0.21 and 0.13<𝑞𝑞𝑞𝑞2≤0.15. 
The trajectory of the 2D logistic map for the 
parameters ( 𝑝𝑝𝑝𝑝1 =2.98, 𝑝𝑝𝑝𝑝2 =3.30, 𝑞𝑞𝑞𝑞1 =0.18, 
𝑞𝑞𝑞𝑞2 =0.15) and starting values ( 𝑥𝑥𝑥𝑥1 =0.898 and 
𝑦𝑦𝑦𝑦1=0.954) is shown in Figure 4. 
 
 
 
 
 
 

Bifurcation Diagram: 
 
Bifurcation phenomenon displays the change in 
dynamic behavior when the control parameters 
change to a critical point [28, 31]. Bifurcation 
diagrams of the Equation (2) are shown in      
Figure 5. The fixed point and period-doubling 
are observed from the bifurcation diagram. It is 
clear from the Figure 5 that Equation (2) turns 
into chaos through double periodic bifurcation. 
 
Lyapunov Exponent  
 
Lyapunov exponent is a standard way to measure 
the degree of sensitive dependence on initial 
seeds of dynamical systems [27]. The Largest  
Lyapunov Exponent is nonnegative in the chaotic 
region [9]. The Lyapunov exponents for the 
Equation (2) is calculated [23] for the time series 
and the initial seeds of the Equation (2) as: (x1  = 
0.898 and y1  = 0.954). It can be observed form 
the Figure 6 that the positive Lyapunov exponent 
contribute to the support of hyper chaotic.   
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It is hard to predict chaos behavior, and a system like 
this one is highly sensitive to the starting seeds. These 
two properties make the chaos theory most suited to 
developing ciphers. The 2D logistic map [32] used in 
the proposed system is defined in Equation (2). It has 
a best distribution than provided by previously pro-
posed logistic maps.

 
 

 

 
 
 
 
 
 

Figure 1.b 
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 2.2 Cellular Automata  
 
Conventional science uses mathematical models 
to describe phenomena in the natural world. The 
underlying principle of cellular automata (CA) is 
the use of simple rules, in the form of programs, 
to create models that describe the world [34]. 
What is remarkable about cellular automata is 
that very simple rules produce extremely 
intricate random patterns as they evolve over 
time. More generally, CA is an array of discrete 
cells, wherein every cell is colored either black 
(1) or white (0). The content (color) of every cell 
it contains is updated parallelly at each step in its 
evolution, based on simple definite rules. The 
CA rule sets produce four classes of patterns: 
nesting, randomness, repetition and complex 
[33]. We are motivated to use the random class 
pattern in the design of our cipher. Elementary 
cellular automata (ECA) are a basic form of 
cellular automata in which the state of each cell 
depends on only three cells. The new state of a 
cell is defined by Equation (1), 

 
𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡+1 = 𝑔𝑔𝑔𝑔(𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗−1𝑡𝑡𝑡𝑡 ,𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡, 𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗+1𝑡𝑡𝑡𝑡  ),                                 (1) 
 

Where 𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡−1, 𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡and 𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡+1represent the state of cell 
j at time t-1, t and t+1, respectively, and g is the 
function that represents the rule. The rule used in 
this scheme is Rule-30 from the ECA, which 
states that every cell must be looked at in relation 
to the cell at its right. If the color of both cells 
was white in the previous step, the new color of 
the cell must be the same as the previous color of 
the cell to its left – or else, the new color must be 
the opposite [34]. Figure 2.a shows Rule-30 and 
Figure 2.b how differently Rule-30 behaves from 
its random initial state (condition). The finite 
cellular automaton is employed in the proposed 
scheme, in which cells are arranged in a ring 
structure where the right neighbor of the 
rightmost cell is the leftmost cell, and the left 
neighbor of the leftmost cell is the rightmost cell 
[12].  

 
 2.3 Zigzag Patterns 
 
The zigzag pattern used in this work carries out 
second-level pixel permutation to enhance the 
strength of the cipher. This is done by scanning 
the matrix in the zigzag manner shown in Figure 
3.a, while transforming the matrix representation 
of the image into a one-dimensional vector. In a 

(2)

where p1, p2, q1 and q2 are parameters. The 2D logistic 
map behaves chaotically when the value of the pa-
rameters ranges between 2.75 < p1 ≤3.4, 2.7<p2≤3.45, 
0.15<q1≤0.21 and 0.13<q2≤0.15. The trajectory of the 
2D logistic map for the parameters (p1=2.98, p2=3.30, 
q1=0.18, q2=0.15) and starting values (x1=0.898 and 
y1=0.954) is shown in Figure 4.

Bifurcation Diagram
Bifurcation phenomenon displays the change in dy-
namic behavior when the control parameters change 
to a critical point [28, 31]. Bifurcation diagrams of the 
Equation (2) are shown in Figure 5. The fixed point and 
period-doubling are observed from the bifurcation di-
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agram. It is clear from the Figure 5 that Equation (2) 
turns into chaos through double periodic bifurcation.

Lyapunov Exponent 
Lyapunov exponent is a standard way to measure the 
degree of sensitive dependence on initial seeds of 
dynamical systems [27]. The Largest Lyapunov Ex-
ponent is nonnegative in the chaotic region [9]. The 
Lyapunov exponents for the Equation (2) is calculat-
ed [23] for the time series and the initial seeds of the 
Equation (2) as: (x1 = 0.898 and y1 = 0.954). It can be 
observed form the Figure 6 that the positive Lyapunov 
exponent contribute to the support of hyper chaotic. 

Figure 4 
Trajectory of the 2-D logistic map

Figure 5
Bifurcation Diagram with respect to parameters (p1, p2, q1 
and q2)

Figure 6
Largest Lyapunov Exponent

  

 
 
 
Figure 4  
Trajectory of the 2-D logistic map 
 

 
 
Figure 5 
Bifurcation Diagram with respect to parameters (p1, p2, q1 and q2) 
 

                
 

                                
 
Figure 6 
Largest Lyapunov Exponent 

 
 

  

 
 
 
Figure 4  
Trajectory of the 2-D logistic map 
 

 
 
Figure 5 
Bifurcation Diagram with respect to parameters (p1, p2, q1 and q2) 
 

                
 

                                
 
Figure 6 
Largest Lyapunov Exponent 

 
 

  

 
 
 
Figure 4  
Trajectory of the 2-D logistic map 
 

 
 
Figure 5 
Bifurcation Diagram with respect to parameters (p1, p2, q1 and q2) 
 

                
 

                                
 
Figure 6 
Largest Lyapunov Exponent 

 
 

  

 
 
 
Figure 4  
Trajectory of the 2-D logistic map 
 

 
 
Figure 5 
Bifurcation Diagram with respect to parameters (p1, p2, q1 and q2) 
 

                
 

                                
 
Figure 6 
Largest Lyapunov Exponent 

 
 

  

 
 
 
Figure 4  
Trajectory of the 2-D logistic map 
 

 
 
Figure 5 
Bifurcation Diagram with respect to parameters (p1, p2, q1 and q2) 
 

                
 

                                
 
Figure 6 
Largest Lyapunov Exponent 

 
 

 
 

 

 
 
 
Figure7 
Block diagram of the proposed technique 
 
 

 
 
 

3. The Proposed Algorithm 
 
The framework of the new system is shown in 
Figure 7. The two prime and inevitable cipher 
design principles of confusion and diffusion are 
realized in this approach through the inclusion of 
substitution and permutation operations. The key 
generation, enciphering and deciphering 
processes are explained here. 
 
3.1 Key Generation  

The initial configurations for cellular automata, 
the starting position for zigzag scanning, the 
starting values for the logistic map, and the 512-
bit hash are the keys of this system. To withstand 
plaintext-based threats, the keys are computed 
from the input images and obtained as follows: 

Step 1:  Obtain the 512-bit hash by applying the 
SHA-512algorithm on the input images. 
Step 2: Compute the initial configuration. 
The two initial configuration vectors,{R0

P and C0P}, 
for Rule-30 are calculated from the 512-bit hash 
as follows.  
Case 1: If the length of configuration (L) is 1≤ L 
≤512, select L bits from the rear end of the 512-bit 

hash in reverse order. 
Case 2: If the length of configuration (L) is 
≤1024, select the first 512 bits from the rear end 
of the 512-bit hash in reverse order and the 
remaining bits from the front end in the forward 
order. 
Step 3: Find the starting position of the zigzag 
scanning pattern. 
 
The 512-bit hash of the input image is grouped 
into 8-bit segments and transformed to 64-decimal 
numbers, d1, d2, d3, …., d64. The starting position 
(p0, q0) of the zigzag scanning pattern is computed 
using Equation (3), 

�p0 =  ((d1 + d64) mod w)  + 1
q0 =  ((d2 + d63) mod w)  + 1,                   (3) 

where w is the dimension of the image. 
Step 4: Compute the starting values of the 2D 
logistic map. 
 In the 2D logistic map, the two initial 
values (x1, y1) used are computed using Equation 
(4), 

�
x1  =

1
2

(mod ((d1  ⊕  d2  ⊕  … . .⊕ d32), 256) + xs)

  y1 =
1
2

(mod ((d33  ⊕  d34 ⊕  … . .⊕  d64), 256)  + ys)
, (4) 

where (xs, ys) are the starting seeds. 
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3. The Proposed Algorithm
The framework of the new system is shown in Figure 7. 
The two prime and inevitable cipher design principles 
of confusion and diffusion are realized in this approach 
through the inclusion of substitution and permutation 
operations. The key generation, enciphering and deci-
phering processes are explained here.

3.1. Key Generation 

The initial configurations for cellular automata, the 
starting position for zigzag scanning, the starting 
values for the logistic map, and the 512-bit hash are 
the keys of this system. To withstand plaintext-based 
threats, the keys are computed from the input images 
and obtained as follows:
Step  1:  Obtain the 512-bit hash by applying the 
SHA-512algorithm on the input images.
Step 2: Compute the initial configuration.
The two initial configuration vectors, 
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}, for 
Rule-30 are calculated from the 512-bit hash as fol-
lows. 
Case 1: If the length of configuration (L) is 1≤ L ≤512, 
select L bits from the rear end of the 512-bit hash in 
reverse order.
Case 2: If the length of configuration (L) is ≤1024, se-
lect the first 512 bits from the rear end of the 512-bit 
hash in reverse order and the remaining bits from the 
front end in the forward order.
Step 3: Find the starting position of the zigzag scan-
ning pattern.

The 512-bit hash of the input image is grouped into 
8-bit segments and transformed to 64-decimal num-
bers, d1, d2, d3, …., d64. The starting position (p0, q0) of 
the zigzag scanning pattern is computed using Equa-
tion (3),
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(3)

where w is the dimension of the image.
Step 4: Compute the starting values of the 2D logistic 
map.
In the 2D logistic map, the two initial values (x1, y1) 
used are computed using Equation (4),
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. (4)

where (xs, ys) are the starting seeds.

 3.2. Encryption Algorithm
Figure 8 shows the flowchart of the proposed multiple 
color image encryption process. The process of trans-
forming h plain images into h encrypted images con-
sists of the following steps.
Step 1: Combine all the h input images to create one 
large image (I).
Step 2: Create pure-image elements by segmenting 
the large image.
Step 3: Generate the mixed-image elements. A per-
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Figure 8
Flowchart of encryption process

mutation operation is employed on the pure-image el-
ements to create mixed-image elements. In this work, 
a two-stage permutation operation is performed. 
The first stage of the permutation operation, based 
on Rule-30 of the elementary cellular automata, is as 
follows. The permutation is performed on both rows 
and columns. The two different initial configuration 
vectors  {
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Step 1: Combine all the h input images to create 
one large image (I). 
 
Step 2: Create pure-image elements by 
segmenting the large image. 
 
Step 3: Generate the mixed-image elements. A 
permutation operation is employed on the pure-
image elements to create mixed-image elements. 
In this work, a two-stage permutation operation 
is performed. The first stage of the permutation 
operation, based on Rule-30 of the elementary 
cellular automata, is as follows. The permutation 
is performed on both rows and columns. The two 
different initial configuration vectors              
{R0

P and C0P } of the circular boundary ECA are 
obtained as presented in the key generation 
phase.  
In accordance with Rule-30, the initial 
configuration vectors ,  R0

P   and  C0,
P may self-

evolve and can acquire two evolved 
configurations,  Ri

P  = {  R0
P,  R1

P  , ..  Re
P  … ,  Rm

P } 
and  CiP = {  C0P,  C1P , .. CeP … , CnP}, where e is the 
eth round configuration, and m and n denote the 
dimensions of the big-image matrix,(I).The RP 
sequence is used for row permutation and the CP 
sequence for column permutation. Figure 9 gives 
an example.  
 
 
Row Permutation (RP): 
Case 1: If Re

P(i)== Re−1
P (i), every value of the 

ithrow of the image matrix Ie-1 is left, circularly 
shifted s1 times.  
Case 2: If Re

P(i)== 0 and  Re−1
P (i) == 1, every 

value of the ithrow of the image matrix Ie-1 is left, 
circularly shifted s2 times.  
Case 3: If Re

P(i)== 1 and  Re−1
P (i) == 0, every 

value of the ithrow of the image matrix Ie-1 is 
right, circularly shifted s3 times.  

 s1, s2 and s3 are calculated using 
Equation (5): 

�
s1 = mod(i ×  250, m)

s2 = mod(i ×  250, m) + 2
s3 = mod(i ×  250, m) + 2

 .                     (5)   

 
Column Permutation (RP): 
Case 1: If CeP(j)== Ce−1P (j), every value of the 
jthcolumn of the image matrix Ie-1 is upward, 
circularly shifted s4 times.  
Case 2: If CeP(j)== 0 and  Ce−1P (j) == 1, every 

value of the jthcolumn of the image matrix Ie-1 is 
upward, circularly shifted s5 times.  
Case 3: If CeP(j)== 1 and Ce−1P (j) == 0, every 
value of the jthcolumn of the image matrix Ie-1 is 
downward, circularly shifted s3 times.  

 s4, s5 and s6 are calculated using 
Equation (6): 

�
s4 = mod(j ×  250, n)

s5 = mod(j ×  250, n) + 2
s6 = mod(j ×  250, n) + 2

.                           (6) 

Step 4: Transform the big image matrix into a 
one- dimensional vector with zigzag scanning. 
Step 5: Perform the k-bit left circular shift 
operation on each pixel value. 
Step 6: Do the bitwise exclusive-or operation.  
A pixel-level substitution based on the logistic 
map is performed in the proposed method, in 
which a new value is set for each pixel, as 
follows. The 2D logistic map (1) is iterated to 
obtain random   sequences that are preprocessed 
in Equation (7) before being used. The simple 
exclusive-or operation is used in the pixel 
substitution process, as defined in Equation (8), 
 

�
Xs =  xi ×  1014 mod 256
Ys =  yi ×  1014 mod 256 .

Zs =  Xs  ⊕   Ys
                             (7) 

Where I = 1, 2, ..., L (L is sequence 
length) 

�
Rc =  de2bi (Ri)  ⊕  de2bi (xi) 
Gc =  de2bi (Gi)  ⊕  de2bi (yi)
Bc =  de2bi (Bi)  ⊕  de2bi (zi)

.                  (8) 

Where (R, G& B) are color components. 
Step 7: Segment the big image into h encrypted 
images. 
 
3.3 Decryption Algorithm 
 
Multiple-image decryption is the inverse of 
multiple-image encryption. The h enciphered 
images are combined into a big image, after 
which inverse pixel substitution is performed 
using the 2D logistic map, followed by the k-bit 
right circular shift operation on each pixel to 
restore the original pixel values. The pixel 
location is restored by carrying out inverse 
zigzag scanning and inverse pixel permutation 
using CA Rule-30. Finally, the big image is 
segmented to produce the h plain images.
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Case 2: If CeP(j)== 0 and  Ce−1P (j) == 1, every 

value of the jthcolumn of the image matrix Ie-1 is 
upward, circularly shifted s5 times.  
Case 3: If CeP(j)== 1 and Ce−1P (j) == 0, every 
value of the jthcolumn of the image matrix Ie-1 is 
downward, circularly shifted s3 times.  

 s4, s5 and s6 are calculated using 
Equation (6): 

�
s4 = mod(j ×  250, n)

s5 = mod(j ×  250, n) + 2
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.                           (6) 

Step 4: Transform the big image matrix into a 
one- dimensional vector with zigzag scanning. 
Step 5: Perform the k-bit left circular shift 
operation on each pixel value. 
Step 6: Do the bitwise exclusive-or operation.  
A pixel-level substitution based on the logistic 
map is performed in the proposed method, in 
which a new value is set for each pixel, as 
follows. The 2D logistic map (1) is iterated to 
obtain random   sequences that are preprocessed 
in Equation (7) before being used. The simple 
exclusive-or operation is used in the pixel 
substitution process, as defined in Equation (8), 
 

�
Xs =  xi ×  1014 mod 256
Ys =  yi ×  1014 mod 256 .

Zs =  Xs  ⊕   Ys
                             (7) 

Where I = 1, 2, ..., L (L is sequence 
length) 

�
Rc =  de2bi (Ri)  ⊕  de2bi (xi) 
Gc =  de2bi (Gi)  ⊕  de2bi (yi)
Bc =  de2bi (Bi)  ⊕  de2bi (zi)

.                  (8) 

Where (R, G& B) are color components. 
Step 7: Segment the big image into h encrypted 
images. 
 
3.3 Decryption Algorithm 
 
Multiple-image decryption is the inverse of 
multiple-image encryption. The h enciphered 
images are combined into a big image, after 
which inverse pixel substitution is performed 
using the 2D logistic map, followed by the k-bit 
right circular shift operation on each pixel to 
restore the original pixel values. The pixel 
location is restored by carrying out inverse 
zigzag scanning and inverse pixel permutation 
using CA Rule-30. Finally, the big image is 
segmented to produce the h plain images.
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Step 1: Combine all the h input images to create 
one large image (I). 
 
Step 2: Create pure-image elements by 
segmenting the large image. 
 
Step 3: Generate the mixed-image elements. A 
permutation operation is employed on the pure-
image elements to create mixed-image elements. 
In this work, a two-stage permutation operation 
is performed. The first stage of the permutation 
operation, based on Rule-30 of the elementary 
cellular automata, is as follows. The permutation 
is performed on both rows and columns. The two 
different initial configuration vectors              
{R0

P and C0P } of the circular boundary ECA are 
obtained as presented in the key generation 
phase.  
In accordance with Rule-30, the initial 
configuration vectors ,  R0

P   and  C0,
P may self-

evolve and can acquire two evolved 
configurations,  Ri

P  = {  R0
P,  R1

P  , ..  Re
P  … ,  Rm

P } 
and  CiP = {  C0P,  C1P , .. CeP … , CnP}, where e is the 
eth round configuration, and m and n denote the 
dimensions of the big-image matrix,(I).The RP 
sequence is used for row permutation and the CP 
sequence for column permutation. Figure 9 gives 
an example.  
 
 
Row Permutation (RP): 
Case 1: If Re

P(i)== Re−1
P (i), every value of the 

ithrow of the image matrix Ie-1 is left, circularly 
shifted s1 times.  
Case 2: If Re

P(i)== 0 and  Re−1
P (i) == 1, every 

value of the ithrow of the image matrix Ie-1 is left, 
circularly shifted s2 times.  
Case 3: If Re

P(i)== 1 and  Re−1
P (i) == 0, every 

value of the ithrow of the image matrix Ie-1 is 
right, circularly shifted s3 times.  

 s1, s2 and s3 are calculated using 
Equation (5): 
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s2 = mod(i ×  250, m) + 2
s3 = mod(i ×  250, m) + 2
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Column Permutation (RP): 
Case 1: If CeP(j)== Ce−1P (j), every value of the 
jthcolumn of the image matrix Ie-1 is upward, 
circularly shifted s4 times.  
Case 2: If CeP(j)== 0 and  Ce−1P (j) == 1, every 
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Equation (6): 
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Step 4: Transform the big image matrix into a 
one- dimensional vector with zigzag scanning. 
Step 5: Perform the k-bit left circular shift 
operation on each pixel value. 
Step 6: Do the bitwise exclusive-or operation.  
A pixel-level substitution based on the logistic 
map is performed in the proposed method, in 
which a new value is set for each pixel, as 
follows. The 2D logistic map (1) is iterated to 
obtain random   sequences that are preprocessed 
in Equation (7) before being used. The simple 
exclusive-or operation is used in the pixel 
substitution process, as defined in Equation (8), 
 

�
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Ys =  yi ×  1014 mod 256 .
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Where I = 1, 2, ..., L (L is sequence 
length) 

�
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Gc =  de2bi (Gi)  ⊕  de2bi (yi)
Bc =  de2bi (Bi)  ⊕  de2bi (zi)
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Where (R, G& B) are color components. 
Step 7: Segment the big image into h encrypted 
images. 
 
3.3 Decryption Algorithm 
 
Multiple-image decryption is the inverse of 
multiple-image encryption. The h enciphered 
images are combined into a big image, after 
which inverse pixel substitution is performed 
using the 2D logistic map, followed by the k-bit 
right circular shift operation on each pixel to 
restore the original pixel values. The pixel 
location is restored by carrying out inverse 
zigzag scanning and inverse pixel permutation 
using CA Rule-30. Finally, the big image is 
segmented to produce the h plain images.

 
 

Figure 9  
Permutation process based on CA 
 
 

 , ..

 
 

 

Step 1: Combine all the h input images to create 
one large image (I). 
 
Step 2: Create pure-image elements by 
segmenting the large image. 
 
Step 3: Generate the mixed-image elements. A 
permutation operation is employed on the pure-
image elements to create mixed-image elements. 
In this work, a two-stage permutation operation 
is performed. The first stage of the permutation 
operation, based on Rule-30 of the elementary 
cellular automata, is as follows. The permutation 
is performed on both rows and columns. The two 
different initial configuration vectors              
{R0

P and C0P } of the circular boundary ECA are 
obtained as presented in the key generation 
phase.  
In accordance with Rule-30, the initial 
configuration vectors ,  R0

P   and  C0,
P may self-

evolve and can acquire two evolved 
configurations,  Ri

P  = {  R0
P,  R1

P  , ..  Re
P  … ,  Rm

P } 
and  CiP = {  C0P,  C1P , .. CeP … , CnP}, where e is the 
eth round configuration, and m and n denote the 
dimensions of the big-image matrix,(I).The RP 
sequence is used for row permutation and the CP 
sequence for column permutation. Figure 9 gives 
an example.  
 
 
Row Permutation (RP): 
Case 1: If Re

P(i)== Re−1
P (i), every value of the 

ithrow of the image matrix Ie-1 is left, circularly 
shifted s1 times.  
Case 2: If Re

P(i)== 0 and  Re−1
P (i) == 1, every 

value of the ithrow of the image matrix Ie-1 is left, 
circularly shifted s2 times.  
Case 3: If Re

P(i)== 1 and  Re−1
P (i) == 0, every 

value of the ithrow of the image matrix Ie-1 is 
right, circularly shifted s3 times.  

 s1, s2 and s3 are calculated using 
Equation (5): 
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s2 = mod(i ×  250, m) + 2
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Column Permutation (RP): 
Case 1: If CeP(j)== Ce−1P (j), every value of the 
jthcolumn of the image matrix Ie-1 is upward, 
circularly shifted s4 times.  
Case 2: If CeP(j)== 0 and  Ce−1P (j) == 1, every 

value of the jthcolumn of the image matrix Ie-1 is 
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Case 3: If CeP(j)== 1 and Ce−1P (j) == 0, every 
value of the jthcolumn of the image matrix Ie-1 is 
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 s4, s5 and s6 are calculated using 
Equation (6): 
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.                           (6) 

Step 4: Transform the big image matrix into a 
one- dimensional vector with zigzag scanning. 
Step 5: Perform the k-bit left circular shift 
operation on each pixel value. 
Step 6: Do the bitwise exclusive-or operation.  
A pixel-level substitution based on the logistic 
map is performed in the proposed method, in 
which a new value is set for each pixel, as 
follows. The 2D logistic map (1) is iterated to 
obtain random   sequences that are preprocessed 
in Equation (7) before being used. The simple 
exclusive-or operation is used in the pixel 
substitution process, as defined in Equation (8), 
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length) 

�
Rc =  de2bi (Ri)  ⊕  de2bi (xi) 
Gc =  de2bi (Gi)  ⊕  de2bi (yi)
Bc =  de2bi (Bi)  ⊕  de2bi (zi)
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Where (R, G& B) are color components. 
Step 7: Segment the big image into h encrypted 
images. 
 
3.3 Decryption Algorithm 
 
Multiple-image decryption is the inverse of 
multiple-image encryption. The h enciphered 
images are combined into a big image, after 
which inverse pixel substitution is performed 
using the 2D logistic map, followed by the k-bit 
right circular shift operation on each pixel to 
restore the original pixel values. The pixel 
location is restored by carrying out inverse 
zigzag scanning and inverse pixel permutation 
using CA Rule-30. Finally, the big image is 
segmented to produce the h plain images.
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Step 1: Combine all the h input images to create 
one large image (I). 
 
Step 2: Create pure-image elements by 
segmenting the large image. 
 
Step 3: Generate the mixed-image elements. A 
permutation operation is employed on the pure-
image elements to create mixed-image elements. 
In this work, a two-stage permutation operation 
is performed. The first stage of the permutation 
operation, based on Rule-30 of the elementary 
cellular automata, is as follows. The permutation 
is performed on both rows and columns. The two 
different initial configuration vectors              
{R0

P and C0P } of the circular boundary ECA are 
obtained as presented in the key generation 
phase.  
In accordance with Rule-30, the initial 
configuration vectors ,  R0

P   and  C0,
P may self-

evolve and can acquire two evolved 
configurations,  Ri

P  = {  R0
P,  R1

P  , ..  Re
P  … ,  Rm

P } 
and  CiP = {  C0P,  C1P , .. CeP … , CnP}, where e is the 
eth round configuration, and m and n denote the 
dimensions of the big-image matrix,(I).The RP 
sequence is used for row permutation and the CP 
sequence for column permutation. Figure 9 gives 
an example.  
 
 
Row Permutation (RP): 
Case 1: If Re

P(i)== Re−1
P (i), every value of the 

ithrow of the image matrix Ie-1 is left, circularly 
shifted s1 times.  
Case 2: If Re

P(i)== 0 and  Re−1
P (i) == 1, every 

value of the ithrow of the image matrix Ie-1 is left, 
circularly shifted s2 times.  
Case 3: If Re

P(i)== 1 and  Re−1
P (i) == 0, every 

value of the ithrow of the image matrix Ie-1 is 
right, circularly shifted s3 times.  

 s1, s2 and s3 are calculated using 
Equation (5): 
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s1 = mod(i ×  250, m)

s2 = mod(i ×  250, m) + 2
s3 = mod(i ×  250, m) + 2
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Column Permutation (RP): 
Case 1: If CeP(j)== Ce−1P (j), every value of the 
jthcolumn of the image matrix Ie-1 is upward, 
circularly shifted s4 times.  
Case 2: If CeP(j)== 0 and  Ce−1P (j) == 1, every 

value of the jthcolumn of the image matrix Ie-1 is 
upward, circularly shifted s5 times.  
Case 3: If CeP(j)== 1 and Ce−1P (j) == 0, every 
value of the jthcolumn of the image matrix Ie-1 is 
downward, circularly shifted s3 times.  

 s4, s5 and s6 are calculated using 
Equation (6): 

�
s4 = mod(j ×  250, n)

s5 = mod(j ×  250, n) + 2
s6 = mod(j ×  250, n) + 2

.                           (6) 

Step 4: Transform the big image matrix into a 
one- dimensional vector with zigzag scanning. 
Step 5: Perform the k-bit left circular shift 
operation on each pixel value. 
Step 6: Do the bitwise exclusive-or operation.  
A pixel-level substitution based on the logistic 
map is performed in the proposed method, in 
which a new value is set for each pixel, as 
follows. The 2D logistic map (1) is iterated to 
obtain random   sequences that are preprocessed 
in Equation (7) before being used. The simple 
exclusive-or operation is used in the pixel 
substitution process, as defined in Equation (8), 
 

�
Xs =  xi ×  1014 mod 256
Ys =  yi ×  1014 mod 256 .

Zs =  Xs  ⊕   Ys
                             (7) 

Where I = 1, 2, ..., L (L is sequence 
length) 

�
Rc =  de2bi (Ri)  ⊕  de2bi (xi) 
Gc =  de2bi (Gi)  ⊕  de2bi (yi)
Bc =  de2bi (Bi)  ⊕  de2bi (zi)

.                  (8) 

Where (R, G& B) are color components. 
Step 7: Segment the big image into h encrypted 
images. 
 
3.3 Decryption Algorithm 
 
Multiple-image decryption is the inverse of 
multiple-image encryption. The h enciphered 
images are combined into a big image, after 
which inverse pixel substitution is performed 
using the 2D logistic map, followed by the k-bit 
right circular shift operation on each pixel to 
restore the original pixel values. The pixel 
location is restored by carrying out inverse 
zigzag scanning and inverse pixel permutation 
using CA Rule-30. Finally, the big image is 
segmented to produce the h plain images.
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Step 1: Combine all the h input images to create 
one large image (I). 
 
Step 2: Create pure-image elements by 
segmenting the large image. 
 
Step 3: Generate the mixed-image elements. A 
permutation operation is employed on the pure-
image elements to create mixed-image elements. 
In this work, a two-stage permutation operation 
is performed. The first stage of the permutation 
operation, based on Rule-30 of the elementary 
cellular automata, is as follows. The permutation 
is performed on both rows and columns. The two 
different initial configuration vectors              
{R0

P and C0P } of the circular boundary ECA are 
obtained as presented in the key generation 
phase.  
In accordance with Rule-30, the initial 
configuration vectors ,  R0

P   and  C0,
P may self-

evolve and can acquire two evolved 
configurations,  Ri

P  = {  R0
P,  R1

P  , ..  Re
P  … ,  Rm

P } 
and  CiP = {  C0P,  C1P , .. CeP … , CnP}, where e is the 
eth round configuration, and m and n denote the 
dimensions of the big-image matrix,(I).The RP 
sequence is used for row permutation and the CP 
sequence for column permutation. Figure 9 gives 
an example.  
 
 
Row Permutation (RP): 
Case 1: If Re

P(i)== Re−1
P (i), every value of the 

ithrow of the image matrix Ie-1 is left, circularly 
shifted s1 times.  
Case 2: If Re

P(i)== 0 and  Re−1
P (i) == 1, every 

value of the ithrow of the image matrix Ie-1 is left, 
circularly shifted s2 times.  
Case 3: If Re

P(i)== 1 and  Re−1
P (i) == 0, every 

value of the ithrow of the image matrix Ie-1 is 
right, circularly shifted s3 times.  

 s1, s2 and s3 are calculated using 
Equation (5): 
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s2 = mod(i ×  250, m) + 2
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Column Permutation (RP): 
Case 1: If CeP(j)== Ce−1P (j), every value of the 
jthcolumn of the image matrix Ie-1 is upward, 
circularly shifted s4 times.  
Case 2: If CeP(j)== 0 and  Ce−1P (j) == 1, every 

value of the jthcolumn of the image matrix Ie-1 is 
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Case 3: If CeP(j)== 1 and Ce−1P (j) == 0, every 
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 s4, s5 and s6 are calculated using 
Equation (6): 
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.                           (6) 

Step 4: Transform the big image matrix into a 
one- dimensional vector with zigzag scanning. 
Step 5: Perform the k-bit left circular shift 
operation on each pixel value. 
Step 6: Do the bitwise exclusive-or operation.  
A pixel-level substitution based on the logistic 
map is performed in the proposed method, in 
which a new value is set for each pixel, as 
follows. The 2D logistic map (1) is iterated to 
obtain random   sequences that are preprocessed 
in Equation (7) before being used. The simple 
exclusive-or operation is used in the pixel 
substitution process, as defined in Equation (8), 
 

�
Xs =  xi ×  1014 mod 256
Ys =  yi ×  1014 mod 256 .

Zs =  Xs  ⊕   Ys
                             (7) 

Where I = 1, 2, ..., L (L is sequence 
length) 

�
Rc =  de2bi (Ri)  ⊕  de2bi (xi) 
Gc =  de2bi (Gi)  ⊕  de2bi (yi)
Bc =  de2bi (Bi)  ⊕  de2bi (zi)

.                  (8) 

Where (R, G& B) are color components. 
Step 7: Segment the big image into h encrypted 
images. 
 
3.3 Decryption Algorithm 
 
Multiple-image decryption is the inverse of 
multiple-image encryption. The h enciphered 
images are combined into a big image, after 
which inverse pixel substitution is performed 
using the 2D logistic map, followed by the k-bit 
right circular shift operation on each pixel to 
restore the original pixel values. The pixel 
location is restored by carrying out inverse 
zigzag scanning and inverse pixel permutation 
using CA Rule-30. Finally, the big image is 
segmented to produce the h plain images.
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Step 1: Combine all the h input images to create 
one large image (I). 
 
Step 2: Create pure-image elements by 
segmenting the large image. 
 
Step 3: Generate the mixed-image elements. A 
permutation operation is employed on the pure-
image elements to create mixed-image elements. 
In this work, a two-stage permutation operation 
is performed. The first stage of the permutation 
operation, based on Rule-30 of the elementary 
cellular automata, is as follows. The permutation 
is performed on both rows and columns. The two 
different initial configuration vectors              
{R0

P and C0P } of the circular boundary ECA are 
obtained as presented in the key generation 
phase.  
In accordance with Rule-30, the initial 
configuration vectors ,  R0

P   and  C0,
P may self-

evolve and can acquire two evolved 
configurations,  Ri

P  = {  R0
P,  R1

P  , ..  Re
P  … ,  Rm

P } 
and  CiP = {  C0P,  C1P , .. CeP … , CnP}, where e is the 
eth round configuration, and m and n denote the 
dimensions of the big-image matrix,(I).The RP 
sequence is used for row permutation and the CP 
sequence for column permutation. Figure 9 gives 
an example.  
 
 
Row Permutation (RP): 
Case 1: If Re

P(i)== Re−1
P (i), every value of the 

ithrow of the image matrix Ie-1 is left, circularly 
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Case 2: If Re

P(i)== 0 and  Re−1
P (i) == 1, every 

value of the ithrow of the image matrix Ie-1 is left, 
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Case 3: If Re

P(i)== 1 and  Re−1
P (i) == 0, every 

value of the ithrow of the image matrix Ie-1 is 
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 s1, s2 and s3 are calculated using 
Equation (5): 
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Column Permutation (RP): 
Case 1: If CeP(j)== Ce−1P (j), every value of the 
jthcolumn of the image matrix Ie-1 is upward, 
circularly shifted s4 times.  
Case 2: If CeP(j)== 0 and  Ce−1P (j) == 1, every 

value of the jthcolumn of the image matrix Ie-1 is 
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Case 3: If CeP(j)== 1 and Ce−1P (j) == 0, every 
value of the jthcolumn of the image matrix Ie-1 is 
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 s4, s5 and s6 are calculated using 
Equation (6): 

�
s4 = mod(j ×  250, n)

s5 = mod(j ×  250, n) + 2
s6 = mod(j ×  250, n) + 2

.                           (6) 

Step 4: Transform the big image matrix into a 
one- dimensional vector with zigzag scanning. 
Step 5: Perform the k-bit left circular shift 
operation on each pixel value. 
Step 6: Do the bitwise exclusive-or operation.  
A pixel-level substitution based on the logistic 
map is performed in the proposed method, in 
which a new value is set for each pixel, as 
follows. The 2D logistic map (1) is iterated to 
obtain random   sequences that are preprocessed 
in Equation (7) before being used. The simple 
exclusive-or operation is used in the pixel 
substitution process, as defined in Equation (8), 
 

�
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Ys =  yi ×  1014 mod 256 .

Zs =  Xs  ⊕   Ys
                             (7) 

Where I = 1, 2, ..., L (L is sequence 
length) 

�
Rc =  de2bi (Ri)  ⊕  de2bi (xi) 
Gc =  de2bi (Gi)  ⊕  de2bi (yi)
Bc =  de2bi (Bi)  ⊕  de2bi (zi)
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Where (R, G& B) are color components. 
Step 7: Segment the big image into h encrypted 
images. 
 
3.3 Decryption Algorithm 
 
Multiple-image decryption is the inverse of 
multiple-image encryption. The h enciphered 
images are combined into a big image, after 
which inverse pixel substitution is performed 
using the 2D logistic map, followed by the k-bit 
right circular shift operation on each pixel to 
restore the original pixel values. The pixel 
location is restored by carrying out inverse 
zigzag scanning and inverse pixel permutation 
using CA Rule-30. Finally, the big image is 
segmented to produce the h plain images.
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Step 1: Combine all the h input images to create 
one large image (I). 
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circularly shifted s2 times.  
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P (i) == 0, every 

value of the ithrow of the image matrix Ie-1 is 
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Step 4: Transform the big image matrix into a 
one- dimensional vector with zigzag scanning. 
Step 5: Perform the k-bit left circular shift 
operation on each pixel value. 
Step 6: Do the bitwise exclusive-or operation.  
A pixel-level substitution based on the logistic 
map is performed in the proposed method, in 
which a new value is set for each pixel, as 
follows. The 2D logistic map (1) is iterated to 
obtain random   sequences that are preprocessed 
in Equation (7) before being used. The simple 
exclusive-or operation is used in the pixel 
substitution process, as defined in Equation (8), 
 

�
Xs =  xi ×  1014 mod 256
Ys =  yi ×  1014 mod 256 .

Zs =  Xs  ⊕   Ys
                             (7) 

Where I = 1, 2, ..., L (L is sequence 
length) 

�
Rc =  de2bi (Ri)  ⊕  de2bi (xi) 
Gc =  de2bi (Gi)  ⊕  de2bi (yi)
Bc =  de2bi (Bi)  ⊕  de2bi (zi)
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Where (R, G& B) are color components. 
Step 7: Segment the big image into h encrypted 
images. 
 
3.3 Decryption Algorithm 
 
Multiple-image decryption is the inverse of 
multiple-image encryption. The h enciphered 
images are combined into a big image, after 
which inverse pixel substitution is performed 
using the 2D logistic map, followed by the k-bit 
right circular shift operation on each pixel to 
restore the original pixel values. The pixel 
location is restored by carrying out inverse 
zigzag scanning and inverse pixel permutation 
using CA Rule-30. Finally, the big image is 
segmented to produce the h plain images.
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cellular automata, is as follows. The permutation 
is performed on both rows and columns. The two 
different initial configuration vectors              
{R0
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Step 4: Transform the big image matrix into a 
one- dimensional vector with zigzag scanning. 
Step 5: Perform the k-bit left circular shift 
operation on each pixel value. 
Step 6: Do the bitwise exclusive-or operation.  
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map is performed in the proposed method, in 
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in Equation (7) before being used. The simple 
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substitution process, as defined in Equation (8), 
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Where (R, G& B) are color components. 
Step 7: Segment the big image into h encrypted 
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3.3 Decryption Algorithm 
 
Multiple-image decryption is the inverse of 
multiple-image encryption. The h enciphered 
images are combined into a big image, after 
which inverse pixel substitution is performed 
using the 2D logistic map, followed by the k-bit 
right circular shift operation on each pixel to 
restore the original pixel values. The pixel 
location is restored by carrying out inverse 
zigzag scanning and inverse pixel permutation 
using CA Rule-30. Finally, the big image is 
segmented to produce the h plain images.
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eth round configuration, and m and n denote the 
dimensions of the big-image matrix,(I).The RP 
sequence is used for row permutation and the CP 
sequence for column permutation. Figure 9 gives 
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Where (R, G& B) are color components. 
Step 7: Segment the big image into h encrypted 
images. 
 
3.3 Decryption Algorithm 
 
Multiple-image decryption is the inverse of 
multiple-image encryption. The h enciphered 
images are combined into a big image, after 
which inverse pixel substitution is performed 
using the 2D logistic map, followed by the k-bit 
right circular shift operation on each pixel to 
restore the original pixel values. The pixel 
location is restored by carrying out inverse 
zigzag scanning and inverse pixel permutation 
using CA Rule-30. Finally, the big image is 
segmented to produce the h plain images.
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P and C0P } of the circular boundary ECA are 
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P  = {  R0
P,  R1

P  , ..  Re
P  … ,  Rm

P } 
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value of the ithrow of the image matrix Ie-1 is 
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Step 4: Transform the big image matrix into a 
one- dimensional vector with zigzag scanning. 
Step 5: Perform the k-bit left circular shift 
operation on each pixel value. 
Step 6: Do the bitwise exclusive-or operation.  
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map is performed in the proposed method, in 
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follows. The 2D logistic map (1) is iterated to 
obtain random   sequences that are preprocessed 
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exclusive-or operation is used in the pixel 
substitution process, as defined in Equation (8), 
 

�
Xs =  xi ×  1014 mod 256
Ys =  yi ×  1014 mod 256 .
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Gc =  de2bi (Gi)  ⊕  de2bi (yi)
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Where (R, G& B) are color components. 
Step 7: Segment the big image into h encrypted 
images. 
 
3.3 Decryption Algorithm 
 
Multiple-image decryption is the inverse of 
multiple-image encryption. The h enciphered 
images are combined into a big image, after 
which inverse pixel substitution is performed 
using the 2D logistic map, followed by the k-bit 
right circular shift operation on each pixel to 
restore the original pixel values. The pixel 
location is restored by carrying out inverse 
zigzag scanning and inverse pixel permutation 
using CA Rule-30. Finally, the big image is 
segmented to produce the h plain images.
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Step 4: Transform the big image matrix into a 
one- dimensional vector with zigzag scanning. 
Step 5: Perform the k-bit left circular shift 
operation on each pixel value. 
Step 6: Do the bitwise exclusive-or operation.  
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map is performed in the proposed method, in 
which a new value is set for each pixel, as 
follows. The 2D logistic map (1) is iterated to 
obtain random   sequences that are preprocessed 
in Equation (7) before being used. The simple 
exclusive-or operation is used in the pixel 
substitution process, as defined in Equation (8), 
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Where (R, G& B) are color components. 
Step 7: Segment the big image into h encrypted 
images. 
 
3.3 Decryption Algorithm 
 
Multiple-image decryption is the inverse of 
multiple-image encryption. The h enciphered 
images are combined into a big image, after 
which inverse pixel substitution is performed 
using the 2D logistic map, followed by the k-bit 
right circular shift operation on each pixel to 
restore the original pixel values. The pixel 
location is restored by carrying out inverse 
zigzag scanning and inverse pixel permutation 
using CA Rule-30. Finally, the big image is 
segmented to produce the h plain images.
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Where I = 1, 2, ..., L (L is sequence length)
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Figure 11 
Big image 
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5. Results Analysis
5.1. Input Sensitivity Test

The input image sensitivity test is used to assess the 
effectiveness of the cipher against chosen plain-im-
age and known plain-image attacks [14]. In these at-
tacks, the attackers compare two encrypted images 
to learn the relationship patterns between plain and 
cipher images. Such attacks are also referred to as 
differential attacks. The two well-known quantitative 
metrics, NPCR and UACI that are utilized to calculate 
the sensitivity of the cipher are defined in Equations 
(9 & 10) [35],
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where C1and C2 are the encrypted images of the plain 
images, P1 and P2 with P1 and P2 differing in exactly 
one pixel The obtained NPCR and UACI values are 
displayed in Table 1. 
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the unmodified and modified keys. The results dis-
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the slightly modified key is absolutely unintelligible, 
with no relation to the original images.

5.4. Histogram Analysis

A histogram specifies the frequency occurrences 
of color values in an image [6]. Typically, since the 
histograms of plain images are different, the attack-
er exploits this statistical feature to compromise 
the cipher. To prevent such a threat, the statistical 
features of plain images must be destroyed by the 
cipher during encryption. The histograms of the 16 
plain, encrypted and decrypted images are shown in 
Figure 14. The visual comparison makes it clear that 
while the cipher image histograms are almost similar 
and flat, the corresponding plain image histograms 
are intensified at a few value levels and, further, the 
decrypted image histograms are very similar to the 
original images. So then, it is concluded that the at-
tacker cannot deduce valuable information through 
statistical attacks.
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Figure 14
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encrypted images. To calculate the correlation in 
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Equation (11): 
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The correlation test results are listed in Table 2 
(where V is vertical, H is horizontal and D is diago-
nal), and the correlation of input image1 and the cor-
responding encrypted image1is plotted in Figure  15. 
It is observed from the outcomes that the regular rel-

evance between neighbor pixels is destroyed in the 
cipher image.
The encrypted image histograms are uniformely dis-
tributed (equal probability). Therefore, the proposed 
system withstands statistical attacks well.

5.6. Information Entropy (IE) 

The metric, entropy, quantifies the randomness in the 
pixel value distribution of digital images. The stan-
dard entropy value for a true random image is 8 [3]. IE 
is calculated using Equation (12),
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D 0.8292 0.0038 0.0281 0.0238 0.1139 
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wherein MSE represents the mean square error. 
The obtained PSNR test outcome is displayed in 
Table 3. From the results, it is concluded that the 
quality of images produced by the decryption 
process is good. 
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Experimental results of information entropy and PSNR 
 

 
Input Image Information Entropy PSNR 

Proposed [39] [13] [7] Proposed [39] [13] [7] 
Input Image 1 7.9951 7.9859 7.9129 7.1963 90.7593 87.7240 85.1858 78.4542 
Input Image 2 7.9957 7.9572 7.9348 7.1302 89.0605 85.1802 86.0631 75.2094 
Input Image 3 7.9953 7.9429 7.9166 7.2618 90.0980 85.7106 83.9650 73.0816 
Input Image 4 7.9966 7.9803 7.9217 7.1861 91.0714 86.5430 84.3320 74.4392 
Input Image 5 7.9964 7.9481 7.9311 7.3730 88.7784 87.8093 85.2373 78.1687 
Input Image 6 7.9965 7.9130 7.9367 7.1958 90.1624 86.1415 85.1917 75.8356 
Input Image 7 7.9963 7.9802 7.9184 7.1535 89.6496 85.2286 84.8029 73.6731 
Input Image 8 7.9959 7.9390 7.9497 7.1244 91.5455 85.1171 86.0731 73.4009 
Input Image 9 7.9966 7.9197 7.9321 7.1800 87.8315 84.3052 84.8531 73.1182 

Input Image 10 7.9963 7.9445 7.9469 7.1437 90.0058 86.1235 85.1805 76.0615 
Input Image 11 7.9956 7.9523 7.9395 7.2273 87.2155 86.1595 86.2319 79.4071 
Input Image 12 7.9957 7.9266 7.9172 7.2946 88.1991 85.6475 84.7642 74.2998 
Input Image 13 7.9964 7.9902 7.9580 7.1184 90.8237 84.9348 84.8271 72.3307 
Input Image 14 7.9964 7.9897 7.9259 7.1417 88.2931 85.6066 84.7689 78.0649 
Input Image 15 7.9960 7.9631 7.9433 7.2092 88.1732 85.1279 85.4011 76.0311 
Input Image 16 7.9959 7.9518 7.9347 7.1591 89.3171 86.0527 85.1865 77.8562 

 

(12)

where p(sa) represents the emergence probability 
corresponding to sa. Table 3 shows the entropy test 
results which indicate that this method has produced 
random images.
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Table 2 
Experimental result of correlation coefficient

Input Image Direction Plain Image
Proposed [39] [13] [7]

Encrypted

Input Image 1
V 0.9252 0.0094 0.0318 0.0112 0.1067
H 0.9120 -0.0163 0.0321 0.0251 0.1035
D 0.8732 0.0077 0.0119 0.0148 0.1264

Input Image 2
V 0.9447 0.0015 0.0117 0.0427 0.1359
H 0.8893 0.0072 0.0124 0.0830 0.1205
D 0.8395 0.0049 0.0419 0.0375 0.0910

Input Image 3
V 0.9323 0.0053 0.0169 0.0174 0.1413
H 0.9186 0.0065 0.0596 0.0494 0.1087
D 0.8665 0.0009 0.0321 0.0526 0.1216

Input Image 4
V 0.9569 -0.0102 0.0147 0.0520 0.1407
H 0.9696 0.0013 0.0314 0.0507 0.0926
D 0.9391 0.0047 0.0238 0.0378 0.1047

Input Image 5
V 0.8982 0.0085 0.0137 0.0308 0.1187
H 0.9409 0.0062 0.0157 0.0426 0.1202
D 0.8669 0.0033 0.0154 0.0371 0.1372

Input Image 6
V 0.8504 -0.0126 0.0104 0.0350 0.1420

H 0.8845 0.0061 0.0128 0.0208 0.0934
D 0.8102 -0.0151 0.0174 0.0187 0.1380

Input Image 7
V 0.8977 0.0039 0.0283 0.0264 0.1504
H 0.9300 -0.0049 0.0413 0.0252 0.1209
D 0.8626 -0.0117 0.0396 0.0436 0.1388

Input Image 8
V 0.9355 -0.0145 0.0340 0.0285 0.1103
H 0.8898 -0.0578 0.0157 0.0307 0.1346
D 0.8599 0.0066 0.0189 0.0259 0.0137

Input Image 9
V 0.9588 0.0001 0.0478 0.0452 0.1088

H 0.9526 -0.0102 0.0185 0.0446 0.1419
D 0.9301 -0.0045 0.0141 0.0251 0.1060

Input Image 10
V 0.8224 0.0024 0.0346 0.0429 0.1535
H 0.7952 0.0079 0.0238 0.0281 0.1017
D 0.6776 -0.0119 0.0385 0.0307 0.1183

Input Image 11
V 0.9605 -0.0100 0.0117 0.0178 0.1609
H 0.9456 -0.0070 0.0264 0.0253 0.1392
D 0.9201 0.0057 0.0376 0.0196 0.1095

Input Image 12
V 0.9518 0.0060 0.0221 0.0281 0.1241

H 0.9524 -0.0109 0.0279 0.0355 0.1077
D 0.9178 -0.0098 0.0342 0.0393 0.0911

Input Image 13
V 0.9088 0.0015 0.0255 0.0306 0.1102
H 0.9304 0.0008 0.0139 0.0349 0.1149
D 0.9074 -0.0012 0.0236 0.0267 0.1026

Input Image 14
V 0.9580 -0.0041 0.0133 0.0254 0.1490
H 0.9375 0.0019 0.0277 0.0326 0.1270
D 0.9131 0.0057 0.0260 0.0229 0.1087

Input Image 15
V 0.9059 -0.0048 0.0310 0.0367 0.1069

H 0.9123 0.0080 0.0348 0.0292 0.1074
D 0.8759 0.0002 0.0294 0.0309 0.1036

Input Image 16
V 0.9243 -0.0153 0.0227 0.0367 0.1197
H 0.8981 -0.0139 0.0384 0.0241 0.1384
D 0.8292 0.0038 0.0281 0.0238 0.1139
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Figure 15 
Correlation coefficient of test image 8 before and after  encryption
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Proposed [39] [13] [7] 
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H 0.8893 0.0072 0.0124 0.0830 0.1205 
D 0.8395 0.0049 0.0419 0.0375 0.0910 
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V 0.9323 0.0053 0.0169 0.0174 0.1413 
H 0.9186 0.0065 0.0596 0.0494 0.1087 
D 0.8665 0.0009 0.0321 0.0526 0.1216 

Input Image 4 
V 0.9569 -0.0102 0.0147 0.0520 0.1407 
H 0.9696 0.0013 0.0314 0.0507 0.0926 
D 0.9391 0.0047 0.0238 0.0378 0.1047 

Input Image 5 
V 0.8982 0.0085 0.0137 0.0308 0.1187 
H 0.9409 0.0062 0.0157 0.0426 0.1202 
D 0.8669 0.0033 0.0154 0.0371 0.1372 

Input Image 6 
V 0.8504 -0.0126 0.0104 0.0350 0.1420 

H 0.8845 0.0061 0.0128 0.0208 0.0934 
D 0.8102 -0.0151 0.0174 0.0187 0.1380 

Input Image 7 
V 0.8977 0.0039 0.0283 0.0264 0.1504 
H 0.9300 -0.0049 0.0413 0.0252 0.1209 
D 0.8626 -0.0117 0.0396 0.0436 0.1388 

Input Image 8 
V 0.9355 -0.0145 0.0340 0.0285 0.1103 
H 0.8898 -0.0578 0.0157 0.0307 0.1346 
D 0.8599 0.0066 0.0189 0.0259 0.0137 
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Table 3
Experimental results of information entropy and PSNR

Input Image
Information Entropy PSNR

Proposed [39] [13] [7] Proposed [39] [13] [7]

Input Image 1 7.9951 7.9859 7.9129 7.1963 90.7593 87.7240 85.1858 78.4542

Input Image 2 7.9957 7.9572 7.9348 7.1302 89.0605 85.1802 86.0631 75.2094

Input Image 3 7.9953 7.9429 7.9166 7.2618 90.0980 85.7106 83.9650 73.0816

Input Image 4 7.9966 7.9803 7.9217 7.1861 91.0714 86.5430 84.3320 74.4392

Input Image 5 7.9964 7.9481 7.9311 7.3730 88.7784 87.8093 85.2373 78.1687

Input Image 6 7.9965 7.9130 7.9367 7.1958 90.1624 86.1415 85.1917 75.8356

Input Image 7 7.9963 7.9802 7.9184 7.1535 89.6496 85.2286 84.8029 73.6731

Input Image 8 7.9959 7.9390 7.9497 7.1244 91.5455 85.1171 86.0731 73.4009

Input Image 9 7.9966 7.9197 7.9321 7.1800 87.8315 84.3052 84.8531 73.1182

Input Image 10 7.9963 7.9445 7.9469 7.1437 90.0058 86.1235 85.1805 76.0615

Input Image 11 7.9956 7.9523 7.9395 7.2273 87.2155 86.1595 86.2319 79.4071

Input Image 12 7.9957 7.9266 7.9172 7.2946 88.1991 85.6475 84.7642 74.2998

Input Image 13 7.9964 7.9902 7.9580 7.1184 90.8237 84.9348 84.8271 72.3307

Input Image 14 7.9964 7.9897 7.9259 7.1417 88.2931 85.6066 84.7689 78.0649

Input Image 15 7.9960 7.9631 7.9433 7.2092 88.1732 85.1279 85.4011 76.0311

Input Image 16 7.9959 7.9518 7.9347 7.1591 89.3171 86.0527 85.1865 77.8562
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5.7. PSNR Analysis 
The PSNR is an image quality index which judges the 
quality of deciphered images. Mathematically, it is 
calculated using Equation (13) [14],
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(13)

wherein MSE represents the mean square error. The 
obtained PSNR test outcome is displayed in Table 3. 
From the results, it is concluded that the quality of 
images produced by the decryption process is good.

Time complexity analysis 
The encryption time is analyzed to estimate the com-
putation cost. To reduce the time consumption, we 
have used faster exclusive-or, integer addition and 
modulus operation in our proposed scheme. The en-
cryption time is presented in Table 4. As can be seen 
in Table 4, the non-time consuming operations ef-
fectively accelerate the encryption process.  The en-
cryption speed is faster than references [13, 15, 39]. 
Therefore, this scheme can be used in real-time inter-
net applications

Table 4
Computational time (unit: seconds)

Algorithms Time

Proposed Algorithm 1.01630

Karawia et al. [13] 1.72811

Li et al. [15] 1.46385

Xiaoqiang et al. [39] 2.19654

Priya [7] 1.80739

NIST Statistical Test Analysis
NIST statistical test is a very important tool to assess 
the various aspects of randomness in a bit sequence 
[9].  The diversity of randomness in encrypted imag-
es was tested using NIST suite SP 800-22. This suite 
has 15 statistical tests. The randomness of a bit se-
quence is determined by p-value. The significant-lev-
el α = 0.02 is set to obtain p-value from 15 tests. Table 
5 shows the statistical results of an encrypted image. 
The results proved that the proposed scheme has 
passed all the fifteen tests. Hence, the generated se-
quence is truly random.

Table 5 
NIST statistical test results for encrypted image

NIST Test p-value D-R level Result Conclusion

Frequency 0.709101 2% pass random

Frequency (within a block) 0.581426 2% Pass random

Runs 0.800546 2% pass random

Longest run (once in a block) 0.354581 2% pass random

Rank (Binary matrix) 0.621956 2% pass random

FFT 0.378670 2% pass random

Non-overlapping template 0.425068 2% pass random

Overlapping template 0.259219 2% pass random

Universal 0.394625 2% pass random

Linear complexity 0.432408 2% pass random

Serial 0.565922 2% pass random

Approximate entropy 0.208502 2% pass random

Cumulative sums 0.501924 2% pass random

Random excursions 0.643127 2% pass random

Random excursions  variant 0.301085 2% pass random
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6. Discussion
The performance test results produced by the pro-
posed technique is analyzed and compared here with 
three peer image ciphers based on performance met-
rics like the correlation coefficient, NPCR, PSNR, 
UACI and information entropy.  Figure 12 depicts 
flat cipher image histograms, which means that the 
pixel values appear with equal probability. The total 
secret key space in this technique is approximately 
2622, which is remarkably high, and helps resist key-
based attacks like brute force attacks. It is obvious 
from Figure 11 that the input image-based keys used 
in the proposed technique are so highly sensitive that 
even a small change in the keys produces a totally new 
decrypted image. From the numerical results listed in 
Table 2 and Figure 13, it is observed that the double 
permutation nature of the proposed technique excel-
lently minimizes the correlation association among 
neighbor pixels, when compared to the other two tech-
niques. The plain image sensitivity tests conducted, 
with the results  presented in Table 1, show that the 
UACI and NPCR values obtained using the proposed 
method are optimal and counter differential attacks 
better than the other two methods. The PSNR image 
quality metric test results displayed in Table 3 show 
that the decrypted image quality is good,  compared to 

that offered by the two peer schemes. The double sub-
stitution process yields the best entropy values for all 
the encrypted images. Overall, it is concluded that the 
proposed technique performs well in all tests. 

7. Conclusion 
A symmetric multiple color image encryption tech-
nique has been proposed that includes cellular au-
tomata, zigzag scanning, circular shifts, chaos and 
mixed-image content. This algorithm achieves two-
stage encryption by adopting a dual permutation and 
dual substitution structure. The experimental out-
comes and a comparison of the findings show that the 
dual permutation operation significantly minimizes 
the correlation association between neighbor pixels. 
The dual substitution helps produce the true random 
cipher image, thereby strengthening security. The 
combination of cellular automata and chaos increases 
the key space of the system. Moreover, the input im-
age-based key generation method offers key sensitivity 
much-needed strong security. Finally, it is concluded 
that the proposed technique can be used in several ar-
eas to secure multiple color images simultaneously. 
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