
55Information Technology and Control 2021/1/50

A Symmetric Key Multiple Color
Image Cipher Based on Cellular
Automata, Chaos Theory and
Image Mixing

ITC 1/50
Information Technology
and Control
Vol. 50 / No. 1 / 2021
pp. 55-75
DOI 10.5755/j01.itc.50.1.28012

A Symmetric Key Multiple Color Image Cipher Based on Cellular
Automata, Chaos Theory and Image Mixing

Received 2020/11/14 Accepted after revision 2020/12/17

 http://dx.doi.org/10.5755/j01.itc.50.1.28012

HOW TO CITE: SundaraKrishnan, K., Jaison, B., Raja, J. P. (2021). A Symmetric Key Multiple Color Image Cipher Based on Cellular
Automata, Chaos Theory and Image Mixing. Information Technology and Control, 50(1), 55-75. https://doi.org/10.5755/j01.itc.50.1.28012

Corresponding author: sundarakrishnank@gmail.com

K. SundaraKrishnan
Department of Computer Science and Engineering; Alagappa Chettiyar Government College of Engineering and
Technology; Karaikudi, Tamilnadu, India; phone: +917708795039; e-mail sundarakrishnank@gmail.com

B. Jaison
Department of Computer Science and Engineering; RMK Engineering College; Chennai Tamilnadu, India;
phone: +919840024357; e-mail: bjn.cse@rmkec.ac.in

S. P. Raja
Department of Computer Science and Engineering; Vel Tech Rangarajan Dr.Sagunthala R&D Institute of
Science and Technology; Chennai, Tamilnadu, India; phone: +919486181212; e-mail: avemariaraja@gmail.com

The transmission of sensitive and secret images over a public network demands effective techniques to safe-
guard and conceal the data. In this paper, a symmetric multiple color image encryption technique is proposed
by adopting a dual permutation and dual substitution framework. Initially, the input images are combined into
a large image and then segmented into pure-image elements. These pure-image elements are permuted using
the elementary cellular automata Rule-30 and zigzag pattern scanning. Finally, pixel values are substituted by
employing the circular shift method and 2D logistic map. The efficiency of this method is quantified, based on
the unified average changing intensity (UACI), information entropy, number of pixels change rate (NPCR), key

mailto:obodovskiy58@gmail.com

Information Technology and Control 2021/1/5056

sensitivity, key space, histogram, peak signal-to-noise ratio (PSNR) and correlation coefficient (CC) perfor-
mance metrics. The outcome of the experiments and a comparative analysis with two similar methods indicate
that the proposed method produced high security results.
KEYWORDS: Cellular automata; chaos; substitution; permutation; mixed image elements.

1. Introduction
High speed networks and communication infrastruc-
ture in the modern digital facilitate easy and rapid
online communication. Online, real-time commu-
nication is put to good use in telemedicine, weather
monitoring, defense surveillance, and social media, to
name a few. In these fields, images area primary source
of information and, further, a massive quantum of vi-
sual content is transmitted using public networks and
stored in the cloud. Given that such digital images may
contain secret and sensitive information of a personal,
financial or national nature, it is imperative to ensure
their safety in order to stop in formation leaks. Image
encryption is a great way to protect digital images, es-
pecially during their transmission. Image encryption
renders meaningful images unrecognizable. Classical
encryption techniques that work well on textual data
do not do so on images, owing to their high correlation
and colossal dimensions. Therefore, digital image en-
ciphering has emerged as a key area of study. Over the
last few years, experts have proposed image ciphers
based on the chaos theory and cellular automata. Cel-
lular automata exhibit fascinating properties like com-
plex behavior and unpredictability in terms of simple
rules, while chaotic maps possess excellent sensitivity
and ergodicity. Hence, the union of cellular automata
(CA) and chaos theory-based image encryption design
offers a superior solution for image security issues.

1.1. Related Work

Wolfram introduced the notion of using cellular au-
tomata to produce secret keys [34], and since then
much work has been carried out on CA-based ciphers.
Jin proposed a fast image cipher using a cellular au-
tomata-generated attractor as the encryption func-
tion [12]. In this technique, the state attractor based
key streams contain at most eight states only. Zhang
et al. [41], proposed a two-dimensional cellular au-
tomata-based image cryptosystem, in which balanced
CA are used for permutation. The experiments proved
that this technique powerful enough to withstand sta-

tistical attacks. Chai et al. proposed an image encryp-
tion and compression technique by employing CA
and compressive sampling [5]. Their algorithm uses
the cellular automata rule to achieve confusion. But
the entropy values of the encrypted images are low.
Jeyaram [11] et al. proposed a new cellular automa-
ta-based image cipher that uses a radius-2, class-III
CA to scramble pixels. A cellular automata and DNA
computing-based image encryption method was pre-
sented by Zhou et al. [45]. Their scheme introduces
the Thymine DNA cellular automata and T-DNA-
CA for encryption. This algorithm has high compu-
tational overhead. Mondal et al. proposed a cellular
automata-based image cryptosystem [19], where CA
are adopted to produce a pseudo-random sequence
that confronts noise attacks efficiently. Hanis [9] et
al. presented a dual-image encryption-compression
technique that employs cellular automata and a mod-
ified convolution technique. Their scheme utilized
a set of CA rules to scramble pixel locations. Perales
[21] proposed a cellular automata-based color image
cipher, with the elementary CA Rule-45 used for key
generation. Asadollahi et al. [2], proposed an image
enciphering method based on cellular automata and
the Arnold map, wherein cellular automata are used
to change pixel values. The above schemes are de-
signed only for single-image encryption.
Matthews [18] pointed to the application of chaos in
encryption algorithms, and since then a slew of chaos
theory-based image ciphers have been presented. An
image encryption fusion and compression approach,
based on chaos and compressive sampling, was put
forward [17], with a 1D logistic map used to build a
sensing matrix. Ramasamy [22] et al. introduced an
image cipher using enhanced logistic-tend map. This
scheme achieved both confusion and diffusion prop-
erties of an ideal cipher. A novel image cryptosystem
that uses a 1D logistic map and random sampling was
introduced by Zhu et al. [46]. The hardware and soft-
ware design of 1D map-based schemes are simple, but

57Information Technology and Control 2021/1/50

the smaller key space makes the technique suscepti-
ble to brute force attacks. The RGB image cipher, us-
ing chaos and the Chinese remainder theorem, was
introduced by Guo et al. [8]. Their technique uses a
chaotic quantum map to shuffle the RGB image. Patro
[20] et al. proposed a chaos theory-based multi-image
cryptosystem whereas cross-coupled map is used for
executing diffusion and permutation operations, with
the results indicating that their algorithm confronts
known plain-image and chosen plain-image attacks.
Sui et al. [25], presented a dual image enciphering
scheme using a logistic map and the discrete fraction-
al transform. The logistic map in this technique relo-
cates and modifies image pixel values, and the method
demonstrates a significant resistance to conventional
cipher image-only attacks. Sui et al. again presented
a dual-image cipher using a fractional angular trans-
form and coupled logistic map [26], wherein the frac-
tional computation takes a much longer encryption
time. Liu [16] et al. proposed a chaotic system-based
dual-image cryptosystem employing S-boxes and
a chaotic sequence for dual-image diffusion, with a
large key space being the strength of the algorithm.
Zhang [40] et al. presented a chaotic map and a per-
mutation model-based multiple-image cipher tech-
nique. Li et al. [14], proposed a dual-image encipher-
ing scheme by adopting the chaos theory and gyrator
transform, in which a standard map is utilized to gen-
erate the position of the pixel scrambling area. A cycle
shift and chaos theory-based image cipher was pro-
posed by Wang et al. [33], where pixel substitution is
realized by the circular shift which greatly increases
security. Zhou et al. designed a 1D logistic map and co-
sparse representation-based dual-image encryption
scheme [44], utilizing the chaotic map to construct a
measurement matrix. This method showed poor re-
sistance against statistical attacks. Tutueva [29] et al.
introduced a method using adaptive chaotic map to
construct chaos-based cipher. This scheme achieved
larger key space. Tutueva [30] et al. again utilized
adaptive chatic maps to create hash function. This
novel approach effectively counters birthday attack.
Sawlikar [24] et al. reported a dual-image encryption
and compression scheme that undertakes two stages
of encryption for enhanced security strength. Alfalou
et al. [1], introduced a many-image simultaneous en-
cryption, fusion and compression scheme in which
encryption is executed by utilizing biometric infor-

mation. A multiple-image cipher to protect medical
images was proposed [3]. Zhong [42] et al. presented a
dual-image cryptosystem by adopting random-phase
encoding. Zhang [37] et al. designed a many-image
cipher scheme utilizing the orthogonal basis matrix
and double random-phase encoding, where images
are encrypted in parallel. Their algorithm strongly re-
sists occlusion attacks, though the computation cost
is higher. Xiong [36], proposed a vector decomposi-
tion-based many-image cryptosystem that uses pri-
vate keys, in addition, for enhanced security. Chen [6]
et al. presented a multiple-image asymmetric cipher
based on compressive sampling and feature fusion. In
reference [43], Nanrun et al. developed a dual-image
enciphering technique using the discrete fractional
random transform and discrete wavelet transform.
Zhang [39] et al. introduced a novel many-image en-
cryption scheme based on the mixed-image elements
obtained from the many images used. Xiaoqiang et al.
[38], again designed a multi-image cipher using chaos
and mixed-image content. Karawia [13] et al. devel-
oped a many-image cryptosystem based on an eco-
nomic map and mixed-image elements. Most of the
dual- and multi-image ciphers presented above are
indented only for grayscale image encryption.

1.2. Motivation and Justification
An array of internet-based applications, such as tele-
medicine, cloud computing, and social media, transmit
large volumes of secret images over public networks.
The security of these sensitive images is a major con-
cern, with image encryption working best for image
data protection. Cellular automata are very simple
rules that generate highly complex random patterns
that have been applied successfully in cryptograph-
ic algorithms. Chaos is a phenomenon that occurs in
greatly sensitive, deterministic nonlinear dynamical
systems. It is extremely difficult to predict chaos be-
havior, and chaos theory has been a good candidate for
image encryption techniques. Circular shift operations
can be used to perform value substitution operations
effectively and with little computation, while zigzag
order scanning can be used for satisfactory permuta-
tion operations. Reconstructing an original image from
very small-sized, mixed-image elements is impossible
without keys. All of the above has motivated the devel-
opment of a symmetric color image encryption scheme
using cellular automata, zigzag scanning, circular

Information Technology and Control 2021/1/5058

shifts, chaos and mixed-image elements. The proposed
algorithm obtains good numerical results, thus demon-
strating that the new scheme is most suitable for multi-
ple color image encryptions.

1.3. An Outline of the Proposed Work
The proposed technique consists of the following five
main steps: a) secret keys are calculated from input
images; b) the input images are combined into a large
image and pure- image elements obtained by segmen-
tation; c) two-level permutation is performed using
cellular automata and zigzag scanning; d) two-level
substitution is performed using the circular shift and
2D-logistic map, and e) the big encrypted image is
segmented into smaller images.

1.4. Contribution
The contributions of our work include the following:
a) Dual permutation – dual substitution framework:
image encryption is performed by adopting a dual
permutation and dual substitution framework that
effectively dissipate the statistical structure of plain-
text and enhances confusion property; b) Key Selec-
tion: The initial configurations for cellular automata,
the starting position for zigzag scanning, the starting
seeds for the logistic map, and the 512-bit hash are the
keys of this system which offers larger key space and
withstand plaintext-based threats.

1.5. Paper Organization
The rest of this paper is arranged as follows. Section 2
describes the mixed-image elements, cellular autom-
ata, zigzag pattern, circular shift and 2D logistic map.
Section 3 presents the proposed multiple color image
enciphering and deciphering procedures. Section 4
outlines the experimental setup. Section 5 lists and an-
alyzes, in detail, the experimental results. Section 6 dis-
cusses the results, and Section 7 concludes the paper.

2. A Basic Background

2.1. Mixed Image Elements
Matrix algebra makes it possible to segment a matrix
into sub-matrices and, conversely, sub-matrices can
be combined to form a single matrix. Images are treat-
ed as matrices while processing so they can be divided

and merged [38-39]. For instance, the input image1,
shown in Figure 1.a, can be segmented into 64 small
sub-images, as shown in Figure 1.b, and the sub-imag-
es joined easily. Consider that

1.4 Contribution

The contributions of our work include the
following: a) Dual permutation – dual
substitution framework: image encryption is
performed by adopting a dual permutation and
dual substitution framework that effectively
dissipate the statistical structure of plaintext and
enhances confusion property; b) Key Selection:
The initial configurations for cellular automata,
the starting position for zigzag scanning, the
starting seeds for the logistic map, and the 512-
bit hash are the keys of this system which offers
larger key space and withstand plaintext-based
threats.

1.5 Paper Organization

The rest of this paper is arranged as follows.
Section 2 describes the mixed-image elements,
cellular automata, zigzag pattern, circular shift
and 2D logistic map. Section 3 presents the
proposed multiple color image enciphering and
deciphering procedures. Section 4 outlines the
experimental setup. Section 5 lists and analyzes,

in detail, the experimental results. Section 6
discusses the results, and Section 7 concludes the
paper.

2. A Basic Background
2.1. Mixed Image Elements

Matrix algebra makes it possible to segment a
matrix into sub-matrices and, conversely, sub-
matrices can be combined to form a single
matrix. Images are treated as matrices while
processing so they can be divided and merged
[38-39]. For instance, the input image1, shown in
Figure 1.a, can be segmented into 64 small sub-
images, as shown in Figure 1.b, and the sub-
images joined easily. Consider
that Pmxn1 Pmxn2 ,…., Pmxnh are h original plain
images divided into the sub-image sets, S1={si1},
S2={si2},…,Sh={sih}. Each member of the set si∈
S is called a pure-image element. A new mixed
set, X = {{si1} ∪ {si2} ∪…∪ {sih}}, can be
created from mixing the pure elements. Each
member of the set, xi∈ X, is termed a mixed-
image element

Figure 1.a.

Flowers Image

,….,

1.4 Contribution

The contributions of our work include the
following: a) Dual permutation – dual
substitution framework: image encryption is
performed by adopting a dual permutation and
dual substitution framework that effectively
dissipate the statistical structure of plaintext and
enhances confusion property; b) Key Selection:
The initial configurations for cellular automata,
the starting position for zigzag scanning, the
starting seeds for the logistic map, and the 512-
bit hash are the keys of this system which offers
larger key space and withstand plaintext-based
threats.

1.5 Paper Organization

The rest of this paper is arranged as follows.
Section 2 describes the mixed-image elements,
cellular automata, zigzag pattern, circular shift
and 2D logistic map. Section 3 presents the
proposed multiple color image enciphering and
deciphering procedures. Section 4 outlines the
experimental setup. Section 5 lists and analyzes,

in detail, the experimental results. Section 6
discusses the results, and Section 7 concludes the
paper.

2. A Basic Background
2.1. Mixed Image Elements

Matrix algebra makes it possible to segment a
matrix into sub-matrices and, conversely, sub-
matrices can be combined to form a single
matrix. Images are treated as matrices while
processing so they can be divided and merged
[38-39]. For instance, the input image1, shown in
Figure 1.a, can be segmented into 64 small sub-
images, as shown in Figure 1.b, and the sub-
images joined easily. Consider
that Pmxn1 Pmxn2 ,…., Pmxnh are h original plain
images divided into the sub-image sets, S1={si1},
S2={si2},…,Sh={sih}. Each member of the set si∈
S is called a pure-image element. A new mixed
set, X = {{si1} ∪ {si2} ∪…∪ {sih}}, can be
created from mixing the pure elements. Each
member of the set, xi∈ X, is termed a mixed-
image element

Figure 1.a.

Flowers Image

 are h
original plain images divided into the sub-image sets,
S1={

1.4 Contribution

The contributions of our work include the
following: a) Dual permutation – dual
substitution framework: image encryption is
performed by adopting a dual permutation and
dual substitution framework that effectively
dissipate the statistical structure of plaintext and
enhances confusion property; b) Key Selection:
The initial configurations for cellular automata,
the starting position for zigzag scanning, the
starting seeds for the logistic map, and the 512-
bit hash are the keys of this system which offers
larger key space and withstand plaintext-based
threats.

1.5 Paper Organization

The rest of this paper is arranged as follows.
Section 2 describes the mixed-image elements,
cellular automata, zigzag pattern, circular shift
and 2D logistic map. Section 3 presents the
proposed multiple color image enciphering and
deciphering procedures. Section 4 outlines the
experimental setup. Section 5 lists and analyzes,

in detail, the experimental results. Section 6
discusses the results, and Section 7 concludes the
paper.

2. A Basic Background
2.1. Mixed Image Elements

Matrix algebra makes it possible to segment a
matrix into sub-matrices and, conversely, sub-
matrices can be combined to form a single
matrix. Images are treated as matrices while
processing so they can be divided and merged
[38-39]. For instance, the input image1, shown in
Figure 1.a, can be segmented into 64 small sub-
images, as shown in Figure 1.b, and the sub-
images joined easily. Consider
that Pmxn1 Pmxn2 ,…., Pmxnh are h original plain
images divided into the sub-image sets, S1={si1},
S2={si2},…,Sh={sih}. Each member of the set si∈
S is called a pure-image element. A new mixed
set, X = {{si1} ∪ {si2} ∪…∪ {sih}}, can be
created from mixing the pure elements. Each
member of the set, xi∈ X, is termed a mixed-
image element

Figure 1.a.

Flowers Image

}, S2={

1.4 Contribution

The contributions of our work include the
following: a) Dual permutation – dual
substitution framework: image encryption is
performed by adopting a dual permutation and
dual substitution framework that effectively
dissipate the statistical structure of plaintext and
enhances confusion property; b) Key Selection:
The initial configurations for cellular automata,
the starting position for zigzag scanning, the
starting seeds for the logistic map, and the 512-
bit hash are the keys of this system which offers
larger key space and withstand plaintext-based
threats.

1.5 Paper Organization

The rest of this paper is arranged as follows.
Section 2 describes the mixed-image elements,
cellular automata, zigzag pattern, circular shift
and 2D logistic map. Section 3 presents the
proposed multiple color image enciphering and
deciphering procedures. Section 4 outlines the
experimental setup. Section 5 lists and analyzes,

in detail, the experimental results. Section 6
discusses the results, and Section 7 concludes the
paper.

2. A Basic Background
2.1. Mixed Image Elements

Matrix algebra makes it possible to segment a
matrix into sub-matrices and, conversely, sub-
matrices can be combined to form a single
matrix. Images are treated as matrices while
processing so they can be divided and merged
[38-39]. For instance, the input image1, shown in
Figure 1.a, can be segmented into 64 small sub-
images, as shown in Figure 1.b, and the sub-
images joined easily. Consider
that Pmxn1 Pmxn2 ,…., Pmxnh are h original plain
images divided into the sub-image sets, S1={si1},
S2={si2},…,Sh={sih}. Each member of the set si∈
S is called a pure-image element. A new mixed
set, X = {{si1} ∪ {si2} ∪…∪ {sih}}, can be
created from mixing the pure elements. Each
member of the set, xi∈ X, is termed a mixed-
image element

Figure 1.a.

Flowers Image

},…, Sh={

1.4 Contribution

The contributions of our work include the
following: a) Dual permutation – dual
substitution framework: image encryption is
performed by adopting a dual permutation and
dual substitution framework that effectively
dissipate the statistical structure of plaintext and
enhances confusion property; b) Key Selection:
The initial configurations for cellular automata,
the starting position for zigzag scanning, the
starting seeds for the logistic map, and the 512-
bit hash are the keys of this system which offers
larger key space and withstand plaintext-based
threats.

1.5 Paper Organization

The rest of this paper is arranged as follows.
Section 2 describes the mixed-image elements,
cellular automata, zigzag pattern, circular shift
and 2D logistic map. Section 3 presents the
proposed multiple color image enciphering and
deciphering procedures. Section 4 outlines the
experimental setup. Section 5 lists and analyzes,

in detail, the experimental results. Section 6
discusses the results, and Section 7 concludes the
paper.

2. A Basic Background
2.1. Mixed Image Elements

Matrix algebra makes it possible to segment a
matrix into sub-matrices and, conversely, sub-
matrices can be combined to form a single
matrix. Images are treated as matrices while
processing so they can be divided and merged
[38-39]. For instance, the input image1, shown in
Figure 1.a, can be segmented into 64 small sub-
images, as shown in Figure 1.b, and the sub-
images joined easily. Consider
that Pmxn1 Pmxn2 ,…., Pmxnh are h original plain
images divided into the sub-image sets, S1={si1},
S2={si2},…,Sh={sih}. Each member of the set si∈
S is called a pure-image element. A new mixed
set, X = {{si1} ∪ {si2} ∪…∪ {sih}}, can be
created from mixing the pure elements. Each
member of the set, xi∈ X, is termed a mixed-
image element

Figure 1.a.

Flowers Image

}. Each member of the set
si∈ S is called a pure-image element. A new mixed set,

Figure 1.a
Flowers Image

1.4 Contribution

The contributions of our work include the
following: a) Dual permutation – dual
substitution framework: image encryption is
performed by adopting a dual permutation and
dual substitution framework that effectively
dissipate the statistical structure of plaintext and
enhances confusion property; b) Key Selection:
The initial configurations for cellular automata,
the starting position for zigzag scanning, the
starting seeds for the logistic map, and the 512-
bit hash are the keys of this system which offers
larger key space and withstand plaintext-based
threats.

1.5 Paper Organization

The rest of this paper is arranged as follows.
Section 2 describes the mixed-image elements,
cellular automata, zigzag pattern, circular shift
and 2D logistic map. Section 3 presents the
proposed multiple color image enciphering and
deciphering procedures. Section 4 outlines the
experimental setup. Section 5 lists and analyzes,

in detail, the experimental results. Section 6
discusses the results, and Section 7 concludes the
paper.

2. A Basic Background
2.1. Mixed Image Elements

Matrix algebra makes it possible to segment a
matrix into sub-matrices and, conversely, sub-
matrices can be combined to form a single
matrix. Images are treated as matrices while
processing so they can be divided and merged
[38-39]. For instance, the input image1, shown in
Figure 1.a, can be segmented into 64 small sub-
images, as shown in Figure 1.b, and the sub-
images joined easily. Consider
that Pmxn1 Pmxn2 ,…., Pmxnh are h original plain
images divided into the sub-image sets, S1={si1},
S2={si2},…,Sh={sih}. Each member of the set si∈
S is called a pure-image element. A new mixed
set, X = {{si1} ∪ {si2} ∪…∪ {sih}}, can be
created from mixing the pure elements. Each
member of the set, xi∈ X, is termed a mixed-
image element

Figure 1.a.

Flowers Image

Figure 1.b
Pure image elements of flowers image

Figure 1.b

Pure image elements of flowers image

 2.2 Cellular Automata

Conventional science uses mathematical models
to describe phenomena in the natural world. The
underlying principle of cellular automata (CA) is
the use of simple rules, in the form of programs,
to create models that describe the world [34].
What is remarkable about cellular automata is
that very simple rules produce extremely
intricate random patterns as they evolve over
time. More generally, CA is an array of discrete
cells, wherein every cell is colored either black
(1) or white (0). The content (color) of every cell
it contains is updated parallelly at each step in its
evolution, based on simple definite rules. The
CA rule sets produce four classes of patterns:
nesting, randomness, repetition and complex
[33]. We are motivated to use the random class
pattern in the design of our cipher. Elementary
cellular automata (ECA) are a basic form of
cellular automata in which the state of each cell
depends on only three cells. The new state of a
cell is defined by Equation (1),

𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡+1 = 𝑔𝑔𝑔𝑔(𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗−1𝑡𝑡𝑡𝑡 ,𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡, 𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗+1𝑡𝑡𝑡𝑡), (1)

Where 𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡−1, 𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡and 𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡+1represent the state of cell
j at time t-1, t and t+1, respectively, and g is the
function that represents the rule. The rule used in
this scheme is Rule-30 from the ECA, which
states that every cell must be looked at in relation
to the cell at its right. If the color of both cells
was white in the previous step, the new color of
the cell must be the same as the previous color of
the cell to its left – or else, the new color must be
the opposite [34]. Figure 2.a shows Rule-30 and
Figure 2.b how differently Rule-30 behaves from
its random initial state (condition). The finite
cellular automaton is employed in the proposed
scheme, in which cells are arranged in a ring
structure where the right neighbor of the
rightmost cell is the leftmost cell, and the left
neighbor of the leftmost cell is the rightmost cell
[12].

 2.3 Zigzag Patterns

The zigzag pattern used in this work carries out
second-level pixel permutation to enhance the
strength of the cipher. This is done by scanning
the matrix in the zigzag manner shown in Figure
3.a, while transforming the matrix representation
of the image into a one-dimensional vector. In a

59Information Technology and Control 2021/1/50

X = {{

1.4 Contribution

The contributions of our work include the
following: a) Dual permutation – dual
substitution framework: image encryption is
performed by adopting a dual permutation and
dual substitution framework that effectively
dissipate the statistical structure of plaintext and
enhances confusion property; b) Key Selection:
The initial configurations for cellular automata,
the starting position for zigzag scanning, the
starting seeds for the logistic map, and the 512-
bit hash are the keys of this system which offers
larger key space and withstand plaintext-based
threats.

1.5 Paper Organization

The rest of this paper is arranged as follows.
Section 2 describes the mixed-image elements,
cellular automata, zigzag pattern, circular shift
and 2D logistic map. Section 3 presents the
proposed multiple color image enciphering and
deciphering procedures. Section 4 outlines the
experimental setup. Section 5 lists and analyzes,

in detail, the experimental results. Section 6
discusses the results, and Section 7 concludes the
paper.

2. A Basic Background
2.1. Mixed Image Elements

Matrix algebra makes it possible to segment a
matrix into sub-matrices and, conversely, sub-
matrices can be combined to form a single
matrix. Images are treated as matrices while
processing so they can be divided and merged
[38-39]. For instance, the input image1, shown in
Figure 1.a, can be segmented into 64 small sub-
images, as shown in Figure 1.b, and the sub-
images joined easily. Consider
that Pmxn1 Pmxn2 ,…., Pmxnh are h original plain
images divided into the sub-image sets, S1={si1},
S2={si2},…,Sh={sih}. Each member of the set si∈
S is called a pure-image element. A new mixed
set, X = {{si1} ∪ {si2} ∪…∪ {sih}}, can be
created from mixing the pure elements. Each
member of the set, xi∈ X, is termed a mixed-
image element

Figure 1.a.

Flowers Image

} ∪ {

1.4 Contribution

The contributions of our work include the
following: a) Dual permutation – dual
substitution framework: image encryption is
performed by adopting a dual permutation and
dual substitution framework that effectively
dissipate the statistical structure of plaintext and
enhances confusion property; b) Key Selection:
The initial configurations for cellular automata,
the starting position for zigzag scanning, the
starting seeds for the logistic map, and the 512-
bit hash are the keys of this system which offers
larger key space and withstand plaintext-based
threats.

1.5 Paper Organization

The rest of this paper is arranged as follows.
Section 2 describes the mixed-image elements,
cellular automata, zigzag pattern, circular shift
and 2D logistic map. Section 3 presents the
proposed multiple color image enciphering and
deciphering procedures. Section 4 outlines the
experimental setup. Section 5 lists and analyzes,

in detail, the experimental results. Section 6
discusses the results, and Section 7 concludes the
paper.

2. A Basic Background
2.1. Mixed Image Elements

Matrix algebra makes it possible to segment a
matrix into sub-matrices and, conversely, sub-
matrices can be combined to form a single
matrix. Images are treated as matrices while
processing so they can be divided and merged
[38-39]. For instance, the input image1, shown in
Figure 1.a, can be segmented into 64 small sub-
images, as shown in Figure 1.b, and the sub-
images joined easily. Consider
that Pmxn1 Pmxn2 ,…., Pmxnh are h original plain
images divided into the sub-image sets, S1={si1},
S2={si2},…,Sh={sih}. Each member of the set si∈
S is called a pure-image element. A new mixed
set, X = {{si1} ∪ {si2} ∪…∪ {sih}}, can be
created from mixing the pure elements. Each
member of the set, xi∈ X, is termed a mixed-
image element

Figure 1.a.

Flowers Image

} ∪…∪ {

1.4 Contribution

The contributions of our work include the
following: a) Dual permutation – dual
substitution framework: image encryption is
performed by adopting a dual permutation and
dual substitution framework that effectively
dissipate the statistical structure of plaintext and
enhances confusion property; b) Key Selection:
The initial configurations for cellular automata,
the starting position for zigzag scanning, the
starting seeds for the logistic map, and the 512-
bit hash are the keys of this system which offers
larger key space and withstand plaintext-based
threats.

1.5 Paper Organization

The rest of this paper is arranged as follows.
Section 2 describes the mixed-image elements,
cellular automata, zigzag pattern, circular shift
and 2D logistic map. Section 3 presents the
proposed multiple color image enciphering and
deciphering procedures. Section 4 outlines the
experimental setup. Section 5 lists and analyzes,

in detail, the experimental results. Section 6
discusses the results, and Section 7 concludes the
paper.

2. A Basic Background
2.1. Mixed Image Elements

Matrix algebra makes it possible to segment a
matrix into sub-matrices and, conversely, sub-
matrices can be combined to form a single
matrix. Images are treated as matrices while
processing so they can be divided and merged
[38-39]. For instance, the input image1, shown in
Figure 1.a, can be segmented into 64 small sub-
images, as shown in Figure 1.b, and the sub-
images joined easily. Consider
that Pmxn1 Pmxn2 ,…., Pmxnh are h original plain
images divided into the sub-image sets, S1={si1},
S2={si2},…,Sh={sih}. Each member of the set si∈
S is called a pure-image element. A new mixed
set, X = {{si1} ∪ {si2} ∪…∪ {sih}}, can be
created from mixing the pure elements. Each
member of the set, xi∈ X, is termed a mixed-
image element

Figure 1.a.

Flowers Image

}}, can be created from mixing
the pure elements. Each member of the set, xi∈ X, is
termed a mixed-image element

2.2. Cellular Automata
Conventional science uses mathematical models to
describe phenomena in the natural world. The un-
derlying principle of cellular automata (CA) is the
use of simple rules, in the form of programs, to cre-
ate models that describe the world [34]. What is re-
markable about cellular automata is that very simple
rules produce extremely intricate random patterns as
they evolve over time. More generally, CA is an array
of discrete cells, wherein every cell is colored either
black (1) or white (0). The content (color) of every
cell it contains is updated parallelly at each step in its
evolution, based on simple definite rules. The CA rule
sets produce four classes of patterns: nesting, ran-
domness, repetition and complex [33]. We are moti-
vated to use the random class pattern in the design of
our cipher. Elementary cellular automata (ECA) are a
basic form of cellular automata in which the state of
each cell depends on only three cells. The new state of
a cell is defined by Equation (1),

Figure 1.b

Pure image elements of flowers image

 2.2 Cellular Automata

Conventional science uses mathematical models
to describe phenomena in the natural world. The
underlying principle of cellular automata (CA) is
the use of simple rules, in the form of programs,
to create models that describe the world [34].
What is remarkable about cellular automata is
that very simple rules produce extremely
intricate random patterns as they evolve over
time. More generally, CA is an array of discrete
cells, wherein every cell is colored either black
(1) or white (0). The content (color) of every cell
it contains is updated parallelly at each step in its
evolution, based on simple definite rules. The
CA rule sets produce four classes of patterns:
nesting, randomness, repetition and complex
[33]. We are motivated to use the random class
pattern in the design of our cipher. Elementary
cellular automata (ECA) are a basic form of
cellular automata in which the state of each cell
depends on only three cells. The new state of a
cell is defined by Equation (1),

𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡+1 = 𝑔𝑔𝑔𝑔(𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗−1𝑡𝑡𝑡𝑡 ,𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡, 𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗+1𝑡𝑡𝑡𝑡), (1)

Where 𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡−1, 𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡and 𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡+1represent the state of cell
j at time t-1, t and t+1, respectively, and g is the
function that represents the rule. The rule used in
this scheme is Rule-30 from the ECA, which
states that every cell must be looked at in relation
to the cell at its right. If the color of both cells
was white in the previous step, the new color of
the cell must be the same as the previous color of
the cell to its left – or else, the new color must be
the opposite [34]. Figure 2.a shows Rule-30 and
Figure 2.b how differently Rule-30 behaves from
its random initial state (condition). The finite
cellular automaton is employed in the proposed
scheme, in which cells are arranged in a ring
structure where the right neighbor of the
rightmost cell is the leftmost cell, and the left
neighbor of the leftmost cell is the rightmost cell
[12].

 2.3 Zigzag Patterns

The zigzag pattern used in this work carries out
second-level pixel permutation to enhance the
strength of the cipher. This is done by scanning
the matrix in the zigzag manner shown in Figure
3.a, while transforming the matrix representation
of the image into a one-dimensional vector. In a

(1)

Where

Figure 1.b

Pure image elements of flowers image

 2.2 Cellular Automata

Conventional science uses mathematical models
to describe phenomena in the natural world. The
underlying principle of cellular automata (CA) is
the use of simple rules, in the form of programs,
to create models that describe the world [34].
What is remarkable about cellular automata is
that very simple rules produce extremely
intricate random patterns as they evolve over
time. More generally, CA is an array of discrete
cells, wherein every cell is colored either black
(1) or white (0). The content (color) of every cell
it contains is updated parallelly at each step in its
evolution, based on simple definite rules. The
CA rule sets produce four classes of patterns:
nesting, randomness, repetition and complex
[33]. We are motivated to use the random class
pattern in the design of our cipher. Elementary
cellular automata (ECA) are a basic form of
cellular automata in which the state of each cell
depends on only three cells. The new state of a
cell is defined by Equation (1),

𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡+1 = 𝑔𝑔𝑔𝑔(𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗−1𝑡𝑡𝑡𝑡 ,𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡, 𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗+1𝑡𝑡𝑡𝑡), (1)

Where 𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡−1, 𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡and 𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡+1represent the state of cell
j at time t-1, t and t+1, respectively, and g is the
function that represents the rule. The rule used in
this scheme is Rule-30 from the ECA, which
states that every cell must be looked at in relation
to the cell at its right. If the color of both cells
was white in the previous step, the new color of
the cell must be the same as the previous color of
the cell to its left – or else, the new color must be
the opposite [34]. Figure 2.a shows Rule-30 and
Figure 2.b how differently Rule-30 behaves from
its random initial state (condition). The finite
cellular automaton is employed in the proposed
scheme, in which cells are arranged in a ring
structure where the right neighbor of the
rightmost cell is the leftmost cell, and the left
neighbor of the leftmost cell is the rightmost cell
[12].

 2.3 Zigzag Patterns

The zigzag pattern used in this work carries out
second-level pixel permutation to enhance the
strength of the cipher. This is done by scanning
the matrix in the zigzag manner shown in Figure
3.a, while transforming the matrix representation
of the image into a one-dimensional vector. In a

 and

Figure 1.b

Pure image elements of flowers image

 2.2 Cellular Automata

Conventional science uses mathematical models
to describe phenomena in the natural world. The
underlying principle of cellular automata (CA) is
the use of simple rules, in the form of programs,
to create models that describe the world [34].
What is remarkable about cellular automata is
that very simple rules produce extremely
intricate random patterns as they evolve over
time. More generally, CA is an array of discrete
cells, wherein every cell is colored either black
(1) or white (0). The content (color) of every cell
it contains is updated parallelly at each step in its
evolution, based on simple definite rules. The
CA rule sets produce four classes of patterns:
nesting, randomness, repetition and complex
[33]. We are motivated to use the random class
pattern in the design of our cipher. Elementary
cellular automata (ECA) are a basic form of
cellular automata in which the state of each cell
depends on only three cells. The new state of a
cell is defined by Equation (1),

𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡+1 = 𝑔𝑔𝑔𝑔(𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗−1𝑡𝑡𝑡𝑡 ,𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡, 𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗+1𝑡𝑡𝑡𝑡), (1)

Where 𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡−1, 𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡and 𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡+1represent the state of cell
j at time t-1, t and t+1, respectively, and g is the
function that represents the rule. The rule used in
this scheme is Rule-30 from the ECA, which
states that every cell must be looked at in relation
to the cell at its right. If the color of both cells
was white in the previous step, the new color of
the cell must be the same as the previous color of
the cell to its left – or else, the new color must be
the opposite [34]. Figure 2.a shows Rule-30 and
Figure 2.b how differently Rule-30 behaves from
its random initial state (condition). The finite
cellular automaton is employed in the proposed
scheme, in which cells are arranged in a ring
structure where the right neighbor of the
rightmost cell is the leftmost cell, and the left
neighbor of the leftmost cell is the rightmost cell
[12].

 2.3 Zigzag Patterns

The zigzag pattern used in this work carries out
second-level pixel permutation to enhance the
strength of the cipher. This is done by scanning
the matrix in the zigzag manner shown in Figure
3.a, while transforming the matrix representation
of the image into a one-dimensional vector. In a

 represent the state of cell j at
time t-1, t and t+1, respectively, and g is the function
that represents the rule. The rule used in this scheme
is Rule-30 from the ECA, which states that every cell
must be looked at in relation to the cell at its right. If
the color of both cells was white in the previous step,
the new color of the cell must be the same as the pre-
vious color of the cell to its left – or else, the new color
must be the opposite [34]. Figure 2.a shows Rule-30
and Figure 2.b how differently Rule-30 behaves from

its random initial state (condition). The finite cellu-
lar automaton is employed in the proposed scheme,
in which cells are arranged in a ring structure where
the right neighbor of the rightmost cell is the leftmost
cell, and the left neighbor of the leftmost cell is the
rightmost cell [12].

2.3. Zigzag Patterns
The zigzag pattern used in this work carries out sec-
ond-level pixel permutation to enhance the strength
of the cipher. This is done by scanning the matrix in
the zigzag manner shown in Figure 3.a, while trans-
forming the matrix representation of the image into
a one-dimensional vector. In a zigzag scanning pat-
tern, the starting point is salient, since different start-
ing points produce different permutation orders. For
instance, the matrix shown in Figure 3.b is scanned
from two different starting points and the results
shown in Figure 3.c and Figure 3.d. The starting point
of the zigzag scanning pattern is obtained from the

Figure 2.a
The mapping of the rule-30

zigzag scanning pattern, the starting point is
salient, since different starting points produce
different permutation orders. For instance, the
matrix shown in Figure 3.b is scanned from two
different starting points and the results shown in
Figure 3.c and Figure 3.d. The starting point of
the zigzag scanning pattern is obtained from the
input images so that every new input image has a
different zigzag pattern. This input dependency
of the algorithm resists chosen plaintext-based
attacks.

2.4 Circular Shift Operations

Circular shift operations, which are reversible,

change pixel values simply and efficiently [33].
There are two types of circular shift operations,
left and right. In a k-bit left circular shift, each
bit is shifted a k binary digit to the left,
circularly. Consider an n-bit binary sequence, Bn
= {b0,b1 …bn-2, bn-1, where 0≤ n ≤ n-1}. The 1-bit
left circular shift operation changes the binary
sequence as follows:{b1, b2… bn-1, b0}. For
instance, if a four-bit sequence (1000)2 is
circularly shifted 1-bit left, the result is (0001)2,
that is, the decimal (8)10 is changed to the
decimal (1)10. The k-bit left circular shift is
employed in the proposed system to perform the
first-level pixel value substitution.

Figure 2.a
 The mapping of the rule-30

Figure 2.b
Example of an evolution of rule-30

Figure 3
Example of Zigzag Scanning

 0

 1 1 1 1 1 0

 0 0 1 1 1 1 0

 1 0 1 1 0 0 1 1 0 0 0 0 0 1 1 0 0 0

zigzag scanning pattern, the starting point is
salient, since different starting points produce
different permutation orders. For instance, the
matrix shown in Figure 3.b is scanned from two
different starting points and the results shown in
Figure 3.c and Figure 3.d. The starting point of
the zigzag scanning pattern is obtained from the
input images so that every new input image has a
different zigzag pattern. This input dependency
of the algorithm resists chosen plaintext-based
attacks.

2.4 Circular Shift Operations

Circular shift operations, which are reversible,

change pixel values simply and efficiently [33].
There are two types of circular shift operations,
left and right. In a k-bit left circular shift, each
bit is shifted a k binary digit to the left,
circularly. Consider an n-bit binary sequence, Bn
= {b0,b1 …bn-2, bn-1, where 0≤ n ≤ n-1}. The 1-bit
left circular shift operation changes the binary
sequence as follows:{b1, b2… bn-1, b0}. For
instance, if a four-bit sequence (1000)2 is
circularly shifted 1-bit left, the result is (0001)2,
that is, the decimal (8)10 is changed to the
decimal (1)10. The k-bit left circular shift is
employed in the proposed system to perform the
first-level pixel value substitution.

Figure 2.a
 The mapping of the rule-30

Figure 2.b
Example of an evolution of rule-30

Figure 3
Example of Zigzag Scanning

 0

 1 1 1 1 1 0

 0 0 1 1 1 1 0

 1 0 1 1 0 0 1 1 0 0 0 0 0 1 1 0 0 0

Figure 2.b
Example of an evolution of rule-30

Information Technology and Control 2021/1/5060

input images so that every new input image has a dif-
ferent zigzag pattern. This input dependency of the
algorithm resists chosen plaintext-based attacks.

2.4. Circular Shift Operations
Circular shift operations, which are reversible, change
pixel values simply and efficiently [33]. There are two
types of circular shift operations, left and right. In a
k-bit left circular shift, each bit is shifted a k binary
digit to the left, circularly. Consider an n-bit binary
sequence, Bn = {b0,b1 …bn-2, bn-1, where 0≤ n ≤ n-1}. The
1-bit left circular shift operation changes the binary
sequence as follows:{b1, b2… bn-1, b0}. For instance, if
a four-bit sequence (1000)2 is circularly shifted 1-bit
left, the result is (0001)2, that is, the decimal (8)10 is
changed to the decimal (1)10. The k-bit left circular
shift is employed in the proposed system to perform
the first-level pixel value substitution.

2.5. The Two-Dimensional Logistic Chaotic
Map
Chaos is a complex behavior, arising from a determin-
istic nonlinear dynamical system that exhibits the two
special properties of unpredictability and sensitivity.

Figure 3
Example of Zigzag Scanning

2.5 The Two-Dimensional Logistic Chaotic
Map

Chaos is a complex behavior, arising from a
deterministic nonlinear dynamical system that
exhibits the two special properties of
unpredictability and sensitivity. It is hard to
predict chaos behavior, and a system like this one
is highly sensitive to the starting seeds. These
two properties make the chaos theory most suited
to developing ciphers. The 2D logistic map [32]
used in the proposed system is defined in
Equation (2). It has a best distribution than
provided by previously proposed logistic maps.

� 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛+1 = 𝑝𝑝𝑝𝑝1𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛(1 − 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛) + 𝑞𝑞𝑞𝑞1(𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)2

𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛+1 = 𝑝𝑝𝑝𝑝2𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛(1 − 𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛) + 𝑞𝑞𝑞𝑞2(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛2 + 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛), (2)

where 𝑝𝑝𝑝𝑝1, 𝑝𝑝𝑝𝑝2,𝑞𝑞𝑞𝑞1and 𝑞𝑞𝑞𝑞2 are parameters. The 2D
logistic map behaves chaotically when the value
of the parameters ranges between 2.75< 𝑝𝑝𝑝𝑝1≤3.4,
2.7<𝑝𝑝𝑝𝑝2≤3.45, 0.15<𝑞𝑞𝑞𝑞1≤0.21 and 0.13<𝑞𝑞𝑞𝑞2≤0.15.
The trajectory of the 2D logistic map for the
parameters (𝑝𝑝𝑝𝑝1 =2.98, 𝑝𝑝𝑝𝑝2 =3.30, 𝑞𝑞𝑞𝑞1 =0.18,
𝑞𝑞𝑞𝑞2 =0.15) and starting values (𝑥𝑥𝑥𝑥1 =0.898 and
𝑦𝑦𝑦𝑦1=0.954) is shown in Figure 4.

Bifurcation Diagram:

Bifurcation phenomenon displays the change in
dynamic behavior when the control parameters
change to a critical point [28, 31]. Bifurcation
diagrams of the Equation (2) are shown in
Figure 5. The fixed point and period-doubling
are observed from the bifurcation diagram. It is
clear from the Figure 5 that Equation (2) turns
into chaos through double periodic bifurcation.

Lyapunov Exponent

Lyapunov exponent is a standard way to measure
the degree of sensitive dependence on initial
seeds of dynamical systems [27]. The Largest
Lyapunov Exponent is nonnegative in the chaotic
region [9]. The Lyapunov exponents for the
Equation (2) is calculated [23] for the time series
and the initial seeds of the Equation (2) as: (x1 =
0.898 and y1 = 0.954). It can be observed form
the Figure 6 that the positive Lyapunov exponent
contribute to the support of hyper chaotic.

e11 e12

e13

e14

e15

e21

e22

e23

e24

e25

e31

e32

e33

e34

e35

e41

e42

e44

e45

e51

e52

e43

e54

e55

e53

e11

e12

e21

e31

e22

e13

e14

e23

e32

e41

e51

e33

e24

e15

e25

e34

e43

e52

e53

e44

e35

e45

e54

e55

e33

e24

e15

e25

e34

e43

e52

e53

e44

e35

e45

e54

e55

e11

e12

e21

e31

e22

e13

e14

e23

e32

e41

e51

e42

e42

3.a Zigzag Pattern for Scanning 3.b The Example Matrix

3.c The Permutation order of elements with beginning point (1, 1)

3.d The Permutation order of elements with beginning point (3, 3)

It is hard to predict chaos behavior, and a system like
this one is highly sensitive to the starting seeds. These
two properties make the chaos theory most suited to
developing ciphers. The 2D logistic map [32] used in
the proposed system is defined in Equation (2). It has
a best distribution than provided by previously pro-
posed logistic maps.

Figure 1.b

Pure image elements of flowers image

 2.2 Cellular Automata

Conventional science uses mathematical models
to describe phenomena in the natural world. The
underlying principle of cellular automata (CA) is
the use of simple rules, in the form of programs,
to create models that describe the world [34].
What is remarkable about cellular automata is
that very simple rules produce extremely
intricate random patterns as they evolve over
time. More generally, CA is an array of discrete
cells, wherein every cell is colored either black
(1) or white (0). The content (color) of every cell
it contains is updated parallelly at each step in its
evolution, based on simple definite rules. The
CA rule sets produce four classes of patterns:
nesting, randomness, repetition and complex
[33]. We are motivated to use the random class
pattern in the design of our cipher. Elementary
cellular automata (ECA) are a basic form of
cellular automata in which the state of each cell
depends on only three cells. The new state of a
cell is defined by Equation (1),

𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡+1 = 𝑔𝑔𝑔𝑔(𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗−1𝑡𝑡𝑡𝑡 ,𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡, 𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗+1𝑡𝑡𝑡𝑡), (1)

Where 𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡−1, 𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡and 𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡+1represent the state of cell
j at time t-1, t and t+1, respectively, and g is the
function that represents the rule. The rule used in
this scheme is Rule-30 from the ECA, which
states that every cell must be looked at in relation
to the cell at its right. If the color of both cells
was white in the previous step, the new color of
the cell must be the same as the previous color of
the cell to its left – or else, the new color must be
the opposite [34]. Figure 2.a shows Rule-30 and
Figure 2.b how differently Rule-30 behaves from
its random initial state (condition). The finite
cellular automaton is employed in the proposed
scheme, in which cells are arranged in a ring
structure where the right neighbor of the
rightmost cell is the leftmost cell, and the left
neighbor of the leftmost cell is the rightmost cell
[12].

 2.3 Zigzag Patterns

The zigzag pattern used in this work carries out
second-level pixel permutation to enhance the
strength of the cipher. This is done by scanning
the matrix in the zigzag manner shown in Figure
3.a, while transforming the matrix representation
of the image into a one-dimensional vector. In a

(2)

where p1, p2, q1 and q2 are parameters. The 2D logistic
map behaves chaotically when the value of the pa-
rameters ranges between 2.75 < p1 ≤3.4, 2.7<p2≤3.45,
0.15<q1≤0.21 and 0.13<q2≤0.15. The trajectory of the
2D logistic map for the parameters (p1=2.98, p2=3.30,
q1=0.18, q2=0.15) and starting values (x1=0.898 and
y1=0.954) is shown in Figure 4.

Bifurcation Diagram
Bifurcation phenomenon displays the change in dy-
namic behavior when the control parameters change
to a critical point [28, 31]. Bifurcation diagrams of the
Equation (2) are shown in Figure 5. The fixed point and
period-doubling are observed from the bifurcation di-

61Information Technology and Control 2021/1/50

agram. It is clear from the Figure 5 that Equation (2)
turns into chaos through double periodic bifurcation.

Lyapunov Exponent
Lyapunov exponent is a standard way to measure the
degree of sensitive dependence on initial seeds of
dynamical systems [27]. The Largest Lyapunov Ex-
ponent is nonnegative in the chaotic region [9]. The
Lyapunov exponents for the Equation (2) is calculat-
ed [23] for the time series and the initial seeds of the
Equation (2) as: (x1 = 0.898 and y1 = 0.954). It can be
observed form the Figure 6 that the positive Lyapunov
exponent contribute to the support of hyper chaotic.

Figure 4
Trajectory of the 2-D logistic map

Figure 5
Bifurcation Diagram with respect to parameters (p1, p2, q1
and q2)

Figure 6
Largest Lyapunov Exponent

Figure 4
Trajectory of the 2-D logistic map

Figure 5
Bifurcation Diagram with respect to parameters (p1, p2, q1 and q2)

Figure 6
Largest Lyapunov Exponent

Figure 4
Trajectory of the 2-D logistic map

Figure 5
Bifurcation Diagram with respect to parameters (p1, p2, q1 and q2)

Figure 6
Largest Lyapunov Exponent

Figure 4
Trajectory of the 2-D logistic map

Figure 5
Bifurcation Diagram with respect to parameters (p1, p2, q1 and q2)

Figure 6
Largest Lyapunov Exponent

Figure 4
Trajectory of the 2-D logistic map

Figure 5
Bifurcation Diagram with respect to parameters (p1, p2, q1 and q2)

Figure 6
Largest Lyapunov Exponent

Figure 4
Trajectory of the 2-D logistic map

Figure 5
Bifurcation Diagram with respect to parameters (p1, p2, q1 and q2)

Figure 6
Largest Lyapunov Exponent

Figure7
Block diagram of the proposed technique

3. The Proposed Algorithm

The framework of the new system is shown in
Figure 7. The two prime and inevitable cipher
design principles of confusion and diffusion are
realized in this approach through the inclusion of
substitution and permutation operations. The key
generation, enciphering and deciphering
processes are explained here.

3.1 Key Generation

The initial configurations for cellular automata,
the starting position for zigzag scanning, the
starting values for the logistic map, and the 512-
bit hash are the keys of this system. To withstand
plaintext-based threats, the keys are computed
from the input images and obtained as follows:

Step 1: Obtain the 512-bit hash by applying the
SHA-512algorithm on the input images.
Step 2: Compute the initial configuration.
The two initial configuration vectors,{R0

P and C0P},
for Rule-30 are calculated from the 512-bit hash
as follows.
Case 1: If the length of configuration (L) is 1≤ L
≤512, select L bits from the rear end of the 512-bit

hash in reverse order.
Case 2: If the length of configuration (L) is
≤1024, select the first 512 bits from the rear end
of the 512-bit hash in reverse order and the
remaining bits from the front end in the forward
order.
Step 3: Find the starting position of the zigzag
scanning pattern.

The 512-bit hash of the input image is grouped
into 8-bit segments and transformed to 64-decimal
numbers, d1, d2, d3, …., d64. The starting position
(p0, q0) of the zigzag scanning pattern is computed
using Equation (3),

�p0 = ((d1 + d64) mod w) + 1
q0 = ((d2 + d63) mod w) + 1, (3)

where w is the dimension of the image.
Step 4: Compute the starting values of the 2D
logistic map.
 In the 2D logistic map, the two initial
values (x1, y1) used are computed using Equation
(4),

�
x1 =

1
2

(mod ((d1 ⊕ d2 ⊕ … . .⊕ d32), 256) + xs)

 y1 =
1
2

(mod ((d33 ⊕ d34 ⊕ … . .⊕ d64), 256) + ys)
, (4)

where (xs, ys) are the starting seeds.

Combining
Pixel

Permutation

Pixel-Level
Zigzag

Scanning

Bit-Level
Circular

Shift

Pixel
Substitution

Cellular
Automata
Rule -30

2D-Logistic
Map

Key-1 Key-3 Key-2

Segmentation

Information Technology and Control 2021/1/5062

3. The Proposed Algorithm
The framework of the new system is shown in Figure 7.
The two prime and inevitable cipher design principles
of confusion and diffusion are realized in this approach
through the inclusion of substitution and permutation
operations. The key generation, enciphering and deci-
phering processes are explained here.

3.1. Key Generation

The initial configurations for cellular automata, the
starting position for zigzag scanning, the starting
values for the logistic map, and the 512-bit hash are
the keys of this system. To withstand plaintext-based
threats, the keys are computed from the input images
and obtained as follows:
Step  1:  Obtain the 512-bit hash by applying the
SHA-512algorithm on the input images.
Step 2: Compute the initial configuration.
The two initial configuration vectors,

Figure7
Block diagram of the proposed technique

3. The Proposed Algorithm

The framework of the new system is shown in
Figure 7. The two prime and inevitable cipher
design principles of confusion and diffusion are
realized in this approach through the inclusion of
substitution and permutation operations. The key
generation, enciphering and deciphering
processes are explained here.

3.1 Key Generation

The initial configurations for cellular automata,
the starting position for zigzag scanning, the
starting values for the logistic map, and the 512-
bit hash are the keys of this system. To withstand
plaintext-based threats, the keys are computed
from the input images and obtained as follows:

Step 1: Obtain the 512-bit hash by applying the
SHA-512algorithm on the input images.
Step 2: Compute the initial configuration.
The two initial configuration vectors,{R0

P and C0P},
for Rule-30 are calculated from the 512-bit hash
as follows.
Case 1: If the length of configuration (L) is 1≤ L
≤512, select L bits from the rear end of the 512-bit

hash in reverse order.
Case 2: If the length of configuration (L) is
≤1024, select the first 512 bits from the rear end
of the 512-bit hash in reverse order and the
remaining bits from the front end in the forward
order.
Step 3: Find the starting position of the zigzag
scanning pattern.

The 512-bit hash of the input image is grouped
into 8-bit segments and transformed to 64-decimal
numbers, d1, d2, d3, …., d64. The starting position
(p0, q0) of the zigzag scanning pattern is computed
using Equation (3),

�p0 = ((d1 + d64) mod w) + 1
q0 = ((d2 + d63) mod w) + 1, (3)

where w is the dimension of the image.
Step 4: Compute the starting values of the 2D
logistic map.
 In the 2D logistic map, the two initial
values (x1, y1) used are computed using Equation
(4),

�
x1 =

1
2

(mod ((d1 ⊕ d2 ⊕ … . .⊕ d32), 256) + xs)

 y1 =
1
2

(mod ((d33 ⊕ d34 ⊕ … . .⊕ d64), 256) + ys)
, (4)

where (xs, ys) are the starting seeds.

Combining
Pixel

Permutation

Pixel-Level
Zigzag

Scanning

Bit-Level
Circular

Shift

Pixel
Substitution

Cellular
Automata
Rule -30

2D-Logistic
Map

Key-1 Key-3 Key-2

Segmentation

 and

Figure7
Block diagram of the proposed technique

3. The Proposed Algorithm

The framework of the new system is shown in
Figure 7. The two prime and inevitable cipher
design principles of confusion and diffusion are
realized in this approach through the inclusion of
substitution and permutation operations. The key
generation, enciphering and deciphering
processes are explained here.

3.1 Key Generation

The initial configurations for cellular automata,
the starting position for zigzag scanning, the
starting values for the logistic map, and the 512-
bit hash are the keys of this system. To withstand
plaintext-based threats, the keys are computed
from the input images and obtained as follows:

Step 1: Obtain the 512-bit hash by applying the
SHA-512algorithm on the input images.
Step 2: Compute the initial configuration.
The two initial configuration vectors,{R0

P and C0P},
for Rule-30 are calculated from the 512-bit hash
as follows.
Case 1: If the length of configuration (L) is 1≤ L
≤512, select L bits from the rear end of the 512-bit

hash in reverse order.
Case 2: If the length of configuration (L) is
≤1024, select the first 512 bits from the rear end
of the 512-bit hash in reverse order and the
remaining bits from the front end in the forward
order.
Step 3: Find the starting position of the zigzag
scanning pattern.

The 512-bit hash of the input image is grouped
into 8-bit segments and transformed to 64-decimal
numbers, d1, d2, d3, …., d64. The starting position
(p0, q0) of the zigzag scanning pattern is computed
using Equation (3),

�p0 = ((d1 + d64) mod w) + 1
q0 = ((d2 + d63) mod w) + 1, (3)

where w is the dimension of the image.
Step 4: Compute the starting values of the 2D
logistic map.
 In the 2D logistic map, the two initial
values (x1, y1) used are computed using Equation
(4),

�
x1 =

1
2

(mod ((d1 ⊕ d2 ⊕ … . .⊕ d32), 256) + xs)

 y1 =
1
2

(mod ((d33 ⊕ d34 ⊕ … . .⊕ d64), 256) + ys)
, (4)

where (xs, ys) are the starting seeds.

Combining
Pixel

Permutation

Pixel-Level
Zigzag

Scanning

Bit-Level
Circular

Shift

Pixel
Substitution

Cellular
Automata
Rule -30

2D-Logistic
Map

Key-1 Key-3 Key-2

Segmentation

}, for
Rule-30 are calculated from the 512-bit hash as fol-
lows.
Case 1: If the length of configuration (L) is 1≤ L ≤512,
select L bits from the rear end of the 512-bit hash in
reverse order.
Case 2: If the length of configuration (L) is ≤1024, se-
lect the first 512 bits from the rear end of the 512-bit
hash in reverse order and the remaining bits from the
front end in the forward order.
Step 3: Find the starting position of the zigzag scan-
ning pattern.

The 512-bit hash of the input image is grouped into
8-bit segments and transformed to 64-decimal num-
bers, d1, d2, d3, …., d64. The starting position (p0, q0) of
the zigzag scanning pattern is computed using Equa-
tion (3),

Figure7
Block diagram of the proposed technique

3. The Proposed Algorithm

The framework of the new system is shown in
Figure 7. The two prime and inevitable cipher
design principles of confusion and diffusion are
realized in this approach through the inclusion of
substitution and permutation operations. The key
generation, enciphering and deciphering
processes are explained here.

3.1 Key Generation

The initial configurations for cellular automata,
the starting position for zigzag scanning, the
starting values for the logistic map, and the 512-
bit hash are the keys of this system. To withstand
plaintext-based threats, the keys are computed
from the input images and obtained as follows:

Step 1: Obtain the 512-bit hash by applying the
SHA-512algorithm on the input images.
Step 2: Compute the initial configuration.
The two initial configuration vectors,{R0

P and C0P},
for Rule-30 are calculated from the 512-bit hash
as follows.
Case 1: If the length of configuration (L) is 1≤ L
≤512, select L bits from the rear end of the 512-bit

hash in reverse order.
Case 2: If the length of configuration (L) is
≤1024, select the first 512 bits from the rear end
of the 512-bit hash in reverse order and the
remaining bits from the front end in the forward
order.
Step 3: Find the starting position of the zigzag
scanning pattern.

The 512-bit hash of the input image is grouped

�p0 = ((d1 + d64) mod w) + 1
q0 = ((d2 + d63) mod w) + 1, (3)

�
x1 =

1
2

(mod ((d1 ⊕ d2 ⊕ … . .⊕ d32), 256) + xs)

 y1 =
1
2

(mod ((d33 ⊕ d34 ⊕ … . .⊕ d64), 256) + ys)
, (4)

Combining
Pixel

Permutation

Pixel-Level
Zigzag

Scanning

Bit-Level
Circular

Shift

Pixel
Substitution

Cellular
Automata
Rule -30

2D-Logistic
Map

Key-1 Key-3 Key-2

Segmentation

(3)

where w is the dimension of the image.
Step 4: Compute the starting values of the 2D logistic
map.
In the 2D logistic map, the two initial values (x1, y1)
used are computed using Equation (4),

Figure7
Block diagram of the proposed technique

3. The Proposed Algorithm

The framework of the new system is shown in
Figure 7. The two prime and inevitable cipher
design principles of confusion and diffusion are
realized in this approach through the inclusion of
substitution and permutation operations. The key
generation, enciphering and deciphering
processes are explained here.

3.1 Key Generation

The initial configurations for cellular automata,
the starting position for zigzag scanning, the
starting values for the logistic map, and the 512-
bit hash are the keys of this system. To withstand
plaintext-based threats, the keys are computed
from the input images and obtained as follows:

Step 1: Obtain the 512-bit hash by applying the
SHA-512algorithm on the input images.
Step 2: Compute the initial configuration.
The two initial configuration vectors,{R0

P and C0P},
for Rule-30 are calculated from the 512-bit hash
as follows.
Case 1: If the length of configuration (L) is 1≤ L
≤512, select L bits from the rear end of the 512-bit

hash in reverse order.
Case 2: If the length of configuration (L) is
≤1024, select the first 512 bits from the rear end
of the 512-bit hash in reverse order and the
remaining bits from the front end in the forward
order.
Step 3: Find the starting position of the zigzag
scanning pattern.

The 512-bit hash of the input image is grouped

�p0 = ((d1 + d64) mod w) + 1
q0 = ((d2 + d63) mod w) + 1, (3)

�
x1 =

1
2

(mod ((d1 ⊕ d2 ⊕ … . .⊕ d32), 256) + xs)

 y1=
1
2

(mod ((d33 ⊕ d34⊕ … . .⊕ d64), 256) + ys)

Combining
Pixel

Permutation

Pixel-Level
Zigzag

Scanning

Bit-Level
Circular

Shift

Pixel
Substitution

Cellular
Automata
Rule -30

2D-Logistic
Map

Key-1 Key-3 Key-2

Segmentation

. (4)

where (xs, ys) are the starting seeds.

 3.2. Encryption Algorithm
Figure 8 shows the flowchart of the proposed multiple
color image encryption process. The process of trans-
forming h plain images into h encrypted images con-
sists of the following steps.
Step 1: Combine all the h input images to create one
large image (I).
Step 2: Create pure-image elements by segmenting
the large image.
Step 3: Generate the mixed-image elements. A per-

Figure7
Block diagram of the proposed technique

3. The Proposed Algorithm

The framework of the new system is shown in
Figure 7. The two prime and inevitable cipher
design principles of confusion and diffusion are
realized in this approach through the inclusion of
substitution and permutation operations. The key
generation, enciphering and deciphering
processes are explained here.

3.1 Key Generation

The initial configurations for cellular automata,
the starting position for zigzag scanning, the
starting values for the logistic map, and the 512-
bit hash are the keys of this system. To withstand
plaintext-based threats, the keys are computed
from the input images and obtained as follows:

Step 1: Obtain the 512-bit hash by applying the
SHA-512algorithm on the input images.
Step 2: Compute the initial configuration.
The two initial configuration vectors,{R0

P and C0P},
for Rule-30 are calculated from the 512-bit hash
as follows.
Case 1: If the length of configuration (L) is 1≤ L
≤512, select L bits from the rear end of the 512-bit

hash in reverse order.
Case 2: If the length of configuration (L) is
≤1024, select the first 512 bits from the rear end
of the 512-bit hash in reverse order and the
remaining bits from the front end in the forward
order.
Step 3: Find the starting position of the zigzag
scanning pattern.

The 512-bit hash of the input image is grouped
into 8-bit segments and transformed to 64-decimal
numbers, d1, d2, d3, …., d64. The starting position
(p0, q0) of the zigzag scanning pattern is computed
using Equation (3),

�p0 = ((d1 + d64) mod w) + 1
q0 = ((d2 + d63) mod w) + 1, (3)

where w is the dimension of the image.
Step 4: Compute the starting values of the 2D
logistic map.
 In the 2D logistic map, the two initial
values (x1, y1) used are computed using Equation
(4),

�
x1 =

1
2

(mod ((d1 ⊕ d2 ⊕ … . .⊕ d32), 256) + xs)

 y1 =
1
2

(mod ((d33 ⊕ d34 ⊕ … . .⊕ d64), 256) + ys)
, (4)

where (xs, ys) are the starting seeds.

Combining
Pixel

Permutation

Pixel-Level
Zigzag

Scanning

Bit-Level
Circular

Shift

Pixel
Substitution

Cellular
Automata
Rule -30

2D-Logistic
Map

Key-1 Key-3 Key-2

Segmentation

Figure7
Block diagram of the proposed technique

63Information Technology and Control 2021/1/50

Figure 8
Flowchart of encryption process

mutation operation is employed on the pure-image el-
ements to create mixed-image elements. In this work,
a two-stage permutation operation is performed.
The first stage of the permutation operation, based
on Rule-30 of the elementary cellular automata, is as
follows. The permutation is performed on both rows
and columns. The two different initial configuration
vectors {

Figure7
Block diagram of the proposed technique

3. The Proposed Algorithm

The framework of the new system is shown in
Figure 7. The two prime and inevitable cipher
design principles of confusion and diffusion are
realized in this approach through the inclusion of
substitution and permutation operations. The key
generation, enciphering and deciphering
processes are explained here.

3.1 Key Generation

The initial configurations for cellular automata,
the starting position for zigzag scanning, the
starting values for the logistic map, and the 512-
bit hash are the keys of this system. To withstand
plaintext-based threats, the keys are computed
from the input images and obtained as follows:

Step 1: Obtain the 512-bit hash by applying the
SHA-512algorithm on the input images.
Step 2: Compute the initial configuration.
The two initial configuration vectors,{R0

P and C0P},
for Rule-30 are calculated from the 512-bit hash
as follows.
Case 1: If the length of configuration (L) is 1≤ L
≤512, select L bits from the rear end of the 512-bit

hash in reverse order.
Case 2: If the length of configuration (L) is
≤1024, select the first 512 bits from the rear end
of the 512-bit hash in reverse order and the
remaining bits from the front end in the forward
order.
Step 3: Find the starting position of the zigzag
scanning pattern.

The 512-bit hash of the input image is grouped
into 8-bit segments and transformed to 64-decimal
numbers, d1, d2, d3, …., d64. The starting position
(p0, q0) of the zigzag scanning pattern is computed
using Equation (3),

�p0 = ((d1 + d64) mod w) + 1
q0 = ((d2 + d63) mod w) + 1, (3)

where w is the dimension of the image.
Step 4: Compute the starting values of the 2D
logistic map.
 In the 2D logistic map, the two initial
values (x1, y1) used are computed using Equation
(4),

�
x1 =

1
2

(mod ((d1 ⊕ d2 ⊕ … . .⊕ d32), 256) + xs)

 y1 =
1
2

(mod ((d33 ⊕ d34 ⊕ … . .⊕ d64), 256) + ys)
, (4)

where (xs, ys) are the starting seeds.

Combining
Pixel

Permutation

Pixel-Level
Zigzag

Scanning

Bit-Level
Circular

Shift

Pixel
Substitution

Cellular
Automata
Rule -30

2D-Logistic
Map

Key-1 Key-3 Key-2

Segmentation

 and

Figure7
Block diagram of the proposed technique

3. The Proposed Algorithm

The framework of the new system is shown in
Figure 7. The two prime and inevitable cipher
design principles of confusion and diffusion are
realized in this approach through the inclusion of
substitution and permutation operations. The key
generation, enciphering and deciphering
processes are explained here.

3.1 Key Generation

The initial configurations for cellular automata,
the starting position for zigzag scanning, the
starting values for the logistic map, and the 512-
bit hash are the keys of this system. To withstand
plaintext-based threats, the keys are computed
from the input images and obtained as follows:

Step 1: Obtain the 512-bit hash by applying the
SHA-512algorithm on the input images.
Step 2: Compute the initial configuration.
The two initial configuration vectors,{R0

P and C0P},
for Rule-30 are calculated from the 512-bit hash
as follows.
Case 1: If the length of configuration (L) is 1≤ L
≤512, select L bits from the rear end of the 512-bit

hash in reverse order.
Case 2: If the length of configuration (L) is
≤1024, select the first 512 bits from the rear end
of the 512-bit hash in reverse order and the
remaining bits from the front end in the forward
order.
Step 3: Find the starting position of the zigzag
scanning pattern.

The 512-bit hash of the input image is grouped
into 8-bit segments and transformed to 64-decimal
numbers, d1, d2, d3, …., d64. The starting position
(p0, q0) of the zigzag scanning pattern is computed
using Equation (3),

�p0 = ((d1 + d64) mod w) + 1
q0 = ((d2 + d63) mod w) + 1, (3)

where w is the dimension of the image.
Step 4: Compute the starting values of the 2D
logistic map.
 In the 2D logistic map, the two initial
values (x1, y1) used are computed using Equation
(4),

�
x1 =

1
2

(mod ((d1 ⊕ d2 ⊕ … . .⊕ d32), 256) + xs)

 y1 =
1
2

(mod ((d33 ⊕ d34 ⊕ … . .⊕ d64), 256) + ys)
, (4)

where (xs, ys) are the starting seeds.

Combining
Pixel

Permutation

Pixel-Level
Zigzag

Scanning

Bit-Level
Circular

Shift

Pixel
Substitution

Cellular
Automata
Rule -30

2D-Logistic
Map

Key-1 Key-3 Key-2

Segmentation

} of the circular boundary ECA are
obtained as presented in the key generation phase.
In accordance with Rule-30, the initial configuration
vectors

Figure7
Block diagram of the proposed technique

3. The Proposed Algorithm

The framework of the new system is shown in
Figure 7. The two prime and inevitable cipher
design principles of confusion and diffusion are
realized in this approach through the inclusion of
substitution and permutation operations. The key
generation, enciphering and deciphering
processes are explained here.

3.1 Key Generation

The initial configurations for cellular automata,
the starting position for zigzag scanning, the
starting values for the logistic map, and the 512-
bit hash are the keys of this system. To withstand
plaintext-based threats, the keys are computed
from the input images and obtained as follows:

Step 1: Obtain the 512-bit hash by applying the
SHA-512algorithm on the input images.
Step 2: Compute the initial configuration.
The two initial configuration vectors,{R0

P and C0P},
for Rule-30 are calculated from the 512-bit hash
as follows.
Case 1: If the length of configuration (L) is 1≤ L
≤512, select L bits from the rear end of the 512-bit

hash in reverse order.
Case 2: If the length of configuration (L) is
≤1024, select the first 512 bits from the rear end
of the 512-bit hash in reverse order and the
remaining bits from the front end in the forward
order.
Step 3: Find the starting position of the zigzag
scanning pattern.

The 512-bit hash of the input image is grouped
into 8-bit segments and transformed to 64-decimal
numbers, d1, d2, d3, …., d64. The starting position
(p0, q0) of the zigzag scanning pattern is computed
using Equation (3),

�p0 = ((d1 + d64) mod w) + 1
q0 = ((d2 + d63) mod w) + 1, (3)

where w is the dimension of the image.
Step 4: Compute the starting values of the 2D
logistic map.
 In the 2D logistic map, the two initial
values (x1, y1) used are computed using Equation
(4),

�
x1 =

1
2

(mod ((d1 ⊕ d2 ⊕ … . .⊕ d32), 256) + xs)

 y1 =
1
2

(mod ((d33 ⊕ d34 ⊕ … . .⊕ d64), 256) + ys)
, (4)

where (xs, ys) are the starting seeds.

Combining
Pixel

Permutation

Pixel-Level
Zigzag

Scanning

Bit-Level
Circular

Shift

Pixel
Substitution

Cellular
Automata
Rule -30

2D-Logistic
Map

Key-1 Key-3 Key-2

Segmentation

 and

Figure7
Block diagram of the proposed technique

3. The Proposed Algorithm

The framework of the new system is shown in
Figure 7. The two prime and inevitable cipher
design principles of confusion and diffusion are
realized in this approach through the inclusion of
substitution and permutation operations. The key
generation, enciphering and deciphering
processes are explained here.

3.1 Key Generation

The initial configurations for cellular automata,
the starting position for zigzag scanning, the
starting values for the logistic map, and the 512-
bit hash are the keys of this system. To withstand
plaintext-based threats, the keys are computed
from the input images and obtained as follows:

Step 1: Obtain the 512-bit hash by applying the
SHA-512algorithm on the input images.
Step 2: Compute the initial configuration.
The two initial configuration vectors,{R0

P and C0P},
for Rule-30 are calculated from the 512-bit hash
as follows.
Case 1: If the length of configuration (L) is 1≤ L
≤512, select L bits from the rear end of the 512-bit

hash in reverse order.
Case 2: If the length of configuration (L) is
≤1024, select the first 512 bits from the rear end
of the 512-bit hash in reverse order and the
remaining bits from the front end in the forward
order.
Step 3: Find the starting position of the zigzag
scanning pattern.

The 512-bit hash of the input image is grouped
into 8-bit segments and transformed to 64-decimal
numbers, d1, d2, d3, …., d64. The starting position
(p0, q0) of the zigzag scanning pattern is computed
using Equation (3),

�p0 = ((d1 + d64) mod w) + 1
q0 = ((d2 + d63) mod w) + 1, (3)

where w is the dimension of the image.
Step 4: Compute the starting values of the 2D
logistic map.
 In the 2D logistic map, the two initial
values (x1, y1) used are computed using Equation
(4),

�
x1 =

1
2

(mod ((d1 ⊕ d2 ⊕ … . .⊕ d32), 256) + xs)

 y1 =
1
2

(mod ((d33 ⊕ d34 ⊕ … . .⊕ d64), 256) + ys)
, (4)

where (xs, ys) are the starting seeds.

Combining
Pixel

Permutation

Pixel-Level
Zigzag

Scanning

Bit-Level
Circular

Shift

Pixel
Substitution

Cellular
Automata
Rule -30

2D-Logistic
Map

Key-1 Key-3 Key-2

Segmentation

 ay self-evolve and can acquire two
evolved configurations,

Step 1: Combine all the h input images to create
one large image (I).

Step 2: Create pure-image elements by
segmenting the large image.

Step 3: Generate the mixed-image elements. A
permutation operation is employed on the pure-
image elements to create mixed-image elements.
In this work, a two-stage permutation operation
is performed. The first stage of the permutation
operation, based on Rule-30 of the elementary
cellular automata, is as follows. The permutation
is performed on both rows and columns. The two
different initial configuration vectors
{R0

P and C0P } of the circular boundary ECA are
obtained as presented in the key generation
phase.
In accordance with Rule-30, the initial
configuration vectors , R0

P and C0,
P may self-

evolve and can acquire two evolved
configurations, Ri

P = { R0
P, R1

P , .. Re
P … , Rm

P }
and CiP = { C0P, C1P , .. CeP … , CnP}, where e is the
eth round configuration, and m and n denote the
dimensions of the big-image matrix,(I).The RP
sequence is used for row permutation and the CP
sequence for column permutation. Figure 9 gives
an example.

Row Permutation (RP):
Case 1: If Re

P(i)== Re−1
P (i), every value of the

ithrow of the image matrix Ie-1 is left, circularly
shifted s1 times.
Case 2: If Re

P(i)== 0 and Re−1
P (i) == 1, every

value of the ithrow of the image matrix Ie-1 is left,
circularly shifted s2 times.
Case 3: If Re

P(i)== 1 and Re−1
P (i) == 0, every

value of the ithrow of the image matrix Ie-1 is
right, circularly shifted s3 times.

 s1, s2 and s3 are calculated using
Equation (5):

�
s1 = mod(i × 250, m)

s2 = mod(i × 250, m) + 2
s3 = mod(i × 250, m) + 2

 . (5)

Column Permutation (RP):
Case 1: If CeP(j)== Ce−1P (j), every value of the
jthcolumn of the image matrix Ie-1 is upward,
circularly shifted s4 times.
Case 2: If CeP(j)== 0 and Ce−1P (j) == 1, every

value of the jthcolumn of the image matrix Ie-1 is
upward, circularly shifted s5 times.
Case 3: If CeP(j)== 1 and Ce−1P (j) == 0, every
value of the jthcolumn of the image matrix Ie-1 is
downward, circularly shifted s3 times.

 s4, s5 and s6 are calculated using
Equation (6):

�
s4 = mod(j × 250, n)

s5 = mod(j × 250, n) + 2
s6 = mod(j × 250, n) + 2

. (6)

Step 4: Transform the big image matrix into a
one- dimensional vector with zigzag scanning.
Step 5: Perform the k-bit left circular shift
operation on each pixel value.
Step 6: Do the bitwise exclusive-or operation.
A pixel-level substitution based on the logistic
map is performed in the proposed method, in
which a new value is set for each pixel, as
follows. The 2D logistic map (1) is iterated to
obtain random sequences that are preprocessed
in Equation (7) before being used. The simple
exclusive-or operation is used in the pixel
substitution process, as defined in Equation (8),

�
Xs = xi × 1014 mod 256
Ys = yi × 1014 mod 256 .

Zs = Xs ⊕ Ys
 (7)

Where I = 1, 2, ..., L (L is sequence
length)

�
Rc = de2bi (Ri) ⊕ de2bi (xi)
Gc = de2bi (Gi) ⊕ de2bi (yi)
Bc = de2bi (Bi) ⊕ de2bi (zi)

. (8)

Where (R, G& B) are color components.
Step 7: Segment the big image into h encrypted
images.

3.3 Decryption Algorithm

Multiple-image decryption is the inverse of
multiple-image encryption. The h enciphered
images are combined into a big image, after
which inverse pixel substitution is performed
using the 2D logistic map, followed by the k-bit
right circular shift operation on each pixel to
restore the original pixel values. The pixel
location is restored by carrying out inverse
zigzag scanning and inverse pixel permutation
using CA Rule-30. Finally, the big image is
segmented to produce the h plain images.

Figure 9
Permutation process based on CA

 = {

Step 1: Combine all the h input images to create
one large image (I).

Step 2: Create pure-image elements by
segmenting the large image.

Step 3: Generate the mixed-image elements. A
permutation operation is employed on the pure-
image elements to create mixed-image elements.
In this work, a two-stage permutation operation
is performed. The first stage of the permutation
operation, based on Rule-30 of the elementary
cellular automata, is as follows. The permutation
is performed on both rows and columns. The two
different initial configuration vectors
{R0

P and C0P } of the circular boundary ECA are
obtained as presented in the key generation
phase.
In accordance with Rule-30, the initial
configuration vectors , R0

P and C0,
P may self-

evolve and can acquire two evolved
configurations, Ri

P = { R0
P, R1

P , .. Re
P … , Rm

P }
and CiP = { C0P, C1P , .. CeP … , CnP}, where e is the
eth round configuration, and m and n denote the
dimensions of the big-image matrix,(I).The RP
sequence is used for row permutation and the CP
sequence for column permutation. Figure 9 gives
an example.

Row Permutation (RP):
Case 1: If Re

P(i)== Re−1
P (i), every value of the

ithrow of the image matrix Ie-1 is left, circularly
shifted s1 times.
Case 2: If Re

P(i)== 0 and Re−1
P (i) == 1, every

value of the ithrow of the image matrix Ie-1 is left,
circularly shifted s2 times.
Case 3: If Re

P(i)== 1 and Re−1
P (i) == 0, every

value of the ithrow of the image matrix Ie-1 is
right, circularly shifted s3 times.

 s1, s2 and s3 are calculated using
Equation (5):

�
s1 = mod(i × 250, m)

s2 = mod(i × 250, m) + 2
s3 = mod(i × 250, m) + 2

 . (5)

Column Permutation (RP):
Case 1: If CeP(j)== Ce−1P (j), every value of the
jthcolumn of the image matrix Ie-1 is upward,
circularly shifted s4 times.
Case 2: If CeP(j)== 0 and Ce−1P (j) == 1, every

value of the jthcolumn of the image matrix Ie-1 is
upward, circularly shifted s5 times.
Case 3: If CeP(j)== 1 and Ce−1P (j) == 0, every
value of the jthcolumn of the image matrix Ie-1 is
downward, circularly shifted s3 times.

 s4, s5 and s6 are calculated using
Equation (6):

�
s4 = mod(j × 250, n)

s5 = mod(j × 250, n) + 2
s6 = mod(j × 250, n) + 2

. (6)

Step 4: Transform the big image matrix into a
one- dimensional vector with zigzag scanning.
Step 5: Perform the k-bit left circular shift
operation on each pixel value.
Step 6: Do the bitwise exclusive-or operation.
A pixel-level substitution based on the logistic
map is performed in the proposed method, in
which a new value is set for each pixel, as
follows. The 2D logistic map (1) is iterated to
obtain random sequences that are preprocessed
in Equation (7) before being used. The simple
exclusive-or operation is used in the pixel
substitution process, as defined in Equation (8),

�
Xs = xi × 1014 mod 256
Ys = yi × 1014 mod 256 .

Zs = Xs ⊕ Ys
 (7)

Where I = 1, 2, ..., L (L is sequence
length)

�
Rc = de2bi (Ri) ⊕ de2bi (xi)
Gc = de2bi (Gi) ⊕ de2bi (yi)
Bc = de2bi (Bi) ⊕ de2bi (zi)

. (8)

Where (R, G& B) are color components.
Step 7: Segment the big image into h encrypted
images.

3.3 Decryption Algorithm

Multiple-image decryption is the inverse of
multiple-image encryption. The h enciphered
images are combined into a big image, after
which inverse pixel substitution is performed
using the 2D logistic map, followed by the k-bit
right circular shift operation on each pixel to
restore the original pixel values. The pixel
location is restored by carrying out inverse
zigzag scanning and inverse pixel permutation
using CA Rule-30. Finally, the big image is
segmented to produce the h plain images.

Figure 9
Permutation process based on CA

 , ..

Step 1: Combine all the h input images to create
one large image (I).

Step 2: Create pure-image elements by
segmenting the large image.

Step 3: Generate the mixed-image elements. A
permutation operation is employed on the pure-
image elements to create mixed-image elements.
In this work, a two-stage permutation operation
is performed. The first stage of the permutation
operation, based on Rule-30 of the elementary
cellular automata, is as follows. The permutation
is performed on both rows and columns. The two
different initial configuration vectors
{R0

P and C0P } of the circular boundary ECA are
obtained as presented in the key generation
phase.
In accordance with Rule-30, the initial
configuration vectors , R0

P and C0,
P may self-

evolve and can acquire two evolved
configurations, Ri

P = { R0
P, R1

P , .. Re
P … , Rm

P }
and CiP = { C0P, C1P , .. CeP … , CnP}, where e is the
eth round configuration, and m and n denote the
dimensions of the big-image matrix,(I).The RP
sequence is used for row permutation and the CP
sequence for column permutation. Figure 9 gives
an example.

Row Permutation (RP):
Case 1: If Re

P(i)== Re−1
P (i), every value of the

ithrow of the image matrix Ie-1 is left, circularly
shifted s1 times.
Case 2: If Re

P(i)== 0 and Re−1
P (i) == 1, every

value of the ithrow of the image matrix Ie-1 is left,
circularly shifted s2 times.
Case 3: If Re

P(i)== 1 and Re−1
P (i) == 0, every

value of the ithrow of the image matrix Ie-1 is
right, circularly shifted s3 times.

 s1, s2 and s3 are calculated using
Equation (5):

�
s1 = mod(i × 250, m)

s2 = mod(i × 250, m) + 2
s3 = mod(i × 250, m) + 2

 . (5)

Column Permutation (RP):
Case 1: If CeP(j)== Ce−1P (j), every value of the
jthcolumn of the image matrix Ie-1 is upward,
circularly shifted s4 times.
Case 2: If CeP(j)== 0 and Ce−1P (j) == 1, every

value of the jthcolumn of the image matrix Ie-1 is
upward, circularly shifted s5 times.
Case 3: If CeP(j)== 1 and Ce−1P (j) == 0, every
value of the jthcolumn of the image matrix Ie-1 is
downward, circularly shifted s3 times.

 s4, s5 and s6 are calculated using
Equation (6):

�
s4 = mod(j × 250, n)

s5 = mod(j × 250, n) + 2
s6 = mod(j × 250, n) + 2

. (6)

Step 4: Transform the big image matrix into a
one- dimensional vector with zigzag scanning.
Step 5: Perform the k-bit left circular shift
operation on each pixel value.
Step 6: Do the bitwise exclusive-or operation.
A pixel-level substitution based on the logistic
map is performed in the proposed method, in
which a new value is set for each pixel, as
follows. The 2D logistic map (1) is iterated to
obtain random sequences that are preprocessed
in Equation (7) before being used. The simple
exclusive-or operation is used in the pixel
substitution process, as defined in Equation (8),

�
Xs = xi × 1014 mod 256
Ys = yi × 1014 mod 256 .

Zs = Xs ⊕ Ys
 (7)

Where I = 1, 2, ..., L (L is sequence
length)

�
Rc = de2bi (Ri) ⊕ de2bi (xi)
Gc = de2bi (Gi) ⊕ de2bi (yi)
Bc = de2bi (Bi) ⊕ de2bi (zi)

. (8)

Where (R, G& B) are color components.
Step 7: Segment the big image into h encrypted
images.

3.3 Decryption Algorithm

Multiple-image decryption is the inverse of
multiple-image encryption. The h enciphered
images are combined into a big image, after
which inverse pixel substitution is performed
using the 2D logistic map, followed by the k-bit
right circular shift operation on each pixel to
restore the original pixel values. The pixel
location is restored by carrying out inverse
zigzag scanning and inverse pixel permutation
using CA Rule-30. Finally, the big image is
segmented to produce the h plain images.

Figure 9
Permutation process based on CA

 … ,

Step 1: Combine all the h input images to create
one large image (I).

Step 2: Create pure-image elements by
segmenting the large image.

Step 3: Generate the mixed-image elements. A
permutation operation is employed on the pure-
image elements to create mixed-image elements.
In this work, a two-stage permutation operation
is performed. The first stage of the permutation
operation, based on Rule-30 of the elementary
cellular automata, is as follows. The permutation
is performed on both rows and columns. The two
different initial configuration vectors
{R0

P and C0P } of the circular boundary ECA are
obtained as presented in the key generation
phase.
In accordance with Rule-30, the initial
configuration vectors , R0

P and C0,
P may self-

evolve and can acquire two evolved
configurations, Ri

P = { R0
P, R1

P , .. Re
P … , Rm

P }
and CiP = { C0P, C1P , .. CeP … , CnP}, where e is the
eth round configuration, and m and n denote the
dimensions of the big-image matrix,(I).The RP
sequence is used for row permutation and the CP
sequence for column permutation. Figure 9 gives
an example.

Row Permutation (RP):
Case 1: If Re

P(i)== Re−1
P (i), every value of the

ithrow of the image matrix Ie-1 is left, circularly
shifted s1 times.
Case 2: If Re

P(i)== 0 and Re−1
P (i) == 1, every

value of the ithrow of the image matrix Ie-1 is left,
circularly shifted s2 times.
Case 3: If Re

P(i)== 1 and Re−1
P (i) == 0, every

value of the ithrow of the image matrix Ie-1 is
right, circularly shifted s3 times.

 s1, s2 and s3 are calculated using
Equation (5):

�
s1 = mod(i × 250, m)

s2 = mod(i × 250, m) + 2
s3 = mod(i × 250, m) + 2

 . (5)

Column Permutation (RP):
Case 1: If CeP(j)== Ce−1P (j), every value of the
jthcolumn of the image matrix Ie-1 is upward,
circularly shifted s4 times.
Case 2: If CeP(j)== 0 and Ce−1P (j) == 1, every

value of the jthcolumn of the image matrix Ie-1 is
upward, circularly shifted s5 times.
Case 3: If CeP(j)== 1 and Ce−1P (j) == 0, every
value of the jthcolumn of the image matrix Ie-1 is
downward, circularly shifted s3 times.

 s4, s5 and s6 are calculated using
Equation (6):

�
s4 = mod(j × 250, n)

s5 = mod(j × 250, n) + 2
s6 = mod(j × 250, n) + 2

. (6)

Step 4: Transform the big image matrix into a
one- dimensional vector with zigzag scanning.
Step 5: Perform the k-bit left circular shift
operation on each pixel value.
Step 6: Do the bitwise exclusive-or operation.
A pixel-level substitution based on the logistic
map is performed in the proposed method, in
which a new value is set for each pixel, as
follows. The 2D logistic map (1) is iterated to
obtain random sequences that are preprocessed
in Equation (7) before being used. The simple
exclusive-or operation is used in the pixel
substitution process, as defined in Equation (8),

�
Xs = xi × 1014 mod 256
Ys = yi × 1014 mod 256 .

Zs = Xs ⊕ Ys
 (7)

Where I = 1, 2, ..., L (L is sequence
length)

�
Rc = de2bi (Ri) ⊕ de2bi (xi)
Gc = de2bi (Gi) ⊕ de2bi (yi)
Bc = de2bi (Bi) ⊕ de2bi (zi)

. (8)

Where (R, G& B) are color components.
Step 7: Segment the big image into h encrypted
images.

3.3 Decryption Algorithm

Multiple-image decryption is the inverse of
multiple-image encryption. The h enciphered
images are combined into a big image, after
which inverse pixel substitution is performed
using the 2D logistic map, followed by the k-bit
right circular shift operation on each pixel to
restore the original pixel values. The pixel
location is restored by carrying out inverse
zigzag scanning and inverse pixel permutation
using CA Rule-30. Finally, the big image is
segmented to produce the h plain images.

Figure 9
Permutation process based on CA

} and

Step 1: Combine all the h input images to create
one large image (I).

Step 2: Create pure-image elements by
segmenting the large image.

Step 3: Generate the mixed-image elements. A
permutation operation is employed on the pure-
image elements to create mixed-image elements.
In this work, a two-stage permutation operation
is performed. The first stage of the permutation
operation, based on Rule-30 of the elementary
cellular automata, is as follows. The permutation
is performed on both rows and columns. The two
different initial configuration vectors
{R0

P and C0P } of the circular boundary ECA are
obtained as presented in the key generation
phase.
In accordance with Rule-30, the initial
configuration vectors , R0

P and C0,
P may self-

evolve and can acquire two evolved
configurations, Ri

P = { R0
P, R1

P , .. Re
P … , Rm

P }
and CiP = { C0P, C1P , .. CeP … , CnP}, where e is the
eth round configuration, and m and n denote the
dimensions of the big-image matrix,(I).The RP
sequence is used for row permutation and the CP
sequence for column permutation. Figure 9 gives
an example.

Row Permutation (RP):
Case 1: If Re

P(i)== Re−1
P (i), every value of the

ithrow of the image matrix Ie-1 is left, circularly
shifted s1 times.
Case 2: If Re

P(i)== 0 and Re−1
P (i) == 1, every

value of the ithrow of the image matrix Ie-1 is left,
circularly shifted s2 times.
Case 3: If Re

P(i)== 1 and Re−1
P (i) == 0, every

value of the ithrow of the image matrix Ie-1 is
right, circularly shifted s3 times.

 s1, s2 and s3 are calculated using
Equation (5):

�
s1 = mod(i × 250, m)

s2 = mod(i × 250, m) + 2
s3 = mod(i × 250, m) + 2

 . (5)

Column Permutation (RP):
Case 1: If CeP(j)== Ce−1P (j), every value of the
jthcolumn of the image matrix Ie-1 is upward,
circularly shifted s4 times.
Case 2: If CeP(j)== 0 and Ce−1P (j) == 1, every

value of the jthcolumn of the image matrix Ie-1 is
upward, circularly shifted s5 times.
Case 3: If CeP(j)== 1 and Ce−1P (j) == 0, every
value of the jthcolumn of the image matrix Ie-1 is
downward, circularly shifted s3 times.

 s4, s5 and s6 are calculated using
Equation (6):

�
s4 = mod(j × 250, n)

s5 = mod(j × 250, n) + 2
s6 = mod(j × 250, n) + 2

. (6)

Step 4: Transform the big image matrix into a
one- dimensional vector with zigzag scanning.
Step 5: Perform the k-bit left circular shift
operation on each pixel value.
Step 6: Do the bitwise exclusive-or operation.
A pixel-level substitution based on the logistic
map is performed in the proposed method, in
which a new value is set for each pixel, as
follows. The 2D logistic map (1) is iterated to
obtain random sequences that are preprocessed
in Equation (7) before being used. The simple
exclusive-or operation is used in the pixel
substitution process, as defined in Equation (8),

�
Xs = xi × 1014 mod 256
Ys = yi × 1014 mod 256 .

Zs = Xs ⊕ Ys
 (7)

Where I = 1, 2, ..., L (L is sequence
length)

�
Rc = de2bi (Ri) ⊕ de2bi (xi)
Gc = de2bi (Gi) ⊕ de2bi (yi)
Bc = de2bi (Bi) ⊕ de2bi (zi)

. (8)

Where (R, G& B) are color components.
Step 7: Segment the big image into h encrypted
images.

3.3 Decryption Algorithm

Multiple-image decryption is the inverse of
multiple-image encryption. The h enciphered
images are combined into a big image, after
which inverse pixel substitution is performed
using the 2D logistic map, followed by the k-bit
right circular shift operation on each pixel to
restore the original pixel values. The pixel
location is restored by carrying out inverse
zigzag scanning and inverse pixel permutation
using CA Rule-30. Finally, the big image is
segmented to produce the h plain images.

Figure 9
Permutation process based on CA

 = {

Step 1: Combine all the h input images to create
one large image (I).

Step 2: Create pure-image elements by
segmenting the large image.

Step 3: Generate the mixed-image elements. A
permutation operation is employed on the pure-
image elements to create mixed-image elements.
In this work, a two-stage permutation operation
is performed. The first stage of the permutation
operation, based on Rule-30 of the elementary
cellular automata, is as follows. The permutation
is performed on both rows and columns. The two
different initial configuration vectors
{R0

P and C0P } of the circular boundary ECA are
obtained as presented in the key generation
phase.
In accordance with Rule-30, the initial
configuration vectors , R0

P and C0,
P may self-

evolve and can acquire two evolved
configurations, Ri

P = { R0
P, R1

P , .. Re
P … , Rm

P }
and CiP = { C0P, C1P , .. CeP … , CnP}, where e is the
eth round configuration, and m and n denote the
dimensions of the big-image matrix,(I).The RP
sequence is used for row permutation and the CP
sequence for column permutation. Figure 9 gives
an example.

Row Permutation (RP):
Case 1: If Re

P(i)== Re−1
P (i), every value of the

ithrow of the image matrix Ie-1 is left, circularly
shifted s1 times.
Case 2: If Re

P(i)== 0 and Re−1
P (i) == 1, every

value of the ithrow of the image matrix Ie-1 is left,
circularly shifted s2 times.
Case 3: If Re

P(i)== 1 and Re−1
P (i) == 0, every

value of the ithrow of the image matrix Ie-1 is
right, circularly shifted s3 times.

 s1, s2 and s3 are calculated using
Equation (5):

�
s1 = mod(i × 250, m)

s2 = mod(i × 250, m) + 2
s3 = mod(i × 250, m) + 2

 . (5)

Column Permutation (RP):
Case 1: If CeP(j)== Ce−1P (j), every value of the
jthcolumn of the image matrix Ie-1 is upward,
circularly shifted s4 times.
Case 2: If CeP(j)== 0 and Ce−1P (j) == 1, every

value of the jthcolumn of the image matrix Ie-1 is
upward, circularly shifted s5 times.
Case 3: If CeP(j)== 1 and Ce−1P (j) == 0, every
value of the jthcolumn of the image matrix Ie-1 is
downward, circularly shifted s3 times.

 s4, s5 and s6 are calculated using
Equation (6):

�
s4 = mod(j × 250, n)

s5 = mod(j × 250, n) + 2
s6 = mod(j × 250, n) + 2

. (6)

Step 4: Transform the big image matrix into a
one- dimensional vector with zigzag scanning.
Step 5: Perform the k-bit left circular shift
operation on each pixel value.
Step 6: Do the bitwise exclusive-or operation.
A pixel-level substitution based on the logistic
map is performed in the proposed method, in
which a new value is set for each pixel, as
follows. The 2D logistic map (1) is iterated to
obtain random sequences that are preprocessed
in Equation (7) before being used. The simple
exclusive-or operation is used in the pixel
substitution process, as defined in Equation (8),

�
Xs = xi × 1014 mod 256
Ys = yi × 1014 mod 256 .

Zs = Xs ⊕ Ys
 (7)

Where I = 1, 2, ..., L (L is sequence
length)

�
Rc = de2bi (Ri) ⊕ de2bi (xi)
Gc = de2bi (Gi) ⊕ de2bi (yi)
Bc = de2bi (Bi) ⊕ de2bi (zi)

. (8)

Where (R, G& B) are color components.
Step 7: Segment the big image into h encrypted
images.

3.3 Decryption Algorithm

Multiple-image decryption is the inverse of
multiple-image encryption. The h enciphered
images are combined into a big image, after
which inverse pixel substitution is performed
using the 2D logistic map, followed by the k-bit
right circular shift operation on each pixel to
restore the original pixel values. The pixel
location is restored by carrying out inverse
zigzag scanning and inverse pixel permutation
using CA Rule-30. Finally, the big image is
segmented to produce the h plain images.

Figure 9
Permutation process based on CA

 , ..

Step 1: Combine all the h input images to create
one large image (I).

Step 2: Create pure-image elements by
segmenting the large image.

Step 3: Generate the mixed-image elements. A
permutation operation is employed on the pure-
image elements to create mixed-image elements.
In this work, a two-stage permutation operation
is performed. The first stage of the permutation
operation, based on Rule-30 of the elementary
cellular automata, is as follows. The permutation
is performed on both rows and columns. The two
different initial configuration vectors
{R0

P and C0P } of the circular boundary ECA are
obtained as presented in the key generation
phase.
In accordance with Rule-30, the initial
configuration vectors , R0

P and C0,
P may self-

evolve and can acquire two evolved
configurations, Ri

P = { R0
P, R1

P , .. Re
P … , Rm

P }
and CiP = { C0P, C1P , .. CeP … , CnP}, where e is the
eth round configuration, and m and n denote the
dimensions of the big-image matrix,(I).The RP
sequence is used for row permutation and the CP
sequence for column permutation. Figure 9 gives
an example.

Row Permutation (RP):
Case 1: If Re

P(i)== Re−1
P (i), every value of the

ithrow of the image matrix Ie-1 is left, circularly
shifted s1 times.
Case 2: If Re

P(i)== 0 and Re−1
P (i) == 1, every

value of the ithrow of the image matrix Ie-1 is left,
circularly shifted s2 times.
Case 3: If Re

P(i)== 1 and Re−1
P (i) == 0, every

value of the ithrow of the image matrix Ie-1 is
right, circularly shifted s3 times.

 s1, s2 and s3 are calculated using
Equation (5):

�
s1 = mod(i × 250, m)

s2 = mod(i × 250, m) + 2
s3 = mod(i × 250, m) + 2

 . (5)

Column Permutation (RP):
Case 1: If CeP(j)== Ce−1P (j), every value of the
jthcolumn of the image matrix Ie-1 is upward,
circularly shifted s4 times.
Case 2: If CeP(j)== 0 and Ce−1P (j) == 1, every

value of the jthcolumn of the image matrix Ie-1 is
upward, circularly shifted s5 times.
Case 3: If CeP(j)== 1 and Ce−1P (j) == 0, every
value of the jthcolumn of the image matrix Ie-1 is
downward, circularly shifted s3 times.

 s4, s5 and s6 are calculated using
Equation (6):

�
s4 = mod(j × 250, n)

s5 = mod(j × 250, n) + 2
s6 = mod(j × 250, n) + 2

. (6)

Step 4: Transform the big image matrix into a
one- dimensional vector with zigzag scanning.
Step 5: Perform the k-bit left circular shift
operation on each pixel value.
Step 6: Do the bitwise exclusive-or operation.
A pixel-level substitution based on the logistic
map is performed in the proposed method, in
which a new value is set for each pixel, as
follows. The 2D logistic map (1) is iterated to
obtain random sequences that are preprocessed
in Equation (7) before being used. The simple
exclusive-or operation is used in the pixel
substitution process, as defined in Equation (8),

�
Xs = xi × 1014 mod 256
Ys = yi × 1014 mod 256 .

Zs = Xs ⊕ Ys
 (7)

Where I = 1, 2, ..., L (L is sequence
length)

�
Rc = de2bi (Ri) ⊕ de2bi (xi)
Gc = de2bi (Gi) ⊕ de2bi (yi)
Bc = de2bi (Bi) ⊕ de2bi (zi)

. (8)

Where (R, G& B) are color components.
Step 7: Segment the big image into h encrypted
images.

3.3 Decryption Algorithm

Multiple-image decryption is the inverse of
multiple-image encryption. The h enciphered
images are combined into a big image, after
which inverse pixel substitution is performed
using the 2D logistic map, followed by the k-bit
right circular shift operation on each pixel to
restore the original pixel values. The pixel
location is restored by carrying out inverse
zigzag scanning and inverse pixel permutation
using CA Rule-30. Finally, the big image is
segmented to produce the h plain images.

Figure 9
Permutation process based on CA

 … ,

Step 1: Combine all the h input images to create
one large image (I).

Step 2: Create pure-image elements by
segmenting the large image.

Step 3: Generate the mixed-image elements. A
permutation operation is employed on the pure-
image elements to create mixed-image elements.
In this work, a two-stage permutation operation
is performed. The first stage of the permutation
operation, based on Rule-30 of the elementary
cellular automata, is as follows. The permutation
is performed on both rows and columns. The two
different initial configuration vectors
{R0

P and C0P } of the circular boundary ECA are
obtained as presented in the key generation
phase.
In accordance with Rule-30, the initial
configuration vectors , R0

P and C0,
P may self-

evolve and can acquire two evolved
configurations, Ri

P = { R0
P, R1

P , .. Re
P … , Rm

P }
and CiP = { C0P, C1P , .. CeP … , CnP}, where e is the
eth round configuration, and m and n denote the
dimensions of the big-image matrix,(I).The RP
sequence is used for row permutation and the CP
sequence for column permutation. Figure 9 gives
an example.

Row Permutation (RP):
Case 1: If Re

P(i)== Re−1
P (i), every value of the

ithrow of the image matrix Ie-1 is left, circularly
shifted s1 times.
Case 2: If Re

P(i)== 0 and Re−1
P (i) == 1, every

value of the ithrow of the image matrix Ie-1 is left,
circularly shifted s2 times.
Case 3: If Re

P(i)== 1 and Re−1
P (i) == 0, every

value of the ithrow of the image matrix Ie-1 is
right, circularly shifted s3 times.

 s1, s2 and s3 are calculated using
Equation (5):

�
s1 = mod(i × 250, m)

s2 = mod(i × 250, m) + 2
s3 = mod(i × 250, m) + 2

 . (5)

Column Permutation (RP):
Case 1: If CeP(j)== Ce−1P (j), every value of the
jthcolumn of the image matrix Ie-1 is upward,
circularly shifted s4 times.
Case 2: If CeP(j)== 0 and Ce−1P (j) == 1, every

value of the jthcolumn of the image matrix Ie-1 is
upward, circularly shifted s5 times.
Case 3: If CeP(j)== 1 and Ce−1P (j) == 0, every
value of the jthcolumn of the image matrix Ie-1 is
downward, circularly shifted s3 times.

 s4, s5 and s6 are calculated using
Equation (6):

�
s4 = mod(j × 250, n)

s5 = mod(j × 250, n) + 2
s6 = mod(j × 250, n) + 2

. (6)

Step 4: Transform the big image matrix into a
one- dimensional vector with zigzag scanning.
Step 5: Perform the k-bit left circular shift
operation on each pixel value.
Step 6: Do the bitwise exclusive-or operation.
A pixel-level substitution based on the logistic
map is performed in the proposed method, in
which a new value is set for each pixel, as
follows. The 2D logistic map (1) is iterated to
obtain random sequences that are preprocessed
in Equation (7) before being used. The simple
exclusive-or operation is used in the pixel
substitution process, as defined in Equation (8),

�
Xs = xi × 1014 mod 256
Ys = yi × 1014 mod 256 .

Zs = Xs ⊕ Ys
 (7)

Where I = 1, 2, ..., L (L is sequence
length)

�
Rc = de2bi (Ri) ⊕ de2bi (xi)
Gc = de2bi (Gi) ⊕ de2bi (yi)
Bc = de2bi (Bi) ⊕ de2bi (zi)

. (8)

Where (R, G& B) are color components.
Step 7: Segment the big image into h encrypted
images.

3.3 Decryption Algorithm

Multiple-image decryption is the inverse of
multiple-image encryption. The h enciphered
images are combined into a big image, after
which inverse pixel substitution is performed
using the 2D logistic map, followed by the k-bit
right circular shift operation on each pixel to
restore the original pixel values. The pixel
location is restored by carrying out inverse
zigzag scanning and inverse pixel permutation
using CA Rule-30. Finally, the big image is
segmented to produce the h plain images.

Figure 9
Permutation process based on CA

 }, where e is the eth round con-
figuration, and m and n denote the dimensions of the
big-image matrix,(I).The RP sequence is used for row
permutation and the CP sequence for column permu-
tation. Figure 9 gives an example.

Row Permutation (RP):
Case 1: If

Step 1: Combine all the h input images to create
one large image (I).

Step 2: Create pure-image elements by
segmenting the large image.

Step 3: Generate the mixed-image elements. A
permutation operation is employed on the pure-
image elements to create mixed-image elements.
In this work, a two-stage permutation operation
is performed. The first stage of the permutation
operation, based on Rule-30 of the elementary
cellular automata, is as follows. The permutation
is performed on both rows and columns. The two
different initial configuration vectors
{R0

P and C0P } of the circular boundary ECA are
obtained as presented in the key generation
phase.
In accordance with Rule-30, the initial
configuration vectors , R0

P and C0,
P may self-

evolve and can acquire two evolved
configurations, Ri

P = { R0
P, R1

P , .. Re
P … , Rm

P }
and CiP = { C0P, C1P , .. CeP … , CnP}, where e is the
eth round configuration, and m and n denote the
dimensions of the big-image matrix,(I).The RP
sequence is used for row permutation and the CP
sequence for column permutation. Figure 9 gives
an example.

Row Permutation (RP):
Case 1: If Re

P(i)== Re−1
P (i), every value of the

ithrow of the image matrix Ie-1 is left, circularly
shifted s1 times.
Case 2: If Re

P(i)== 0 and Re−1
P (i) == 1, every

value of the ithrow of the image matrix Ie-1 is left,
circularly shifted s2 times.
Case 3: If Re

P(i)== 1 and Re−1
P (i) == 0, every

value of the ithrow of the image matrix Ie-1 is
right, circularly shifted s3 times.

 s1, s2 and s3 are calculated using
Equation (5):

�
s1 = mod(i × 250, m)

s2 = mod(i × 250, m) + 2
s3 = mod(i × 250, m) + 2

 . (5)

Column Permutation (RP):
Case 1: If CeP(j)== Ce−1P (j), every value of the
jthcolumn of the image matrix Ie-1 is upward,
circularly shifted s4 times.
Case 2: If CeP(j)== 0 and Ce−1P (j) == 1, every

value of the jthcolumn of the image matrix Ie-1 is
upward, circularly shifted s5 times.
Case 3: If CeP(j)== 1 and Ce−1P (j) == 0, every
value of the jthcolumn of the image matrix Ie-1 is
downward, circularly shifted s3 times.

 s4, s5 and s6 are calculated using
Equation (6):

�
s4 = mod(j × 250, n)

s5 = mod(j × 250, n) + 2
s6 = mod(j × 250, n) + 2

. (6)

Step 4: Transform the big image matrix into a
one- dimensional vector with zigzag scanning.
Step 5: Perform the k-bit left circular shift
operation on each pixel value.
Step 6: Do the bitwise exclusive-or operation.
A pixel-level substitution based on the logistic
map is performed in the proposed method, in
which a new value is set for each pixel, as
follows. The 2D logistic map (1) is iterated to
obtain random sequences that are preprocessed
in Equation (7) before being used. The simple
exclusive-or operation is used in the pixel
substitution process, as defined in Equation (8),

�
Xs = xi × 1014 mod 256
Ys = yi × 1014 mod 256 .

Zs = Xs ⊕ Ys
 (7)

Where I = 1, 2, ..., L (L is sequence
length)

�
Rc = de2bi (Ri) ⊕ de2bi (xi)
Gc = de2bi (Gi) ⊕ de2bi (yi)
Bc = de2bi (Bi) ⊕ de2bi (zi)

. (8)

Where (R, G& B) are color components.
Step 7: Segment the big image into h encrypted
images.

3.3 Decryption Algorithm

Multiple-image decryption is the inverse of
multiple-image encryption. The h enciphered
images are combined into a big image, after
which inverse pixel substitution is performed
using the 2D logistic map, followed by the k-bit
right circular shift operation on each pixel to
restore the original pixel values. The pixel
location is restored by carrying out inverse
zigzag scanning and inverse pixel permutation
using CA Rule-30. Finally, the big image is
segmented to produce the h plain images.

Figure 9
Permutation process based on CA

==

Step 1: Combine all the h input images to create
one large image (I).

Step 2: Create pure-image elements by
segmenting the large image.

Step 3: Generate the mixed-image elements. A
permutation operation is employed on the pure-
image elements to create mixed-image elements.
In this work, a two-stage permutation operation
is performed. The first stage of the permutation
operation, based on Rule-30 of the elementary
cellular automata, is as follows. The permutation
is performed on both rows and columns. The two
different initial configuration vectors
{R0

P and C0P } of the circular boundary ECA are
obtained as presented in the key generation
phase.
In accordance with Rule-30, the initial
configuration vectors , R0

P and C0,
P may self-

evolve and can acquire two evolved
configurations, Ri

P = { R0
P, R1

P , .. Re
P … , Rm

P }
and CiP = { C0P, C1P , .. CeP … , CnP}, where e is the
eth round configuration, and m and n denote the
dimensions of the big-image matrix,(I).The RP
sequence is used for row permutation and the CP
sequence for column permutation. Figure 9 gives
an example.

Row Permutation (RP):
Case 1: If Re

P(i)== Re−1
P (i), every value of the

ithrow of the image matrix Ie-1 is left, circularly
shifted s1 times.
Case 2: If Re

P(i)== 0 and Re−1
P (i) == 1, every

value of the ithrow of the image matrix Ie-1 is left,
circularly shifted s2 times.
Case 3: If Re

P(i)== 1 and Re−1
P (i) == 0, every

value of the ithrow of the image matrix Ie-1 is
right, circularly shifted s3 times.

 s1, s2 and s3 are calculated using
Equation (5):

�
s1 = mod(i × 250, m)

s2 = mod(i × 250, m) + 2
s3 = mod(i × 250, m) + 2

 . (5)

Column Permutation (RP):
Case 1: If CeP(j)== Ce−1P (j), every value of the
jthcolumn of the image matrix Ie-1 is upward,
circularly shifted s4 times.
Case 2: If CeP(j)== 0 and Ce−1P (j) == 1, every

value of the jthcolumn of the image matrix Ie-1 is
upward, circularly shifted s5 times.
Case 3: If CeP(j)== 1 and Ce−1P (j) == 0, every
value of the jthcolumn of the image matrix Ie-1 is
downward, circularly shifted s3 times.

 s4, s5 and s6 are calculated using
Equation (6):

�
s4 = mod(j × 250, n)

s5 = mod(j × 250, n) + 2
s6 = mod(j × 250, n) + 2

. (6)

Step 4: Transform the big image matrix into a
one- dimensional vector with zigzag scanning.
Step 5: Perform the k-bit left circular shift
operation on each pixel value.
Step 6: Do the bitwise exclusive-or operation.
A pixel-level substitution based on the logistic
map is performed in the proposed method, in
which a new value is set for each pixel, as
follows. The 2D logistic map (1) is iterated to
obtain random sequences that are preprocessed
in Equation (7) before being used. The simple
exclusive-or operation is used in the pixel
substitution process, as defined in Equation (8),

�
Xs = xi × 1014 mod 256
Ys = yi × 1014 mod 256 .

Zs = Xs ⊕ Ys
 (7)

Where I = 1, 2, ..., L (L is sequence
length)

�
Rc = de2bi (Ri) ⊕ de2bi (xi)
Gc = de2bi (Gi) ⊕ de2bi (yi)
Bc = de2bi (Bi) ⊕ de2bi (zi)

. (8)

Where (R, G& B) are color components.
Step 7: Segment the big image into h encrypted
images.

3.3 Decryption Algorithm

Multiple-image decryption is the inverse of
multiple-image encryption. The h enciphered
images are combined into a big image, after
which inverse pixel substitution is performed
using the 2D logistic map, followed by the k-bit
right circular shift operation on each pixel to
restore the original pixel values. The pixel
location is restored by carrying out inverse
zigzag scanning and inverse pixel permutation
using CA Rule-30. Finally, the big image is
segmented to produce the h plain images.

Figure 9
Permutation process based on CA

 (i), every value of the ithrow of
the image matrix Ie-1 is left, circularly shifted s1 times.
Case 2: If

Step 1: Combine all the h input images to create
one large image (I).

Step 2: Create pure-image elements by
segmenting the large image.

Step 3: Generate the mixed-image elements. A
permutation operation is employed on the pure-
image elements to create mixed-image elements.
In this work, a two-stage permutation operation
is performed. The first stage of the permutation
operation, based on Rule-30 of the elementary
cellular automata, is as follows. The permutation
is performed on both rows and columns. The two
different initial configuration vectors
{R0

P and C0P } of the circular boundary ECA are
obtained as presented in the key generation
phase.
In accordance with Rule-30, the initial
configuration vectors , R0

P and C0,
P may self-

evolve and can acquire two evolved
configurations, Ri

P = { R0
P, R1

P , .. Re
P … , Rm

P }
and CiP = { C0P, C1P , .. CeP … , CnP}, where e is the
eth round configuration, and m and n denote the
dimensions of the big-image matrix,(I).The RP
sequence is used for row permutation and the CP
sequence for column permutation. Figure 9 gives
an example.

Row Permutation (RP):
Case 1: If Re

P(i)== Re−1
P (i), every value of the

ithrow of the image matrix Ie-1 is left, circularly
shifted s1 times.
Case 2: If Re

P(i)== 0 and Re−1
P (i) == 1, every

value of the ithrow of the image matrix Ie-1 is left,
circularly shifted s2 times.
Case 3: If Re

P(i)== 1 and Re−1
P (i) == 0, every

value of the ithrow of the image matrix Ie-1 is
right, circularly shifted s3 times.

 s1, s2 and s3 are calculated using
Equation (5):

�
s1 = mod(i × 250, m)

s2 = mod(i × 250, m) + 2
s3 = mod(i × 250, m) + 2

 . (5)

Column Permutation (RP):
Case 1: If CeP(j)== Ce−1P (j), every value of the
jthcolumn of the image matrix Ie-1 is upward,
circularly shifted s4 times.
Case 2: If CeP(j)== 0 and Ce−1P (j) == 1, every

value of the jthcolumn of the image matrix Ie-1 is
upward, circularly shifted s5 times.
Case 3: If CeP(j)== 1 and Ce−1P (j) == 0, every
value of the jthcolumn of the image matrix Ie-1 is
downward, circularly shifted s3 times.

 s4, s5 and s6 are calculated using
Equation (6):

�
s4 = mod(j × 250, n)

s5 = mod(j × 250, n) + 2
s6 = mod(j × 250, n) + 2

. (6)

Step 4: Transform the big image matrix into a
one- dimensional vector with zigzag scanning.
Step 5: Perform the k-bit left circular shift
operation on each pixel value.
Step 6: Do the bitwise exclusive-or operation.
A pixel-level substitution based on the logistic
map is performed in the proposed method, in
which a new value is set for each pixel, as
follows. The 2D logistic map (1) is iterated to
obtain random sequences that are preprocessed
in Equation (7) before being used. The simple
exclusive-or operation is used in the pixel
substitution process, as defined in Equation (8),

�
Xs = xi × 1014 mod 256
Ys = yi × 1014 mod 256 .

Zs = Xs ⊕ Ys
 (7)

Where I = 1, 2, ..., L (L is sequence
length)

�
Rc = de2bi (Ri) ⊕ de2bi (xi)
Gc = de2bi (Gi) ⊕ de2bi (yi)
Bc = de2bi (Bi) ⊕ de2bi (zi)

. (8)

Where (R, G& B) are color components.
Step 7: Segment the big image into h encrypted
images.

3.3 Decryption Algorithm

Multiple-image decryption is the inverse of
multiple-image encryption. The h enciphered
images are combined into a big image, after
which inverse pixel substitution is performed
using the 2D logistic map, followed by the k-bit
right circular shift operation on each pixel to
restore the original pixel values. The pixel
location is restored by carrying out inverse
zigzag scanning and inverse pixel permutation
using CA Rule-30. Finally, the big image is
segmented to produce the h plain images.

Figure 9
Permutation process based on CA

== 0 and

Step 1: Combine all the h input images to create
one large image (I).

Step 2: Create pure-image elements by
segmenting the large image.

Step 3: Generate the mixed-image elements. A
permutation operation is employed on the pure-
image elements to create mixed-image elements.
In this work, a two-stage permutation operation
is performed. The first stage of the permutation
operation, based on Rule-30 of the elementary
cellular automata, is as follows. The permutation
is performed on both rows and columns. The two
different initial configuration vectors
{R0

P and C0P } of the circular boundary ECA are
obtained as presented in the key generation
phase.
In accordance with Rule-30, the initial
configuration vectors , R0

P and C0,
P may self-

evolve and can acquire two evolved
configurations, Ri

P = { R0
P, R1

P , .. Re
P … , Rm

P }
and CiP = { C0P, C1P , .. CeP … , CnP}, where e is the
eth round configuration, and m and n denote the
dimensions of the big-image matrix,(I).The RP
sequence is used for row permutation and the CP
sequence for column permutation. Figure 9 gives
an example.

Row Permutation (RP):
Case 1: If Re

P(i)== Re−1
P (i), every value of the

ithrow of the image matrix Ie-1 is left, circularly
shifted s1 times.
Case 2: If Re

P(i)== 0 and Re−1
P (i) == 1, every

value of the ithrow of the image matrix Ie-1 is left,
circularly shifted s2 times.
Case 3: If Re

P(i)== 1 and Re−1
P (i) == 0, every

value of the ithrow of the image matrix Ie-1 is
right, circularly shifted s3 times.

 s1, s2 and s3 are calculated using
Equation (5):

�
s1 = mod(i × 250, m)

s2 = mod(i × 250, m) + 2
s3 = mod(i × 250, m) + 2

 . (5)

Column Permutation (RP):
Case 1: If CeP(j)== Ce−1P (j), every value of the
jthcolumn of the image matrix Ie-1 is upward,
circularly shifted s4 times.
Case 2: If CeP(j)== 0 and Ce−1P (j) == 1, every

value of the jthcolumn of the image matrix Ie-1 is
upward, circularly shifted s5 times.
Case 3: If CeP(j)== 1 and Ce−1P (j) == 0, every
value of the jthcolumn of the image matrix Ie-1 is
downward, circularly shifted s3 times.

 s4, s5 and s6 are calculated using
Equation (6):

�
s4 = mod(j × 250, n)

s5 = mod(j × 250, n) + 2
s6 = mod(j × 250, n) + 2

. (6)

Step 4: Transform the big image matrix into a
one- dimensional vector with zigzag scanning.
Step 5: Perform the k-bit left circular shift
operation on each pixel value.
Step 6: Do the bitwise exclusive-or operation.
A pixel-level substitution based on the logistic
map is performed in the proposed method, in
which a new value is set for each pixel, as
follows. The 2D logistic map (1) is iterated to
obtain random sequences that are preprocessed
in Equation (7) before being used. The simple
exclusive-or operation is used in the pixel
substitution process, as defined in Equation (8),

�
Xs = xi × 1014 mod 256
Ys = yi × 1014 mod 256 .

Zs = Xs ⊕ Ys
 (7)

Where I = 1, 2, ..., L (L is sequence
length)

�
Rc = de2bi (Ri) ⊕ de2bi (xi)
Gc = de2bi (Gi) ⊕ de2bi (yi)
Bc = de2bi (Bi) ⊕ de2bi (zi)

. (8)

Where (R, G& B) are color components.
Step 7: Segment the big image into h encrypted
images.

3.3 Decryption Algorithm

Multiple-image decryption is the inverse of
multiple-image encryption. The h enciphered
images are combined into a big image, after
which inverse pixel substitution is performed
using the 2D logistic map, followed by the k-bit
right circular shift operation on each pixel to
restore the original pixel values. The pixel
location is restored by carrying out inverse
zigzag scanning and inverse pixel permutation
using CA Rule-30. Finally, the big image is
segmented to produce the h plain images.

Figure 9
Permutation process based on CA

 (i) == 1, every value of the
ithrow of the image matrix Ie-1 is left, circularly shifted
s2 times.
Case 3: If

Step 1: Combine all the h input images to create
one large image (I).

Step 2: Create pure-image elements by
segmenting the large image.

Step 3: Generate the mixed-image elements. A
permutation operation is employed on the pure-
image elements to create mixed-image elements.
In this work, a two-stage permutation operation
is performed. The first stage of the permutation
operation, based on Rule-30 of the elementary
cellular automata, is as follows. The permutation
is performed on both rows and columns. The two
different initial configuration vectors
{R0

P and C0P } of the circular boundary ECA are
obtained as presented in the key generation
phase.
In accordance with Rule-30, the initial
configuration vectors , R0

P and C0,
P may self-

evolve and can acquire two evolved
configurations, Ri

P = { R0
P, R1

P , .. Re
P … , Rm

P }
and CiP = { C0P, C1P , .. CeP … , CnP}, where e is the
eth round configuration, and m and n denote the
dimensions of the big-image matrix,(I).The RP
sequence is used for row permutation and the CP
sequence for column permutation. Figure 9 gives
an example.

Row Permutation (RP):
Case 1: If Re

P(i)== Re−1
P (i), every value of the

ithrow of the image matrix Ie-1 is left, circularly
shifted s1 times.
Case 2: If Re

P(i)== 0 and Re−1
P (i) == 1, every

value of the ithrow of the image matrix Ie-1 is left,
circularly shifted s2 times.
Case 3: If Re

P(i)== 1 and Re−1
P (i) == 0, every

value of the ithrow of the image matrix Ie-1 is
right, circularly shifted s3 times.

 s1, s2 and s3 are calculated using
Equation (5):

�
s1 = mod(i × 250, m)

s2 = mod(i × 250, m) + 2
s3 = mod(i × 250, m) + 2

 . (5)

Column Permutation (RP):
Case 1: If CeP(j)== Ce−1P (j), every value of the
jthcolumn of the image matrix Ie-1 is upward,
circularly shifted s4 times.
Case 2: If CeP(j)== 0 and Ce−1P (j) == 1, every

value of the jthcolumn of the image matrix Ie-1 is
upward, circularly shifted s5 times.
Case 3: If CeP(j)== 1 and Ce−1P (j) == 0, every
value of the jthcolumn of the image matrix Ie-1 is
downward, circularly shifted s3 times.

 s4, s5 and s6 are calculated using
Equation (6):

�
s4 = mod(j × 250, n)

s5 = mod(j × 250, n) + 2
s6 = mod(j × 250, n) + 2

. (6)

Step 4: Transform the big image matrix into a
one- dimensional vector with zigzag scanning.
Step 5: Perform the k-bit left circular shift
operation on each pixel value.
Step 6: Do the bitwise exclusive-or operation.
A pixel-level substitution based on the logistic
map is performed in the proposed method, in
which a new value is set for each pixel, as
follows. The 2D logistic map (1) is iterated to
obtain random sequences that are preprocessed
in Equation (7) before being used. The simple
exclusive-or operation is used in the pixel
substitution process, as defined in Equation (8),

�
Xs = xi × 1014 mod 256
Ys = yi × 1014 mod 256 .

Zs = Xs ⊕ Ys
 (7)

Where I = 1, 2, ..., L (L is sequence
length)

�
Rc = de2bi (Ri) ⊕ de2bi (xi)
Gc = de2bi (Gi) ⊕ de2bi (yi)
Bc = de2bi (Bi) ⊕ de2bi (zi)

. (8)

Where (R, G& B) are color components.
Step 7: Segment the big image into h encrypted
images.

3.3 Decryption Algorithm

Multiple-image decryption is the inverse of
multiple-image encryption. The h enciphered
images are combined into a big image, after
which inverse pixel substitution is performed
using the 2D logistic map, followed by the k-bit
right circular shift operation on each pixel to
restore the original pixel values. The pixel
location is restored by carrying out inverse
zigzag scanning and inverse pixel permutation
using CA Rule-30. Finally, the big image is
segmented to produce the h plain images.

Figure 9
Permutation process based on CA

== 1 and

Step 1: Combine all the h input images to create
one large image (I).

Step 2: Create pure-image elements by
segmenting the large image.

Step 3: Generate the mixed-image elements. A
permutation operation is employed on the pure-
image elements to create mixed-image elements.
In this work, a two-stage permutation operation
is performed. The first stage of the permutation
operation, based on Rule-30 of the elementary
cellular automata, is as follows. The permutation
is performed on both rows and columns. The two
different initial configuration vectors
{R0

P and C0P } of the circular boundary ECA are
obtained as presented in the key generation
phase.
In accordance with Rule-30, the initial
configuration vectors , R0

P and C0,
P may self-

evolve and can acquire two evolved
configurations, Ri

P = { R0
P, R1

P , .. Re
P … , Rm

P }
and CiP = { C0P, C1P , .. CeP … , CnP}, where e is the
eth round configuration, and m and n denote the
dimensions of the big-image matrix,(I).The RP
sequence is used for row permutation and the CP
sequence for column permutation. Figure 9 gives
an example.

Row Permutation (RP):
Case 1: If Re

P(i)== Re−1
P (i), every value of the

ithrow of the image matrix Ie-1 is left, circularly
shifted s1 times.
Case 2: If Re

P(i)== 0 and Re−1
P (i) == 1, every

value of the ithrow of the image matrix Ie-1 is left,
circularly shifted s2 times.
Case 3: If Re

P(i)== 1 and Re−1
P (i) == 0, every

value of the ithrow of the image matrix Ie-1 is
right, circularly shifted s3 times.

 s1, s2 and s3 are calculated using
Equation (5):

�
s1 = mod(i × 250, m)

s2 = mod(i × 250, m) + 2
s3 = mod(i × 250, m) + 2

 . (5)

Column Permutation (RP):
Case 1: If CeP(j)== Ce−1P (j), every value of the
jthcolumn of the image matrix Ie-1 is upward,
circularly shifted s4 times.
Case 2: If CeP(j)== 0 and Ce−1P (j) == 1, every

value of the jthcolumn of the image matrix Ie-1 is
upward, circularly shifted s5 times.
Case 3: If CeP(j)== 1 and Ce−1P (j) == 0, every
value of the jthcolumn of the image matrix Ie-1 is
downward, circularly shifted s3 times.

 s4, s5 and s6 are calculated using
Equation (6):

�
s4 = mod(j × 250, n)

s5 = mod(j × 250, n) + 2
s6 = mod(j × 250, n) + 2

. (6)

Step 4: Transform the big image matrix into a
one- dimensional vector with zigzag scanning.
Step 5: Perform the k-bit left circular shift
operation on each pixel value.
Step 6: Do the bitwise exclusive-or operation.
A pixel-level substitution based on the logistic
map is performed in the proposed method, in
which a new value is set for each pixel, as
follows. The 2D logistic map (1) is iterated to
obtain random sequences that are preprocessed
in Equation (7) before being used. The simple
exclusive-or operation is used in the pixel
substitution process, as defined in Equation (8),

�
Xs = xi × 1014 mod 256
Ys = yi × 1014 mod 256 .

Zs = Xs ⊕ Ys
 (7)

Where I = 1, 2, ..., L (L is sequence
length)

�
Rc = de2bi (Ri) ⊕ de2bi (xi)
Gc = de2bi (Gi) ⊕ de2bi (yi)
Bc = de2bi (Bi) ⊕ de2bi (zi)

. (8)

Where (R, G& B) are color components.
Step 7: Segment the big image into h encrypted
images.

3.3 Decryption Algorithm

Multiple-image decryption is the inverse of
multiple-image encryption. The h enciphered
images are combined into a big image, after
which inverse pixel substitution is performed
using the 2D logistic map, followed by the k-bit
right circular shift operation on each pixel to
restore the original pixel values. The pixel
location is restored by carrying out inverse
zigzag scanning and inverse pixel permutation
using CA Rule-30. Finally, the big image is
segmented to produce the h plain images.

Figure 9
Permutation process based on CA

 (i) == 0, every value of
the ithrow of the image matrix Ie-1 is right, circularly
shifted s3 times.
s1, s2 and s3 are calculated using Equation (5):

Step 1: Combine all the h input images to create
one large image (I).

Step 2: Create pure-image elements by
segmenting the large image.

Step 3: Generate the mixed-image elements. A
permutation operation is employed on the pure-
image elements to create mixed-image elements.
In this work, a two-stage permutation operation
is performed. The first stage of the permutation
operation, based on Rule-30 of the elementary
cellular automata, is as follows. The permutation
is performed on both rows and columns. The two
different initial configuration vectors
{R0

P and C0P } of the circular boundary ECA are
obtained as presented in the key generation
phase.
In accordance with Rule-30, the initial
configuration vectors , R0

P and C0,
P may self-

evolve and can acquire two evolved
configurations, Ri

P = { R0
P, R1

P , .. Re
P … , Rm

P }
and CiP = { C0P, C1P , .. CeP … , CnP}, where e is the
eth round configuration, and m and n denote the
dimensions of the big-image matrix,(I).The RP
sequence is used for row permutation and the CP
sequence for column permutation. Figure 9 gives
an example.

Row Permutation (RP):
Case 1: If Re

P(i)== Re−1
P (i), every value of the

ithrow of the image matrix Ie-1 is left, circularly
shifted s1 times.
Case 2: If Re

P(i)== 0 and Re−1
P (i) == 1, every

value of the ithrow of the image matrix Ie-1 is left,
circularly shifted s2 times.
Case 3: If Re

P(i)== 1 and Re−1
P (i) == 0, every

value of the ithrow of the image matrix Ie-1 is
right, circularly shifted s3 times.

 s1, s2 and s3 are calculated using
Equation (5):

�
s1 = mod(i × 250, m)

s2 = mod(i × 250, m) + 2
s3 = mod(i × 250, m) + 2

 . (5)

Column Permutation (RP):
Case 1: If CeP(j)== Ce−1P (j), every value of the
jthcolumn of the image matrix Ie-1 is upward,
circularly shifted s4 times.
Case 2: If CeP(j)== 0 and Ce−1P (j) == 1, every

value of the jthcolumn of the image matrix Ie-1 is
upward, circularly shifted s5 times.
Case 3: If CeP(j)== 1 and Ce−1P (j) == 0, every
value of the jthcolumn of the image matrix Ie-1 is
downward, circularly shifted s3 times.

 s4, s5 and s6 are calculated using
Equation (6):

�
s4 = mod(j × 250, n)

s5 = mod(j × 250, n) + 2
s6 = mod(j × 250, n) + 2

. (6)

Step 4: Transform the big image matrix into a
one- dimensional vector with zigzag scanning.
Step 5: Perform the k-bit left circular shift
operation on each pixel value.
Step 6: Do the bitwise exclusive-or operation.
A pixel-level substitution based on the logistic
map is performed in the proposed method, in
which a new value is set for each pixel, as
follows. The 2D logistic map (1) is iterated to
obtain random sequences that are preprocessed
in Equation (7) before being used. The simple
exclusive-or operation is used in the pixel
substitution process, as defined in Equation (8),

�
Xs = xi × 1014 mod 256
Ys = yi × 1014 mod 256 .

Zs = Xs ⊕ Ys
 (7)

Where I = 1, 2, ..., L (L is sequence
length)

�
Rc = de2bi (Ri) ⊕ de2bi (xi)
Gc = de2bi (Gi) ⊕ de2bi (yi)
Bc = de2bi (Bi) ⊕ de2bi (zi)

. (8)

Where (R, G& B) are color components.
Step 7: Segment the big image into h encrypted
images.

3.3 Decryption Algorithm

Multiple-image decryption is the inverse of
multiple-image encryption. The h enciphered
images are combined into a big image, after
which inverse pixel substitution is performed
using the 2D logistic map, followed by the k-bit
right circular shift operation on each pixel to
restore the original pixel values. The pixel
location is restored by carrying out inverse
zigzag scanning and inverse pixel permutation
using CA Rule-30. Finally, the big image is
segmented to produce the h plain images.

Figure 9
Permutation process based on CA

(5)

Column Permutation (RP):
Case 1: If

Step 1: Combine all the h input images to create
one large image (I).

Step 2: Create pure-image elements by
segmenting the large image.

Step 3: Generate the mixed-image elements. A
permutation operation is employed on the pure-
image elements to create mixed-image elements.
In this work, a two-stage permutation operation
is performed. The first stage of the permutation
operation, based on Rule-30 of the elementary
cellular automata, is as follows. The permutation
is performed on both rows and columns. The two
different initial configuration vectors
{R0

P and C0P } of the circular boundary ECA are
obtained as presented in the key generation
phase.
In accordance with Rule-30, the initial
configuration vectors , R0

P and C0,
P may self-

evolve and can acquire two evolved
configurations, Ri

P = { R0
P, R1

P , .. Re
P … , Rm

P }
and CiP = { C0P, C1P , .. CeP … , CnP}, where e is the
eth round configuration, and m and n denote the
dimensions of the big-image matrix,(I).The RP
sequence is used for row permutation and the CP
sequence for column permutation. Figure 9 gives
an example.

Row Permutation (RP):
Case 1: If Re

P(i)== Re−1
P (i), every value of the

ithrow of the image matrix Ie-1 is left, circularly
shifted s1 times.
Case 2: If Re

P(i)== 0 and Re−1
P (i) == 1, every

value of the ithrow of the image matrix Ie-1 is left,
circularly shifted s2 times.
Case 3: If Re

P(i)== 1 and Re−1
P (i) == 0, every

value of the ithrow of the image matrix Ie-1 is
right, circularly shifted s3 times.

 s1, s2 and s3 are calculated using
Equation (5):

�
s1 = mod(i × 250, m)

s2 = mod(i × 250, m) + 2
s3 = mod(i × 250, m) + 2

 . (5)

Column Permutation (RP):
Case 1: If CeP(j)== Ce−1P (j), every value of the
jthcolumn of the image matrix Ie-1 is upward,
circularly shifted s4 times.
Case 2: If CeP(j)== 0 and Ce−1P (j) == 1, every

value of the jthcolumn of the image matrix Ie-1 is
upward, circularly shifted s5 times.
Case 3: If CeP(j)== 1 and Ce−1P (j) == 0, every
value of the jthcolumn of the image matrix Ie-1 is
downward, circularly shifted s3 times.

 s and s6 are calculated using

�
s4 = mod(j × 250, n)

s5 = mod(j × 250, n) + 2
s6 = mod(j × 250, n) + 2

. (6)

�
Xs = xi × 1014 mod 256
Ys = yi × 1014 mod 256 .

Zs = Xs ⊕ Ys
 (7)

�
Rc = de2bi (Ri) ⊕ de2bi (xi)
Gc = de2bi (Gi) ⊕ de2bi (yi)
Bc = de2bi (Bi) ⊕ de2bi (zi)

. (8)

3.3 Decryption Algorithm

Multiple-image decryption is the inverse of
multiple-image encryption. The h enciphered
images are combined into a big image, after
which inverse pixel substitution is performed
using the 2D logistic map, followed by the k-bit
right circular shift operation on each pixel to
restore the original pixel values. The pixel
location is restored by carrying out inverse
zigzag scanning and inverse pixel permutation
using CA Rule-30. Finally, the big image is
segmented to produce the h plain images.

Figure 9
Permutation process based on CA

==

Step 1: Combine all the h input images to create
one large image (I).

Step 2: Create pure-image elements by
segmenting the large image.

Step 3: Generate the mixed-image elements. A
permutation operation is employed on the pure-
image elements to create mixed-image elements.
In this work, a two-stage permutation operation
is performed. The first stage of the permutation
operation, based on Rule-30 of the elementary
cellular automata, is as follows. The permutation
is performed on both rows and columns. The two
different initial configuration vectors
{R0

P and C0P } of the circular boundary ECA are
obtained as presented in the key generation
phase.
In accordance with Rule-30, the initial
configuration vectors , R0

P and C0,
P may self-

evolve and can acquire two evolved
configurations, Ri

P = { R0
P, R1

P , .. Re
P … , Rm

P }
and CiP = { C0P, C1P , .. CeP … , CnP}, where e is the
eth round configuration, and m and n denote the
dimensions of the big-image matrix,(I).The RP
sequence is used for row permutation and the CP
sequence for column permutation. Figure 9 gives
an example.

Row Permutation (RP):
Case 1: If Re

P(i)== Re−1
P (i), every value of the

ithrow of the image matrix Ie-1 is left, circularly
shifted s1 times.
Case 2: If Re

P(i)== 0 and Re−1
P (i) == 1, every

value of the ithrow of the image matrix Ie-1 is left,
circularly shifted s2 times.
Case 3: If Re

P(i)== 1 and Re−1
P (i) == 0, every

value of the ithrow of the image matrix Ie-1 is
right, circularly shifted s3 times.

 s1, s2 and s3 are calculated using
Equation (5):

�
s1 = mod(i × 250, m)

s2 = mod(i × 250, m) + 2
s3 = mod(i × 250, m) + 2

 . (5)

Column Permutation (RP):
Case 1: If CeP(j)== Ce−1P (j), every value of the
jthcolumn of the image matrix Ie-1 is upward,
circularly shifted s4 times.
Case 2: If CeP(j)== 0 and Ce−1P (j) == 1, every

value of the jthcolumn of the image matrix Ie-1 is
upward, circularly shifted s5 times.
Case 3: If CeP(j)== 1 and Ce−1P (j) == 0, every
value of the jthcolumn of the image matrix Ie-1 is
downward, circularly shifted s3 times.

 s and s6 are calculated using

�
s4 = mod(j × 250, n)

s5 = mod(j × 250, n) + 2
s6 = mod(j × 250, n) + 2

. (6)

�
Xs = xi × 1014 mod 256
Ys = yi × 1014 mod 256 .

Zs = Xs ⊕ Ys
 (7)

�
Rc = de2bi (Ri) ⊕ de2bi (xi)
Gc = de2bi (Gi) ⊕ de2bi (yi)
Bc = de2bi (Bi) ⊕ de2bi (zi)

. (8)

3.3 Decryption Algorithm

Multiple-image decryption is the inverse of
multiple-image encryption. The h enciphered
images are combined into a big image, after
which inverse pixel substitution is performed
using the 2D logistic map, followed by the k-bit
right circular shift operation on each pixel to
restore the original pixel values. The pixel
location is restored by carrying out inverse
zigzag scanning and inverse pixel permutation
using CA Rule-30. Finally, the big image is
segmented to produce the h plain images.

Figure 9
Permutation process based on CA

(j), every value of the jthcolumn
of the image matrix Ie-1 is upward, circularly shifted s4

times.
Case 2: If

Step 1: Combine all the h input images to create
one large image (I).

Step 2: Create pure-image elements by
segmenting the large image.

Step 3: Generate the mixed-image elements. A
permutation operation is employed on the pure-
image elements to create mixed-image elements.
In this work, a two-stage permutation operation
is performed. The first stage of the permutation
operation, based on Rule-30 of the elementary
cellular automata, is as follows. The permutation
is performed on both rows and columns. The two
different initial configuration vectors
{R0

P and C0P } of the circular boundary ECA are
obtained as presented in the key generation
phase.
In accordance with Rule-30, the initial
configuration vectors , R0

P and C0,
P may self-

evolve and can acquire two evolved
configurations, Ri

P = { R0
P, R1

P , .. Re
P … , Rm

P }
and CiP = { C0P, C1P , .. CeP … , CnP}, where e is the
eth round configuration, and m and n denote the
dimensions of the big-image matrix,(I).The RP
sequence is used for row permutation and the CP
sequence for column permutation. Figure 9 gives
an example.

Row Permutation (RP):
Case 1: If Re

P(i)== Re−1
P (i), every value of the

ithrow of the image matrix Ie-1 is left, circularly
shifted s1 times.
Case 2: If Re

P(i)== 0 and Re−1
P (i) == 1, every

value of the ithrow of the image matrix Ie-1 is left,
circularly shifted s2 times.
Case 3: If Re

P(i)== 1 and Re−1
P (i) == 0, every

value of the ithrow of the image matrix Ie-1 is
right, circularly shifted s3 times.

 s1, s2 and s3 are calculated using
Equation (5):

�
s1 = mod(i × 250, m)

s2 = mod(i × 250, m) + 2
s3 = mod(i × 250, m) + 2

 . (5)

Column Permutation (RP):
Case 1: If CeP(j)== Ce−1P (j), every value of the
jthcolumn of the image matrix Ie-1 is upward,
circularly shifted s4 times.
Case 2: If CeP(j)== 0 and Ce−1P (j) == 1, every

value of the jthcolumn of the image matrix Ie-1 is
upward, circularly shifted s5 times.
Case 3: If CeP(j)== 1 and Ce−1P (j) == 0, every
value of the jthcolumn of the image matrix Ie-1 is
downward, circularly shifted s3 times.

 s and s6 are calculated using

�
s4 = mod(j × 250, n)

s5 = mod(j × 250, n) + 2
s6 = mod(j × 250, n) + 2

. (6)

�
Xs = xi × 1014 mod 256
Ys = yi × 1014 mod 256 .

Zs = Xs ⊕ Ys
 (7)

�
Rc = de2bi (Ri) ⊕ de2bi (xi)
Gc = de2bi (Gi) ⊕ de2bi (yi)
Bc = de2bi (Bi) ⊕ de2bi (zi)

. (8)

3.3 Decryption Algorithm

Multiple-image decryption is the inverse of
multiple-image encryption. The h enciphered
images are combined into a big image, after
which inverse pixel substitution is performed
using the 2D logistic map, followed by the k-bit
right circular shift operation on each pixel to
restore the original pixel values. The pixel
location is restored by carrying out inverse
zigzag scanning and inverse pixel permutation
using CA Rule-30. Finally, the big image is
segmented to produce the h plain images.

Figure 9
Permutation process based on CA

== 0 and

Step 1: Combine all the h input images to create
one large image (I).

Step 2: Create pure-image elements by
segmenting the large image.

Step 3: Generate the mixed-image elements. A
permutation operation is employed on the pure-
image elements to create mixed-image elements.
In this work, a two-stage permutation operation
is performed. The first stage of the permutation
operation, based on Rule-30 of the elementary
cellular automata, is as follows. The permutation
is performed on both rows and columns. The two
different initial configuration vectors
{R0

P and C0P } of the circular boundary ECA are
obtained as presented in the key generation
phase.
In accordance with Rule-30, the initial
configuration vectors , R0

P and C0,
P may self-

evolve and can acquire two evolved
configurations, Ri

P = { R0
P, R1

P , .. Re
P … , Rm

P }
and CiP = { C0P, C1P , .. CeP … , CnP}, where e is the
eth round configuration, and m and n denote the
dimensions of the big-image matrix,(I).The RP
sequence is used for row permutation and the CP
sequence for column permutation. Figure 9 gives
an example.

Row Permutation (RP):
Case 1: If Re

P(i)== Re−1
P (i), every value of the

ithrow of the image matrix Ie-1 is left, circularly
shifted s1 times.
Case 2: If Re

P(i)== 0 and Re−1
P (i) == 1, every

value of the ithrow of the image matrix Ie-1 is left,
circularly shifted s2 times.
Case 3: If Re

P(i)== 1 and Re−1
P (i) == 0, every

value of the ithrow of the image matrix Ie-1 is
right, circularly shifted s3 times.

 s1, s2 and s3 are calculated using
Equation (5):

�
s1 = mod(i × 250, m)

s2 = mod(i × 250, m) + 2
s3 = mod(i × 250, m) + 2

 . (5)

Column Permutation (RP):
Case 1: If CeP(j)== Ce−1P (j), every value of the
jthcolumn of the image matrix Ie-1 is upward,
circularly shifted s4 times.
Case 2: If CeP(j)== 0 and Ce−1P (j) == 1, every

value of the jthcolumn of the image matrix Ie-1 is
upward, circularly shifted s5 times.
Case 3: If CeP(j)== 1 and Ce−1P (j) == 0, every
value of the jthcolumn of the image matrix Ie-1 is
downward, circularly shifted s3 times.

 s and s6 are calculated using

�
s4 = mod(j × 250, n)

s5 = mod(j × 250, n) + 2
s6 = mod(j × 250, n) + 2

. (6)

�
Xs = xi × 1014 mod 256
Ys = yi × 1014 mod 256 .

Zs = Xs ⊕ Ys
 (7)

�
Rc = de2bi (Ri) ⊕ de2bi (xi)
Gc = de2bi (Gi) ⊕ de2bi (yi)
Bc = de2bi (Bi) ⊕ de2bi (zi)

. (8)

3.3 Decryption Algorithm

Multiple-image decryption is the inverse of
multiple-image encryption. The h enciphered
images are combined into a big image, after
which inverse pixel substitution is performed
using the 2D logistic map, followed by the k-bit
right circular shift operation on each pixel to
restore the original pixel values. The pixel
location is restored by carrying out inverse
zigzag scanning and inverse pixel permutation
using CA Rule-30. Finally, the big image is
segmented to produce the h plain images.

Figure 9
Permutation process based on CA

(j) == 1, every value of the
jthcolumn of the image matrix Ie-1 is upward, circularly
shifted s5 times.
Case 3: If

Step 1: Combine all the h input images to create
one large image (I).

Step 2: Create pure-image elements by
segmenting the large image.

Step 3: Generate the mixed-image elements. A
permutation operation is employed on the pure-
image elements to create mixed-image elements.
In this work, a two-stage permutation operation
is performed. The first stage of the permutation
operation, based on Rule-30 of the elementary
cellular automata, is as follows. The permutation
is performed on both rows and columns. The two
different initial configuration vectors
{R0

P and C0P } of the circular boundary ECA are
obtained as presented in the key generation
phase.
In accordance with Rule-30, the initial
configuration vectors , R0

P and C0,
P may self-

evolve and can acquire two evolved
configurations, Ri

P = { R0
P, R1

P , .. Re
P … , Rm

P }
and CiP = { C0P, C1P , .. CeP … , CnP}, where e is the
eth round configuration, and m and n denote the
dimensions of the big-image matrix,(I).The RP
sequence is used for row permutation and the CP
sequence for column permutation. Figure 9 gives
an example.

Row Permutation (RP):
Case 1: If Re

P(i)== Re−1
P (i), every value of the

ithrow of the image matrix Ie-1 is left, circularly
shifted s1 times.
Case 2: If Re

P(i)== 0 and Re−1
P (i) == 1, every

value of the ithrow of the image matrix Ie-1 is left,
circularly shifted s2 times.
Case 3: If Re

P(i)== 1 and Re−1
P (i) == 0, every

value of the ithrow of the image matrix Ie-1 is
right, circularly shifted s3 times.

 s1, s2 and s3 are calculated using
Equation (5):

�
s1 = mod(i × 250, m)

s2 = mod(i × 250, m) + 2
s3 = mod(i × 250, m) + 2

 . (5)

Column Permutation (RP):
Case 1: If CeP(j)== Ce−1P (j), every value of the
jthcolumn of the image matrix Ie-1 is upward,
circularly shifted s4 times.
Case 2: If CeP(j)== 0 and Ce−1P (j) == 1, every

value of the jthcolumn of the image matrix Ie-1 is
upward, circularly shifted s5 times.
Case 3: If CeP(j)== 1 and Ce−1P (j) == 0, every
value of the jthcolumn of the image matrix Ie-1 is
downward, circularly shifted s3 times.

 s and s6 are calculated using

�
s4 = mod(j × 250, n)

s5 = mod(j × 250, n) + 2
s6 = mod(j × 250, n) + 2

. (6)

�
Xs = xi × 1014 mod 256
Ys = yi × 1014 mod 256 .

Zs = Xs ⊕ Ys
 (7)

�
Rc = de2bi (Ri) ⊕ de2bi (xi)
Gc = de2bi (Gi) ⊕ de2bi (yi)
Bc = de2bi (Bi) ⊕ de2bi (zi)

. (8)

3.3 Decryption Algorithm

Multiple-image decryption is the inverse of
multiple-image encryption. The h enciphered
images are combined into a big image, after
which inverse pixel substitution is performed
using the 2D logistic map, followed by the k-bit
right circular shift operation on each pixel to
restore the original pixel values. The pixel
location is restored by carrying out inverse
zigzag scanning and inverse pixel permutation
using CA Rule-30. Finally, the big image is
segmented to produce the h plain images.

Figure 9
Permutation process based on CA

== 1 and

Step 1: Combine all the h input images to create
one large image (I).

Step 2: Create pure-image elements by
segmenting the large image.

Step 3: Generate the mixed-image elements. A
permutation operation is employed on the pure-
image elements to create mixed-image elements.
In this work, a two-stage permutation operation
is performed. The first stage of the permutation
operation, based on Rule-30 of the elementary
cellular automata, is as follows. The permutation
is performed on both rows and columns. The two
different initial configuration vectors
{R0

P and C0P } of the circular boundary ECA are
obtained as presented in the key generation
phase.
In accordance with Rule-30, the initial
configuration vectors , R0

P and C0,
P may self-

evolve and can acquire two evolved
configurations, Ri

P = { R0
P, R1

P , .. Re
P … , Rm

P }
and CiP = { C0P, C1P , .. CeP … , CnP}, where e is the
eth round configuration, and m and n denote the
dimensions of the big-image matrix,(I).The RP
sequence is used for row permutation and the CP
sequence for column permutation. Figure 9 gives
an example.

Row Permutation (RP):
Case 1: If Re

P(i)== Re−1
P (i), every value of the

ithrow of the image matrix Ie-1 is left, circularly
shifted s1 times.
Case 2: If Re

P(i)== 0 and Re−1
P (i) == 1, every

value of the ithrow of the image matrix Ie-1 is left,
circularly shifted s2 times.
Case 3: If Re

P(i)== 1 and Re−1
P (i) == 0, every

value of the ithrow of the image matrix Ie-1 is
right, circularly shifted s3 times.

 s1, s2 and s3 are calculated using
Equation (5):

�
s1 = mod(i × 250, m)

s2 = mod(i × 250, m) + 2
s3 = mod(i × 250, m) + 2

 . (5)

Column Permutation (RP):
Case 1: If CeP(j)== Ce−1P (j), every value of the
jthcolumn of the image matrix Ie-1 is upward,
circularly shifted s4 times.
Case 2: If CeP(j)== 0 and Ce−1P (j) == 1, every

value of the jthcolumn of the image matrix Ie-1 is
upward, circularly shifted s5 times.
Case 3: If CeP(j)== 1 and Ce−1P (j) == 0, every
value of the jthcolumn of the image matrix Ie-1 is
downward, circularly shifted s3 times.

 s and s6 are calculated using

�
s4 = mod(j × 250, n)

s5 = mod(j × 250, n) + 2
s6 = mod(j × 250, n) + 2

. (6)

�
Xs = xi × 1014 mod 256
Ys = yi × 1014 mod 256 .

Zs = Xs ⊕ Ys
 (7)

�
Rc = de2bi (Ri) ⊕ de2bi (xi)
Gc = de2bi (Gi) ⊕ de2bi (yi)
Bc = de2bi (Bi) ⊕ de2bi (zi)

. (8)

3.3 Decryption Algorithm

Multiple-image decryption is the inverse of
multiple-image encryption. The h enciphered
images are combined into a big image, after
which inverse pixel substitution is performed
using the 2D logistic map, followed by the k-bit
right circular shift operation on each pixel to
restore the original pixel values. The pixel
location is restored by carrying out inverse
zigzag scanning and inverse pixel permutation
using CA Rule-30. Finally, the big image is
segmented to produce the h plain images.

Figure 9
Permutation process based on CA

(j) == 0, every value of the
jthcolumn of the image matrix Ie-1 is downward, circu-
larly shifted s3 times.
s4, s5 and s6 are calculated using Equation (6):

Step 1: Combine all the h input images to create
one large image (I).

Step 2: Create pure-image elements by
segmenting the large image.

Step 3: Generate the mixed-image elements. A
permutation operation is employed on the pure-
image elements to create mixed-image elements.
In this work, a two-stage permutation operation
is performed. The first stage of the permutation
operation, based on Rule-30 of the elementary
cellular automata, is as follows. The permutation
is performed on both rows and columns. The two
different initial configuration vectors
{R0

P and C0P } of the circular boundary ECA are
obtained as presented in the key generation
phase.
In accordance with Rule-30, the initial
configuration vectors , R0

P and C0,
P may self-

evolve and can acquire two evolved
configurations, Ri

P = { R0
P, R1

P , .. Re
P … , Rm

P }
and CiP = { C0P, C1P , .. CeP … , CnP}, where e is the
eth round configuration, and m and n denote the
dimensions of the big-image matrix,(I).The RP
sequence is used for row permutation and the CP
sequence for column permutation. Figure 9 gives
an example.

Row Permutation (RP):
Case 1: If Re

P(i)== Re−1
P (i), every value of the

ithrow of the image matrix Ie-1 is left, circularly
shifted s1 times.
Case 2: If Re

P(i)== 0 and Re−1
P (i) == 1, every

value of the ithrow of the image matrix Ie-1 is left,
circularly shifted s2 times.
Case 3: If Re

P(i)== 1 and Re−1
P (i) == 0, every

value of the ithrow of the image matrix Ie-1 is
right, circularly shifted s3 times.

 s1, s2 and s3 are calculated using
Equation (5):

�
s1 = mod(i × 250, m)

s2 = mod(i × 250, m) + 2
s3 = mod(i × 250, m) + 2

 . (5)

Column Permutation (RP):
Case 1: If CeP(j)== Ce−1P (j), every value of the
jthcolumn of the image matrix Ie-1 is upward,
circularly shifted s4 times.
Case 2: If CeP(j)== 0 and Ce−1P (j) == 1, every

value of the jthcolumn of the image matrix Ie-1 is
upward, circularly shifted s5 times.
Case 3: If CeP(j)== 1 and Ce−1P (j) == 0, every
value of the jthcolumn of the image matrix Ie-1 is
downward, circularly shifted s3 times.

 s and s6 are calculated using

�
s4 = mod(j × 250, n)

s5 = mod(j × 250, n) + 2
s6 = mod(j × 250, n) + 2

. (6)

�
Xs = xi × 1014 mod 256
Ys = yi × 1014 mod 256 .

Zs = Xs ⊕ Ys
 (7)

�
Rc = de2bi (Ri) ⊕ de2bi (xi)
Gc = de2bi (Gi) ⊕ de2bi (yi)
Bc = de2bi (Bi) ⊕ de2bi (zi)

. (8)

3.3 Decryption Algorithm

Multiple-image decryption is the inverse of
multiple-image encryption. The h enciphered
images are combined into a big image, after
which inverse pixel substitution is performed
using the 2D logistic map, followed by the k-bit
right circular shift operation on each pixel to
restore the original pixel values. The pixel
location is restored by carrying out inverse
zigzag scanning and inverse pixel permutation
using CA Rule-30. Finally, the big image is
segmented to produce the h plain images.

Figure 9
Permutation process based on CA

(6)

Step 4: Transform the big image matrix into a one- di-
mensional vector with zigzag scanning.
Step 5: Perform the k-bit left circular shift operation
on each pixel value.
Step 6: Do the bitwise exclusive-or operation.
A pixel-level substitution based on the logistic map
is performed in the proposed method, in which a new
value is set for each pixel, as follows. The 2D logistic
map (1) is iterated to obtain random sequences that
are preprocessed in Equation (7) before being used.
The simple exclusive-or operation is used in the pixel
substitution process, as defined in Equation (8),

Step 1: Combine all the h input images to create
one large image (I).

Step 2: Create pure-image elements by
segmenting the large image.

Step 3: Generate the mixed-image elements. A
permutation operation is employed on the pure-
image elements to create mixed-image elements.
In this work, a two-stage permutation operation
is performed. The first stage of the permutation
operation, based on Rule-30 of the elementary
cellular automata, is as follows. The permutation
is performed on both rows and columns. The two
different initial configuration vectors
{R0

P and C0P } of the circular boundary ECA are
obtained as presented in the key generation
phase.
In accordance with Rule-30, the initial
configuration vectors , R0

P and C0,
P may self-

evolve and can acquire two evolved
configurations, Ri

P = { R0
P, R1

P , .. Re
P … , Rm

P }
and CiP = { C0P, C1P , .. CeP … , CnP}, where e is the
eth round configuration, and m and n denote the
dimensions of the big-image matrix,(I).The RP
sequence is used for row permutation and the CP
sequence for column permutation. Figure 9 gives
an example.

Row Permutation (RP):
Case 1: If Re

P(i)== Re−1
P (i), every value of the

ithrow of the image matrix Ie-1 is left, circularly
shifted s1 times.
Case 2: If Re

P(i)== 0 and Re−1
P (i) == 1, every

value of the ithrow of the image matrix Ie-1 is left,
circularly shifted s2 times.
Case 3: If Re

P(i)== 1 and Re−1
P (i) == 0, every

value of the ithrow of the image matrix Ie-1 is
right, circularly shifted s3 times.

 s1, s2 and s3 are calculated using
Equation (5):

�
s1 = mod(i × 250, m)

s2 = mod(i × 250, m) + 2
s3 = mod(i × 250, m) + 2

 . (5)

Column Permutation (RP):
Case 1: If CeP(j)== Ce−1P (j), every value of the
jthcolumn of the image matrix Ie-1 is upward,
circularly shifted s4 times.
Case 2: If CeP(j)== 0 and Ce−1P (j) == 1, every

value of the jthcolumn of the image matrix Ie-1 is
upward, circularly shifted s5 times.
Case 3: If CeP(j)== 1 and Ce−1P (j) == 0, every
value of the jthcolumn of the image matrix Ie-1 is
downward, circularly shifted s3 times.

 s and s6 are calculated using

�
s4 = mod(j × 250, n)

s5 = mod(j × 250, n) + 2
s6 = mod(j × 250, n) + 2

. (6)

�
Xs = xi × 1014 mod 256
Ys = yi × 1014 mod 256 .

Zs = Xs ⊕ Ys
 (7)

�
Rc = de2bi (Ri) ⊕ de2bi (xi)
Gc = de2bi (Gi) ⊕ de2bi (yi)
Bc = de2bi (Bi) ⊕ de2bi (zi)

. (8)

3.3 Decryption Algorithm

Multiple-image decryption is the inverse of
multiple-image encryption. The h enciphered
images are combined into a big image, after
which inverse pixel substitution is performed
using the 2D logistic map, followed by the k-bit
right circular shift operation on each pixel to
restore the original pixel values. The pixel
location is restored by carrying out inverse
zigzag scanning and inverse pixel permutation
using CA Rule-30. Finally, the big image is
segmented to produce the h plain images.

Figure 9
Permutation process based on CA

(7)

Information Technology and Control 2021/1/5064

Where I = 1, 2, ..., L (L is sequence length)

Step 1: Combine all the h input images to create
one large image (I).

Step 2: Create pure-image elements by
segmenting the large image.

Step 3: Generate the mixed-image elements. A
permutation operation is employed on the pure-
image elements to create mixed-image elements.
In this work, a two-stage permutation operation
is performed. The first stage of the permutation
operation, based on Rule-30 of the elementary
cellular automata, is as follows. The permutation
is performed on both rows and columns. The two
different initial configuration vectors
{R0

P and C0P } of the circular boundary ECA are
obtained as presented in the key generation
phase.
In accordance with Rule-30, the initial
configuration vectors , R0

P and C0,
P may self-

evolve and can acquire two evolved
configurations, Ri

P = { R0
P, R1

P , .. Re
P … , Rm

P }
and CiP = { C0P, C1P , .. CeP … , CnP}, where e is the
eth round configuration, and m and n denote the
dimensions of the big-image matrix,(I).The RP
sequence is used for row permutation and the CP
sequence for column permutation. Figure 9 gives
an example.

Row Permutation (RP):
Case 1: If Re

P(i)== Re−1
P (i), every value of the

ithrow of the image matrix Ie-1 is left, circularly
shifted s1 times.
Case 2: If Re

P(i)== 0 and Re−1
P (i) == 1, every

value of the ithrow of the image matrix Ie-1 is left,
circularly shifted s2 times.
Case 3: If Re

P(i)== 1 and Re−1
P (i) == 0, every

value of the ithrow of the image matrix Ie-1 is
right, circularly shifted s3 times.

 s1, s2 and s3 are calculated using
Equation (5):

�
s1 = mod(i × 250, m)

s2 = mod(i × 250, m) + 2
s3 = mod(i × 250, m) + 2

 . (5)

Column Permutation (RP):
Case 1: If CeP(j)== Ce−1P (j), every value of the
jthcolumn of the image matrix Ie-1 is upward,
circularly shifted s4 times.
Case 2: If CeP(j)== 0 and Ce−1P (j) == 1, every

value of the jthcolumn of the image matrix Ie-1 is
upward, circularly shifted s5 times.
Case 3: If CeP(j)== 1 and Ce−1P (j) == 0, every
value of the jthcolumn of the image matrix Ie-1 is
downward, circularly shifted s3 times.

 s and s6 are calculated using

�
s4 = mod(j × 250, n)

s5 = mod(j × 250, n) + 2
s6 = mod(j × 250, n) + 2

. (6)

�
Xs = xi × 1014 mod 256
Ys = yi × 1014 mod 256 .

Zs = Xs ⊕ Ys
 (7)

�
Rc = de2bi (Ri) ⊕ de2bi (xi)
Gc = de2bi (Gi) ⊕ de2bi (yi)
Bc = de2bi (Bi) ⊕ de2bi (zi)

. (8)

3.3 Decryption Algorithm

Multiple-image decryption is the inverse of
multiple-image encryption. The h enciphered
images are combined into a big image, after
which inverse pixel substitution is performed
using the 2D logistic map, followed by the k-bit
right circular shift operation on each pixel to
restore the original pixel values. The pixel
location is restored by carrying out inverse
zigzag scanning and inverse pixel permutation
using CA Rule-30. Finally, the big image is
segmented to produce the h plain images.

Figure 9
Permutation process based on CA

(8)

Where (R, G& B) are color components.
Step 7: Segment the big image into h encrypted im-
ages.

3.3. Decryption Algorithm
Multiple-image decryption is the inverse of multi-
ple-image encryption. The h enciphered images are
combined into a big image, after which inverse pixel
substitution is performed using the 2D logistic map,
followed by the k-bit right circular shift operation
on each pixel to restore the original pixel values. The
pixel location is restored by carrying out inverse zig-

Figure 9
Permutation process based on CA

4. Experimental Setup

In all our experiments, we have used the
MATLAB R2014a, Windows 7 software
platform, the Intel Corei5-2.50GHz processor
hardware platform and sixteen well-known RGB
color images with pixels sized 128×128 were

used. The parameters and initial seeds used for
the logistic map were𝑝𝑝𝑝𝑝1=2.98, 𝑝𝑝𝑝𝑝2=3.30, 𝑞𝑞𝑞𝑞1=0.18,
𝑞𝑞𝑞𝑞2=0.15, 𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠=0.898 and 𝑦𝑦𝑦𝑦𝑠𝑠𝑠𝑠=0.954. The test results
are presented next, and compared with two peer
image ciphers in the subsequent section. The 16
input images, combined big image and mixed-
image elements are shown in Figures 10-12.

Figure 10
Input images

Figure 11
Big image

0 1 1 1 0

19 25 4 34 57
63 15 55 76 80
23 20 97 41 46
83 71 53 10 67
39 86 58 17 29

0
0
1
1
1

0 1 1 1 0

83 20 97 34 67
39 71 53 76 29
19 86 58 41 57
63 25 4 10 80
23 15 55 17 46

0
0
1
1
1

1 0 0 1 1

34 67 83 20 97
76 29 39 71 53
58 41 57 19 86
4 10 80 63 25

23 15 55 17 46

1
1
0
0
1

 C0
P C1

P C1
P

 R0
P R1

P R1
P

RP CP

zag scanning and inverse pixel permutation using CA
Rule-30. Finally, the big image is segmented to pro-
duce the h plain images

4. Experimental Setup
In all our experiments, we have used the MATLAB
R2014a, Windows 7 software platform, the Intel
Corei5-2.50GHz processor hardware platform and
sixteen well-known RGB color images with pixels
sized 128×128 were used. The parameters and initial
seeds used for the logistic map were p1=2.98, p2 =3.30,
q1=0.18, q2=0.15, xs =0.898 and ys =0.954. The test re-
sults are presented next, and compared with two peer
image ciphers in the subsequent section. The 16 input
images, combined big image and mixed-image ele-
ments are shown in Figures 10-12.

Figure 10
Input images

4. Experimental Setup

In all our experiments, we have used the
MATLAB R2014a, Windows 7 software
platform, the Intel Corei5-2.50GHz processor
hardware platform and sixteen well-known RGB
color images with pixels sized 128×128 were

used. The parameters and initial seeds used for
the logistic map were𝑝𝑝𝑝𝑝1=2.98, 𝑝𝑝𝑝𝑝2=3.30, 𝑞𝑞𝑞𝑞1=0.18,
𝑞𝑞𝑞𝑞2=0.15, 𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠=0.898 and 𝑦𝑦𝑦𝑦𝑠𝑠𝑠𝑠=0.954. The test results
are presented next, and compared with two peer
image ciphers in the subsequent section. The 16
input images, combined big image and mixed-
image elements are shown in Figures 10-12.

Figure 10
Input images

Figure 11
Big image

0 1 1 1 0

19 25 4 34 57
63 15 55 76 80
23 20 97 41 46
83 71 53 10 67
39 86 58 17 29

0
0
1
1
1

0 1 1 1 0

83 20 97 34 67
39 71 53 76 29
19 86 58 41 57
63 25 4 10 80
23 15 55 17 46

0
0
1
1
1

1 0 0 1 1

34 67 83 20 97
76 29 39 71 53
58 41 57 19 86
4 10 80 63 25

23 15 55 17 46

1
1
0
0
1

 C0
P C1

P C1
P

 R0
P R1

P R1
P

RP CP

65Information Technology and Control 2021/1/50

Figure 11
Big image

Figure 12
Mixed-image elements (with equal size 4×4 and 8×8)

 Figure 12
 Mixed-image elements (with equal size 4×4 and 8×8)

5. Results Analysis
5.1. Input Sensitivity Test

The input image sensitivity test is used to assess the
effectiveness of the cipher against chosen plain-im-
age and known plain-image attacks [14]. In these at-
tacks, the attackers compare two encrypted images
to learn the relationship patterns between plain and
cipher images. Such attacks are also referred to as
differential attacks. The two well-known quantitative
metrics, NPCR and UACI that are utilized to calculate
the sensitivity of the cipher are defined in Equations
(9 & 10) [35],

5. Results Analysis
5.1 Input Sensitivity Test

The input image sensitivity test is used to assess
the effectiveness of the cipher against chosen
plain-image and known plain-image attacks [14].
In these attacks, the attackers compare two
encrypted images to learn the relationship
patterns between plain and cipher images. Such
attacks are also referred to as differential attacks.
The two well-known quantitative metrics, NPCR
and UACI that are utilized to calculate the
sensitivity of the cipher are defined in Equations
(9 & 10) [35],

d(a, b) = �0 C1(a, b) = C2(a, b)
1 C1(a, b) ≠ C2(a, b),

NPCR = ∑ ∑ d(a,b)h
b=1

w
a=1

w×h
× 100%, (9)

UACI = ∑ ∑ | C1(a,b)=C2(a,b) |h
b=1

w
a=1

w×h×255
× 100%, (10)

where C1and C2 are the encrypted images of the
plain images,P1 and P2 with P1 and P2 differing
in exactly one pixel The obtained NPCR and
UACI values are displayed in Table 1.

5.2 Key Space Analysis

The security strength of a cipher chiefly relies on

the keys, which demand a large key space [3]. In
this system, the starting position for zigzag
scanning, starting values (real numbers) for the
2D logistic map and 512-bit hash constitute the
secret key. Since the precision is set to 1014 in
our experiment, the key space is approximately
2622. Hence our proposed approach offers larger
key space than schemes reported in [29, 30]. A
bigger space repels all key-based attacks.

5.3 Key Sensitivity Analysis

Sensitivity to keys is an excellent property of a
good cipher, causing the encryption and
decryption processes to produce entirely different
output images when minor changes are made in
the keys [33]. In our experiment, the key
sensitivity is tested as follows. The input image
is encrypted with the starting seeds [xs=0.898
and ys=0.954], following which a tiny change is
made in one of the seeds [xs=0.8980000000001],
though other secret key values are not changed
and decrypted with the unmodified and modified
keys. The results displayed in Figure 13 show
that the decrypted image with the slightly
modified key is absolutely unintelligible, with no
relation to the original images.

Table 1
Experimental results of the NPCR and UACI

Input Image NPCR UACI
Proposed [39] [13] [7] Proposed [39] [13] [7]

Input Image 1 99.5930 99.4653 99.4093 91.3786 33.4635 33.2438 33.3718 28.9313
Input Image 2 99.6520 99.5378 99.4951 88.9764 33.5599 33.4193 33.4253 27.4865
Input Image 3 99.5971 99.4256 99.4829 90.1651 33.5888 33.4917 33.3266 28.4621
Input Image 4 99.5910 99.5274 99.5012 90.4290 33.5063 33.4070 33.4637 28.1839
Input Image 5 99.6765 99.5630 99.4686 89.0002 33.4399 33.4057 33.5524 29.5397
Input Image 6 99.6195 99.5471 99.5442 88.0516 33.3662 33.4135 33.2379 28.1774
Input Image 7 99.5992 99.4524 99.5027 89.7114 33.4887 33.3604 33.4586 28.9430
Input Image 8 99.6236 99.5747 99.4849 91.4761 33.5228 33.2941 33.3480 29.1066
Input Image 9 99.5890 99.5634 99.6032 90.5400 33.3906 33.5576 33.3731 29.3281
Input Image 10 99.6154 99.5625 99.5073 88.2531 33.3877 33.5214 33.3552 29.0412
Input Image 11 99.6358 99.5951 99.6012 91.2153 33.2611 33.1845 33.2546 29.6280
Input Image 12 99.5768 99.5734 99.5632 89.5966 33.3290 33.3174 33.3948 28.3620
Input Image 13 99.5666 99.4869 99.4992 88.0473 33.5070 33.3934 33.4547 29.7208
Input Image 14 99.5829 99.5317 99.5175 88.1362 33.4093 33.4316 33.4058 29.4524
Input Image 15 99.6256 99.5436 99.5358 89.1763 33.3974 33.3623 33.3466 27.5867
Input Image 16 99.4583 99.4951 99.5114 88.3649 33.4521 33.3279 33.3733 29.0943

Figure 13

 Key sensitivity analysis

(9)

5. Results Analysis
5.1 Input Sensitivity Test

The input image sensitivity test is used to assess
the effectiveness of the cipher against chosen
plain-image and known plain-image attacks [14].
In these attacks, the attackers compare two
encrypted images to learn the relationship
patterns between plain and cipher images. Such
attacks are also referred to as differential attacks.
The two well-known quantitative metrics, NPCR
and UACI that are utilized to calculate the
sensitivity of the cipher are defined in Equations
(9 & 10) [35],

d(a, b) = �0 C1(a, b) = C2(a, b)
1 C1(a, b) ≠ C2(a, b),

NPCR = ∑ ∑ d(a,b)h
b=1

w
a=1

w×h
× 100%, (9)

UACI = ∑ ∑ | C1(a,b)=C2(a,b) |h
b=1

w
a=1

w×h×255
× 100%, (10)

where C1and C2 are the encrypted images of the
plain images,P1 and P2 with P1 and P2 differing
in exactly one pixel The obtained NPCR and
UACI values are displayed in Table 1.

5.2 Key Space Analysis

The security strength of a cipher chiefly relies on

the keys, which demand a large key space [3]. In
this system, the starting position for zigzag
scanning, starting values (real numbers) for the
2D logistic map and 512-bit hash constitute the
secret key. Since the precision is set to 1014 in
our experiment, the key space is approximately
2622. Hence our proposed approach offers larger
key space than schemes reported in [29, 30]. A
bigger space repels all key-based attacks.

5.3 Key Sensitivity Analysis

Sensitivity to keys is an excellent property of a
good cipher, causing the encryption and
decryption processes to produce entirely different
output images when minor changes are made in
the keys [33]. In our experiment, the key
sensitivity is tested as follows. The input image
is encrypted with the starting seeds [xs=0.898
and ys=0.954], following which a tiny change is
made in one of the seeds [xs=0.8980000000001],
though other secret key values are not changed
and decrypted with the unmodified and modified
keys. The results displayed in Figure 13 show
that the decrypted image with the slightly
modified key is absolutely unintelligible, with no
relation to the original images.

Table 1
Experimental results of the NPCR and UACI

Input Image NPCR UACI
Proposed [39] [13] [7] Proposed [39] [13] [7]

Input Image 1 99.5930 99.4653 99.4093 91.3786 33.4635 33.2438 33.3718 28.9313
Input Image 2 99.6520 99.5378 99.4951 88.9764 33.5599 33.4193 33.4253 27.4865
Input Image 3 99.5971 99.4256 99.4829 90.1651 33.5888 33.4917 33.3266 28.4621
Input Image 4 99.5910 99.5274 99.5012 90.4290 33.5063 33.4070 33.4637 28.1839
Input Image 5 99.6765 99.5630 99.4686 89.0002 33.4399 33.4057 33.5524 29.5397
Input Image 6 99.6195 99.5471 99.5442 88.0516 33.3662 33.4135 33.2379 28.1774
Input Image 7 99.5992 99.4524 99.5027 89.7114 33.4887 33.3604 33.4586 28.9430
Input Image 8 99.6236 99.5747 99.4849 91.4761 33.5228 33.2941 33.3480 29.1066
Input Image 9 99.5890 99.5634 99.6032 90.5400 33.3906 33.5576 33.3731 29.3281
Input Image 10 99.6154 99.5625 99.5073 88.2531 33.3877 33.5214 33.3552 29.0412
Input Image 11 99.6358 99.5951 99.6012 91.2153 33.2611 33.1845 33.2546 29.6280
Input Image 12 99.5768 99.5734 99.5632 89.5966 33.3290 33.3174 33.3948 28.3620
Input Image 13 99.5666 99.4869 99.4992 88.0473 33.5070 33.3934 33.4547 29.7208
Input Image 14 99.5829 99.5317 99.5175 88.1362 33.4093 33.4316 33.4058 29.4524
Input Image 15 99.6256 99.5436 99.5358 89.1763 33.3974 33.3623 33.3466 27.5867
Input Image 16 99.4583 99.4951 99.5114 88.3649 33.4521 33.3279 33.3733 29.0943

Figure 13

 Key sensitivity analysis

(10)

where C1and C2 are the encrypted images of the plain
images, P1 and P2 with P1 and P2 differing in exactly
one pixel The obtained NPCR and UACI values are
displayed in Table 1.

5.2. Key Space Analysis

The security strength of a cipher chiefly relies on the
keys, which demand a large key space [3]. In this sys-
tem, the starting position for zigzag scanning, starting
values (real numbers) for the 2D logistic map and 512-
bit hash constitute the secret key. Since the precision
is set to 1014 in our experiment, the key space is ap-
proximately 2622. Hence our proposed approach offers
larger key space than schemes reported in [29, 30]. A
bigger space repels all key-based attacks.

5.3. Key Sensitivity Analysis

Sensitivity to keys is an excellent property of a good ci-
pher, causing the encryption and decryption processes
to produce entirely different output images when mi-
nor changes are made in the keys [33]. In our experi-
ment, the key sensitivity is tested as follows. The input
image is encrypted with the starting seeds [xs=0.898
and ys =0.954], following which a tiny change is made in
one of the seeds [xs=0.8980000000001], though other
secret key values are not changed and decrypted with

 Figure 12
 Mixed-image elements (with equal size 4×4 and 8×8)

 Figure 12
 Mixed-image elements (with equal size 4×4 and 8×8)

Information Technology and Control 2021/1/5066

Table 1
Experimental results of the NPCR and UACI

Input Image
NPCR UACI

Proposed [39] [13] [7] Proposed [39] [13] [7]

Input Image 1 99.5930 99.4653 99.4093 91.3786 33.4635 33.2438 33.3718 28.9313

Input Image 2 99.6520 99.5378 99.4951 88.9764 33.5599 33.4193 33.4253 27.4865

Input Image 3 99.5971 99.4256 99.4829 90.1651 33.5888 33.4917 33.3266 28.4621

Input Image 4 99.5910 99.5274 99.5012 90.4290 33.5063 33.4070 33.4637 28.1839

Input Image 5 99.6765 99.5630 99.4686 89.0002 33.4399 33.4057 33.5524 29.5397

Input Image 6 99.6195 99.5471 99.5442 88.0516 33.3662 33.4135 33.2379 28.1774

Input Image 7 99.5992 99.4524 99.5027 89.7114 33.4887 33.3604 33.4586 28.9430

Input Image 8 99.6236 99.5747 99.4849 91.4761 33.5228 33.2941 33.3480 29.1066

Input Image 9 99.5890 99.5634 99.6032 90.5400 33.3906 33.5576 33.3731 29.3281

Input Image 10 99.6154 99.5625 99.5073 88.2531 33.3877 33.5214 33.3552 29.0412

Input Image 11 99.6358 99.5951 99.6012 91.2153 33.2611 33.1845 33.2546 29.6280

Input Image 12 99.5768 99.5734 99.5632 89.5966 33.3290 33.3174 33.3948 28.3620

Input Image 13 99.5666 99.4869 99.4992 88.0473 33.5070 33.3934 33.4547 29.7208

Input Image 14 99.5829 99.5317 99.5175 88.1362 33.4093 33.4316 33.4058 29.4524

Input Image 15 99.6256 99.5436 99.5358 89.1763 33.3974 33.3623 33.3466 27.5867

Input Image 16 99.4583 99.4951 99.5114 88.3649 33.4521 33.3279 33.3733 29.0943

Figure 13
Key sensitivity analysis

the unmodified and modified keys. The results dis-
played in Figure 13 show that the decrypted image with

the slightly modified key is absolutely unintelligible,
with no relation to the original images.

5.4. Histogram Analysis

A histogram specifies the frequency occurrences
of color values in an image [6]. Typically, since the
histograms of plain images are different, the attack-
er exploits this statistical feature to compromise
the cipher. To prevent such a threat, the statistical
features of plain images must be destroyed by the
cipher during encryption. The histograms of the 16
plain, encrypted and decrypted images are shown in
Figure 14. The visual comparison makes it clear that
while the cipher image histograms are almost similar
and flat, the corresponding plain image histograms
are intensified at a few value levels and, further, the
decrypted image histograms are very similar to the
original images. So then, it is concluded that the at-
tacker cannot deduce valuable information through
statistical attacks.

(b)
Decrypted image-8

with the starting seeds
(xs=0.8980000000001 and

ys=0.954)

(a)
Decrypted image-8

with the starting seeds
(xs=0.898 and ys =0.954)

5.4 Histogram Analysis

A histogram specifies the frequency occurrences
of color values in an image [6]. Typically, since
the histograms of plain images are different, the
attacker exploits this statistical feature to
compromise the cipher. To prevent such a threat,
the statistical features of plain images must be
destroyed by the cipher during encryption. The
histograms of the 16 plain, encrypted and

decrypted images are shown in Figure 14. The
visual comparison makes it clear that while the
cipher image histograms are almost similar and
flat, the corresponding plain image histograms
are intensified at a few value levels and, further,
the decrypted image histograms are very similar
to the original images. So then, it is concluded
that the attacker cannot deduce valuable
information through statistical attacks.

Figure 14

 Histogram analysis

Input

Image 1

Input

Image 2

Input

Image 3

a. Decrypted image-8 with the starting seeds
(𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠=0.898 and 𝑦𝑦𝑦𝑦𝑠𝑠𝑠𝑠=0.954)

b. Decrypted image-8 with the starting seeds
(𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠=0.8980000000001 and 𝑦𝑦𝑦𝑦𝑠𝑠𝑠𝑠=0.954)

5.4 Histogram Analysis

A histogram specifies the frequency occurrences
of color values in an image [6]. Typically, since
the histograms of plain images are different, the
attacker exploits this statistical feature to
compromise the cipher. To prevent such a threat,
the statistical features of plain images must be
destroyed by the cipher during encryption. The
histograms of the 16 plain, encrypted and

decrypted images are shown in Figure 14. The
visual comparison makes it clear that while the
cipher image histograms are almost similar and
flat, the corresponding plain image histograms
are intensified at a few value levels and, further,
the decrypted image histograms are very similar
to the original images. So then, it is concluded
that the attacker cannot deduce valuable
information through statistical attacks.

Figure 14

 Histogram analysis

Input

Image 1

Input

Image 2

Input

Image 3

a. Decrypted image-8 with the starting seeds
(𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠=0.898 and 𝑦𝑦𝑦𝑦𝑠𝑠𝑠𝑠=0.954)

b. Decrypted image-8 with the starting seeds
(𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠=0.8980000000001 and 𝑦𝑦𝑦𝑦𝑠𝑠𝑠𝑠=0.954)

67Information Technology and Control 2021/1/50

Figure 14
Histogram analysis

Input
Image 1

Input
Image 2

Input
Image 3

Input
Image 4

Input
Image 5

Input
Image 6

Input
Image 7

Information Technology and Control 2021/1/5068

Input
Image 8

Input
Image 9

Input
Image 10

Input
Image 11

Input
Image 12

Input
Image 13

Figure 14 (continued)

69Information Technology and Control 2021/1/50

Input
Image 14

Input

Image 11

Input

Image 12

Input

Image 13

Input

Image 14

Input

Image 15

Input

Image 16

5.5 Correlation Analysis

Correlation analysis measures the similarity
association between neighbor pixel values [16].
Given that all natural plain images have a strong
correlation, it is required that the encryption
method assures a weak correlation in the
encrypted images. To calculate the correlation in

our work, 3000 pixel pairs were selected
randomly in diagonal, vertical and horizontal
directions, and the correlation measured using
Equation (11):

Corr_Coff = cov(a,b)

σa×σb
 . (11)

The correlation test results are listed in Table 2
(where V is vertical, H is horizontal and D is

Input
Image 15

Input

Image 11

Input

Image 12

Input

Image 13

Input

Image 14

Input

Image 15

Input

Image 16

5.5 Correlation Analysis

Correlation analysis measures the similarity
association between neighbor pixel values [16].
Given that all natural plain images have a strong
correlation, it is required that the encryption
method assures a weak correlation in the
encrypted images. To calculate the correlation in

our work, 3000 pixel pairs were selected
randomly in diagonal, vertical and horizontal
directions, and the correlation measured using
Equation (11):

Corr_Coff = cov(a,b)

σa×σb
 . (11)

The correlation test results are listed in Table 2
(where V is vertical, H is horizontal and D is

Input
Image 16

Input

Image 11

Input

Image 12

Input

Image 13

Input

Image 14

Input

Image 15

Input

Image 16

5.5 Correlation Analysis

Correlation analysis measures the similarity
association between neighbor pixel values [16].
Given that all natural plain images have a strong
correlation, it is required that the encryption
method assures a weak correlation in the
encrypted images. To calculate the correlation in

our work, 3000 pixel pairs were selected
randomly in diagonal, vertical and horizontal
directions, and the correlation measured using
Equation (11):

Corr_Coff = cov(a,b)

σa×σb
 . (11)

The correlation test results are listed in Table 2
(where V is vertical, H is horizontal and D is

Figure 14 (continued)

5.5. Correlation Analysis
Correlation analysis measures the similarity associ-
ation between neighbor pixel values [16]. Given that
all natural plain images have a strong correlation, it is
required that the encryption method assures a weak
correlation in the encrypted images. To calculate the
correlation in our work, 3000 pixel pairs were se-
lected randomly in diagonal, vertical and horizontal
directions, and the correlation measured using Equa-
tion (11):

Input

Image 11

Input

Image 12

Input

Image 13

Input

Image 14

Input

Image 15

Input

Image 16

5.5 Correlation Analysis

Correlation analysis measures the similarity
association between neighbor pixel values [16].
Given that all natural plain images have a strong
correlation, it is required that the encryption
method assures a weak correlation in the
encrypted images. To calculate the correlation in

our work, 3000 pixel pairs were selected
randomly in diagonal, vertical and horizontal
directions, and the correlation measured using
Equation (11):

Corr_Coff = cov(a,b)

σa×σb
 . (11)

The correlation test results are listed in Table 2
(where V is vertical, H is horizontal and D is

(11)

The correlation test results are listed in Table 2
(where V is vertical, H is horizontal and D is diago-
nal), and the correlation of input image1 and the cor-
responding encrypted image1is plotted in Figure 15.
It is observed from the outcomes that the regular rel-

evance between neighbor pixels is destroyed in the
cipher image.
The encrypted image histograms are uniformely dis-
tributed (equal probability). Therefore, the proposed
system withstands statistical attacks well.

5.6. Information Entropy (IE)

The metric, entropy, quantifies the randomness in the
pixel value distribution of digital images. The stan-
dard entropy value for a true random image is 8 [3]. IE
is calculated using Equation (12),

H 0.9526 -0.0102 0.0185 0.0446 0.1419
D 0.9301 -0.0045 0.0141 0.0251 0.1060

Input Image 10
V 0.8224 0.0024 0.0346 0.0429 0.1535
H 0.7952 0.0079 0.0238 0.0281 0.1017
D 0.6776 -0.0119 0.0385 0.0307 0.1183

Input Image 11
V 0.9605 -0.0100 0.0117 0.0178 0.1609
H 0.9456 -0.0070 0.0264 0.0253 0.1392
D 0.9201 0.0057 0.0376 0.0196 0.1095

Input Image 12
V 0.9518 0.0060 0.0221 0.0281 0.1241

H 0.9524 -0.0109 0.0279 0.0355 0.1077
D 0.9178 -0.0098 0.0342 0.0393 0.0911

Input Image 13
V 0.9088 0.0015 0.0255 0.0306 0.1102
H 0.9304 0.0008 0.0139 0.0349 0.1149
D 0.9074 -0.0012 0.0236 0.0267 0.1026

Input Image 14
V 0.9580 -0.0041 0.0133 0.0254 0.1490
H 0.9375 0.0019 0.0277 0.0326 0.1270
D 0.9131 0.0057 0.0260 0.0229 0.1087

Input Image 15
V 0.9059 -0.0048 0.0310 0.0367 0.1069

H 0.9123 0.0080 0.0348 0.0292 0.1074
D 0.8759 0.0002 0.0294 0.0309 0.1036

Input Image 16
V 0.9243 -0.0153 0.0227 0.0367 0.1197
H 0.8981 -0.0139 0.0384 0.0241 0.1384
D 0.8292 0.0038 0.0281 0.0238 0.1139

5.6 Information Entropy (IE)

The metric, entropy, quantifies the randomness
in the pixel value distribution of digital images.
The standard entropy value for a true random
image is 8 [3]. IE is calculated using Equation
(12),

 𝐸𝐸𝐸𝐸(𝑠𝑠𝑠𝑠) = ∑ 𝑝𝑝𝑝𝑝(𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑔𝑔𝑔𝑔2255

𝑎𝑎𝑎𝑎=0 𝑝𝑝𝑝𝑝(𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎), (12)

where p(sa) represents the emergence probability
corresponding to sa. Table 3 shows the entropy
test results which indicate that this method has
produced random images.

5.7 PSNR Analysis

The PSNR is an image quality index which
judges the quality of deciphered images.
Mathematically, it is calculated using Equation
(13) [14],

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 10𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑔𝑔𝑔𝑔10(255

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
), (13)

wherein MSE represents the mean square error.
The obtained PSNR test outcome is displayed in
Table 3. From the results, it is concluded that the
quality of images produced by the decryption
process is good.

Table 3
Experimental results of information entropy and PSNR

Input Image Information Entropy PSNR

Proposed [39] [13] [7] Proposed [39] [13] [7]
Input Image 1 7.9951 7.9859 7.9129 7.1963 90.7593 87.7240 85.1858 78.4542
Input Image 2 7.9957 7.9572 7.9348 7.1302 89.0605 85.1802 86.0631 75.2094
Input Image 3 7.9953 7.9429 7.9166 7.2618 90.0980 85.7106 83.9650 73.0816
Input Image 4 7.9966 7.9803 7.9217 7.1861 91.0714 86.5430 84.3320 74.4392
Input Image 5 7.9964 7.9481 7.9311 7.3730 88.7784 87.8093 85.2373 78.1687
Input Image 6 7.9965 7.9130 7.9367 7.1958 90.1624 86.1415 85.1917 75.8356
Input Image 7 7.9963 7.9802 7.9184 7.1535 89.6496 85.2286 84.8029 73.6731
Input Image 8 7.9959 7.9390 7.9497 7.1244 91.5455 85.1171 86.0731 73.4009
Input Image 9 7.9966 7.9197 7.9321 7.1800 87.8315 84.3052 84.8531 73.1182

Input Image 10 7.9963 7.9445 7.9469 7.1437 90.0058 86.1235 85.1805 76.0615
Input Image 11 7.9956 7.9523 7.9395 7.2273 87.2155 86.1595 86.2319 79.4071
Input Image 12 7.9957 7.9266 7.9172 7.2946 88.1991 85.6475 84.7642 74.2998
Input Image 13 7.9964 7.9902 7.9580 7.1184 90.8237 84.9348 84.8271 72.3307
Input Image 14 7.9964 7.9897 7.9259 7.1417 88.2931 85.6066 84.7689 78.0649
Input Image 15 7.9960 7.9631 7.9433 7.2092 88.1732 85.1279 85.4011 76.0311
Input Image 16 7.9959 7.9518 7.9347 7.1591 89.3171 86.0527 85.1865 77.8562

(12)

where p(sa) represents the emergence probability
corresponding to sa. Table 3 shows the entropy test
results which indicate that this method has produced
random images.

Information Technology and Control 2021/1/5070

Table 2
Experimental result of correlation coefficient

Input Image Direction Plain Image
Proposed [39] [13] [7]

Encrypted

Input Image 1
V 0.9252 0.0094 0.0318 0.0112 0.1067
H 0.9120 -0.0163 0.0321 0.0251 0.1035
D 0.8732 0.0077 0.0119 0.0148 0.1264

Input Image 2
V 0.9447 0.0015 0.0117 0.0427 0.1359
H 0.8893 0.0072 0.0124 0.0830 0.1205
D 0.8395 0.0049 0.0419 0.0375 0.0910

Input Image 3
V 0.9323 0.0053 0.0169 0.0174 0.1413
H 0.9186 0.0065 0.0596 0.0494 0.1087
D 0.8665 0.0009 0.0321 0.0526 0.1216

Input Image 4
V 0.9569 -0.0102 0.0147 0.0520 0.1407
H 0.9696 0.0013 0.0314 0.0507 0.0926
D 0.9391 0.0047 0.0238 0.0378 0.1047

Input Image 5
V 0.8982 0.0085 0.0137 0.0308 0.1187
H 0.9409 0.0062 0.0157 0.0426 0.1202
D 0.8669 0.0033 0.0154 0.0371 0.1372

Input Image 6
V 0.8504 -0.0126 0.0104 0.0350 0.1420

H 0.8845 0.0061 0.0128 0.0208 0.0934
D 0.8102 -0.0151 0.0174 0.0187 0.1380

Input Image 7
V 0.8977 0.0039 0.0283 0.0264 0.1504
H 0.9300 -0.0049 0.0413 0.0252 0.1209
D 0.8626 -0.0117 0.0396 0.0436 0.1388

Input Image 8
V 0.9355 -0.0145 0.0340 0.0285 0.1103
H 0.8898 -0.0578 0.0157 0.0307 0.1346
D 0.8599 0.0066 0.0189 0.0259 0.0137

Input Image 9
V 0.9588 0.0001 0.0478 0.0452 0.1088

H 0.9526 -0.0102 0.0185 0.0446 0.1419
D 0.9301 -0.0045 0.0141 0.0251 0.1060

Input Image 10
V 0.8224 0.0024 0.0346 0.0429 0.1535
H 0.7952 0.0079 0.0238 0.0281 0.1017
D 0.6776 -0.0119 0.0385 0.0307 0.1183

Input Image 11
V 0.9605 -0.0100 0.0117 0.0178 0.1609
H 0.9456 -0.0070 0.0264 0.0253 0.1392
D 0.9201 0.0057 0.0376 0.0196 0.1095

Input Image 12
V 0.9518 0.0060 0.0221 0.0281 0.1241

H 0.9524 -0.0109 0.0279 0.0355 0.1077
D 0.9178 -0.0098 0.0342 0.0393 0.0911

Input Image 13
V 0.9088 0.0015 0.0255 0.0306 0.1102
H 0.9304 0.0008 0.0139 0.0349 0.1149
D 0.9074 -0.0012 0.0236 0.0267 0.1026

Input Image 14
V 0.9580 -0.0041 0.0133 0.0254 0.1490
H 0.9375 0.0019 0.0277 0.0326 0.1270
D 0.9131 0.0057 0.0260 0.0229 0.1087

Input Image 15
V 0.9059 -0.0048 0.0310 0.0367 0.1069

H 0.9123 0.0080 0.0348 0.0292 0.1074
D 0.8759 0.0002 0.0294 0.0309 0.1036

Input Image 16
V 0.9243 -0.0153 0.0227 0.0367 0.1197
H 0.8981 -0.0139 0.0384 0.0241 0.1384
D 0.8292 0.0038 0.0281 0.0238 0.1139

71Information Technology and Control 2021/1/50

Figure 15
Correlation coefficient of test image 8 before and after encryption

diagonal), and the correlation of input image1
and the corresponding encrypted image1is
plotted in Figure 15. It is observed from the
outcomes that the regular relevance between
neighbor pixels is destroyed in the cipher image.

The encrypted image histograms are uniformely
distributed (equal probability). Therefore, the
proposed system withstands statistical attacks
well.

Figure 15
Correlation coefficient of test image 8 before and after encryption

Table 2
Experimental result of correlation coefficient

Input Image Direction Plain Image
Proposed [39] [13] [7]

Encrypted

Input Image 1
V 0.9252 0.0094 0.0318 0.0112 0.1067
H 0.9120 -0.0163 0.0321 0.0251 0.1035
D 0.8732 0.0077 0.0119 0.0148 0.1264

Input Image 2
V 0.9447 0.0015 0.0117 0.0427 0.1359
H 0.8893 0.0072 0.0124 0.0830 0.1205
D 0.8395 0.0049 0.0419 0.0375 0.0910

Input Image 3
V 0.9323 0.0053 0.0169 0.0174 0.1413
H 0.9186 0.0065 0.0596 0.0494 0.1087
D 0.8665 0.0009 0.0321 0.0526 0.1216

Input Image 4
V 0.9569 -0.0102 0.0147 0.0520 0.1407
H 0.9696 0.0013 0.0314 0.0507 0.0926
D 0.9391 0.0047 0.0238 0.0378 0.1047

Input Image 5
V 0.8982 0.0085 0.0137 0.0308 0.1187
H 0.9409 0.0062 0.0157 0.0426 0.1202
D 0.8669 0.0033 0.0154 0.0371 0.1372

Input Image 6
V 0.8504 -0.0126 0.0104 0.0350 0.1420

H 0.8845 0.0061 0.0128 0.0208 0.0934
D 0.8102 -0.0151 0.0174 0.0187 0.1380

Input Image 7
V 0.8977 0.0039 0.0283 0.0264 0.1504
H 0.9300 -0.0049 0.0413 0.0252 0.1209
D 0.8626 -0.0117 0.0396 0.0436 0.1388

Input Image 8
V 0.9355 -0.0145 0.0340 0.0285 0.1103
H 0.8898 -0.0578 0.0157 0.0307 0.1346
D 0.8599 0.0066 0.0189 0.0259 0.0137

Input Image 9 V 0.9588 0.0001 0.0478 0.0452 0.1088

Table 3
Experimental results of information entropy and PSNR

Input Image
Information Entropy PSNR

Proposed [39] [13] [7] Proposed [39] [13] [7]

Input Image 1 7.9951 7.9859 7.9129 7.1963 90.7593 87.7240 85.1858 78.4542

Input Image 2 7.9957 7.9572 7.9348 7.1302 89.0605 85.1802 86.0631 75.2094

Input Image 3 7.9953 7.9429 7.9166 7.2618 90.0980 85.7106 83.9650 73.0816

Input Image 4 7.9966 7.9803 7.9217 7.1861 91.0714 86.5430 84.3320 74.4392

Input Image 5 7.9964 7.9481 7.9311 7.3730 88.7784 87.8093 85.2373 78.1687

Input Image 6 7.9965 7.9130 7.9367 7.1958 90.1624 86.1415 85.1917 75.8356

Input Image 7 7.9963 7.9802 7.9184 7.1535 89.6496 85.2286 84.8029 73.6731

Input Image 8 7.9959 7.9390 7.9497 7.1244 91.5455 85.1171 86.0731 73.4009

Input Image 9 7.9966 7.9197 7.9321 7.1800 87.8315 84.3052 84.8531 73.1182

Input Image 10 7.9963 7.9445 7.9469 7.1437 90.0058 86.1235 85.1805 76.0615

Input Image 11 7.9956 7.9523 7.9395 7.2273 87.2155 86.1595 86.2319 79.4071

Input Image 12 7.9957 7.9266 7.9172 7.2946 88.1991 85.6475 84.7642 74.2998

Input Image 13 7.9964 7.9902 7.9580 7.1184 90.8237 84.9348 84.8271 72.3307

Input Image 14 7.9964 7.9897 7.9259 7.1417 88.2931 85.6066 84.7689 78.0649

Input Image 15 7.9960 7.9631 7.9433 7.2092 88.1732 85.1279 85.4011 76.0311

Input Image 16 7.9959 7.9518 7.9347 7.1591 89.3171 86.0527 85.1865 77.8562

Information Technology and Control 2021/1/5072

5.7. PSNR Analysis
The PSNR is an image quality index which judges the
quality of deciphered images. Mathematically, it is
calculated using Equation (13) [14],

H 0.9526 -0.0102 0.0185 0.0446 0.1419
D 0.9301 -0.0045 0.0141 0.0251 0.1060

Input Image 10
V 0.8224 0.0024 0.0346 0.0429 0.1535
H 0.7952 0.0079 0.0238 0.0281 0.1017
D 0.6776 -0.0119 0.0385 0.0307 0.1183

Input Image 11
V 0.9605 -0.0100 0.0117 0.0178 0.1609
H 0.9456 -0.0070 0.0264 0.0253 0.1392
D 0.9201 0.0057 0.0376 0.0196 0.1095

Input Image 12
V 0.9518 0.0060 0.0221 0.0281 0.1241

H 0.9524 -0.0109 0.0279 0.0355 0.1077
D 0.9178 -0.0098 0.0342 0.0393 0.0911

Input Image 13
V 0.9088 0.0015 0.0255 0.0306 0.1102
H 0.9304 0.0008 0.0139 0.0349 0.1149
D 0.9074 -0.0012 0.0236 0.0267 0.1026

Input Image 14
V 0.9580 -0.0041 0.0133 0.0254 0.1490
H 0.9375 0.0019 0.0277 0.0326 0.1270
D 0.9131 0.0057 0.0260 0.0229 0.1087

Input Image 15
V 0.9059 -0.0048 0.0310 0.0367 0.1069

H 0.9123 0.0080 0.0348 0.0292 0.1074
D 0.8759 0.0002 0.0294 0.0309 0.1036

Input Image 16
V 0.9243 -0.0153 0.0227 0.0367 0.1197
H 0.8981 -0.0139 0.0384 0.0241 0.1384
D 0.8292 0.0038 0.0281 0.0238 0.1139

5.6 Information Entropy (IE)

The metric, entropy, quantifies the randomness
in the pixel value distribution of digital images.
The standard entropy value for a true random
image is 8 [3]. IE is calculated using Equation
(12),

 𝐸𝐸𝐸𝐸(𝑠𝑠𝑠𝑠) = ∑ 𝑝𝑝𝑝𝑝(𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑔𝑔𝑔𝑔2255

𝑎𝑎𝑎𝑎=0 𝑝𝑝𝑝𝑝(𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎), (12)

where p(sa) represents the emergence probability
corresponding to sa. Table 3 shows the entropy
test results which indicate that this method has
produced random images.

5.7 PSNR Analysis

The PSNR is an image quality index which
judges the quality of deciphered images.
Mathematically, it is calculated using Equation
(13) [14],

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 10𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑔𝑔𝑔𝑔10(255

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
), (13)

wherein MSE represents the mean square error.
The obtained PSNR test outcome is displayed in
Table 3. From the results, it is concluded that the
quality of images produced by the decryption
process is good.

Table 3
Experimental results of information entropy and PSNR

Input Image Information Entropy PSNR

Proposed [39] [13] [7] Proposed [39] [13] [7]
Input Image 1 7.9951 7.9859 7.9129 7.1963 90.7593 87.7240 85.1858 78.4542
Input Image 2 7.9957 7.9572 7.9348 7.1302 89.0605 85.1802 86.0631 75.2094
Input Image 3 7.9953 7.9429 7.9166 7.2618 90.0980 85.7106 83.9650 73.0816
Input Image 4 7.9966 7.9803 7.9217 7.1861 91.0714 86.5430 84.3320 74.4392
Input Image 5 7.9964 7.9481 7.9311 7.3730 88.7784 87.8093 85.2373 78.1687
Input Image 6 7.9965 7.9130 7.9367 7.1958 90.1624 86.1415 85.1917 75.8356
Input Image 7 7.9963 7.9802 7.9184 7.1535 89.6496 85.2286 84.8029 73.6731
Input Image 8 7.9959 7.9390 7.9497 7.1244 91.5455 85.1171 86.0731 73.4009
Input Image 9 7.9966 7.9197 7.9321 7.1800 87.8315 84.3052 84.8531 73.1182

Input Image 10 7.9963 7.9445 7.9469 7.1437 90.0058 86.1235 85.1805 76.0615
Input Image 11 7.9956 7.9523 7.9395 7.2273 87.2155 86.1595 86.2319 79.4071
Input Image 12 7.9957 7.9266 7.9172 7.2946 88.1991 85.6475 84.7642 74.2998
Input Image 13 7.9964 7.9902 7.9580 7.1184 90.8237 84.9348 84.8271 72.3307
Input Image 14 7.9964 7.9897 7.9259 7.1417 88.2931 85.6066 84.7689 78.0649
Input Image 15 7.9960 7.9631 7.9433 7.2092 88.1732 85.1279 85.4011 76.0311
Input Image 16 7.9959 7.9518 7.9347 7.1591 89.3171 86.0527 85.1865 77.8562

(13)

wherein MSE represents the mean square error. The
obtained PSNR test outcome is displayed in Table 3.
From the results, it is concluded that the quality of
images produced by the decryption process is good.

Time complexity analysis
The encryption time is analyzed to estimate the com-
putation cost. To reduce the time consumption, we
have used faster exclusive-or, integer addition and
modulus operation in our proposed scheme. The en-
cryption time is presented in Table 4. As can be seen
in Table 4, the non-time consuming operations ef-
fectively accelerate the encryption process. The en-
cryption speed is faster than references [13, 15, 39].
Therefore, this scheme can be used in real-time inter-
net applications

Table 4
Computational time (unit: seconds)

Algorithms Time

Proposed Algorithm 1.01630

Karawia et al. [13] 1.72811

Li et al. [15] 1.46385

Xiaoqiang et al. [39] 2.19654

Priya [7] 1.80739

NIST Statistical Test Analysis
NIST statistical test is a very important tool to assess
the various aspects of randomness in a bit sequence
[9]. The diversity of randomness in encrypted imag-
es was tested using NIST suite SP 800-22. This suite
has 15 statistical tests. The randomness of a bit se-
quence is determined by p-value. The significant-lev-
el α = 0.02 is set to obtain p-value from 15 tests. Table
5 shows the statistical results of an encrypted image.
The results proved that the proposed scheme has
passed all the fifteen tests. Hence, the generated se-
quence is truly random.

Table 5
NIST statistical test results for encrypted image

NIST Test p-value D-R level Result Conclusion

Frequency 0.709101 2% pass random

Frequency (within a block) 0.581426 2% Pass random

Runs 0.800546 2% pass random

Longest run (once in a block) 0.354581 2% pass random

Rank (Binary matrix) 0.621956 2% pass random

FFT 0.378670 2% pass random

Non-overlapping template 0.425068 2% pass random

Overlapping template 0.259219 2% pass random

Universal 0.394625 2% pass random

Linear complexity 0.432408 2% pass random

Serial 0.565922 2% pass random

Approximate entropy 0.208502 2% pass random

Cumulative sums 0.501924 2% pass random

Random excursions 0.643127 2% pass random

Random excursions variant 0.301085 2% pass random

73Information Technology and Control 2021/1/50

6. Discussion
The performance test results produced by the pro-
posed technique is analyzed and compared here with
three peer image ciphers based on performance met-
rics like the correlation coefficient, NPCR, PSNR,
UACI and information entropy. Figure 12 depicts
flat cipher image histograms, which means that the
pixel values appear with equal probability. The total
secret key space in this technique is approximately
2622, which is remarkably high, and helps resist key-
based attacks like brute force attacks. It is obvious
from Figure 11 that the input image-based keys used
in the proposed technique are so highly sensitive that
even a small change in the keys produces a totally new
decrypted image. From the numerical results listed in
Table 2 and Figure 13, it is observed that the double
permutation nature of the proposed technique excel-
lently minimizes the correlation association among
neighbor pixels, when compared to the other two tech-
niques. The plain image sensitivity tests conducted,
with the results presented in Table 1, show that the
UACI and NPCR values obtained using the proposed
method are optimal and counter differential attacks
better than the other two methods. The PSNR image
quality metric test results displayed in Table 3 show
that the decrypted image quality is good, compared to

that offered by the two peer schemes. The double sub-
stitution process yields the best entropy values for all
the encrypted images. Overall, it is concluded that the
proposed technique performs well in all tests.

7. Conclusion
A symmetric multiple color image encryption tech-
nique has been proposed that includes cellular au-
tomata, zigzag scanning, circular shifts, chaos and
mixed-image content. This algorithm achieves two-
stage encryption by adopting a dual permutation and
dual substitution structure. The experimental out-
comes and a comparison of the findings show that the
dual permutation operation significantly minimizes
the correlation association between neighbor pixels.
The dual substitution helps produce the true random
cipher image, thereby strengthening security. The
combination of cellular automata and chaos increases
the key space of the system. Moreover, the input im-
age-based key generation method offers key sensitivity
much-needed strong security. Finally, it is concluded
that the proposed technique can be used in several ar-
eas to secure multiple color images simultaneously.

References
1. Alfalou, A., Brosseau, C., Abdallah, N., Jridi, M. Simulta-

neous Fusion Compression and Encryption of Multiple
Images. Optics Express, 2011, 19, 24023-24029. https://
doi.org/10.1364/OE.19.024023

2. Asadollahi, H., Kamarposhti, M. S., Jandaghi, E. M. Im-
age Encryption Using Cellular Automata and Arnold
Cat’s Map. Australian Journal of Basic and Applied Sci-
ence, 2011, 5, 587-593.

3. Banik, A., Shamsi, Z., Laiphrakpam, D. S. An Encryption
Scheme for Securing Multiple Medical Images. Jour-
nal of Information Security and Applications, 2019, 49.
https://doi.org/10.1016/j.jisa.2019.102398

4. Butusov, D. N., Pesterev, D. O., Tutueva, A. V., Kaplun,
D. I., Nepomucenod, E. G. New Technique to Quanti-
fy Chaotic Dynamics Based on Differences Between
Semi-Implicit Integration Schemes. Communications
in Nonlinear Science and Numerical Simulation, 2021,
92. https://doi.org/10.1016/j.cnsns.2020.105467

5. Chai, X., Fu, X., Gan, Z., Zhang, Y., Lu, Y., Chen, Y. An
Efficient Chaos-Based Image Compression and En-
cryption Scheme Using Block Compressive Sensing
and Elementary Cellular Automata. Neural Comput-
ing and Applications, 2020, 32, 4961-4988. https://doi.
org/10.1007/s00521-018-3913-3

6. Chen, X., Liu, Q., Wang, J., Wang, Q. Asymmetric En-
cryption of Multi-Image Based on Compressed Sensing
and Feature Fusion with High Quality Image Recon-
struction. Optics & Laser Technology, 2018, 107, 302-
312. https://doi.org/10.1016/j.optlastec.2018.06.016

7. Deshmukh, P. An Image Encryption and Decryption Us-
ing AES Algorithm. International Journal of Scientific
& Engineering Research, 2016, 7(2), 210-213.

8. Guo, L., Chen, J., Li, J. Chaos-Based Color Image En-
cryption and Compression Scheme Using DNA Com-
plementary Rule and Chinese Remainder Theorem.
International Computer Conference on Wavelet Active

https://doi.org/10.1364/OE.19.024023
https://doi.org/10.1364/OE.19.024023
https://doi.org/10.1016/j.jisa.2019.102398
https://doi.org/10.1016/j.cnsns.2020.105467
https://doi.org/10.1007/s00521-018-3913-3
https://doi.org/10.1007/s00521-018-3913-3
https://doi.org/10.1016/j.optlastec.2018.06.016

Information Technology and Control 2021/1/5074

Media Technology and Information Processing, 2016.
https://doi.org/10.1109/ICCWAMTIP.2016.8079839

9. Hanis, S., Amutha, R. Double Image Compression and
Encryption Scheme Using Logistic Mapped Convolu-
tion and Cellular Automata. Multimedia Tools Appli-
cations, 2018, 77, 6897-6912. https://doi.org/10.1007/
s11042-017-4606-0

10. Harikrishnan, K. P., Nandakumaran, V. M. Bifurcation
Structure and Lyapunov Exponents of a Modulated
Logistic Map. Pramana-J. Phys, 1987, 29(6), 533-542.
https://doi.org/10.1007/BF02845834

11. Jeyaram, B., Radha, R., Raghavan, R. New Cellular
Automata‐Based Image Cryptosystem and a Novel
Non-Parametric Pixel Randomness Test. Security and
Communication Network, 2016, 9, 3365-3377. https://
doi.org/10.1002/sec.1542

12. Jin, J. An Image Encryption Based on Elementary
Cellular Automata. Optics and Lasers in Engineering,
2012, 50, 1836-1843. https://doi.org/10.1016/j.optlas-
eng.2012.06.002

13. Karawia, A. A. Encryption Algorithm of Multiple-Image
Using Mixed Image Elements and Two Dimensional
Chaotic Economic Map. Entropy, 2018, 20. https://doi.
org/10.3390/e20100801

14. Li, H., Wang, Y., Yan, H., Li, L., Li, Q., Zhao, X. Dou-
ble-Image Encryption by Using Chaos-Based Local
Pixel Scrambling Technique and Gyrator Transform.
Optics and Lasers in Engineering, 2013, 51, 1327-1331.
https://doi.org/10.1016/j.optlaseng.2013.05.011

15. Li, J., Liu, H. Colour Image Encryption Based on
Advanced Encryption Standard Algorithm with
Two-Dimensional Chaotic Map. IET Information Se-
curity, 2013, 7(4), 265-270. https://doi.org/10.1049/iet-
ifs.2012.0304

16. Liu, H., Kadir, A., Sun, X., Li, Y. Chaos Based Adaptive
Double-Image Encryption Scheme Using Hash Func-
tion and S-Boxes. Multimedia Tools Applications, 2018,
77, 1391-1407. https://doi.org/10.1007/s11042-016-
4288-z

17. Liu, X., Mei, W., Du, H. Simultaneous Image Com-
pression Fusion and Encryption Algorithm Based on
Compressive Sensing and Chaos. Optics Communica-
tions, 2016, 366, 22-32. https://doi.org/10.1016/j.opt-
com.2015.12.024

18. Matthews, R. On the Derivation of a Chaotic Encryp-
tion Algorithm. Cryptologia, 1989, 13, 29-42. https://doi.
org/10.1080/0161-118991863745

19. Mondal, B., Singh, S., Kumar, P. A Secure Image En-

cryption Scheme Based on Cellular Automata and
Chaotic Skew Tent Map. Journal of Information Se-
curity and Applications, 2019, 45, 117-130. https://doi.
org/10.1016/j.jisa.2019.01.010

20. Patro, K. A. K., Soni, A., Netam, P. K., Acharya, B. Mul-
tiple Grayscale Image Encryption Using Cross-Cou-
pled Chaotic Maps. Journal of Information Security
and Applications, 2020, 52. https://doi.org/10.1016/j.
jisa.2020.102470

21. Perales, J. C. M. Color Image Encryption by Cellular Au-
tomata. Contemporary Engineering Sciences, 2015, 8,
1693-1701.https://doi.org/10.12988/ces.2015.510285

22. Ramasamy, P., Ranganathan, V., Kadry, S., Damaševiči-
us, R., Blažauskas, T. An Image Encryption Scheme
Based on Block Scrambling, Modified Zigzag Trans-
formation and Key Generation Using Enhanced Lo-
gistic-Tent Map. Entropy, 2019, 21(7). https://doi.
org/10.3390/e21070656

23. Sano, M., Sawada, Y. Measurement of the Lyapunov
Spectrum from a Chaotic Time Series. Physical Review
Letters, 1985, 55. https://doi.org/10.1103/PhysRev-
Lett.55.1082

24. Sawlikar, A. P. An Efficient Double Image Compression
and Encryption Technique. International Journal of
Mechanical Engineering and Technology, 2018, 9(7),
1555-1563.

25. Sui, L., Lu, H., Wang, Z., Sun, Q. Double-Image Encryp-
tion Using Discrete Fractional Random Transform
and Logistic Maps. Optics and Lasers in Engineer-
ing, 2014, 56, 1-12. https://doi.org/10.1016/j.optlas-
eng.2013.12.001

26. Sui, L., Duan, K., Liang, J. Double-Image Encryption
Based On Discrete Multiple-Parameter Fractional An-
gular Transform And Two-Coupled Logistic Maps. Op-
tics Communications, 2015, 343, 140-149. https://doi.
org/10.1016/j.optcom.2015.01.021

27. Tsafack, N., Kengne, J., Abd-El-Atty, B., Iliyasu, A. M.,
Hirota, K., Abd EL-Latif, A. A. Design and Implemen-
tation of A Simple Dynamical 4-D Chaotic Circuit
with Applications in Image Encryption. Information
Sciences, 2020, 515, 191-217. https://doi.org/10.1016/j.
ins.2019.10.070

28. Tsuchiya, T., Yamagishi, D. The Complete Bifurcation
Diagram for the Logistic Map. Zeitschrift für Naturfor-
schung, 1997, 52, 513-516. https://doi.org/10.1515/zna-
1997-6-708

29. Tutueva, A. V., Nepomuceno, E. G., Karimov, A. I., An-
dreev, V. S., Butusov, D. N. Adaptive Chaotic Maps and

https://doi.org/10.1109/ICCWAMTIP.2016.8079839
https://doi.org/10.1007/s11042-017-4606-0
https://doi.org/10.1007/s11042-017-4606-0
https://doi.org/10.1007/BF02845834
https://doi.org/10.1002/sec.1542
https://doi.org/10.1002/sec.1542
https://doi.org/10.1016/j.optlaseng.2012.06.002
https://doi.org/10.1016/j.optlaseng.2012.06.002
https://doi.org/10.3390/e20100801
https://doi.org/10.3390/e20100801
https://doi.org/10.1016/j.optlaseng.2013.05.011
https://doi.org/10.1049/iet-ifs.2012.0304
https://doi.org/10.1049/iet-ifs.2012.0304
https://doi.org/10.1007/s11042-016-4288-z
https://doi.org/10.1007/s11042-016-4288-z
https://doi.org/10.1016/j.optcom.2015.12.024
https://doi.org/10.1016/j.optcom.2015.12.024
https://doi.org/10.1080/0161-118991863745
https://doi.org/10.1080/0161-118991863745
https://doi.org/10.1016/j.jisa.2019.01.010
https://doi.org/10.1016/j.jisa.2019.01.010
https://doi.org/10.1016/j.jisa.2020.102470
https://doi.org/10.1016/j.jisa.2020.102470
https://doi.org/10.12988/ces.2015.510285
https://doi.org/10.3390/e21070656
https://doi.org/10.3390/e21070656
https://doi.org/10.1103/PhysRevLett.55.1082
https://doi.org/10.1103/PhysRevLett.55.1082
https://doi.org/10.1016/j.optlaseng.2013.12.001
https://doi.org/10.1016/j.optlaseng.2013.12.001
https://doi.org/10.1016/j.optcom.2015.01.021
https://doi.org/10.1016/j.optcom.2015.01.021
https://doi.org/10.1016/j.ins.2019.10.070
https://doi.org/10.1016/j.ins.2019.10.070
https://doi.org/10.1515/zna-1997-6-708
https://doi.org/10.1515/zna-1997-6-708

75Information Technology and Control 2021/1/50

Their Application to Pseudo-Random Numbers Gener-
ation. Chaos, Solitons & Fractals, 2020, 133. https://doi.
org/10.1016/j.chaos.2020.109615

30. Tutueva, A. V., Karimov, A. I., Moysis, L., Volos, C., Bu-
tusov, D. N. Construction of One-Way Hash Functions
with Increased Key Space Using Adaptive Chaotic
Maps. Chaos, Solitons & Fractals, 2020, 141. https://doi.
org/10.1016/j.chaos.2020.110344

31. Wang, X., Luo, C. Bifurcation and Fractal of The Coupled
Logistic Map. International Journal of Modern Phys-
ics, 2008, 22(24), 4275-4290. https://doi.org/10.1142/
S0217979208038971

32. Wang, X., Zhang, Y., Zhao, Y. A Novel Image Encryption
Scheme Based on 2-D Logistic Map and DNA Sequence
Operations. Nonlinear Dynamics, 2015, 82, 1269-1280.
https://doi.org/10.1007/s11071-015-2234-7

33. Wang, X., Gu, S., Zhang, Y. Novel Image Encryption
Algorithm Based on Cycle Shift and Chaotic System.
Optics and Lasers in Engineering, 2015, 68, 126-134.
https://doi.org/10.1016/j.optlaseng.2014.12.025

34. Wolfram, S. Computation Theory of Cellular Automata.
Communications in Mathematical Physics, 1984, 96),
15-57. https://doi.org/10.1007/BF01217347

35. Wu, Y., Noonan, J., Agaian, S. NPCR and UACI Ran-
domness Tests for Image Encryption. Cyber Journals:
Multidisciplinary Journals in Science and Technolo-
gy, Journal of Selected Areas in Telecommunications
(JSAT), 2011.

36. Xiong, Y., Quan, C., Tay, C. J. Multiple Image Encryp-
tion Scheme Based on Pixel Exchange Operation and
Vector Decomposition. Optics and Lasers in Engineer-
ing, 2018, 101, 113-121. https://doi.org/10.1016/j.optlas-
eng.2017.10.010

37. Zhang, L., Zhou, Y., Huo, D., Li, J., Zhou, X. Multiple-Im-
age Encryption Based on Double Random Phase Encod-
ing and Compressive Sensing by Using A Measurement
Array Preprocessed with Orthogonal-Basis Matrices.
Optics & Laser Technology, 2018, 105, 162-170. https://
doi.org/10.1016/j.optlastec.2018.03.004

38. Zhang, X., Wang, X. Multiple-Image Encryption Al-
gorithm Based on Mixed Image Element and Chaos.
Computers & Electrical Engineering, 2017, 62, 401-413.
https://doi.org/10.1016/j.compeleceng.2016.12.025

39. Zhang, X., Wang, X. Multiple-Image Encryption Algo-
rithm Based On Mixed Image Element and Permuta-
tion. Optics and Lasers in Engineering, 2017, 92, 6-16.
https://doi.org/10.1016/j.optlaseng.2016.12.005

40. Zhang, X., Wang, X. Multiple-Image Encryption Algo-
rithm Based on the 3D Permutation Model and Chaotic
System. Symmetry, 2018, 10.https://doi.org/10.3390/
sym10110660

41. Zhang, X., Wang, W., Zhong, S., Yao, Q. Image Encryp-
tion Scheme Based on Balanced Two-Dimensional Cel-
lular Automata. Mathematical Problems in Engineer-
ing, 2013. https://doi.org/10.1155/2013/562768

42. Zhong, Z., Chang, J., Shan, M., Hao, B. Double Image En-
cryption Using Double Pixel Scrambling and Random
Phase Encoding, Optics Communications, 2012, 285,
584-588. https://doi.org/10.1016/j.optcom.2011.11.025

43. Zhou, N., Yang, J., Tan, C., Pan, S., Zhou, Z. Double-Im-
age Encryption Scheme Combining DWT-Based Com-
pressive Sensing with Discrete Fractional Random
Transform. Optics Communications, 2015, 354, 112-
121. https://doi.org/10.1016/j.optcom.2015.05.043

44. Zhou, N., Jiang, H., Gong, L., Xie, X. Double-Image
Compression and Encryption Algorithm Based on Co-
Sparse Representation and Random Pixel Exchanging.
Optics and Lasers in Engineering, 2018, 110, 72-79.
https://doi.org/10.1016/j.optlaseng.2018.05.014

45. Zhou, S., Wang, B., Zheng, X., Zhou, C. An Image Encryp-
tion Scheme Based on DNA Computing and Cellular
Automata. Discrete Dynamics in Nature and Society,
2016. https://doi.org/10.1155/2016/5408529

46. Zhu, L., Song, H., Zhang, X., Yan, M., Zhang, L., Yan, T.
A Novel Image Encryption Scheme Based on Nonuni-
form Sampling in Block Compressive Sensing. IEEE
Access, 2019, 7, 22161-22174.https://doi.org/10.1109/
ACCESS.2019.2897721

This article is an Open Access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.chaos.2020.109615
https://doi.org/10.1016/j.chaos.2020.109615
https://doi.org/10.1016/j.chaos.2020.110344
https://doi.org/10.1016/j.chaos.2020.110344
https://doi.org/10.1142/S0217979208038971
https://doi.org/10.1142/S0217979208038971
https://doi.org/10.1007/s11071-015-2234-7
https://doi.org/10.1016/j.optlaseng.2014.12.025
https://doi.org/10.1007/BF01217347
https://doi.org/10.1016/j.optlaseng.2017.10.010
https://doi.org/10.1016/j.optlaseng.2017.10.010
https://doi.org/10.1016/j.optlastec.2018.03.004
https://doi.org/10.1016/j.optlastec.2018.03.004
https://doi.org/10.1016/j.compeleceng.2016.12.025
https://doi.org/10.1016/j.optlaseng.2016.12.005
https://doi.org/10.3390/sym10110660
https://doi.org/10.3390/sym10110660
https://doi.org/10.1155/2013/562768
https://doi.org/10.1016/j.optcom.2011.11.025
https://doi.org/10.1016/j.optcom.2015.05.043
https://doi.org/10.1016/j.optlaseng.2018.05.014
https://doi.org/10.1155/2016/5408529
https://doi.org/10.1109/ACCESS.2019.2897721
https://doi.org/10.1109/ACCESS.2019.2897721

