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Modeling human behavior patterns for detecting the abnormal event has become an important domain in re-
cent years. A lot of efforts have been made for building smart video surveillance systems with the purpose of 
scene analysis and making correct semantic inference from the video moving target. Current approaches have 
transferred from rule-based to statistical-based methods with the need of efficient recognition of high-level 
activities. This paper presented not only an update expanding previous related researches, but also a study cov-
ered the behavior representation and the event modeling. Especially, we provided a new perspective for event 
modeling which divided the methods into the following subcategories: modeling normal event, prediction 
model, query model and deep hybrid model. Finally, we exhibited the available datasets and popular evaluation 
schemes used for abnormal behavior detection in intelligent video surveillance. More researches will promote 
the development of abnormal human behavior detection, e.g. deep generative network, weakly-supervised. It is 
obviously encouraged and dictated by applications of supervising and monitoring in private and public space. 
The main purpose of this paper is to widely recognize recent available methods and represent the literature in 
a way of that brings key challenges into notice.
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1. Introduction
In modern intelligent video surveillance systems, the 
researches mainly focus on: abnormal detection, vir-
tual reality and video stitching [8, 100, 102], in which 
the abnormal detection has an important application 
scenarios and it has raised much attention within the 
past twenty years [9, 82]. Abnormal detection in video 
is vital to ensure security in both internal spaces with 
the outside (e.g. campus, waiting halls and shopping 
malls). With the numbers of cameras have been wide-
ly installed, the task of supervising multiple monitors 
by security staff becomes much more difficult as the 
human decreased concentration and fatigue. In addi-
tion, abnormal events are extremely rare and infre-
quent that makes the supervision task more difficult 
and challenging.
Anomaly detection in video processes the parse tem-
poral sequences of object observations to generate 
high-level descriptions of agent actions and multi-
agent interactions. Detecting abnormality events re-
quire building the complex visual patterns, and some 
patterns can be learned with the long-term temporal 
relationship and causal inference [79]. In fact, some 
previous reviews of intelligent video surveillance sys-
tems have been published on the subject of abnormal 
detection [14, 130]. Our survey is relevant but differ-
ences reflect in many ways from them. For example, 
[130] carried out an impressive broad survey on dis-
cussion of the creation of intelligent distributed auto-
mated surveillance systems. However, these surveys 
only focus on one perspective of anomaly detection, 
which are not detailed or systematic enough. Further-
more, with the development of anomaly detection in 
video surveillance in recent years, the deep generative 
models which include the variational auto-encoder 
(VAE) [69], generative adversarial networks (GANs) 
[49] and other methods has become an important do-
main. It is necessary to obtain more detailed analysis. 
We summarize our main contributions as follows:
1 Most of the existing studies either focus on a par-

ticular application domain or specific contexts of 
human activity [2, 28]. Our work aims to provide a 
comprehensive outline of the advance researches 
in abnormal human behavior detection as well as 
several applications these techniques are used.

2 Recently, a lot of novel methods for detecting abnor-
mal behavior in videos with excellent performance 

(e.g. deep learning [60, 136]) have been provided. 
We survey these researches and classify them into 
organized framework for better understanding and 
facilitating the reader to view and retrieve the text. 

Our work presents an extensive and structured re-
view of anomaly detection technology in video sur-
veillance. This review is structured in five sections. 
In Section 2, the definition of anomalies in videos 
and related surveys are presented. Section 3 and its 
subsections illustrate the representative approaches. 
In Section 4, the popular datasets and performance 
evaluation of previous works are provided. Finally, 
the conclusions and comments for further research 
are presented in Section 5.

2. Definition and Related Surveys
2.1. Definition
Anomalies are also known as abnormalities, discor-
dants or outliers in the data mining and statistics 
subject. With the difference of the nature of input 
data (e.g. sequential data: video, voice and protein 
sequences. non-sequential data: images, age and oth-
er data), it has been used for diverse set of tasks (e.g. 
video surveillance, image analysis, healthcare, sensor 
networks). However, the anomalies in video surveil-
lance are a little different than the way of data min-
ing and statistics research, which the anomalies in 
video surveillance needs to take into account the sur-
rounding environment and inference about the type 
of event in a scene. For example, while it is “normal” 
to people to walk across a pedestrian walkway during 
the traffic lights is green, such type of motion activity 
is viewed as “abnormal” when the traffic lights change 
to red. Essentially, it needs to provide high semantic 
level information, which involves specific context, 
scenes and temporal-spatial information [126, 132]. 
Abnormal behavior detection can be view as a kind 
of high-level operation of image processing, in which 
the logical information is extracted from input video 
data. Fig. 1 shows some different kinds of anomalies 
in various contexts.
Given this backdrop, the definition of an abnormal event 
in [147] presented the abnormal as deviating from the 
normal model. Valantinas et al. [112] defined as events 
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that were unusual and signify irregular behavior. To 
date, there is no universally accepted definition for ab-
normal event detection. Among many studies, abnormal 
behavior can be classified into the following categories:
1 One or more behaviors that are explicitly specified. 

Such as designating falls as abnormal behavior [68].
2 Abnormal events that deviate qualitatively from 

what is considered to be normal. Such as only 
walking is normal in a scene, the running, falling or 
loitering is regarded as anomaly [29, 152].

3 The events happen with a low frequency (probabil-
ity). Namely they are nature rare, unexpected, or 
out-of-the-ordinary [46, 70].

4 The change of posterior probability is higher. The 
observer will have a priori prediction of the future 
development for a new event after the relevant ev-
idence or background is taken into account. The 
event is regarded as anomaly if there is a biase form 
the priori prediction [121].

2.2. Related Surveys
Video surveillance, which contains capturing and 
processing visual data from a scene, to detect objects 
along time and location for the purpose of cognizing 
interesting situations, has been attracted more re-
search attention. Several previous surveys and confer-
ences were published (See Table 1). The frequency of 
publications in the topic of anomaly detection in video 
(Timespan: 2000.1-2020.9) is shown in Fig. 2. There 
are lots of studies explain how such technologies can 
help in social security concerns and monitor of public 
places. Some surveys have emphasized deep learning 
based methods [19, 71, 107]. For example, Ben et al. 

Figure 1 
Examples of anomaly event in various contexts
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anomaly [29, 152]. 
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Table 1
Key point of previous related surveys

References Main focus

[56] Visual surveillance in dynamic behavior

[73] Behavior analysis

[75] Video event understanding

[103] Action classification

[66] Human activity recognition

[26] Deep learning, video feature representation

[5, 47] Deep learning, human activity recognition

[16] Fixed and moving cameras

[98, 99] Human behavior detection

[14] did a comprehensive review of abnormal behavior 
recognition, similar to ours, which were grouped into 
the behavior representation and the behavior model-
ing. The methods in crowd surveillance videos were 
surveyed in [2]. Some of the reviews represented prob-
lem- or application-specific work, e.g., fixed and mov-
ing cameras [16], 2D and 3D approaches [30], compo-
nents of a surveillance system [129], spatio-temporal 
interest point [80]. We provide a complete overview 
of state-of-the-art human behavior detection surveys. 
Although a lot of works reviewed in abnormal behavior 
detection for intelligent video surveillance, there were 
shortages of comprehensive outline of the advance 
researches. For instance many researches focus on a 
particular application domain, e.g. dynamic behavior 
[56], crowded scence [2], deep learning [26] and so on. 
However, those methods with spatio-temporal inter-
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est point or contextual information are insufficient to 
describe and detection ongoing human activities with 
complex structures. In this review, we concentrate on 
high-level activity recognition methodologies designed 
for the analysis of abnormal human behavior detection 
and discuss recent research trends in activity recogni-
tion. We wish that our survey bridges this gap.
We use a more detailed taxonomy and compared 
each approach category. For example, differences be-
tween handcrafted features approaches and learned 
features approaches are discussed in our review. We 
compare the abilities of event modeling and detection 
methods within each class as well, pointing out what 
they are advantages and disadvantages. Furthermore, 
we discuss the public datasets used by the systems, 
and compare the different evaluation metrics and 
performance on the datasets which some previous re-
views have not focused on.

Figure 2
Frequency of publications in the topic of anomaly detection in video (the source is Web of Science, timespan: 2000.1-2020.9.)
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account. The event is regarded as anomaly if 
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2.2. Related Surveys 

Video surveillance, which contains capturing and 
processing visual data from a scene, to detect 
objects along time and location for the purpose of 
cognizing interesting situations, has been attracted 
more research attention. Several previous surveys 
and conferences were published (See Table 1). The 
frequency of publications in the topic of anomaly 
detection in video (Timespan: 2000.1-2020.9) is 
shown in Fig. 2. There are lots of studies explain 
how such technologies can help in social security 
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surveys have emphasized deep learning based 
methods [19, 71, 107]. For example, Ben et al. [14] 
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into the behavior representation and the behavior 
modeling. The methods in crowd surveillance 
videos were surveyed in [2]. Some of the reviews 
represented problem- or application-specific work, 
e.g., fixed and moving cameras [16], 2D and 3D 
approaches [30], components of a surveillance 
system [129], spatio-temporal interest point [80]. 
We provide a complete overview of state-of-the-art 
human behavior detection surveys.  

Table 1 

Key point of previous related surveys 

References Main focus 

[56] 
Visual surveillance in dynamic 
behavior 

[73] Behavior analysis 
[75] Video event understanding 
[103] Action classification 
[66] Human activity recognition 

[26] 
Deep learning, video feature 
representation 

[5, 47] Deep learning, human activity 
recognition 

[16] Fixed and moving cameras 
[98, 99] Human behavior detection 
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compare the different evaluation metrics and 
performance on the datasets which some 
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The former is used to obtain the information 
description of target scene. For the latter, 
different from other surveys, we tackle the 
existing modeling approaches with four 
different categories. It is the key point that we 
will explain here. It is organized by following 
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3.1. Feature Extraction and Quantization 

The central issue in feature extraction and 
quantization level is extracting effective and 
discriminatory features to match the volumes, 
trajectories or other forms. Moreover, these 
features should be invariant to transformation, 
rotation, illumination, etc. [5]. According to the 
multifarious methods of feature selection, it ranges 
from handcrafted features and learned features. 
Handcrafted features imitate the quality of human 
vision, which are used to distinguish sensitivity 
between interested and non-interested areas in 
vision. In general, handcrafted features contain 
specific physical meaning [145]. For example, 
scale-invariant feature transform (SIFT) and 
histogram of oriented gradient (HOG) could reflect 
the motion variation and shape information of 
images respectively [155]. Furthermore, a frame is 
2-D data formulated by projecting a 3-D real world 
scenario, and it covers spatial information (e.g., 
shapes and locations) of video objects. A video is a 
sequence of the corresponding 2-D frames placed 
in a timed sequence. In order to better adapt to the 
high dimensional characteristics of video data, 
scholars have extended it to the 3-D scale, i.e. 3-D 
SIFT and 3-D HOG. Learned features (e.g. deep 
learning) are a set of techniques that allow the 
detection systems automatically discover the 
representations needed for detection or 
classification task from raw data [157]. Most of 
them combine multiple features to enhance the 
effects of the feature extraction. Interested 
application areas in [8], it integrated the Moravec 
corner point detection and the scale-invariant 
feature transform (SIFT) feature extractor. Deep 
learning and spiking neural networks are excellent 
methods in machine learning fields and so on. Wu 
et al. [145] proposed a fast sparse coding network, 
and the two-stream neural network was used to 
extract spatial-temporal fusion features (STFF). 
Spatial-temporal approaches are those that 
represent features by analyzing the space-time 
volumes of video data. The most common strategy 
is constructing a model 3-D space-time volume 
representing the information on the videos. The 

most commonly used features for behavior 
representation are presented in Table 2. 

Table 2 

Popular features for feature quantization 

References Feature types Comments 
[139, 157] Optical flow 

Handcrafted 
features 

[40] SIFT 
[81] HOF 
[62] Social force 
[110] HOG 
[50, 150] N-Grams 
[146, 149] Spatial-temporal 

Learned 
features 

[118] GAN 
[39, 152] Auto-encoder 

3.2. Event Modeling and Detection  

With the development of abnormal detection 
research, the methods of event modeling and 
detection have transferred from rule-based to 
statistical-based [160]. The rule-based 
methods are used to assign certain behaviors 
or building model as abnormal. It can be 
quite valid in situations where normal 
behaviours are well-defined and constrained. 
However, in real world video data, the 
number of different normal behaviors 
category can easily surpass what are 
considered as suspicious [23]. Statistical 
based methods are sufficient for learning the 
statistical properties of behavior pattern and 
they are in favor of describing suspicion 
events. Hence, the statistical-based methods 
are preferred in our research. Fast and 
accurate abnormal event detection is greatly 
valuable in a large number of scenarios. The 
core is recognizing the type of behavior 
performance by the target in video. 
Accordingly, we devide the event modeling 
and detection approaches into several 
categories: modeling normal event, prediction 
model, query model, and deep hybrid model. 
The details are described as follows. 

i) Modeling Normal Event 

In anomaly detection, the idea of event 
modeling for normal training dataset is a 
generally adopted device. At this phase, 
extracting features of training dataset from 
normal events are used to build a normal 
event model, which scholars deal with it as a 
pattern learning problem [117]. Specifically, 
finding comfortable matches with priori 
behavior pattern (template), or learning 
statistical models of the behaviors in video. 
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features to match the volumes, trajectories or other 
forms. Moreover, these features should be invariant 
to transformation, rotation, illumination, etc. [5]. 
According to the multifarious methods of feature 
selection, it ranges from handcrafted features and 
learned features. Handcrafted features imitate the 
quality of human vision, which are used to distin-
guish sensitivity between interested and non-inter-
ested areas in vision. In general, handcrafted fea-
tures contain specific physical meaning [145]. For 
example, scale-invariant feature transform (SIFT) 
and histogram of oriented gradient (HOG) could re-
flect the motion variation and shape information of 
images respectively [155]. Furthermore, a frame is 
2-D data formulated by projecting a 3-D real world 
scenario, and it covers spatial information (e.g., 
shapes and locations) of video objects. A video is a 
sequence of the corresponding 2-D frames placed in 
a timed sequence. In order to better adapt to the high 
dimensional characteristics of video data, scholars 
have extended it to the 3-D scale, i.e. 3-D SIFT and 
3-D HOG. Learned features (e.g. deep learning) are 
a set of techniques that allow the detection systems 
automatically discover the representations needed 
for detection or classification task from raw data 
[157]. Most of them combine multiple features to 
enhance the effects of the feature extraction. Inter-
ested application areas in [8], it integrated the Mora-
vec corner point detection and the scale-invariant 
feature transform (SIFT) feature extractor. Deep 
learning and spiking neural networks are excellent 
methods in machine learning fields and so on. Wu 

Table 2
Popular features for feature quantization

References Feature types Comments

[139, 157] Optical flow

Handcrafted 
features

[40] SIFT

[81] HOF

[62] Social force

[110] HOG

[50, 150] N-Grams

[146, 149] Spatial-temporal
Learned 
features[118] GAN

[39, 152] Auto-encoder

et al. [145] proposed a fast sparse coding network, 
and the two-stream neural network was used to ex-
tract spatial-temporal fusion features (STFF). Spa-
tial-temporal approaches are those that represent 
features by analyzing the space-time volumes of vid-
eo data. The most common strategy is constructing 
a model 3-D space-time volume representing the in-
formation on the videos. The most commonly used 
features for behavior representation are presented 
in Table 2.

3.2. Event Modeling and Detection 
With the development of abnormal detection re-
search, the methods of event modeling and detec-
tion have transferred from rule-based to statisti-
cal-based [160]. The rule-based methods are used to 
assign certain behaviors or building model as abnor-
mal. It can be quite valid in situations where normal 
behaviours are well-defined and constrained. How-
ever, in real world video data, the number of different 
normal behaviors category can easily surpass what 
are considered as suspicious [23]. Statistical based 
methods are sufficient for learning the statistical 
properties of behavior pattern and they are in favor 
of describing suspicion events. Hence, the statis-
tical-based methods are preferred in our research. 
Fast and accurate abnormal event detection is great-
ly valuable in a large number of scenarios. The core 
is recognizing the type of behavior performance by 
the target in video. Accordingly, we devide the event 
modeling and detection approaches into several cat-
egories: modeling normal event, prediction model, 
query model, and deep hybrid model. The details are 
described as follows.
1 Modeling Normal Event
In anomaly detection, the idea of event modeling for 
normal training dataset is a generally adopted device. 
At this phase, extracting features of training dataset 
from normal events are used to build a normal event 
model, which scholars deal with it as a pattern learn-
ing problem [117]. Specifically, finding comfortable 
matches with priori behavior pattern (template), or 
learning statistical models of the behaviors in vid-
eo. The sketch of common modeling normal event 
scheme is shown in Fig. 4. Those methods can be 
categorized into reconstruction-, domain- probabi-
listic- and distance-based methods. Some excellent 
algorithms are presented in Table 3.
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 _ Reconstruction-based.    Reconstruction-based 
methods are used to compute the deviation between 
the test data and the normal patterns which are 
similar outlier detection problem [18]. Calculating 
the deviation of a behavior pattern from the other 
could be done in different ways [146]. For example, 
Li et al. [79] used a joint feature representation, 
and a hierarchy of mixture of dynamic textures 
models. Results show that the method achieves the 
anticipated goal when compared with the state-

Figure 4
The sketch of common modeling normal event in video 
sequences

Table 3
The common methods in modeling normal event

Ref. Description Comments

[79] Hierarchy of MDT models

Reconstruction-[35] Discrete cosine transform

[161] Non-negative matrix factorization

[72] A taxonomy of domain anomalies

Domain-[120] Graph kernel SVM

[139] Nonlinear one-class SVM

[55] Bayesian hierarchical method

Probabilistic-[113] Entropy approach

[157] Motion-field shape description

[119] Group motion features
Distance-

[22] Clustering-driven deep AE
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_ Reconstruction-based. Reconstruction-based 
methods are used to compute the deviation 
between the test data and the normal patterns 
which are similar outlier detection problem [18]. 
Calculating the deviation of a behavior pattern 
from the other could be done in different ways 
[146]. For example, Li et al. [79] used a joint feature 
representation, and a hierarchy of mixture of 
dynamic textures models. Results show that the 
method achieves the anticipated goal when 
compared with the state-of-the art. For the sudden 
illumination changes, Cermeno et al. [18] matched 
the label scenes with previously learned examples. 
Several previous works are focused on finding a 
group of basis to represent normal data and 
recognize data with high reconstruction error, e.g., 

sparse coding [64, 74], auto-encoder (AE) [63]. 
Specifically, sparse coding methods, for an 
input video data X={x1, x2, ..., xn}, and the 
over-completed dictionary D∈Rd × k are 
constructed using the normal data, where d ≪ 
k, k is the basis number of dictionary. The 
optimization function is  

1

2

,
min || || || ||F MD A

X DA Aλ− + ,                               (1) 

where A={a1, a2, …, am}∈Rd × k is the sparse 
representation of X. We can use the sparse 
linear combination of the basis in dictionary 
D to reconstruction the test data y∈Rd 

2
2 1

1arg min || || || ||
2

a y Da aλ∗ = − +  ,                   (2) 

where a*∈Rd is the reconstruction weights of 
data y, and the cost of the reconstruction 
coefficient y is  

2
2 1

1 || * || || * ||
2

SRC y Da aλ= − +  .                       (3) 

Sparse coding are mainly divided into fixed 
base dictionary (e.g. wavelets, the discrete 
cosine transform, DCT [35]) and learning 
dictionary (e.g. generalized principal 
component analysis (PCA); the method of 
optimal directions (MOD) [37]; and K-
singular value decomposition (K-SVD) [64]. 
The method with fixed base dictionary cannot 
be the best match by analyzing the structure 
features of images, so the noise conditions are 
difficult to extract features effectively. The 
latter can generate different dictionaries for 
different types of signals and it has strong 
adaptive ability. Li et al. [78] introduced a 
trajectory sparse reconstruction analysis 
(SRA). The defect of this method is that the 
detection performance influenced by the 
control point parameter. Luo et al. [86] built a 
temporally coherent sparse coding method. 
However, the dictionary is trained with only 
normal events and it is generally over-
complete, which cannot ensure the 
expectation. 

Thanks to deep learning methods, recent 
researches are able to make the best of large-
scale datasets and powerful computing 
resource. Deep auto-encoder (AE) is widely 
used for training encoding-decoding neural 
networks by minimizing the reconstruction 
errors [85, 142]. For an input dx R∈  and the 
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Sparse coding are mainly divided into fixed 
base dictionary (e.g. wavelets, the discrete 
cosine transform, DCT [35]) and learning 
dictionary (e.g. generalized principal 
component analysis (PCA); the method of 
optimal directions (MOD) [37]; and K-
singular value decomposition (K-SVD) [64]. 
The method with fixed base dictionary cannot 
be the best match by analyzing the structure 
features of images, so the noise conditions are 
difficult to extract features effectively. The 
latter can generate different dictionaries for 
different types of signals and it has strong 
adaptive ability. Li et al. [78] introduced a 
trajectory sparse reconstruction analysis 
(SRA). The defect of this method is that the 
detection performance influenced by the 
control point parameter. Luo et al. [86] built a 
temporally coherent sparse coding method. 
However, the dictionary is trained with only 
normal events and it is generally over-
complete, which cannot ensure the 
expectation. 

Thanks to deep learning methods, recent 
researches are able to make the best of large-
scale datasets and powerful computing 
resource. Deep auto-encoder (AE) is widely 
used for training encoding-decoding neural 
networks by minimizing the reconstruction 
errors [85, 142]. For an input dx R∈  and the 
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fectively. The latter can generate different dictio-
naries for different types of signals and it has strong 
adaptive ability. Li et al. [78] introduced a trajectory 
sparse reconstruction analysis (SRA). The defect of 
this method is that the detection performance influ-
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built a temporally coherent sparse coding method. 
However, the dictionary is trained with only normal 
events and it is generally over-complete, which can-
not ensure the expectation.
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Thanks to deep learning methods, recent researches 
are able to make the best of large-scale datasets and 
powerful computing resource. Deep auto-encoder 
(AE) is widely used for training encoding-decoding 
neural networks by minimizing the reconstruction 
errors [85, 142]. For an input xÎRd and the corre-
sponding output yi, it is usually trained to reconstruct 
the training model at the output of the network and to 
minimize the reconstruction error e 
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However, it ignored the additional constraints and 
the mapping is the identity [48, 51]. Some works 
used the denoising AEs to circumvent such 
limitation [136, 94]. They also use deep 
architectures to learn a compressed representation 
for the training data, by reducing the number of 
hidden units [60]. Such operation may ignore the 
2-D structure in videos and the features result in 
redundancy in the parameters of the network. To 
cope with this issue, convolutional AE (CAE) 
architecture is proposed which the weights are 
communion among all spatial position in the input 
[95]. The loss function is shown as: 
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where λ is the parameter for the regularization 
term 2
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Other relates works are proposed with the 3-D 
information to analysis both temporal and 
spatiotemporal irregularities in videos [152]. Wang 
et al. [142] combined deep AE network with 3-D 
CNN to model the spatio-temporal information in 
videos. Most of the AEs based researches was built 
to train the spatiotemporal representation in 
videos [114]. However, spatiotemporal 
irregularities are difficult to analysis in the video 
frames, as they are commonly not properly 
defined and do not occur frequently in videos. 
Khan et al. [68] used an adversarial learning 
framework which contained the spatio-temporal 
AE and spatio-temporal convolution network. Yan 
et al. [153] worked on a two-stream recurrent VAE 
and each stream could achieve modeling the 
probabilistic distribution of the normal samples by 
the recurrent VAE. However, it failed in pixel-level 
detection scheme. Deep learning-based methods 
make a breakthrough in anomaly detection by 
employing deep features in reconstruction. Song et 
al. [124], the authors introduced an AE combine 
with attention model to build normal patterns. For 
solving the video sequences containing images that 
were never seen before, Slavic et al. [123] 
introduced a VAE in videos. However, it is hard to 
assure the anomaly data with a larger 
reconstruction error because of the strong 
extensive ability of neural networks. Suppose the 
novel behaviors as anomaly is probably one-sided 
for practical surveillance applications. Such as the 

campus scene, riding a bike is novel behavior 
since it has not appeared in normal model. 
However, it should not be treated as an 
anomaly. Rather than computing the 
deviation, Xu et al. [149] proposed an 
adaptive intra-frame classification network in 
which the one-class deviation problem was 
translated into a multi-class classification 
problem. Yong et al. [154] put forward a deep 
neural network (DNN) and Zhao et al. [159] 
proposed a spatio-temporal AE network. 

We note that Markov random field (MRF), 
Gaussian mixture model (GMM) and hidden 
Markov model (HMM) are also widely used 
for anomaly detection in videos [61, 96]. Take 
GMM for example, given the normal data 
could be linked with at least one Gaussian 
component of Gaussian mixture model, while 
the abnormal data could not belong to any 
Gaussian component. It is usually to train a 
regression model using the training data. 
When new video data are mapped to the 
regression model, the reconstruction error is 
regarded as the abnormality score [39]. It 
commonly can be divided into three steps 
[42]: 1. Select a Gaussian mixture G~Category 
(π); 2. Obtain a latent vector v~N(𝜇𝜇𝜇𝜇G, 𝜎𝜎𝜎𝜎G2𝐈𝐈𝐈𝐈); 3. 
Calculate the reconstruction result 𝐱𝐱𝐱𝐱’, 𝑝𝑝𝑝𝑝 (v, G) 
= 𝜋𝜋𝜋𝜋GN (v|𝜇𝜇𝜇𝜇G, 𝜎𝜎𝜎𝜎G2), [𝜇𝜇𝜇𝜇𝑥𝑥𝑥𝑥; log𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥2] = 𝑓𝑓𝑓𝑓(v; 𝜃𝜃𝜃𝜃), 
𝐱𝐱𝐱𝐱’∼N(𝜇𝜇𝜇𝜇𝑥𝑥𝑥𝑥, 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥2𝐈𝐈𝐈𝐈), where k is the number of 
components of the mixture, π is the prior 
probability, N(𝜇𝜇𝜇𝜇𝑥𝑥𝑥𝑥, 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥2𝐈𝐈𝐈𝐈) is Gaussian 
distribution parameterized by means 𝜇𝜇𝜇𝜇𝑥𝑥𝑥𝑥 and 
covariance 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥2. It relies on observation 
variables and tries to retrieve those 
observation variables which are already fixed 
at beginning. On the other hand, variants of 
GMM like Dirichlet based mixture GMM 
models [61] and adaptive GMM [133] do not 
just depend on observations and pertain to 
longer interaction between observations. To 
alleviate the shortcomings of GMM, a deep 
GMM is used in [42]. 

_ Domain-based. Domain-based methods 
commonly state as a region of the normal 
videos, based on the distributed character of 
video data, to describe the domain of the 
normal sample [72]. One favorite tool in 
domain-based method is support vector 
machines (SVMs). It is a typical algorithm for 
forming a margin’s boundary. The ideal 
hyper-plane is to represent the largest 
separation (or margin) between different 
classes [93]. The partitions between classes of 
normal activities have also been learned 
using kernel SVM [104, 120]. Most of them are 
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Other relates works are proposed with the 3-D 
information to analysis both temporal and 
spatiotemporal irregularities in videos [152]. Wang 
et al. [142] combined deep AE network with 3-D 
CNN to model the spatio-temporal information in 
videos. Most of the AEs based researches was built 
to train the spatiotemporal representation in 
videos [114]. However, spatiotemporal 
irregularities are difficult to analysis in the video 
frames, as they are commonly not properly 
defined and do not occur frequently in videos. 
Khan et al. [68] used an adversarial learning 
framework which contained the spatio-temporal 
AE and spatio-temporal convolution network. Yan 
et al. [153] worked on a two-stream recurrent VAE 
and each stream could achieve modeling the 
probabilistic distribution of the normal samples by 
the recurrent VAE. However, it failed in pixel-level 
detection scheme. Deep learning-based methods 
make a breakthrough in anomaly detection by 
employing deep features in reconstruction. Song et 
al. [124], the authors introduced an AE combine 
with attention model to build normal patterns. For 
solving the video sequences containing images that 
were never seen before, Slavic et al. [123] 
introduced a VAE in videos. However, it is hard to 
assure the anomaly data with a larger 
reconstruction error because of the strong 
extensive ability of neural networks. Suppose the 
novel behaviors as anomaly is probably one-sided 
for practical surveillance applications. Such as the 

campus scene, riding a bike is novel behavior 
since it has not appeared in normal model. 
However, it should not be treated as an 
anomaly. Rather than computing the 
deviation, Xu et al. [149] proposed an 
adaptive intra-frame classification network in 
which the one-class deviation problem was 
translated into a multi-class classification 
problem. Yong et al. [154] put forward a deep 
neural network (DNN) and Zhao et al. [159] 
proposed a spatio-temporal AE network. 

We note that Markov random field (MRF), 
Gaussian mixture model (GMM) and hidden 
Markov model (HMM) are also widely used 
for anomaly detection in videos [61, 96]. Take 
GMM for example, given the normal data 
could be linked with at least one Gaussian 
component of Gaussian mixture model, while 
the abnormal data could not belong to any 
Gaussian component. It is usually to train a 
regression model using the training data. 
When new video data are mapped to the 
regression model, the reconstruction error is 
regarded as the abnormality score [39]. It 
commonly can be divided into three steps 
[42]: 1. Select a Gaussian mixture G~Category 
(π); 2. Obtain a latent vector v~N(𝜇𝜇𝜇𝜇G, 𝜎𝜎𝜎𝜎G2𝐈𝐈𝐈𝐈); 3. 
Calculate the reconstruction result 𝐱𝐱𝐱𝐱’, 𝑝𝑝𝑝𝑝 (v, G) 
= 𝜋𝜋𝜋𝜋GN (v|𝜇𝜇𝜇𝜇G, 𝜎𝜎𝜎𝜎G2), [𝜇𝜇𝜇𝜇𝑥𝑥𝑥𝑥; log𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥2] = 𝑓𝑓𝑓𝑓(v; 𝜃𝜃𝜃𝜃), 
𝐱𝐱𝐱𝐱’∼N(𝜇𝜇𝜇𝜇𝑥𝑥𝑥𝑥, 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥2𝐈𝐈𝐈𝐈), where k is the number of 
components of the mixture, π is the prior 
probability, N(𝜇𝜇𝜇𝜇𝑥𝑥𝑥𝑥, 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥2𝐈𝐈𝐈𝐈) is Gaussian 
distribution parameterized by means 𝜇𝜇𝜇𝜇𝑥𝑥𝑥𝑥 and 
covariance 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥2. It relies on observation 
variables and tries to retrieve those 
observation variables which are already fixed 
at beginning. On the other hand, variants of 
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alleviate the shortcomings of GMM, a deep 
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Other relates works are proposed with the 3-D 
information to analysis both temporal and 
spatiotemporal irregularities in videos [152]. Wang 
et al. [142] combined deep AE network with 3-D 
CNN to model the spatio-temporal information in 
videos. Most of the AEs based researches was built 
to train the spatiotemporal representation in 
videos [114]. However, spatiotemporal 
irregularities are difficult to analysis in the video 
frames, as they are commonly not properly 
defined and do not occur frequently in videos. 
Khan et al. [68] used an adversarial learning 
framework which contained the spatio-temporal 
AE and spatio-temporal convolution network. Yan 
et al. [153] worked on a two-stream recurrent VAE 
and each stream could achieve modeling the 
probabilistic distribution of the normal samples by 
the recurrent VAE. However, it failed in pixel-level 
detection scheme. Deep learning-based methods 
make a breakthrough in anomaly detection by 
employing deep features in reconstruction. Song et 
al. [124], the authors introduced an AE combine 
with attention model to build normal patterns. For 
solving the video sequences containing images that 
were never seen before, Slavic et al. [123] 
introduced a VAE in videos. However, it is hard to 
assure the anomaly data with a larger 
reconstruction error because of the strong 
extensive ability of neural networks. Suppose the 
novel behaviors as anomaly is probably one-sided 
for practical surveillance applications. Such as the 

campus scene, riding a bike is novel behavior 
since it has not appeared in normal model. 
However, it should not be treated as an 
anomaly. Rather than computing the 
deviation, Xu et al. [149] proposed an 
adaptive intra-frame classification network in 
which the one-class deviation problem was 
translated into a multi-class classification 
problem. Yong et al. [154] put forward a deep 
neural network (DNN) and Zhao et al. [159] 
proposed a spatio-temporal AE network. 

We note that Markov random field (MRF), 
Gaussian mixture model (GMM) and hidden 
Markov model (HMM) are also widely used 
for anomaly detection in videos [61, 96]. Take 
GMM for example, given the normal data 
could be linked with at least one Gaussian 
component of Gaussian mixture model, while 
the abnormal data could not belong to any 
Gaussian component. It is usually to train a 
regression model using the training data. 
When new video data are mapped to the 
regression model, the reconstruction error is 
regarded as the abnormality score [39]. It 
commonly can be divided into three steps 
[42]: 1. Select a Gaussian mixture G~Category 
(π); 2. Obtain a latent vector v~N(𝜇𝜇𝜇𝜇G, 𝜎𝜎𝜎𝜎G2𝐈𝐈𝐈𝐈); 3. 
Calculate the reconstruction result 𝐱𝐱𝐱𝐱’, 𝑝𝑝𝑝𝑝 (v, G) 
= 𝜋𝜋𝜋𝜋GN (v|𝜇𝜇𝜇𝜇G, 𝜎𝜎𝜎𝜎G2), [𝜇𝜇𝜇𝜇𝑥𝑥𝑥𝑥; log𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥2] = 𝑓𝑓𝑓𝑓(v; 𝜃𝜃𝜃𝜃), 
𝐱𝐱𝐱𝐱’∼N(𝜇𝜇𝜇𝜇𝑥𝑥𝑥𝑥, 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥2𝐈𝐈𝐈𝐈), where k is the number of 
components of the mixture, π is the prior 
probability, N(𝜇𝜇𝜇𝜇𝑥𝑥𝑥𝑥, 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥2𝐈𝐈𝐈𝐈) is Gaussian 
distribution parameterized by means 𝜇𝜇𝜇𝜇𝑥𝑥𝑥𝑥 and 
covariance 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥2. It relies on observation 
variables and tries to retrieve those 
observation variables which are already fixed 
at beginning. On the other hand, variants of 
GMM like Dirichlet based mixture GMM 
models [61] and adaptive GMM [133] do not 
just depend on observations and pertain to 
longer interaction between observations. To 
alleviate the shortcomings of GMM, a deep 
GMM is used in [42]. 

_ Domain-based. Domain-based methods 
commonly state as a region of the normal 
videos, based on the distributed character of 
video data, to describe the domain of the 
normal sample [72]. One favorite tool in 
domain-based method is support vector 
machines (SVMs). It is a typical algorithm for 
forming a margin’s boundary. The ideal 
hyper-plane is to represent the largest 
separation (or margin) between different 
classes [93]. The partitions between classes of 
normal activities have also been learned 
using kernel SVM [104, 120]. Most of them are 
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Other relates works are proposed with the 3-D in-
formation to analysis both temporal and spatiotem-
poral irregularities in videos [152]. Wang et al. [142] 
combined deep AE network with 3-D CNN to model 
the spatio-temporal information in videos. Most of 
the AEs based researches was built to train the spa-
tiotemporal representation in videos [114]. However, 
spatiotemporal irregularities are difficult to analysis 
in the video frames, as they are commonly not prop-
erly defined and do not occur frequently in videos. 
Khan et al. [68] used an adversarial learning frame-
work which contained the spatio-temporal AE and 
spatio-temporal convolution network. Yan et al. [153] 
worked on a two-stream recurrent VAE and each 
stream could achieve modeling the probabilistic dis-
tribution of the normal samples by the recurrent VAE. 
However, it failed in pixel-level detection scheme. 

Deep learning-based methods make a breakthrough 
in anomaly detection by employing deep features in 
reconstruction. Song et al. [124], the authors intro-
duced an AE combine with attention model to build 
normal patterns. For solving the video sequences 
containing images that were never seen before, Slavic 
et al. [123] introduced a VAE in videos. However, it is 
hard to assure the anomaly data with a larger recon-
struction error because of the strong extensive ability 
of neural networks. Suppose the novel behaviors as 
anomaly is probably one-sided for practical surveil-
lance applications. Such as the campus scene, riding 
a bike is novel behavior since it has not appeared in 
normal model. However, it should not be treated as an 
anomaly. Rather than computing the deviation, Xu et 
al. [149] proposed an adaptive intra-frame classifica-
tion network in which the one-class deviation prob-
lem was translated into a multi-class classification 
problem. Yong et al. [154] put forward a deep neural 
network (DNN) and Zhao et al. [159] proposed a spa-
tio-temporal AE network.
We note that Markov random field (MRF), Gaussian 
mixture model (GMM) and hidden Markov model 
(HMM) are also widely used for anomaly detection 
in videos [61, 96]. Take GMM for example, given the 
normal data could be linked with at least one Gauss-
ian component of Gaussian mixture model, while the 
abnormal data could not belong to any Gaussian com-
ponent. It is usually to train a regression model using 
the training data. When new video data are mapped 
to the regression model, the reconstruction error is 
regarded as the abnormality score [39]. It common-
ly can be divided into three steps [42]: 1. Select a 
Gaussian mixture G~Category (𝜋); 2. Obtain a latent 
vector v~N(𝜇G, 𝜎G

2𝐈); 3. Calculate the reconstruction 
result 𝐱’, 𝑝 (v, G) = 𝜋GN (v|𝜇G, 𝜎G

2), [𝜇𝑥; log𝜎𝑥2] = 𝑓(v; 𝜃), 
𝐱’∼N(𝜇𝑥, 𝜎𝑥2𝐈), where k is the number of components 
of the mixture, 𝜋 is the prior probability, N(𝜇𝑥, 𝜎𝑥2𝐈) is 
Gaussian distribution parameterized by means 𝜇𝑥 and 
covariance 𝜎𝑥2. It relies on observation variables and 
tries to retrieve those observation variables which are 
already fixed at beginning. On the other hand, variants 
of GMM like Dirichlet based mixture GMM models 
[61] and adaptive GMM [133] do not just depend on 
observations and pertain to longer interaction be-
tween observations. To alleviate the shortcomings of 
GMM, a deep GMM is used in [42].
 _ Domain-based. Domain-based methods commonly 
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state as a region of the normal videos, based on the 
distributed character of video data, to describe the 
domain of the normal sample [72]. One favorite 
tool in domain-based method is support vector 
machines (SVMs). It is a typical algorithm for 
forming a margin’s boundary. The ideal hyper-
plane is to represent the largest separation (or 
margin) between different classes [93]. The 
partitions between classes of normal activities 
have also been learned using kernel SVM [104, 
120]. Most of them are to define a boundary for 
the normal samples according to the structure 
of the training data which are used to repress the 
domain of the normal categorize. Similarity, kernel 
one-class SVM is an efficient tool for abnormal 
behavior recognition [137], and it also be extended 
to nonlinear kernel form [139]. What is remarkable 
here is the complexity corresponding to the 
calculation of the kernel functions.

Another way is considering the different depths of 
field for the same scene. Specifically, one object is 
closer to the video surveillance, greater movement 
will be detected, and when it is far from the video 
surveillance, the detected movement will be smaller. 
This problem is illustrated in Fig. 5, the pedestrian 
in the red rectangle is moving at a constant speed. 
However, the detected speeds in Figures 5(a)-5(b) are 
different which may lead to different motion patterns 
of objects. To address this problem, several previous 
works built block-wise modeling and trained normal 
event model for each block [88, 141]. For example, 
Cong et al. [27] proposed a novel feature descriptor 
named multi-scale histogram of optical flow (HOF) 
which partitioned the frame into a few basic units. Al-
though the block-wise based methods achieve excel-
lent performance, they may lead to another problem: 
the resolution of a frame is M×N, and dividing into 
n×n blocks with k pixels overlapping, so there will 
produce {(M-k)/(n-k)+1]}×{(N-k)/(n-k)+1]} features. 
To training large numbers of data will cause expen-
sive time cost and waste storage space. In order to 
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probabilistic method, Garcia et al. [46] used a GMM 
to add new behaviors appearing in the environment. 
It is noted that probabilistic methods approximated 
the probability density of the normal samples and 
detected whether a new data comes from the similar-
ly distribution or not. Those methods of judging the 
potential data density branch out into parametric and 
no parametric.
The parametric approaches presume the normal sam-
ples are created from an underlying parametric distri-
bution, and the concerned parameters of the distribu-
tion are measured from the normal data. For example, 
Yamanaka et al. [151] adopted a binary feature of au-
to-encoding for detection and it was a low-complexi-
ty probabilistic models. Hou et al. [55] introduced the 
Bayesian hierarchical method to achieve detection. 
For probabilistic models, anomalous data can be de-
fined as datasets that lie in low density or concentra-
tion regions of the domain of an input training distri-
bution, such as probabilistic topic method [70] and 
hierarchical probabilistic model [4]. However, those 
methods will cause a larger error when the data do 
not satisfied the assumed distribution. The no para-
metric approaches are suitable for above situation 
with no need for making assumptions, and it has been 
expand to fit the complexity of video data. This ide-
ology has been used in [156]. Some previous studies 
analyzed the event in videos based on its trajectory 
[157, 52], Sadeghi et al. [109] extended it to an on-line 
based method. Other research utilized the contextu-
al information [110, 144]. Wang et al. [138] proposed 
a motion information coding algorithm based on im-
age descriptors. It is most likely that developing rules 
and probability distribution describing behaviors for 
a complex context would be a difficult task.
 _ Distance-based. 

Due to the small types of normal events and similar 
characteristics, while the types of abnormal events 
are numerous, some scholars believe that under a cer-
tain characteristic space, the distribution of normal 
events is closely in the feature space and it is distin-
guishable from abnormal events. The distance-based 
methods need to satisfy the assumption: the normal 
samples belong to a number of large and closely clus-
ter while the abnormal samples are the opposite [17, 
87]. The detection is performed by matching the in-
put data of them. To better build the data distribution 
of normal samples, Chang et al. [21] reduced the dis-

tance between video data and the hidden vectors. Ma 
et al. [87], the authors the authors used a trajectory 
distance metrics based on recurrent neural network 
(RNN) to measure similarities and detected anoma-
lies from trajectory data. Actually, most methods ap-
proach the abnormal score is the measure of distance 
of data from center of the sphere, the data points 
which are far away from center are regarded as anom-
alous, such as robust invariant distance measures 
[17] and distance between the cluster centers and a 
feature vector [11]. The above methods do without 
a priori knowledge of the data distribution and can 
work well for the problem of noisy features. These 
approaches assume the normal data are clustered to-
gether, while the abnormal data do the reverse. Based 
on the motion trajectory of multiple pedestrians, Guo 
et al. [119] extracted both distance and relative speed 
between trajectories, and the detection results were 
based on the spatial relationship. Lin et al. [81] ex-
tended it as an online weighted clustering algorithm. 
Chang et al. [22] proposed a novel clustering-driven 
deep AE method and both the reconstruction error 
and the cluster distance were used to evaluate the 
anomaly. In these methods, only motion or appear-
ance features are used to perform clustering, which 
make them would not work for complex scenes, such 
as disorganized motion directions and over-speed 
objects. In Table 4, we describe and compare the four 
categories of modeling normal event methods.
2 Prediction model
Prediction methods are used to detect anomaly events 
by comparing them with their expectation. Learn-
ing to future frame prediction in videos includes the 
building of an inner representation that simulates the 
image evolution precisely. Thus, in a way, it is content 
and dynamic. One of the typical representative works 
was published in [82]. They search the best match for 
the prediction data and determined how abnormal 
it is. The main contribution of this paper is combin-
ing the appearance constraint and motion constraint 
with intensity gradient loss and optical flow loss, re-
spectively (see Fig. 6).
Another popular method is long short term memory 
(LSTM) AE model and it is similar to the future pre-
dictor model [128]. The framework of them are show 
in Fig. 7. The LSTM AE model consists of the encoder 
LSTM (read the input feature vector) and the decod-
er LSTM (output the prediction for the feature vector 
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Figure 6 
The pipeine of video frame prediction network

Figure 7 
Overview of the LSTM AE model (a) and LSTM future 
predictor model (b)

Figure 8 
The framework of composite LSTM model [125]
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[125] 
The above-mentioned methods mainly in favor of 
appearance constraint and predicting future frame 
directly. Unlike those works, some focuses on 
predicting transformations required for future 
frame prediction [24, 131, 135]. To get the better 
result, Shin et al. [118] proposed a hybrid deep 
learning model consist of video feature extractor 
and anomaly detector, while the main limitation 
was the unseen data. In addition to the frequently 
used spatial constraints on strength and gradient. 
Xia et al. [148] developed a feature prediction 
framework with a novel temporal attention 
mechanism. Such spatial and temporal constraints 
promote the future frame prediction for normal 
events, and accordingly promote to recognize 
those abnormal events that do not matching the 
expectation. Similarity, Chen et al. [25] proposed a 
framework based on bidirectional prediction, they 

evaluation the deviation between predictive 
frame and corresponding ground truth to 
detect abnormal events. However, the 
generalization ability of this method need to 
be improved and the adaptive adjustment 
strategies for the hyper-parameters require 
further researches [13, 44]. Recently, a lot of 
great works are credited with the emergence 
of generative adversarial network (GAN) [83, 
89, 116]. It trained in semi-supervised 
learning model that have shown excellent 
promise, even with very few labeled data 
[116]. The basic idea of GAN is it composed 
of a generator G (a decoder), and a 
discriminator D (an binary classifier). D and 
G are simultaneously optimized by the 
following two-player minimax game with 
objective function V(G, D): 

~ ~ ( )

min max ( , )

        [log ( )]+ [log(1 ( ( )))].
data z

G D

x P z P z

V D G

D x D G z

=

Ε Ε −
(4) 

For the generator G, it is to learn a 
distribution p over data x with a mapping 
G(z) of samples z. For the discriminator D, it 
is a standard CNN that maps a frame to a 
single scalar value D(·) [31]. A variant of 
GAN method known as Adversarial AE [49, 
106]. It use adversarial training to add a prior 
knowledge on the latent code learnt with 
hidden layers of autoencoder that are also 
bring out to effectively calculate the input 
distribution. Other works combined attention 
mechanism which used both "soft attention" 
and "hard-wired" attention [44], while 
Batchuluun et al. [13] combined the fuzzy 
method for behavior recognition. In Table 5, 
some popular prediction methods are 
presented.  

Table 4 

Advantages and disadvantages of modeling normal event methods 

Method Description Advantages Limitations 

Reconstruction- 
Computing the deviation 
between the test data and the 
normal patterns. 

It could be done in different 
ways and it is easier to be 
applied on other scenes. 

It is hard to assure the anomaly 
data with a larger 
reconstruction error. 

Domain- 

It commonly state as a region 
of the normal videos to 
describe the domain of normal 
sample. 

Eliminating the effect of depth 
of field on motion amplitude. 

Large time consuming and 
waste storage for modeling lots 
of normal events. 

Probabilistic- 
Judging the amount of 
information that test video 
should contain. 

It does not require clustering 
or prior assumption in contrast 
to the existing solutions. 

The threshold of anomaly 
detection was difficult to 
determine. 

Distance- The normal samples belong to 
one class while the abnormal 

It is structurally easy to 
combine with other features. 

It has poor robustness and 
weak scalability. 

The above-mentioned methods mainly in favor of 
appearance constraint and predicting future frame 
directly. Unlike those works, some focuses on pre-
dicting transformations required for future frame 
prediction [24, 131, 135]. To get the better result, Shin 
et al. [118] proposed a hybrid deep learning model 
consist of video feature extractor and anomaly detec-
tor, while the main limitation was the unseen data. 
In addition to the frequently used spatial constraints 
on strength and gradient. Xia et al. [148] developed 
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a feature prediction framework with a novel tempo-
ral attention mechanism. Such spatial and temporal 
constraints promote the future frame prediction for 
normal events, and accordingly promote to recog-
nize those abnormal events that do not matching the 
expectation. Similarity, Chen et al. [25] proposed a 
framework based on bidirectional prediction, they 
evaluation the deviation between predictive frame 
and corresponding ground truth to detect abnormal 
events. However, the generalization ability of this 
method need to be improved and the adaptive ad-
justment strategies for the hyper-parameters require 
further researches [13, 44]. Recently, a lot of great 
works are credited with the emergence of generative 
adversarial network (GAN) [83, 89, 116]. It trained in 
semi-supervised learning model that have shown ex-
cellent promise, even with very few labeled data [116]. 
The basic idea of GAN is it composed of a generator 
G (a decoder), and a discriminator D (an binary clas-
sifier). D and G are simultaneously optimized by the 

following two-player minimax game with objective 
function V(G, D):

~ ~ ( )

min max ( , )

        [log ( )]+ [log(1 ( ( )))].
data z
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x P z P z
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D x D G z
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For the generator G, it is to learn a distribution p over 
data x with a mapping G(z) of samples z. For the dis-
criminator D, it is a standard CNN that maps a frame to 
a single scalar value D(·) [31]. A variant of GAN method 
known as Adversarial AE [49, 106]. It use adversarial 
training to add a prior knowledge on the latent code 
learnt with hidden layers of autoencoder that are also 
bring out to effectively calculate the input distribution. 
Other works combined attention mechanism which 
used both “soft attention” and “hard-wired” attention 
[44], while Batchuluun et al. [13] combined the fuzzy 
method for behavior recognition. In Table 5, some pop-
ular prediction methods are presented. 

Table 4
Advantages and disadvantages of modeling normal event methods

Method Description Advantages Limitations

Reconstruction- Computing the deviation between the 
test data and the normal patterns.

It could be done in different 
ways and it is easier to be 
applied on other scenes.

It is hard to assure the 
anomaly data with a larger 
reconstruction error.

Domain-
It commonly state as a region of the 
normal videos to describe the domain of 
normal sample.

Eliminating the effect of 
depth of field on motion 
amplitude.

Large time consuming and 
waste storage for modeling 
lots of normal events.

Probabilistic- Judging the amount of information that 
test video should contain.

It does not require clustering or 
prior assumption in contrast to 
the existing solutions.

The threshold of anomaly 
detection was difficult to 
determine.

Distance- The normal samples belong to one class while 
the abnormal samples are the opposite.

It is structurally easy to 
combine with other features.

It has poor robustness and 
weak scalability.

Table 5
Popular prediction methods for anomaly detection

Ref. Description
Used datasets

FPS End to end Platform
UCSD Avenue Other

[82] U-Net √ √ ShanghaiTech 25 No TensorFlow
[159] Spatio-temporal AE √ √ Traffic - No -
[90] Convolutional LSTM √ √ Subway Datasets - Yes -
[128] Two U-Net blocks √ √ ShanghaiTech 30 Yes GPU
[148] LSTM network √ √ - - No TensorFlow/GPU
[25] Bidirectional prediction √ √ - - No GPU
[31] Dual discriminator GAN √ √ ShanghaiTech - No -
[106] Multi-timescale - √ ShanghaiTech 25 No GPU
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3 Query model
Abnormal patterns are the “interesting” objects that 
attract human observers attention to a certain extent, 
and always easy to recognize. Such salient events are 
so since they are unlike the regular patterns in that 
context. The query methods are composing the new 
video data employing spatiotemporal patches that 
are extracted from previous data. Thus, the regions 
in the new data which could be composed from the 
previous data are considered to be anomalies. Typical 
algorithm [15] presented a new graph-based Bayesian 
inference method to detect the patches and a proba-
bilistic graphical model to achieve the inference by 
composition task. An area in the query frame is con-
sidered applicable if it has a large enough contiguous 
area of support in the video data. New valid frame can 
be inferred from the database, even though they have 
never been appeared. The basic concept is shown in 
Fig. 9. For a query frame (a), we can infer the query 
from the database (b), the database with the corre-
sponding area of support (c). Finally, we can find an 
ensembles-of-patch with more flexible and efficient 
form (d). Related works have been applied in class-
based object recognition [41, 43].
Unnatural events are boundless in real world scene, 
and it is almost unrealistic to gather the total of ab-
normal events and tackle the problem with a classi-
fication method [12]. Some works use the statistical 

computations [41]. For example, spatial image sa-
liency methods are used by [54], the authors adopted 
probability estimates and multi-dimensional histo-
gram to find anomalies. The methods of composing 
new data from previous patches are widely used for 
a variety of works. Besides, query can be estimated 
using several methods [34], e.g. Markov network [45] 
and spatio-temporal patches [143]. For decreasing 
the computing cost, the dimensionality reduction 
and nearest neighbor search are applied, which can 
achieve robust results with small-scale training data. 
In addition, Leibe et al. [77] built an implicit shape 
model which combined both identification and seg-
mentation into a probabilistic framework. Sivic et al. 
[122] added geometric constraints to the non-class-
based descriptors. In the review of [158], the authors 
proposed an improved SVD method to match image 
pairs. Despite its effectiveness in abnormal detection, 
methods that fall under this category inherit a prob-
lem of difficulty in composing the rules and matches.
4 Deep hybrid model
Deep learning have an advantage of exploring the in-
tricate relationships in multi-dimensional data, and 
it consistent refreshed the records in many fields, 
such as computer vision and information retriev-
al. Meanwhile, machine learning method has been 
a long period of development, and it explores much 
knowledge in human behavior detection which the 
knowledge is universal in the field. At present, the 
researches begin to focus on the transfer of machine 
learning methods to deep learning methods, namely 
deep hybrid models, and it achieves better results,. 
The most common strategy is to use deep neural 
network as feature selection, and then the features 
are input to the classic machine learning algorithms 
[38]. Specifically, the common used deep neural 
networks include AE artificial neural networks [7], 
LSTM neural network [38] and one class neural 
networks [20]. Given the video data contain a small 
amount of labeled data with a large amount of unla-
beled data, semi supervised methods is applied to the 
anomaly detection for intelligent video surveillance 
[57, 121]. For example, Shin et al. [118] proposed a 
hybrid learning method which the feature extractor 
trained by GAN and anomaly detection improved by 
transferring the extractor. In another study, Du et al. 
[32] proposed a wireless vision sensor network. Hu 
et al. [58] put forward a spatial-temporal CNN and 
the deep features were passed in the least squares 

Figure 9 
The basic concept of inference by composition [15]
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Table 6
Popular deep hybrid models for video anomaly detection

Ref. Description
Used datasets

Platform
UCSD Avenue Other

[57] Faster R-CNN+SVM √ √ Avenue, Subway GPU

[121] CNN+SVM √ √ - GPU

[67] YOLOv3+Flownet2 √ √ ShanghaiTech -

[65] DNN+KNN √ ShanghaiTech

[108] FCNs+Gaussian √ - Subway GPU

[118] 3DCNN+LRCN √ - Subway -

[3] CNN+SVM √ - UMN GPU

[10] CNN+ADN √ - UMN GPU

SVM to implement classification. Certainly, in many 
cases, the hybrid learning system has limitations 
that it is hard to achieve detecting abnormal behav-
iors by end-to-end learning.
Following the achievement of transfer learning to ac-
quire plenty of outstanding features from models pre-
trained on large-scale data, deep hybrid models have 
also adopted these pre-trained methods for feature ex-
tracting with desired result [108]. For example, Visual 
geometry group network 19 (VGGNet-19) were used 
for transferring learning in [3, 10]. One of the most 
common approaches among deep learning is the CNN 
network. This is because CNN are quite effective in 
processing unstructured raw data [92, 111]. The deep 
hybrid approaches will keep on expanding the scale of 
the model to adapt the intricacy of the data. Therefore, 
it needs lots of data to fit a more efficient model. Some 
methods of deep hybrid model are presented in Table 6.

4. Performance Evaluation
In the current section, the representative approaches 
have been reviewed. The performance evaluation is 
critical to measure the validity of the proposed meth-
ods and also to compare it to other methods.

4.1. Datasets
Large numbers of abnormal behavior recognition 
methods have been proposed which show it is a hot 
topic, and there is a growing need for the popular 

datasets to use for intelligent video surveillance sys-
tem. In this section, we reviewed the common used 
datasets for abnormal event detection. An overview 
of all listed datasets is provided in Table 7. We also 
show the websites of the data source. Some more re-
lated new datasets that published in recent years are 
shown in [6, 33, 36, 105].

4.2. Evaluation Metrics
For better examining the strengths and weaknesses 
of anomaly event detection methods and the corre-
sponding applicability in different scene/task of in-
terest, it is necessary to evaluate and judge the perfor-
mance using suitable evaluation metrics. Evaluation 
of anomaly event detection methods can be divided 
into different levels: pixel level, frame level, and object 
level [101]. The basic measures are binary decisions 
and they are shown in Table 8.
 _ Pixel level. Pixel-level evaluation considers each 

pixel individually and one detected anomalous 
frame is anomalous if the percentage at least 40% 
truly abnormal pixels are detected. The basic 
measures are TPR, FPR, TNR, and FPR (shown in 
Table 8).

Frame level. The abnormal detection methods de-
tect a frame as an anomaly if they detect at least one 
pixel as anomalous. However, they ignore spatial 
localization of anomalies which may miss the true 
anomaly and mislabels a normal pixel as an anoma-
ly. In order to avoid the weakness of misses and mis-
labels, some relate works use the pixel level ground-
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Table 7
Some available datasets for video anomaly detection

Dataset Resolution Scene Example anomalies Dataset link

UCSD Ped1 [108] 238×158 Pedestrian walk path Bikers, small 
carts

http://www.svcl.ucsd.edu/projects/
anomaly/dataset.html

UCSD Ped2 [108] 360×240 Pedestrian walk path Bikers, small 
carts

http://www.svcl.ucsd.edu/projects/
anomaly/dataset.html

Subway Entrance [1] 512×384 Subway station Wrong direction 
and no pay

http://vision.eecs.yorku.ca/research/
anomalous-behaviour-data/

Subway Exit [1] 512×384 Subway station Wrong direction 
and no pay

http://vision.eecs.yorku.ca/research/
anomalous-behaviour-data/

UMN [91] 320×240 In-out-door scenes Crowd dispersion http://mha.cs.umn.edu/

Avenue dataset [84] 360×640 CUHK campus Run, throw http://www.cse.cuhk.edu.hk/leojia/
projects/detectabnormal/dataset.html

ShanghaiTech [82] 856×480 Campus Bikers and cars https://sviplab.github.io/dataset/campus_
dataset.html

UCF Crime [127] 240×320 Crime Abuse, arrest https://www.crcv.ucf.edu/projects/real-world/

Violent Flows [53] 320×240 Youtube Violence http://www.openu.ac.il/home/hassner/
data/violentflows

Action movies [97] - Action movies One to one fight http://visilab.etsii.uclm.es/personas/
oscar/FightDetection/Peliculas.rar

Hockey Fight [97] 720×576 Ice hockey rink Violence http://visilab.etsii.uclm.es/personas/oscar/
FightDetection/HockeyFights.zip

IITB-Corridor [106] - IIT Bombay campus Protest, 
unattended

https://rodriguesroyston.github.io/Multi-
timescale_Trajectory_Prediction

Web dataset [91] - Web Clash, escape 
panic

http://crcv.ucf.edu/projects/AbnormalCrowd/
Normal_Abnormal_Crowd.zip

Table 8
The basic binary decisions measures (Note: TPR= true 
positive rate. TNR= true negative rate. FPR= false positive 
rate. FNR= False negative rate. TP= true positive. TN= true 
negative. FP= false positive. FN= false negative.)

Criterion Equation Note

TPR TPR= TP / (TP +FN)
Anomalous data 
detected as anomalous

TNR TNR= TN / (TN+FP)
Normal data detected 
as normal

FPR FPR= FP / (TN+FP) Normal data detected 
as anomalous

FNR FNR= FN/ (TP +FN) Anomalous data 
detected as normal

truth masks valuation scheme. The measures are 
shown as follows:

Frame is counted as true positive if
TP / (TP + FN) ≥ α

(8)

Frame is counted as false positive if
TP / (TP + FN) < α,

(9)

where α is set to 40 commonly, which means the 
scheme requires at least 40% overlap between the 
prediction and the ground-truth.
Another relates evaluation metric is dual-pixel, 
which improve the evaluation of frame-level with lo-
calization by punishing the number of FP. One frame 
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is detected as an anomaly if at least α % of ground-
truth anomaly pixels are detected and at least β % of 
predicted anomaly pixels are detected.
Similarity, intersection-over-union measure is widely 
used and it is also considered the TP and FP. One frame 
is detected as an anomaly if the ratio of the number of 
ground-true anomaly pixels divided by the number of 
ground-true anomaly pixels is equal or greater than the 
threshold γ. The measures are shown as follows:

Frame is counted as true positive if
TP / (TP + FP + FN) ≥ γ

(10)

Frame is counted as true positive if
TP / (TP + FP + FN) < γ, 

(11)

where γ is set to 50 commonly.
_ Object level. Evaluates not only in frame level but 
also considers spatial location. The correct detection 
is developed by the detected abnormality area and the 
true abnormality area, then calculate the Intersection 
/ Union > threshold ν.

(DAA ∩ T AA) / (DAA ∪ T AA) ≥ ν, (12)

where ν is a given threshold, DAA is detected abnor-
mality area and TAA is true abnormality area.
To describe the operation of the anomaly detection 
algorithm in various situations, the common opera-
tion is calculating the measures in all cases and giving 
the performance curves with the resulting set, e.g., 
receiver operating characteristic (ROC) curves and 
area under the curve (AUC).
ROC is a curve of TPR versus FPR, which indicates 
the variation trend of the number of correctly de-
tected abnormal change with the number of normal 
incorrectly detected as abnormal. However, it loses 
sight of the difference in class sizes which may lead 
to misjudgment.
AUC is used to interpret and aids to acquire the gen-
eral trends in ROC or PR curve. Similarity, some oth-
er metrics that are used to evaluate the performance, 
such as the equal error rate (EER): the ratio of false 
detection when the FPR equals to the miss rate and 
accuracy (A): A = (TP + TN) / (TP + TN + FP + FN). 
For an ideal anomaly detection method in video, the 
EER should be smallest possible. Contrary to AUC, 
the higher score of AUC, the better performance. 
Samples of the performance evaluation of previous 
excellent papers are shown in Table 9.

Table 9
Summary of the performance evaluation results (Note, in table head of “Datasets”: 1 is Ped1 data, 2 is Ped2 data, 3 is Subway 
entry data, 4 is Subway exit data, 5 is UMN data, 6 is Avenue data, 7 is ShanghaiTech data, which are corresponding to the 
table head of “Comments”.)

Ref.
Used datasets

AUC EER Comments Plantform
1/2 3/4 5 6 7

[148] √ - - √ - 83.5 13.5 2 TensorFlow /GPU
[57] √ √ √ √ - 71 /80 /88.3 /98.9 /84.5 22 /16 /- /21 /5.8 1 /2 /4 /5 /6 CPU
[153] √ √ - √ - 72.7 /85 /84.6 /89.2 /75 32.4 /20.4 /20.6 /22.1 /31.4 1 /2 /3 /4 /6 Titan X /GPU
[140] √ - √ - - 65.2 /97.0 21 /- 1 /5 -
[25] √ - - √ - 89 /96.6 /87.8 - 1 /2 /6 GPU
[76] √ - √ √ √ 86.7 /99.6 /90 /76.2 - 2 /5 /6 /7 TensorFlow /GPU
[11] √ - √ - - 82.3 /94.1 /96.5 21.4 /13.2 /14.3 1 /2 /5 Matlab /CPU
[121] √ - - √ - 94.6 /95.9 /89.3 - 1 /2 /6 Caffe /GPU
[145] √ - - √ - 82.4 /92.8 /85.5 25.2 /12.5 /20.7 1 /2 /6 TensorFlow /GPU
[128] √ - - √ √ 82.6 /86.2 /83.7 /71.5 - /10.0 /- /- 1 /2 /6 /7 GPU

[124] √ √ - √ √ 90.4 /90.3 /90.2 /94.6 
/89.2 /70.0

15.8 /15.5 /22.6 /9.3 /17.6 
/36.5 1 /2 /3 /4 /6 /7 -

[59] √ - √ - - 96.0 /96.3 /99.7 6.2 /5.5 /1.65 1 /2 /5 -
[149] √ √ - √ - 95.1 /95.3 /93.4 /92.2 9.4 /9.3 /14.2 /15.0 1 /2 /3 /4 /6 GPU
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5. Conclusion and Comments for 
Further Research
Building an intelligent abnormal human behavior 
detection system in video surveillance is essential to 
address human fatigue and inattention when mon-
itoring many surveillance scenes over an extended 
period of time. Indeed, the detection of an abnormal 
behavior in video surveillance enables the human ob-
servers focus on the scenes which are more likely to 
contain abnormal behaviors. These technologies can 
support the security agents by monitoring normal be-
haviors and early detection of abnormal behaviors in 
large scale scenes. 
In this review, we discussed the various abnormal hu-
man behavior detection methods. For each category 
of anomaly detection techniques, we described the 
assumption regarding the notion of normal and ab-
normal data along with its advantages and disadvan-
tages. First, we discussed the definition and related 
surveys for abnormal event detection in videos. Then 
we provided a comprehensive overview of represen-
tative approaches that covers the feature extraction 
and event modeling and detection. Finally, we exhib-
ited the most popular datasets and evaluation met-
rics used for abnormal human behavior detection 
in intelligent video surveillance. We note that while 
valid success has been achieved in this interrelated 
research field, some more work needs to be done as 
indicated next.
1 To date, there is no universally accepted definition 

for abnormal event detection. 
2 The behaviors are complex and changes frequently 

in an unconstrained environment.
3 Noise in the raw acquired data, the choice and rep-

resentation of low-level features, significantly in-
fluences the analysis of the behavior.

4 Video shadows and occlusion, scaling of the mov-
ing target, light intensity changes, etc. are great 
challenges with a single-camera.

All these make abnormal behavior detection a difficult 
task. The relate approaches attempt to build computa-
tional action models to automatically identify whether 
a behavior is normal or not. Specifically, for the suspi-
cious behaviors may have several interpretations, they 
lie with the context, the time and the place of the event. 
One possible resolution is using large amount of train-
ing data including as much scenarios as possible. For 
the scene change, the effective solution is choosing fea-
tures that are robust to scene transformations and less 
sensitive to the appearance of object. For the visual re-
strictions of single-camera, some works that use multi-
ple cameras to acquire different views. To handle large 
amounts of data, it is become a trend to use effective 
feature selection strategy and deep learning to work 
efficiently. Furthermore, thanks to the strong learning 
ability of deep learning method, it achieves the optimal 
detection result. It is the future direction of develop-
ment, has broad prospects. Traditional machine learn-
ing methods have explored a lot of knowledge related 
to anomaly detection in video surveillance through a 
long time of development. These methods are univer-
sal in the field, and need to be transferred to the deep 
learning method to achieve better results. In a word, 
the anomaly detection in video is still a hot area of re-
search, a possible future survey would be to extend and 
improve with more mature techniques are put forward.
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