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Recognition of human actions is a trending research topic as it can be used for crucial medical applications like 
life care and healthcare. In this research, we propose a novel machine learning algorithm for the classification 
of human actions based on sparse representation theory. In the proposed framework, the input videos are ini-
tially partitioned into several temporal segments of a predefined length. From these temporal segments, the 
key-cuboids are then obtained. These cuboids are obtained based on the locations having maximum variation 
in orientation. From these regions, key-cuboids are extracted. From the key-cuboids, Histogram of Oriented 
Gradient (HOG) features are extracted. This new descriptor has the capability to express the dynamic features 
in the action videos. Using these features, a single shared dictionary is created from the videos belonging to 
different classes using K-Singular Value Decomposition (K-SVD) algorithm. This dictionary has the combined 
features of all the action classes. This shared dictionary is generated during the training phase. During the test-
ing phase, the features belonging to a test class is classified using a novel Sparse Representation Modeling based 
Action Recognition (SRMAR) Algorithm using Orthogonal Matching Pursuit (OMP) and the shared dictionary. 
The proposed framework was evaluated using popular benchmark action recognition datasets like KTH data-
set, Olympic dataset and the Hollywood dataset. The results obtained using these datasets were represented 
in the form of a confusion matrix. Evaluation was performed using metrics like overall classification accuracy, 
specificity, precision, recall and F-score that were obtained from the confusion matrix. This system achieved a 
high specificity of about 99.52%, 99.16% and 96.15% for the KTH dataset, Olympic dataset and the Hollywood 
datasets, respectively. Similarly, the proposed framework attained very good precision of 97.64%, 90.46% and 
73.39% for the KTH dataset, Olympic dataset and the Hollywood datasets, respectively. Also, the average value 
of recall achieved was 97.58%, 90.86% and 74.09% for the KTH dataset, Olympic dataset and the Hollywood 
datasets, respectively. It was also observed that the proposed machine learning algorithm achieved outstanding 
results compared to the existing state-of-the-art human action recognition frameworks in the literature. 
KEYWORDS: Histogram of Oriented Gradients, Human action representation, OMP, K-SVD, Classification.

1. Introduction
Human action recognition is a recently trending and 
a challenging research area. It can be applied in a va-
riety of real-time scenarios like video surveillance, 
elderly people monitoring, human-computer interac-
tion, rehabilitation, telemedicine, robotics, assistive 
living, etc. Human action recognition can be broadly 
categorized into two main categories namely, the vid-
eo-based [1]–[8] and the wearable sensor-based [9], 
[10] systems. In [1] multi-level discriminative patch-
es were used for action representation. The classifica-
tion was done using SVM algorithm. 
Action recognition using Kinect depth images was 
presented in [2]. Here, deep convolutional neural 
networks were employed for classification. A new 
dataset based on movie clips was presented in [3]. 
Here, space time features and spatio-temporal bag 
of features were extracted from the movie data. 
Classification was done using non-linear support 
vector machine. A scheme for action recognition in 
video using factorized spatio-temporal neural net-
work architecture was presented by Sun et al. in [4]. 

The global and local temporal structure of video se-
quences were exploited for action recognition in [5], 
[37]. In this paper, the 3D-convolution neural net-
work structure was used for classification. A new 
scheme for pose-based action recognition was pro-
posed by Wang et al. in [32-34]. Here, the skeletal 
features provided by Kinect depth sensor were used 
for feature extraction. Classification was done using 
kernel SVM. Another scheme for action recognition 
using dense trajectories was proposed in [7]. Here 
the commonly used SIFT descriptor was used for 
representing the action sequences. Here, classifica-
tion was performed using bag-of-features approach. 
Ji et al. proposed a new CNN model architecture for 
action recognition in [8]. In this scheme, spatial and 
temporal features were extracted using convolution 
operations. Shoaib et al. [28] proposed a scheme for 
action recognition using two types of sensors name-
ly the smart phone sensors and the wrist-worn sen-
sors. Seven different window sizes were evaluated 
in this paper. 
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Brezmes et al. [4] proposed a scheme for action recog-
nition using accelerometer data from mobile phone. 
Here, actions like walking, climbing down-stairs, 
climbing up-stairs, sitting, standing and falling were 
recognized. Sparse based algorithms are also em-
ployed in the literature. However, those systems used 
class-specific dictionaries. That is, one dictionary is 
created to represent a particular action. The major 
drawback of this system is that they increase the com-
putational complexity of the system and also consume 
more space. However, in our work we have generated a 
single shared dictionary that has the features from all 
the action classes. This enabled to decrease the compu-
tational complexity and also the space requirements.
The wearable sensor-based systems are based on the 
usage of inertial sensors that is tied to the body of the 
user. Sensors like accelerometer, gyroscope, magne-
tometer, orientation sensor etc are used in these sys-
tems. Based on the readings from the inertial sensors, 
the actions performed by individuals are classified. 
However, the main drawbacks of this system are the 
possible breakage of the device, battery failure, in-
convenience etc. To avoid these issues, video-based 
systems are popularly being used. In these systems, 
the video frames are processed and the features are 
extracted. Based on the extracted features, the hu-
man actions are classified. Sparse representation is 
employed recently as a valuable tool for classification 
[11], [29]. This makes use of the sparsity component 
of the real-time signals. Orthogonal basis like wavelet, 
Fourier basis elements can be used in sparse repre-
sentation. However, the most commonly used basis is 
the over-complete basis. In these elements, the num-
bers of dictionary atoms are greater than the length of 
each atom. 
In [23], Mei et al. proposed a scheme for vehicle classi-
fication using sparse representation. The sparsity was 
optimized using l1-regularized least square problem. 
Here, classification was done using outdoor infrared 
videos. In [11], [16], [31], the authors presented the 
usage of sparse representation theory in signal clas-
sification applications. The outcome of sparse based 
classification was compared with discriminative 
techniques like linear discriminant analysis. Many 
action recognitions schemes have been proposed in 
the literature using sparse representation [29]. These 
schemes make use of two types of dictionaries namely 
the class-specific or the shared dictionaries [13].

Due to the wide range applicability of human action 
representation (HAR), development of models that 
are capable of accurately classifying the actions is a 
vital task. The main issue faced by these systems is 
the delay in recognition of actions due to the imple-
mentation of complex algorithms. However, in this 
work, to avoid this issue, we have employed sparse 
representation (SR) theory for the classification of 
actions. This SR theory has very high speed of imple-
mentation in HAR applications due to the sparsity 
nature of the video frame data. In this work, a novel 
framework for human action recognition based on 
sparse representation is presented. Also, a new tech-
nique for the selection of key-cuboids is proposed. We 
also present a novel Sparse Representation Modeling 
based Action Recognition (SRMAR) algorithm.

1.1. Motivation and Justification

The main motivation behind this work is to classi-
fy human actions. Classification of human actions 
can be used for a wide range of applications like fall 
detection, abnormal action detection, rehabilitation, 
etc. Thus, the main motive behind this work is to de-
velop a robust action classifier that can differentiate 
between actions performed by humans.
The existing action recognition frameworks employ 
traditional algorithms like k-nearest neighbor (k-
NN) and support vector machine (SVM). These sys-
tems do not produce reliable classification results and 
are also time consuming. Also, the sensitivity of tradi-
tional algorithms is very low.

1.2. Outline of the Paper

Hence, in our research we propose a novel scheme for 
classification of human actions using video sequenc-
es and sparse representation theory.
The overall contributions of this paper are fourfold:
a A novel framework for human action recognition 

based on sparse representation is presented.
b A new technique for the selection of key-cuboids is 

proposed.
c A novel Sparse Representation Modelling based 

Action Recognition (SRMAR) algorithm is pro-
posed.

d Evaluation is done using KTH dataset, Olympic 
dataset and the Hollywood dataset.
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2. Literature Survey
Guha et al. [10] proposed a new methodology for clas-
sifying human actions based on sparse representa-
tion theory. In this work, spatio-temporal features 
were computed for the extraction of discriminative 
features. These features cuboid features and the local 
motion pattern features. Key point selection was per-
formed using Harris detection. 
These key points were identified for the selection 
of key-cuboids. To remove noise, Gaussian blurring 
was performed to the patches in the cuboids. From 
these de-noised patches, moment matrices were ex-
tracted. Using the moment matrices, the local motion 
pattern features were obtained. Two types of dictio-
naries were learned from these features namely the 
class-specific and the shared dictionaries. 
These dictionaries were generated using K-means 
Singular Value Decomposition (K-SVD) algorithm. 
Classification was done using Orthogonal Matching 
pursuit (OMP) algorithm. This framework was an-
alyzed using several benchmark video datasets. Al-
faro et al. proposed a scheme for action recognition 
using sparse coding technique [2]. Here, instead of 
using all the frames for feature extraction, only the 
key frames were selected. This selection was done us-
ing sparse coding methodology. Alternate Direction 
Method was employed for solving the optimization 
problem to identify the key frames. Also, from the 
key-frames, the key sequences were then identified. 
Sequences that have high score values were select-
ed as the key-sequences in this paper. Relative local 
temporal features were opted as the suitable features 
in this method. Inter-class relative descriptors were 
also employed for classification. The extraction of 
these features involved three main steps. In the first 
step, low-level feature representation was done. Here, 
HOG3D features were extracted. In the next step, local 
dictionaries were built from the extracted features. 
The dictionary learning was done by employing the 
K-SVD [26} algorithm. In the final step, a local simi-
larity descriptor was generated using the previously 
created dictionaries. Sparse matrices were computed 
from the generated dictionaries and the feature de-
scriptors using the OMP algorithm. Finally, the video 
classification was done using sum pooling technique.
Islam et al. presented a comparative study on various 
action recognition algorithms using skeletal features 

[12]. In this work, the depth images and the skeletal 
data provided by Kinect Microsoft sensors for action 
recognition were employed for comparative study. 
This paper also presented a framework for action 
recognition. In this framework, the depth image se-
quences were first acquired from the depth cameras. 
Using these sequences, skeletal data was obtained. 
Transformation was performed using Euclidean 
group. Finally, classification was done using SVM. 
Evaluation was done using UT Kinect action dataset 
and Florence 3D action dataset. This system achieved 
an accuracy of 94.95% for the UT Kinect action data-
set. The Lie Algebra Absolute pain attained accuracy 
of 95.96%. The Florence dataset achieved an accuracy 
of 81.82% for the absolute joint position feature.
Jalal et al. presented a new technique for the segmen-
tation of humans and recognition of their actions us-
ing depth images [14]. Here, initially the depth maps 
were acquired. These maps were pre-processed using 
background subtraction technique. Using the fore-
grounds, the silhouettes were extracted. Using these 
silhouettes, two types of features were extracted. The 
first feature was the silhouette-oriented features and 
the second was the body joint based features. These 
features were grouped based on the k-means cluster-
ing algorithm. Using these clusters, each class was 
modeled using hidden Markov model. That is, code 
books were created representing each class. Using 
these models, the actions were recognized based on 
the maximum likelihood classifier. In particular, the 
code books that have minimum distance are selected. 
This technique was evaluated using MSR action rec-
ognition dataset. An accuracy of 88.9% was achieved 
in this paper. The proposed system was also analyzed 
using the IM daily depth activity dataset. Using this 
dataset, this methodology attained an accuracy of 
66.60%. This system achieved excellent tracking ac-
curacy, segmentation and recognition results.
Zhang et al. proposed a detailed survey on various ac-
tion recognition techniques using video sequences 
[39]. In this paper, different analysis was done based 
on the types of data used, based on the types of features 
used for action representation and also based on the 
types of techniques used for classification. Recogni-
tion of human-object interaction is also evaluated in 
this paper. Features like motion history image, motion 
energy image, SIFT features, histogram of oriented 
gradient features and spatio-temporal features were 
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discussed. Papers involving trajectory-based features 
like improved dense trajectories were analyzed. 
Multiple deep learning techniques like 3D convolu-
tional neural networks and long short-term memory 
techniques used in action recognition were discussed. 
Types of performance evaluation metrics were also 
investigated. Different types of datasets available for 
research in action recognition domain were also list-
ed in this work. It included datasets like Hollywood, 
HMDB51, UCF50, kinetic and Olympic datasets
A scheme for the recognition of human action using 
R-transform and Zernike moments was proposed by 
Dhiman et al. in [8]. Here, initially the depth action se-
quences are obtained. Using these sequences, binary 
silhouettes are generated. Two types of features are ex-
tracted from these binary images namely the R-trans-
form features and the Zernike moment features. The 
Zernike moments are obtained for various angles like 
0°, 30°, 45°, 60°, 90° and 180°. The scale and rotation 
invariant properties of the R-transform are also pre-
sented in this paper using various illustrations with 
depth maps. These features are combined to form a 
shape descriptor. Analysis was performed using UR 
fall detection dataset. Evaluation was performed us-
ing two different classifiers namely the k-NN and SVM 
classifier. R-transform alone and the combination of 
R-transform and Zernike features were evaluated. It 
was seen that; the combination of R-transform with 
the Zernike features achieved the highest perfor-
mance. High accuracy of 96.5% was achieved using the 
combination of these features with the k-NN classifier. 
SVM classifier attained an accuracy of 95.5%.
A scheme for action recognition based on the combi-
nation of video and wearable data was presented by 
Wei et al. in [35]. Here fusion of the data from two dif-
ferent modalities was performed using feature-level 
and decision level fusion. Convolutional neural net-
works were employed for classification. The neural 
network layer comprised of input layer, convolution-
al layer, normalization layer, and max pooling layer. 
Analysis was performed using UTD-MHAD dataset. 
It was inferred that, the accuracy achieved using vid-
eo only was 76%. Similarly, the accuracy achieved 
using inertial data alone was 90.3%. The feature-lev-
el fusion using the data from the two modalities at-
tained an accuracy of 94.1%. However, the decision 
level fusion attained the highest accuracy of 95.6%. 
In was concluded that usage of combination of two 

modalities produces robust results for action recog-
nition compared to a single modality framework.
Khan et al. proposed a scheme for action recognition 
using multilayer neural networks. Here, initially the 
problem of poor level of contrast in the foreground of 
the video frames are enhanced using contrast stretch-
ing technique. The CIE images are then transformed 
to LAB format. Then the luminance channel is alone 
selected for further processing. 
The motion of the video sequence is then estimated. 
From the motion estimated data, two types of data are 
extracted. They are the foreground and the saliency 
map. Then frame segmentation is done using veloci-
ty estimation technique. Then threshold-based tech-
nique is used for the extraction of foreground. These 
data are then fused using morphological operations. 
From the fused data, the shape and texture features 
are then obtained. HOG and SFTA features are ex-
tracted. Suitable features are selected based on the 
Euclidean distance in between the fused data. Top 
500 features with best entropy values are selected in 
the feature selection process. Finally, classification 
is done using multi-level perceptron neural network 
architecture.
Minhas et al. employed extreme learning machines 
(ELM) for the classification of action data [24]. Here, 
initially, spatio-temporal features were extracted 
from the input training videos. In addition, local static 
features were also extracted. The dimensionality re-
duction of these features was performed using 2D bi-
directional PCA technique. This technique was used 
for the reduction of 2D matrix data unlike the 1D data 
reduction using traditional PCA technique. Compar-
ison of PCA and 2D PCA was also done in this paper. 
The region-of-interest was extracted using motion 
estimation technique.
Then feature mining was performed using Page 
Rank methodology. From the data, similarity graph 
was then constructed. Finally using the constructed 
graph, vocabulary data was formed. This data was 
subjected to ELM training using which the final clas-
sification was performed. Zemgulys et al. [38] has 
proposed a scheme for the classification of basketball 
signals using HOG and SVM classifier. In this work, 
the sign language of the basket-ball referee was used 
as the input data. Initially, the data was preprocessed 
by converting the RGB signal to the black and white 
domain. Then edges were detected using Sobel opera-
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tor. Features were extracted from the edge data. Here, 
HOG features were used. Analysis was done using dif-
ferent cell sizes for the HOG extraction. This included 
cell size of [2 2], [4 4] and [8 8]. Finally, classification 
was done using SVM classifier. Dataset was collected 
from the YouTube medium. This scheme achieved an 
accuracy of 97.50%.
Li et al. [20] has proposed a new scheme for the rec-
ognition of hand gesture using convolutional neural 
networks. In this paper, both spatial and temporal fea-
tures were employed for the hand gesture recognition. 
Classification was done using a three-dimensional 
neural network architecture. This system achieved 
an accuracy of 65.35%. Liu et al. [21] has designed a 
new system for dynamic hand gesture recognition. 
Here two-dimensional convolutional neural network 
structure was employed. Here, the input hand gesture 
image was initially encoded in the form of a feature 
vector. This generated feature vector is used for cre-
ating a new image, using which classification was per-
formed. This new image possessed the spatio-tempo-
ral information of the gesture. 
Zheng et al. [41] has proposed a system for the opti-
mization of neural networks. This was done based on 
stochastic gradient descent algorithm. The functions 
involved in the network structure were optimized 
using this algorithm. The learning schedule was de-
signed in a layer-wise manner to increase the speed 
of optimization. The authors of [42] have presented 
a paper based on convolutional network pruning. Ac-
cording to this paper, a new pruning technique called 
Drop-path was introduced. In this technique, for ev-
ery neural network layer, the influence of neurons 
was ordered. This helped to achieve a reduced model 
size. This system was evaluated using two different 
benchmark classification datasets. 
The authors of [43] presented a new system for im-
age classification using data augmentation. Here, the 
accuracy of neural networks was improved using net-
work optimization. The generalization ability of the 
entire neural network system was improved using 
this augmentation technique. this scheme achieved 
an accuracy of about 93.41% for the coarse-grained 
dataset. 
In [44], the authors have presented a system for in-
creasing the generalization capability of neural net-
work structure using two-stage technique. In this 
technique, the feature boundary of the neural net-

work structure was optimized. Also, the network was 
retrained to regularize the generated feature bound-
ary. In this way a two-level training was done to im-
prove the overall performance of the system.

3. Proposed Methodology
The activity diagram of the proposed methodology is 
shown in Figure 1. In the proposed methodology, the 
input video sequences belonging to various action 
classes are segmented in the temporal domain with a 
temporal length of n. From the temporal segments m 
key cuboids are obtained. These regions are obtained 
based on the locations having maximum variation in 
orientation. 
A novel descriptor called Modified Histogram of Ori-
ented Gradient (MHOG) features are then obtained 
from the key cuboids. These features are then subject-
ed to dimensionality reduction using principle com-
ponent analysis (PCA). Finally, the features obtained 
from all the action classes are used for the generation 
of a single shared dictionary. Using the shared dictio-
nary, classification is performed.

3.1. Identification of Key Cuboids

Using the input video sequences, temporal segmen-
tation is first done. Let  represent the length of each 
temporal segment. Each of these segments are then 
segmented into non-overlapping cuboids. Instead of 
extracting features from all the cuboids, in our work 
we have used only the key cuboids of action for the 
feature extraction. This is done to eliminate the re-
gions having minimal changes in order to create dis-
criminative features. Figure 2 shows how the tempo-
ral segmentation of action videos is performed.
From the segmented non-overlapping cuboids, the 
key cuboid is obtained using the following technique. 
The feature used for the identification of key cuboid 
is variance. For every cuboid, the variance along the 
temporal direction for every pixel in the first frame in 
the cuboid is computed. The sum of the variances for 
all the pixel locations in first frame is then computed. 
This gives the value of the total variance across each 
cuboid. The cuboids that have the highest  variance 
values are then selected as the key cuboids for the fea-
ture extraction.
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Figure 1
Swimlane Activity diagram for classification of human actions
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3.2. Extraction of Modified Histogram of 
Oriented Gradient (MHOG) Features
In this work, we employed Histogram of Oriented 
Gradient (HOG) features [7]. In our work we have 
selected the temporal length =16. Thus, the size of 
each cuboid is 24×24×16. To obtain the HOG features, 
these cuboids are stacked together in a horizontal 
manner to get a rectangular patch of size 24×384. 
HOG is formed using a cell of size 4×4. Every block 
has 4 such cells. These blocks are arranged in a 50% 
overlapping manner. 
Thus, the total number of blocks obtained for a patch 
size of 24×384 turns out to be 5×95=475. In HOG, 
each block is represented using 4 independent cells 
and each cell is represented with its 9 orientation 
bins. Each orientation bin represents a particular 
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feature extraction. This is done to eliminate the 
regions  having  minimal  changes  in  order  to 
create  discriminative  features.  Figure  2  shows 
how the temporal segmentation of action videos 
is performed. 
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From  the  segmented non‐overlapping  cuboids, 
the key cuboid  is obtained using  the  following 
technique.  The  feature  used  for  the 
identification  of  key  cuboid  is  variance.  For 
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feature extraction. This is done to eliminate the 
regions having minimal changes in order to 
create discriminative features. Figure 2 shows 
how the temporal segmentation of action videos 
is performed. 
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Step 3: 

To identify the optimum selection value 𝑠𝑠 out 
of 𝑞𝑞 eigen values, compute the following 

𝜏𝜏 = ∑ ������
∑ ���
���

× 100   (3) 

Here 𝜏𝜏 represents the threshold. 

Step 4: 

The transformation matrix is constructed as 

𝑻𝑻 = [𝝂𝝂𝟏𝟏,𝝂𝝂𝟐𝟐, . . . ,𝝂𝝂𝒔𝒔], 𝒔𝒔 < 𝒒𝒒  (4) 

Step 5: 

Dimensionality reduction is achieved using 

                                                   (5) 

3.4 Classification using Sparse 
Representation Modeling  
Let 𝑥𝑥� represent the input data matrix (dimension 
reduced feature matrix) of class 𝑗𝑗. The training 
data from all the classes are combined to form a 
single concatenated data matrix using 𝑋𝑋 =
{𝑥𝑥�}, 𝑗𝑗 = 1,2, . . . ,𝐶𝐶 , where 𝐶𝐶  refers to the total 
number of action classes. The input data matrix is 
trained to form a single shared dictionary using 
k-singular value decomposition (K-SVD) 
algorithm [2]. This algorithm is a generalized 
version of k-means clustering algorithm. It 
alternated between the dictionary update step 
and the sparse coding step. K-SVD algorithm 
establishes the representation of a single in the 
form if an over-complete dictionary 𝜓𝜓  with a 
dictionary length 𝐾𝐾. The sparse coding step in K-
SVD is based on the optimization of the 
following problem: 

      

2

0 2
,

arg min . .
i

i i i
D

s t x


   
   (6) 

In the above equation, 𝛾𝛾 refers to the reconstruction 
error. Find the solution for the above equation is an 
NP hard problem [3]. Hence, orthogonal Matching 
Pursuit (OMP) algorithm [4] which is a greedy 
optimization algorithm is used for solving the 
above equation. This algorithm chooses an optimal 

parameter 𝛼𝛼� using the dictionary 𝜓𝜓 that produces 
a minimal residual error 𝛾𝛾. 

Using training data of each class  , calculate the 
training sparse coefficient matrix   using OMP 
algorithm. Then, the training sparse histogram 
vector   of each class is formed. Then, the test 
sparse coefficient matrix is calculated using test 
data   using OMP. The test sparse histogram vector 
of each class is then formed. The Manhattan 
distance between the training sparse histogram 
vector and test sparse histogram vector is then 
calculated. The Pearson’s Correlation between the 
training sparse histogram vector and test sparse is 
calculated using which the action label is identified 
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� ]. 
 Form the training sparse histogram vector 𝐻𝐻� ∈

𝜓�×� of each class using 𝐻𝐻� = ∑ 𝑎𝑎��
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��� . It can be 
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Here τ represents the threshold.
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Dimensionality reduction is achieved using
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3.4. Classification Using Sparse 
Representation Modeling 
Let xj represent the input data matrix (dimension re-
duced feature matrix) of class j. The training data from 
all the classes are combined to form a single concate-
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coding step. K-SVD algorithm establishes the repre-
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the following problem:
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. (6)

In the above equation, y refers to the reconstruction 
error. Find the solution for the above equation is an 
NP hard problem [3]. Hence, orthogonal Matching 
Pursuit (OMP) algorithm [4] which is a greedy opti-
mization algorithm is used for solving the above equa-
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Then, the training sparse histogram vector   of each 
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sparse histogram vector of each class is then formed. 
The Manhattan distance between the training sparse 
histogram vector and test sparse histogram vector is 
then calculated. The Pearson’s Correlation between 
the training sparse histogram vector and test sparse 
is calculated using which the action label is identified
Algorithm: Proposed Sparse Representation Model-
ing based Action Recognition (SRMAR) Algorithm 
Input:
Data matrix of training video xj ∈ Rs×nj) 
Data matrix of test video xt 
Output:
Action label 
Steps:
 _ Concatenate the data matrix of training video using 

X = {xj}, j = 1, 2, …, C
 _ From the concatenated training data matrix X , 

generate the over complete dictionary 

 

 

Step 3: 

To identify the optimum selection value 𝑠𝑠 out 
of 𝑞𝑞 eigen values, compute the following 

𝜏𝜏 = ∑ ������
∑ ���
���

× 100   (3) 

Here 𝜏𝜏 represents the threshold. 

Step 4: 

The transformation matrix is constructed as 

𝑻𝑻 = [𝝂𝝂𝟏𝟏,𝝂𝝂𝟐𝟐, . . . ,𝝂𝝂𝒔𝒔], 𝒔𝒔 < 𝒒𝒒  (4) 

Step 5: 

Dimensionality reduction is achieved using 

                                                   (5) 

3.4 Classification using Sparse 
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data from all the classes are combined to form a 
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{𝑥𝑥�}, 𝑗𝑗 = 1,2, . . . ,𝐶𝐶 , where 𝐶𝐶  refers to the total 
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trained to form a single shared dictionary using 
k-singular value decomposition (K-SVD) 
algorithm [2]. This algorithm is a generalized 
version of k-means clustering algorithm. It 
alternated between the dictionary update step 
and the sparse coding step. K-SVD algorithm 
establishes the representation of a single in the 
form if an over-complete dictionary 𝜓𝜓  with a 
dictionary length 𝐾𝐾. The sparse coding step in K-
SVD is based on the optimization of the 
following problem: 
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In the above equation, 𝛾𝛾 refers to the reconstruction 
error. Find the solution for the above equation is an 
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optimization algorithm is used for solving the 
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parameter 𝛼𝛼� using the dictionary 𝜓𝜓 that produces 
a minimal residual error 𝛾𝛾. 

Using training data of each class  , calculate the 
training sparse coefficient matrix   using OMP 
algorithm. Then, the training sparse histogram 
vector   of each class is formed. Then, the test 
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data from all the classes are combined to form a 
single concatenated data matrix using 𝑋𝑋 =
{𝑥𝑥�}, 𝑗𝑗 = 1,2, . . . ,𝐶𝐶 , where 𝐶𝐶  refers to the total 
number of action classes. The input data matrix is 
trained to form a single shared dictionary using 
k-singular value decomposition (K-SVD) 
algorithm [2]. This algorithm is a generalized 
version of k-means clustering algorithm. It 
alternated between the dictionary update step 
and the sparse coding step. K-SVD algorithm 
establishes the representation of a single in the 
form if an over-complete dictionary 𝜓𝜓  with a 
dictionary length 𝐾𝐾. The sparse coding step in K-
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In the above equation, 𝛾𝛾 refers to the reconstruction 
error. Find the solution for the above equation is an 
NP hard problem [3]. Hence, orthogonal Matching 
Pursuit (OMP) algorithm [4] which is a greedy 
optimization algorithm is used for solving the 
above equation. This algorithm chooses an optimal 

parameter 𝛼𝛼� using the dictionary 𝜓𝜓 that produces 
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In the above equation, 𝛾𝛾 refers to the reconstruction 
error. Find the solution for the above equation is an 
NP hard problem [3]. Hence, orthogonal Matching 
Pursuit (OMP) algorithm [4] which is a greedy 
optimization algorithm is used for solving the 
above equation. This algorithm chooses an optimal 

parameter 𝛼𝛼� using the dictionary 𝜓𝜓 that produces 
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In the above equation, 𝛾𝛾 refers to the reconstruction 
error. Find the solution for the above equation is an 
NP hard problem [3]. Hence, orthogonal Matching 
Pursuit (OMP) algorithm [4] which is a greedy 
optimization algorithm is used for solving the 
above equation. This algorithm chooses an optimal 

parameter 𝛼𝛼� using the dictionary 𝜓𝜓 that produces 
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The human actions such as walking, jogging, 
running, boxing and waving are identified using 
the Jaccard distance between probability density 
functions for the various dataset. Let X represent 
the input data matrix (dimension reduced feature 
matrix) of class 𝑗𝑗  .  where 𝑋𝑋 = {𝑥𝑥�}, 𝑗𝑗 = 1,2, . . . ,𝐶𝐶  , 
where 𝐶𝐶 refers to the total number of action classes.  

The probability density function is    
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K is the kernel used in the probability density 
function and h is the flattening parameter 
which is a Gaussian function for the feature 
set. 

 

4 Results and Discussions 

We have evaluated the proposed framework 
using three publicly available datasets namely 
the KTH dataset [25], Olympic dataset [27] and 
the Hollywood dataset [5]. Simulations were 
performed using MATLAB 12b in Intel Core i3 
processor with 4GB RAM.  

The value of reconstruction error 𝛾𝛾  and 
dictionary size  K  was chosen to be 0.01 and 
200 respectively in our work. Three datasets 
were used for analysis namely, KTH, Olympic 
and Hollywood datasets. The number of classes    

was 6, 16 and 32 for the KTH, Olympic and 
Hollywood dataset respectively. 

4.1 Dataset Description 

4.1.1 KTH Dataset: 

This dataset comprises of 2391 video sequences. 
It includes 6 different human actions. The 
actions comprise of walking, jogging, running, 
boxing, waving and clapping. Sample frame 
from each action in KTH dataset is shown in 
Appendix A. All the videos were captured with 
homogeneous background. Static camera was 
used for capturing all the sequences. The frame 
rate of the camera was 25fps. The special 
resolution of the videos was 160×120. 

 

4.1.2 Olympic Dataset: 

The Olympic dataset has 783 video sequences 
involving 16 different sport-based activities. It 
contains the video samples of different athletes 
performing sporting actions. Sample of each 
action is shown in Appendix B. All these 
sequences were obtained from you tube. It 
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include answer phone, get out of car, hand shake, 
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These actions were selected from unconstrained 
videos such as in feature films, sitcoms, or news 
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These actions were automatically selected from 
movies based on the movie scripts. The movie 
scripts contain text description like the scene, 
dialogs, characters etc 
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4. Results and Discussions
We have evaluated the proposed framework using 
three publicly available datasets namely the KTH 
dataset [25], Olympic dataset [27] and the Hollywood 
dataset [5]. Simulations were performed using MAT-
LAB 12b in Intel Core i3 processor with 4GB RAM. 
The value of reconstruction error and dictionary size  
K was chosen to be 0.01 and 200, respectively in our 
work. Three datasets were used for analysis namely, 
KTH, Olympic and Hollywood datasets. The number 
of classes was 6, 16 and 32 for the KTH, Olympic and 
Hollywood dataset, respectively.

4.1. Dataset Description
4.1.1 KTH Dataset:
This dataset comprises of 2391 video sequences. 
It includes 6 different human actions. The actions 
comprise of walking, jogging, running, boxing, wav-
ing and clapping. Sample frame from each action in 
KTH dataset is shown in Appendix A. All the videos 
were captured with homogeneous background. Static 
camera was used for capturing all the sequences. The 
frame rate of the camera was 25fps. The special reso-
lution of the videos was 160×120.

4.1.2. Olympic Dataset:
The Olympic dataset has 783 video sequences involv-
ing 16 different sport-based activities. It contains the 
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video samples of different athletes performing sport-
ing actions. Sample of each action is shown in Appen-
dix B. All these sequences were obtained from you 
tube. It included actions like high jump, long jump, 
triple jump, pole vault, discus, hammer, javelin, shot 
put, basket-ball lay-up, bowling, tennis serve, plat-
form, springboard, snatch, clean jerk and vault.

4.1.3. Hollywood Dataset:
The Hollywood dataset involves movie clips from 32 
different movies. It has a total of 8 different actions. 
A sample frame showing each action is shown in Ap-
pendix C. The actions include answer phone, get out 
of car, hand shake, hug person, kiss, sit down, sit up 
and stand up. These actions were selected from un-
constrained videos such as in feature films, sitcoms, 
or news segments. 
These actions were automatically selected from movies 
based on the movie scripts. The movie scripts contain 
text description like the scene, dialogs, characters, etc.

Table 1
Comparison of overall accuracy for KTH dataset

References Methods Classifier used Dataset used Overall accuracy (%)

Laptev et al. [19] Bag-of-features SVM KTH 91.80

Niables et al. [25] Temporal structure modeling Latent SVM KTH 91.30

Sun et al. [30] Slow feature analysis Deep learning KTH 93.10

Castrodad et al. [6] Deep layer model learning Sparse representation KTH 96.30

Alfaro et al. [3] Spatio-temporal dictionaries Sparse representation KTH 95.70

Jaouedi et al. [15] Gaussian Mixture Model Deep Learning KTH 96.30

Proposed SRMAR SRMAR Sparse representation KTH 97.61

4.2. Performance Evaluation
To evaluate the classification performance, metrics 
like overall accuracy, recall, precision, specificity and 
F-score were employed [18].
Table 1 shows the comparison of accuracy for the 
KTH dataset with other state-of-the-art techniques 
proposed in the literature. From Table 1 we clearly in-
fer that the proposed machine learning classification 
algorithm based on sparse representation produces 
the highest classification accuracy. It reaches about 
97.61%. This shows the reliability of the proposed 
classifier
Table 2 shows the comparison of accuracy for the 
Olympic dataset with other state-of-the-art tech-
niques proposed in the literature. From Table 2 we 
clearly infer that the proposed machine learning clas-
sification algorithm i.e., SRMAR produces the highest 
classification accuracy. It reaches about 90.76%. This 
shows the credibility of the proposed classifier.

Table 2
Comparison of overall accuracy for Olympic dataset

References Methods Classifier used Dataset used Overall accuracy (%)

Niebles et al. [25] Temporal structure modelling Latent SVM Olympic 72.10

Liu et al. [22] Data-driven attributes Latent SVM Olympic 74.40

Jiang et al. [17] Trajectory motion modelling SVM Olympic 80.60

Alfaro et al. [3] Spatio-temporal dictionaries Sparse Representation Olympic 81.30

Gaidon et al. [9] Motion hierarchies Cluster tree Olympic 85.00

Proposed SRMAR SRMAR Sparse representation Olympic 90.76
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Table 3 shows the comparison of accuracy for the 
Hollywood dataset with other state-of-the-art tech-
niques proposed in the literature. From Table 3 we 
clearly infer that the proposed 
SRMAR classification algorithm produces the high-
est classification accuracy. It reaches about 73.05%. 
This shows the excellence of the proposed classifier.
To further depict the performance of the proposed 
machine learning framework, we have compared the 
results produced by the proposed algorithm with the 
traditional classification algorithms like K-NN and 
SVM. Evaluation was performed using the commonly 
used KTH dataset. Figure 4 shows the comparison of 

Table 3
Comparison of overall accuracy for Hollywood dataset

References Methods Classifier used Dataset used Overall accuracy (%)

Laptev et al. [19] Bag-of-features SVM Hollywood 38.40

Wang et al. [34] Spatio-temporal modeling SVM Hollywood 47.40

Wu et al. [36] Lagrangian particle advection SVM Hollywood 47.60

Sun et al. [30] Slow feature analysis Deep learning Hollywood 48.10

Zhou et al. [45] Split-and-merge algorithm SVM Hollywood 50.50

Proposed SRMAR SRMAR Sparse representation Hollywood 73.05

Figure 4 
Specificity Measure of Proposed SRMAR for Human Actions

Figure 5 
Precision Measure of Proposed SRMAR for Human Actions 

specificity. From Figure 4, it is obviously seen that the 
proposed algorithm produces highest values of speci-
ficity for all the individual actions. The highest speci-
ficity achieved is 99.99% for the action Boxing. 
Figure 5 shows the comparison of precision. From 
Figure 8, it is obviously seen that the proposed algo-
rithm produces highest values of precision for all the 
individual actions. The highest precision achieved is 
99.99% again for the action Boxing
Figure 6 shows the comparison of recall. From the Fig-
ure 6 it is obviously seen that the proposed algorithm 
produces highest values of recall for all the individual 
actions. The highest recall achieved is 98.87% for the 
action Jogging.
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Figure 6 
Recall Measure of Proposed SRMAR for Human Actions

Figure 7 
F-Score Measure of Proposed SRMAR for Human Actions

Figure 7 shows the comparison of F-score. Obviously 
shows that the proposed algorithm produces highest 
values of F-score for all the individual actions. The high-
est F-score achieved is 98.29% for the action Boxing.

Table 5. We see that our classifier has attained very 
good performance in terms of almost all the actions. 
The highest value of specificity attained is 99.65% for 
the action Pole Vault. The highest value of precision 
attained is 95.74% for the action Pole Vault. The high-
est value of recall attained is 97.97% for the action 
Discus. And, the highest value of F-score attained is 
95.71% for the action Javelin.

Table 4
Performance metrics for each action in KTH dataset

Actions Specificity 
(%)

Precision
(%)

Recall
(%)

F-score
(%)

Walking 99.55652 97.87224 97.87224 97.86724

Jogging 99.12279 95.65207 98.87629 97.23246

Running 99.5575 97.84936 97.84936 97.84436

Boxing 99.99998 99.99989 96.66656 98.29998

Waving 99.56894 97.49988 96.29618 96.88929

Table 5
Performance metrics for each action in Olympic dataset

Actions Specificity 
(%)

Precision
(%)

Recall
(%)

F-score
(%)

High jump 99.56634 94.68075 86.40768 90.35025

Long jump 99.2119 91.5887 85.96484 88.68271

Triple 
jump 99.04097 90.3508 94.49533 92.3716

Pole vault 99.65546 95.74458 94.73674 95.23299

Discus 99.13569 90.65412 97.9797 94.16967

Hammer 99.28379 93.93932 89.20857 91.50785

Javelin 99.29203 93.89306 97.61897 95.71477

Shot put 98.9547 86.66657 72.22216 78.78284

Basketball 
lay up 98.80749 84.26957 91.4633 87.7142

Snatch 98.70129 86.23845 93.06921 89.51873

Clean jerk 98.89923 84.14624 91.99988 87.89299

Vault 99.39182 93.45786 95.238 94.33453

The performance metric values achieved for each 
individual action in the KTH dataset is shown in Ta-
ble 4. We see that our classifier has attained very good 
performance in terms of almost all the actions.
The performance metric values achieved for each 
individual action in the Olympic dataset is shown in 

The performance metric values achieved for each in-
dividual action in the Hollywood dataset is shown in 
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Table 6. We see that our classifier has attained very 
good performance in terms of almost all the actions.

Table 6
Performance metrics for each action in Hollywood dataset 

Actions Specificity 
(%)

Precision
(%)

Recall
(%)

F-score
(%)

Answer 
phone 96.18207 77.39124 87.25482 82.02259

Get out of 
car 96.57141 74.99992 86.74688 80.44186

Handshake 92.65535 50.94335 71.9999 59.66359

Hug person 96.64334 68.42096 76.47048 72.21714

Kiss 93.22032 63.33328 56.71638 59.83749

Sit down 97.12642 74.35888 66.66659 70.29796

Stand up 97.12989 79.78715 61.98342 69.76246

Figure 9
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Figure 8 shows the bar graph that depicts the per-
formance metric values for each action in the KTH 
dataset. The excellence of the proposed framework is 
clearly seen from the bar graph.

Figure 9 shows the bar graph that depicts the perfor-
mance metric values for each action in the Olympic 
dataset. The performance of classification of the pro-
posed framework is clearly seen from the bar graph

Figure 10 shows the bar graph that depicts the perfor-
mance metric values for each action in the Hollywood 
dataset. We clearly infer that our classifier has at-
tained very good performance in term1s of almost all 
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Figure 10
Evaluation of Human Action Classifier  for Hollywood  dataset
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Table 7 

Average Performance Measures of Human Action Classifier 
Action Dataset Specificity (%) Precision (%) Recall (%) F-Score (%) 

KTH 99.56115 97.77469 97.51213 97.62667 

Olympic 99.16173 90.46917 90.86703 90.52276 

Hollywood 95.64697 69.89068 72.54835 70.60616 

Average % 98.12328 86.04485 86.97584 86.25186 

 

The average performance of the human action 
classification are listed in Table 7.  The data set 
used in the classification model is imbalanced.  
The measure G-mean evaluates the proposed 
SRMAR model on imbalanced data sets and 
indicates the classification performance. The 

geometric mean of the human actions 
classification is shown in Table 8. 

G-mean1= SQRT(Precision × Recall) 
G-mean2= SQRT(Recall× TN)  

 
  Table 8 

  Geometric mean of SRMAR model using Sparse Representation 

Table 7
Average Performance Measures of Human Action Classifier

Action Dataset Specificity (%) Precision (%) Recall (%) F-Score (%)

KTH 99.56115 97.77469 97.51213 97.62667

Olympic 99.16173 90.46917 90.86703 90.52276

Hollywood 95.64697 69.89068 72.54835 70.60616

Average % 98.12328 86.04485 86.97584 86.25186

the actions. The highest value of specificity attained 
is 99.70% for the action Stand up. The highest value 
of precision attained is 97.95% for the action Stand 
up. The highest value of recall attained is 87.25% for 
the action Answer phone. And, the highest value of 
F-score attained is 90.99% for the action Stand up.
The average performance of the human action clas-
sification are listed in Table 7. The data set used in 
the classification model is imbalanced. The measure 
G-mean evaluates the proposed SRMAR model on 
imbalanced data sets and indicates the classification 
performance. The geometric mean of the human ac-
tions classification is shown in Table 8.
G-mean1= SQRT(Precision × Recall)
G-mean2= SQRT(Recall× TN) 

The statistical hypothesis test Wilcoxon signed-rank 
test is used to compare two related samples. Calculate 
the test statistic 

  

S.No Actions 
Specificity 

(%) 

Precision 

(%) 
Recall (%) 

F-Score 

(%) 
TN G-Mean 1 G-Mean 2 

1.  Walking 100 98 98 98 97 98 98 

2.  Jogging 99 96 99 97 98 97 99 

3.  Running 100 98 98 98 92 98 95 

4.  Boxing 100 100 97 98 95 98 96 

5.  Waving 100 97 96 97 88 97 92 

6.  High jump 100 95 86 90 90 90 88 

7.  Long jump 99 92 86 89 80 89 83 

8.  Triple jump 99 90 94 92 99 92 97 

9.  Pole vault 100 96 95 95 96 95 95 

10.  Discus 99 91 98 94 100 94 99 

11.  Hammer 99 94 89 92 95 92 92 

12.  Javelin 99 94 98 96 93 96 95 

13.  Shot put 99 87 72 79 95 79 83 

14.  Basketball lay 

up 
99 84 91 88 93 88 92 

15.  Snatch 99 86 93 90 91 90 92 

16.  Clean jerk 99 84 92 88 94 88 93 

17.  Vault 99 93 95 94 99 94 97 

18.  Answer phone 96 77 87 82 94 82 91 

19.  Get out of car 97 75 87 80 92 81 89 

20.  Handshake 93 51 72 60 96 61 83 

21.  Hug person 97 68 76 72 99 72 87 

22.  Kiss 93 63 57 60 99 60 75 

23.  Sit down 97 74 67 70 95 70 80 

24.  Stand up 97 80 62 70 87 70 74 

 Average % 98 86 87 86 94 86 90 

 
 
The statistical hypothesis test Wilcoxon signed-
rank test is used to compare two related samples. 
Calculate the test statistic   
sgn is the sign function and Ri denote the rank.  The hypothesis is “There is no significant 

difference between two means”. The difference 
between the geometric means are listed in Table 9 

sgn is the sign function and Ri denote the rank. 
The hypothesis is “There is no significant difference 
between two means”. The difference between the geo-
metric means are listed in Table 9
The hypothesis is “There is no significant difference 
between two means”. The difference between the geo-
metric means are listed in Table 8.
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Table 8
Geometric mean of SRMAR model using Sparse 
Representation
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1 Walking 100 98 98 98 97 98 98

2 Jogging 99 96 99 97 98 97 99

3 Running 100 98 98 98 92 98 95

4 Boxing 100 100 97 98 95 98 96

5 Waving 100 97 96 97 88 97 92

6 High jump 100 95 86 90 90 90 88

7 Long jump 99 92 86 89 80 89 83

8 Triple jump 99 90 94 92 99 92 97

9 Pole vault 100 96 95 95 96 95 95

10 Discus 99 91 98 94 100 94 99

11 Hammer 99 94 89 92 95 92 92

12 Javelin 99 94 98 96 93 96 95

13 Shot put 99 87 72 79 95 79 83

14 Basketball lay up 99 84 91 88 93 88 92

15 Snatch 99 86 93 90 91 90 92

16 Clean jerk 99 84 92 88 94 88 93

17 Vault 99 93 95 94 99 94 97

18 Answer phone 96 77 87 82 94 82 91

19 Get out of car 97 75 87 80 92 81 89

20 Handshake 93 51 72 60 96 61 83

21 Hug person 97 68 76 72 99 72 87

22 Kiss 93 63 57 60 99 60 75

23 Sit down 97 74 67 70 95 70 80

24 Stand up 97 80 62 70 87 70 74

Average % 98 86 87 86 94 86 90

Table 9
Difference between Geometric means of SRMAR model 
using Sparse Representation 

i Actions G-Mean 1 G-Mean 2
G-Mean 2 - G-Mean 1

sgn abs

1 Walking 98 98 0

2 Jogging 97 99 -1 2

3 Running 98 95 1 3

4 Boxing 98 96 1 2

5 Waving 97 92 1 5

6 High jump 90 88 -1 2

7 Long jump 89 83 1 6

8 Triple 
jump 92 97 -1 5

9 Pole vault 95 95 0

10 Discus 94 99 -1 5

11 Hammer 92 92 0

12 Javelin 96 95 1 1

13 Shot put 79 83 -1 4

14 Basketball 
lay up 88 92 -1 4

15 Snatch 90 92 -1 2

16 Clean jerk 88 93 -1 5

17 Vault 94 97 -1 3

18 Answer 
phone 82 91 -1 3

19 Get out of 
car 81 89 -1 9

20 Handshake 61 83 -1 22

21 Hug 
person 72 87 -1 15

22 Kiss 60 75 -1 15

23 Sit down 70 80 -1 10

24 Sir up 70 74 -1 4
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The above action sequences are arranged in order by 
absolute difference is shown in Table 10.
From the above table, Wilcoxon signed-rank test   = 
25.5. Wcrit = 89. Hence |W| < Wcrit; the hypothesis is 
rejected. So there is two geometric means are same 
for human actions pair. From the experimental analy-
sis we infer that, this system achieved a high specific-
ity of about 99.52%, 99.16% and 96.15% for the KTH 
dataset, Olympic dataset and the Hollywood datasets, 
respectively. 
Similarly, the proposed framework attained very good 
precision of 97.64%, 90.46% and 73.39% for the KTH 
dataset, Olympic dataset and the Hollywood datasets, 
respectively. Also, the average value of recall achieved 
was 97.58%, 90.86% and 74.09% for the KTH data-
set, Olympic dataset and the Hollywood datasets, 
respectively. Moreover, the average value of F-score 
achieved was 97.59%, 90.52% and 73.15% for the KTH 
dataset, Olympic dataset and the Hollywood datasets, 
respectively.

5. Conclusion and Future Work
In this work we presented a novel scheme for human 
action recognition using video sequences based on 
sparse representation theory. Here, initially the vid-
eos were partitioned into several temporal segments. 
From the temporal segments, the key-cuboids of in-
terest were then obtained. From the key-cuboids, His-
togram of Oriented Gradient (HOG) features were ex-
tracted. The dimension of these features was reduced 
using PCA technique. 
Finally, classification was performed using the pro-
posed Sparse Representation Modeling based Ac-
tion Recognition (SRMAR) Algorithm. This system 
achieved a high accuracy of about 97.61%, 90.76% 
and 73.05% for the KTH dataset, Olympic data-
set and the Hollywood datasets, respectively. The 
proposed system was compared with the state-of-
the-art action recognition works in the literature. 
In addition, we also compared our work with the 
existing traditional classifiers like k-NN and SVM. 
It was shown that the proposed classifier produces 
incredible results.

Table 10
Ranking of Geometric means of SRMAR model using 
Sparse Representation

i Actions sgn abs Ri sgn.Ri

1 Walking -  0 - -

9 Pole vault - 0 - -

11 Hammer -  0 - -

12 Javelin 1 1 4 4

2 Jogging 1 2 6.5 6.5

4 Boxing 1 2 6.5 6.5

6 High jump 1 2 6.5 6.5

15 Snatch 1 2 6.5 6.5

3 Running 1 3 10 10

17 Vault -1 3 10 -10

18 Answer 
phone -1 3 10 -30

13 Shot put -1 4 13 -13

14 Basketball 
lay up 1 4 13 13

21 Sir up -1 4 13 13

5 Waving 1 5 16.5 16.5

8 Triple jump -1 5 16.5 -5

10 Discus -1 5 16.5 -16.5

16 Clean jerk 1 5 16.5 16.5

7 Long jump 1 6 19 19

19 Get out of 
car -1 9 20 -20

23 Sit down -1 10 21 -21

21 Hug person 1 15 22.5 22.5

22 Kiss 1 15 22.5 22.5

20 Handshake -1 22 24 -22
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Appendix A
Sample frames from KTH dataset
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