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Owing to the advent and rapid development of Internet communication technology, network security proto-
cols with cryptography as their core have gradually become an important means of ensuring secure commu-
nications. Among numerous security protocols, certificate authentication is a common method of identity au-
thentication, and hostname verification is a critical but easily neglected process in certificate authentication. 
Hostname verification validates the identity of a remote target by checking whether the hostname of the com-
munication partner matches any name in the X.509 certificate. Notably, errors in hostname verification may 
cause security problems with regard to identity authentication. In this study, we use a model-learning method 
to conduct security testing for hostname verification in internet protocol security (IPsec). This method can 
analyze the problems entailed in implementing hostname verification in IPsec by effectively inferring the de-
terministic finite automaton model that can describe the matching situation between the certificate subject 
name and the hostname for different rules. We analyze two popular IPsec implementations, Strongswan and 
Libreswan, and find five violations. We use some of these violations to conduct actual attack tests on the IP-
sec implementation. The results show that under certain conditions, attackers can use these flaws to carry out 
identity impersonation attacks and man-in-the-middle attacks.
KEYWORDS: IPsec hostname verification, state machine inference, protocol security analysis, model learning, 
identity impersonation attack.
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1. Introduction
Owing to the rapid development of network com-
munication technology and the continuous upgrad-
ing of the Internet industry, Internet products and 
services have gradually become an important part 
of people’s daily lives. However, with the gradual im-
provements in relevant technologies, network secu-
rity problems, such as data leakage, high-risk vulner-
abilities, and network attacks, are also threatening 
individual privacy, social stability, and even national 
security. As society’s dependence on networks con-
tinues to increase, ensuring communication secu-
rity has become an important problem that must be 
solved urgently.
In network security communication, a common 
method to verify user identity is through digital cer-
tificates entailing the application of the public-key 
cryptographic algorithm. A trusted third party issues 
a certificate. One party in the communication uses 
its own private key to sign the message, and the other 
party uses the corresponding public key to verify the 
message. The subject name corresponding to the cer-
tificate is compared with the user identity to ensure 
that the identity of the certificate provider is legal.
As one of the most important security protocols, 
internet protocol security (IPsec) is widely used in 
virtual private network (VPN) and IPv6 services, 
aiming to provide users with secure end-to-end 
communications. In view of the risks that the inter-
net protocol (IP) layer may face, IPsec provides the 
three security services of identity authentication, 
confidentiality, and integrity (including data-source 
authentication and integrity verification) and re-
sists replay attacks. The communication process of 
IPsec is divided into two main stages: negotiation 
and security data transmission. In the negotiation 
phase, the two communicating parties perform the 
negotiation of cryptographic parameters, identity 
authentication, and session-key generation. In the 
subsequent secure data transmission, the negotiat-
ed cryptographic algorithm and session key are used 
to protect the interactive data. Among the multiple 
identity authentication methods defined by IPsec, 
certificate authentication is a recommended meth-
od. In the certificate authentication mode, the com-
munication party not only uses the public key pro-
vided by the other party to verify its signed message, 

but also matches the hostname of the other party 
with the subject name in the public-key certificate 
to validate the ownership of the public-key certifi-
cate and the identity of the other party. In addition, 
the search and selection of security policy database 
(SPD) policies rely on hostname verification in IP-
sec. Therefore, the inaccuracy of hostname verifica-
tion may hinder the security of IPsec authentication. 
Because of numerous special circumstances, host-
name verification is a complicated process. For ex-
ample, in hostname matching, multiple identity 
types (IP, distinguished name (DN), fully qualified 
domain name (FQDN), email, etc.) and various spe-
cial aspects (common name/alternate name match-
ing order, wildcards, null bytes, etc.) must be con-
sidered. Although hostname verification is critical 
to protocol security, a majority of the work related 
to certificate verification entails adversarial tests 
on the secure socket layer/transport layer securi-
ty (SSL/TLS) certificates, and there are only a few 
studies involving IPsec hostname verification tests. 
Hostname verification is essentially a string-match-
ing problem and is very similar to regular-expres-
sion matching under complex conditions. For the 
subject name of a given certificate, all the hostnames 
that match it can be regarded as a specific general 
language family or matching set. Therefore, in this 
study, we use a model-learning method to infer the 
deterministic finite automata (DFA) model, which 
can describe the matching situation between the 
certificate subject name and the hostname in differ-
ent rules effectively; further, it can find the imple-
mentation problem of IPsec hostname verification 
by analyzing the DFA model.
Using this method, we analyze the two popular IP-
sec implementations, Strongswan and Libreswan, 
and find five violations: 1) incorrect handling of 
space characters in ID_DER_ASN1_DN type IDs, 
2) incorrect handling of case-insensitive strings in 
ID_DER_ASN1_DN type IDs, 3) incorrect matching 
of wildcards and substrings in ID_FQDN type IDs, 4) 
incorrect matching of substrings in ID_USER_FQDN 
type IDs, and 5) unsupported null-byte certificate 
matching. We use the violations, 2) and 3), to conduct 
actual attack tests on the IPsec implementation. The 
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results show that when the legal private and certif-
icate chain are configured, attackers can use these 
flaws to carry out identity impersonation attacks and 
man-in-the-middle attacks.
The overall contributions of this study are summa-
rized as follows:
1 We designed and implemented the automated 

state machine inference of the implementation of 
hostname verification for IPsec. To the best of our 
knowledge, there have only been a few detailed and 
relevant analyses on IPsec hostname verification 
before;

2 We employed this method to analyze two IPsec 
hostname verification implementations and found 
five violations;

3 We used some of the detected flaws to implement 
identity impersonation attacks and man-in-the-
middle attacks, thereby demonstrating that our 
work contributes to finding security vulnerabilities.

The remainder of this article is organized as follows: 
related work is introduced in the Section 2; back-
ground and basic knowledge are explained in the 
Section 3. In Section 4, we discuss the principle and 
framework of the model-learning method. In Sec-
tion 5, we present the analysis results obtained using 
this method and the verification of the actual attack. 
Finally, we provide the conclusions of this study in 
Section 6.

2. Related Work
In 1998, Harkins and Carrell [12] proposed the IKEv1 
protocol based on ISAKMP, Oakley, and SKEME. 
Since then, IPsec based on IKEv1, authentication 
header (AH), and encapsulating packet (ESP) has 
attracted increasing attention from researchers. In 
2005, Kaufman [20] proposed IKEv2, which caused 
a greater wave of research on internet key exchange 
(IKE) protocol. In 2006, Eronen and Hoffman [8] 
described the establishment of IKEv2 interoperable 
implementations (request for comments RFC 4718). 
In September 2010, Kaufman et al. [18] proposed an 
updated version of IKEv2 (RFC 5996) based on RFC 
4718, and it contained a detailed description of RFC 
4718. In October 2014, the updated IKEv2 (RFC 
7296) was standardized to achieve better security 
and accuracy [19].

In view of the importance of IPsec, in recent years, 
researchers have conducted a series of security anal-
yses on IPsec, including formal analysis, security 
proof, model checking, fuzzing, symbolic execution, 
and state machine inference. In terms of protocol 
documents, Cremers [6] conducted a large-scale for-
mal analysis of IKEv1 and IKEv2 protocols and re-
ported that IKEv1 and IKEv2 cannot satisfy strong 
authentication and are vulnerable to reflection at-
tacks. Patel and Jinwala [29] used the colored Petri 
net model to conduct automatic formal analysis of 
denial of service (DoS) attacks on the IKEv2 protocol 
and stated that the IKEv2 protocol is vulnerable to 
DoS attacks owing to the use of expensive encryption 
operations to derive the shared key and transmit it 
securely. Cheng et al. [4] conducted a formal analysis 
of the IKEv3 draft and found that the IKEv3 protocol 
is vulnerable to reflection attacks and DoS attacks. 
Nussbaumer [28] used EasyCrypt to evaluate the 
security of the IKEv2 protocol and showed that the 
IKEv2 protocol has semantic security under the au-
thentication key exchange model. In terms of specific 
protocol implementations, Ninet et al. [26] used Spin 
to perform model checking on the IKEv2 protocol and 
pointed out that the reflection attack found in [6] was 
not applicable in practice; however, in another study, 
Ninet et al. [27] designed a deviation attack against 
IKEv2 that used the penultimate authentication flaw 
found in [6] to perform a DoS attack. Yang et al. [35] 
conducted a fuzzing test against the IKEv1 protocol 
and designed a tool, IKEProFuzzer. They construct-
ed test cases by modifying specific fields and designed 
corresponding exception detectors for different ap-
plications. Finally, five new vulnerabilities were dis-
covered in six routers and applications. Using a sim-
ilar method, Cui et al. [7] conducted a fuzz test on an 
implementation of Cisco ASA in the IKEv2 protocol 
and discovered security problems such as buffer over-
flow and DoS. Felsch et al. [10] proposed the princi-
ple of Bleichenbacher oracle attacks against IPsec, 
showing that it was sufficient to break all the certifi-
cate authentication schemes of the IKEv1 and IKEv2 
protocols, and discovered specific Bleichenbacher 
oracle attack vulnerabilities in four router firmware. 
Chau et al. [3] used symbolic execution technology to 
analyze 15 open-source implementations (including 
IPsec) of the PKCS#1 v1.5 signature verification code 
and found six semantic errors. They also identified 
that four corresponding implementations were vul-
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nerable to new variants of Bleichenbacher’s low-in-
dex RSA signature forgery. In a previous work [11], 
we combined model-learning and model-checking 
methods to analyze the execution logic of three IKEv2 
implementations. By analyzing the DFA model, we 
found three violations of the RFCs.
However, none of the aforementioned studies focused 
on the correctness of IPsec hostname matching. In 
contrast, a few studies have been conducted on host-
name matching in SSL/TLS protocol. Kaminsky et al. 
[17] summarized recent attacks on the SSL/TLS cer-
tificate authentication architecture, showing that in 
some hostname verification implementations, error 
handling of null characters embedded in X.509 certif-
icates can induce a certificate authority (CA) to issue 
valid leaf certificates with incorrect subject names. 
Fahl et al. [9] developed a tool for static analysis of 
Android code to detect whether the target implemen-
tation has problems such as accepting self-signed cer-
tificates or not verifying hostnames. They found that 
a large part of the application contains related flaws, 
which are vulnerable to man-in-the-middle attacks. 
Sounthiraraj et al. [33] improved the analysis technol-
ogy proposed in [9] and developed a tool called SMV 
hunter. The tool optimizes the static analysis source 
code function and adds dynamic testing, thereby im-
proving the detection of defects in error verification 
in basic TLS certificate. Sivakorn et al. [31] focused 
on the hostname verification process and developed a 
test tool named HVLearn based on the state-machine 
learning algorithm. They inferred the corresponding 
state machine model to find differences in the imple-
mentation of specific hostname verification. They 
found eight unique violations of RFC specifications in 
eight TLS implementations, some of which may allow 
man-in-the-middle attacks. Inspired by these works, 
in this study, we analyze the hostname verification 
module of IPsec.

3. Preliminaries
In this section, we introduce the basic framework and 
negotiation process of IPsec, fundamental structure 
of the X.509 digital certificate, types of IPsec identi-
fication that can be used, and relevant policy of IPsec 
hostname matching.

3.1. IPsec Negotiation Process
IPsec is a security protocol that runs on the IP lay-
er, and it can be used for end-to-end confidential 
communication. To mitigate the security risks that 
the IP layer may face, IPsec provides three security 
services: confidentiality, integrity verification, and 
identity authentication, and resists replay attacks. 
The IPsec process is divided into negotiation and 
communication phases. In the negotiation phase 
(IKE protocol), the communication parties negoti-
ate cryptographic parameters, identity authentica-
tion, and session key generation. In the subsequent 
secure communication (ESP or AH protocol), the 
negotiated cryptographic algorithm and session key 
are applied to protect the interactive data. Current-
ly, the IKE protocol has two versions, IKEv1 (1998) 
and IKEv2 (2005). Although the IKEv2 protocol is 
designed to officially phase out the IKEv1 version, 
most operating systems and network devices still 
support the configuration and use of both versions. 
The IKEv1 protocol contains four authentication 
methods: signature-based authentication, pub-
lic-key encryption, revised public-key encryption, 
and pre-shared-key-based authentication; the first 
three require digital certificate participation. The 
IKEv2 protocol omits two authentication methods 
based on public-key encryption and only retains the 
signature-based and pre-shared-key authentication.
Compared with pre-shared keys that are easy to leak 
or suffer from dictionary attacks, certificate authen-
tication has higher security; therefore, it is recom-
mended for use in various operating systems and 
communication devices. In the certificate authenti-
cation mode, one party in the communication uses 
its own private key to sign a specific message, and the 
other party uses the corresponding public key to veri-
fy the message. Both parties rely on the dependence of 
the public–private key pair to ensure authentication. 
In addition, in IPsec, both parties in communication 
need to verify the match between the hostname of the 
other party and the subject name in the public-key 
certificate to ensure the ownership of the public key 
and the legitimacy of the identity of the other party.
Figure 1 shows the communication flow of the digi-
tal signature authentication in IKEv2 protocol. The 
two parties in the communication first complete the 
negotiation of the IKE proposal (protocol version, 
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mation, such as rfc822Name, dNSName, uniformRe-
sourceIdentifier, and iPAddress. Each of these types 
has different restrictions on the format; for example, 
rfc822Name, dNSName, and uniformResourceIden-
tifier must be valid IA5String strings (a subset of AS-
CII strings), and the iPAddress must be encoded in a 
network byte order.
If the content of the “subject” item in the certificate 
is empty, the CA must put the SAN extension into the 
certificate and mark the extension as critical when 
issuing the certificate. When the “subject” entry in 
the certificate contains a non-empty DN name, the 
CA must mark the SAN as non-critical when issuing 
the certificate. For more specific X.509 naming rules, 
please refer to RFC4985 [30] and RFC5280 [5].

3.3. Identification Types of IPsec
In this subsection, we summarize the identification 
types of IPsec according to the relevant RFCs.
The birth and development of IPsec experienced 3 
stages: AH and ESP (RFC1825-1829, 1995), IKEv1 
(RFC2401-2412, 1998), and IKEv2 (RFC4301-4312, 
2005). Later, after the transition of RFC4718 (2006) 
and RFC5996 (2010), the updated version of IKEv2 
(RFC7296) was standardized in 2014, which has bet-
ter security and accuracy. In addition to these basic 
RFCs, there are numerous RFCs that supplement 
specific items, such as RFC2709, RFC3457, RFC4945, 
RFC5386, RFC6331, RFC7634, and RFC8229.
Given the identification and authentication prob-
lems that IPsec may face, RFC4301 [22] defines six 

IKE ID types: domain name system (DNS), distin-
guished name (DN), RFC822 (email format), IPv4, 
IPv6, and key ID. According to different encoding for-
mats, RFC4945 [24] specifically defines 11 different 
ID identifiers, corresponding to these six ID types. In 
addition, RFC4595 [25] proposed the ID_FC_NAME 
format applied to the fiber channel protocol, and 
RFC7619 [32] proposed the ID_NULL format. With 
the ID_ANY/ID_NONE type, the 14 ID identifier 
types are summarized in Table 1. 

Table 2 
Bindings of the identification payload to the contents of end-entity certificates and of identity information to policy in RFC 4945

ID type Support for send PKIX Attrib Cert matching SPD lookup rules

IP*_ADDR MUST support SubjAltName 
iPAddress

MUST match 
exactly

Must perform exact matching. Also, MAY 
perform substring or wildcard matches

FQDN MUST support SubjAltName 
dNSName

MUST match 
exactly

Must perform exact matching. Also, MAY 
perform substring or wildcard matches

USER_FQDN MUST support SubjAltName 
rfc822Name

MUST match 
exactly

Must perform exact matching. Also, MAY 
perform substring or wildcard matches

IP range MUST NOT n/a n/a n/a

DN MUST support Entire Subject, bit-
wise compare

MUST match 
exactly

MUST support lookup on any combination 
of C, CN, O, or OU

GN MUST NOT n/a n/a n/a

KEY_ID MUST NOT n/a n/a n/a

Table 1 
IPsec identification types and their assignment values

ID type Assignment value

ID_ANY/ID_NONE 0

ID_IPV4_ADDR 1

ID_FQDN 2

ID_USER_FQDN 3

ID_IPV4_ADDR_SUBNET 4

ID_IPV6_ADDR 5

ID_IPV6_ADDR_SUBNET 6

ID_IPV4_ADDR_RANGE 7

ID_IPV6_ADDR_RANGE 8

ID_DER_ASN1_DN 9

ID_DER_ASN1_GN 10

ID_KEY_ID 11

ID_FC_NAME 12

ID_NULL 13
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Regarding the use of these identity types, RFC4809 
[2] has a corresponding description, which requires 
that the IPsec implementation must support FQDN 
and RFC822 (e-mail format, IPv4 address, and IPv6 
address. In addition, RFC4945 [24] has made seven 
clear requirements for the usage of IPsec IDs, that 
is, the support and matching rules in Table 2 should 
be met.

3.4. IPsec Hostname Matching Policy
IPsec implementations MUST provide a means for an 
administrator to require a match between an asserted 
IKE ID and the subject name or subject alt name in a 
certificate [22]. Because implementations may use ID 
as a lookup key to determine which policy to use, all 
implementations MUST be especially careful to ver-
ify the truthfulness of the contents by verifying that 
they correspond to some keying material demonstra-
bly held by the peer [24]. In addition to domain name 
strings in the general sense, hostname verification in-
volves IP addresses and emails.
Based on the support and matching situation summa-
rized in Table 2 [24], in this section, we further sort 
out the different types of ID matching rules and dis-
cuss the situation where a certificate contains multi-
ple hostnames.

3.4.1. ID_IPV4_ADDR and ID_IPV6_ADDR
The IPsec implementation must support at least 
ID_IPV4_ADDR or ID_IPV6_ADDR ID types, and 
these addresses must be encoded in the network byte 
order specified in RFC791. In the event of a network 
address translator (NAT) traversal, the implementa-
tion should not fill the ID payload with an IP address. 
If the other party’s IP address is static, and the peer 
is not behind a NATing device, and the administrator 
wants to implement this scheme to verify whether 
the peer source address matches the IP address in 
the received ID and the IP address in the iPAddress 
field of the SAN extension of the peer certificate, the 
user can only consider the IP address as the ID. The 
implementation must be able to verify that the IP ad-
dress shown in the ID matches the IP address in the 
iPAddress field of the SAN extended certificate. By 
default, implementations must perform this verifica-
tion. When comparing the content of the ID with the 
iPAddress field in the SAN extension for equality, a 
binary comparison must be performed.

3.4.2. ID_FQDN and ID_USER_FQDN
The IPsec implementation must support the two ID 
types ID_FQDN and ID_USER_FQDN, which provide 
host-based access control lists for hosts without fixed 
IP addresses. If the ID contains ID_FQDN, the imple-
mentation must be able to verify whether the identi-
ty contained in the ID payload matches the identity 
information contained in the peer entity certificate 
in the dNSName field of the SAN extension. If the ID 
contains ID_USER_FQDN, the implementation must 
be able to verify whether the identity contained in 
the ID payload matches the identity information con-
tained in the peer entity certificate in the rfc822Name 
field of the SAN extension. When comparing the con-
tent of the ID with the dNSName or rfc822Name field 
in the SAN extension for equality, a case-insensitive 
string comparison must be performed. Moreover, the 
comparison cannot perform substring, wildcard, or 
regular expression matching.

3.4.3. ID_DER_ASN1_DN
The IPsec implementation must support receiving 
and generating ID_DER_ASN1_DN types. When gen-
erating this type, the implementation must fill in the 
ID content with the Subject field of the end entity cer-
tificate. When this is done, a binary comparison be-
tween the two can be successfully performed. If there 
is no match, it must be treated as an error and the se-
curity association setting must be aborted.
In addition, regarding SPD matching, the implemen-
tation must be able to perform matching based on a 
bit-by-bit comparison of the entire DN in the ID and 
its entry into the SPD. However, it is difficult to use 
the entire DN in a local configuration, especially in a 
large-scale deployment. Therefore, the implementa-
tion must also be able to perform SPD matching on 
one or more combinations of the C, CN, O, and OU at-
tributes in the ID DN subject. Implementations may 
also support substring, wildcard, or regular expres-
sion matching on any supported DN attribute from ID 
(in any combination) to SPD.

3.4.4. Other Types
For the remaining ID types, RFC4945 indicated that 
ID_IPV4_ADDR_SUBNET, ID_IPV6_ADDR_SUB-
NET, ID_IPV4_ADDR_RANGE, and ID_IPV6_
ADDR_RANGE are still in the experimental stage; 
ID_DER_ASN1_GN is forbidden to be generated be-
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cause the recipient does not know how to use it, and 
ID_KEY_ID is used to specify the pre-shared key for 
verification and is not in the scope of the certificate 
verification. Therefore, in this paper, we do not con-
sider these types.

3.4.5. Policy of Multiple Identifications in the 
IPsec Implementation Certificate
The implementation must support certificates that 
contain multiple identities. In many cases, in addi-
tion to a non-empty subject, the certificate will also 
include an identity (such as an IP address) in the SAN 
extension. The implementation shall fill in the ID 
with the identity that may be named in the peer policy, 
usually FQDN or USER_FQDN. The recipient must 
use the identity sent as the first key when choosing a 
strategy. If there are overlapping strategies caused by 
wildcards, the receiver must also use the most specif-
ic strategy in the database.

4. Model Learning
In this section, we introduce state-machine and mod-
el learning and discuss the algorithm selection and 
other considerations for hostname verification.
The purpose of model learning is to construct a state 
machine model that describes the operating logic of 
the target system through the interaction of inputs 
and outputs. Model learning can be divided into pas-
sive learning and active learning. In this study, we 
employ active learning to initiate a limited number 
of active queries to the target for inferring a complete 
target model. In addition, according to the require-
ments for the expression of the model, we adopt a 
Mealy machine to describe the DFA model.

4.1. Mealy Machine
Definition 1. A Mealy machine is a tuple, M=(I, O, S, 
s0, δ, λ), where I is a finite set of inputs, O is a finite set 
of outputs, S is a finite set of states, s0∈S is the initial 
state, δ: S×I→S is a transition function, and λ: S×I→O 
is an output function.
The Mealy machine can well reflect the character-
istics of the DFA model; that is, in any state, a given 
input only has one state transition and output. Here, 
we only present the information that facilitates the 
explanation of the methods employed and results ob-

tained in our study. For more details regarding Mealy 
machines, please refer to [30].
The Mealy machine and the state graph have a natural 
corresponding relationship; that is, a graph contain-
ing edges and nodes can be used to represent the state 
transition contained in the Mealy machine. As shown 
in the basic Mealy machine model in Figure 3, when 
the model is in the initial state s0 and receives the input 
a, the state transition δ(s0, a)=s1 occurs, and the output 
λ(s0, a)=accept is obtained, which corresponds to the 
edge from s0 to s1 and the label a/accept. Figure 3 de-
picts the corresponding collection of strings that can 
be accepted by the system: {a, ab, aa, aab, aaa, aaab, ...}.

Figure 3 
Simple DFA model with alphabet: {a, b}
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The output function, λ, can also process multiple 
consecutive inputs: λ(s,τσ)=λ(s,τ)λ(δ(s,τ),σ) and λ(s, ϵ)=ϵ, 
where s�S, τ�I, σ�I* is a non-empty sequence, and ϵ is 
an empty sequence. Further, we define the behavior of a 
Mealy machine M through AM(σ)=λ(s0, σ), σ�I*.Thus, 
we define that two Mealy machines, M and N, are 
equivalent if and only if AM(σ)=AN(σ) for any σ�I*, 
denoted as M≈N. Further, we note that σ�I* is 
distinguished between M and N if and only if 
AM(σ)≠AN(σ). 
4.2. Model-Learning Framework 
We introduce the MAT framework to describe the 
process and logic of model learning. The MAT 
framework was proposed by Angluin [1], and it has been 
widely used in practice. This framework has two major 
components: the learner and the oracle (target system). 
The learner wants to perform the inference and 
modification of the DFA model by constantly querying 
the oracle, and the oracle has infinite knowledge using 
which it can answer the learner's queries. As shown in 
Figure 4, the execution process of the framework is 
divided into two parts: 
1) The first part is membership query: the learning 
algorithm uses the known input alphabet set I and 
counterexample set D (D is initially empty); further, it 
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algorithm uses the known input alphabet set I 
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and counterexample set D (D is initially empty); 
further, it fills in the observation table used to 
record the query sequence by enquiring the or-
acle until the table is closed (Different learning 
algorithms may employ varied recording meth-
ods; here, we take the observation table from the 
L* algorithm as an example for explanation). In 
this stage, the learner performs multiple rounds 
of querying. In each querying round, the learner 
first resets the oracle to the initial state s0 and 
then inputs the string sequence σ∈I* to the oracle 
for querying. The oracle receives the query and 
processes the response with AM(σ). The learner 
records the response and completes a round of 
querying. The learner then builds a model hy-
pothesis H and submits it to the next stage, that 
is, equivalent query.

2 The other part is equivalence query: at this stage, 
the learner needs to complete the modification of 
the model; that is, to verify whether the model hy-
pothesis H is equivalent to the real system (H≈M). 
If the learner does not search for a distinguishing 
sequence σ∈I* such that AH(σ)≠AM(σ) under a cer-
tain pre-set search time or range, then the hypoth-
esis is considered equivalent to the real system, 
and H is output. Otherwise, the learner adds σ to 
the counterexample set D and returns to the mem-
bership query again. Subsequently, the equivalent 
query is repeated until no new counterexample can 
be found. At this moment, the learning finishes and 
we obtain the final DFA model H.

In our tests, the implementation of certificate host-
name verification is regarded as our target system. 
Through the effective interaction with it in the above 
two steps, the learning algorithm can infer the state 
machine model of all the hostname-matching results 
for a certificate in a limited number of queries.

Figure 4 
Model-learning framework
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In our tests, the implementation of certificate hostname 
verification is regarded as our target system. Through the 
effective interaction with it in the above two steps, the 
learning algorithm can infer the state machine model of 
all the hostname-matching results for a certificate in a 
limited number of queries. 
4.3. KV Algorithm and Wp Method 
According to the model-learning framework, we need to 
select the appropriate learning algorithm and equivalent 
query algorithm to infer the state machine. 
The first algorithm used to learn DFA accurately from 
query models was the L* algorithm proposed by Angluin 

[1]. Subsequent scholars have designed a variety of other 
algorithms based on it. 
In this study, we used the KV algorithm improved by 
Kearns et al. [21] as the state machine learning algorithm. 
Kearns et al. replaced the observation table structure 
with a discrimination tree, thus achieving higher storage 
and query efficiency. The storage complexity of the KV 
algorithm is O (|Σ|n + nm), and the time complexity is 
O(|Σ|n2+nlogm), where |Σ| represents the size of the 
alphabet; n is the total number of states in the minimum 
state model of the target system, and m is the length of 
the longest counterexample returned by the oracle. 
In addition, we used the Wp method [23] as an 
equivalence query algorithm to perform an equivalent 
oracle test on the hypotheses constructed by the learning 
algorithm. In the process of checking, we set a parameter 
for the test depth. The algorithm takes the test depth plus 
the number of states of the current model as the upper 
limit of the check and searches for counterexamples by 
means of extended tracking. If under the upper limit of 
the number of states, no counterexample can be found 
after testing, it can be considered that the state machine 
hypothesis currently obtained is consistent with the 
actual DFA model. The Wp method is powerful, but it 
requires a very large performance overhead; therefore, 
in actual use, we need to set an appropriate test depth. 
4.4. Certificate Template Generation and 
Alphabet Selection 
To test all the different rules in hostname verification, we 
created 19 certificates with different identifier content to 
cover specific rules in Section 3.4. For example, a 
certificate with the common name "CN=*.a.a" can test 
IPsec's matching processing of ID_DER_ASN1_DN 
type IDs and the situation of wildcards. Our template 
certificate was generated by Libreswan's certutil library, 
which can facilitate the generation of certificates with 
various CN and SAN tags that have different types. For 
more specific content of the certificate templates, please 
refer to the appendix A. 
In addition, we must create an alphabet that will 
determine which characters the query sequence of the 
learning algorithm consists of. Because the performance 
of the learning algorithm depends on the size of the 
alphabet, we choose a small set of representative 
characters to form our alphabet to improve the efficiency 
of the test. In this study, we used the alphabet set Σ = {a, 
1, dot, \s, @, A, =, *, /, -, NULL}, where "dot" represents 
the character ".", "\s" represents the space character 
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In addition, we must create an alphabet that will de-
termine which characters the query sequence of the 
learning algorithm consists of. Because the perfor-
mance of the learning algorithm depends on the size 
of the alphabet, we choose a small set of representa-
tive characters to form our alphabet to improve the 
efficiency of the test. In this study, we used the alpha-
bet set Σ = {a, 1, dot, \s, @, A, =, *, /, -, NULL}, where 
“dot” represents the character “.”, “\s” represents the 
space character (ASCII 0x20), and “NULL” means 
zero-byte characters (ASCII 0x00). This alphabet ba-
sically covers different types of characters so that we 
can test possible hostname matching exceptions in 
the IPsec implementation.

5. Adapting Test for IPsec 
Implementation
In this section, we introduce the specific test process 
and analysis results of our implementation of IPsec 
hostname verification.

5.1. IPsec Implementation

In this study, two popular IPsec implementations 
with the latest versions, Strongswan 5.9.0 and Li-
breswan 3.32, were selected for testing. They both 
implement the corresponding certificate hostname 
matching module. We need to make appropriate mod-
ifications to the source code and recompile it, so that 
we can call the corresponding implementation of the 
relevant hostname verification interface for testing.

Strongswan is an open-source IPsec implementation, 
which was originally based on the FreeS/WAN project 
but has been completely rewritten. It is a complete IP-
based VPN solution that supports traditional IKEv1 
and the new IKEv2 protocol. The function of Strong-
swan includes providing multiple authentication 
methods, such as the X.509 certificate hybrid mode and 
the pre-shared key for the VPN gateway, among which 
EAP is also an authentication method (such as EAP 
SIM based on SIM card or the EAP aka method popular 
in the mobile environment). In addition, Strongswan 
also has the advantages of fast VPN connection setting, 
built-in NAT traversal, dead peer detection, and auto-
matic reduction of the subnet range.
Libreswan is also an open-source IPsec implemen-
tation. It is based on the FreeS/WAN code base and 
extends some additional functions on this basis. It 
supports most IPsec-related extensions (RFC + IETF 
draft), including IKEv2, X.509 Certificates, and NAT 
traversal. By default, Libreswan uses the native Linux 
IPsec stack (NETKEY/XFRM).

5.2. Model Learning Tool
In this study, we used HVLearn [20] to infer the state 
machine model. HVLearn is a test tool developed by 
Sivakorn et al. and is used to analyze the implementa-
tion of the SSL/TLS protocol hostname verification. 
It calls the KV algorithm based on the Learnlib learn-
ing library and optimizes the Wp method. In addition, 
HVLearn provides a convenient Java Native Interface 
[16] for connecting and testing the implementation of 
IPsec hostname verification. Figure 5 shows the en-
tire test framework of HVLearn.

 

(ASCII 0x20), and "NULL" means zero-byte characters 
(ASCII 0x00). This alphabet basically covers different 
types of characters so that we can test possible hostname 
matching exceptions in the IPsec implementation. 

5. Adapting Test for IPsec 
Implementation 
In this section, we introduce the specific test process and 
analysis results of our implementation of IPsec 
hostname verification. 
5.1. IPsec Implementation 
In this study, two popular IPsec implementations with 
the latest versions, Strongswan 5.9.0 and Libreswan 3.32, 
were selected for testing. They both implement the 
corresponding certificate hostname matching module. 
We need to make appropriate modifications to the source 
code and recompile it, so that we can call the 
corresponding implementation of the relevant hostname 
verification interface for testing. 
Strongswan is an open-source IPsec implementation, 
which was originally based on the FreeS/WAN project 
but has been completely rewritten. It is a complete IP-
based VPN solution that supports traditional IKEv1 and 
the new IKEv2 protocol. The function of Strongswan 
includes providing multiple authentication methods, 
such as the X.509 certificate hybrid mode and the pre-
shared key for the VPN gateway, among which EAP is 
also an authentication method (such as EAP SIM based 
on SIM card or the EAP aka method popular in the 
mobile environment). In addition, Strongswan also has 
the advantages of fast VPN connection setting, built-in 
NAT traversal, dead peer detection, and automatic 
reduction of the subnet range. 
Libreswan is also an open-source IPsec implementation. 
It is based on the FreeS/WAN code base and extends 
some additional functions on this basis. It supports most 
IPsec-related extensions (RFC + IETF draft), including 
IKEv2, X.509 Certificates, and NAT traversal. By 
default, Libreswan uses the native Linux IPsec stack 
(NETKEY/XFRM). 
5.2. Model Learning Tool 
In this study, we used HVLearn [20] to infer the state 
machine model. HVLearn is a test tool developed by 

Sivakorn et al. and is used to analyze the implementation 
of the SSL/TLS protocol hostname verification. It calls 
the KV algorithm based on the Learnlib learning library 
and optimizes the Wp method. In addition, HVLearn 
provides a convenient Java Native Interface [16] for 
connecting and testing the implementation of IPsec 
hostname verification. Figure 5 shows the entire test 
framework of HVLearn. 
Figure 5  
HVLearn framework 

Optimized Wp-
Method

KV Algorithm

Counter Example
s0 s1

Start

Y/B

X/A

DFA 
Model

Equivalence Query

HVLearn

Hostname

Accept / Reject

Cert Templates

IPsec Hostname Verification 
Implementations

Specific Implementation

Test Cert Template

Output Final Model

 
In each round of model learning, HVLearn will create a 
new specific string according to the alphabet and the 
current testing status and input it into the corresponding 
IPsec certificate verification module (or function) to 
initiate a query. The certificate verification module 
processes the input hostname string according to the 
current certificate template and returns the matching 
results to HVLearn. After a finite number of queries, 
HVLearn outputs the corresponding state machine 
matching model according to all the query results. 
To effectively test the implementation of IPsec hostname 
verification, we adjusted the consistency test depth of the 
Wp method to 3. To reduce the overhead cost caused by 
repeated queries, we also used LearnLib's 
DFALearningCache class to implement the caching of 
membership query results, check the cache on each new 
query, and use the cached result when it is found to 
reduce the cost of repeated queries. 
5.3. Analysis Results 
By analyzing the inferred state diagram, we found five 
violations of IPsec hostname verification, which are 
summarized in Table 3. 

 
 
Table 3  
RFC violations in the tested IPsec implementations  

Figure 5 
HVLearn framework
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In each round of model learning, HVLearn will cre-
ate a new specific string according to the alphabet 
and the current testing status and input it into the 
corresponding IPsec certificate verification module 
(or function) to initiate a query. The certificate veri-
fication module processes the input hostname string 
according to the current certificate template and 
returns the matching results to HVLearn. After a fi-
nite number of queries, HVLearn outputs the corre-
sponding state machine matching model according 
to all the query results.
To effectively test the implementation of IPsec host-
name verification, we adjusted the consistency test 
depth of the Wp method to 3. To reduce the overhead 
cost caused by repeated queries, we also used Learn-

Lib’s DFALearningCache class to implement the 
caching of membership query results, check the cache 
on each new query, and use the cached result when it 
is found to reduce the cost of repeated queries.

5.3. Analysis Results
By analyzing the inferred state diagram, we found five 
violations of IPsec hostname verification, which are 
summarized in Table 3.
Next, we discuss the details of these issues in turn. To 
facilitate the explanation of specific issues, we sim-
plified the displayed DFA model by reducing the size 
of the alphabet, leaving only the corresponding key 
parts. The specific test results are shown in the ap-
pendix.

Table 3 
RFC violations in the tested IPsec implementations 

RFC Violations RFC Strongswan Libreswan

Incorrect handling of space characters in ID_DER_ASN1_DN type IDs RFC4945 × ×

Incorrect handling of case-insensitive strings in ID_DER_ASN1_DN type IDs RFC4945 × √

Incorrect match of wildcards and substring in ID_FQDN type IDs RFC4945 × ×

Incorrect match of substring in ID_USER_FQDN type IDs RFC4945 × √

Unsupported null byte certificate match RFC7619 × ×

√= OK, ×= RFC violation

5.3.1. Incorrect Handling of Space Characters in 
ID_DER_ASN1_DN Type IDs
Figure 6 shows the DFA matching results of the two 
IPsec implementations for the “C=CH, CN=a.a.a” 
certificate. The double solid circles indicate states 
that can be matched successfully, and the result of 
the match is the accumulated character string of the 
state. As shown in Figure 6 (a), states 0 and 5 indicate 
that the ID_DER_ASN1_DN type IDs “C=CH,CN=(\
s)*(\s)” and “C=CH, CN=(\s)a/A.a/A.a/A(\s),” respec-
tively, can successfully match the certificate contain-
ing “C=CH, CN=a.a.a” (\s means that the content of 
CN is allowed to contain prefixes and suffixes of space 
characters; a/A indicates that the alphabetic charac-
ter is not case sensitive).
When processing ID_DER_ASN1_DN type ID match-
ing, RFC4945 points out that “the implementation 
must be able to perform matching based on a bit-by-
bit comparison of the entire DN in the ID and its entry 

in the SPD.” According to the experimental results, as 
shown by the thick blue edges in Figure 6, we found 
that Strongswan and Libreswan showed a controver-
sial behavior, that is, allowing the content of CN to 
contain prefixes and suffixes of space characters (in 
state 0 and state 5). This approach may facilitate the 
user to configure the implementation, but it will affect 
the correctness and security of ID matching.

5.3.2. Incorrect Handling of Case-Insensitive 
Strings in ID_DER_ASN1_DN Type IDs
RFC4945 indicates that strict binary matching must 
be performed when ID_DER_ASN1_DN type ID 
matching is performed. However, as shown by the 
dashed red lines in Figure 6 (a), Strongswan per-
forms case insensitive matching for the certificate 
containing “C=CH, CN=a.a.a”, while Libreswan can 
correctly perform case sensitive matching, as shown 
in Figure 6 (b).
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5.3.3. Incorrect Matching of Wildcards and 
Substrings in ID_FQDN Type IDs
According to RFC4945, when processing ID_FQDN 
type ID matching, substring, wildcard, and regular 
expression matching MUST NOT be performed for 
this comparison. However, as shown by the dashed 
red lines in Figure 7 (a), the matching of ID_FQDN 
type IDs in Strongswan is obviously much looser, 
such as the strings “*”, “*a/A”, “*.a/A”, “*a/A.a/A”, 
and “*.a/A.a/A” can be matched with the certifi-
cate that contains the “*.a.a” dNSName-type SAN 
identifier. In addition, as shown by the dashed red 
lines in Figure 7 (b), Libreswan even has the prob-
lem of allowing wildcard certificates to participate 
in matching, that is, the wildcard (the only charac-
ter on the leftmost side of the certificate label) can 
match anything in the leftmost label of the ID.

Figure 6 
IPsec implementation’s intersection of DFA in ID_DER_ASN1_DN type ID with cert: C=CH, CN=a.a.a and alphabet:  
{a, dot, \s, A, *}
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5.3.4. Incorrect Matching of Substrings in  
ID_USER_FQDN Type IDs
In terms of ID_USER_FQDN type ID matching, 
RFC4945 indicates that “substring, wildcard, and reg-
ular expression matching MUST NOT be performed 
for this comparison.” However, Strongswan allows 
strings such as “*a/A.a/A”, “*a/A”, and “*@a/A.a/A” 
to match a certificate containing the “a@a.a” rfc822 
type SAN identifier.

5.3.5. Unsupported Null Byte Certificate Matching
RFC7619 specifies the NULL authentication meth-
od and ID_NULL type ID payload and puts forward 
relevant rules on the use of NULL format IDs. How-
ever, for special certificates containing NULL bytes, 
Strongswan and Libreswan directly end the match by 
throwing an exception.
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Violations 1)–4) mentioned above may bring the risk 
of Authentication because attackers can use the cor-
responding loose character matching to forge their 
own identity information to bypass hostname veri-
fication; the last violation may hinder the certificate 
verification of ID_NULL type identities.

5.4. Attack Verification
Based on our analysis, we also conducted attack tests 
to verify that, under specific conditions, the flaws in 
hostname matching can be used to initiate identity 
spoofing attacks and man-in-the-middle attacks. The 
test environment was as follows:
Client and attacker: Ubuntu 18.04 OS + Intel Core I5 
8th Gen CPU + 8GB of RAM.
Server: Ubuntu 18.04 OS + Intel Xeon E5-2680 v2 
CPU + 32GB of RAM.
In the following test, it is assumed that the attacker’s 
public key certificate (with available subject content 
for attack) is issued by a legal CA (usually is private 

Figure 7 
IPsec implementation’s intersection of DFA in ID_DER_ASN1_DN type ID with cert: CN=abcde and SAN dns:*.a.a and alphabet: 
{a, dot, \s, @, A, *}

CA in IPsec server) and possesses the corresponding 
private key, and the attacker can monitor, intercept, 
and tamper with the messages of the legitimate user. 
In response to the problems exposed in Strongswan 
and Libreswan, we give a specific attack scenario to 
illustrate the effect that can be achieved.

5.4.1. Identity Impersonation Attack Under IKEv1 
Protocol Negotiation
In Strongswan, the configuration file (IPsec.conf or 
Strongswan.conf ) provides setting attributes that can 
be used to verify the identity of the participant: leftid 
| rightid = <id>, and the specific setting is explained in 
its wiki [15]. As shown in the attack scenario in Fig-
ure 8, the admin sets the server-side configuration file 
with rightid=”C=CH, O=strongSwan, CN=device1”, 
indicating that it only allows users with correspond-
ing field in certificate to access the server device. 
However, because Strongswan does not distinguish 
between the upper and lower cases in the CN, when an 
attacker has a valid certificate issued by a CA with the 
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subject name “C=CH, O=strongSwan, CN=Device1,” 
an identity impersonation attack can be initiated.
As shown in Figure 8, in IKEv1 signature-based ne-
gotiation, the attacker first listens and intercepts the 
message from the client and impersonates the server 
to conduct normal main-mode negotiation with the 
client. After receiving the third message sent by the 
client, the attacker decrypts and parses the ID and 
certificate information in it. After judging that the vul-
nerability can be exploited (recognizing that the cli-
ent is device1), the attacker initiates a normal IKEv1 
main mode negotiation with the true server. When 
constructing the third message in the main mode, the 
attacker uses a private key to construct a signature, 
constructs a forged ID payload (ID_DER_ASN1_DN: 
C=CH, O=strongSwan, CN=device1), and sends these 
messages with the public key certificate (with subject 
name “C=CH, O=strongSwan, CN=Device1”) to the 
server. After verifying the correctness of the signature 
and certificate chain because the server does not dis-
tinguish between upper and lower case characters in 

Figure 8 
Launching an identity Impersonation attack on Strongswan using case-insensitive flaws

Figure 9 
Launching a man-in-the-middle attack on Libreswan using the flaw that allows wildcard certificate matching

 

5.3.5. Unsupported Null Byte Certificate Matching 
RFC7619 specifies the NULL authentication method 
and ID_NULL type ID payload and puts forward 
relevant rules on the use of NULL format IDs. However, 
for special certificates containing NULL bytes, 
Strongswan and Libreswan directly end the match by 
throwing an exception. 
Violations 1)–4) mentioned above may bring the risk of 
Authentication because attackers can use the 
corresponding loose character matching to forge their 
own identity information to bypass hostname 
verification; the last violation may hinder the certificate 
verification of ID_NULL type identities. 
5.4. Attack Verification 
Based on our analysis, we also conducted attack tests to 
verify that, under specific conditions, the flaws in 
hostname matching can be used to initiate identity 
spoofing attacks and man-in-the-middle attacks. The test 
environment was as follows: 
Client and attacker: Ubuntu 18.04 OS + Intel Core I5 8th 
Gen CPU + 8GB of RAM. 
Server: Ubuntu 18.04 OS + Intel Xeon E5-2680 v2 CPU 
+ 32GB of RAM. 
In the following test, it is assumed that the attacker’s 
public key certificate (with available subject content for 
attack) is issued by a legal CA (usually is private CA in 
IPsec server) and possesses the corresponding private 
key, and the attacker can monitor, intercept, and tamper 
with the messages of the legitimate user. In response to 
the problems exposed in Strongswan and Libreswan, we 
give a specific attack scenario to illustrate the effect that 
can be achieved. 
5.4.1. Identity Impersonation Attack under IKEv1 
Protocol Negotiation 
In Strongswan, the configuration file (IPsec.conf or 
Strongswan.conf) provides setting attributes that can be 

used to verify the identity of the participant: leftid | 
rightid = <id>, and the specific setting is explained in its 
wiki [15]. As shown in the attack scenario in Figure 8, 
the admin sets the server-side configuration file with 
rightid="C=CH, O=strongSwan, CN=device1", 
indicating that it only allows users with corresponding 
field in certificate to access the server device. However, 
because Strongswan does not distinguish between the 
upper and lower cases in the CN, when an attacker has a 
valid certificate issued by a CA with the subject name 
"C=CH, O=strongSwan, CN=Device1," an identity 
impersonation attack can be initiated. 
As shown in Figure 8, in IKEv1 signature-based 
negotiation, the attacker first listens and intercepts the 
message from the client and impersonates the server to 
conduct normal main-mode negotiation with the client. 
After receiving the third message sent by the client, the 
attacker decrypts and parses the ID and certificate 
information in it. After judging that the vulnerability can 
be exploited (recognizing that the client is device1), the 
attacker initiates a normal IKEv1 main mode negotiation 
with the true server. When constructing the third 
message in the main mode, the attacker uses a private 
key to construct a signature, constructs a forged ID 
payload (ID_DER_ASN1_DN: C=CH, O=strongSwan, 
CN=device1), and sends these messages with the public 
key certificate (with subject name "C=CH, 
O=strongSwan, CN=Device1") to the server. After 
verifying the correctness of the signature and certificate 
chain because the server does not distinguish between 
upper and lower case characters in the CN, the attacker's 
certificate will be considered to match the preset 
hostname, and subsequent negotiation and 
communication can be successfully completed. At this 
point, the attacker has completed the impersonation, but 
the server is completely unaware of it. 

Figure 8  
Launching an identity Impersonation attack on Strongswan using case-insensitive flaws 

Client Attacker Strongswan VPN 
Server

2: Main mode negotiation
Attacker Public Cert (C=CH, O=strongSwan, CN=Device1)
ID_DER_ASN1_DN: C=CH, O=strongSwan, CN=device1

1: Main mode negotiation
Client Public Cert (C=CH, O=strongSwan, CN=device1)

ID_DER_ASN1_DN: C=CH, O=strongSwan, CN=device1

3: Quick mode negotiation

<IPsec.conf>
xxxx
right=192.168.0.1
right id="C=CH, 
O=strongSwan, 
CN=device1"
xxxx

4: Establish ESP encrypted tunnel

 

the CN, the attacker’s certificate will be considered to 
match the preset hostname, and subsequent negotia-
tion and communication can be successfully complet-
ed. At this point, the attacker has completed the imper-
sonation, but the server is completely unaware of it.

5.4.2. Man-in-the-Middle Attack Under IKEv2 
Protocol Negotiation
Similarly, Libreswan can also restrict the identity of 
communication participants through the rightid = 
<id> attribute [14]. As shown in Figure 9, the Libre-
swan client and server have set rightid=”@server.org” 
and rightid=”@client.org,” indicating that they expect 
to communicate with the corresponding objects. 
However, because Libreswan has a flaw in processing 
ID_FQDN type IDs that allows wildcard matching, 
when an attacker has a valid wildcard certificate is-
sued by a CA with the SAN “dns: *.a.a,” a man-in-the-
middle attack can be carried out.
As shown in Figure 9, in the IKEv2 signature-based 
negotiation, the attacker first listens to and inter-

 

Figure 9  
Launching a man-in-the-middle attack on Libreswan using the flaw that allows wildcard certificate matching 
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1: IKE INIT negotiation
<IPsec.conf>
xxxx
right=192.168.0
.1
right id="@client
.org"
xxxx

4: Establish ESP encrypted tunnel

Libreswan VPN 
Client

<IPsec.conf>
xxxx
right=192.168.0
.129
right id="@serve
r.org"
xxxx

3: IKE AUTH negotiation
Attacker Public Cert (CN=abcde, SAN dns:*.org)

ID_FQDN: server.org

2: IKE INIT negotiation

3: IKE AUTH negotiation
Attacker Public Cert (CN=abcde, SAN dns:*.org)

ID_FQDN: client.org

4: Establish ESP encrypted tunnel

5.4.2. Man-in-the-Middle Attack Under IKEv2 
Protocol Negotiation 
Similarly, Libreswan can also restrict the identity of 
communication participants through the rightid = <id> 
attribute [14]. As shown in Figure 9, the Libreswan 
client and server have set rightid="@server.org" and 
rightid="@client.org," indicating that they expect to 
communicate with the corresponding objects. However, 
because Libreswan has a flaw in processing ID_FQDN 
type IDs that allows wildcard matching, when an 
attacker has a valid wildcard certificate issued by a CA 
with the SAN "dns: *.a.a," a man-in-the-middle attack 
can be carried out. 
As shown in Figure 9, in the IKEv2 signature-based 
negotiation, the attacker first listens to and intercepts the 
client's message and pretends to be the server for IKE 
INIT negotiation with the client. At the same time, the 
attacker also establishes IKE INIT negotiation with the 
server. Later, during the IKE AUTH negotiation between 
the two parties, the attacker uses a private key to 
construct a signature, constructs a forged ID payload 
(ID_FQDN: client.org and ID_FQDN: server.org), and 
sends these messages containing the public key 
certificate (with SAN label "dns:*. org) to both parties. 
After receiving the message sent by the adversary, the 
client and the server decrypt and parse the ID and 
certificate information, respectively. Because Libreswan 
has the defect of allowing wildcards in ID_FQDN type 
ID matching, the client and server will think that the 
attacker’s certificate matches the default hostname, so 
that the subsequent negotiation and communication can 
be successfully completed. Therefore, the attacker has 
completed the man-in-the-middle attack, but the client 
and server are completely unaware. 

6. Conclusions 
In this study, we analyzed the problem of hostname 
verification in IPsec implementation using a model-
learning method and inferring the DFA model that can 
describe the set of all hostnames that match a given 
certificate subject name. We analyzed two IPsec 
implementations, Strongswan and Libreswan, and found 
five violations. Some of these violations may lead to 
identity impersonation attacks and man-in-the-middle 
attacks and undermine the security and stability of 
protocol communication. Because RFC cannot cover all 
aspects and is not clear in some extreme cases, different 
IPsec implementations may not be rigorous in handling 
hostname verification. Therefore, this method can play a 
role in the development of IPsec implementations and 
help developers guard against violations and other 
vulnerabilities that are difficult to find. 
In addition, the present study has some limitations: 1) we 
tested a small number of IPsec implementations and did 
not conduct a large-scale analysis of IPSec gateway 
devices; 2) our analysis of the DFA models was 
performed manually; consequently, the efficiency was 
low. In the future, we will improve our analysis methods, 
such as by introducing model checking to analyze state 
diagrams. Moreover, we aim to analyze the host name 
verification of more IPSec gateway devices, and even 
evaluate the implementations of other protocols, to 
provide methods and technical support for more 
vulnerability mining scenarios. 

Appendix A 
In Table 4, we show the detailed test results of hostname 
verification in Strongswan and Libreswan. 
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cepts the client’s message and pretends to be the 
server for IKE INIT negotiation with the client. At 
the same time, the attacker also establishes IKE 
INIT negotiation with the server. Later, during the 
IKE AUTH negotiation between the two parties, the 
attacker uses a private key to construct a signature, 
constructs a forged ID payload (ID_FQDN: client.org 
and ID_FQDN: server.org), and sends these messages 
containing the public key certificate (with SAN label 
“dns:*. org) to both parties. After receiving the mes-
sage sent by the adversary, the client and the server 
decrypt and parse the ID and certificate information, 
respectively. Because Libreswan has the defect of 
allowing wildcards in ID_FQDN type ID matching, 
the client and server will think that the attacker’s 
certificate matches the default hostname, so that the 
subsequent negotiation and communication can be 
successfully completed. Therefore, the attacker has 
completed the man-in-the-middle attack, but the cli-
ent and server are completely unaware.

6. Conclusions
In this study, we analyzed the problem of hostname 
verification in IPsec implementation using a mod-
el-learning method and inferring the DFA model that 
can describe the set of all hostnames that match a giv-
en certificate subject name. We analyzed two IPsec 

implementations, Strongswan and Libreswan, and 
found five violations. Some of these violations may 
lead to identity impersonation attacks and man-in-
the-middle attacks and undermine the security and 
stability of protocol communication. Because RFC 
cannot cover all aspects and is not clear in some ex-
treme cases, different IPsec implementations may 
not be rigorous in handling hostname verification. 
Therefore, this method can play a role in the develop-
ment of IPsec implementations and help developers 
guard against violations and other vulnerabilities that 
are difficult to find.
In addition, the present study has some limitations: 1) 
we tested a small number of IPsec implementations 
and did not conduct a large-scale analysis of IPSec 
gateway devices; 2) our analysis of the DFA models 
was performed manually; consequently, the efficien-
cy was low. In the future, we will improve our analysis 
methods, such as by introducing model checking to 
analyze state diagrams. Moreover, we aim to analyze 
the host name verification of more IPSec gateway de-
vices, and even evaluate the implementations of other 
protocols, to provide methods and technical support 
for more vulnerability mining scenarios.

Appendix A
In Table 4, we show the detailed test results of host-
name verification in Strongswan and Libreswan.

Certificate

Strongswan Libreswan

ID_DER_ASN1_DN ID_FQDN ID_USER_FQDN
ID_

IPV4_
ADDR

ID_DER_
ASN1_DN ID_FQDN

ID_
USER_
FQDN

ID_
IPV4_
ADDR

CN=*.a.a *; *.a.a none none none *;*.a.a none none none

CN=a.*.a *; a.*.a none none none *; a.*.a none none none

CN=a.a.* *; a.a.* none none none *; a.a.* none none none

CN=*.*.a *; *.*.a none none none *; *.*.a none none none

CN=.a.a *; .a.a none none none *; a.a.a none none none

CN=a.a.a *; a.a.a none none none *; a.a.a none none none

C=CH,CN=a.a.a
C=CH,CN=*;C=CH,C 

N=a/A.a/A.a/A;
none none none

C=CH,CN=*;C 
=CH,CN=a.a.a

none none none

CN=a.a.a
SAN dns: a.a.a

*; a.a.a
*; a/A.a/A.a/A;

*.a/A.a/A; 
*a/A.a/A

none none *; a.a.a @a/A.a/A.a/A none none

Table 4 
IPsec hostname verification matching results using four ID types with different certificate
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Certificate

Strongswan Libreswan

ID_DER_ASN1_DN ID_FQDN ID_USER_FQDN
ID_

IPV4_
ADDR

ID_DER_
ASN1_DN ID_FQDN

ID_
USER_
FQDN

ID_
IPV4_
ADDR

CN=abcde
SAN dns:a.a.a

*
*; a/A.a/A.a/A;

*.a/A.a/A; 
*a/A.a/A

none none * @a/A.a/A.a/A none none

CN=a1a
SAN dns: a.a.a

*; a1a
*; a/A.a/A.a/A;

*.a/A.a/A; 
*a/A.a/A

none none *; a1a @a/A.a/A.a/A none none

CN=a.a.a
SAN dns: *.a.a

*; a.a.a
*; *.a/A.a/A; 

*.a/A;
*a/A; *a/A.a/A

none none *; a.a.a
@.a/A.a/A;

@(Any+).a/
A.a/A

none none

CN=a.a.a
SAN dns: a.*.a

*; a.a.a

*; *.a/A.a/A; 
**.a/A;
*.*.a/A; 

a/A.*.a/A; *.a/A;

none none *; a.a.a @a/A.*.a/A none none

CN=a.a.a
SAN 
rfc822:a@a.a

*; a.a.a none

(@@)*; @@*a/A; 
@@*a/A.a/A;
(@@)a/A@a/

A.a/A;
(@@)*@a/A.a/A

none *; a.a.a none
@a/A@a/

A.a/A
none

CN= abcde
SAN 
rfc822:a@a.a

* none

(@@)*; @@*a/A; 
@@*a/A.a/A;
(@@)a/A@a/

A.a/A;
(@@)*@a/A.a/A

none * none
@a/A@a/

A.a/A
none

CN= a1a
SAN 
rfc822:a@a.a

*; a1a none

(@@)*; @@*a/A; 
@@*a/A.a/A;
(@@)a/A@a/

A.a/A;
(@@)*@a/A.a/A

none *; a1a none
@a/A@a/

A.a/A
none

CN=a.a.a
SAN ip:1.1.1.1

*; a.a.a none none 1.1.1.1 *; a.a.a none none 1.1.1.1

CN= abcde
SAN ip:1.1.1.1

* none none 1.1.1.1 * none none 1.1.1.1

CN= a1a
SAN ip:1.1.1.1

*; a1a none none 1.1.1.1 *; a1a none none 1.1.1.1

CN=NULL - - - - - - - -

Table 4 (continued)

Note: 
Different matching results are separated by “;”.
The “a/A” in “.a/A.a/A” means that this character is not case sensitive, that is, the corresponding matching results are a.a, .a.A, .A.a, .A.A.
The “(Any+)” indicates that the matching result allows any string prefix. The “(@@)” indicates that the matching result allows the “@@” string 
prefix.
Space prefixes and space suffixes are allowed in the CN tag content in Strongswan and Libreswan when ID_DER_ASN1_DN type IDs matching.
A “@” prefix is allowed in the tag content in all ID_FQDN type IDs matching of Strongswan.
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