
Information Technology and Control 2021/3/50570

Automated State-Machine-
Based Analysis of Hostname
Verification in IPsec
Implementations

ITC 3/50
Information Technology
and Control
Vol. 50 / No. 3 / 2021
pp. 570-587
DOI 10.5755/j01.itc.50.3.27844

Automated State-Machine-Based Analysis of Hostname
Verification in IPsec Implementations

Received 2020/10/12 Accepted after revision 2021/04/15

 http://dx.doi.org/10.5755/j01.itc.50.3.27844

HOW TO CITE: Guo, J., Gu, C., Chen, X., Lu, S., Wei, F. (2021). Automated State-Machine-Based Analysis of Hostname Verification in
IPsec Implementations. Information Technology and Control, 50(3), 570-587. https://doi.org/10.5755/j01.itc.50.3.27844

Corresponding author: Chunxianggu.meac@gmail.com

Jiaxing Guo, Chunxiang Gu, Xi Chen, Siqi Lu, Fushan Wei
Henan Key Laboratory of Network Cryptography Technology, Zhengzhou, China;
e-mails: guojiaxing124lab@gmail.com; Chunxianggu.meac@gmail.com; xycuckoo@tsinghua.org.cn;
080lusiqi@sina.com; weifs831020@163.com

Owing to the advent and rapid development of Internet communication technology, network security proto-
cols with cryptography as their core have gradually become an important means of ensuring secure commu-
nications. Among numerous security protocols, certificate authentication is a common method of identity au-
thentication, and hostname verification is a critical but easily neglected process in certificate authentication.
Hostname verification validates the identity of a remote target by checking whether the hostname of the com-
munication partner matches any name in the X.509 certificate. Notably, errors in hostname verification may
cause security problems with regard to identity authentication. In this study, we use a model-learning method
to conduct security testing for hostname verification in internet protocol security (IPsec). This method can
analyze the problems entailed in implementing hostname verification in IPsec by effectively inferring the de-
terministic finite automaton model that can describe the matching situation between the certificate subject
name and the hostname for different rules. We analyze two popular IPsec implementations, Strongswan and
Libreswan, and find five violations. We use some of these violations to conduct actual attack tests on the IP-
sec implementation. The results show that under certain conditions, attackers can use these flaws to carry out
identity impersonation attacks and man-in-the-middle attacks.
KEYWORDS: IPsec hostname verification, state machine inference, protocol security analysis, model learning,
identity impersonation attack.

mailto:obodovskiy58@gmail.com

571Information Technology and Control 2021/3/50

1. Introduction
Owing to the rapid development of network com-
munication technology and the continuous upgrad-
ing of the Internet industry, Internet products and
services have gradually become an important part
of people’s daily lives. However, with the gradual im-
provements in relevant technologies, network secu-
rity problems, such as data leakage, high-risk vulner-
abilities, and network attacks, are also threatening
individual privacy, social stability, and even national
security. As society’s dependence on networks con-
tinues to increase, ensuring communication secu-
rity has become an important problem that must be
solved urgently.
In network security communication, a common
method to verify user identity is through digital cer-
tificates entailing the application of the public-key
cryptographic algorithm. A trusted third party issues
a certificate. One party in the communication uses
its own private key to sign the message, and the other
party uses the corresponding public key to verify the
message. The subject name corresponding to the cer-
tificate is compared with the user identity to ensure
that the identity of the certificate provider is legal.
As one of the most important security protocols,
internet protocol security (IPsec) is widely used in
virtual private network (VPN) and IPv6 services,
aiming to provide users with secure end-to-end
communications. In view of the risks that the inter-
net protocol (IP) layer may face, IPsec provides the
three security services of identity authentication,
confidentiality, and integrity (including data-source
authentication and integrity verification) and re-
sists replay attacks. The communication process of
IPsec is divided into two main stages: negotiation
and security data transmission. In the negotiation
phase, the two communicating parties perform the
negotiation of cryptographic parameters, identity
authentication, and session-key generation. In the
subsequent secure data transmission, the negotiat-
ed cryptographic algorithm and session key are used
to protect the interactive data. Among the multiple
identity authentication methods defined by IPsec,
certificate authentication is a recommended meth-
od. In the certificate authentication mode, the com-
munication party not only uses the public key pro-
vided by the other party to verify its signed message,

but also matches the hostname of the other party
with the subject name in the public-key certificate
to validate the ownership of the public-key certifi-
cate and the identity of the other party. In addition,
the search and selection of security policy database
(SPD) policies rely on hostname verification in IP-
sec. Therefore, the inaccuracy of hostname verifica-
tion may hinder the security of IPsec authentication.
Because of numerous special circumstances, host-
name verification is a complicated process. For ex-
ample, in hostname matching, multiple identity
types (IP, distinguished name (DN), fully qualified
domain name (FQDN), email, etc.) and various spe-
cial aspects (common name/alternate name match-
ing order, wildcards, null bytes, etc.) must be con-
sidered. Although hostname verification is critical
to protocol security, a majority of the work related
to certificate verification entails adversarial tests
on the secure socket layer/transport layer securi-
ty (SSL/TLS) certificates, and there are only a few
studies involving IPsec hostname verification tests.
Hostname verification is essentially a string-match-
ing problem and is very similar to regular-expres-
sion matching under complex conditions. For the
subject name of a given certificate, all the hostnames
that match it can be regarded as a specific general
language family or matching set. Therefore, in this
study, we use a model-learning method to infer the
deterministic finite automata (DFA) model, which
can describe the matching situation between the
certificate subject name and the hostname in differ-
ent rules effectively; further, it can find the imple-
mentation problem of IPsec hostname verification
by analyzing the DFA model.
Using this method, we analyze the two popular IP-
sec implementations, Strongswan and Libreswan,
and find five violations: 1) incorrect handling of
space characters in ID_DER_ASN1_DN type IDs,
2) incorrect handling of case-insensitive strings in
ID_DER_ASN1_DN type IDs, 3) incorrect matching
of wildcards and substrings in ID_FQDN type IDs, 4)
incorrect matching of substrings in ID_USER_FQDN
type IDs, and 5) unsupported null-byte certificate
matching. We use the violations, 2) and 3), to conduct
actual attack tests on the IPsec implementation. The

Information Technology and Control 2021/3/50572

results show that when the legal private and certif-
icate chain are configured, attackers can use these
flaws to carry out identity impersonation attacks and
man-in-the-middle attacks.
The overall contributions of this study are summa-
rized as follows:
1 We designed and implemented the automated

state machine inference of the implementation of
hostname verification for IPsec. To the best of our
knowledge, there have only been a few detailed and
relevant analyses on IPsec hostname verification
before;

2 We employed this method to analyze two IPsec
hostname verification implementations and found
five violations;

3 We used some of the detected flaws to implement
identity impersonation attacks and man-in-the-
middle attacks, thereby demonstrating that our
work contributes to finding security vulnerabilities.

The remainder of this article is organized as follows:
related work is introduced in the Section 2; back-
ground and basic knowledge are explained in the
Section 3. In Section 4, we discuss the principle and
framework of the model-learning method. In Sec-
tion 5, we present the analysis results obtained using
this method and the verification of the actual attack.
Finally, we provide the conclusions of this study in
Section 6.

2. Related Work
In 1998, Harkins and Carrell [12] proposed the IKEv1
protocol based on ISAKMP, Oakley, and SKEME.
Since then, IPsec based on IKEv1, authentication
header (AH), and encapsulating packet (ESP) has
attracted increasing attention from researchers. In
2005, Kaufman [20] proposed IKEv2, which caused
a greater wave of research on internet key exchange
(IKE) protocol. In 2006, Eronen and Hoffman [8]
described the establishment of IKEv2 interoperable
implementations (request for comments RFC 4718).
In September 2010, Kaufman et al. [18] proposed an
updated version of IKEv2 (RFC 5996) based on RFC
4718, and it contained a detailed description of RFC
4718. In October 2014, the updated IKEv2 (RFC
7296) was standardized to achieve better security
and accuracy [19].

In view of the importance of IPsec, in recent years,
researchers have conducted a series of security anal-
yses on IPsec, including formal analysis, security
proof, model checking, fuzzing, symbolic execution,
and state machine inference. In terms of protocol
documents, Cremers [6] conducted a large-scale for-
mal analysis of IKEv1 and IKEv2 protocols and re-
ported that IKEv1 and IKEv2 cannot satisfy strong
authentication and are vulnerable to reflection at-
tacks. Patel and Jinwala [29] used the colored Petri
net model to conduct automatic formal analysis of
denial of service (DoS) attacks on the IKEv2 protocol
and stated that the IKEv2 protocol is vulnerable to
DoS attacks owing to the use of expensive encryption
operations to derive the shared key and transmit it
securely. Cheng et al. [4] conducted a formal analysis
of the IKEv3 draft and found that the IKEv3 protocol
is vulnerable to reflection attacks and DoS attacks.
Nussbaumer [28] used EasyCrypt to evaluate the
security of the IKEv2 protocol and showed that the
IKEv2 protocol has semantic security under the au-
thentication key exchange model. In terms of specific
protocol implementations, Ninet et al. [26] used Spin
to perform model checking on the IKEv2 protocol and
pointed out that the reflection attack found in [6] was
not applicable in practice; however, in another study,
Ninet et al. [27] designed a deviation attack against
IKEv2 that used the penultimate authentication flaw
found in [6] to perform a DoS attack. Yang et al. [35]
conducted a fuzzing test against the IKEv1 protocol
and designed a tool, IKEProFuzzer. They construct-
ed test cases by modifying specific fields and designed
corresponding exception detectors for different ap-
plications. Finally, five new vulnerabilities were dis-
covered in six routers and applications. Using a sim-
ilar method, Cui et al. [7] conducted a fuzz test on an
implementation of Cisco ASA in the IKEv2 protocol
and discovered security problems such as buffer over-
flow and DoS. Felsch et al. [10] proposed the princi-
ple of Bleichenbacher oracle attacks against IPsec,
showing that it was sufficient to break all the certifi-
cate authentication schemes of the IKEv1 and IKEv2
protocols, and discovered specific Bleichenbacher
oracle attack vulnerabilities in four router firmware.
Chau et al. [3] used symbolic execution technology to
analyze 15 open-source implementations (including
IPsec) of the PKCS#1 v1.5 signature verification code
and found six semantic errors. They also identified
that four corresponding implementations were vul-

573Information Technology and Control 2021/3/50

nerable to new variants of Bleichenbacher’s low-in-
dex RSA signature forgery. In a previous work [11],
we combined model-learning and model-checking
methods to analyze the execution logic of three IKEv2
implementations. By analyzing the DFA model, we
found three violations of the RFCs.
However, none of the aforementioned studies focused
on the correctness of IPsec hostname matching. In
contrast, a few studies have been conducted on host-
name matching in SSL/TLS protocol. Kaminsky et al.
[17] summarized recent attacks on the SSL/TLS cer-
tificate authentication architecture, showing that in
some hostname verification implementations, error
handling of null characters embedded in X.509 certif-
icates can induce a certificate authority (CA) to issue
valid leaf certificates with incorrect subject names.
Fahl et al. [9] developed a tool for static analysis of
Android code to detect whether the target implemen-
tation has problems such as accepting self-signed cer-
tificates or not verifying hostnames. They found that
a large part of the application contains related flaws,
which are vulnerable to man-in-the-middle attacks.
Sounthiraraj et al. [33] improved the analysis technol-
ogy proposed in [9] and developed a tool called SMV
hunter. The tool optimizes the static analysis source
code function and adds dynamic testing, thereby im-
proving the detection of defects in error verification
in basic TLS certificate. Sivakorn et al. [31] focused
on the hostname verification process and developed a
test tool named HVLearn based on the state-machine
learning algorithm. They inferred the corresponding
state machine model to find differences in the imple-
mentation of specific hostname verification. They
found eight unique violations of RFC specifications in
eight TLS implementations, some of which may allow
man-in-the-middle attacks. Inspired by these works,
in this study, we analyze the hostname verification
module of IPsec.

3. Preliminaries
In this section, we introduce the basic framework and
negotiation process of IPsec, fundamental structure
of the X.509 digital certificate, types of IPsec identi-
fication that can be used, and relevant policy of IPsec
hostname matching.

3.1. IPsec Negotiation Process
IPsec is a security protocol that runs on the IP lay-
er, and it can be used for end-to-end confidential
communication. To mitigate the security risks that
the IP layer may face, IPsec provides three security
services: confidentiality, integrity verification, and
identity authentication, and resists replay attacks.
The IPsec process is divided into negotiation and
communication phases. In the negotiation phase
(IKE protocol), the communication parties negoti-
ate cryptographic parameters, identity authentica-
tion, and session key generation. In the subsequent
secure communication (ESP or AH protocol), the
negotiated cryptographic algorithm and session key
are applied to protect the interactive data. Current-
ly, the IKE protocol has two versions, IKEv1 (1998)
and IKEv2 (2005). Although the IKEv2 protocol is
designed to officially phase out the IKEv1 version,
most operating systems and network devices still
support the configuration and use of both versions.
The IKEv1 protocol contains four authentication
methods: signature-based authentication, pub-
lic-key encryption, revised public-key encryption,
and pre-shared-key-based authentication; the first
three require digital certificate participation. The
IKEv2 protocol omits two authentication methods
based on public-key encryption and only retains the
signature-based and pre-shared-key authentication.
Compared with pre-shared keys that are easy to leak
or suffer from dictionary attacks, certificate authen-
tication has higher security; therefore, it is recom-
mended for use in various operating systems and
communication devices. In the certificate authenti-
cation mode, one party in the communication uses
its own private key to sign a specific message, and the
other party uses the corresponding public key to veri-
fy the message. Both parties rely on the dependence of
the public–private key pair to ensure authentication.
In addition, in IPsec, both parties in communication
need to verify the match between the hostname of the
other party and the subject name in the public-key
certificate to ensure the ownership of the public key
and the legitimacy of the identity of the other party.
Figure 1 shows the communication flow of the digi-
tal signature authentication in IKEv2 protocol. The
two parties in the communication first complete the
negotiation of the IKE proposal (protocol version,

Information Technology and Control 2021/3/50574

Figure 1
IKEv2 process of signature-based authentication

ownership of the public key and the legitimacy of the
identity of the other party.
Figure 1 shows the communication flow of the digital
signature authentication in IKEv2 protocol. The two
parties in the communication first complete the
negotiation of the IKE proposal (protocol version,
cryptographic parameter) and perform the Diffie–
Hellman (DH) exchange and random number sharing
through the first two messages (M1 and M2). Both parties
use the current shared DH secret, gxy, and other materials
(Cookie, nI, nR, etc.) to derive seven symmetric keys (kd,
kaI, kaR, keI, keR, kpI, kpR). In addition, both parties use their
private keys to sign their respective hash values (MACI,
MACR), and send their own identity, public-key
certificate, and signature to the other party through M3
and M4 to complete signature verification and identity
authentication. Generally, after receiving the M3 (or M4)
message, the communication party comprehensively
compares the ID payload information, public key
certificate, and preset identity information of the other
party (or not set) to verify the legality of the public-key
certificate and the identity of the communication party
and ensure the security and reliability of the
communication.
Figure 1
IKEv2 process of signature-based authentication

Because of the various situations involved, hostname
verification is a relatively complicated process. In the

following subsection, we introduce the knowledge and
policy required for matching.
3.2. Contents of X.509 Certificate

X.509 is one of the standard formats for public-key
certificates, and it contains the To-Be-Signed (TBS) part,
signature algorithm identifier, and actual signature value.
The structure is shown in Figure 2. The communicating
entity can ask for an X.509 certificate from a trusted
certificate-issuing authority. One party in the
communication uses the private key to sign the message,
and the other party uses the corresponding public key to
verify the message. Furthermore, the subject name of the
certificate is compared with the user identity to ensure
that the identity of the certificate provider is correct. In
the entire X.509 framework, there are many RFC
definitions and specifications, such as RFC2459 [13],
RFC3820 [34], RFC4985 [30], and RFC5280 [5].
A standard X.509 certificate generally contains three
fields: tbsCertificate, signatureAlgorithm, and
signatureValue. The tbsCertificate field contains Version,
Serial Number, Signature (signature algorithm
identifier), Issuer (the entity that signed the certificate),
Validity (validity period), Subject (certificate owner),
SubjectPublicKeyInfo (certificate owner’s public key),
and the three optional fields issuerUniqueID,
subjectUniqueID, and extensions; the other two fields,
signatureAlgorithm and signatureValue, are the
algorithm the issuer used to sign the certificate and the
actual signature value, respectively.
The common name (CN) and subject alternate name
(SAN) fields in the certificate are mainly involved in
hostname matching. Both CN and SAN are located in the
subject field, but SAN is an optional extension of the
certificate.
The CN generally contains an FQDN, but it can also
contain any ASCII or UTF-8 string with a description of
the service. The CN should follow the
X520CommonName standard (for example, the
substring "CN=" should not be repeated).

Figure 2
Structure of an X.509 certificate

Version Serial
Number Signature Issuer Validity Subject Subject Public-

Key Info
Issuer

Unique ID
Subject

Unique ID Extensions Digital
Algorithm

Digital
Signature

Version of the
Certificate (e.g., v3)

Unique Integer
Identifier of the

Certificate Algorithm ID
Used to Sign

Name of
the Certificate

Issuer Not Before
and Not After
(Time Period)

Name of
the Certificate

Owner Public key
(and Algorithm ID) of

the Certificate
Owner

Unique ID of
the Issuing CA

(Optional) Unique ID of
the Subject
(Optional)

Extensions
(Possibly Critical)

(Optional)

Digital
Signature

by CA

To-Be-Signed by Certificate Authority (Issuer)

Algorithm ID
Used to Sign
the Certificate

cryptographic parameter) and perform the Diffie–
Hellman (DH) exchange and random number sharing
through the first two messages (M1 and M2). Both par-
ties use the current shared DH secret, gxy, and other
materials (Cookie, nI, nR, etc.) to derive seven symmet-
ric keys (kd, kaI, kaR, keI, keR, kpI, kpR). In addition, both
parties use their private keys to sign their respective
hash values (MACI, MACR), and send their own iden-
tity, public-key certificate, and signature to the other
party through M3 and M4 to complete signature veri-
fication and identity authentication. Generally, after
receiving the M3 (or M4) message, the communication
party comprehensively compares the ID payload in-
formation, public key certificate, and preset identity
information of the other party (or not set) to verify the
legality of the public-key certificate and the identity
of the communication party and ensure the security
and reliability of the communication.
Because of the various situations involved, hostname
verification is a relatively complicated process. In the
following subsection, we introduce the knowledge
and policy required for matching.

Figure 2
Structure of an X.509 certificate

3.2. Contents of X.509 Certificate
X.509 is one of the standard formats for public-key cer-
tificates, and it contains the To-Be-Signed (TBS) part,
signature algorithm identifier, and actual signature
value. The structure is shown in Figure 2. The commu-
nicating entity can ask for an X.509 certificate from a
trusted certificate-issuing authority. One party in the
communication uses the private key to sign the message,
and the other party uses the corresponding public key
to verify the message. Furthermore, the subject name
of the certificate is compared with the user identity to
ensure that the identity of the certificate provider is cor-
rect. In the entire X.509 framework, there are many RFC
definitions and specifications, such as RFC2459 [13],
RFC3820 [34], RFC4985 [30], and RFC5280 [5].
A standard X.509 certificate generally contains three
fields: tbsCertificate, signatureAlgorithm, and signa-
tureValue. The tbsCertificate field contains Version,
Serial Number, Signature (signature algorithm iden-
tifier), Issuer (the entity that signed the certificate),
Validity (validity period), Subject (certificate own-
er), SubjectPublicKeyInfo (certificate owner’s pub-
lic key), and the three optional fields issuerUnique-
ID, subjectUniqueID, and extensions; the other two
fields, signatureAlgorithm and signatureValue, are
the algorithm the issuer used to sign the certificate
and the actual signature value, respectively.
The common name (CN) and subject alternate name
(SAN) fields in the certificate are mainly involved in
hostname matching. Both CN and SAN are located in
the subject field, but SAN is an optional extension of
the certificate. The CN generally contains an FQDN,
but it can also contain any ASCII or UTF-8 string
with a description of the service. The CN should fol-
low the X520CommonName standard (for example,
the substring “CN=” should not be repeated).
The SAN is an extension of the X.509 certificate, and
it can be used to store different types of identity infor-

ownership of the public key and the legitimacy of the
identity of the other party.
Figure 1 shows the communication flow of the digital
signature authentication in IKEv2 protocol. The two
parties in the communication first complete the
negotiation of the IKE proposal (protocol version,
cryptographic parameter) and perform the Diffie–
Hellman (DH) exchange and random number sharing
through the first two messages (M1 and M2). Both parties
use the current shared DH secret, gxy, and other materials
(Cookie, nI, nR, etc.) to derive seven symmetric keys (kd,
kaI, kaR, keI, keR, kpI, kpR). In addition, both parties use their
private keys to sign their respective hash values (MACI,
MACR), and send their own identity, public-key
certificate, and signature to the other party through M3
and M4 to complete signature verification and identity
authentication. Generally, after receiving the M3 (or M4)
message, the communication party comprehensively
compares the ID payload information, public key
certificate, and preset identity information of the other
party (or not set) to verify the legality of the public-key
certificate and the identity of the communication party
and ensure the security and reliability of the
communication.
Figure 1
IKEv2 process of signature-based authentication

Because of the various situations involved, hostname
verification is a relatively complicated process. In the

following subsection, we introduce the knowledge and
policy required for matching.
3.2. Contents of X.509 Certificate

X.509 is one of the standard formats for public-key
certificates, and it contains the To-Be-Signed (TBS) part,
signature algorithm identifier, and actual signature value.
The structure is shown in Figure 2. The communicating
entity can ask for an X.509 certificate from a trusted
certificate-issuing authority. One party in the
communication uses the private key to sign the message,
and the other party uses the corresponding public key to
verify the message. Furthermore, the subject name of the
certificate is compared with the user identity to ensure
that the identity of the certificate provider is correct. In
the entire X.509 framework, there are many RFC
definitions and specifications, such as RFC2459 [13],
RFC3820 [34], RFC4985 [30], and RFC5280 [5].
A standard X.509 certificate generally contains three
fields: tbsCertificate, signatureAlgorithm, and
signatureValue. The tbsCertificate field contains Version,
Serial Number, Signature (signature algorithm
identifier), Issuer (the entity that signed the certificate),
Validity (validity period), Subject (certificate owner),
SubjectPublicKeyInfo (certificate owner’s public key),
and the three optional fields issuerUniqueID,
subjectUniqueID, and extensions; the other two fields,
signatureAlgorithm and signatureValue, are the
algorithm the issuer used to sign the certificate and the
actual signature value, respectively.
The common name (CN) and subject alternate name
(SAN) fields in the certificate are mainly involved in
hostname matching. Both CN and SAN are located in the
subject field, but SAN is an optional extension of the
certificate.
The CN generally contains an FQDN, but it can also
contain any ASCII or UTF-8 string with a description of
the service. The CN should follow the
X520CommonName standard (for example, the
substring "CN=" should not be repeated).

Figure 2
Structure of an X.509 certificate

Version Serial
Number Signature Issuer Validity Subject Subject Public-

Key Info
Issuer

Unique ID
Subject

Unique ID Extensions Digital
Algorithm

Digital
Signature

Version of the
Certificate (e.g., v3)

Unique Integer
Identifier of the

Certificate Algorithm ID
Used to Sign

Name of
the Certificate

Issuer Not Before
and Not After
(Time Period)

Name of
the Certificate

Owner Public key
(and Algorithm ID) of

the Certificate
Owner

Unique ID of
the Issuing CA

(Optional) Unique ID of
the Subject
(Optional)

Extensions
(Possibly Critical)

(Optional)

Digital
Signature

by CA

To-Be-Signed by Certificate Authority (Issuer)

Algorithm ID
Used to Sign
the Certificate

575Information Technology and Control 2021/3/50

mation, such as rfc822Name, dNSName, uniformRe-
sourceIdentifier, and iPAddress. Each of these types
has different restrictions on the format; for example,
rfc822Name, dNSName, and uniformResourceIden-
tifier must be valid IA5String strings (a subset of AS-
CII strings), and the iPAddress must be encoded in a
network byte order.
If the content of the “subject” item in the certificate
is empty, the CA must put the SAN extension into the
certificate and mark the extension as critical when
issuing the certificate. When the “subject” entry in
the certificate contains a non-empty DN name, the
CA must mark the SAN as non-critical when issuing
the certificate. For more specific X.509 naming rules,
please refer to RFC4985 [30] and RFC5280 [5].

3.3. Identification Types of IPsec
In this subsection, we summarize the identification
types of IPsec according to the relevant RFCs.
The birth and development of IPsec experienced 3
stages: AH and ESP (RFC1825-1829, 1995), IKEv1
(RFC2401-2412, 1998), and IKEv2 (RFC4301-4312,
2005). Later, after the transition of RFC4718 (2006)
and RFC5996 (2010), the updated version of IKEv2
(RFC7296) was standardized in 2014, which has bet-
ter security and accuracy. In addition to these basic
RFCs, there are numerous RFCs that supplement
specific items, such as RFC2709, RFC3457, RFC4945,
RFC5386, RFC6331, RFC7634, and RFC8229.
Given the identification and authentication prob-
lems that IPsec may face, RFC4301 [22] defines six

IKE ID types: domain name system (DNS), distin-
guished name (DN), RFC822 (email format), IPv4,
IPv6, and key ID. According to different encoding for-
mats, RFC4945 [24] specifically defines 11 different
ID identifiers, corresponding to these six ID types. In
addition, RFC4595 [25] proposed the ID_FC_NAME
format applied to the fiber channel protocol, and
RFC7619 [32] proposed the ID_NULL format. With
the ID_ANY/ID_NONE type, the 14 ID identifier
types are summarized in Table 1.

Table 2
Bindings of the identification payload to the contents of end-entity certificates and of identity information to policy in RFC 4945

ID type Support for send PKIX Attrib Cert matching SPD lookup rules

IP*_ADDR MUST support SubjAltName
iPAddress

MUST match
exactly

Must perform exact matching. Also, MAY
perform substring or wildcard matches

FQDN MUST support SubjAltName
dNSName

MUST match
exactly

Must perform exact matching. Also, MAY
perform substring or wildcard matches

USER_FQDN MUST support SubjAltName
rfc822Name

MUST match
exactly

Must perform exact matching. Also, MAY
perform substring or wildcard matches

IP range MUST NOT n/a n/a n/a

DN MUST support Entire Subject, bit-
wise compare

MUST match
exactly

MUST support lookup on any combination
of C, CN, O, or OU

GN MUST NOT n/a n/a n/a

KEY_ID MUST NOT n/a n/a n/a

Table 1
IPsec identification types and their assignment values

ID type Assignment value

ID_ANY/ID_NONE 0

ID_IPV4_ADDR 1

ID_FQDN 2

ID_USER_FQDN 3

ID_IPV4_ADDR_SUBNET 4

ID_IPV6_ADDR 5

ID_IPV6_ADDR_SUBNET 6

ID_IPV4_ADDR_RANGE 7

ID_IPV6_ADDR_RANGE 8

ID_DER_ASN1_DN 9

ID_DER_ASN1_GN 10

ID_KEY_ID 11

ID_FC_NAME 12

ID_NULL 13

Information Technology and Control 2021/3/50576

Regarding the use of these identity types, RFC4809
[2] has a corresponding description, which requires
that the IPsec implementation must support FQDN
and RFC822 (e-mail format, IPv4 address, and IPv6
address. In addition, RFC4945 [24] has made seven
clear requirements for the usage of IPsec IDs, that
is, the support and matching rules in Table 2 should
be met.

3.4. IPsec Hostname Matching Policy
IPsec implementations MUST provide a means for an
administrator to require a match between an asserted
IKE ID and the subject name or subject alt name in a
certificate [22]. Because implementations may use ID
as a lookup key to determine which policy to use, all
implementations MUST be especially careful to ver-
ify the truthfulness of the contents by verifying that
they correspond to some keying material demonstra-
bly held by the peer [24]. In addition to domain name
strings in the general sense, hostname verification in-
volves IP addresses and emails.
Based on the support and matching situation summa-
rized in Table 2 [24], in this section, we further sort
out the different types of ID matching rules and dis-
cuss the situation where a certificate contains multi-
ple hostnames.

3.4.1. ID_IPV4_ADDR and ID_IPV6_ADDR
The IPsec implementation must support at least
ID_IPV4_ADDR or ID_IPV6_ADDR ID types, and
these addresses must be encoded in the network byte
order specified in RFC791. In the event of a network
address translator (NAT) traversal, the implementa-
tion should not fill the ID payload with an IP address.
If the other party’s IP address is static, and the peer
is not behind a NATing device, and the administrator
wants to implement this scheme to verify whether
the peer source address matches the IP address in
the received ID and the IP address in the iPAddress
field of the SAN extension of the peer certificate, the
user can only consider the IP address as the ID. The
implementation must be able to verify that the IP ad-
dress shown in the ID matches the IP address in the
iPAddress field of the SAN extended certificate. By
default, implementations must perform this verifica-
tion. When comparing the content of the ID with the
iPAddress field in the SAN extension for equality, a
binary comparison must be performed.

3.4.2. ID_FQDN and ID_USER_FQDN
The IPsec implementation must support the two ID
types ID_FQDN and ID_USER_FQDN, which provide
host-based access control lists for hosts without fixed
IP addresses. If the ID contains ID_FQDN, the imple-
mentation must be able to verify whether the identi-
ty contained in the ID payload matches the identity
information contained in the peer entity certificate
in the dNSName field of the SAN extension. If the ID
contains ID_USER_FQDN, the implementation must
be able to verify whether the identity contained in
the ID payload matches the identity information con-
tained in the peer entity certificate in the rfc822Name
field of the SAN extension. When comparing the con-
tent of the ID with the dNSName or rfc822Name field
in the SAN extension for equality, a case-insensitive
string comparison must be performed. Moreover, the
comparison cannot perform substring, wildcard, or
regular expression matching.

3.4.3. ID_DER_ASN1_DN
The IPsec implementation must support receiving
and generating ID_DER_ASN1_DN types. When gen-
erating this type, the implementation must fill in the
ID content with the Subject field of the end entity cer-
tificate. When this is done, a binary comparison be-
tween the two can be successfully performed. If there
is no match, it must be treated as an error and the se-
curity association setting must be aborted.
In addition, regarding SPD matching, the implemen-
tation must be able to perform matching based on a
bit-by-bit comparison of the entire DN in the ID and
its entry into the SPD. However, it is difficult to use
the entire DN in a local configuration, especially in a
large-scale deployment. Therefore, the implementa-
tion must also be able to perform SPD matching on
one or more combinations of the C, CN, O, and OU at-
tributes in the ID DN subject. Implementations may
also support substring, wildcard, or regular expres-
sion matching on any supported DN attribute from ID
(in any combination) to SPD.

3.4.4. Other Types
For the remaining ID types, RFC4945 indicated that
ID_IPV4_ADDR_SUBNET, ID_IPV6_ADDR_SUB-
NET, ID_IPV4_ADDR_RANGE, and ID_IPV6_
ADDR_RANGE are still in the experimental stage;
ID_DER_ASN1_GN is forbidden to be generated be-

577Information Technology and Control 2021/3/50

cause the recipient does not know how to use it, and
ID_KEY_ID is used to specify the pre-shared key for
verification and is not in the scope of the certificate
verification. Therefore, in this paper, we do not con-
sider these types.

3.4.5. Policy of Multiple Identifications in the
IPsec Implementation Certificate
The implementation must support certificates that
contain multiple identities. In many cases, in addi-
tion to a non-empty subject, the certificate will also
include an identity (such as an IP address) in the SAN
extension. The implementation shall fill in the ID
with the identity that may be named in the peer policy,
usually FQDN or USER_FQDN. The recipient must
use the identity sent as the first key when choosing a
strategy. If there are overlapping strategies caused by
wildcards, the receiver must also use the most specif-
ic strategy in the database.

4. Model Learning
In this section, we introduce state-machine and mod-
el learning and discuss the algorithm selection and
other considerations for hostname verification.
The purpose of model learning is to construct a state
machine model that describes the operating logic of
the target system through the interaction of inputs
and outputs. Model learning can be divided into pas-
sive learning and active learning. In this study, we
employ active learning to initiate a limited number
of active queries to the target for inferring a complete
target model. In addition, according to the require-
ments for the expression of the model, we adopt a
Mealy machine to describe the DFA model.

4.1. Mealy Machine
Definition 1. A Mealy machine is a tuple, M=(I, O, S,
s0, δ, λ), where I is a finite set of inputs, O is a finite set
of outputs, S is a finite set of states, s0∈S is the initial
state, δ: S×I→S is a transition function, and λ: S×I→O
is an output function.
The Mealy machine can well reflect the character-
istics of the DFA model; that is, in any state, a given
input only has one state transition and output. Here,
we only present the information that facilitates the
explanation of the methods employed and results ob-

tained in our study. For more details regarding Mealy
machines, please refer to [30].
The Mealy machine and the state graph have a natural
corresponding relationship; that is, a graph contain-
ing edges and nodes can be used to represent the state
transition contained in the Mealy machine. As shown
in the basic Mealy machine model in Figure 3, when
the model is in the initial state s0 and receives the input
a, the state transition δ(s0, a)=s1 occurs, and the output
λ(s0, a)=accept is obtained, which corresponds to the
edge from s0 to s1 and the label a/accept. Figure 3 de-
picts the corresponding collection of strings that can
be accepted by the system: {a, ab, aa, aab, aaa, aaab, ...}.

Figure 3
Simple DFA model with alphabet: {a, b}

3.4.4. Other Types
For the remaining ID types, RFC4945 indicated that
ID_IPV4_ADDR_SUBNET,
ID_IPV6_ADDR_SUBNET,
ID_IPV4_ADDR_RANGE, and
ID_IPV6_ADDR_RANGE are still in the experimental
stage; ID_DER_ASN1_GN is forbidden to be generated
because the recipient does not know how to use it, and
ID_KEY_ID is used to specify the pre-shared key for
verification and is not in the scope of the certificate
verification. Therefore, in this paper, we do not consider
these types.
3.4.5. Policy of Multiple Identifications in the IPsec
Implementation Certificate
The implementation must support certificates that
contain multiple identities. In many cases, in addition to
a non-empty subject, the certificate will also include an
identity (such as an IP address) in the SAN extension.
The implementation shall fill in the ID with the identity
that may be named in the peer policy, usually FQDN or
USER_FQDN. The recipient must use the identity sent
as the first key when choosing a strategy. If there are
overlapping strategies caused by wildcards, the receiver
must also use the most specific strategy in the database.

4. Model Learning
In this section, we introduce state-machine and model
learning and discuss the algorithm selection and other
considerations for hostname verification.
The purpose of model learning is to construct a state
machine model that describes the operating logic of the
target system through the interaction of inputs and
outputs. Model learning can be divided into passive
learning and active learning. In this study, we employ
active learning to initiate a limited number of active
queries to the target for inferring a complete target model.
In addition, according to the requirements for the
expression of the model, we adopt a Mealy machine to
describe the DFA model.
4.1. Mealy Machine
Definition 1. A Mealy machine is a tuple, M=(I, O, S, s0,
δ, λ), where I is a finite set of inputs, O is a finite set of
outputs, S is a finite set of states, s0�S is the initial state,
δ: S×I→S is a transition function, and λ: S×I→O is an
output function.
The Mealy machine can well reflect the characteristics
of the DFA model; that is, in any state, a given input only
has one state transition and output. Here, we only present

the information that facilitates the explanation of the
methods employed and results obtained in our study. For
more details regarding Mealy machines, please refer to
[30].
The Mealy machine and the state graph have a natural
corresponding relationship; that is, a graph containing
edges and nodes can be used to represent the state
transition contained in the Mealy machine. As shown in
the basic Mealy machine model in Figure 3, when the
model is in the initial state s0 and receives the input a,
the state transition δ(s0, a)=s1 occurs, and the output λ(s0,
a)=accept is obtained, which corresponds to the edge
from s0 to s1 and the label a/accept. Figure 3 depicts the
corresponding collection of strings that can be accepted
by the system: {a, ab, aa, aab, aaa, aaab, ...}.
Figure 3
Simple DFA model with alphabet: {a, b}

s0 s1 s2
Start

b / reject

a / accept b / accept

a / accept

a / reject
b / reject

The output function, λ, can also process multiple
consecutive inputs: λ(s,τσ)=λ(s,τ)λ(δ(s,τ),σ) and λ(s, ϵ)=ϵ,
where s�S, τ�I, σ�I* is a non-empty sequence, and ϵ is
an empty sequence. Further, we define the behavior of a
Mealy machine M through AM(σ)=λ(s0, σ), σ�I*.Thus,
we define that two Mealy machines, M and N, are
equivalent if and only if AM(σ)=AN(σ) for any σ�I*,
denoted as M≈N. Further, we note that σ�I* is
distinguished between M and N if and only if
AM(σ)≠AN(σ).
4.2. Model-Learning Framework
We introduce the MAT framework to describe the
process and logic of model learning. The MAT
framework was proposed by Angluin [1], and it has been
widely used in practice. This framework has two major
components: the learner and the oracle (target system).
The learner wants to perform the inference and
modification of the DFA model by constantly querying
the oracle, and the oracle has infinite knowledge using
which it can answer the learner's queries. As shown in
Figure 4, the execution process of the framework is
divided into two parts:
1) The first part is membership query: the learning
algorithm uses the known input alphabet set I and
counterexample set D (D is initially empty); further, it

The output function, λ, can also process multiple con-
secutive inputs: λ(s,τσ)=λ(s,τ)λ(δ(s,τ),σ) and λ(s, ϵ)=ϵ,
where s∈S, τ∈I, σ∈I* is a non-empty sequence, and ϵ
is an empty sequence. Further, we define the behav-
ior of a Mealy machine M through AM(σ)=λ(s0, σ), σ∈I*.
Thus, we define that two Mealy machines, M and N,
are equivalent if and only if AM(σ)=AN(σ) for any σ∈I*,
denoted as M≈N. Further, we note that σ∈I* is distin-
guished between M and N if and only if AM(σ)≠AN(σ).

4.2. Model-Learning Framework
We introduce the MAT framework to describe the pro-
cess and logic of model learning. The MAT framework
was proposed by Angluin [1], and it has been widely
used in practice. This framework has two major com-
ponents: the learner and the oracle (target system).
The learner wants to perform the inference and mod-
ification of the DFA model by constantly querying the
oracle, and the oracle has infinite knowledge using
which it can answer the learner’s queries. As shown
in Figure 4, the execution process of the framework is
divided into two parts:
1 The first part is membership query: the learning

algorithm uses the known input alphabet set I

Information Technology and Control 2021/3/50578

and counterexample set D (D is initially empty);
further, it fills in the observation table used to
record the query sequence by enquiring the or-
acle until the table is closed (Different learning
algorithms may employ varied recording meth-
ods; here, we take the observation table from the
L* algorithm as an example for explanation). In
this stage, the learner performs multiple rounds
of querying. In each querying round, the learner
first resets the oracle to the initial state s0 and
then inputs the string sequence σ∈I* to the oracle
for querying. The oracle receives the query and
processes the response with AM(σ). The learner
records the response and completes a round of
querying. The learner then builds a model hy-
pothesis H and submits it to the next stage, that
is, equivalent query.

2 The other part is equivalence query: at this stage,
the learner needs to complete the modification of
the model; that is, to verify whether the model hy-
pothesis H is equivalent to the real system (H≈M).
If the learner does not search for a distinguishing
sequence σ∈I* such that AH(σ)≠AM(σ) under a cer-
tain pre-set search time or range, then the hypoth-
esis is considered equivalent to the real system,
and H is output. Otherwise, the learner adds σ to
the counterexample set D and returns to the mem-
bership query again. Subsequently, the equivalent
query is repeated until no new counterexample can
be found. At this moment, the learning finishes and
we obtain the final DFA model H.

In our tests, the implementation of certificate host-
name verification is regarded as our target system.
Through the effective interaction with it in the above
two steps, the learning algorithm can infer the state
machine model of all the hostname-matching results
for a certificate in a limited number of queries.

Figure 4
Model-learning framework

fills in the observation table used to record the query
sequence by enquiring the oracle until the table is closed
(Different learning algorithms may employ varied
recording methods; here, we take the observation table
from the L* algorithm as an example for explanation).
In this stage, the learner performs multiple rounds of
querying. In each querying round, the learner first resets
the oracle to the initial state s0 and then inputs the string
sequence σ�I* to the oracle for querying. The oracle
receives the query and processes the response with AM(σ).
The learner records the response and completes a round
of querying. The learner then builds a model hypothesis
H and submits it to the next stage, that is, equivalent
query.
2) The other part is equivalence query: at this stage, the
learner needs to complete the modification of the model;
that is, to verify whether the model hypothesis H is
equivalent to the real system (H≈M). If the learner does
not search for a distinguishing sequence σ�I* such that
AH(σ)≠AM(σ) under a certain pre-set search time or range,
then the hypothesis is considered equivalent to the real
system, and H is output. Otherwise, the learner adds σ to
the counterexample set D and returns to the membership
query again. Subsequently, the equivalent query is
repeated until no new counterexample can be found. At
this moment, the learning finishes and we obtain the
final DFA model H.
Figure 4
Model-learning framework

Learner Oracle
(Target System)

Membership Query

Hypothesis

1

Equivalence
Oracle

DFA Model

Equivalence Query

Correct/
Refine Hypothesis + Counterexample

2

In our tests, the implementation of certificate hostname
verification is regarded as our target system. Through the
effective interaction with it in the above two steps, the
learning algorithm can infer the state machine model of
all the hostname-matching results for a certificate in a
limited number of queries.
4.3. KV Algorithm and Wp Method
According to the model-learning framework, we need to
select the appropriate learning algorithm and equivalent
query algorithm to infer the state machine.
The first algorithm used to learn DFA accurately from
query models was the L* algorithm proposed by Angluin

[1]. Subsequent scholars have designed a variety of other
algorithms based on it.
In this study, we used the KV algorithm improved by
Kearns et al. [21] as the state machine learning algorithm.
Kearns et al. replaced the observation table structure
with a discrimination tree, thus achieving higher storage
and query efficiency. The storage complexity of the KV
algorithm is O (|Σ|n + nm), and the time complexity is
O(|Σ|n2+nlogm), where |Σ| represents the size of the
alphabet; n is the total number of states in the minimum
state model of the target system, and m is the length of
the longest counterexample returned by the oracle.
In addition, we used the Wp method [23] as an
equivalence query algorithm to perform an equivalent
oracle test on the hypotheses constructed by the learning
algorithm. In the process of checking, we set a parameter
for the test depth. The algorithm takes the test depth plus
the number of states of the current model as the upper
limit of the check and searches for counterexamples by
means of extended tracking. If under the upper limit of
the number of states, no counterexample can be found
after testing, it can be considered that the state machine
hypothesis currently obtained is consistent with the
actual DFA model. The Wp method is powerful, but it
requires a very large performance overhead; therefore,
in actual use, we need to set an appropriate test depth.
4.4. Certificate Template Generation and
Alphabet Selection
To test all the different rules in hostname verification, we
created 19 certificates with different identifier content to
cover specific rules in Section 3.4. For example, a
certificate with the common name "CN=*.a.a" can test
IPsec's matching processing of ID_DER_ASN1_DN
type IDs and the situation of wildcards. Our template
certificate was generated by Libreswan's certutil library,
which can facilitate the generation of certificates with
various CN and SAN tags that have different types. For
more specific content of the certificate templates, please
refer to the appendix A.
In addition, we must create an alphabet that will
determine which characters the query sequence of the
learning algorithm consists of. Because the performance
of the learning algorithm depends on the size of the
alphabet, we choose a small set of representative
characters to form our alphabet to improve the efficiency
of the test. In this study, we used the alphabet set Σ = {a,
1, dot, \s, @, A, =, *, /, -, NULL}, where "dot" represents
the character ".", "\s" represents the space character

4.3. KV Algorithm and Wp Method
According to the model-learning framework, we
need to select the appropriate learning algorithm and
equivalent query algorithm to infer the state machine.
The first algorithm used to learn DFA accurately from
query models was the L* algorithm proposed by An-
gluin [1]. Subsequent scholars have designed a variety
of other algorithms based on it.
In this study, we used the KV algorithm improved by
Kearns et al. [21] as the state machine learning algo-
rithm. Kearns et al. replaced the observation table
structure with a discrimination tree, thus achiev-
ing higher storage and query efficiency. The storage
complexity of the KV algorithm is O (|Σ|n + nm), and
the time complexity is O(|Σ|n2+nlogm), where |Σ| rep-
resents the size of the alphabet; n is the total number
of states in the minimum state model of the target
system, and m is the length of the longest counterex-
ample returned by the oracle.
In addition, we used the Wp method [23] as an equiva-
lence query algorithm to perform an equivalent oracle
test on the hypotheses constructed by the learning al-
gorithm. In the process of checking, we set a param-
eter for the test depth. The algorithm takes the test
depth plus the number of states of the current model
as the upper limit of the check and searches for coun-
terexamples by means of extended tracking. If under
the upper limit of the number of states, no counterex-
ample can be found after testing, it can be considered
that the state machine hypothesis currently obtained
is consistent with the actual DFA model. The Wp
method is powerful, but it requires a very large per-
formance overhead; therefore, in actual use, we need
to set an appropriate test depth.

4.4. Certificate Template Generation and
Alphabet Selection
To test all the different rules in hostname verification,
we created 19 certificates with different identifier con-
tent to cover specific rules in Section 3.4. For example,
a certificate with the common name “CN=*.a.a” can
test IPsec’s matching processing of ID_DER_ASN1_
DN type IDs and the situation of wildcards. Our tem-
plate certificate was generated by Libreswan’s certutil
library, which can facilitate the generation of certifi-
cates with various CN and SAN tags that have different
types. For more specific content of the certificate tem-
plates, please refer to the appendix A.

579Information Technology and Control 2021/3/50

In addition, we must create an alphabet that will de-
termine which characters the query sequence of the
learning algorithm consists of. Because the perfor-
mance of the learning algorithm depends on the size
of the alphabet, we choose a small set of representa-
tive characters to form our alphabet to improve the
efficiency of the test. In this study, we used the alpha-
bet set Σ = {a, 1, dot, \s, @, A, =, *, /, -, NULL}, where
“dot” represents the character “.”, “\s” represents the
space character (ASCII 0x20), and “NULL” means
zero-byte characters (ASCII 0x00). This alphabet ba-
sically covers different types of characters so that we
can test possible hostname matching exceptions in
the IPsec implementation.

5. Adapting Test for IPsec
Implementation
In this section, we introduce the specific test process
and analysis results of our implementation of IPsec
hostname verification.

5.1. IPsec Implementation

In this study, two popular IPsec implementations
with the latest versions, Strongswan 5.9.0 and Li-
breswan 3.32, were selected for testing. They both
implement the corresponding certificate hostname
matching module. We need to make appropriate mod-
ifications to the source code and recompile it, so that
we can call the corresponding implementation of the
relevant hostname verification interface for testing.

Strongswan is an open-source IPsec implementation,
which was originally based on the FreeS/WAN project
but has been completely rewritten. It is a complete IP-
based VPN solution that supports traditional IKEv1
and the new IKEv2 protocol. The function of Strong-
swan includes providing multiple authentication
methods, such as the X.509 certificate hybrid mode and
the pre-shared key for the VPN gateway, among which
EAP is also an authentication method (such as EAP
SIM based on SIM card or the EAP aka method popular
in the mobile environment). In addition, Strongswan
also has the advantages of fast VPN connection setting,
built-in NAT traversal, dead peer detection, and auto-
matic reduction of the subnet range.
Libreswan is also an open-source IPsec implemen-
tation. It is based on the FreeS/WAN code base and
extends some additional functions on this basis. It
supports most IPsec-related extensions (RFC + IETF
draft), including IKEv2, X.509 Certificates, and NAT
traversal. By default, Libreswan uses the native Linux
IPsec stack (NETKEY/XFRM).

5.2. Model Learning Tool
In this study, we used HVLearn [20] to infer the state
machine model. HVLearn is a test tool developed by
Sivakorn et al. and is used to analyze the implementa-
tion of the SSL/TLS protocol hostname verification.
It calls the KV algorithm based on the Learnlib learn-
ing library and optimizes the Wp method. In addition,
HVLearn provides a convenient Java Native Interface
[16] for connecting and testing the implementation of
IPsec hostname verification. Figure 5 shows the en-
tire test framework of HVLearn.

(ASCII 0x20), and "NULL" means zero-byte characters
(ASCII 0x00). This alphabet basically covers different
types of characters so that we can test possible hostname
matching exceptions in the IPsec implementation.

5. Adapting Test for IPsec
Implementation
In this section, we introduce the specific test process and
analysis results of our implementation of IPsec
hostname verification.
5.1. IPsec Implementation
In this study, two popular IPsec implementations with
the latest versions, Strongswan 5.9.0 and Libreswan 3.32,
were selected for testing. They both implement the
corresponding certificate hostname matching module.
We need to make appropriate modifications to the source
code and recompile it, so that we can call the
corresponding implementation of the relevant hostname
verification interface for testing.
Strongswan is an open-source IPsec implementation,
which was originally based on the FreeS/WAN project
but has been completely rewritten. It is a complete IP-
based VPN solution that supports traditional IKEv1 and
the new IKEv2 protocol. The function of Strongswan
includes providing multiple authentication methods,
such as the X.509 certificate hybrid mode and the pre-
shared key for the VPN gateway, among which EAP is
also an authentication method (such as EAP SIM based
on SIM card or the EAP aka method popular in the
mobile environment). In addition, Strongswan also has
the advantages of fast VPN connection setting, built-in
NAT traversal, dead peer detection, and automatic
reduction of the subnet range.
Libreswan is also an open-source IPsec implementation.
It is based on the FreeS/WAN code base and extends
some additional functions on this basis. It supports most
IPsec-related extensions (RFC + IETF draft), including
IKEv2, X.509 Certificates, and NAT traversal. By
default, Libreswan uses the native Linux IPsec stack
(NETKEY/XFRM).
5.2. Model Learning Tool
In this study, we used HVLearn [20] to infer the state
machine model. HVLearn is a test tool developed by

Sivakorn et al. and is used to analyze the implementation
of the SSL/TLS protocol hostname verification. It calls
the KV algorithm based on the Learnlib learning library
and optimizes the Wp method. In addition, HVLearn
provides a convenient Java Native Interface [16] for
connecting and testing the implementation of IPsec
hostname verification. Figure 5 shows the entire test
framework of HVLearn.
Figure 5
HVLearn framework

Optimized Wp-
Method

KV Algorithm

Counter Example
s0 s1

Start

Y/B

X/A

DFA
Model

Equivalence Query

HVLearn

Hostname

Accept / Reject

Cert Templates

IPsec Hostname Verification
Implementations

Specific Implementation

Test Cert Template

Output Final Model

In each round of model learning, HVLearn will create a
new specific string according to the alphabet and the
current testing status and input it into the corresponding
IPsec certificate verification module (or function) to
initiate a query. The certificate verification module
processes the input hostname string according to the
current certificate template and returns the matching
results to HVLearn. After a finite number of queries,
HVLearn outputs the corresponding state machine
matching model according to all the query results.
To effectively test the implementation of IPsec hostname
verification, we adjusted the consistency test depth of the
Wp method to 3. To reduce the overhead cost caused by
repeated queries, we also used LearnLib's
DFALearningCache class to implement the caching of
membership query results, check the cache on each new
query, and use the cached result when it is found to
reduce the cost of repeated queries.
5.3. Analysis Results
By analyzing the inferred state diagram, we found five
violations of IPsec hostname verification, which are
summarized in Table 3.

Table 3
RFC violations in the tested IPsec implementations

Figure 5
HVLearn framework

Information Technology and Control 2021/3/50580

In each round of model learning, HVLearn will cre-
ate a new specific string according to the alphabet
and the current testing status and input it into the
corresponding IPsec certificate verification module
(or function) to initiate a query. The certificate veri-
fication module processes the input hostname string
according to the current certificate template and
returns the matching results to HVLearn. After a fi-
nite number of queries, HVLearn outputs the corre-
sponding state machine matching model according
to all the query results.
To effectively test the implementation of IPsec host-
name verification, we adjusted the consistency test
depth of the Wp method to 3. To reduce the overhead
cost caused by repeated queries, we also used Learn-

Lib’s DFALearningCache class to implement the
caching of membership query results, check the cache
on each new query, and use the cached result when it
is found to reduce the cost of repeated queries.

5.3. Analysis Results
By analyzing the inferred state diagram, we found five
violations of IPsec hostname verification, which are
summarized in Table 3.
Next, we discuss the details of these issues in turn. To
facilitate the explanation of specific issues, we sim-
plified the displayed DFA model by reducing the size
of the alphabet, leaving only the corresponding key
parts. The specific test results are shown in the ap-
pendix.

Table 3
RFC violations in the tested IPsec implementations

RFC Violations RFC Strongswan Libreswan

Incorrect handling of space characters in ID_DER_ASN1_DN type IDs RFC4945 × ×

Incorrect handling of case-insensitive strings in ID_DER_ASN1_DN type IDs RFC4945 × √

Incorrect match of wildcards and substring in ID_FQDN type IDs RFC4945 × ×

Incorrect match of substring in ID_USER_FQDN type IDs RFC4945 × √

Unsupported null byte certificate match RFC7619 × ×

√= OK, ×= RFC violation

5.3.1. Incorrect Handling of Space Characters in
ID_DER_ASN1_DN Type IDs
Figure 6 shows the DFA matching results of the two
IPsec implementations for the “C=CH, CN=a.a.a”
certificate. The double solid circles indicate states
that can be matched successfully, and the result of
the match is the accumulated character string of the
state. As shown in Figure 6 (a), states 0 and 5 indicate
that the ID_DER_ASN1_DN type IDs “C=CH,CN=(\
s)*(\s)” and “C=CH, CN=(\s)a/A.a/A.a/A(\s),” respec-
tively, can successfully match the certificate contain-
ing “C=CH, CN=a.a.a” (\s means that the content of
CN is allowed to contain prefixes and suffixes of space
characters; a/A indicates that the alphabetic charac-
ter is not case sensitive).
When processing ID_DER_ASN1_DN type ID match-
ing, RFC4945 points out that “the implementation
must be able to perform matching based on a bit-by-
bit comparison of the entire DN in the ID and its entry

in the SPD.” According to the experimental results, as
shown by the thick blue edges in Figure 6, we found
that Strongswan and Libreswan showed a controver-
sial behavior, that is, allowing the content of CN to
contain prefixes and suffixes of space characters (in
state 0 and state 5). This approach may facilitate the
user to configure the implementation, but it will affect
the correctness and security of ID matching.

5.3.2. Incorrect Handling of Case-Insensitive
Strings in ID_DER_ASN1_DN Type IDs
RFC4945 indicates that strict binary matching must
be performed when ID_DER_ASN1_DN type ID
matching is performed. However, as shown by the
dashed red lines in Figure 6 (a), Strongswan per-
forms case insensitive matching for the certificate
containing “C=CH, CN=a.a.a”, while Libreswan can
correctly perform case sensitive matching, as shown
in Figure 6 (b).

581Information Technology and Control 2021/3/50

5.3.3. Incorrect Matching of Wildcards and
Substrings in ID_FQDN Type IDs
According to RFC4945, when processing ID_FQDN
type ID matching, substring, wildcard, and regular
expression matching MUST NOT be performed for
this comparison. However, as shown by the dashed
red lines in Figure 7 (a), the matching of ID_FQDN
type IDs in Strongswan is obviously much looser,
such as the strings “*”, “*a/A”, “*.a/A”, “*a/A.a/A”,
and “*.a/A.a/A” can be matched with the certifi-
cate that contains the “*.a.a” dNSName-type SAN
identifier. In addition, as shown by the dashed red
lines in Figure 7 (b), Libreswan even has the prob-
lem of allowing wildcard certificates to participate
in matching, that is, the wildcard (the only charac-
ter on the leftmost side of the certificate label) can
match anything in the leftmost label of the ID.

Figure 6
IPsec implementation’s intersection of DFA in ID_DER_ASN1_DN type ID with cert: C=CH, CN=a.a.a and alphabet:
{a, dot, \s, A, *}

IPsec implementation’s intersection of DFA in ID_DER_ASN1_DN type ID with cert: C=CH, CN=a.a.a and alphabet: {a, dot, \s,
A, *}

"C=CH,CN="

0 " "

1

"a"
"A"

6

"dot"

5

"*"

"a"
" "
"A"
"*"

2

"dot"

"a"
"dot"

" "
"A"
"*"

"a"
"dot"
"A"
"*"

" "

"dot"
" "
"*"

3

"a"
"A"

4

"dot"
" "
"*"

"a"
"A"

"a"
" "
"A"
"*"

"dot"

(a) Strongswan (b) Libreswan

"C=CH,CN="

0 " "

1

"a"

6

"dot"
"A"

5

"*"

"a"
" "
"A"
"*"

2

"dot"

"a"
"dot"

" "
"A"
"*"

"a"
"dot"
"A"
"*"

" "

"dot"
" "
"A"
"*"

3

"a"

4

"dot"
" "
"A"
"*"

"a"

"a"
" "
"A"
"*"

"dot"

Figure 7
IPsec implementation’s intersection of DFA in ID_DER_ASN1_DN type ID with cert: CN=abcde and SAN dns:*.a.a and alphabet:
{a, dot, \s, @, A, *}

0

1
"@"

7

"a"
"dot"
" "
"A"
"*"

2

"a"
" "

"@"
"A"
"*"

3

"dot"

"a"
"dot"
" "

"@"
"A"
"*"

"a"
" "

"@"
"A"
"*"

"dot"

"dot"
" "

"@"
"*"

4

"a"
"A"

5

"dot"
" "

"@"
"*"

6

"a"
"A"

"a"
"dot"
" "

"@"
"A"
"*"

"a"
" "

"@"
"A"
"*"

"dot"

(a) Strongswan (b) Libreswan

0

1
"@"

2

"*"

7

"a"
"dot"
" "
"A"

"*"

"a"
"dot"
" "

"@"
"A"

" "
"@"
"*"

4

"a"
"A"3

"dot"

"a"
"dot"
" "

"@"
"A"
"*"

"a"
" "

"@"
"A"
"*"

5

"dot"

"dot"
" "

"@"
"*"

"a"
"A"

"dot"
" "

"@"
"*"

6

"a"
"A"

"a"
"dot"
" "

"@"
"A"
"*"

IPsec implementation’s intersection of DFA in ID_DER_ASN1_DN type ID with cert: C=CH, CN=a.a.a and alphabet: {a, dot, \s,
A, *}

"C=CH,CN="

0 " "

1

"a"
"A"

6

"dot"

5

"*"

"a"
" "
"A"
"*"

2

"dot"

"a"
"dot"

" "
"A"
"*"

"a"
"dot"
"A"
"*"

" "

"dot"
" "
"*"

3

"a"
"A"

4

"dot"
" "
"*"

"a"
"A"

"a"
" "
"A"
"*"

"dot"

(a) Strongswan (b) Libreswan

"C=CH,CN="

0 " "

1

"a"

6

"dot"
"A"

5

"*"

"a"
" "
"A"
"*"

2

"dot"

"a"
"dot"

" "
"A"
"*"

"a"
"dot"
"A"
"*"

" "

"dot"
" "
"A"
"*"

3

"a"

4

"dot"
" "
"A"
"*"

"a"

"a"
" "
"A"
"*"

"dot"

Figure 7
IPsec implementation’s intersection of DFA in ID_DER_ASN1_DN type ID with cert: CN=abcde and SAN dns:*.a.a and alphabet:
{a, dot, \s, @, A, *}

0

1
"@"

7

"a"
"dot"
" "
"A"
"*"

2

"a"
" "

"@"
"A"
"*"

3

"dot"

"a"
"dot"
" "

"@"
"A"
"*"

"a"
" "

"@"
"A"
"*"

"dot"

"dot"
" "

"@"
"*"

4

"a"
"A"

5

"dot"
" "

"@"
"*"

6

"a"
"A"

"a"
"dot"
" "

"@"
"A"
"*"

"a"
" "

"@"
"A"
"*"

"dot"

(a) Strongswan (b) Libreswan

0

1
"@"

2

"*"

7

"a"
"dot"
" "
"A"

"*"

"a"
"dot"
" "

"@"
"A"

" "
"@"
"*"

4

"a"
"A"3

"dot"

"a"
"dot"
" "

"@"
"A"
"*"

"a"
" "

"@"
"A"
"*"

5

"dot"

"dot"
" "

"@"
"*"

"a"
"A"

"dot"
" "

"@"
"*"

6

"a"
"A"

"a"
"dot"
" "

"@"
"A"
"*"

5.3.4. Incorrect Matching of Substrings in
ID_USER_FQDN Type IDs
In terms of ID_USER_FQDN type ID matching,
RFC4945 indicates that “substring, wildcard, and reg-
ular expression matching MUST NOT be performed
for this comparison.” However, Strongswan allows
strings such as “*a/A.a/A”, “*a/A”, and “*@a/A.a/A”
to match a certificate containing the “a@a.a” rfc822
type SAN identifier.

5.3.5. Unsupported Null Byte Certificate Matching
RFC7619 specifies the NULL authentication meth-
od and ID_NULL type ID payload and puts forward
relevant rules on the use of NULL format IDs. How-
ever, for special certificates containing NULL bytes,
Strongswan and Libreswan directly end the match by
throwing an exception.

Information Technology and Control 2021/3/50582

IPsec implementation’s intersection of DFA in ID_DER_ASN1_DN type ID with cert: C=CH, CN=a.a.a and alphabet: {a, dot, \s,
A, *}

"C=CH,CN="

0 " "

1

"a"
"A"

6

"dot"

5

"*"

"a"
" "
"A"
"*"

2

"dot"

"a"
"dot"

" "
"A"
"*"

"a"
"dot"
"A"
"*"

" "

"dot"
" "
"*"

3

"a"
"A"

4

"dot"
" "
"*"

"a"
"A"

"a"
" "
"A"
"*"

"dot"

(a) Strongswan (b) Libreswan

"C=CH,CN="

0 " "

1

"a"

6

"dot"
"A"

5

"*"

"a"
" "
"A"
"*"

2

"dot"

"a"
"dot"

" "
"A"
"*"

"a"
"dot"
"A"
"*"

" "

"dot"
" "
"A"
"*"

3

"a"

4

"dot"
" "
"A"
"*"

"a"

"a"
" "
"A"
"*"

"dot"

Figure 7
IPsec implementation’s intersection of DFA in ID_DER_ASN1_DN type ID with cert: CN=abcde and SAN dns:*.a.a and alphabet:
{a, dot, \s, @, A, *}

0

1
"@"

7

"a"
"dot"
" "
"A"
"*"

2

"a"
" "

"@"
"A"
"*"

3

"dot"

"a"
"dot"
" "

"@"
"A"
"*"

"a"
" "

"@"
"A"
"*"

"dot"

"dot"
" "

"@"
"*"

4

"a"
"A"

5

"dot"
" "

"@"
"*"

6

"a"
"A"

"a"
"dot"
" "

"@"
"A"
"*"

"a"
" "

"@"
"A"
"*"

"dot"

(a) Strongswan (b) Libreswan

0

1
"@"

2

"*"

7

"a"
"dot"
" "
"A"

"*"

"a"
"dot"
" "

"@"
"A"

" "
"@"
"*"

4

"a"
"A"3

"dot"

"a"
"dot"
" "

"@"
"A"
"*"

"a"
" "

"@"
"A"
"*"

5

"dot"

"dot"
" "

"@"
"*"

"a"
"A"

"dot"
" "

"@"
"*"

6

"a"
"A"

"a"
"dot"
" "

"@"
"A"
"*"

Violations 1)–4) mentioned above may bring the risk
of Authentication because attackers can use the cor-
responding loose character matching to forge their
own identity information to bypass hostname veri-
fication; the last violation may hinder the certificate
verification of ID_NULL type identities.

5.4. Attack Verification
Based on our analysis, we also conducted attack tests
to verify that, under specific conditions, the flaws in
hostname matching can be used to initiate identity
spoofing attacks and man-in-the-middle attacks. The
test environment was as follows:
Client and attacker: Ubuntu 18.04 OS + Intel Core I5
8th Gen CPU + 8GB of RAM.
Server: Ubuntu 18.04 OS + Intel Xeon E5-2680 v2
CPU + 32GB of RAM.
In the following test, it is assumed that the attacker’s
public key certificate (with available subject content
for attack) is issued by a legal CA (usually is private

Figure 7
IPsec implementation’s intersection of DFA in ID_DER_ASN1_DN type ID with cert: CN=abcde and SAN dns:*.a.a and alphabet:
{a, dot, \s, @, A, *}

CA in IPsec server) and possesses the corresponding
private key, and the attacker can monitor, intercept,
and tamper with the messages of the legitimate user.
In response to the problems exposed in Strongswan
and Libreswan, we give a specific attack scenario to
illustrate the effect that can be achieved.

5.4.1. Identity Impersonation Attack Under IKEv1
Protocol Negotiation
In Strongswan, the configuration file (IPsec.conf or
Strongswan.conf) provides setting attributes that can
be used to verify the identity of the participant: leftid
| rightid = <id>, and the specific setting is explained in
its wiki [15]. As shown in the attack scenario in Fig-
ure 8, the admin sets the server-side configuration file
with rightid=”C=CH, O=strongSwan, CN=device1”,
indicating that it only allows users with correspond-
ing field in certificate to access the server device.
However, because Strongswan does not distinguish
between the upper and lower cases in the CN, when an
attacker has a valid certificate issued by a CA with the

583Information Technology and Control 2021/3/50

subject name “C=CH, O=strongSwan, CN=Device1,”
an identity impersonation attack can be initiated.
As shown in Figure 8, in IKEv1 signature-based ne-
gotiation, the attacker first listens and intercepts the
message from the client and impersonates the server
to conduct normal main-mode negotiation with the
client. After receiving the third message sent by the
client, the attacker decrypts and parses the ID and
certificate information in it. After judging that the vul-
nerability can be exploited (recognizing that the cli-
ent is device1), the attacker initiates a normal IKEv1
main mode negotiation with the true server. When
constructing the third message in the main mode, the
attacker uses a private key to construct a signature,
constructs a forged ID payload (ID_DER_ASN1_DN:
C=CH, O=strongSwan, CN=device1), and sends these
messages with the public key certificate (with subject
name “C=CH, O=strongSwan, CN=Device1”) to the
server. After verifying the correctness of the signature
and certificate chain because the server does not dis-
tinguish between upper and lower case characters in

Figure 8
Launching an identity Impersonation attack on Strongswan using case-insensitive flaws

Figure 9
Launching a man-in-the-middle attack on Libreswan using the flaw that allows wildcard certificate matching

5.3.5. Unsupported Null Byte Certificate Matching
RFC7619 specifies the NULL authentication method
and ID_NULL type ID payload and puts forward
relevant rules on the use of NULL format IDs. However,
for special certificates containing NULL bytes,
Strongswan and Libreswan directly end the match by
throwing an exception.
Violations 1)–4) mentioned above may bring the risk of
Authentication because attackers can use the
corresponding loose character matching to forge their
own identity information to bypass hostname
verification; the last violation may hinder the certificate
verification of ID_NULL type identities.
5.4. Attack Verification
Based on our analysis, we also conducted attack tests to
verify that, under specific conditions, the flaws in
hostname matching can be used to initiate identity
spoofing attacks and man-in-the-middle attacks. The test
environment was as follows:
Client and attacker: Ubuntu 18.04 OS + Intel Core I5 8th
Gen CPU + 8GB of RAM.
Server: Ubuntu 18.04 OS + Intel Xeon E5-2680 v2 CPU
+ 32GB of RAM.
In the following test, it is assumed that the attacker’s
public key certificate (with available subject content for
attack) is issued by a legal CA (usually is private CA in
IPsec server) and possesses the corresponding private
key, and the attacker can monitor, intercept, and tamper
with the messages of the legitimate user. In response to
the problems exposed in Strongswan and Libreswan, we
give a specific attack scenario to illustrate the effect that
can be achieved.
5.4.1. Identity Impersonation Attack under IKEv1
Protocol Negotiation
In Strongswan, the configuration file (IPsec.conf or
Strongswan.conf) provides setting attributes that can be

used to verify the identity of the participant: leftid |
rightid = <id>, and the specific setting is explained in its
wiki [15]. As shown in the attack scenario in Figure 8,
the admin sets the server-side configuration file with
rightid="C=CH, O=strongSwan, CN=device1",
indicating that it only allows users with corresponding
field in certificate to access the server device. However,
because Strongswan does not distinguish between the
upper and lower cases in the CN, when an attacker has a
valid certificate issued by a CA with the subject name
"C=CH, O=strongSwan, CN=Device1," an identity
impersonation attack can be initiated.
As shown in Figure 8, in IKEv1 signature-based
negotiation, the attacker first listens and intercepts the
message from the client and impersonates the server to
conduct normal main-mode negotiation with the client.
After receiving the third message sent by the client, the
attacker decrypts and parses the ID and certificate
information in it. After judging that the vulnerability can
be exploited (recognizing that the client is device1), the
attacker initiates a normal IKEv1 main mode negotiation
with the true server. When constructing the third
message in the main mode, the attacker uses a private
key to construct a signature, constructs a forged ID
payload (ID_DER_ASN1_DN: C=CH, O=strongSwan,
CN=device1), and sends these messages with the public
key certificate (with subject name "C=CH,
O=strongSwan, CN=Device1") to the server. After
verifying the correctness of the signature and certificate
chain because the server does not distinguish between
upper and lower case characters in the CN, the attacker's
certificate will be considered to match the preset
hostname, and subsequent negotiation and
communication can be successfully completed. At this
point, the attacker has completed the impersonation, but
the server is completely unaware of it.

Figure 8
Launching an identity Impersonation attack on Strongswan using case-insensitive flaws

Client Attacker Strongswan VPN
Server

2: Main mode negotiation
Attacker Public Cert (C=CH, O=strongSwan, CN=Device1)
ID_DER_ASN1_DN: C=CH, O=strongSwan, CN=device1

1: Main mode negotiation
Client Public Cert (C=CH, O=strongSwan, CN=device1)

ID_DER_ASN1_DN: C=CH, O=strongSwan, CN=device1

3: Quick mode negotiation

<IPsec.conf>
xxxx
right=192.168.0.1
right id="C=CH,
O=strongSwan,
CN=device1"
xxxx

4: Establish ESP encrypted tunnel

the CN, the attacker’s certificate will be considered to
match the preset hostname, and subsequent negotia-
tion and communication can be successfully complet-
ed. At this point, the attacker has completed the imper-
sonation, but the server is completely unaware of it.

5.4.2. Man-in-the-Middle Attack Under IKEv2
Protocol Negotiation
Similarly, Libreswan can also restrict the identity of
communication participants through the rightid =
<id> attribute [14]. As shown in Figure 9, the Libre-
swan client and server have set rightid=”@server.org”
and rightid=”@client.org,” indicating that they expect
to communicate with the corresponding objects.
However, because Libreswan has a flaw in processing
ID_FQDN type IDs that allows wildcard matching,
when an attacker has a valid wildcard certificate is-
sued by a CA with the SAN “dns: *.a.a,” a man-in-the-
middle attack can be carried out.
As shown in Figure 9, in the IKEv2 signature-based
negotiation, the attacker first listens to and inter-

Figure 9
Launching a man-in-the-middle attack on Libreswan using the flaw that allows wildcard certificate matching

Attacker Libreswan VPN
Server

1: IKE INIT negotiation
<IPsec.conf>
xxxx
right=192.168.0
.1
right id="@client
.org"
xxxx

4: Establish ESP encrypted tunnel

Libreswan VPN
Client

<IPsec.conf>
xxxx
right=192.168.0
.129
right id="@serve
r.org"
xxxx

3: IKE AUTH negotiation
Attacker Public Cert (CN=abcde, SAN dns:*.org)

ID_FQDN: server.org

2: IKE INIT negotiation

3: IKE AUTH negotiation
Attacker Public Cert (CN=abcde, SAN dns:*.org)

ID_FQDN: client.org

4: Establish ESP encrypted tunnel

5.4.2. Man-in-the-Middle Attack Under IKEv2
Protocol Negotiation
Similarly, Libreswan can also restrict the identity of
communication participants through the rightid = <id>
attribute [14]. As shown in Figure 9, the Libreswan
client and server have set rightid="@server.org" and
rightid="@client.org," indicating that they expect to
communicate with the corresponding objects. However,
because Libreswan has a flaw in processing ID_FQDN
type IDs that allows wildcard matching, when an
attacker has a valid wildcard certificate issued by a CA
with the SAN "dns: *.a.a," a man-in-the-middle attack
can be carried out.
As shown in Figure 9, in the IKEv2 signature-based
negotiation, the attacker first listens to and intercepts the
client's message and pretends to be the server for IKE
INIT negotiation with the client. At the same time, the
attacker also establishes IKE INIT negotiation with the
server. Later, during the IKE AUTH negotiation between
the two parties, the attacker uses a private key to
construct a signature, constructs a forged ID payload
(ID_FQDN: client.org and ID_FQDN: server.org), and
sends these messages containing the public key
certificate (with SAN label "dns:*. org) to both parties.
After receiving the message sent by the adversary, the
client and the server decrypt and parse the ID and
certificate information, respectively. Because Libreswan
has the defect of allowing wildcards in ID_FQDN type
ID matching, the client and server will think that the
attacker’s certificate matches the default hostname, so
that the subsequent negotiation and communication can
be successfully completed. Therefore, the attacker has
completed the man-in-the-middle attack, but the client
and server are completely unaware.

6. Conclusions
In this study, we analyzed the problem of hostname
verification in IPsec implementation using a model-
learning method and inferring the DFA model that can
describe the set of all hostnames that match a given
certificate subject name. We analyzed two IPsec
implementations, Strongswan and Libreswan, and found
five violations. Some of these violations may lead to
identity impersonation attacks and man-in-the-middle
attacks and undermine the security and stability of
protocol communication. Because RFC cannot cover all
aspects and is not clear in some extreme cases, different
IPsec implementations may not be rigorous in handling
hostname verification. Therefore, this method can play a
role in the development of IPsec implementations and
help developers guard against violations and other
vulnerabilities that are difficult to find.
In addition, the present study has some limitations: 1) we
tested a small number of IPsec implementations and did
not conduct a large-scale analysis of IPSec gateway
devices; 2) our analysis of the DFA models was
performed manually; consequently, the efficiency was
low. In the future, we will improve our analysis methods,
such as by introducing model checking to analyze state
diagrams. Moreover, we aim to analyze the host name
verification of more IPSec gateway devices, and even
evaluate the implementations of other protocols, to
provide methods and technical support for more
vulnerability mining scenarios.

Appendix A
In Table 4, we show the detailed test results of hostname
verification in Strongswan and Libreswan.

Information Technology and Control 2021/3/50584

cepts the client’s message and pretends to be the
server for IKE INIT negotiation with the client. At
the same time, the attacker also establishes IKE
INIT negotiation with the server. Later, during the
IKE AUTH negotiation between the two parties, the
attacker uses a private key to construct a signature,
constructs a forged ID payload (ID_FQDN: client.org
and ID_FQDN: server.org), and sends these messages
containing the public key certificate (with SAN label
“dns:*. org) to both parties. After receiving the mes-
sage sent by the adversary, the client and the server
decrypt and parse the ID and certificate information,
respectively. Because Libreswan has the defect of
allowing wildcards in ID_FQDN type ID matching,
the client and server will think that the attacker’s
certificate matches the default hostname, so that the
subsequent negotiation and communication can be
successfully completed. Therefore, the attacker has
completed the man-in-the-middle attack, but the cli-
ent and server are completely unaware.

6. Conclusions
In this study, we analyzed the problem of hostname
verification in IPsec implementation using a mod-
el-learning method and inferring the DFA model that
can describe the set of all hostnames that match a giv-
en certificate subject name. We analyzed two IPsec

implementations, Strongswan and Libreswan, and
found five violations. Some of these violations may
lead to identity impersonation attacks and man-in-
the-middle attacks and undermine the security and
stability of protocol communication. Because RFC
cannot cover all aspects and is not clear in some ex-
treme cases, different IPsec implementations may
not be rigorous in handling hostname verification.
Therefore, this method can play a role in the develop-
ment of IPsec implementations and help developers
guard against violations and other vulnerabilities that
are difficult to find.
In addition, the present study has some limitations: 1)
we tested a small number of IPsec implementations
and did not conduct a large-scale analysis of IPSec
gateway devices; 2) our analysis of the DFA models
was performed manually; consequently, the efficien-
cy was low. In the future, we will improve our analysis
methods, such as by introducing model checking to
analyze state diagrams. Moreover, we aim to analyze
the host name verification of more IPSec gateway de-
vices, and even evaluate the implementations of other
protocols, to provide methods and technical support
for more vulnerability mining scenarios.

Appendix A
In Table 4, we show the detailed test results of host-
name verification in Strongswan and Libreswan.

Certificate

Strongswan Libreswan

ID_DER_ASN1_DN ID_FQDN ID_USER_FQDN
ID_

IPV4_
ADDR

ID_DER_
ASN1_DN ID_FQDN

ID_
USER_
FQDN

ID_
IPV4_
ADDR

CN=*.a.a *; *.a.a none none none *;*.a.a none none none

CN=a.*.a *; a.*.a none none none *; a.*.a none none none

CN=a.a.* *; a.a.* none none none *; a.a.* none none none

CN=*.*.a *; *.*.a none none none *; *.*.a none none none

CN=.a.a *; .a.a none none none *; a.a.a none none none

CN=a.a.a *; a.a.a none none none *; a.a.a none none none

C=CH,CN=a.a.a
C=CH,CN=*;C=CH,C

N=a/A.a/A.a/A;
none none none

C=CH,CN=*;C
=CH,CN=a.a.a

none none none

CN=a.a.a
SAN dns: a.a.a

*; a.a.a
*; a/A.a/A.a/A;

*.a/A.a/A;
*a/A.a/A

none none *; a.a.a @a/A.a/A.a/A none none

Table 4
IPsec hostname verification matching results using four ID types with different certificate

585Information Technology and Control 2021/3/50

Certificate

Strongswan Libreswan

ID_DER_ASN1_DN ID_FQDN ID_USER_FQDN
ID_

IPV4_
ADDR

ID_DER_
ASN1_DN ID_FQDN

ID_
USER_
FQDN

ID_
IPV4_
ADDR

CN=abcde
SAN dns:a.a.a

*
*; a/A.a/A.a/A;

*.a/A.a/A;
*a/A.a/A

none none * @a/A.a/A.a/A none none

CN=a1a
SAN dns: a.a.a

*; a1a
*; a/A.a/A.a/A;

*.a/A.a/A;
*a/A.a/A

none none *; a1a @a/A.a/A.a/A none none

CN=a.a.a
SAN dns: *.a.a

*; a.a.a
*; *.a/A.a/A;

*.a/A;
*a/A; *a/A.a/A

none none *; a.a.a
@.a/A.a/A;

@(Any+).a/
A.a/A

none none

CN=a.a.a
SAN dns: a.*.a

*; a.a.a

*; *.a/A.a/A;
**.a/A;
..a/A;

a/A.*.a/A; *.a/A;

none none *; a.a.a @a/A.*.a/A none none

CN=a.a.a
SAN
rfc822:a@a.a

*; a.a.a none

(@@)*; @@*a/A;
@@*a/A.a/A;
(@@)a/A@a/

A.a/A;
(@@)*@a/A.a/A

none *; a.a.a none
@a/A@a/

A.a/A
none

CN= abcde
SAN
rfc822:a@a.a

* none

(@@)*; @@*a/A;
@@*a/A.a/A;
(@@)a/A@a/

A.a/A;
(@@)*@a/A.a/A

none * none
@a/A@a/

A.a/A
none

CN= a1a
SAN
rfc822:a@a.a

*; a1a none

(@@)*; @@*a/A;
@@*a/A.a/A;
(@@)a/A@a/

A.a/A;
(@@)*@a/A.a/A

none *; a1a none
@a/A@a/

A.a/A
none

CN=a.a.a
SAN ip:1.1.1.1

*; a.a.a none none 1.1.1.1 *; a.a.a none none 1.1.1.1

CN= abcde
SAN ip:1.1.1.1

* none none 1.1.1.1 * none none 1.1.1.1

CN= a1a
SAN ip:1.1.1.1

*; a1a none none 1.1.1.1 *; a1a none none 1.1.1.1

CN=NULL - - - - - - - -

Table 4 (continued)

Note:
Different matching results are separated by “;”.
The “a/A” in “.a/A.a/A” means that this character is not case sensitive, that is, the corresponding matching results are a.a, .a.A, .A.a, .A.A.
The “(Any+)” indicates that the matching result allows any string prefix. The “(@@)” indicates that the matching result allows the “@@” string
prefix.
Space prefixes and space suffixes are allowed in the CN tag content in Strongswan and Libreswan when ID_DER_ASN1_DN type IDs matching.
A “@” prefix is allowed in the tag content in all ID_FQDN type IDs matching of Strongswan.

Information Technology and Control 2021/3/50586

Acknowledgments
This work was supported by Innovative Research
Groups of the National Natural Science Foundation
of China (61521003).

References
1. Angluin, D. Learning Regular Sets from Queries and

Counterexamples. Information and computation,
1987, 75(2), 87-106. https://doi.org/10.1016/0890-
5401(87)90052-6

2. Bonatti, C., Turner, S., Lebovitz, G. Requirements for an
IPsec Certificate Management Profile. The IETF Trust,
2007. https://doi.org/10.17487/rfc4809

3. Chau, S. Y., Yahyazadeh, M., Chowdhury, O., Kate, A.,
Li, N. Analyzing Semantic Correctness with Symbolic
Execution: A Case Study on PKCS# 1 v1. 5 Signature
Verification. NDSS, 2019. https://doi.org/10.14722/
ndss.2019.23430

4. Cheng, Q., Lu, S., Ma, J. Analysis and Improvement of
the Internet-Draft IKEv3 Protocol. International Jour-
nal of Communication Systems, 2017, 30(9), e3194.
https://doi.org/10.1002/dac.3194

5. Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Hous-
ley, R., Polk, W. RFC 5280: Internet X. 509 Public Key
Infrastructure Certificate and Certificate Revoca-
tion List (CRL) Profile. IETF, May 2008. https://doi.
org/10.17487/rfc5280

6. Cremers, C. Key Exchange in IPsec Revisited: Formal
Analysis of IKEv1 and IKEv2. European Symposium
on Research in Computer Security, 2011. https://doi.
org/10.1007/978-3-642-23822-2_18

7. Cui, Y., Yu, T., Hu, J. IKEv2 Protocol Fuzzing Test on
Simulated ASA. 2018 IEEE International Conference
on Smart Internet of Things (SmartIoT), 2018. https://
doi.org/10.1109/SmartIoT.2018.00-16

8. Eronen, P., Hoffman, P. IKEv2 Clarifications and Imple-
mentation Guidelines. RFC 4718, October 2006. https://
doi.org/10.17487/rfc4718

9. Fahl, S., Harbach, M., Muders, T., Baumgärtner, L.,
Freisleben, B., Smith, M. Why Eve and Mallory Love
Android: An analysis of Android SSL (in) Security.
Proceedings of the 2012 ACM conference on Com-
puter and communications security, 2012. https://doi.
org/10.1145/2382196.2382205

10. Felsch, D., Grothe, M., Schwenk, J., Czubak, A., Szy-
manek, M. The Dangers of Key Reuse: Practical Attacks

on IPsec {IKE}. 27th {USENIX} Security Symposium
({USENIX} Security 18), 2018.

11. Guo, J., Gu, C., Chen, X., Wei, F. Model Learning and
Model Checking of IPSec Implementations for Internet
of Things. IEEE Access, 2019, 7, 171322-171332. https://
doi.org/10.1109/ACCESS.2019.2956062

12. Harkins, D., Carrell, D. The Internet Key Exchange (IKE)-
RFC2409. IETF RFC, 1998. https://doi.org/10.17487/
rfc2409

13. Housley, R., Ford, W., Polk, W., Solo, D. RFC 2459: In-
ternet X. 509 Public Key Infrastructure Certificate and
CRL Profile. January 1999. Status: PROPOSED STAN-
DARD.9. https://doi.org/10.17487/rfc2459

14. https://libreswan.org/man/ipsec.conf.5.html.

15. https://wiki.strongswan.org/projects/strongswan/
wiki/ConnSection.

16. Java Native Interface (JNI). https://docs.oracle.com/
javase/8/docs/ technotes/guides/jni/.

17. Kaminsky, D., Patterson, M. L., Sassaman, L. PKI Layer
Cake: New Collision Attacks Against the Global X. 509
Infrastructure. International Conference on Finan-
cial Cryptography and Data Security, 2010. https://doi.
org/10.1007/978-3-642-14577-3_22

18. Kaufman, C., Hoffman, P., Nir, Y., Eronen, P. Internet
Key Exchange Protocol Version 2 (IKEv2). RFC 5996,
September; 2010. https://doi.org/10.17487/rfc5996

19. Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., T., Kivin-
en. Internet Key Exchange Protocol Version 2 (IKEv2).
RFC 7296, October 2014. https://doi.org/10.17487/
rfc7296

20. Kaufman, C. Internet Key Exchange (IKEv2) Protocol.
RFC 4306, December 2005. https://doi.org/10.17487/
rfc4306

21. Kearns, M. J., Vazirani, U. V., Vazirani, U. An Introduc-
tion to Computational Learning Theory. MIT press,
1994. https://doi.org/10.7551/mitpress/3897.001.0001

22. Kent, S., Seo, K. RFC 4301: Security Architecture for
the Internet Protocol. 2005. https://doi.org/10.17487/
rfc4301

https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.17487/rfc4809
https://doi.org/10.14722/ndss.2019.23430
https://doi.org/10.14722/ndss.2019.23430
https://doi.org/10.1002/dac.3194
https://doi.org/10.17487/rfc5280
https://doi.org/10.17487/rfc5280
https://doi.org/10.1007/978-3-642-23822-2_18
https://doi.org/10.1007/978-3-642-23822-2_18
https://doi.org/10.1109/SmartIoT.2018.00-16
https://doi.org/10.1109/SmartIoT.2018.00-16
https://doi.org/10.17487/rfc4718
https://doi.org/10.17487/rfc4718
https://doi.org/10.1145/2382196.2382205
https://doi.org/10.1145/2382196.2382205
https://doi.org/10.1109/ACCESS.2019.2956062
https://doi.org/10.1109/ACCESS.2019.2956062
https://doi.org/10.17487/rfc2409
https://doi.org/10.17487/rfc2409
https://doi.org/10.17487/rfc2459
https://doi.org/10.1007/978-3-642-14577-3_22
https://doi.org/10.1007/978-3-642-14577-3_22
https://doi.org/10.17487/rfc5996
https://doi.org/10.17487/rfc7296
https://doi.org/10.17487/rfc7296
https://doi.org/10.17487/rfc4306
https://doi.org/10.17487/rfc4306
https://doi.org/10.7551/mitpress/3897.001.0001
https://doi.org/10.17487/rfc4301
https://doi.org/10.17487/rfc4301

587Information Technology and Control 2021/3/50

23. Khendek, F., B., Fujiwara, S., Bochmann, G., Khendek, F.,
Amalou, M., Ghedamsi, A. Test Selection Based on Finite
State Models. IEEE Transactions on software engineer-
ing, 1991, 17, 591-603. https://doi.org/10.1109/32.87284

24. Korver, B. The Internet IP Security PKI Profile of
IKEv1/ISAKMP, IKEv2. and PKIX. RFC 4945, 2007.
https://doi.org/10.17487/rfc4945

25. Maino, F., Black, D. Use of IKEv2 in the Fibre Channel
Security Association Management Protocol. RFC 4595,
July 2006. https://doi.org/10.17487/rfc4595

26. Ninet, T., Legay, A., Maillard, R., Traonouez, L. M., Zen-
dra, O. Model Checking the IKEv2 Protocol Using Spin.
2019 17th International Conference on Privacy, Secu-
rity and Trust (PST), 2019. https://doi.org/10.1109/
PST47121.2019.8949057

27. Ninet, T., Legay, A., Maillard, R., Traonouez, L. M., Zen-
dra, O. The Deviation Attack: A Novel Denial-of-Service
Attack Against IKEv2. 2019 18th IEEE International
Conference on Trust, Security And Privacy In Com-
puting and Communications/13th IEEE Internation-
al Conference On Big Data Science And Engineering
(TrustCom/BigDataSE), 2019. https://doi.org/10.1109/
TrustCom/BigDataSE.2019.00019

28. Nussbaumer, J. Security Analysis for IPsec with Easy-
Crypt. 2019.

29. Patel, H., Jinwala, D. C. Modeling and Analysis of Internet
Key Exchange Protocolv2 and a Proposal for Its Variant.

Proceedings of the 6th ACM India Computing Conven-
tion, 2013. https://doi.org/10.1145/2522548.2523132

30. Santesson, S. Internet X. 509 Public Key Infrastructure
Subject Alternative Name for Expression of Service Name.
RFC 4985, August 2007. https://doi.org/10.17487/rfc4985

31. Sivakorn, S., Argyros, G., Pei, K., Keromytis, A. D., Jana,
S. HVLearn: Automated Black-Box Analysis of Host-
name Verification in SSL/TLS Implementations. 2017
IEEE Symposium on Security and Privacy (SP), 2017.
https://doi.org/10.1109/SP.2017.46

32. Smyslov, V., P., Wouters. The NULL Authentication
Method in the Internet Key Exchange Protocol Ver-
sion 2 (IKEv2). RFC 7619, August 2015. https://doi.
org/10.17487/RFC7619

33. Sounthiraraj, D., Sahs, J., Greenwood, G., Lin, Z., Khan,
L. Smv-Hunter: Large Scale, Automated Detection of
ssl/tls Man-in-the-Middle Vulnerabilities in Android
Apps. In Proceedings of the 21st Annual Network and
Distributed System Security Symposium (NDSS’14),
2014. https://doi.org/10.14722/ndss.2014.23205

34. Tuecke, S., Welch, V., Engert, D., Pearlman, L., Thomp-
son, M. Internet X. 509 Public Key Infrastructure (PKI)
Proxy Certificate Profile. RFC 3820, 2004. https://doi.
org/10.17487/rfc3820

35. Yang, H., Zhang, Y., Hu, Y. P., Liu, Q. X. IKE Vulnera-
bility Discovery Based on Fuzzing. Security and Com-
munication Networks, 2013, 6(7), 889-901. https://doi.
org/10.1002/sec.628

This article is an Open Access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1109/32.87284
https://doi.org/10.17487/rfc4945
https://doi.org/10.17487/rfc4595
https://doi.org/10.1109/PST47121.2019.8949057
https://doi.org/10.1109/PST47121.2019.8949057
https://doi.org/10.1109/TrustCom/BigDataSE.2019.00019
https://doi.org/10.1109/TrustCom/BigDataSE.2019.00019
https://doi.org/10.1145/2522548.2523132
https://doi.org/10.17487/rfc4985
https://doi.org/10.1109/SP.2017.46
https://doi.org/10.17487/RFC7619
https://doi.org/10.17487/RFC7619
https://doi.org/10.14722/ndss.2014.23205
https://doi.org/10.17487/rfc3820
https://doi.org/10.17487/rfc3820
https://doi.org/10.1002/sec.628
https://doi.org/10.1002/sec.628

