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Multi-stage secret sharing scheme is practical in the case that there is a security system with m ordered check-
points. It is natural to divide the m checkpoints into m different levels. There are m different secrets, and each 
of them with a different importance corresponds to a checkpoint/level. The participants are also divided into 
m disjoint levels as they do in the hierarchical threshold access structure. Hierarchical threshold access struc-
ture with the existential quantifier ( HTAS∃ ) does not cover the common practice that at least a few numbers 
of high-ranking participants are required to be involved in any recovery of the secret. The popular schemes 
with hierarchical access structure were needed to check many matrices for non-singularity. We propose a 
multi-stage secret sharing scheme for HTAS∃ , and the tools are based on the linear homogeneous recurrence 
relations (LHRRs) and one-way functions. We give the HTAS∃

 a modification, so that this hierarchical access 
structure can satisfy the common practice. In our scheme, if the participants are divided into m levels, there 
usually has m secrets. But before the (j − 1)-th secret is recovered, the j-th secret cannot be recovered. Our 
scheme is a computational secure. The proposed scheme requires a share for each participant and the share 
is as long as each secret. Our scheme has high efficiency by comparing with the state-of-the-art hierarchical 
secret sharing schemes.
KEYWORDS: Hierarchical access structure, linear homogeneous recurrence relations, multi-stage, secret 
sharing, existential quantifier.
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1. Introduction
In a (t, n) threshold secret sharing scheme, the secret 
can be shared among n participants, and any t or more 
participants can obtain a qualified subset to recov-
er the shared secrets by pooling their shares. If the 
participants of any unqualified subset cannot obtain 
any information about the shared secrets, then such 
scheme is called as the perfect scheme. The threshold 
secret sharing schemes proposed by Shamir [25] and 
Blakley [2] are two special cases where all the par-
ticipants have the same authorities. Such threshold 
secret sharing schemes are restrictive in practice. 
Therefore, the schemes based on different access 
structure were proposed [3, 22].
Hence, in order to improve the practicality of secret 
sharing, many researchers have focused on specific 
families of access structures, for example, bipartite 
access structures [22], compartmented access struc-
ture and hierarchical access structure [28]. Simmons 
proposed a multipartite access structure [26] and 
he gave the definition of the compartmented access 
structure and the hierarchical access structure. In 
these access structures, participants are divided into 
different levels, i.e., the participants have different 
authorities in the different levels, but the participants 
in the same level have the same role. After Simmons, 
Brickell proposed a method to construct an ideal se-
cret sharing scheme for the multilevel and compart-
mented access structures [4], but the scheme is not 
efficient, for the exponential operations required to 
get nonsingular matrices. The definition of hierarchi-
cal access structure in [26] is as follows.
Definition 1. Let P denote the set of the participants, 
where n = |P|. The set P is divided into disjoint lev-
els 1 2, ,..., mγ γ γ  of the participants, P   1

m
i ip γ==   and 

i jγ γ = ∅  for all 
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. The level i contains in  par-
ticipants, where {1,2,..., }i m∈ . Let 1{ }m

i iK k ==  be as-
sorted in ascending order, 0 10 mk k k= < < ⋅⋅⋅ < . The  
(K ; n)−hierarchical threshold access structure is

1

{ | {1,2,..., }for which
| ( ) | }.i

j j i

AS A P i m
A kγ=

= ⊂ ∃ ∈

≥    
(1)

However, Tassa [27] pointed out that the common 
practice needed at least a few numbers of high-rank-
ing participants to be involved in any recovery of the 

secret, even though high-ranking participants could 
be replaced by low-ranking participants. Therefore, 
a different definition of the hierarchical access struc-
ture was given by the replacement of the existential 
quantifier ∃  in (1) with the universal quantifier ∀ . 
Later, scholars studied the hierarchical access struc-
ture with some other methods [7, 10, 11, 12, 13, 14], but 
these schemes were not efficient or just gave a com-
prehensive characterization of the ideal multipartite 
access structures. But the definition (1) is very prac-
tical in a multi-stage secret sharing scheme, because 
if i m∃ <  satisfies (1), a qualified subset can recover 
from the first to the i-th secret. If we change the defi-
nition (1) into (2), the problem pointed out by Tassa 
can be avoided. We just need to set 1i i it k k −> − . For 
example, set 1 1 0 1t k k k> − = , i.e., just only partici-
pants from 1γ  cannot recover the first secret, and 
a few numbers of high-ranking participants from 

2
m
i iγ=  are required ( 1 1t k−  participants are required 

from 2
m
i iγ= ), where 1t  is the threshold in the first 

stage. The detail of definition (2) can be found in pre-
liminary and the modified definition is as follows. 

1 1

1 1

{ | {1,2,..., }for which
| ( ) | and and

| ( ) | ( )}.

i
j j i i i i

i
j j i i i

AS A P i m
A k t k k

A t k k

γ

γ
= −

= −

′ = ⊂ ∃ ∈

≥ ≥ −

− ≥ − −

 



(2)

Multi-secret sharing is a generalization of secret 
sharing. There are two different types multi-secret 
sharing schemes. The first type is that the secrets are 
recovered at the same time [9, 19, 29]. The second type 
is that for the different importance of different se-
crets, these secrets are recovered in a different stage 
[5, 15, 17, 18, 21], i.e., the qualified subset can recover 
only one secret in each stage. Our scheme belongs 
to the second type, and the order of these secret are 
determined by the distributor. In 1994, He et al. [18] 
proposed a multi-stage secret sharing scheme based 
on one-way function. Later, Harn [17] gave a modifi-
cation on [18] and proposed a scheme with ( )k n - t  
public values, which had fewer public values than 
He et al.’s scheme. Chang et al. [5] pointed out that 
the two schemes [17-18] have the same shortcomings 
that these secrets cannot be recovered in the order 
that was determined by the distributor. For a multi-
stage secret sharing scheme, the participants should 
show the combiners the pseudo shares depending on 
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the shadows (original shares). So the multi-stage se-
cret sharing scheme are usually based on the one-way 
function [5, 17, 18] or the factorization problem [28]. 
In the cryptographic system, the application of multi-
stage secret sharing scheme is very useful in the lat-
tice [23]. A multi-secret sharing scheme is claimed as 
multi-stage, if the recovered secrets can not leak any 
information about the unrecovered secrets. For this 
purpose, two security requirements are needed:
1 Each participant’s shadow should be masked by 

the pseudo-shares during the recovery phase.
2 The recovery of a secret should not endanger an-

other unrecovered secret.
In some firms or government services, the situation 
that different important things are stored in differ-
ent warehouses may come up. For example, there are 
three warehouses to store ordinary files, important 
documents and confidential documents, respectively, 
i.e., the warehouse that store confidential documents 
has the highest security level. Fig.1 show the order of 
three different warehouses. If some employees want 
to get the ordinary files, they are not allowed to get all 
the three secrets, but have the secret of warehouse 1. 
If the qualified participants want to open the ware-
house 2, the warehouse 1 must be opened firstly, i.e., 
the qualified participants should recover two secrets, 
the first secret of warehouse 1 and the second secret 
of warehouse 2. The participants of a qualified sub-
set do not have to open all the warehouses. The stuff 
that are stored in the warehouse 2 are more import-
ant than these stuff that are stored in the warehouse 1. 
Therefore, the secret corresponding to the warehouse 
2 is more important than the secret corresponding to 
the warehouse 1. In this situation, the employees are 
divided into three disjoint levels 1 2 3, ,γ γ γ′ ′ ′ . The par-
ticipants in 1γ ′  just can recover the secret of ware-
house 1 and the participants in 2γ ′  can recover the 
secrets of warehouse 1 and warehouse 2, and so on. 
If we want to satisfy the common practice pointed 
out by Tassa [27], when the participants in 1γ ′  want 
to recover the secret of warehouse 1, the participants 
in higher levels need to be involved in the recovery of 
it (the participants in higher levels belong to 3

2i iγ= ′ ). 
But when the secret of warehouse 3 needs to be recov-
ered, just the participants in 3γ ′  can recover it, i.e., the 
last secret just can be recovered by the participants 
in the highest level. In our scheme, the importance of 
the secrets is ascending, i.e., 1 2 mkey key key< < ⋅⋅⋅ < , 

Figure 1 
The order of three different warehouses

where “ < ” denotes that the importance is ascending. 
The importance of the participants in these levels is 
ascending too, and the participants play the same role 
in the same level, i.e., 1 2 mγ γ γ< < ⋅⋅⋅ < . If there are m  
different checkpoints, the set P of the participants is 
usually divided into m disjoint levels 1 2, ,..., mγ γ γ . We 
call the level jγ  corresponding level of the secret jkey . 
The first secret 1key  is used to open the first check-
point and the second secret 2key  is used to open the 
second checkpoint, and so on. The participants in the 
subset jγ  can pool the shares to recover from the first 
to the j-th secret.
Our scheme is motivated to give an efficient multi-stage 
secret sharing scheme for the hierarchical access struc-
ture with the existential quantifier ∃ . If i m∃ <  satisfies 
(2), then the participants in the qualified subset are not 
allowed to recover all secrets (For example, if 3i∃ =  
satisfies (2), the participants in the qualified subset are 
allowed to recover from the first to third secret). So it is 
natural to design a multi-stage secret sharing scheme 
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by using access structure with the existential quantifier 
∃. When these secrets are recovered in order, it is also 
natural to think that the secrets are hierarchical and 
each secret can be recovered by the participants of the 
corresponding level and the levels that are higher than 
the corresponding level. Even Brickell [4] gave an ideal 
scheme, the scheme is inefficient and there is a short-
coming pointed out by Tassa [27] in the hierarchical ac-
cess structure with the existential quantifier ∃  [4, 26]. 
It is asserted that the participants are semi-honest and 
the distributor is trusty in our scheme. The proposed 
scheme is based on two technologies, the linear homo-
geneous recurrence (LHR) relations [8, 29] and the one-
way functions [16, 20]. Mashhadi and Dehkordi first 
introduced the linear homogeneous recurrence (LHR) 
relations to the threshold secret sharing schemes [8]. 
Later, Yuan et al. introduced it to dynamic secret sharing 
scheme [29]. But the participants are assumed to have 
the equal privilege in these schemes. Our main contri-
butions are as follows.
1 We give a modification of the hierarchical access 

structure with existential quantifier [4] and solve 
the problem pointed out by Tassa. The problem 
was that the common practice needed at least a few 
numbers of high-ranking participants to be involved 
in any recovery of the secret. We just need to set 
some sit  to satisfy 1i i it k k −> − , where 1 i m≤ <  and 

0 0k = .
2 Our scheme are more efficient than Brickell’s 

scheme, since the exponential operations are not 
required for assigning identities and shares to the 
participants in the proposed scheme. Each partici-
pant only needs to hold a shadow during the whole 
scheme and each shadow is as long as the secret.

The remainder of this paper is organized as follows. 
Section 2 provides preliminaries of secret sharing 
scheme, linear homogeneous recurrence relation. 
Section 3 presents the proposed scheme. Section 4 
shows the properties of the proposed scheme, and in 
this section, we also give the security analysis of our 
scheme and compare the existing popular works with 
the proposed scheme. Finally, Section 5 draws our 
conclusion.

2. Preliminary
In this section, we give a brief description of the se-
cret sharing schemes and the LHR relations [29].

2.1. Secret Sharing Schemes
In the following section, we will give the definition of 
the perfect scheme, and the hierarchical access struc-
ture is also listed.
Definition 2. A (t, n) threshold secret sharing scheme 

1 2: nS R S S S∏ × → × ×⋅⋅⋅×  over P  ( P  is the set of 
participants in the game, that is, 
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and P  = |n|), satisfies the following two conditions, 
where S is the shared secret space, R is a set of ran-
dom inputs, and iS (1 )i n≤ ≤ is the share space.
1 For all A P⊆ and | | ,A t≥  ( | ) 0AH S S = , where A 

is the subset of participants, |A| is the number of 
participants in the subset A, AS denotes the infor-
mation of the shares to be obtained by the partic-
ipants in the subset A and ( )H ⋅  is the function of 
entropy.

2 For all B P⊆  and | | ,B t<  0 ( | ) ( ).BH S S H S< ≤  If 
( | )BH S S =  ( )H S , then the scheme is referred as 

the perfect scheme.
In the following section, the hierarchical access 
structure is briefly given as follows.
Definition 3. Let P denote the set of the participants, 
where n = |P|. The set P is divided into disjoint lev-
els 1 2, ,..., mγ γ γ  of the participants, P  1

m
i ip γ==  and 

i jγ γ = ∅  for all 
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. The level i  contains in  par-
ticipants, where {1,2,..., }i m∈ . Let 1{ }m

i iK k ==  be as-
sorted in ascending order, 0 10 mk k k= < < ⋅⋅⋅ < . The  
(K ; n ) −hierarchical threshold access structure is

1 1

1 1

{ | {1,2,..., }for which
| ( ) | and and

| ( ) | ( )}.

i
j j i i i i

i
j j i i i

AS A P i m
A k t k k

A t k k

γ

γ
= −

= −

′ = ⊂ ∃ ∈

≥ ≥ −

− ≥ − −

 



(3)

where it  is threshold in the i-th stage.

2.2. Linear Homogeneous Recurrence 
Relations
We give a brief description of the linear homogeneous 
recurrence relations. A detailed description of the lin-
ear homogeneous recurrence relations can be found 
in [24] [29].
Theorem 1. Let 0 1, ,..., ,...,jh h h  be a sequence of 
numbers and 1 2, ,..., mα α α  be the distinct roots of 
the following characteristic equation of the linear 
homogeneous recurrence relation with constant co-
efficients:
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1 1 2 2j j j t j th a h a h a h− − −= + + ⋅⋅⋅ + , (4)

where 0ta ≠ , ia  is is selected over GF(q), ( j t≥ ), 
and q is a large prime.
If iα  is a is -fold root of the characteristic equation (1), 
then part of the general solution for this recurrence 
relation corresponding to iα  is given as

1( )
1 2

1
1 2( ) .

i

i

i

i

si j j j
j i i i i is i

s j
i i is i

F c c j c j

c c j c j

α α α

α

−

−

= + + ⋅⋅⋅+

= + + ⋅⋅⋅+

Let 1
1 2( ) i

i

s
i i i isf j c c j c j −= + + ⋅⋅⋅ + . We can have 

( ) ( ) .i j
j i iF f j α=

The general solution for the recurrence relation is 
given by

(1) (2) ( ) ,m
j j j jh F F F= + + ⋅⋅⋅+

where 
1

m

i
i

t s
=

=∑ .

If 1 2 mα α α α= = ⋅⋅⋅ = = , then the general solution of 
the recurrence relation is

,j jh F= (5)

where 

1( ) .t - j
j 1 2 tF c c j c j α= + + ⋅⋅⋅+

3. The Proposed Scheme
This section is the main part of the paper, which shows 
the design of our scheme. In the section, there two 
phrases, i.e., construction phase and recovery phase. 
In our scheme, there are n participants and a trusted 
distributor D, and the participants are semi-honest. 
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 denotes the n participants in the 
set P, where iP  is the i-th participant in P. Suppose 

that iID  be the i-th participant’s identity. Let the m 
secrets be 1 2, ..., mkey key key  (m is the number of the 
disjoint subset of P) and the importance of the secrets 
is ascending, i.e., the level of 2key is higher than that of 

1key  and so on (that is to say, 1 2 mkey key key< < ⋅⋅⋅ < , 
where “<“ denotes the importance). Our scheme is 
based on the linear homogeneous recurrence rela-
tions over GF(q), where GF(q) is a finite field, and q is 
a large prime.
The basic idea of our scheme is given as follows. The 
distributor generates m linear homogeneous recur-
rence relations. All the m LHR relations have two dif-
ferent roots. The participants in 1γ  and 2

m
i iγ=  initial-

ize two LHR relations, respectively, and we call them 
the first sub-LHR relation and the second sub-LHR re-
lation, respectively. Then we add them. Since the sum 
of the general terms of two sub-LHR relations is still 
the general term of a LHR relation, it is called the first 
LHR relation (This shows how a LHR relation is gen-
erated). The participants in 2γ and 3

m
i iγ=  also initial-

ize two LHR relations. According to the same meth-
od, we construct from the second to m LHR relation. 
The first secret 1key  is hidden in the max( , )1 1n n n−
-th term of the first LHR relation and the second se-
cret 2key  is hidden in the 2max( , )1 2n n n n− − -th term 
of the second LHR relation, and so on. However, be-
fore the j-th jkey  

can be recovered, the (j − 1)-th 1jkey −
should be recovered, firstly. The Fig. 2 shows what is 
the construction phase in the j-th stage, where LHRR1 
denotes the first sub-LHR relation, LHRR2 denotes 
the second sub-LHR relation, LHRR denotes the LHR 
relation, LHRRs denotes the two sub-LHR relations, 

( 0)j
ih  denotes the general term of the first sub-LHR re-

lation of the j-th LHR relation, ( 1)j
ih  denotes the gen-

eral term of the second sub-LHR relation of the j-th 
LHR relation and maxjM = (| |,jγ  1| |)m

i j iγ= + .

3.1. Construction Phase
The distributor D performs the following steps to dis-
tribute the secrets:
1 The distributor D randomly chooses m different 

one-way functions 1 2g (),g (),...,  g ()m  and then 
publishes them.

2 D randomly chooses n different shadows
*

1 2, ,..., n qs s s Z∈  and sends 1 2, ,..., ns s s  to n partic-
ipants in a secure channel, where the i-th partici-
pant holds is .

3 The distributor D selects 2m different integers 
1 2, ,..., mα α α  and 1 2, ,..., mβ β β  over GF(q) and pub-

lishes them, where each of them is nonzeron. 
4 The j-th LHR relation is constructed as follows.
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4.1 Let 1j j jK k k −= − , ( )j j j j-1T t k k= − −  
and 

1max(| |,| |)m
j j i j iM γ γ= +=  . D chooses the values 

jα and jβ  
to make

1
1( ) 0j j j

j

K K K
j j jKx x a x aα −− = + + ⋅⋅⋅+ = (6)

 and

1
1( ) 0j j j

j

T T T
j j jTx x b x bβ −− = + + ⋅⋅⋅+ = (7)

 as the auxiliary functions of two LHR relations, 
where jiq a>  

and jiq b> , 1 max( , )j ji K T≤ ≤ , 
1 j m≤ ≤  and 0 0k = . jt  is the threshold in the 
j-th stage.

4.2 Suppose that the shadows in jγ  
are 

1 2
, ,...i is s , 

1n -jis , 

n jis
 
and D computes the pseudo share ( )

k

j
k j iR g s= , 

where jn  
is the number of the participants in jγ  and 1 jk n≤ ≤ .

4.3 D uses (6) to construct a LHR relation and the 
participants’ shares in jγ  to initialize this LHR 
relation, and this LHR relation is called as the first 
sub-LHR relation of the j-th LHR relation. This 
sub-LHR relation is as follows.

( 0) ( 0) ( 0)
0 1 1 2 1

( 0) ( 0) ( 0)
1 1

, ,..., ,
0.

0
j j

j j j

j j j j j j
K K

j j j
i K j i K jK i

h R h R h R
i

h a h a h
−

+ + −

 = = = ≥
+ + ⋅⋅⋅+ =

(8)

4.4 D calculates the rest ( 0)j
ih , where 1j j jK k k −= −

1ji n≤ ≤ − .

4.5 D computes ( 0)
1

j j
i i iy R h −= −  and publishes iy , where 

j jK i n< ≤ .

4.6 Assume that the shadows in 1
m
i j iγ= +  

are 

1 2
, ,..., ,

N ji i is s s
−  

respectively, and D computes the 
pseudo share ( )

k

j
k iI g s= , where jN−  denotes the 

number of the participants in the subset 1
m
i j iγ= + .

4.7 D uses (7) to construct another LHR relation and 
the participants’ shares in 1

m
i j iγ= +  

to initialize 
this LHR relation, and the LHR relation is called 
as second sub-LHR relation of the j-th LHR rela-
tion. This sub-LHR relation is as follows.

( 1) ( 1) ( 1)
0 1 1 2 1

( 1) ( 1) ( 1)
1 1

, ,..., ,
0.

0
j j

j j j

j j j j j j
T T

j j j
i T j i T jT i

h I h I h I
i

h b h b h
−

+ + −

 = = = ≥
+ + ⋅⋅⋅+ =

(9)

4.8 D calculates the rest ( 1)j
ih , where

 ( ) 1j j j j-1 -jT t k k i N= − − ≤ ≤ − .

4.9 D computes ( 1)
1

j j
i i iy I h −′ = −  and publishes iy′ , 

where j jT i N−< ≤ .

4.10  From the Theorem 1, the general term of (8) and 
(9) can be written as

 
( 0) ( )j i
i j jh p i α= , ( 1) ( )j i

i j jh q i β= ,

 respectively, where the order of the polynomial 
( )jp i  is 1 1j j-k k− −

 and the order of the polynomial ( )jq i  is 

 1( ) 1j j j-t k k− − − .

 
( 0)j
ih  and ( 1)j

ih  are the general terms of the two sub-
LHR relations, respectively. Let

 
( ) ( 0) ( 1) ( ) ( )j j j i i
i i i j j j jh h h p i q iα β= + = + .

Figure 2 
Share generation and distribution process
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Remark 1. From the Theorem 1, we can determinate 
that ( )j

ih  is the general term of a LHR relation, and we 
call it the j-th LHR relation. For the orders of two sub-
LHR relations of the j-th relation are

1j j-k k−  and 1( )j j j-t k k− −
respectively. Therefore, the order of the j-th LHR re-
lation is

1 1( )j j- j j j- jk k t k k t− + − − = .
We call jt  the threshold in the j-th stage. We name ( )j

ih  the general term of the j-th LHR relation. 

4.11 D computes ( )
j

j
Mh . Then computes jd =

( )
1j

j
M j jh key key−⊕ −

 
and publishes jd , where 

1 j m≤ ≤  and 0 0key = .

Remark 2. From the construction, we have that if 
1( )j j j-t k k= − , then ( ) 0jq i = . That is also to say, the 

participants in jγ  
can recover the jkey  without the 

help from the participants in the higher levels. When 
j m< , 1j j j-t k k= −  

does not have to be satisfied. 
However, in the last LHR relation, 1j j j-t k k= −  must 
satisfies, i.e., ( ) 0mq i = . That is also to say, the last se-
cret is just shared among the participants in mγ .

3.2. Recovery Phase
In this subsection, the process of the secret recovery 
would be showed. A qualified subset does not have to 
recover all the m secrets. Therefore, suppose that a 
qualified subset can recover i secrets, i.e., the partici-
pants in the qualified subset can recover these secrets 
from the first to the i-th secret. The process of the re-
covery of the j-th secret is as follows, where  

We label the mistakes into yellow color in the manuscript. Please check them.   

1. In the definition 1, please change p into P  and change 1 i j m    into 

i j . 

2. In the definition 2, please change the { , , , }1 2 nP P P ... p  into 

{ , , , }1 2 nP P P ... P . 

3. In the definition 3, please change p into P  and change 1 i j m    into 

i j . 

4. In the first paragraph of the part 3 (3. The proposed scheme), please change 

the { , , , }1 2 nP P P ... p  into { , , , }1 2 nP P P ... P . 

5. In the first paragraph of 3.2. Recovery Phase, please change j < i  into 

1 j i  . 

6. In the Theorem 4, please add space before between “ 1 1k  ” and “ at most” 

and add space between “in the field” and  ““FF””.  

7. In the Theorem 4, there is no line break after “the participants exchange 

the”. 

8. In the Theorem 4, please add ■ after  “Thus, we can say that our scheme is 

secure.” 

.
The j-th secret is hidden in the term ( )

j

j
Mh

 
of the j-th

LHR relation. Before the j-th secret can be recovered, 
the (j −1)-th secret 1jkey −  

should be recovered. Since 
the order of the first sub-LHR relation of the j-th LHR 
relation is

1j j-k k−

and the order of the second sub-LHR relation of the 
j-th LHR relation is

1( )j j j-t k k− − ,

the qualified subset at least contains jt  participants 
and 1j j-k k−  

out of jt  are in jγ ( 1( )j j j-t k k− −  partic-
ipants are from the subset 1

m
i j iγ= + ). From the con-

struction phase, the general term ( 0)j
ih  of the first sub-

LHR relation just can be recovered by the participants 
from jγ . The general term ( 1)j

ih  of the second sub-LHR 
relation just can be done by the participants that are 
in higher level than the participants from jγ , i.e., they 
are from 1

m
i j iγ= + . Assume that the subset A P⊆  satis-

fies the conditions. The participant iP  can get another 
participant jP ‘s pseudo share by exchange in the quali-
fied subset, where i j≠ . Therefore, the participants in 
the qualifies subset A can recover the two polynomials 

( )jp i  
and ( )jq i , where the order of ( )jp i  is

1j j-1k k− −

and the order of ( )jq i  is

( 1) 1j j j-1t k k− − − − .

Then the participants in A can obtain the general term

( )j
ih = ( ) ( )i i

j j j jp i q iα β+ ( 0) ( 1)j j
i ih h= + ,

where the two values jα  
and jβ  

are publicly pub-
lished. After the term ( )

j

j
Mh  is obtained, the partici-

pants in A can solve the j-th secret jkey  
through

( )
1j

j
j M j jd h key key−= ⊕ − ,

where jd  is published, 1 j m≤ ≤  and 0 0key = . The 
two polynomials ( )jp i  and ( )jq i  are obtained as fol-
lows.
Proposition 1. If iα  is a is -fold root of the characteris-
tic equation (1) and the general solution for the recur-
rence relation (1) is given by

1
1 1
( ) ,im s k j

j ik ii k
h c j α−

= =
=∑ ∑

then its coefficient ikc  can be determined by t initial 
values by solving linear system of equation, where 

1

m
ii

t s
=

=∑ .
By exchanging the shares, the participants in the 
qualified subset calculate the 1j j-k k−  terms of the 
first sub-LHR relation of the j-th LHR relation, as giv-
en by:

1( 0)
1

1

,1
.

,

j
i j jj

i j
i i j j j

R i k k
h

R y k k i n
−

−

−

 ≤ ≤ −= 
− − < ≤

(10)

According to Proposition 1, 1j j-k k−  
points  

( ( ) 1
11, /j i

i ji h α −
−− ) can determinate the ( 1j j-1k k− − )-th 
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degree polynomial ( )jp i  which is defined by

1

1

( )
1
1

1
0 1

1( ) (mod )

,j j

j

j j i
i

j i
i B j Bj

k k
k

h x jp x q
i j

c c x c x

α
−

−

≠
−
−

∈ ∈

− −

− +
=

−

= + + ⋅⋅⋅+

∑ ∏
(11)

where {1,2,..., }B n∈ . The polynomial ( )jq i  is ob-
tained by the same the process as the polynomial 

( )jp i . 

3.3. Example
In this section, we show what are the conditions of 
the qualified subset and give a example to present the 
process of the construction phase. Suppose that the 
qualified subset A can recover two secrets 1key  and 

2key , the first secret and the second secret. Assume 
that there are three levels. Let 1 2 13, 5, 5k k t= = = , 

2 1 14,| | 9t nγ= = = , 2 2| | 6nγ = = , 3 3| | 4nγ = = , 19n = .  
That is to say, 1 2 3 Pγ γ γ =  . If A AS ′∈ , A  should 
satisfy these conditions:

1 1| | 3A kγ ≥ = ,

1 1 1 0| | ( ) 2A t k kγ− ≥ − − = ,

1 2 2| ( ) | 5A kγ γ ≥ =  ,

1 2 2 2 1| ( ) | ( ) 2A t k kγ γ− ≥ − − = .

Thus, there are at least seven participants in A. At 
least three out of seven participants are from 1γ , at 
least two out of seven are from 2γ and at least two out 
of seven are from 3γ . The first secret is distributed as 
follows.
1 D chooses two values 1 1,α β  and makes

1 3 2
1 1 2 3( ) 0kx x a x a x aα− = + + + = (12)

and

1 1 2
1 1 2( ) 0t kx x b x bβ −− = + + = (13)

as the auxiliary functions of two sub-LHR rela-
tions, respectively. The order of the first sub-LHR 
relation is three and the order of the second sub-
LHR relation is two.

2 The pseudo shares of the participants in 1γ  are 
used to initialize the first sub-LHR relation. The 

second sub-LHR relation is initialized by these 
pseudo shares of the participants in 2 3γ γ . The 
general terms of the two sub-LHR relations are

(10)
1 1( ) i

ih p i α= , 
(11)

1 1( ) i
ih q i β= ,

respectively, where the order of 1( )p i  is two and 
the order of 1( )q i  is one.

3 D adds the two general terms and let the sum

(1) (10) (11)
i i ih h h= +

be the general term of the first LHR relation.
4 D computes 

1

(1) (1)
10Mh h=  

and publishes 1d =  
(1)
10 0 1h key key⊕ − , where 0 0key = .

The second secret is distributed as follows.
1 D chooses two values 2 2,α β  and makes

2 1 2 2
2 1 2( ) 0k kx x c x cα −− = + + = (14)

and

2 2 1( ) 2 2
2 1 2( ) 0t k kx x e x eβ − −− = + + = (15)

as the auxiliary functions of two sub-LHR rela-
tions. The order of the first sub-LHR relation is 
two and the order of the second sub-LHR relation 
is also two.

2 The pseudo shares of the participants in 2γ  are 
used to initialize the first sub-LHR relation. The 
second sub-LHR relation is initialized by these 
pseudo shares of the participants in 3γ . The gener-
al terms of the two sub-LHR relations are

(20)
2 2( ) i

ih p i α= , 
(21)

2 2( ) i
ih q i β= ,

respectively, where the order of 2 ( )p i  is one and the 
order of 2 ( )q i  is also one.

3 D adds the two general terms and let the sum

(2) (20) (21)
i i ih h h= +

be the general term of the second LHR relation.

4 D computes (2)
6h  and publishes (2)

2 6 1 2d h key key= ⊕ − 
(2)

2 6 1 2d h key key= ⊕ − .
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4. The Properties of the Proposed 
Scheme
In this section, first, we give a security analysis of the 
proposed scheme. Then, we present the properties of 
our scheme.
In the below three paragraphs, we mainly give an 
analysis that shows why our scheme keeps secure for 
the unqualified subset. If the participants in an un-
qualified subset can recover a secret, we say that an 
unqualified subset can break our scheme. Since the 
proposed scheme is multi-stage, we just need to prove 
that the first secret is secure for the unqualified sub-
set. Suppose that there are 1 1t −  participants in this 
unqualified subset. For the sake of simplicity, assume 
that the unqualified subset B contains 1 1k −  partici-
pants want to recover the general term of the first sub-
LHR relation of the first LHR relation.
Theorem 4. The 1k -order linear homogeneous recur-
rence relation is secure for the unqualified partici-
pants if and only if the ( 1 1k − )-order polynomial is 
secure for the unqualified participants.
Proof. (⇒ ) Suppose that the 1k -order linear homo-
geneous recurrence relation is secure for the unqual-
ified participants. From (5), (8), (11) and the public 
value 1 0α ≠ , we can get

(1) (1)
1 1 1 1( ) / ( )i i

i ih p i h p iα α= ⇒ = , (16)

where the order of 1( )p i  is 1 1k − . From the above, we 
know that public value 1α  does not leak any information 
except the characteristic equation. If the ( 1 1k − )-or- 
der polynomial is not secure for the unqualified partici-
pants, i.e., the 1 1k −  points can determine a ( 1 1k − )-or- 
der polynomial. From (16), we also infer that the 1 1k −  
values can determine the linear homogeneous recur-
rence relation with 1k  order. This is contradictory to 
Proposition 1.
(⇐ ) Suppose that the ( 1 1k − )-order polynomial is se-
cure for the unqualified participants. If the 1k -order 
linear homogeneous recurrence relation is not secure 
for the unqualified participants, then 1 1k −  random 
terms (

1 2 11

(1) (1) (1), ,...,
ki i ih h h
−

) can determine the linear ho-
mogeneous recurrence sequences. According to (16), 
so we pick up 1 1k −  different terms and then can get 

1 1k −  points of the polynomial 1( )p i . Since the num-
ber of the roots of the 1( )p i  is 1 1k −   at most in the 

field F , we can say that 1 1k −  points can determine a  
( 1 1k − )-or-der polynomial. This is contradictory to 
our assumption. So the problem whether the parti- 
cipants from the unqualified subset B satisfying the 
above conditions can recover the first LHR relation 
can be seen as the problem that 1 1k −  points can de-
termine the ( 1 1k − )-order polynomial.
However, there is another case that a qualified sub-
set wants to recover other secrets which are unqual-
ified for them. For example, the subset B can recover 
from the first to j-th secret, but they want to recov-
er the (j+1)-th and the (j+2)-th secret. We can infer 
that from the above proof, it is impossible, and the 
proof is as same as the above. But in the recovery 
phase, the participants exchange the pseudo shares. 
We can conclude that the probability of breaking our 
scheme is not greater than the probability of break-
ing the one-way function. Thus, we can say that our 
scheme is secure. 

4.1. Performance
In our scheme, each participant just holds a shadow 
to share one secret or more than one secrets in the 
whole recovery process, because in the j-th stage, par-
ticipant iP  use the one-way function to generate his/
her pseudo share ( )j ig s  to construct the LHR rela-
tion, i.e., the participant iP  just holds the shadow is  
during the whole process. The shadow is as long as a 
secret.
If it  is set as 1i i it k k −= − , then 1| |i

j jA γ=−
( ) 0i i i-1t k k≥ − − ≥ AS AS′⇒ = . So disjunctive ac-

cess structure (1) is a trivial disjunctive access struc-
ture of (2). When 1i i it k k −= − , we can determine 
AS AS′ = . But when 1i i i-t k k> −  from (2), we know 

1 1| | ( ) 1i
j j i i i-A t k kγ=− ≥ − − ≥ , 1 i m≤ < . While a 

secret can be recovered, except the last secret, a mini 
number of the participants whose corresponding 
level is higher than this secret should be involved. 
Therefore, when it  is sent as 1i i i-t k k> − (1 i m≤ < ), 
the problem pointed out by Tassa [8] can be solved 
(when i m= , it =  1i i-k k− , i.e., the last secret just can 
be recovered from the highest participants in mγ .

4.2. Efficiency
In this paragraph, we discuss the efficiency of our 
scheme and give comparisons between the existing 
popular works [7, 27] with our scheme. The compu-
tational complexity of the proposed scheme mainly 
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depends on the orders of the m generating LHR rela-
tions, and the order of the i-th LHR relation is it . From 
Theorem 1, if the public values iα , iβ  are constant val-
ues, the computational complexity of these values is 

(log )O n . So the computational complexity of the 
LHR relation with the order it  is max( 1)( log )itO n n− , 
where 1 i m≤ ≤ . From the above security analysis, 
the security of our scheme has nothing to do with the 
public values iα , iβ . For reducing the computation-
al complexity of the proposed scheme, the D usually 
selects the special values (like the values 1, -1, 2,...). 
The space complexity of the proposed scheme mainly 
depends on the public values and the m public one-
way functions ( )ig ⋅ , where 1 i m≤ ≤ . From the con-
struction phase, the number of the public values is
mn

1
(( ) ( ) ) 3

m

1 2 m i
i

- m - 2 n + m - 3 n n m t
=

+ ⋅⋅⋅ + + −∑ . In the 

next of this paragraph, we make the comparisons Tas-
sa [27] and Chen et al. [7] with our scheme. Table 1 
shows the comparisons.
From the Table 1, our scheme is computationally ef-
ficient than the existing popular works [7, 28]. Even 
though it may be unfair or meaningless to compare 
the perfect scheme with the scheme of the compu-
tational security, these schemes with computational 
security are useful, when a weaker security can sat-
isfy the practice and it is hard to find an efficient and 
perfect scheme. Even though there has more public 

values in the proposed scheme, our scheme is more 
efficient than the existing popular schemes.

5. Conclusion 
Based on the linear homogeneous recurrence rela-
tions and one-way functions, we propose a multi-
stage secret sharing scheme for the hierarchical ac-
cess structure with the existential quantifier. Each 
participant just holds only a shadow during the whole 
scheme and the shadow is as long as the secret. 
Our scheme overcomes the drawbacks that the dis-
tributor must perform possibly exponentially many 
checks when assigning identities and shares to the 
participants, if the schemes are based on Birkhoff 
interpolation. The proposed scheme also overcomes 
the drawbacks of Chen et al.’s scheme in which many 
matrices for non-singularity should be checked. Our 
scheme solves the problem pointed out by Tassa 
through setting 1i i i-t k k> − , where 1 i m≤ < . In the 
future, we will try to design a perfect hierarchical se-
cret sharing scheme Based on the LHR relations.
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Table 1
Comparing the existing popular works with our scheme

Schemes Tassa [27] Chen et al. [7] Our scheme

Approach Polynomial  
derivatives

Integer polymatroids and 
Brickells method [4] LHR relations 

The most time cost for 
calculation

Assigning identities and 
shares to the participants

Finding nonsingular 
matrices

Generating or recovering LHR 
relations 

Time cost Exponential time Exponential time Polynomial time

Security Perfect Perfect Computational ecurity
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