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Least squares support vector machine (LSSVM) is a machine learning algorithm based on statistical theory. Its 
advantages include robustness and calculation simplicity, and it has good performance in the data processing 
of small samples. The LSSVM model lacks sparsity and is unable to handle large-scale data problem, this article 
proposes an LSSVM method based on mixture kernel learning and sparse samples. This algorithm reduces the 
initial training set to a sub-dataset using a sparse selection strategy. It converts the single kernel function in the 
LSSVM model into a mixed kernel function and optimizes its parameters. The reduced sub-dataset is used for 
training LSSVM. Finally, a group of datasets in the UCI Machine Learning Repository were used to verify the 
effectiveness of the proposed algorithm, which is applied to real-world power load data to achieve better fitting 
and improve the prediction accuracy.
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1. Introduction
Support Vector Machine (SVM) [25] is one of the 
most important algorithms in the field of machine 
learning. SVM detection method has been widely em-
ployed on account of the advantages of small sample 
learning, good generalization ability and high accu-
racy. At present, it is under the background of large 
samples in the era of big data. Due to its super large 
amount of calculation in large samples, the attention 
of SVM has declined, but it is still a commonly used 
machine learning algorithm [9, 18, 26]. The applica-
tions of the SVM have been significantly increased in 
the last years in multiple sectors as a successful ma-
chine learning approach in modeling the relationship 
between the input and the output in regression prob-
lems [8, 30, 31]. 
The main advantages of the SVM algorithm are: (1) 
It is very effective to solve the classification problem 
and regression problem of high dimensional features, 
and it still has a good effect when the feature dimen-
sion is greater than the number of samples. (2) Only a 
part of the support vectors is used to make hyperplane 
decisions without relying on all data. (3) A large num-
ber of kernel functions can be very flexible to solve 
various nonlinear classification regression problems. 
(4) When the sample size is not massive data, the 
classification accuracy is high and the generalization 
ability is strong.
The main disadvantages of the SVM algorithm are: 
(1) SVM is not suitable for use when the sample size 
is very large and the kernel function mapping dimen-
sion is very high. (2) There is no universal standard for 
the choice of kernel function for nonlinear problems, 
and it is difficult to choose a suitable kernel function.
Least squares support vector machine (LSSVM) [24] 
is an improved form of SVM, the difference being that 
SVM is a quadratic programming problem with lin-
ear inequality constraints. The calculation process 
is complex and requires a large computational space. 
LSSVM is a loss function that uses the sum of error 
squares as a training set, which is equivalent to con-
verting the quadratic planning problem into a linear 
equation solution, which makes the problem much 
easier to solve. Although LSSVM inherits the ad-
vantages of SVM, it is with this conversion step that 
the final decision function is correlated with all the 

samples, so that LSSVM loses its understanding of 
the sparseness of the feature. When processing large-
scale data, with the increase of data sample size and 
the diversity of structure, computer memory can easi-
ly overflow, which affects the prediction accuracy and 
generalisation ability of the algorithm. As a result of 
this situation, LSSVM appears to be unable to cope 
with large sample problems.
To solve the problem of the sparsity of solutions, 
many researchers have put forward new and im-
proved algorithms, which mainly solve the sparseness 
problem from the standpoint of the training sam-
ple set. Suykens et al. proposed a pruning algorithm 
based on the size of the support value after LSSVM 
model training [23]. This algorithm deletes the sam-
ple points corresponding to the smaller support 
value and retains the sample points with the larger 
support value to decide on the model. The disadvan-
tage of this method is that the model training is per-
formed twice, the solution process is complicated and 
time-consuming. Subsequently, an LSSVM algorithm 
with a fixed size sample set and a corresponding im-
proved algorithm [3, 4], and the method for combin-
ing LSSVM with other machine learning algorithms, 
have appeared [10, 13]. The core concept of these 
algorithms is to compress large datasets into small-
er sub-datasets, and then train them in the LSSVM 
model [15, 16]. Since the reduced sub-sample set car-
ries almost all the important information of the origi-
nal sample, it can be used as a training sample for the 
LSSVM model [11, 12, 14, 20]. [11] and [12] solved the 
problem of fault diagnosis, [20] and [14] proposed a 
deep structure of LSSVM to solve classification prob-
lems. To increase the accuracy, a variety of deep net-
work models based on SVM have been proposed in [6, 
7, 19, 21, 29] and successfully applied to various clas-
sification and regression prediction scenarios. A sup-
port vector machine classification algorithm based on 
depth kernel theory was proposed that can be applied 
to large-scale data sets [21, 29]. A deep learning mod-
el based on support vector machines and a probabili-
ty output network has also been proposed [7, 19]. To 
have a good representation of the data distribution, 
one can take an algorithm with subset selection, or a 
random subset as a simpler scheme in [22]. 
However, these algorithms cannot guarantee suf-
ficiently large reduction datasets, run time is long, 
and the prediction accuracy is not high. The predic-
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tion accuracy of LSSVM is also affected by the kernel 
function and parameters, which makes the selection 
of kernel function a key consideration. So far, there is 
no definite theory or method to support how to deter-
mine the kernel function and parameters. Improper 
parameter selection can lead to the problem of over-
fitting or underfitting the regression model.
To solve the above problems, it is necessary to fur-
ther research on LSSVM. An LSSVM regression al-
gorithm based on sparse samples and hybrid kernel 
learning is proposed in this paper. For large-scale 
data sets, an effective sparse selection strategy is 
adopted to reduce the large-scale data set to a small-
er subset, and the optimization algorithm is used to 
optimize the mixture kernel function to solve the 
LSSVM sparsity problem.
The remainder of this article is structured as follows. 
Section 2 and Section 3 provides a brief review on 
LSSVM and sparse subset selection strategy, respec-
tively. The proposed method based on (Improved 
Artificial Bee Colony-Mixture Kernel LSSVM) 
IABC-MixKLSSVM with sparsity IABC-Mix-
KLSSVM (SIABC-MixKLSSVM) is presented in Sec-
tion 4. In Section 5, the experimental results of the 
related algorithms are given, and the results are anal-
ysed and summarized.

2. Description of LSSVM
Given a training data set ( ){ } 1
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ky R∈  denote the input and output of LSSVM, re-
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In this, w and b  are the weights and bias to be ad-
justed, respectively. ke  denotes the error for the thk  
sample, γ  is a positive regularisation parameter and 
( )φ ⋅  denotes a nonlinear function mapping kx  into a 

high-dimensional feature space. Construct the La-
grangian function of the optimization problem by for-
mula (1):
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where k Rα ∈  is the Lagrange multiplier correspond-
ing to the thk  sample, and the corresponding sample 
points are called Support Vectors (SVs). According to 
the KKT conditions, the equivalent equations are ob-
tained by eliminating vector w  and e :

1

00 1
1

T b
yI αγ −

     
=     Ω +     

, (3)

where ( ) ( ) ( ), T
k j k jK x x x xϕ ϕΩ = = , ( )1, ,1 TI = ⋅⋅⋅ , 

{ }1, , T
Ny y y= ⋅⋅⋅  and { }1, , T

Nα α α= ⋅⋅⋅  is the kernel func-
tion matrix.
The final LSSVM model can be written as
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Kernel types and parameters affect the prediction ac-
curacy of the LSSVM algorithm training model, and 
the selection of kernel functions plays an important 
role in processing learning tasks. In the LSSVM mod-
el, a kernel function is used to map the input data to 
a high-dimensional space. Because each kernel func-
tion has its characteristics and has different effects on 
the performance of the LSSVM. The two types of ker-
nel functions—Gaussian and polynomial—were com-
bined to create a Mixture Kernel (MixK) functions in 
the LSSVM model. MixK does not need to change the 
original mapping space to ensure the effectiveness of 
its functions [17]

( ) ( )
( ) ( )

, ,

                    1 ,
mix k poly k

Guass k

K x x K x x

K x x

δ

δ

=

+ −
. (5)

According to the Mercer condition, if 1K  and 2K  are 
kernel on X X× , nX R⊆ , [ ]0,1δ ∈ , then

( ) ( ) ( )1 2, , ,k k kK x x K x x K x x= + . (6)

K  is still a kernel function. Therefore, ( ),mix kK x x  sat-
isfies the kernel function property of Mercer’s condi-
tion.
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Therefore, the prediction output of the LSSVM 
model is:

. (7)

3. Sparse Subset Selection
Clustering is a machine learning technique that 
groups some data points. As one of the most well-
known clustering algorithms, K-Means has the ad-
vantages of fast running speed and wide application, 
but the biggest shortcoming is that it needs to preset 
the number of clusters and initial points. When the 
training sample set is large, the K-Means algorithm 
needs to sort each iteration when calculating the 
median vector, and the clustering effect is affected. 
In 1975, Fukunaga et al. proposed a mean-shift algo-
rithm, which is a sub-parameter method based on 
density gradient rise [5]. It is widely used in target 
tracking, data clustering, classification [27] and oth-
er scenarios. The basic idea is to randomly select an 
initialisation centre point, calculate the average val-
ue of the distance vector from all points to the cen-
tre point within a certain range of the centre point, 
and then calculate the average value to obtain an 
offset mean. Then move the centre point to the off-
set mean position, and through this repeated move-
ment, the centre point can be gradually approached 
to the best position. This idea is similar to the gra-
dient drop method, which can reach the local or 
global optimal solution of the gradient by constantly 
moving towards the gradient descent [1, 2]. The geo-
metric explanation is as follows: if the sample point 

ix  obeys the distribution of a probability density 
function ( )f x , because the gradient of the non-zero 
probability density function points to the direction 
where the probability density increases the most, 
the sample points in the hS  region fall more along 
the direction of the probability density gradient, the 
mean-shift vector ( )hM x  should point to the direc-
tion of the probability density gradient [28]. In other 
words, the mean shift algorithm is essentially a gra-
dient-based optimisation algorithm.
Given a point ix  in d  dimensional space, then the ba-
sic form of a mean shift vector is defined as:
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where k  indicates that k  points fall into the kS  area. 
kS  is a high-dimensional sphere with radius h , a set 

of y  points satisfying the following relationship:
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Thus, there are the following improvements:
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Combined formula (10) and (11), the Mean-shift’s 
modified mean shift formula is:

( )h hM m x x= + , (12)

where . , ( )iw x  denote weight.

The Mean-shift clustering movement process is 
shown in Figure 1.

Figure 1 
The mean-shift clustering movement process
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Because LSSVM lacks sparsity and is not 
suitable for large-scale datasets, this article 
uses the mean-shift clustering method to 
obtain sparse subsets, which is beneficial to 
LSSVM model training and prediction. The 
process is shown in Algorithm 1： 

Algorithm 1. Mean-shift algorithm process 

Step1 Select an initial center c  randomly in a given 
data set, h  is the radius of hS , the threshold of the 
shift is  . 

Step2 Calculate c to each element in the set M , and 
add these vectors to get the vector shift . 

Step3 Update the center point c c shift= + , the 
moving distance is shift . 

Step4 Repeat Steps 2,3,4 until the shift converges to a 
 , obtain c  at this time. 

Step5 Calculate the distance d  between c and center 
c  of the last iteration,  

If 2d h  

merge 
else  

generate a new cluster point. 
Step6 Repeat 1, 2, 3, 4, 5 until all points are marked as 
accessed. 
 
4. SIABC-MixKLSSVM 

To solve the problem that the LSSVM model 
is not suitable for large-scale datasets, this 
article uses the sparse strategy to reduce the 
dataset, which decreases the computational 
cost and complexity. The parameters of the 
LSSVM model with a mixture kernel are 
optimized by IABC to improve the accuracy 
of regression prediction. Figure 2 shows the 
schematic diagram of SIABC-MixKLSSVM, 
and Algorithm 2 provides the detailed 
process of SIABC-MixKLSSVM. 
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Because LSSVM lacks sparsity and is not suitable for 
large-scale datasets, this article uses the mean-shift 
clustering method to obtain sparse subsets, which is 
beneficial to LSSVM model training and prediction. 
The process is shown in Algorithm 1:

Algorithm 1. Mean-shift algorithm process
Step 1 Select an initial center c  randomly in a giv-
en data set, h  is the radius of hS , the threshold of the 
shift  is σ .

Step  2 Calculate c to each element in the set M , and 
add these vectors to get the vector shift .
Step  3 Update the center point c c shift= + , the mov-
ing distance is shift .
Step  4 Repeat Steps 2,3,4 until the shift converges 
to a σ , obtain c  at this time.
Step  5 Calculate the distance d  between c and 
center c of the last iteration, 
     If 2d h<
               merge
     else 
               generate a new cluster point.
Step  6 Repeat 1, 2, 3, 4, 5 until all points are marked 
as accessed.

4. SIABC-MixKLSSVM
To solve the problem that the LSSVM model is not 
suitable for large-scale datasets, this article uses the 
sparse strategy to reduce the dataset, which decreas-
es the computational cost and complexity. The pa-
rameters of the LSSVM model with a mixture kernel 
are optimized by IABC to improve the accuracy of re-
gression prediction. Figure 2 shows the schematic di-
agram of SIABC-MixKLSSVM, and Algorithm 2 pro-
vides the detailed process of SIABC-MixKLSSVM.

Algorithm 2. SIABC-MixKLSSVM
Step 1 Preprocess the original data.
Step 2 Initialize the whole parameters of the pro-
posed method
Step 3 Selection subset by Algorithm 1, Obtain the fi-
nal training datasets.
Step 4 Utilize IABC to select appropriate kernel func-
tions and optimize the corresponding parameters on 
the final datasets.
Step 5 Obtain the model with the best parameters.
Step 6 Test the model.

Figure 2 
Flow chart of SIABC-MixKLSSVM algorithm
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Algorithm2. SIABC-MixKLSSVM 
Step1 Preprocess the original data. 
Step2 Initialize the whole parameters of the proposed 
method 
Step3 Selection subset by Algorithm 1, Obtain the 
final training datasets. 
Step4 Utilize IABC to select appropriate kernel 
functions and optimize the corresponding parameters 
on the final datasets. 
Step5 Obtain the model with the best parameters. 
Step6 Test the model. 
 
5. Experiments 

To test the performance of the proposed algorithm, 
we used the dataset in UCI Machine Learning 
Repository to test various algorithms and analyse 
the results. All experiments are conducted on an 
Intel Core i7-3770 CPU @3.20GHz processor with 
4GB RAM in a MATLAB 2018a environment. To 
avoid randomness in the experimental results, 
each data and model must be run 10 times. All 
given input datasets are normalized to zero mean 
and unit variance. The kernel function and 
optimization parameter setting and value range 
used in the algorithm are shown in Table 2. 

In addition, when the mean shift method is used to 
sparse samples, the spherical radius h  of hS  
need to be set manually, and its value varies with 
the size of the data set, -5=10 h  . 

Table 2 
Parameters setting of experimental datasets 

Parameter SN    Guass  polyd    

Value 30 [0,1] [1,10] [1,10] [1,100] 

 

5.1 Test Data and Evaluation Indicators 

The data for this experiment comes from 14 
datasets in the UCI repository: Energy 
Efficiency (Heating), Energy Efficiency 
(Cooling), Concrete Compressive Strength, 
Airfoil Self-Noise, Red Wine Quality, White 
Wine Quality, Bias correction of numerical 
prediction model temperature forecast (Bias 
Minimum temperature), Bias correction of 
numerical prediction model temperature 
forecast (Bias Maximum temperature), 
Electrical Grid Stability Simulated (EGSSD), 
Condition Based Maintenance of Naval 
Propulsion Plants (CBMNPP Compressor), 
Condition based Maintenance of Naval 
Propulsion Plants (CBMNPP Turbine), Bike 
sharing, Superconductivity, Gas Turbine CO 
and NOx Emission (Gas). Details are shown 
in Table 1. 

Table 1 
Data used in experiments 

Datasets Data types Number of 
Attributes 

Number of 
Instances 

Energy 
Efficiency(Heating) Multivariate 8 768 

Energy 
Efficiency(Cooling) Multivariate 8 768 

Concrete 
Compressive 

Strength 
Multivariate 9 1030 

Airfoil Self-Noise Multivariate 6 1503 
Red Wine Quality Multivariate 12 1599 

White Wine Quality Multivariate 12 4898 
Bias Minimum 

temperature Multivariate 25 7750 

Bias Maximun 
temperature Multivariate 25 7750 

EGSSD Multivariate 14 10000 
CBMNPP 

Compressor Multivariate 16 11934 

CBMNPP Tutbine Multivariate 16 11934 
Bike sharing Multivariate 16 17389 

Superconductivtiy Multivariate 81 21263 
Gas Multivariate 11 36733 

To quantitatively evaluate the effectiveness of 
the proposed algorithm, five quantitative 
criteria are provided—root mean square error 
(RMSE), mean absolute error (MAE), 
standard error (STDE), Mean Absolute 
Percentage Error (MAPE) and TIME. The 
values in bold are the best results in the 
comparisons. 

5.2 Experimental Results and Analysis 

5. Experiments
To test the performance of the proposed algorithm, 
we used the dataset in UCI Machine Learning Repos-
itory to test various algorithms and analyse the re-
sults. All experiments are conducted on an Intel Core 
i7-3770 CPU @3.20GHz processor with 4GB RAM in 
a MATLAB 2018a environment. To avoid randomness 
in the experimental results, each data and model must 
be run 10 times. All given input datasets are normal-
ized to zero mean and unit variance. The kernel func-
tion and optimization parameter setting and value 
range used in the algorithm are shown in Table 2.

Table 2
Parameters setting of experimental datasets

Parameter SN δ Guassσ polyd γ

Value 30 [0,1] [1,10] [1,10] [1,100]

In addition, when the mean shift method is used to 
sparse samples, the spherical radius h  of hS  need to 
be set manually, and its value varies with the size of 
the data set, -5=10 hσ ∗ .
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5.1. Test Data and Evaluation Indicators
The data for this experiment comes from 14 datasets 
in the UCI repository: Energy Efficiency (Heating), 
Energy Efficiency (Cooling), Concrete Compres-
sive Strength, Airfoil Self-Noise, Red Wine Quality, 
White Wine Quality, Bias correction of numerical 
prediction model temperature forecast (Bias Mini-
mum temperature), Bias correction of numerical pre-
diction model temperature forecast (Bias Maximum 
temperature), Electrical Grid Stability Simulated 
(EGSSD), Condition Based Maintenance of Naval 
Propulsion Plants (CBMNPP Compressor), Condi-
tion based Maintenance of Naval Propulsion Plants 
(CBMNPP Turbine), Bike sharing, Superconductivi-
ty, Gas Turbine CO and NOx Emission (Gas). Details 
are shown in Table 1.
To quantitatively evaluate the effectiveness of the 
proposed algorithm, five quantitative criteria are 
provided—root mean square error (RMSE), mean 
absolute error (MAE), standard error (STDE), Mean 
Absolute Percentage Error (MAPE) and TIME. The 
values in bold are the best results in the comparisons.

Table 1
Data used in experiments

Datasets Data types Number of Attributes Number of Instances

Energy Efficiency(Heating) Multivariate 8 768

Energy Efficiency(Cooling) Multivariate 8 768

Concrete Compressive Strength Multivariate 9 1030

Airfoil Self-Noise Multivariate 6 1503

Red Wine Quality Multivariate 12 1599

White Wine Quality Multivariate 12 4898

Bias Minimum temperature Multivariate 25 7750

Bias Maximun temperature Multivariate 25 7750

EGSSD Multivariate 14 10000

CBMNPP Compressor Multivariate 16 11934

CBMNPP Tutbine Multivariate 16 11934

Bike sharing Multivariate 16 17389

Superconductivtiy Multivariate 81 21263

Gas Multivariate 11 36733

5.2. Experimental Results and Analysis
To verify the effectiveness of the mean-shift cluster-
ing algorithm proposed in this article, and to sparse 
the dataset. We randomly generate 450 points in a 
two-dimensional space to form a visual dataset, as 
shown in Figure 3. The blue circles represent all the 
points in the dataset, and the pink asterisks represent 
the updated points after each iteration. The pink as-
terisks form the trajectory of the mean-shift method 
in finding the extreme points. According to the de-
scription of Algorithm 1, Figure 3 shows the process 
of finding cluster points by the mean shift method. 
Randomly select a center point in the data set, take 
the spherical area with a radius h  as the initial set 
M , and move along the direction of increasing initial 

point density. This process is repeated until the mov-
ing distance shift σ<  ( 310 ,  0.75h hσ −= ∗ = ), and 
then stop and record the center at this time. The dis-
tance d  between the center at the time and the cen-
ter of the previous iteration are calculated. If 2d d< , 
the two centers will be merged, otherwise, the center 
point at this time is a new cluster point. Repeat the 
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above process and finally obtain five clusters as shown 
in Figure 3. Figure 4 shows the final clustering result 
obtained by the mean-shift method. Five colors repre-
sent five clusters, and the mean-shift method is con-
tinuously updated and iterated, and finally five cluster 
centers are obtained, with black asterisk marked. 

Figure 3 
Motion trajectory of clustering by the mean-shift method

A Combined Cycle Power Plant (CCPP) is composed of 
gas turbines, steam turbines and heat recovery steam 
generators. In a CCPP, the electricity is generated by 
gas and steam turbines, which are combined in one 
cycle, and is transferred from one turbine to another. 
The dataset contains 9568 data points collected from 
a CCPP over six years (2006-2011) when the power 
plant was set to work with a full load. Features consist 
of hourly average ambient variables: Temperature (T), 
Ambient Pressure (AP), Relative Humidity (RH) and 
Exhaust Vacuum (EV) to predict the net hourly elec-
trical energy output (EP) of the plant.
Figure 5 shows the comparison between the predict-
ed value and actual value of SIABC-MixKLSSVM 
and several other methods in the CCPP dataset. It 
includes four comparison algorithms: Sparse LSSVM 
(S-LSSVM), Sparse Mixture Kernel LSSVM (S-Mix-
KLSSVM), Sparse IABC LSSVM (SIABC-LSSVM) 
and IABC-LSSVM. Among them, the curve fitting 
in (a) and (b) is poor, the curve fitting in (c) is better 
than that in (a) and (b), and the curve fitting in (d) is 
better than (c). The fit of the fitted curve in (e) is the 
best of all methods. This shows that the SIABC-Mix-

Figure 4 
Clustering results of the mean-shift method 

KLSSVM method can achieve effective predictability 
and high predictive ability for large-scale datasets.
Table 3 shows the comparison results of different 
algorithms based on the LSSVM model and three 
popular algorithms in the training set and the test-
ing set. In the training set, the MAE and STDE of 
SIABC-MixKLSSVM are smaller, and the RMSE and 
MAPE of S-LSSVM are smaller. The overall effect of 
the latter algorithm is better. In the test set, in addi-
tion to MAPE, the evaluation index of SIABC-Mix-
KLSSVM is smaller and the performance is better. 
In summary, whether on a training set or a prediction 
set, the prediction effect of SIABC-MixKLSSVM is 
the best of all the algorithms. The performance of the 
algorithm based on the LSSVM model is better than 
the other three algorithms, especially compared with 
the algorithm with a deep structure, the result of the 
SIABC-MixKLSSVM algorithm is better than the BP 
and ELM algorithm, which shows the effectiveness 
and feasibility of the algorithm proposed in this paper.
Table 4 shows the test results of five evaluation indi-
cators in five algorithms for data sets of different sizes 
in the UCI database. In table 4, bold indicates that the 
smaller the value, the better the prediction effect (that 
is, the optimal effect). It can be seen that compared 
with the five given algorithms, the values of the five 
evaluation indices in the S-LSSVM are higher, indi-
cating that the performance is the worst in all datasets. 
By comparing S-LSSVM and SIABC-MixKLSSVM, 
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Figure 5 
The prediction results of five methods on the CCPP data set

(a) S-LSSVM (b) S-MixKLSSVM

(c) SIABC-LSSVM (d) IABC-MixKLSSVM

(e) SIABC-MixKLSSVM
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Table 3 
Performance comparisons of other algorithms on CCPP data set

Datasets Indices S-LSSVM RVM BP ELM SIABC-MixKLSSVM

Training set

RMSE 7.70E-01 5.22E+00 7.92E+00 3.32E+01 1.60E+00

MAE 1.13E-01 4.07E+00 1.18E+01 5.62E+01 2.63E-01

STDE 2.06E+00 3.27E+00 2.62E+00 8.47E+00 4.71E+00

MAPE 2.00E-03 9.00E-03 2.60E-02 1.23E-01 6.00E-04

Testing set

RMSE 6.14E+00 7.22E+00 1.71E+01 1.69E+01 4.50E+00

MAE 4.60E+00 5.50E+00 1.47E+01 1.47E+01 3.59E+00

STDE 4.08E+00 4.67E+00 8.86E+00 8.37E+00 2.71E+00

MAPE 1.01E-02 1.21E-01 3.21E-01 3.21E-02 7.90E-02

TIME 3.96E-02 1.40E+00 2.19E+00 2.80E-02 7.91E-02

Table 4 
Performance comparisons of other algorithms on UCI data set

Datasets Indices S-LSSVM RVM BP ELM SIABC-MixKLSSVM

Energy 
Efficiency 
(Heating)

RMSE 4.75E+00 5.37E+00 8.91E+00 8.55E+00 4.66E+00
MAE 2.52E+00 4.99E+00 7.88E+00 7.44E+00 3.47E+00
STDE 4.05E+00 2.00E+00 4.17E+00 4.23E-00 3.11E+00
MAPE 2.50E-01 3.91E-01 6.68E-01 6.16E-01 2.50E-01
TIME 4.05E-02 3.00E-03 4.17E+00 3.25E-02 4.75E-02

Energy 
Efficiency 
(Cooling)

RMSE 6.65E+00 3.63E+00 9.36E+00 5.62E+00 4.98E+00
MAE 4.96E+00 3.16E+00 8.05E+00 4.61E+00 3.75E+00
STDE 4.44E+00 1.80E+00 4.81E+00 3.23E+00 3.30E+00
MAPE 3.33E-01 1.75E-01 4.61E-01 2.40E-01 2.53E-01
TIME 3.96E-02 2.90E-03 1.81E+00 4.36E-02 4.46E-02

Concrete 
Compressive 
Strength

RMSE 1.08E+01 1.40E+01 1.20E+01 1.27E+01 7.61E+00
MAE 8.10E+00 1.11E+01 8.90E+00 9.81E+00 5.79E+00
STDE 7.29E+00 8.52E+00 8.12+00 8.16E+00 4.96E+00
MAPE 2.34E-01 3.22E-01 3.53E-01 3.07E-01 1.50E-01
TIME 1.41E-01 5.60E-03 1.82E+00 2.83E-02 7.20E-02

Airfoil Self-
Noise

RMSE 4.17E+00 6.65E+00 7.34E+00 6.94E+00 2.75E+00
MAE 2.92E+00 5.30E+00 6.40E+00 5.21E+00 1.97E+00
STDE 3.00E+00 4.03E+00 3.60E+00 4.60E+00 1.93E+00
MAPE 2.47E-02 4.53E-02 5.22E-02 4.49E-02 1.66E-02
TIME 1.95E-01 3.50E-03 2.31E+00 3.91E-02 2.19E-01

Red Wine 
Quallity

RMSE 7.54E-01 6.48E-01 6.68E-01 7.43E-01 6.43E-01
MAE 6.60E-01 5.26E-01 5.69E-01 6.48E-01 5.17E-01
STDE 3.67E-01 3.91E-01 3.52E-01 3.66E-01 3.82E-01
MAPE 1.26E-01 9.72E-02 1.09E-01 1.28E-01 9.66E-02
TIME 1.26E-01 8.20E-03 1.91E+00 2.81E-02 1.45E-01
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Datasets Indices S-LSSVM RVM BP ELM SIABC-MixKLSSVM

White Wine 
Quality

RMSE 9.02E-01 7.66E-01 1.05E+00 8.20E-01 8.11E-01
MAE 6.99 E-01 6.27E-01 8.57E-01 5.93E-01 6.17E-01
STDE 5.70E-01 4.40E-01 6.18E-01 5.69E-01 5.26E-01
MAPE 1.24E-01 1.07E-02 1.36E-01 1.02E-02 1.06E-01
TIME 1.32E+00 2.98E-02 1.94E+00 2.84E-02 1.39E+00

Bias Minimum 
temperature

RMSE 2.01E+00 1.94E+00 2.04E+00 1.90E+00 2.01E+00
MAE 1.60E+00 1.54E+00 1.65E+00 1.48E+00 1.69E+00
STDE 1.22E+00 1.19E+00 1.20E+00 1.18E+00 1.09E+00
MAPE 6.57E-02 7.46E-02 7.35E-02 6.25E-02 6.95E-02
TIME 8.69E-02 4.96E-01 2.09E+00 1.41E-02 9.29E-02

Bias Maximum 
temperature

RMSE 2.73E+00 2.20E+00 2.82E+00 2.60E+00 2.53E+00
MAE 2.27E+00 1.80E+00 2.37E+00 2.12E+00 2.16E+00
STDE 1.51E+00 1.28E+00 1.53E+00 1.51E+00 1.31E+00
MAPE 7.52E-02 6.38E-02 7.79E-02 7.20E-02 7.35E-02
TIME 2.97E-02 1.70E-02 2.15E+00 2.93E-02 1.68E-02

EGSSD

RMSE 3.30E-03 1.06E-02 1.39E-03 6.06E-02 4.70E-3
MAE 2.80E-03 8.20E-03 1.54E-03 7.80E-02 3.40E-03
STDE 3.30E-03 6.70E-03 6.30E-03 2.13E-02 1.80E-03
MAPE 7.52E-01 3.15E-00 7.34E-00 1.10E-01 5.57E-02
TIME 5.66E-00 5.93E+01 3.34E-00 1.79E-01 6.15E-00

CBMNPP 
Compressor

RMSE 2.24E-02 2.48E-02 2.14E-01 2.57E-02 2.19E-02
MAE 2.14E-02 2.43E-02 2.03E-01 2.54E-02 2.13E-02
STDE 6.90E-03 4.90E-03 6.95E-02 3.70E-03 4.99E-03
MAPE 2.23E-02 2.54E-02 2.12E-01 2.66E-02 2.24E-01
TIME 3.26E-02 7.93E-01 2.04E+00 3.76E-02 3.67E-02

CBMNPP 
Turbine

RMSE 7.65E-03 7.30E-03 9.96E-02 7.44E-03 7.20E-03
MAE 6.54E-03 6.30E-03 7.67E-02 6.44E-03 6.10E-03
STDE 3.90E-03 3.70E-03 6.36E-02 3.73E-02 3.99E-03
MAPE 6.60E-03 6.40E-03 7.77E-02 6.52E-03 6.20E-03
TIME 1.77E-01 7.16E-01 2.17E+00 3.93E-02 3.85E-02

Bike-sharing

RMSE 1.64E-00 7.51E+01 1.59E+01 3.04E+02 1.48E-00
MAE 3.38E-01 5.26E+01 1.61E+01 3.80E+02 1.41E-01
STDE 9.33E-00 5.36E+01 7.74E-00 1.18E+02 2.76E-00
MAPE 1.69E-03 6.79E-01 1.15E+00 1.80E+01 1.40E-03
TIME 4.24E-02 1.65E-00 1.20E+01 3.25E-02 2.43E-02

Super

RMSE 1.48E-00 1.74E+01 1.28E-00 5.87E+01 7.56E-01
MAE 3.38E-01 1.28E+01 1.18E-00 5.70E+01 1.87E-01
STDE 2.76E-00 1.17E+01 6.72E-01 2.90E+01 1.36E-00
MAPE 3.56E-01 2.59E+01 8.90E-03 3.08E+01 5.09E-01
TIME 2.43E-00 1.15E+01 1.20E+01 8.44E-00 1.48E-00

Gas

RMSE 1.98E-01 1.14E+01 1.30E-00 1.73E+01 1.46E-01
MAE 1.33E-02 8.58E-00 1.00E-00 1.51E+01 1.18E-02
STDE 1.36E-00 7.56E-00 8.32E-01 9.80E-00 7.98E-01
MAPE 1.00E-04 6.67E_02 7.40E-03 1.17E-01 1.00E-04
TIME 6.45E-02 3.28E+01 2.59E-00 1.76E-01 6.23E-02

Table 4 (continued)
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it is not difficult to find that sample sparseness is per-
formed in both algorithms. Although it is a bit longer in 
terms of TIME, SIABC-MixKLSSVM predicts better 
results. This shows that optimizing the kernel function 
of the sparse LSSVM model helps to improve the pre-
diction results. The RVM algorithm performs better in 
the Energy Efficiency (Cooling), and Bias Maximum 
temperature dataset. In other data sets, the evaluation 
indicators of SIABC-MixKLSSVM are smaller than 
RVM, and the performance is better than RVM. This 
shows that when the amount of data is very small, RVM 
has the advantage of being more sparse than SVM. As 
the amount of data increases, the accuracy of RVM 
drops significantly, which is unsuitable.
Compared with BP and ELM algorithms, except that 
ELM performs better in White Wine Quality and 
Bias Minimum temperature datasets, SIABC-Mix-
KLSSVM has the best evaluation indicators in other 
data sets. Especially when the amount of data is more 
than ten thousand levels, the sparse strategy is used 
to reduce the data set, which greatly shortens the 
running time of the algorithm, optimizes the mixed 
kernel function parameters of the LSSVM model, and 
improves the prediction accuracy.
It can be seen from the above analysis that the meth-
od proposed in this paper is effective and feasible. 
This shows that the algorithm in this paper can not 
only sparse samples, but also improve the prediction 
ability of the algorithm by optimizing the parameters 
of the mixed kernel function, and it has better com-
petitiveness. If the feature dimension is much larger 
than the number of samples, the prediction accuracy 
of this algorithm is not high.

6.Conclusions
LSSVM is an improved version of the SVM algo-
rithm, but it lacks the sparsity of SVM, its single ker-
nel function leads to low generalisation ability and 
accuracy in the case of a large dataset. In response to 
this situation, the authors used a sparsity strategy to 
reduce the initial samples in a subset, to improve the 
sparsity of the kernel function, and to solve the poor 
sparsity problem of LSSVM in the case of a large 
dataset. The single kernel function in the LSSVM 
model was changed to a mixed kernel function and 
the IABC algorithm was used to optimize the param-
eters, which improves the prediction accuracy. In 
the standard UCI dataset, the experimental results 
and analysis show that the sparse selection strategy 
can effectively solve the problem that the LSSVM 
model is not suitable for large-scale datasets and the 
SIABC-MixKLSSVM proposed in this article is ef-
fective. At the same time, the algorithm was applied 
to the real-world power load data. The SIABC-Mix-
KLSSVM also achieves a better fitting effect, which 
shows that the algorithm has higher forecasting ac-
curacy. The future work is due to the idea of deep 
learning, combining the traditional SVM algorithm 
and deep structure to form a multi-layer LSSVM 
model to solve specific problems such as time series 
forecasting and bearing fault diagnosis.
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