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The regression testing is a software-based testing approach executed to verify that changes made to the soft-
ware do not affect the existing functionality of the product. On account of the constraints of time and cost, it is 
impractical to re-execute all the test cases for software whenever a change occurs. In order to overcome such 
a problem in the selection of regression test cases, a prioritization technique should be employed. On the basis 
of some predefined criterion, the prioritization techniques create an execution schedule for the test cases, so 
the higher priority test cases can be performed earlier than the lower priority test cases in order to improve 
the efficiency of the software testing. Many prioritization criteria for regression test cases have been proposed 
in software testing literature; however, most of such techniques are code-based. Keeping in view this fact, this 
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research work has proposed a prioritization approach for regression test cases generated from software spec-
ifications which are based on the criterion of the Average Percentage Transition Coverage (APTC) by using a 
revised genetic algorithm. This criterion evaluates the rate of transitions coverage by incorporating knowledge 
about the significance of transitions between activates in the form of weights. APTC has been used as a fitness 
evaluation function in a genetic algorithm to measure the effectiveness of a test cases sequence.  Moreover, in 
order to improve the coverage percentage, the proposed approach has revised the genetic algorithm by solving 
the problem of the optimal local solution. The experimental results show that the proposed approach demon-
strates a good coverage performance with less execution time as compared to the standard genetic algorithm 
and some other prioritization techniques. 
KEYWORDS: Regression testing, Test Cases Prioritization, Genetic Algorithm, Average Percentage Transi-
tion Coverage. 

1. Introduction
Software maintenance is considered as a crucial 
process in the cycle of software development. Often, 
two-thirds of software development cost is allocat-
ed to software maintenance (Pressman, 2005). The 
software maintenance is frequently carried out to 
correct errors, to append a new function or improve 
an existing function of software or to adapt it to new 
software or hardware (Biswas et al., 2011). Whenev-
er a maintenance activity is executed, the regression 
test is carried out to verify that the modified parts 
work correctly and meet the software specifications. 
Thus, the software testing that includes the regres-
sion test makes software robust, more effective and 
trustworthy.   
However, the regression test is still a hard task due 
to constraints of time and cost. Retesting a software 
by using the complete range of test cases is expen-
sive and inefficient (Sur et al., 2019, Harikarthik et al., 
2019, Yoo and Harman, 2012, Engström and Runeson, 
2010). Thus, a prioritization technique should be em-
ployed to facilitate the regression test process. Many 
methods have been proposed in the regression testing 
literature to overcome such problems. Although the 
regression test is carried out repeatedly throughout 
the cycle of software development (Konsaard and 
Ramingwong, 2015, Ekelund and Engström 2015, 
Kavitha and Sureshkumar, 2010), most of such tech-
niques are code-based techniques which prove to be 
useful in unit testing but not in case of functional test-
ing and face the scalability issues with respect to big 
and complicated software systems (Panda et al., 2019, 
Sapna and Balakrishnan, 2015). Thus, generation and 
prioritization of regression test cases from software 
specifications could be considered as an optimization 

in which meta-heuristic methods could be employed 
one of such methods is Genetic Algorithm (GA). 
Genetic algorithm is a robust algorithm which is em-
ployed to overcome the optimization problems and 
it is based on the theory of natural selection and per-
cepts of evolutionary biology (Guo, 2020; Yang et al., 
2016). This algorithm is being used in the computing 
areas especially in the software testing because of 
its efficiency in providing a right solution for com-
plicated, discrete and nonlinear issues produced by 
a complicated software (Dey et al., 2020; Vinitha 
and Preetha, 2018). It could be applied to reduce the 
effort and cost by creating test cases automatically 
and thereby Software maintenance is considered as a 
crucial process in the cycle of software development. 
Often, two-thirds of software development cost is al-
located to software maintenance [29]. The software 
maintenance is frequently carried out to correct er-
rors, to append a new function or improve an existing 
function of software or to adapt it to new software or 
hardware [5]. Whenever a maintenance activity is ex-
ecuted, the regression test is carried out to verify that 
the modified parts work correctly and meet the soft-
ware specifications. Thus, the software testing that 
includes the regression test makes software robust, 
more effective and trustworthy.   
However, the regression test is still a hard task due to 
constraints of time and cost. Retesting software by 
using the complete range of test cases is expensive 
and inefficient [13, 16, 34, 39]. Thus, a prioritization 
technique should be employed to facilitate the regres-
sion test process. Many methods have been proposed 
in the regression testing literature to overcome such 
problems. Although the regression test is carried out 
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repeatedly throughout the cycle of software develop-
ment [12, 17, 21], most of such techniques are code-
based techniques which prove to be useful in unit test-
ing but not in case of functional testing and face the 
scalability issues with respect to big and complicated 
software systems [5, 28, 31]. Thus, the generation and 
prioritization of regression test cases from software 
specifications could be considered as an optimization 
in which meta-heuristic methods could be employed 
one of such methods is Genetic Algorithm (GA). 
Genetic algorithm is a robust algorithm which is em-
ployed to overcome optimization problems and it is 
based on the theory of natural selection and percepts 
of evolutionary biology [15, 38]. This algorithm is being 
used in the computing areas especially in the software 
testing because of its efficiency in providing a right 
solution for complicated, discrete and nonlinear issues 
produced by a complicated software [11, 36]. It could 
be applied to reduce the effort and cost by creating 
test cases automatically and thereby significantly en-
hances the software testing efficiency. Despite that, the 
most challenging obstacle that could be encountered in 
the application of the genetic algorithm is that it could 
be trapped in the optimal local solution which leads to 
population ageing [11, 16, 34, 38]. In order to overcome 
this problem, various methods have been proposed to 
improve or adjust some factors such as parameter set-
tings, fitness function, genetic operations, and chromo-
some population [38]. However, the proposed methods 
have some difficulties that make them unattractive to 
the software testing including difficulty implement-
ing these methods without extra effort because of 
the highly complex nature of the enhancements [38].  
Therefore, in this research work, a Revised Genetic 
Algorithm has been proposed to solve the problem of 
optimal local solution easily and effectively, which is 
meant to be used for prioritizing the test cases that are 
generated from the software specifications.  
On the other hand, the Unified Modeling Language 
(UML) is the most popular standards for modeling 
the software specifications and software design. It 
includes various models to support software sys-
tems development with an object-oriented approach. 
These models include use case diagram, use case de-
scription, sequence diagram, class diagram, activity 
diagram and state diagram to model both dynamic 
and static behavior of software systems at different 
levels of abstraction [10, 37, 6]. As this study includes 

functionality level, the activity diagram is employed. 
Activity diagrams are used to elaborate the scenario 
related to each use case (functionality) in the software 
systems. It involves the main, alternate and exception 
scenarios that deal with the functionality. Thus, the 
number of test cases that are generated from use case 
description models by using an automated approach 
are exhaustive [26].  However, there are relatively few 
particular techniques proposed to generate test cases 
from models in analysis and design phases especially 
the activity diagram [1, 3, 4].  Moreover, extract in-
formation from the activity diagram is a complicated 
task because of the activity diagram provides con-
cepts at a higher abstraction level of a system [35].
A regression test selection is carried out to ensure 
that developed functionality, both existing and mod-
ified, work appropriately by selecting the only sub-
set of test cases that were developed initially to test 
the software. The regression test selection problem 
has been introduced as follows: let P be a software 
program and P ̃ a revised version of P. Similarly, let T 
a test suite that had been developed initially to test a 
software program during the software development 
phase. The regression test selection techniques aim 
to select a sub-set of valid test cases from an initial 
test suite (T ̃ ⊆ T) to test that the existing and modified 
parts of P ̃continue to work properly such that every 
error is detected when P ̃is executed with T. 
The regression test selection aims to select a subset 
of test cases to be used to test the functionality of 
the software without affecting the software quality 
[33, 23]. In this research work, the selected test cases 
will be considered as a regression test. This regres-
sion test will use sub-set of the test cases to verify the 
functionality of the software with parts of software 
that have been changed. The premise is that selecting 
minimum test cases to verify software functionality 
with respect to changes before elaborately testing the 
functionality to ensure that all selected test cases are 
more effective. The regression test selection helps 
in two ways: it is used to ensure that the functional-
ity that passes the initial test cases is tested further 
to make sure that no new defects have been produced 
by the changes in the previously validated functional-
ity; otherwise, the changes that have been done on the 
functionality are considered void. 
Although many research works have proposed differ-
ent techniques to generate regression test cases, a great 
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number of such techniques are white-box techniques 
and a few are black-box techniques. Furthermore, the 
changes in the functionality of software have not been 
considered in the proposed black-box techniques. In 
the same respect, the constraints of cost and offers of 
software system development provide a scope to pro-
pose new ways to enhance the software development 
processes, including the testing process. Thus, this 
research work has been conducted to propose an auto-
mated approach to prioritize minimal regression test 
cases generated from UML models (use case descrip-
tion model) by using the Revised Genetic Algorithm. 
In such an approach, minimum regression test cases 
are generated to test the changes of software function-
ality. These minimum test cases suggest the defected 
software functionality that needs to be reworked be-
fore conducting further testing. Another contribution 
of this research is to revise the genetic algorithm to 
solve the problem of local optimal solution. 
Many research works had employed the heuristic 
search algorithms to propose an approach to generate 
or to prioritize the regression test cases [2, 8, 14, 24, 
18,  19]. 
Vinitha and Ramakrishna  [36] proposed a multi-ob-
jective Regeneration Genetic Algorithm (RGA) ap-
proach to enhance the coverage percentage and to 
reduce the loop statements by applying the coverage 
and loop statements in the calculations of popula-
tions’ fitness. This proposed approach met both cov-
erage and loop conditions of conditional statements. 
As experimental results, this study demonstrated that 
the proposed approach offers better results in terms 
of execution time, the number of covered methods 
and branch coverage. 
An important intelligent method, called a Regenerate 
Genetic Algorithm (RGA) was developed by Yang et 
al. [38] in the domain of automatic test cases devel-
opment to solve the problem of population ageing. 
The proposed method defined the population ageing 
factor and process to estimate the population ageing 
degree. This method was utilized to jump out of the 
optimal local solution, when the population ageing 
has occurred, to prevent the population ageing and 
effectively enhance the test coverage. Compared with 
the standard genetic algorithm, the experimental re-
sults of this method showed that it could effectively 
improve the search efficiency, minimize the number 
of test cases, enhance test coverage and restrain pop-

ulation ageing. Despite the promising results of this 
study, there were some limitations; for example, it did 
not provide a fully automated approach to generate 
the test cases and does not prioritize the test cases 
since it only determines a best test case.
A new approach was introduced by Mala et al. [25] to 
optimize the generation of test cases from the source 
code by applying the artificial bee colony (ABC) op-
timization. The proposed approach was used for 
combining the local search methods executed by em-
ployed and onlooker bees with global search methods 
managed by scouts. Since the three bees technique 
is employed to accomplish the solution generation 
faster. This approach was evaluated on the basis of 
the criteria of coverage-based test adequacy and com-
pared with genetic algorithm-based approaches, ran-
dom testing and sequential ABC. The experimental 
results showed that the proposed approach provided 
better results in the test suite optimization. Although 
this research work optimized the generated test cas-
es, it neither automated the process of test cases 
generation nor explained how to utilize the proposed 
method in the regression test. 
Khurana and Chillar [20] developed a new method to 
generate test cases from a combination of two Unified 
Modeling Language (UML) models: sequence diagram 
and statechart diagram. In this method, the sequence 
diagram and state chart diagram were converted into 
sequence graph and state graph, respectively. Both 
graphs were combined to create a system testing 
graph. Different control flow sequences called test 
cases were identified from the system testing graph. 
Finally, the genetic algorithm (GA) was employed to 
optimize the generated test cases. By implementing 
this proposed method, all possible test cases could be 
discovered and various faults could be solved, includ-
ing pre-post condition faults, integration, error han-
dling, scenario faults and operational faults. However, 
this research did not evaluate the proposed method 
and has not prioritized the generated test cases. 
Alrawashed et al. [2] developed an automated ap-
proach for test suite optimization. In their approach, 
they generated test cases from the use case description 
model. This approach was utilized for converting the 
statements in such a model into the sequence graph. 
From the graph, various control flow sequences were 
generated. Consequently, the heuristic search algo-
rithm (genetic algorithm) was applied to optimize the 



447Information Technology and Control 2021/3/50

generated test cases. The experimental results of this 
research work showed that the proposed approach 
was efficient and effective in offering a near-optimal 
test case and high test coverage in the early stage of 
software development. Despite that, this research 
work could not solve the main problem of the genetic 
algorithm which could significantly harm the benefits 
of the genetic algorithm in the software testing area 
and increase the effort and cost of the test cases gen-
eration. Additionally, the proposed technique in this 
work did not prioritize the test cases and only provid-
ed the optimal path. 
Another research work was done for the test suite opti-
mization by Sahoo et al. [30]. In this work, the authors 
proposed an approach to generate the test cases from 
state chart and sequence diagrams. The proposed ap-
proach converted the sequence diagram and state chart 
diagram into the sequence graph and state chart graph, 
respectively. In order to create a system graph, both 
graphs were combined and from the system graph, dif-
ferent test cases have been discovered and optimized 
by applying an evolutionary algorithm called hybrid 
bee colony algorithm. The results of this research 
showed that the proposed technique minimized the 
time required to select the best bath and it was more 
effective in software testing. However, concerns such 
as how to benefit from the proposed technique in the 
regression test along with the generated test cases re-
mained unclear and were not prioritized in this study. 
Another limitation of the study was that the proposed 
technique remained unevaluated. 
Konsaard and Ramingwong [21] proposed an ap-
proach-based genetic algorithm to prioritize the gen-
erated test cases. This approach generated the test 
cases from the source code and then the fitness func-
tion in the genetic algorithm was modified by using 
Average Percentage Code Coverage (APCC) to yield 
maximum code coverage. The result of this research 
work showed that the proposed approach was effi-
cient in terms of coverage percentage and execution 
time. Despite the promising results of this approach, 
it was not a fully automated approach. Additionally, 
it did not consider the problem of optimal solution in 
the genetic algorithm.
After reviewing more than fifty studies, it has become 
evident that no research work has been conducted so 
far to propose a fully automated approach to generate 
the regression test cases from software specifications 

and to prioritize such test cases. Interestingly, most 
of such studies proposed approaches to generate the 
test cases from the software code or software specifi-
cation to find the optimal test case that could achieve 
maximum coverage without prioritizing other test 
cases. Additionally, a few other studies were done to 
solve the problem of optimal solution that resulted 
from the application of the genetic algorithm. There-
fore, more studies are required to support the results 
of these studies. Furthermore, most of the proposed 
prioritization techniques select the test cases on the 
basis of their ability to cover more faults without con-
sidering the test adequacy. For this end, this research 
work intends to bridge the gap in the related litera-
ture by proposing a fully automated and a complete 
approach to generate the regression test cases from 
the software specifications and to prioritize these test 
cases by using the genetic algorithm associated with 
solving the problem of population ageing and obtain-
ing a maximum test suit coverage. Furthermore, this 
is the first study that has adapted the criteria of Aver-
age Percentage Transition Coverage (APTC) to eval-
uate the proposed approach in term of coverage per-
centage. Therefore, the goal of this research work is to 
provide an answer to the following research question: 
how does the proposed approach compare in term of 
time, effort and coverage to the other search-based 
approaches?  
The rest of this research work is organized as follows: 
section two introduces the proposed technique. Sec-
tion three addresses the experimentation, results and 
discussion on the study. Finally, the conclusion and 
future work are included in section four.

2. The Proposed Approach
This research work aims to propose an automated ap-
proach to generate and prioritize the regression test 
cases from software specifications (activity diagram) 
on the basis of Revised Genetic Algorithm. In order 
to construct the proposed approach, the genetic algo-
rithm has been revised to solve the problem of local 
optimal solution and then used to prioritize the re-
gression test cases. The proposed approach consists 
of three steps: 1) automatically converting the activ-
ity diagram into a Control Flow Graph (CFG) 2) au-
tomatically generating the test cases from the CFG 3) 
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prioritizing the regression test cases using a Revised 
Genetic Algorithm. Figure 1 shows the proposed ap-
proach, where all steps of the proposed approach are 
discussed in detail bellow.
Step one: converting the activity diagram into CFG
 the activity diagram is employed to model the dynam-
ic behavior of a set of objects in the software systems. 
Interestingly, the activity diagram represents a set of 
objectes activities, so it could be used to describe the 
operations in the design stage, the sequence of activ-
ities among the involving objects in the control flow, 
and the relations between activities and objects in the 
message flow.  Furthermore, it details the main, al-
ternative and exception scenarios related to each use 
case [31]. Thus, the activity diagram allows determin-
ing coverage criteria to assure a particular degree of a 
completeness of the regression test scenarios. The ac-
tivity diagram involves two types of activities: action 
activities (events) and control activities including the 
initial activity, last activity, decisions, merge and fork. 
Thus, we can make the following definition from the 
description of the construction of an activity diagram. 
Definition 1: an activity diagram with a set of action 
activities and control activities can be represented 
formally as:

AD= {A, T, J, F}. (1)

where A denotes a finite set of activities (a1, a2, ……an); T 
represents a finite set of control flow (t1, t2,….tn) from an 
activity to another; J represents a finite set of forks (f1, f2, 
….. fn); and J denotes a finite set of joints (J1, J2, ……, Jn).

In this phase, the scenarios from the activity diagram 
are extracted to be used in the generation process of 
regression test cases. Interestingly, these scenarios 
are converted into control flow graph. Wherein, each 
node in the CFG corresponds to an action or control 
activity in the activity diagram and each edge rep-
resents the control flow between the activities. Figure 
2 presents the algorithm of converting the activity di-
agram into a control flow graph.

Figure 1
Schematic Diagram of the Proposed Approach

Figure 2
Algorithm of converting an activity diagram into CFG

 

 

 
 
Input: action and control activities, and control flow ϵ AD 
Output: Control Flow Graph (CFG) 
Identify all Nodes (N) in the CFG: each node in the CFG 
represents an activity in the activity diagram  
Identify the Root (R) of CFG: the first activity (a1) in the 
activity diagram 
E1= R          a2 // the first edge (E1) connects the first 
activity with the second one (a2) (staring from the second 
activity) 
For each ai 
 IF Ci ϵ ai // if a current activity is a control activity (C)  
              Ei = ai             ai +1  
              Ei + 1= ai             ai +2 
Else  
              Ei =  ai             ai +1 
End if  
 
 
 
Step two: Generating the test cases from CFG  
In this phase, the control flow graph of the activity 
diagram from step one is used as an input. Consequently, 
the proposed technique generates all possible paths 
(regression test cases) in a control flow graph. Wherein a 
path is a finite set of nodes and edges (transitions) from 
the initial node to the final node. It is worth mentioning 
that each independent path has at least one new edge in a 
control flow graph. Additionally, each decision divides 
the path into two separate paths in the CFG: true path and 
false path. In software testing, the test cases must traverse 
each path at least for once through the CFG. Thus, a new 
concept has been defined as definition 2. 
Definition 2: A regression test case could be defined as an 
execution path from the initial activity to the final activity 
as the following. 
tc ϵ TC, tc= {a1, t1 ……… an, tn }.                              (2) 
 
Figure 3 
Algorithm of Generating Test Paths from CFG. 
 
Input: control flow graph of the activity diagram  
Output: Regression Test Cases (test paths) 
TC: identify all test cases // list all regression test cases 
(test paths) TC= tc[1], tc[2]….tc[n]  from the start node 
to the final node in the control flow graph. 
For each path tc[i] ϵ TC 
CurrentNode(CN) = StartNode (SN) 
While (CN != final node) do 
Tc[i].add(CN) 

End  

 
where, tc represents a regression test case; TC denotes a 
set of regression test cases; a represents a node in the 
control flow graph and t means an edge in the control flow 
graph. Figure 3 shows the algorithm of Generating test 
paths from CFG. 
Step three: Prioritizing the generated test cases by using 
the Revised Genetic Algorithm (RGA)  
Genetic algorithm is one of the most popular meta-
heuristic techniques used to optimize software testing data 
[36]. Although there is no a specific definition of GA, the 
implementations of such algorithm share the same 
components including: populations, selection, crossover, 
and mutation operations. The population of GA involves 
a large number of individuals and subject to the 
reproduction and mutation. 
the standard work of the genetic algorithms consists of 
five steps. First step:  an initial population of n 
chromosomes (individuals) is randomly produced. 
Second step: A fitness function is applied to assign a 
fitness value to each chromosome. In the third step three 
sub-steps are repeated until m new individuals are 
produced: 1) the selection operation selects two 
individuals to reproduce, 2) the crossover operation 
combines genetic materials from both individuals with 
probability pc, and 3) the mutation operation changes 
offstriping with probability pm. in the fourth step the 
replacement operation selects the individuals that will 
survive to the next generation of the population. Fifth step: 
if the termination conditions are not met go to the second 
step [38].  
The application of this technique could reduce the effort 
and improve the test coverage criterion. However, the big 
challenge associated with implementing the GA is that the 
population is often trapped in the optimal local solution 
without continued enhancement of the test coverage 
(population ageing) [22, and  38]. The following sub-
section addresses the population ageing problem that 
appeared in the software testing which is based on the 
genetic algorithm.  

 

2.1 The Ageing Problem in Software Testing 
There is a big difference between the maturation of the 
genetic algorithm and the problem of population ageing. 
Regarding the improvement in the software testing 
coverage, occasionally when there is a big difference in 
populations, the improvement in the coverage is slight. On 
the other hand, a little difference in populations could lead 
to more extensive coverage. Consequently, in order to 
further clarify the problem of population ageing, a new 
concept called ageing factor has been defined giving the 
ageing degrees of the populations produced during the 
process of genetic algorithm-based testing.  
Assume that tci,j is the number of regression test cases in 
the ith individuals in the jth generation. Additionally, 
TCpopt is the number of individuals in jth generation, in 
other words TCpopt represents the number of regression 
test cases in the jth generation. The total number of 
regression test cases in all jth generations could be 
presented as∑ ∑ nt,iNpopj

t=1
ij=1 . In the same case, the total 

number of regression test cases in each generation j, 
generation j+1, generation j+2 … generation j+n are 

Step two: Generating the test cases from CFG 
In this phase, the control flow graph of the activity di-
agram from step one is used as an input. Consequent-
ly, the proposed technique generates all possible 
paths (regression test cases) in a control flow graph. 
Wherein a path is a finite set of nodes and edges (tran-
sitions) from the initial node to the final node. It is 
worth mentioning that each independent path has at 
least one new edge in a control flow graph. Addition-
ally, each decision divides the path into two separate 
paths in the CFG: true path and false path. In software 
testing, the test cases must traverse each path at least 
for once through the CFG. Thus, a new concept has 
been defined as definition 2.
Definition 2: A regression test case could be defined as 
an execution path from the initial activity to the final 
activity as the following.
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tc ϵ TC, tc= {a1, t1 ……… an, tn }. (2)

where, tc represents a regression test case; TC de-
notes a set of regression test cases; a represents a 
node in the control flow graph and t means an edge in 
the control flow graph. Figure 3 shows the algorithm 
of Generating test paths from CFG.

Figure 3
Algorithm of Generating Test Paths from CFG
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heuristic techniques used to optimize software testing data 
[36]. Although there is no a specific definition of GA, the 
implementations of such algorithm share the same 
components including: populations, selection, crossover, 
and mutation operations. The population of GA involves 
a large number of individuals and subject to the 
reproduction and mutation. 
the standard work of the genetic algorithms consists of 
five steps. First step:  an initial population of n 
chromosomes (individuals) is randomly produced. 
Second step: A fitness function is applied to assign a 
fitness value to each chromosome. In the third step three 
sub-steps are repeated until m new individuals are 
produced: 1) the selection operation selects two 
individuals to reproduce, 2) the crossover operation 
combines genetic materials from both individuals with 
probability pc, and 3) the mutation operation changes 
offstriping with probability pm. in the fourth step the 
replacement operation selects the individuals that will 
survive to the next generation of the population. Fifth step: 
if the termination conditions are not met go to the second 
step [38].  
The application of this technique could reduce the effort 
and improve the test coverage criterion. However, the big 
challenge associated with implementing the GA is that the 
population is often trapped in the optimal local solution 
without continued enhancement of the test coverage 
(population ageing) [22, and  38]. The following sub-
section addresses the population ageing problem that 
appeared in the software testing which is based on the 
genetic algorithm.  
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Step three: Prioritizing the generated test cases by 
using the Revised Genetic Algorithm (RGA) 
Genetic algorithm is one of the most popular me-
ta-heuristic techniques used to optimize software 
testing data [36]. Although there is no a specific defi-
nition of GA, the implementations of such algorithm 
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als and subject to the reproduction and mutation.
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ulation. Fifth step: if the termination conditions are 
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ever, the big challenge associated with implement-
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Input: action and control activities, and control flow ϵ AD 
Output: Control Flow Graph (CFG) 
Identify all Nodes (N) in the CFG: each node in the CFG 
represents an activity in the activity diagram  
Identify the Root (R) of CFG: the first activity (a1) in the 
activity diagram 
E1= R          a2 // the first edge (E1) connects the first 
activity with the second one (a2) (staring from the second 
activity) 
For each ai 
 IF Ci ϵ ai // if a current activity is a control activity (C)  
              Ei = ai             ai +1  
              Ei + 1= ai             ai +2 
Else  
              Ei =  ai             ai +1 
End if  
 
 
 
Step two: Generating the test cases from CFG  
In this phase, the control flow graph of the activity 
diagram from step one is used as an input. Consequently, 
the proposed technique generates all possible paths 
(regression test cases) in a control flow graph. Wherein a 
path is a finite set of nodes and edges (transitions) from 
the initial node to the final node. It is worth mentioning 
that each independent path has at least one new edge in a 
control flow graph. Additionally, each decision divides 
the path into two separate paths in the CFG: true path and 
false path. In software testing, the test cases must traverse 
each path at least for once through the CFG. Thus, a new 
concept has been defined as definition 2. 
Definition 2: A regression test case could be defined as an 
execution path from the initial activity to the final activity 
as the following. 
tc ϵ TC, tc= {a1, t1 ……… an, tn }.                              (2) 
 
Figure 3 
Algorithm of Generating Test Paths from CFG. 
 
Input: control flow graph of the activity diagram  
Output: Regression Test Cases (test paths) 
TC: identify all test cases // list all regression test cases 
(test paths) TC= tc[1], tc[2]….tc[n]  from the start node 
to the final node in the control flow graph. 
For each path tc[i] ϵ TC 
CurrentNode(CN) = StartNode (SN) 
While (CN != final node) do 
Tc[i].add(CN) 
End  

 
where, tc represents a regression test case; TC denotes a 
set of regression test cases; a represents a node in the 
control flow graph and t means an edge in the control flow 
graph. Figure 3 shows the algorithm of Generating test 
paths from CFG. 
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components including: populations, selection, crossover, 
and mutation operations. The population of GA involves 
a large number of individuals and subject to the 
reproduction and mutation. 
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offstriping with probability pm. in the fourth step the 
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survive to the next generation of the population. Fifth step: 
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step [38].  
The application of this technique could reduce the effort 
and improve the test coverage criterion. However, the big 
challenge associated with implementing the GA is that the 
population is often trapped in the optimal local solution 
without continued enhancement of the test coverage 
(population ageing) [22, and  38]. The following sub-
section addresses the population ageing problem that 
appeared in the software testing which is based on the 
genetic algorithm.  
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If the population includes m generations and the 
population coverage is still the same, this situation 
indicates that the population is ageing and trapped in the 
optimal local solution [22, 38]. Equation 4 represents this 
situation in which q denotes the ratio of the number of 
newly produced regression test cases that do not improve 
the coverage promotion in m generations in comparison 
with a prior number of useful test cases (ageing factor). 
q=
(the increased number of tc(i)

total number of tc)�   *100%. (4)  
            
As shown in equation four, the ageing factor is influenced 
by the increased number of generation (i). The more 
regression test cases that do not increase the coverage, the 
higher the degree of population ageing. Consequently, the 
maturity of the population does not mean that the 
population ageing will not happen. In the same sense, if 
the population is not mature, there is a possibility of 
occurrence of the population ageing on account of the 
interaction of genetic algorithm with searching space.  
On account of the ageing process, regression test cases 
(individuals) could not improve the transition coverage in 
software specifications space (activity diagram). In this 
case, the operations of the genetic algorithm will lose their 
ability to optimize the transition coverage. So, one of the 
objectives of this research work is that, after generating a 
second population, despite the current coverage of the 
population is stagnate at the same stage, the population 
evolution process is still anticipated to improve the 
coverage by using some strategies.  
2.2 Transition Coverage Based Software 
Testing  
The target of software testing with respect to the criteria 
of transition coverage can be presented as follows:  
TS= {G, I, A, C, T, Cov, Np(A)}.                           (5) 
In equation 5, G denotes the CFG of an activity diagram 
under test; I is the input space; A represents the adopted 
optimization algorithm; C denotes a suite of test cases; T 
is a set of termination conditions; Cov represents the test 
coverage and Np(A) represents genetic iterations number. 
Furthermore:  
Cov ={TrCovG(C)}.               (6) 
In equation 6, the TrCovp(C) represents a transition 
coverage. Further:  
A = {E, S0, M, Sel, Cor, Mut, F}.                         (7) 
In equation 7, E represents the mode of genetic code; P0 
denotes the initial population; M denotes the population 
size; Sel indicates the selection factor; Cor indicates the 
crossover factor; Mut indicates the mutation factor and F 
represents the adoption fitness function.  
In the black-box software testing, the coverage has been 
calculated by using equation 8. In this equation, the 
TrExecG(C) represents a set of transitions that are covered 
in a control flow graph (CFG); TrG indicates the set of 
transitions in a control flow graph (CFG). For the 
transition coverage of test suite C, TrExecG(C) is defined 
as the ratio of the transitions that could be executed by the 

test suite (C) to the total number of transitions in the CFG 
of a software activity diagram.                      
TrExecG(C)= | TrExecG|/ |TrG| .                           (8) 
In this research work, in order to take the genetic 
algorithm’s advantages of prioritizing the test cases, a 
fitness criterion has been added. This criterion states that 
the minimal number of test cases that could achieve a 
maximum transition coverage TrExecp(C) should be 
applied. Therefore, the following sub-section presents the 
Revised Genetic Algorithm that solves the problem of 
population ageing by prioritizing the test cases on the 
basis of transition coverage criteria. 

2.3 Revised Genetic Algorithm  
This section deals with a Revised Genetic Algorithm 
which is used to solve the problem of population ageing 
and to prioritize the test cases. Accordingly, if the 
population ageing occurs when a significant number of 
populations are produced and the transition coverage is 
not improved, in this case, the operation of population 
regeneration should be triggered, so that a new population 
is produced and the processes of the genetic algorithm are 
executed successively. 
2.3.1 Basic Population in Genetic Algorithm-
Based Software Testing  
 In the GA-based software testing, the population in GA 
is represented by individuals including the set of test cases 
as shown in equation 9 with a transversal vector of 
X={x1,1 x1, 2 …… x1,m} indicating the corresponding 
test cases. Equation 10 shows the total populations with 
Mpopi denoting the population in ith iteration [27].  

X= �
x1,1 ⋯ x1,m
⋮ ⋱ ⋮

xn,1 ⋯ xn,m
�                                                   (9) 

 

Mpopi=   �
Mpop1
Mpop2

⋮
Mpopi

�.                                                      (10) 

After the populations are initialized with respect to the 
number of individuals, the generated test cases are 
selected to be transmitted to the next generation on the 
basis of the value of the selection factor’s value. For 
instance, if the value of the selection factor is set to 0.7. It 
implies that individuals with fitness value equal to or 
greater than 70% will be selected to the next generation 
and individuals with lesser fitness value will not be 
transmitted [25], so only the best individuals will be 
transmitted. As shown in equation 11, each individual 
with 0.7 as a fitness value will be allocated in  
Xtiselect 
= � Xit      if fitness(Xit ≥ fitness(the top 70% Xt) )

 null         else                                 . (11)  

The crossover process is a process other than the selection 
applied in the genetic algorithm to find the optimal 
solution. This process is governed by the value of the 
crossover factor. For example, if the value of the 
crossover factor is set to 0.9, it implies that two 
individuals with 90% probability of performing crossover 
operation are randomly selected [25]. Finally, in order to 
diversify the search into a new area of the search space, 
the elements of the selected individuals are randomly 
mutated.  

(3)

If the population includes m generations and the pop-
ulation coverage is still the same, this situation indi-
cates that the population is ageing and trapped in the 
optimal local solution [22, 38]. Equation 4 represents 
this situation in which q denotes the ratio of the num-
ber of newly produced regression test cases that do 
not improve the coverage promotion in m generations 
in comparison with a prior number of useful test cas-
es (ageing factor).
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objectives of this research work is that, after generating a 
second population, despite the current coverage of the 
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evolution process is still anticipated to improve the 
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2.2 Transition Coverage Based Software 
Testing  
The target of software testing with respect to the criteria 
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under test; I is the input space; A represents the adopted 
optimization algorithm; C denotes a suite of test cases; T 
is a set of termination conditions; Cov represents the test 
coverage and Np(A) represents genetic iterations number. 
Furthermore:  
Cov ={TrCovG(C)}.               (6) 
In equation 6, the TrCovp(C) represents a transition 
coverage. Further:  
A = {E, S0, M, Sel, Cor, Mut, F}.                         (7) 
In equation 7, E represents the mode of genetic code; P0 
denotes the initial population; M denotes the population 
size; Sel indicates the selection factor; Cor indicates the 
crossover factor; Mut indicates the mutation factor and F 
represents the adoption fitness function.  
In the black-box software testing, the coverage has been 
calculated by using equation 8. In this equation, the 
TrExecG(C) represents a set of transitions that are covered 
in a control flow graph (CFG); TrG indicates the set of 
transitions in a control flow graph (CFG). For the 
transition coverage of test suite C, TrExecG(C) is defined 
as the ratio of the transitions that could be executed by the 
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fitness criterion has been added. This criterion states that 
the minimal number of test cases that could achieve a 
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applied. Therefore, the following sub-section presents the 
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populations are produced and the transition coverage is 
not improved, in this case, the operation of population 
regeneration should be triggered, so that a new population 
is produced and the processes of the genetic algorithm are 
executed successively. 
2.3.1 Basic Population in Genetic Algorithm-
Based Software Testing  
 In the GA-based software testing, the population in GA 
is represented by individuals including the set of test cases 
as shown in equation 9 with a transversal vector of 
X={x1,1 x1, 2 …… x1,m} indicating the corresponding 
test cases. Equation 10 shows the total populations with 
Mpopi denoting the population in ith iteration [27].  

X= �
x1,1 ⋯ x1,m
⋮ ⋱ ⋮

xn,1 ⋯ xn,m
�                                                   (9) 

 

Mpopi=   �
Mpop1
Mpop2

⋮
Mpopi

�.                                                      (10) 

After the populations are initialized with respect to the 
number of individuals, the generated test cases are 
selected to be transmitted to the next generation on the 
basis of the value of the selection factor’s value. For 
instance, if the value of the selection factor is set to 0.7. It 
implies that individuals with fitness value equal to or 
greater than 70% will be selected to the next generation 
and individuals with lesser fitness value will not be 
transmitted [25], so only the best individuals will be 
transmitted. As shown in equation 11, each individual 
with 0.7 as a fitness value will be allocated in  
Xtiselect 
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The crossover process is a process other than the selection 
applied in the genetic algorithm to find the optimal 
solution. This process is governed by the value of the 
crossover factor. For example, if the value of the 
crossover factor is set to 0.9, it implies that two 
individuals with 90% probability of performing crossover 
operation are randomly selected [25]. Finally, in order to 
diversify the search into a new area of the search space, 
the elements of the selected individuals are randomly 
mutated.  

(4)

As shown in Equation 4, the ageing factor is influ-
enced by the increased number of generation (i). The 
more regression test cases that do not increase the 
coverage, the higher the degree of population ageing. 
Consequently, the maturity of the population does not 
mean that the population ageing will not happen. In 
the same sense, if the population is not mature, there 
is a possibility of occurrence of the population age-
ing on account of the interaction of genetic algorithm 
with searching space. 
On account of the ageing process, regression test 
cases (individuals) could not improve the transition 
coverage in software specifications space (activity 
diagram). In this case, the operations of the genetic 
algorithm will lose their ability to optimize the tran-
sition coverage. So, one of the objectives of this re-
search work is that, after generating a second popu-
lation, despite the current coverage of the population 
is stagnate at the same stage, the population evolution 
process is still anticipated to improve the coverage by 
using some strategies. 

2.2. Transition Coverage Based Software 
Testing 
The target of software testing with respect to the crite-
ria of transition coverage can be presented as follows: 

TS= {G, I, A, C, T, Cov, Np(A)}. (5)

In Equation 5, G denotes the CFG of an activity dia-
gram under test; I is the input space; A represents the 
adopted optimization algorithm; C denotes a suite of 
test cases; T is a set of termination conditions; Cov 
represents the test coverage and Np(A) represents 
genetic iterations number. Furthermore: 

Cov ={TrCovG(C)}. (6)

In Equation 6, the TrCovp(C) represents a transition 
coverage. Further: 

A = {E, S0, M, Sel, Cor, Mut, F}. (7)

In Equation 7, E represents the mode of genetic code; 
P0 denotes the initial population; M denotes the pop-

ulation size; Sel indicates the selection factor; Cor 
indicates the crossover factor; Mut indicates the mu-
tation factor and F represents the adoption fitness 
function. 
In the black-box software testing, the coverage has 
been calculated by using Equation 8. In this equation, 
the TrExecG(C) represents a set of transitions that 
are covered in a control flow graph (CFG); TrG in-
dicates the set of transitions in a control flow graph 
(CFG). For the transition coverage of test suite C, 
TrExecG(C) is defined as the ratio of the transitions 
that could be executed by the test suite (C) to the total 
number of transitions in the CFG of a software activ-
ity diagram.

TrExecG(C)= | TrExecG|/ |TrG| . (8)

In this research work, in order to take the genetic al-
gorithm’s advantages of prioritizing the test cases, a 
fitness criterion has been added. This criterion states 
that the minimal number of test cases that could 
achieve a maximum transition coverage TrExecp(C) 
should be applied. Therefore, the following sub-sec-
tion presents the Revised Genetic Algorithm that 
solves the problem of population ageing by prioritiz-
ing the test cases on the basis of transition coverage 
criteria.

2.3. Revised Genetic Algorithm 
This section deals with a Revised Genetic Algorithm 
which is used to solve the problem of population age-
ing and to prioritize the test cases. Accordingly, if the 
population ageing occurs when a significant number 
of populations are produced and the transition cov-
erage is not improved, in this case, the operation of 
population regeneration should be triggered, so that a 
new population is produced and the processes of the 
genetic algorithm are executed successively.

2.3.1. Basic Population in Genetic Algorithm-
Based Software Testing 
 In the GA-based software testing, the population in 
GA is represented by individuals including the set of 
test cases as shown in Equation 9 with a transversal 
vector of X={x1,1 x1, 2 …… x1,m} indicating the corre-
sponding test cases. Equation 10 shows the total pop-
ulations with Mpopi denoting the population in ith 
iteration [27]. 
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If the population includes m generations and the 
population coverage is still the same, this situation 
indicates that the population is ageing and trapped in the 
optimal local solution [22, 38]. Equation 4 represents this 
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with a prior number of useful test cases (ageing factor). 
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As shown in equation four, the ageing factor is influenced 
by the increased number of generation (i). The more 
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higher the degree of population ageing. Consequently, the 
maturity of the population does not mean that the 
population ageing will not happen. In the same sense, if 
the population is not mature, there is a possibility of 
occurrence of the population ageing on account of the 
interaction of genetic algorithm with searching space.  
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objectives of this research work is that, after generating a 
second population, despite the current coverage of the 
population is stagnate at the same stage, the population 
evolution process is still anticipated to improve the 
coverage by using some strategies.  
2.2 Transition Coverage Based Software 
Testing  
The target of software testing with respect to the criteria 
of transition coverage can be presented as follows:  
TS= {G, I, A, C, T, Cov, Np(A)}.                           (5) 
In equation 5, G denotes the CFG of an activity diagram 
under test; I is the input space; A represents the adopted 
optimization algorithm; C denotes a suite of test cases; T 
is a set of termination conditions; Cov represents the test 
coverage and Np(A) represents genetic iterations number. 
Furthermore:  
Cov ={TrCovG(C)}.               (6) 
In equation 6, the TrCovp(C) represents a transition 
coverage. Further:  
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In equation 7, E represents the mode of genetic code; P0 
denotes the initial population; M denotes the population 
size; Sel indicates the selection factor; Cor indicates the 
crossover factor; Mut indicates the mutation factor and F 
represents the adoption fitness function.  
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calculated by using equation 8. In this equation, the 
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transition coverage of test suite C, TrExecG(C) is defined 
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applied. Therefore, the following sub-section presents the 
Revised Genetic Algorithm that solves the problem of 
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This section deals with a Revised Genetic Algorithm 
which is used to solve the problem of population ageing 
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population ageing occurs when a significant number of 
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 In the GA-based software testing, the population in GA 
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After the populations are initialized with respect to the 
number of individuals, the generated test cases are 
selected to be transmitted to the next generation on the 
basis of the value of the selection factor’s value. For 
instance, if the value of the selection factor is set to 0.7. It 
implies that individuals with fitness value equal to or 
greater than 70% will be selected to the next generation 
and individuals with lesser fitness value will not be 
transmitted [25], so only the best individuals will be 
transmitted. As shown in equation 11, each individual 
with 0.7 as a fitness value will be allocated in  
Xtiselect 
= � Xit      if fitness(Xit ≥ fitness(the top 70% Xt) )

 null         else                                 . (11)  

The crossover process is a process other than the selection 
applied in the genetic algorithm to find the optimal 
solution. This process is governed by the value of the 
crossover factor. For example, if the value of the 
crossover factor is set to 0.9, it implies that two 
individuals with 90% probability of performing crossover 
operation are randomly selected [25]. Finally, in order to 
diversify the search into a new area of the search space, 
the elements of the selected individuals are randomly 
mutated.  
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Input: Test Cases (Test Paths) 
Output: prioritized test cases 
q=0 // q is agent factor 
first population p= test cases 
while not last test case () do 
while not termination() do 
If not aging 
    for i  =1  to popSize do 
          selection(p) 
         offspring       cross(p)  
        offspring        Mutation(p, offspring ) 
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 end for 
else 

p = regenerate () // new population 
end if 
q = calculate aging factor 
end while 
remove the best test case 
end while 

 
As previously mentioned, when population ageing is 
detected, the regeneration process is triggered to 

randomly generate a new population. In this case, the past 
population is relocated with the new one. However, the 
selection is based on crossover and mutation process 
which are used in the new population only if the new 
population enhances the transition coverage. If the new 
population cannot contribute towards the improvement in 
the transition coverage, the population ageing will be 
triggered resulting in the elimination of the population, 
and the generation of a new population until the ageing 
condition remains inconclusive. Figure 4 shows the new 
algorithm based genetic algorithm in which the sub-
process of the ageing factor calculation and population 
regeneration process is involved. In order to prioritize the 
individuals (regression test cases), once the optimal 
regression test case is obtained, it is removed from the 
input list and saved in the prioritized regression test cases 
list. Consequently, the revised algorithm is re-executed on 
the remaining regression test cases.  

 
3. Results Analysis  
In order to introduce and validate the results from the 
proposed approach, an experimental tool has been 
constructed. This tool involves hardware layer, operating 
system layer and application layer (tool). The hardware 
layer and operating system layer have been implemented 
by using Windows 8.1 Pro on a PC with i7 2.20 GHz CPU 
and 4 GB RAM, and the application layer includes the 
proposed tool which implements the proposed approach 
by using Java programming language.  
 
3.1 Experimental Results  
The activity diagrams of the vending machine and ATM 
machine have been applied previously in many software 
engineering research works [9, 35, 32]. Therefore, they 
have also been used in this research to illustrate the 
processes of the proposed approach to generate and 
prioritize regression test cases. As shown in Figure 5a, in 
the Vending Machine System (VMS) a user (customer) 
can select a type of drink, then the machine validates the 
selection and checks for the availability of a product. If a 
product is not available, the machine displays a message 
and returns back the selection menu. Else the machine 
displays a product price and then asks the user to insert 
the coins. Consequently, the machine calculates the 
deposited amount. If the deposited amount is insufficient, 
the machine displays an error message and dispense back 
the deposited coins or else, the vending machine dispenses 
a product and returns back to the main menu. Figure 5a 
shows the activity diagram of vending machine software, 
where Figure 5b shows the activity diagram of withdrawal 
function in the ATM system.  
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selection is based on crossover and mutation process 
which are used in the new population only if the new 
population enhances the transition coverage. If the new 
population cannot contribute towards the improvement 
in the transition coverage, the population ageing will be 
triggered resulting in the elimination of the population, 
and the generation of a new population until the ageing 
condition remains inconclusive. Figure 4 shows the new 
algorithm based genetic algorithm in which the sub-pro-
cess of the ageing factor calculation and population re-
generation process is involved. In order to prioritize the 
individuals (regression test cases), once the optimal re-
gression test case is obtained, it is removed from the in-
put list and saved in the prioritized regression test cases 
list. Consequently, the revised algorithm is re-executed 
on the remaining regression test cases. 

3. Results Analysis 
In order to introduce and validate the results from the 
proposed approach, an experimental tool has been con-
structed. This tool involves hardware layer, operating 
system layer and application layer (tool). The hardware 
layer and operating system layer have been implement-
ed by using Windows 8.1 Pro on a PC with i7 2.20 GHz 
CPU and 4 GB RAM, and the application layer includes 
the proposed tool which implements the proposed ap-
proach by using Java programming language. 

Figure 5a
The activity diagram of VMS 

Figure 5b
The activity diagram of ATM 

The activity diagram of VMS  

As explained in phase one of the proposed approach, the 
control flow graph has been automatically generated from 
the activity diagram. Since each activity in the activity 
diagram has been represented as a node in the control flow 
graph and each interaction in the activity diagram has 
been presented by an edge in the control flow graph, it is 
worth noting that each decision in the activity diagram has 
been traversed in two paths in the control flow graph 
representing the true and false answers. Figures 6a-6b 
present the control flow graphs generated from the activity 
diagrams of the vending machine system and ATM 
system, respectively. 
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Finally, the Revised Genetic Algorithm has been ap-
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(14)

wherein T denotes the test suite under evaluation; n 
represents test cases; m indicates the number of tran-
sitions in the control flow graph and TCi shows the 
position of the first test case in the test suite T that 
covers ith transition.
Table 1 includes APTC values and execution time to 
each prioritization approach, where the proposed 

prioritization technique has been compared with the 
other four prioritization techniques. Here, the first 
two approaches are considered as a control group 
where other conditions are identical to other groups.
Optimum order: in this prioritization technique the 
rate of fault detection is used to priorititize the test 
cases.
Random order: in this priorization technique the test 
cases are prioritized randomly.
GA: in the original genetic algorithm the mutation op-
erators are employed to prioritize the test cases.
Bee Colony Algorithm (BCA): in this technique, the 
test cases are proiritized to enhance the execution 
time and coverage [21].
The statistical results in the table show that the pro-
posed approach provides much transition coverage 
with significantly less execution time in comparison 
with the other techniques. It is worth mentioning 
that, the proposed approach is better as it covers the 
modified transitions in the control flow graph so the 
modified transitions in the activity diagram of a use 
case. Hence the proposed approach is better and of-
fers significant help in specific test cases prioritiza-
tion and providing faults earlier. 
From the previous experimental results and analysis 
of different aspects, the Revised Genetic Algorithm 
clearly provides a more useful and efficient priori-
tization approach on average percentage transition 
coverage (APTC) and execution time in compari-
son to other prioritization techniques as it achieves 
more excellent test coverage with minimal regression 
test cases. As shown in table 1, the original genetic 
algorithm offers promising results in terms of per-
formance and coverage (53 milliseconds and 96.4%, 

Table 1
APTC values and execution F for the prioritization approaches

Prioritization 
approach

Values of 
APTC (%)

Execution time 
(millisecond)

Optimum order 55% 53

Random order 42% 45

GA 96.4% 53

BCA 94.7% 30

Proposed approach 100% 10
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respectively). Additionally, the BCA provides also 
hopeful results in term of execution time and cover-
age (30 milliseconds and 94.7%, respectively). The 
optimum order technique achieves only 55%  cover-
age with 53 milliseconds of execution time and the 
random order technique achieves 42% coverage with 
45 milliseconds of execution time, where the run time 
for  each  technique integrates the entire process of 
automatic generating test cases and prioritizing such 
test cases. However, the proposed technique offers 
better results in term the execution time and coverage 
than prioritization techniques. Furthermore, com-
paring to the Regeneration Genetic Algorithm (RGA) 
by Yang et al. [38], the proposed technique provides 
more test coverage rate and less execution time. In-
terestingly, the coverage rate and the execution time 
for RGA are 95% and 24 milliseconds, but for the pro-
posed technique 100% and 10 milliseconds. 
The possible reason for this enhancement is due to 
the other techniques apply mutation operators and 
their functions for exploring the whole search space 
and sometimes it is hard for the other techniques to 
find local optimal solutions that exist in a local search 
space as compared with the proposed technique. On 
the contrary, as compared with the other techniques, 
the proposed technique employ the crossover opera-
tors to obtain the local optimal solutions,  which may 
be the reason for the better performance of the pro-
posed technique compared with the other techniques. 

4. Conclusion
The test cases prioritization is an essential task to re-
duce the time and effort required in the test regression. 
In order to obtain maximum transition coverage, this 
research work has proposed an approach-based re-
vised GA to generate and prioritize the test cases gen-
erated from software specifications. five techniques of 
prioritization of test cases have been empirically stud-

ied and their performances have been compared. The 
performance of the proposed approach provides prom-
ising outcomes on both coverage and time criteria. 
The proposed approach takes advantage of ability to 
generate various test cases from software specifica-
tions (activity diagram) and to prioritize such test 
cases on the basis of revised genetic algorithm. This 
approach has been automated using the Java Lan-
guage. The necessity and benefit of applying a new 
metric APTC as a fitness function in the revised ge-
netic algorithm is also shown in this proposed ap-
proach. Finally, the results from the empirical study 
have been analyzed and compared with the original 
genetic algorithm and with other techniques based 
on APTC [25, 38]. It was then found that the proposed 
approach is better and more efficient in maximizing 
the coverage with less execution time and it avoids 
the problem of population ageing that resulted from 
the application of the genetic algorithm by trigger 
the population regeneration method when the pop-
ulation ageing detected. Thus, these results provide 
a good answer for the research question which was 
formulated as:  how does the proposed approach com-
pare in term of time, effort and coverage to the other 
search-based approaches. Moreover, the experimen-
tal results from this research work confirmed also 
the prior results stated in the software testing liter-
ature regarding the good performance of the genetic 
algorithm [38]. However, the results indicate to some 
interesting characteristics of the proposed approach 
including minimizing the execution time and maxi-
mizing the transitions coverage.  
The results of this study are promising. Thus, further 
research work is required to support such findings. 
Additionally, other specifications models such as 
sequence diagrams and use case description model 
should be studied and compared with the results from 
this work. Considering the average of percentage of 
the coverage, it could be extended to enhance regres-
sion test cases selection and prioritization. 
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