
443Information Technology and Control 2021/3/50

A Prioritization Approach for
Regression Test Cases Based on
a Revised Genetic Algorithm

ITC 3/50
Information Technology
and Control
Vol. 50 / No. 3 / 2021
pp. 443-457
DOI 10.5755/j01.itc.50.3.27662

A Prioritization Approach for Regression Test Cases Based on
a Revised Genetic Algorithm

Received 2020/09/07 Accepted after revision 2021/08/04

 http://dx.doi.org/10.5755/j01.itc.50.3.27662

HOW TO CITE: Alrawashdeh, T. A., ElQirem, F., Althunibat, A., Alsoub, R. (2021). A Prioritization Approach for Regression Test Cases
Based on a Revised Genetic Algorithm. Information Technology and Control, 50(3), 443-457. https://doi.org/10.5755/j01.itc.50.3.27662

Corresponding author: thamer.r@zuj.edu.jo

Thamer A. Alrawashdeh
Department of Software Engineering, Alzaytoonah University of Jordan, Airport Street, Amman, Jordan;
e-mail: thamer.r@zuj.edu.jo

Fuad ElQirem
Department of Multimedia, Alzaytoonah University of Jordan, Airport Street, Amman, Jordan;
e-mail: fouad.q@zuj.edu.jo

Ahmad Althunibat
Department of Software Engineering, Alzaytoonah University of Jordan, Airport Street, Amman,
Jordan; e-mail: A.thunibat@zuj.edu.jo

Roba Alsoub
Department of Computer Science, Mutah University, Mutah, Alkarak, Jordan; e-mail: robas@mutah.edu.jo

The regression testing is a software-based testing approach executed to verify that changes made to the soft-
ware do not affect the existing functionality of the product. On account of the constraints of time and cost, it is
impractical to re-execute all the test cases for software whenever a change occurs. In order to overcome such
a problem in the selection of regression test cases, a prioritization technique should be employed. On the basis
of some predefined criterion, the prioritization techniques create an execution schedule for the test cases, so
the higher priority test cases can be performed earlier than the lower priority test cases in order to improve
the efficiency of the software testing. Many prioritization criteria for regression test cases have been proposed
in software testing literature; however, most of such techniques are code-based. Keeping in view this fact, this

mailto:obodovskiy58@gmail.com

Information Technology and Control 2021/3/50444

research work has proposed a prioritization approach for regression test cases generated from software spec-
ifications which are based on the criterion of the Average Percentage Transition Coverage (APTC) by using a
revised genetic algorithm. This criterion evaluates the rate of transitions coverage by incorporating knowledge
about the significance of transitions between activates in the form of weights. APTC has been used as a fitness
evaluation function in a genetic algorithm to measure the effectiveness of a test cases sequence. Moreover, in
order to improve the coverage percentage, the proposed approach has revised the genetic algorithm by solving
the problem of the optimal local solution. The experimental results show that the proposed approach demon-
strates a good coverage performance with less execution time as compared to the standard genetic algorithm
and some other prioritization techniques.
KEYWORDS: Regression testing, Test Cases Prioritization, Genetic Algorithm, Average Percentage Transi-
tion Coverage.

1. Introduction
Software maintenance is considered as a crucial
process in the cycle of software development. Often,
two-thirds of software development cost is allocat-
ed to software maintenance (Pressman, 2005). The
software maintenance is frequently carried out to
correct errors, to append a new function or improve
an existing function of software or to adapt it to new
software or hardware (Biswas et al., 2011). Whenev-
er a maintenance activity is executed, the regression
test is carried out to verify that the modified parts
work correctly and meet the software specifications.
Thus, the software testing that includes the regres-
sion test makes software robust, more effective and
trustworthy.
However, the regression test is still a hard task due
to constraints of time and cost. Retesting a software
by using the complete range of test cases is expen-
sive and inefficient (Sur et al., 2019, Harikarthik et al.,
2019, Yoo and Harman, 2012, Engström and Runeson,
2010). Thus, a prioritization technique should be em-
ployed to facilitate the regression test process. Many
methods have been proposed in the regression testing
literature to overcome such problems. Although the
regression test is carried out repeatedly throughout
the cycle of software development (Konsaard and
Ramingwong, 2015, Ekelund and Engström 2015,
Kavitha and Sureshkumar, 2010), most of such tech-
niques are code-based techniques which prove to be
useful in unit testing but not in case of functional test-
ing and face the scalability issues with respect to big
and complicated software systems (Panda et al., 2019,
Sapna and Balakrishnan, 2015). Thus, generation and
prioritization of regression test cases from software
specifications could be considered as an optimization

in which meta-heuristic methods could be employed
one of such methods is Genetic Algorithm (GA).
Genetic algorithm is a robust algorithm which is em-
ployed to overcome the optimization problems and
it is based on the theory of natural selection and per-
cepts of evolutionary biology (Guo, 2020; Yang et al.,
2016). This algorithm is being used in the computing
areas especially in the software testing because of
its efficiency in providing a right solution for com-
plicated, discrete and nonlinear issues produced by
a complicated software (Dey et al., 2020; Vinitha
and Preetha, 2018). It could be applied to reduce the
effort and cost by creating test cases automatically
and thereby Software maintenance is considered as a
crucial process in the cycle of software development.
Often, two-thirds of software development cost is al-
located to software maintenance [29]. The software
maintenance is frequently carried out to correct er-
rors, to append a new function or improve an existing
function of software or to adapt it to new software or
hardware [5]. Whenever a maintenance activity is ex-
ecuted, the regression test is carried out to verify that
the modified parts work correctly and meet the soft-
ware specifications. Thus, the software testing that
includes the regression test makes software robust,
more effective and trustworthy.
However, the regression test is still a hard task due to
constraints of time and cost. Retesting software by
using the complete range of test cases is expensive
and inefficient [13, 16, 34, 39]. Thus, a prioritization
technique should be employed to facilitate the regres-
sion test process. Many methods have been proposed
in the regression testing literature to overcome such
problems. Although the regression test is carried out

445Information Technology and Control 2021/3/50

repeatedly throughout the cycle of software develop-
ment [12, 17, 21], most of such techniques are code-
based techniques which prove to be useful in unit test-
ing but not in case of functional testing and face the
scalability issues with respect to big and complicated
software systems [5, 28, 31]. Thus, the generation and
prioritization of regression test cases from software
specifications could be considered as an optimization
in which meta-heuristic methods could be employed
one of such methods is Genetic Algorithm (GA).
Genetic algorithm is a robust algorithm which is em-
ployed to overcome optimization problems and it is
based on the theory of natural selection and percepts
of evolutionary biology [15, 38]. This algorithm is being
used in the computing areas especially in the software
testing because of its efficiency in providing a right
solution for complicated, discrete and nonlinear issues
produced by a complicated software [11, 36]. It could
be applied to reduce the effort and cost by creating
test cases automatically and thereby significantly en-
hances the software testing efficiency. Despite that, the
most challenging obstacle that could be encountered in
the application of the genetic algorithm is that it could
be trapped in the optimal local solution which leads to
population ageing [11, 16, 34, 38]. In order to overcome
this problem, various methods have been proposed to
improve or adjust some factors such as parameter set-
tings, fitness function, genetic operations, and chromo-
some population [38]. However, the proposed methods
have some difficulties that make them unattractive to
the software testing including difficulty implement-
ing these methods without extra effort because of
the highly complex nature of the enhancements [38].
Therefore, in this research work, a Revised Genetic
Algorithm has been proposed to solve the problem of
optimal local solution easily and effectively, which is
meant to be used for prioritizing the test cases that are
generated from the software specifications.
On the other hand, the Unified Modeling Language
(UML) is the most popular standards for modeling
the software specifications and software design. It
includes various models to support software sys-
tems development with an object-oriented approach.
These models include use case diagram, use case de-
scription, sequence diagram, class diagram, activity
diagram and state diagram to model both dynamic
and static behavior of software systems at different
levels of abstraction [10, 37, 6]. As this study includes

functionality level, the activity diagram is employed.
Activity diagrams are used to elaborate the scenario
related to each use case (functionality) in the software
systems. It involves the main, alternate and exception
scenarios that deal with the functionality. Thus, the
number of test cases that are generated from use case
description models by using an automated approach
are exhaustive [26]. However, there are relatively few
particular techniques proposed to generate test cases
from models in analysis and design phases especially
the activity diagram [1, 3, 4]. Moreover, extract in-
formation from the activity diagram is a complicated
task because of the activity diagram provides con-
cepts at a higher abstraction level of a system [35].
A regression test selection is carried out to ensure
that developed functionality, both existing and mod-
ified, work appropriately by selecting the only sub-
set of test cases that were developed initially to test
the software. The regression test selection problem
has been introduced as follows: let P be a software
program and P ̃ a revised version of P. Similarly, let T
a test suite that had been developed initially to test a
software program during the software development
phase. The regression test selection techniques aim
to select a sub-set of valid test cases from an initial
test suite (T ̃ ⊆ T) to test that the existing and modified
parts of P ̃continue to work properly such that every
error is detected when P ̃is executed with T.
The regression test selection aims to select a subset
of test cases to be used to test the functionality of
the software without affecting the software quality
[33, 23]. In this research work, the selected test cases
will be considered as a regression test. This regres-
sion test will use sub-set of the test cases to verify the
functionality of the software with parts of software
that have been changed. The premise is that selecting
minimum test cases to verify software functionality
with respect to changes before elaborately testing the
functionality to ensure that all selected test cases are
more effective. The regression test selection helps
in two ways: it is used to ensure that the functional-
ity that passes the initial test cases is tested further
to make sure that no new defects have been produced
by the changes in the previously validated functional-
ity; otherwise, the changes that have been done on the
functionality are considered void.
Although many research works have proposed differ-
ent techniques to generate regression test cases, a great

Information Technology and Control 2021/3/50446

number of such techniques are white-box techniques
and a few are black-box techniques. Furthermore, the
changes in the functionality of software have not been
considered in the proposed black-box techniques. In
the same respect, the constraints of cost and offers of
software system development provide a scope to pro-
pose new ways to enhance the software development
processes, including the testing process. Thus, this
research work has been conducted to propose an auto-
mated approach to prioritize minimal regression test
cases generated from UML models (use case descrip-
tion model) by using the Revised Genetic Algorithm.
In such an approach, minimum regression test cases
are generated to test the changes of software function-
ality. These minimum test cases suggest the defected
software functionality that needs to be reworked be-
fore conducting further testing. Another contribution
of this research is to revise the genetic algorithm to
solve the problem of local optimal solution.
Many research works had employed the heuristic
search algorithms to propose an approach to generate
or to prioritize the regression test cases [2, 8, 14, 24,
18, 19].
Vinitha and Ramakrishna [36] proposed a multi-ob-
jective Regeneration Genetic Algorithm (RGA) ap-
proach to enhance the coverage percentage and to
reduce the loop statements by applying the coverage
and loop statements in the calculations of popula-
tions’ fitness. This proposed approach met both cov-
erage and loop conditions of conditional statements.
As experimental results, this study demonstrated that
the proposed approach offers better results in terms
of execution time, the number of covered methods
and branch coverage.
An important intelligent method, called a Regenerate
Genetic Algorithm (RGA) was developed by Yang et
al. [38] in the domain of automatic test cases devel-
opment to solve the problem of population ageing.
The proposed method defined the population ageing
factor and process to estimate the population ageing
degree. This method was utilized to jump out of the
optimal local solution, when the population ageing
has occurred, to prevent the population ageing and
effectively enhance the test coverage. Compared with
the standard genetic algorithm, the experimental re-
sults of this method showed that it could effectively
improve the search efficiency, minimize the number
of test cases, enhance test coverage and restrain pop-

ulation ageing. Despite the promising results of this
study, there were some limitations; for example, it did
not provide a fully automated approach to generate
the test cases and does not prioritize the test cases
since it only determines a best test case.
A new approach was introduced by Mala et al. [25] to
optimize the generation of test cases from the source
code by applying the artificial bee colony (ABC) op-
timization. The proposed approach was used for
combining the local search methods executed by em-
ployed and onlooker bees with global search methods
managed by scouts. Since the three bees technique
is employed to accomplish the solution generation
faster. This approach was evaluated on the basis of
the criteria of coverage-based test adequacy and com-
pared with genetic algorithm-based approaches, ran-
dom testing and sequential ABC. The experimental
results showed that the proposed approach provided
better results in the test suite optimization. Although
this research work optimized the generated test cas-
es, it neither automated the process of test cases
generation nor explained how to utilize the proposed
method in the regression test.
Khurana and Chillar [20] developed a new method to
generate test cases from a combination of two Unified
Modeling Language (UML) models: sequence diagram
and statechart diagram. In this method, the sequence
diagram and state chart diagram were converted into
sequence graph and state graph, respectively. Both
graphs were combined to create a system testing
graph. Different control flow sequences called test
cases were identified from the system testing graph.
Finally, the genetic algorithm (GA) was employed to
optimize the generated test cases. By implementing
this proposed method, all possible test cases could be
discovered and various faults could be solved, includ-
ing pre-post condition faults, integration, error han-
dling, scenario faults and operational faults. However,
this research did not evaluate the proposed method
and has not prioritized the generated test cases.
Alrawashed et al. [2] developed an automated ap-
proach for test suite optimization. In their approach,
they generated test cases from the use case description
model. This approach was utilized for converting the
statements in such a model into the sequence graph.
From the graph, various control flow sequences were
generated. Consequently, the heuristic search algo-
rithm (genetic algorithm) was applied to optimize the

447Information Technology and Control 2021/3/50

generated test cases. The experimental results of this
research work showed that the proposed approach
was efficient and effective in offering a near-optimal
test case and high test coverage in the early stage of
software development. Despite that, this research
work could not solve the main problem of the genetic
algorithm which could significantly harm the benefits
of the genetic algorithm in the software testing area
and increase the effort and cost of the test cases gen-
eration. Additionally, the proposed technique in this
work did not prioritize the test cases and only provid-
ed the optimal path.
Another research work was done for the test suite opti-
mization by Sahoo et al. [30]. In this work, the authors
proposed an approach to generate the test cases from
state chart and sequence diagrams. The proposed ap-
proach converted the sequence diagram and state chart
diagram into the sequence graph and state chart graph,
respectively. In order to create a system graph, both
graphs were combined and from the system graph, dif-
ferent test cases have been discovered and optimized
by applying an evolutionary algorithm called hybrid
bee colony algorithm. The results of this research
showed that the proposed technique minimized the
time required to select the best bath and it was more
effective in software testing. However, concerns such
as how to benefit from the proposed technique in the
regression test along with the generated test cases re-
mained unclear and were not prioritized in this study.
Another limitation of the study was that the proposed
technique remained unevaluated.
Konsaard and Ramingwong [21] proposed an ap-
proach-based genetic algorithm to prioritize the gen-
erated test cases. This approach generated the test
cases from the source code and then the fitness func-
tion in the genetic algorithm was modified by using
Average Percentage Code Coverage (APCC) to yield
maximum code coverage. The result of this research
work showed that the proposed approach was effi-
cient in terms of coverage percentage and execution
time. Despite the promising results of this approach,
it was not a fully automated approach. Additionally,
it did not consider the problem of optimal solution in
the genetic algorithm.
After reviewing more than fifty studies, it has become
evident that no research work has been conducted so
far to propose a fully automated approach to generate
the regression test cases from software specifications

and to prioritize such test cases. Interestingly, most
of such studies proposed approaches to generate the
test cases from the software code or software specifi-
cation to find the optimal test case that could achieve
maximum coverage without prioritizing other test
cases. Additionally, a few other studies were done to
solve the problem of optimal solution that resulted
from the application of the genetic algorithm. There-
fore, more studies are required to support the results
of these studies. Furthermore, most of the proposed
prioritization techniques select the test cases on the
basis of their ability to cover more faults without con-
sidering the test adequacy. For this end, this research
work intends to bridge the gap in the related litera-
ture by proposing a fully automated and a complete
approach to generate the regression test cases from
the software specifications and to prioritize these test
cases by using the genetic algorithm associated with
solving the problem of population ageing and obtain-
ing a maximum test suit coverage. Furthermore, this
is the first study that has adapted the criteria of Aver-
age Percentage Transition Coverage (APTC) to eval-
uate the proposed approach in term of coverage per-
centage. Therefore, the goal of this research work is to
provide an answer to the following research question:
how does the proposed approach compare in term of
time, effort and coverage to the other search-based
approaches?
The rest of this research work is organized as follows:
section two introduces the proposed technique. Sec-
tion three addresses the experimentation, results and
discussion on the study. Finally, the conclusion and
future work are included in section four.

2. The Proposed Approach
This research work aims to propose an automated ap-
proach to generate and prioritize the regression test
cases from software specifications (activity diagram)
on the basis of Revised Genetic Algorithm. In order
to construct the proposed approach, the genetic algo-
rithm has been revised to solve the problem of local
optimal solution and then used to prioritize the re-
gression test cases. The proposed approach consists
of three steps: 1) automatically converting the activ-
ity diagram into a Control Flow Graph (CFG) 2) au-
tomatically generating the test cases from the CFG 3)

Information Technology and Control 2021/3/50448

prioritizing the regression test cases using a Revised
Genetic Algorithm. Figure 1 shows the proposed ap-
proach, where all steps of the proposed approach are
discussed in detail bellow.
Step one: converting the activity diagram into CFG
 the activity diagram is employed to model the dynam-
ic behavior of a set of objects in the software systems.
Interestingly, the activity diagram represents a set of
objectes activities, so it could be used to describe the
operations in the design stage, the sequence of activ-
ities among the involving objects in the control flow,
and the relations between activities and objects in the
message flow. Furthermore, it details the main, al-
ternative and exception scenarios related to each use
case [31]. Thus, the activity diagram allows determin-
ing coverage criteria to assure a particular degree of a
completeness of the regression test scenarios. The ac-
tivity diagram involves two types of activities: action
activities (events) and control activities including the
initial activity, last activity, decisions, merge and fork.
Thus, we can make the following definition from the
description of the construction of an activity diagram.
Definition 1: an activity diagram with a set of action
activities and control activities can be represented
formally as:

AD= {A, T, J, F}. (1)

where A denotes a finite set of activities (a1, a2, ……an); T
represents a finite set of control flow (t1, t2,….tn) from an
activity to another; J represents a finite set of forks (f1, f2,
….. fn); and J denotes a finite set of joints (J1, J2, ……, Jn).

In this phase, the scenarios from the activity diagram
are extracted to be used in the generation process of
regression test cases. Interestingly, these scenarios
are converted into control flow graph. Wherein, each
node in the CFG corresponds to an action or control
activity in the activity diagram and each edge rep-
resents the control flow between the activities. Figure
2 presents the algorithm of converting the activity di-
agram into a control flow graph.

Figure 1
Schematic Diagram of the Proposed Approach

Figure 2
Algorithm of converting an activity diagram into CFG

Input: action and control activities, and control flow ϵ AD
Output: Control Flow Graph (CFG)
Identify all Nodes (N) in the CFG: each node in the CFG
represents an activity in the activity diagram
Identify the Root (R) of CFG: the first activity (a1) in the
activity diagram
E1= R a2 // the first edge (E1) connects the first
activity with the second one (a2) (staring from the second
activity)
For each ai
 IF Ci ϵ ai // if a current activity is a control activity (C)
 Ei = ai ai +1
 Ei + 1= ai ai +2
Else
 Ei = ai ai +1
End if

Step two: Generating the test cases from CFG
In this phase, the control flow graph of the activity
diagram from step one is used as an input. Consequently,
the proposed technique generates all possible paths
(regression test cases) in a control flow graph. Wherein a
path is a finite set of nodes and edges (transitions) from
the initial node to the final node. It is worth mentioning
that each independent path has at least one new edge in a
control flow graph. Additionally, each decision divides
the path into two separate paths in the CFG: true path and
false path. In software testing, the test cases must traverse
each path at least for once through the CFG. Thus, a new
concept has been defined as definition 2.
Definition 2: A regression test case could be defined as an
execution path from the initial activity to the final activity
as the following.
tc ϵ TC, tc= {a1, t1 ……… an, tn }. (2)

Figure 3
Algorithm of Generating Test Paths from CFG.

Input: control flow graph of the activity diagram
Output: Regression Test Cases (test paths)
TC: identify all test cases // list all regression test cases
(test paths) TC= tc[1], tc[2]….tc[n] from the start node
to the final node in the control flow graph.
For each path tc[i] ϵ TC
CurrentNode(CN) = StartNode (SN)
While (CN != final node) do
Tc[i].add(CN)

End

where, tc represents a regression test case; TC denotes a
set of regression test cases; a represents a node in the
control flow graph and t means an edge in the control flow
graph. Figure 3 shows the algorithm of Generating test
paths from CFG.
Step three: Prioritizing the generated test cases by using
the Revised Genetic Algorithm (RGA)
Genetic algorithm is one of the most popular meta-
heuristic techniques used to optimize software testing data
[36]. Although there is no a specific definition of GA, the
implementations of such algorithm share the same
components including: populations, selection, crossover,
and mutation operations. The population of GA involves
a large number of individuals and subject to the
reproduction and mutation.
the standard work of the genetic algorithms consists of
five steps. First step: an initial population of n
chromosomes (individuals) is randomly produced.
Second step: A fitness function is applied to assign a
fitness value to each chromosome. In the third step three
sub-steps are repeated until m new individuals are
produced: 1) the selection operation selects two
individuals to reproduce, 2) the crossover operation
combines genetic materials from both individuals with
probability pc, and 3) the mutation operation changes
offstriping with probability pm. in the fourth step the
replacement operation selects the individuals that will
survive to the next generation of the population. Fifth step:
if the termination conditions are not met go to the second
step [38].
The application of this technique could reduce the effort
and improve the test coverage criterion. However, the big
challenge associated with implementing the GA is that the
population is often trapped in the optimal local solution
without continued enhancement of the test coverage
(population ageing) [22, and 38]. The following sub-
section addresses the population ageing problem that
appeared in the software testing which is based on the
genetic algorithm.

2.1 The Ageing Problem in Software Testing
There is a big difference between the maturation of the
genetic algorithm and the problem of population ageing.
Regarding the improvement in the software testing
coverage, occasionally when there is a big difference in
populations, the improvement in the coverage is slight. On
the other hand, a little difference in populations could lead
to more extensive coverage. Consequently, in order to
further clarify the problem of population ageing, a new
concept called ageing factor has been defined giving the
ageing degrees of the populations produced during the
process of genetic algorithm-based testing.
Assume that tci,j is the number of regression test cases in
the ith individuals in the jth generation. Additionally,
TCpopt is the number of individuals in jth generation, in
other words TCpopt represents the number of regression
test cases in the jth generation. The total number of
regression test cases in all jth generations could be
presented as∑ ∑ nt,iNpopj

t=1
ij=1 . In the same case, the total

number of regression test cases in each generation j,
generation j+1, generation j+2 … generation j+n are

Step two: Generating the test cases from CFG
In this phase, the control flow graph of the activity di-
agram from step one is used as an input. Consequent-
ly, the proposed technique generates all possible
paths (regression test cases) in a control flow graph.
Wherein a path is a finite set of nodes and edges (tran-
sitions) from the initial node to the final node. It is
worth mentioning that each independent path has at
least one new edge in a control flow graph. Addition-
ally, each decision divides the path into two separate
paths in the CFG: true path and false path. In software
testing, the test cases must traverse each path at least
for once through the CFG. Thus, a new concept has
been defined as definition 2.
Definition 2: A regression test case could be defined as
an execution path from the initial activity to the final
activity as the following.

449Information Technology and Control 2021/3/50

tc ϵ TC, tc= {a1, t1 ……… an, tn }. (2)

where, tc represents a regression test case; TC de-
notes a set of regression test cases; a represents a
node in the control flow graph and t means an edge in
the control flow graph. Figure 3 shows the algorithm
of Generating test paths from CFG.

Figure 3
Algorithm of Generating Test Paths from CFG

Input: action and control activities, and control flow ϵ AD
Output: Control Flow Graph (CFG)
Identify all Nodes (N) in the CFG: each node in the CFG
represents an activity in the activity diagram
Identify the Root (R) of CFG: the first activity (a1) in the
activity diagram
E1= R a2 // the first edge (E1) connects the first
activity with the second one (a2) (staring from the second
activity)
For each ai
 IF Ci ϵ ai // if a current activity is a control activity (C)
 Ei = ai ai +1
 Ei + 1= ai ai +2
Else
 Ei = ai ai +1
End if

Step two: Generating the test cases from CFG
In this phase, the control flow graph of the activity
diagram from step one is used as an input. Consequently,
the proposed technique generates all possible paths
(regression test cases) in a control flow graph. Wherein a
path is a finite set of nodes and edges (transitions) from
the initial node to the final node. It is worth mentioning
that each independent path has at least one new edge in a
control flow graph. Additionally, each decision divides
the path into two separate paths in the CFG: true path and
false path. In software testing, the test cases must traverse
each path at least for once through the CFG. Thus, a new
concept has been defined as definition 2.
Definition 2: A regression test case could be defined as an
execution path from the initial activity to the final activity
as the following.
tc ϵ TC, tc= {a1, t1 ……… an, tn }. (2)

Figure 3
Algorithm of Generating Test Paths from CFG.

Input: control flow graph of the activity diagram
Output: Regression Test Cases (test paths)
TC: identify all test cases // list all regression test cases
(test paths) TC= tc[1], tc[2]….tc[n] from the start node
to the final node in the control flow graph.
For each path tc[i] ϵ TC
CurrentNode(CN) = StartNode (SN)
While (CN != final node) do
Tc[i].add(CN)
End

where, tc represents a regression test case; TC denotes a
set of regression test cases; a represents a node in the
control flow graph and t means an edge in the control flow
graph. Figure 3 shows the algorithm of Generating test
paths from CFG.
Step three: Prioritizing the generated test cases by using
the Revised Genetic Algorithm (RGA)
Genetic algorithm is one of the most popular meta-
heuristic techniques used to optimize software testing data
[36]. Although there is no a specific definition of GA, the
implementations of such algorithm share the same
components including: populations, selection, crossover,
and mutation operations. The population of GA involves
a large number of individuals and subject to the
reproduction and mutation.
the standard work of the genetic algorithms consists of
five steps. First step: an initial population of n
chromosomes (individuals) is randomly produced.
Second step: A fitness function is applied to assign a
fitness value to each chromosome. In the third step three
sub-steps are repeated until m new individuals are
produced: 1) the selection operation selects two
individuals to reproduce, 2) the crossover operation
combines genetic materials from both individuals with
probability pc, and 3) the mutation operation changes
offstriping with probability pm. in the fourth step the
replacement operation selects the individuals that will
survive to the next generation of the population. Fifth step:
if the termination conditions are not met go to the second
step [38].
The application of this technique could reduce the effort
and improve the test coverage criterion. However, the big
challenge associated with implementing the GA is that the
population is often trapped in the optimal local solution
without continued enhancement of the test coverage
(population ageing) [22, and 38]. The following sub-
section addresses the population ageing problem that
appeared in the software testing which is based on the
genetic algorithm.

2.1 The Ageing Problem in Software Testing
There is a big difference between the maturation of the
genetic algorithm and the problem of population ageing.
Regarding the improvement in the software testing
coverage, occasionally when there is a big difference in
populations, the improvement in the coverage is slight. On
the other hand, a little difference in populations could lead
to more extensive coverage. Consequently, in order to
further clarify the problem of population ageing, a new
concept called ageing factor has been defined giving the
ageing degrees of the populations produced during the
process of genetic algorithm-based testing.
Assume that tci,j is the number of regression test cases in
the ith individuals in the jth generation. Additionally,
TCpopt is the number of individuals in jth generation, in
other words TCpopt represents the number of regression
test cases in the jth generation. The total number of
regression test cases in all jth generations could be
presented as∑ ∑ nt,iNpopj

t=1
ij=1 . In the same case, the total

number of regression test cases in each generation j,
generation j+1, generation j+2 … generation j+n are

Step three: Prioritizing the generated test cases by
using the Revised Genetic Algorithm (RGA)
Genetic algorithm is one of the most popular me-
ta-heuristic techniques used to optimize software
testing data [36]. Although there is no a specific defi-
nition of GA, the implementations of such algorithm
share the same components including: populations,
selection, crossover, and mutation operations. The
population of GA involves a large number of individu-
als and subject to the reproduction and mutation.
the standard work of the genetic algorithms con-
sists of five steps. First step: an initial population of
n chromosomes (individuals) is randomly produced.
Second step: A fitness function is applied to assign a
fitness value to each chromosome. In the third step
three sub-steps are repeated until m new individuals
are produced: 1) the selection operation selects two
individuals to reproduce, 2) the crossover operation
combines genetic materials from both individuals
with probability pc, and 3) the mutation operation
changes offstriping with probability pm. in the fourth
step the replacement operation selects the individu-
als that will survive to the next generation of the pop-
ulation. Fifth step: if the termination conditions are
not met go to the second step [38].

The application of this technique could reduce the
effort and improve the test coverage criterion. How-
ever, the big challenge associated with implement-
ing the GA is that the population is often trapped
in the optimal local solution without continued en-
hancement of the test coverage (population ageing)
[22, and 38]. The following sub-section addresses
the population ageing problem that appeared in the
software testing which is based on the genetic algo-
rithm.

2.1. The Ageing Problem in Software Testing

There is a big difference between the maturation of
the genetic algorithm and the problem of population
ageing. Regarding the improvement in the software
testing coverage, occasionally when there is a big dif-
ference in populations, the improvement in the cov-
erage is slight. On the other hand, a little difference
in populations could lead to more extensive coverage.
Consequently, in order to further clarify the problem
of population ageing, a new concept called ageing fac-
tor has been defined giving the ageing degrees of the
populations produced during the process of genetic
algorithm-based testing.
Assume that tci,j is the number of regression test
cases in the ith individuals in the jth generation. Ad-
ditionally, TCpopt is the number of individuals in jth
generation, in other words TCpopt represents the
number of regression test cases in the jth generation.
The total number of regression test cases in all jth
generations could be presented as

Input: action and control activities, and control flow ϵ AD
Output: Control Flow Graph (CFG)
Identify all Nodes (N) in the CFG: each node in the CFG
represents an activity in the activity diagram
Identify the Root (R) of CFG: the first activity (a1) in the
activity diagram
E1= R a2 // the first edge (E1) connects the first
activity with the second one (a2) (staring from the second
activity)
For each ai
 IF Ci ϵ ai // if a current activity is a control activity (C)
 Ei = ai ai +1
 Ei + 1= ai ai +2
Else
 Ei = ai ai +1
End if

Step two: Generating the test cases from CFG
In this phase, the control flow graph of the activity
diagram from step one is used as an input. Consequently,
the proposed technique generates all possible paths
(regression test cases) in a control flow graph. Wherein a
path is a finite set of nodes and edges (transitions) from
the initial node to the final node. It is worth mentioning
that each independent path has at least one new edge in a
control flow graph. Additionally, each decision divides
the path into two separate paths in the CFG: true path and
false path. In software testing, the test cases must traverse
each path at least for once through the CFG. Thus, a new
concept has been defined as definition 2.
Definition 2: A regression test case could be defined as an
execution path from the initial activity to the final activity
as the following.
tc ϵ TC, tc= {a1, t1 ……… an, tn }. (2)

Figure 3
Algorithm of Generating Test Paths from CFG.

Input: control flow graph of the activity diagram
Output: Regression Test Cases (test paths)
TC: identify all test cases // list all regression test cases
(test paths) TC= tc[1], tc[2]….tc[n] from the start node
to the final node in the control flow graph.
For each path tc[i] ϵ TC
CurrentNode(CN) = StartNode (SN)
While (CN != final node) do
Tc[i].add(CN)
End

where, tc represents a regression test case; TC denotes a
set of regression test cases; a represents a node in the
control flow graph and t means an edge in the control flow
graph. Figure 3 shows the algorithm of Generating test
paths from CFG.
Step three: Prioritizing the generated test cases by using
the Revised Genetic Algorithm (RGA)
Genetic algorithm is one of the most popular meta-
heuristic techniques used to optimize software testing data
[36]. Although there is no a specific definition of GA, the
implementations of such algorithm share the same
components including: populations, selection, crossover,
and mutation operations. The population of GA involves
a large number of individuals and subject to the
reproduction and mutation.
the standard work of the genetic algorithms consists of
five steps. First step: an initial population of n
chromosomes (individuals) is randomly produced.
Second step: A fitness function is applied to assign a
fitness value to each chromosome. In the third step three
sub-steps are repeated until m new individuals are
produced: 1) the selection operation selects two
individuals to reproduce, 2) the crossover operation
combines genetic materials from both individuals with
probability pc, and 3) the mutation operation changes
offstriping with probability pm. in the fourth step the
replacement operation selects the individuals that will
survive to the next generation of the population. Fifth step:
if the termination conditions are not met go to the second
step [38].
The application of this technique could reduce the effort
and improve the test coverage criterion. However, the big
challenge associated with implementing the GA is that the
population is often trapped in the optimal local solution
without continued enhancement of the test coverage
(population ageing) [22, and 38]. The following sub-
section addresses the population ageing problem that
appeared in the software testing which is based on the
genetic algorithm.

2.1 The Ageing Problem in Software Testing
There is a big difference between the maturation of the
genetic algorithm and the problem of population ageing.
Regarding the improvement in the software testing
coverage, occasionally when there is a big difference in
populations, the improvement in the coverage is slight. On
the other hand, a little difference in populations could lead
to more extensive coverage. Consequently, in order to
further clarify the problem of population ageing, a new
concept called ageing factor has been defined giving the
ageing degrees of the populations produced during the
process of genetic algorithm-based testing.
Assume that tci,j is the number of regression test cases in
the ith individuals in the jth generation. Additionally,
TCpopt is the number of individuals in jth generation, in
other words TCpopt represents the number of regression
test cases in the jth generation. The total number of
regression test cases in all jth generations could be
presented as∑ ∑ nt,iNpopj

t=1
ij=1 . In the same case, the total

number of regression test cases in each generation j,
generation j+1, generation j+2 … generation j+n are

. In the
same case, the total number of regression test cases
in each generation j, generation j+1, generation j+2 …
generation j+n are presented in Equation 3:

presented in equation 3:
∑ ∑ nt,iNpopj

t=1
ij=1

∑ ∑ nt,i+1……..∑ ∑ nt,iNpopj
t=1

i+m
j=1

Npopj
t=1

i+1
j=1 +m. (3)

If the population includes m generations and the
population coverage is still the same, this situation
indicates that the population is ageing and trapped in the
optimal local solution [22, 38]. Equation 4 represents this
situation in which q denotes the ratio of the number of
newly produced regression test cases that do not improve
the coverage promotion in m generations in comparison
with a prior number of useful test cases (ageing factor).
q=
(the increased number of tc(i)

total number of tc)� *100%. (4)

As shown in equation four, the ageing factor is influenced
by the increased number of generation (i). The more
regression test cases that do not increase the coverage, the
higher the degree of population ageing. Consequently, the
maturity of the population does not mean that the
population ageing will not happen. In the same sense, if
the population is not mature, there is a possibility of
occurrence of the population ageing on account of the
interaction of genetic algorithm with searching space.
On account of the ageing process, regression test cases
(individuals) could not improve the transition coverage in
software specifications space (activity diagram). In this
case, the operations of the genetic algorithm will lose their
ability to optimize the transition coverage. So, one of the
objectives of this research work is that, after generating a
second population, despite the current coverage of the
population is stagnate at the same stage, the population
evolution process is still anticipated to improve the
coverage by using some strategies.
2.2 Transition Coverage Based Software
Testing
The target of software testing with respect to the criteria
of transition coverage can be presented as follows:
TS= {G, I, A, C, T, Cov, Np(A)}. (5)
In equation 5, G denotes the CFG of an activity diagram
under test; I is the input space; A represents the adopted
optimization algorithm; C denotes a suite of test cases; T
is a set of termination conditions; Cov represents the test
coverage and Np(A) represents genetic iterations number.
Furthermore:
Cov ={TrCovG(C)}. (6)
In equation 6, the TrCovp(C) represents a transition
coverage. Further:
A = {E, S0, M, Sel, Cor, Mut, F}. (7)
In equation 7, E represents the mode of genetic code; P0
denotes the initial population; M denotes the population
size; Sel indicates the selection factor; Cor indicates the
crossover factor; Mut indicates the mutation factor and F
represents the adoption fitness function.
In the black-box software testing, the coverage has been
calculated by using equation 8. In this equation, the
TrExecG(C) represents a set of transitions that are covered
in a control flow graph (CFG); TrG indicates the set of
transitions in a control flow graph (CFG). For the
transition coverage of test suite C, TrExecG(C) is defined
as the ratio of the transitions that could be executed by the

test suite (C) to the total number of transitions in the CFG
of a software activity diagram.
TrExecG(C)= | TrExecG|/ |TrG| . (8)
In this research work, in order to take the genetic
algorithm’s advantages of prioritizing the test cases, a
fitness criterion has been added. This criterion states that
the minimal number of test cases that could achieve a
maximum transition coverage TrExecp(C) should be
applied. Therefore, the following sub-section presents the
Revised Genetic Algorithm that solves the problem of
population ageing by prioritizing the test cases on the
basis of transition coverage criteria.

2.3 Revised Genetic Algorithm
This section deals with a Revised Genetic Algorithm
which is used to solve the problem of population ageing
and to prioritize the test cases. Accordingly, if the
population ageing occurs when a significant number of
populations are produced and the transition coverage is
not improved, in this case, the operation of population
regeneration should be triggered, so that a new population
is produced and the processes of the genetic algorithm are
executed successively.
2.3.1 Basic Population in Genetic Algorithm-
Based Software Testing
 In the GA-based software testing, the population in GA
is represented by individuals including the set of test cases
as shown in equation 9 with a transversal vector of
X={x1,1 x1, 2 …… x1,m} indicating the corresponding
test cases. Equation 10 shows the total populations with
Mpopi denoting the population in ith iteration [27].

X= �
x1,1 ⋯ x1,m
⋮ ⋱ ⋮

xn,1 ⋯ xn,m
� (9)

Mpopi= �
Mpop1
Mpop2

⋮
Mpopi

�. (10)

After the populations are initialized with respect to the
number of individuals, the generated test cases are
selected to be transmitted to the next generation on the
basis of the value of the selection factor’s value. For
instance, if the value of the selection factor is set to 0.7. It
implies that individuals with fitness value equal to or
greater than 70% will be selected to the next generation
and individuals with lesser fitness value will not be
transmitted [25], so only the best individuals will be
transmitted. As shown in equation 11, each individual
with 0.7 as a fitness value will be allocated in
Xtiselect
= � Xit if fitness(Xit ≥ fitness(the top 70% Xt))

 null else . (11)

The crossover process is a process other than the selection
applied in the genetic algorithm to find the optimal
solution. This process is governed by the value of the
crossover factor. For example, if the value of the
crossover factor is set to 0.9, it implies that two
individuals with 90% probability of performing crossover
operation are randomly selected [25]. Finally, in order to
diversify the search into a new area of the search space,
the elements of the selected individuals are randomly
mutated.

(3)

If the population includes m generations and the pop-
ulation coverage is still the same, this situation indi-
cates that the population is ageing and trapped in the
optimal local solution [22, 38]. Equation 4 represents
this situation in which q denotes the ratio of the num-
ber of newly produced regression test cases that do
not improve the coverage promotion in m generations
in comparison with a prior number of useful test cas-
es (ageing factor).

Information Technology and Control 2021/3/50450

presented in equation 3:
∑ ∑ nt,iNpopj

t=1
ij=1

∑ ∑ nt,i+1……..∑ ∑ nt,iNpopj
t=1

i+m
j=1

Npopj
t=1

i+1
j=1 +m. (3)

If the population includes m generations and the
population coverage is still the same, this situation
indicates that the population is ageing and trapped in the
optimal local solution [22, 38]. Equation 4 represents this
situation in which q denotes the ratio of the number of
newly produced regression test cases that do not improve
the coverage promotion in m generations in comparison
with a prior number of useful test cases (ageing factor).
q=(the increased number of tc(i) total number of tc)� *100%.

As shown in equation four, the ageing factor is influenced
by the increased number of generation (i). The more
regression test cases that do not increase the coverage, the
higher the degree of population ageing. Consequently, the
maturity of the population does not mean that the
population ageing will not happen. In the same sense, if
the population is not mature, there is a possibility of
occurrence of the population ageing on account of the
interaction of genetic algorithm with searching space.
On account of the ageing process, regression test cases
(individuals) could not improve the transition coverage in
software specifications space (activity diagram). In this
case, the operations of the genetic algorithm will lose their
ability to optimize the transition coverage. So, one of the
objectives of this research work is that, after generating a
second population, despite the current coverage of the
population is stagnate at the same stage, the population
evolution process is still anticipated to improve the
coverage by using some strategies.
2.2 Transition Coverage Based Software
Testing
The target of software testing with respect to the criteria
of transition coverage can be presented as follows:
TS= {G, I, A, C, T, Cov, Np(A)}. (5)
In equation 5, G denotes the CFG of an activity diagram
under test; I is the input space; A represents the adopted
optimization algorithm; C denotes a suite of test cases; T
is a set of termination conditions; Cov represents the test
coverage and Np(A) represents genetic iterations number.
Furthermore:
Cov ={TrCovG(C)}. (6)
In equation 6, the TrCovp(C) represents a transition
coverage. Further:
A = {E, S0, M, Sel, Cor, Mut, F}. (7)
In equation 7, E represents the mode of genetic code; P0
denotes the initial population; M denotes the population
size; Sel indicates the selection factor; Cor indicates the
crossover factor; Mut indicates the mutation factor and F
represents the adoption fitness function.
In the black-box software testing, the coverage has been
calculated by using equation 8. In this equation, the
TrExecG(C) represents a set of transitions that are covered
in a control flow graph (CFG); TrG indicates the set of
transitions in a control flow graph (CFG). For the
transition coverage of test suite C, TrExecG(C) is defined
as the ratio of the transitions that could be executed by the

test suite (C) to the total number of transitions in the CFG
of a software activity diagram.
TrExecG(C)= | TrExecG|/ |TrG| . (8)
In this research work, in order to take the genetic
algorithm’s advantages of prioritizing the test cases, a
fitness criterion has been added. This criterion states that
the minimal number of test cases that could achieve a
maximum transition coverage TrExecp(C) should be
applied. Therefore, the following sub-section presents the
Revised Genetic Algorithm that solves the problem of
population ageing by prioritizing the test cases on the

f transition coverage criteria.

vised Genetic Algorithm
ection deals with a Revised Genetic Algorithm

and to prioritize the test cases. Accordingly, if the
population ageing occurs when a significant number of
populations are produced and the transition coverage is
not improved, in this case, the operation of population
regeneration should be triggered, so that a new population
is produced and the processes of the genetic algorithm are
executed successively.
2.3.1 Basic Population in Genetic Algorithm-
Based Software Testing
 In the GA-based software testing, the population in GA
is represented by individuals including the set of test cases
as shown in equation 9 with a transversal vector of
X={x1,1 x1, 2 …… x1,m} indicating the corresponding
test cases. Equation 10 shows the total populations with
Mpopi denoting the population in ith iteration [27].

X= �
x1,1 ⋯ x1,m
⋮ ⋱ ⋮

xn,1 ⋯ xn,m
� (9)

Mpopi= �
Mpop1
Mpop2

⋮
Mpopi

�. (10)

After the populations are initialized with respect to the
number of individuals, the generated test cases are
selected to be transmitted to the next generation on the
basis of the value of the selection factor’s value. For
instance, if the value of the selection factor is set to 0.7. It
implies that individuals with fitness value equal to or
greater than 70% will be selected to the next generation
and individuals with lesser fitness value will not be
transmitted [25], so only the best individuals will be
transmitted. As shown in equation 11, each individual
with 0.7 as a fitness value will be allocated in
Xtiselect
= � Xit if fitness(Xit ≥ fitness(the top 70% Xt))

 null else . (11)

The crossover process is a process other than the selection
applied in the genetic algorithm to find the optimal
solution. This process is governed by the value of the
crossover factor. For example, if the value of the
crossover factor is set to 0.9, it implies that two
individuals with 90% probability of performing crossover
operation are randomly selected [25]. Finally, in order to
diversify the search into a new area of the search space,
the elements of the selected individuals are randomly
mutated.

(4)

As shown in Equation 4, the ageing factor is influ-
enced by the increased number of generation (i). The
more regression test cases that do not increase the
coverage, the higher the degree of population ageing.
Consequently, the maturity of the population does not
mean that the population ageing will not happen. In
the same sense, if the population is not mature, there
is a possibility of occurrence of the population age-
ing on account of the interaction of genetic algorithm
with searching space.
On account of the ageing process, regression test
cases (individuals) could not improve the transition
coverage in software specifications space (activity
diagram). In this case, the operations of the genetic
algorithm will lose their ability to optimize the tran-
sition coverage. So, one of the objectives of this re-
search work is that, after generating a second popu-
lation, despite the current coverage of the population
is stagnate at the same stage, the population evolution
process is still anticipated to improve the coverage by
using some strategies.

2.2. Transition Coverage Based Software
Testing
The target of software testing with respect to the crite-
ria of transition coverage can be presented as follows:

TS= {G, I, A, C, T, Cov, Np(A)}. (5)

In Equation 5, G denotes the CFG of an activity dia-
gram under test; I is the input space; A represents the
adopted optimization algorithm; C denotes a suite of
test cases; T is a set of termination conditions; Cov
represents the test coverage and Np(A) represents
genetic iterations number. Furthermore:

Cov ={TrCovG(C)}. (6)

In Equation 6, the TrCovp(C) represents a transition
coverage. Further:

A = {E, S0, M, Sel, Cor, Mut, F}. (7)

In Equation 7, E represents the mode of genetic code;
P0 denotes the initial population; M denotes the pop-

ulation size; Sel indicates the selection factor; Cor
indicates the crossover factor; Mut indicates the mu-
tation factor and F represents the adoption fitness
function.
In the black-box software testing, the coverage has
been calculated by using Equation 8. In this equation,
the TrExecG(C) represents a set of transitions that
are covered in a control flow graph (CFG); TrG in-
dicates the set of transitions in a control flow graph
(CFG). For the transition coverage of test suite C,
TrExecG(C) is defined as the ratio of the transitions
that could be executed by the test suite (C) to the total
number of transitions in the CFG of a software activ-
ity diagram.

TrExecG(C)= | TrExecG|/ |TrG| . (8)

In this research work, in order to take the genetic al-
gorithm’s advantages of prioritizing the test cases, a
fitness criterion has been added. This criterion states
that the minimal number of test cases that could
achieve a maximum transition coverage TrExecp(C)
should be applied. Therefore, the following sub-sec-
tion presents the Revised Genetic Algorithm that
solves the problem of population ageing by prioritiz-
ing the test cases on the basis of transition coverage
criteria.

2.3. Revised Genetic Algorithm
This section deals with a Revised Genetic Algorithm
which is used to solve the problem of population age-
ing and to prioritize the test cases. Accordingly, if the
population ageing occurs when a significant number
of populations are produced and the transition cov-
erage is not improved, in this case, the operation of
population regeneration should be triggered, so that a
new population is produced and the processes of the
genetic algorithm are executed successively.

2.3.1. Basic Population in Genetic Algorithm-
Based Software Testing
 In the GA-based software testing, the population in
GA is represented by individuals including the set of
test cases as shown in Equation 9 with a transversal
vector of X={x1,1 x1, 2 …… x1,m} indicating the corre-
sponding test cases. Equation 10 shows the total pop-
ulations with Mpopi denoting the population in ith
iteration [27].

451Information Technology and Control 2021/3/50

presented in equation 3:
∑ ∑ nt,iNpopj

t=1
ij=1

∑ ∑ nt,i+1……..∑ ∑ nt,iNpopj
t=1

i+m
j=1

Npopj
t=1

i+1
j=1 +m. (3)

If the population includes m generations and the
population coverage is still the same, this situation
indicates that the population is ageing and trapped in the
optimal local solution [22, 38]. Equation 4 represents this
situation in which q denotes the ratio of the number of
newly produced regression test cases that do not improve
the coverage promotion in m generations in comparison
with a prior number of useful test cases (ageing factor).
q=
(the increased number of tc(i)

total number of tc)� *100%. (4)

As shown in equation four, the ageing factor is influenced
by the increased number of generation (i). The more
regression test cases that do not increase the coverage, the
higher the degree of population ageing. Consequently, the
maturity of the population does not mean that the
population ageing will not happen. In the same sense, if
the population is not mature, there is a possibility of
occurrence of the population ageing on account of the
interaction of genetic algorithm with searching space.
On account of the ageing process, regression test cases
(individuals) could not improve the transition coverage in
software specifications space (activity diagram). In this
case, the operations of the genetic algorithm will lose their
ability to optimize the transition coverage. So, one of the
objectives of this research work is that, after generating a
second population, despite the current coverage of the
population is stagnate at the same stage, the population
evolution process is still anticipated to improve the
coverage by using some strategies.
2.2 Transition Coverage Based Software
Testing
The target of software testing with respect to the criteria
of transition coverage can be presented as follows:
TS= {G, I, A, C, T, Cov, Np(A)}. (5)
In equation 5, G denotes the CFG of an activity diagram
under test; I is the input space; A represents the adopted
optimization algorithm; C denotes a suite of test cases; T
is a set of termination conditions; Cov represents the test
coverage and Np(A) represents genetic iterations number.
Furthermore:
Cov ={TrCovG(C)}. (6)
In equation 6, the TrCovp(C) represents a transition
coverage. Further:
A = {E, S0, M, Sel, Cor, Mut, F}. (7)
In equation 7, E represents the mode of genetic code; P0
denotes the initial population; M denotes the population
size; Sel indicates the selection factor; Cor indicates the
crossover factor; Mut indicates the mutation factor and F
represents the adoption fitness function.
In the black-box software testing, the coverage has been
calculated by using equation 8. In this equation, the
TrExecG(C) represents a set of transitions that are covered
in a control flow graph (CFG); TrG indicates the set of
transitions in a control flow graph (CFG). For the
transition coverage of test suite C, TrExecG(C) is defined
as the ratio of the transitions that could be executed by the

test suite (C) to the total number of transitions in the CFG
of a software activity diagram.
TrExecG(C)= | TrExecG|/ |TrG| . (8)
In this research work, in order to take the genetic
algorithm’s advantages of prioritizing the test cases, a
fitness criterion has been added. This criterion states that
the minimal number of test cases that could achieve a
maximum transition coverage TrExecp(C) should be
applied. Therefore, the following sub-section presents the
Revised Genetic Algorithm that solves the problem of
population ageing by prioritizing the test cases on the
basis of transition coverage criteria.

2.3 Revised Genetic Algorithm
This section deals with a Revised Genetic Algorithm
which is used to solve the problem of population ageing
and to prioritize the test cases. Accordingly, if the
population ageing occurs when a significant number of
populations are produced and the transition coverage is
not improved, in this case, the operation of population
regeneration should be triggered, so that a new population
is produced and the processes of the genetic algorithm are
executed successively.
2.3.1 Basic Population in Genetic Algorithm-
Based Software Testing
 In the GA-based software testing, the population in GA
is represented by individuals including the set of test cases
as shown in equation 9 with a transversal vector of
X={x1,1 x1, 2 …… x1,m} indicating the corresponding
test cases. Equation 10 shows the total populations with
Mpopi denoting the population in ith iteration [27].

X= �
x1,1 ⋯ x1,m
⋮ ⋱ ⋮

xn,1 ⋯ xn,m
� (9)

Mpopi= �
Mpop1
Mpop2

⋮
Mpopi

�. (10)

After the populations are initialized with respect to the
number of individuals, the generated test cases are
selected to be transmitted to the next generation on the
basis of the value of the selection factor’s value. For
instance, if the value of the selection factor is set to 0.7. It
implies that individuals with fitness value equal to or
greater than 70% will be selected to the next generation
and individuals with lesser fitness value will not be
transmitted [25], so only the best individuals will be
transmitted. As shown in equation 11, each individual
with 0.7 as a fitness value will be allocated in
Xtiselect
= � Xit if fitness(Xit ≥ fitness(the top 70% Xt))

 null else . (11)

The crossover process is a process other than the selection
applied in the genetic algorithm to find the optimal
solution. This process is governed by the value of the
crossover factor. For example, if the value of the
crossover factor is set to 0.9, it implies that two
individuals with 90% probability of performing crossover
operation are randomly selected [25]. Finally, in order to
diversify the search into a new area of the search space,
the elements of the selected individuals are randomly
mutated.

(9)

presented in equation 3:
∑ ∑ nt,iNpopj

t=1
ij=1

∑ ∑ nt,i+1……..∑ ∑ nt,iNpopj
t=1

i+m
j=1

Npopj
t=1

i+1
j=1 +m. (3)

If the population includes m generations and the
population coverage is still the same, this situation
indicates that the population is ageing and trapped in the
optimal local solution [22, 38]. Equation 4 represents this
situation in which q denotes the ratio of the number of
newly produced regression test cases that do not improve
the coverage promotion in m generations in comparison
with a prior number of useful test cases (ageing factor).
q=
(the increased number of tc(i)

total number of tc)� *100%. (4)

As shown in equation four, the ageing factor is influenced
by the increased number of generation (i). The more
regression test cases that do not increase the coverage, the
higher the degree of population ageing. Consequently, the
maturity of the population does not mean that the
population ageing will not happen. In the same sense, if
the population is not mature, there is a possibility of
occurrence of the population ageing on account of the
interaction of genetic algorithm with searching space.
On account of the ageing process, regression test cases
(individuals) could not improve the transition coverage in
software specifications space (activity diagram). In this
case, the operations of the genetic algorithm will lose their
ability to optimize the transition coverage. So, one of the
objectives of this research work is that, after generating a
second population, despite the current coverage of the
population is stagnate at the same stage, the population
evolution process is still anticipated to improve the
coverage by using some strategies.
2.2 Transition Coverage Based Software
Testing
The target of software testing with respect to the criteria
of transition coverage can be presented as follows:
TS= {G, I, A, C, T, Cov, Np(A)}. (5)
In equation 5, G denotes the CFG of an activity diagram
under test; I is the input space; A represents the adopted
optimization algorithm; C denotes a suite of test cases; T
is a set of termination conditions; Cov represents the test
coverage and Np(A) represents genetic iterations number.
Furthermore:
Cov ={TrCovG(C)}. (6)
In equation 6, the TrCovp(C) represents a transition
coverage. Further:
A = {E, S0, M, Sel, Cor, Mut, F}. (7)
In equation 7, E represents the mode of genetic code; P0
denotes the initial population; M denotes the population
size; Sel indicates the selection factor; Cor indicates the
crossover factor; Mut indicates the mutation factor and F
represents the adoption fitness function.
In the black-box software testing, the coverage has been
calculated by using equation 8. In this equation, the
TrExecG(C) represents a set of transitions that are covered
in a control flow graph (CFG); TrG indicates the set of
transitions in a control flow graph (CFG). For the
transition coverage of test suite C, TrExecG(C) is defined
as the ratio of the transitions that could be executed by the

test suite (C) to the total number of transitions in the CFG
of a software activity diagram.
TrExecG(C)= | TrExecG|/ |TrG| . (8)
In this research work, in order to take the genetic
algorithm’s advantages of prioritizing the test cases, a
fitness criterion has been added. This criterion states that
the minimal number of test cases that could achieve a
maximum transition coverage TrExecp(C) should be
applied. Therefore, the following sub-section presents the
Revised Genetic Algorithm that solves the problem of
population ageing by prioritizing the test cases on the
basis of transition coverage criteria.

2.3 Revised Genetic Algorithm
This section deals with a Revised Genetic Algorithm
which is used to solve the problem of population ageing
and to prioritize the test cases. Accordingly, if the
population ageing occurs when a significant number of
populations are produced and the transition coverage is
not improved, in this case, the operation of population
regeneration should be triggered, so that a new population
is produced and the processes of the genetic algorithm are
executed successively.
2.3.1 Basic Population in Genetic Algorithm-
Based Software Testing
 In the GA-based software testing, the population in GA
is represented by individuals including the set of test cases
as shown in equation 9 with a transversal vector of
X={x1,1 x1, 2 …… x1,m} indicating the corresponding
test cases. Equation 10 shows the total populations with
Mpopi denoting the population in ith iteration [27].

X= �
x1,1 ⋯ x1,m
⋮ ⋱ ⋮

xn,1 ⋯ xn,m
� (9)

Mpopi= �
Mpop1
Mpop2

⋮
Mpopi

�. (10)

After the populations are initialized with respect to the
number of individuals, the generated test cases are
selected to be transmitted to the next generation on the
basis of the value of the selection factor’s value. For
instance, if the value of the selection factor is set to 0.7. It
implies that individuals with fitness value equal to or
greater than 70% will be selected to the next generation
and individuals with lesser fitness value will not be
transmitted [25], so only the best individuals will be
transmitted. As shown in equation 11, each individual
with 0.7 as a fitness value will be allocated in
Xtiselect
= � Xit if fitness(Xit ≥ fitness(the top 70% Xt))

 null else . (11)

The crossover process is a process other than the selection
applied in the genetic algorithm to find the optimal
solution. This process is governed by the value of the
crossover factor. For example, if the value of the
crossover factor is set to 0.9, it implies that two
individuals with 90% probability of performing crossover
operation are randomly selected [25]. Finally, in order to
diversify the search into a new area of the search space,
the elements of the selected individuals are randomly
mutated.

(10)

After the populations are initialized with respect to
the number of individuals, the generated test cases
are selected to be transmitted to the next generation
on the basis of the value of the selection factor’s val-
ue. For instance, if the value of the selection factor is
set to 0.7. It implies that individuals with fitness val-
ue equal to or greater than 70% will be selected to the
next generation and individuals with lesser fitness
value will not be transmitted [25], so only the best in-
dividuals will be transmitted. As shown in Equation
11, each individual with 0.7 as a fitness value will be
allocated in

Xtiselect
= � Xit if fitness(Xit ≥ fitness(the top 70% Xt))

 null else .

The crossover process is a pro

(11)

The crossover process is a process other than the se-
lection applied in the genetic algorithm to find the op-
timal solution. This process is governed by the value
of the crossover factor. For example, if the value of the
crossover factor is set to 0.9, it implies that two indi-
viduals with 90% probability of performing crossover
operation are randomly selected [25]. Finally, in order
to diversify the search into a new area of the search
space, the elements of the selected individuals are
randomly mutated.

2.3.2. Coverage Oriented Fitness Function
In this paper, the criterion of transition coverage has
been used to measure the efficiency of the proposed
approach and is employed as the objective fitness val-
ue. As shown in Equation 12, in order to achieve in-
dividual evaluation, the sum of fitness value

2.3.2 Coverage Oriented Fitness Function
In this paper, the criterion of transition coverage has been
used to measure the efficiency of the proposed approach
and is employed as the objective fitness value. As shown
in equation 12, in order to achieve individual evaluation,
the sum of fitness value (∑ fi

Npopj
i=1) is converted to the

standard fitness value �fi,norm� [7].

fi, norm= fi
∑ fi

Npopj
i=1 .� (12)

2.3.3 The Proposed Algorithm
The revised genetic algorithm has been defined as the
following equation.
NGA= {Mp, Sel, Cor, Mut, R, Cov, Np(A), T }. (13)
The Mp denotes the individuals of a population; the Sel
represents the operation of selection; Cor denotes the
operation of crossover; Mut denotes the operation of
mutation; R represents the regeneration process; Cov
represents the testing coverage; the number of iteration is
presented as Np(A); and the termination condition is
presented as T.

Figure 4:
Algorithm of Revised GA

Input: Test Cases (Test Paths)
Output: prioritized test cases
q=0 // q is agent factor
first population p= test cases
while not last test case () do
while not termination() do
If not aging
 for i =1 to popSize do
 selection(p)
 offspring cross(p)
 offspring Mutation(p, offspring)

 fitness (offspring) // using 𝑓𝑓�,����= fi
∑ fi

Npopj
i=1

�

 end for
else

p = regenerate () // new population
end if
q = calculate aging factor
end while
remove the best test case
end while

As previously mentioned, when population ageing is
detected, the regeneration process is triggered to

randomly generate a new population. In this case, the past
population is relocated with the new one. However, the
selection is based on crossover and mutation process
which are used in the new population only if the new
population enhances the transition coverage. If the new
population cannot contribute towards the improvement in
the transition coverage, the population ageing will be
triggered resulting in the elimination of the population,
and the generation of a new population until the ageing
condition remains inconclusive. Figure 4 shows the new
algorithm based genetic algorithm in which the sub-
process of the ageing factor calculation and population
regeneration process is involved. In order to prioritize the
individuals (regression test cases), once the optimal
regression test case is obtained, it is removed from the
input list and saved in the prioritized regression test cases
list. Consequently, the revised algorithm is re-executed on
the remaining regression test cases.

3. Results Analysis
In order to introduce and validate the results from the
proposed approach, an experimental tool has been
constructed. This tool involves hardware layer, operating
system layer and application layer (tool). The hardware
layer and operating system layer have been implemented
by using Windows 8.1 Pro on a PC with i7 2.20 GHz CPU
and 4 GB RAM, and the application layer includes the
proposed tool which implements the proposed approach
by using Java programming language.

3.1 Experimental Results
The activity diagrams of the vending machine and ATM
machine have been applied previously in many software
engineering research works [9, 35, 32]. Therefore, they
have also been used in this research to illustrate the
processes of the proposed approach to generate and
prioritize regression test cases. As shown in Figure 5a, in
the Vending Machine System (VMS) a user (customer)
can select a type of drink, then the machine validates the
selection and checks for the availability of a product. If a
product is not available, the machine displays a message
and returns back the selection menu. Else the machine
displays a product price and then asks the user to insert
the coins. Consequently, the machine calculates the
deposited amount. If the deposited amount is insufficient,
the machine displays an error message and dispense back
the deposited coins or else, the vending machine dispenses
a product and returns back to the main menu. Figure 5a
shows the activity diagram of vending machine software,
where Figure 5b shows the activity diagram of withdrawal
function in the ATM system.

Figure 5a:

is converted to the standard fitness value

2.3.2 Coverage Oriented Fitness Function
In this paper, the criterion of transition coverage has been
used to measure the efficiency of the proposed approach
and is employed as the objective fitness value. As shown
in equation 12, in order to achieve individual evaluation,
the sum of fitness value (∑ fi

Npopj
i=1) is converted to the

standard fitness value �fi,norm� [7].

fi, norm= fi
∑ fi

Npopj
i=1 .� (12)

2.3.3 The Proposed Algorithm
The revised genetic algorithm has been defined as the
following equation.
NGA= {Mp, Sel, Cor, Mut, R, Cov, Np(A), T }. (13)
The Mp denotes the individuals of a population; the Sel
represents the operation of selection; Cor denotes the
operation of crossover; Mut denotes the operation of
mutation; R represents the regeneration process; Cov
represents the testing coverage; the number of iteration is
presented as Np(A); and the termination condition is
presented as T.

Figure 4:
Algorithm of Revised GA

Input: Test Cases (Test Paths)
Output: prioritized test cases
q=0 // q is agent factor
first population p= test cases
while not last test case () do
while not termination() do
If not aging
 for i =1 to popSize do
 selection(p)
 offspring cross(p)
 offspring Mutation(p, offspring)

 fitness (offspring) // using 𝑓𝑓�,����= fi
∑ fi

Npopj
i=1

�

 end for
else

p = regenerate () // new population
end if
q = calculate aging factor
end while
remove the best test case
end while

As previously mentioned, when population ageing is
detected, the regeneration process is triggered to

randomly generate a new population. In this case, the past
population is relocated with the new one. However, the
selection is based on crossover and mutation process
which are used in the new population only if the new
population enhances the transition coverage. If the new
population cannot contribute towards the improvement in
the transition coverage, the population ageing will be
triggered resulting in the elimination of the population,
and the generation of a new population until the ageing
condition remains inconclusive. Figure 4 shows the new
algorithm based genetic algorithm in which the sub-
process of the ageing factor calculation and population
regeneration process is involved. In order to prioritize the
individuals (regression test cases), once the optimal
regression test case is obtained, it is removed from the
input list and saved in the prioritized regression test cases
list. Consequently, the revised algorithm is re-executed on
the remaining regression test cases.

3. Results Analysis
In order to introduce and validate the results from the
proposed approach, an experimental tool has been
constructed. This tool involves hardware layer, operating
system layer and application layer (tool). The hardware
layer and operating system layer have been implemented
by using Windows 8.1 Pro on a PC with i7 2.20 GHz CPU
and 4 GB RAM, and the application layer includes the
proposed tool which implements the proposed approach
by using Java programming language.

3.1 Experimental Results
The activity diagrams of the vending machine and ATM
machine have been applied previously in many software
engineering research works [9, 35, 32]. Therefore, they
have also been used in this research to illustrate the
processes of the proposed approach to generate and
prioritize regression test cases. As shown in Figure 5a, in
the Vending Machine System (VMS) a user (customer)
can select a type of drink, then the machine validates the
selection and checks for the availability of a product. If a
product is not available, the machine displays a message
and returns back the selection menu. Else the machine
displays a product price and then asks the user to insert
the coins. Consequently, the machine calculates the
deposited amount. If the deposited amount is insufficient,
the machine displays an error message and dispense back
the deposited coins or else, the vending machine dispenses
a product and returns back to the main menu. Figure 5a
shows the activity diagram of vending machine software,
where Figure 5b shows the activity diagram of withdrawal
function in the ATM system.

Figure 5a:

 [7].

2.3.2 Coverage Oriented Fitness Function
In this paper, the criterion of transition coverage has been
used to measure the efficiency of the proposed approach
and is employed as the objective fitness value. As shown
in equation 12, in order to achieve individual evaluation,
the sum of fitness value (∑ fi

Npopj
i=1) is converted to the

standard fitness value �fi,norm� [7].

fi, norm= fi
∑ fi

Npopj
i=1 .� (12)

2.3.3 The Proposed Algorithm
The revised genetic algorithm has been defined as the
following equation.
NGA= {Mp, Sel, Cor, Mut, R, Cov, Np(A), T }. (13)
The Mp denotes the individuals of a population; the Sel
represents the operation of selection; Cor denotes the
operation of crossover; Mut denotes the operation of
mutation; R represents the regeneration process; Cov
represents the testing coverage; the number of iteration is
presented as Np(A); and the termination condition is
presented as T.

Figure 4:
Algorithm of Revised GA

Input: Test Cases (Test Paths)
Output: prioritized test cases
q=0 // q is agent factor
first population p= test cases
while not last test case () do
while not termination() do
If not aging
 for i =1 to popSize do
 selection(p)
 offspring cross(p)
 offspring Mutation(p, offspring)

 fitness (offspring) // using 𝑓𝑓�,����= fi
∑ fi

Npopj
i=1

�

 end for
else

p = regenerate () // new population
end if
q = calculate aging factor
end while
remove the best test case
end while

As previously mentioned, when population ageing is
detected, the regeneration process is triggered to

randomly generate a new population. In this case, the past
population is relocated with the new one. However, the
selection is based on crossover and mutation process
which are used in the new population only if the new
population enhances the transition coverage. If the new
population cannot contribute towards the improvement in
the transition coverage, the population ageing will be
triggered resulting in the elimination of the population,
and the generation of a new population until the ageing
condition remains inconclusive. Figure 4 shows the new
algorithm based genetic algorithm in which the sub-
process of the ageing factor calculation and population
regeneration process is involved. In order to prioritize the
individuals (regression test cases), once the optimal
regression test case is obtained, it is removed from the
input list and saved in the prioritized regression test cases
list. Consequently, the revised algorithm is re-executed on
the remaining regression test cases.

3. Results Analysis
In order to introduce and validate the results from the
proposed approach, an experimental tool has been
constructed. This tool involves hardware layer, operating
system layer and application layer (tool). The hardware
layer and operating system layer have been implemented
by using Windows 8.1 Pro on a PC with i7 2.20 GHz CPU
and 4 GB RAM, and the application layer includes the
proposed tool which implements the proposed approach
by using Java programming language.

3.1 Experimental Results
The activity diagrams of the vending machine and ATM
machine have been applied previously in many software
engineering research works [9, 35, 32]. Therefore, they
have also been used in this research to illustrate the
processes of the proposed approach to generate and
prioritize regression test cases. As shown in Figure 5a, in
the Vending Machine System (VMS) a user (customer)
can select a type of drink, then the machine validates the
selection and checks for the availability of a product. If a
product is not available, the machine displays a message
and returns back the selection menu. Else the machine
displays a product price and then asks the user to insert
the coins. Consequently, the machine calculates the
deposited amount. If the deposited amount is insufficient,
the machine displays an error message and dispense back
the deposited coins or else, the vending machine dispenses
a product and returns back to the main menu. Figure 5a
shows the activity diagram of vending machine software,
where Figure 5b shows the activity diagram of withdrawal
function in the ATM system.

Figure 5a:

(12)

2.3.3. The Proposed Algorithm
The revised genetic algorithm has been defined as the
following equation.

NGA= {Mp, Sel, Cor, Mut, R, Cov, Np(A), T }. (13)

The Mp denotes the individuals of a population; the
Sel represents the operation of selection; Cor denotes
the operation of crossover; Mut denotes the operation
of mutation; R represents the regeneration process;
Cov represents the testing coverage; the number of
iteration is presented as Np(A); and the termination
condition is presented as T.

Figure 4
Algorithm of Revised GA

2.3.2 Coverage Oriented Fitness Function
In this paper, the criterion of transition coverage has been
used to measure the efficiency of the proposed approach
and is employed as the objective fitness value. As shown
in equation 12, in order to achieve individual evaluation,
the sum of fitness value (∑ fi

Npopj
i=1) is converted to the

standard fitness value �fi,norm� [7].

fi, norm= fi
∑ fi

Npopj
i=1 .� (12)

2.3.3 The Proposed Algorithm
The revised genetic algorithm has been defined as the
following equation.
NGA= {Mp, Sel, Cor, Mut, R, Cov, Np(A), T }. (13)
The Mp denotes the individuals of a population; the Sel
represents the operation of selection; Cor denotes the
operation of crossover; Mut denotes the operation of
mutation; R represents the regeneration process; Cov
represents the testing coverage; the number of iteration is
presented as Np(A); and the termination condition is
presented as T.

Figure 4:
Algorithm of Revised GA

Input: Test Cases (Test Paths)
Output: prioritized test cases
q=0 // q is agent factor
first population p= test cases
while not last test case () do
while not termination() do
If not aging
 for i =1 to popSize do
 selection(p)
 offspring cross(p)
 offspring Mutation(p, offspring)

 fitness (offspring) // using 𝑓𝑓�,����= fi
∑ fi

Npopj
i=1

�

 end for
else

p = regenerate () // new population
end if
q = calculate aging factor
end while
remove the best test case
end while

As previously mentioned, when population ageing is
detected, the regeneration process is triggered to

randomly generate a new population. In this case, the past
population is relocated with the new one. However, the
selection is based on crossover and mutation process
which are used in the new population only if the new
population enhances the transition coverage. If the new
population cannot contribute towards the improvement in
the transition coverage, the population ageing will be
triggered resulting in the elimination of the population,
and the generation of a new population until the ageing
condition remains inconclusive. Figure 4 shows the new
algorithm based genetic algorithm in which the sub-
process of the ageing factor calculation and population
regeneration process is involved. In order to prioritize the
individuals (regression test cases), once the optimal
regression test case is obtained, it is removed from the
input list and saved in the prioritized regression test cases
list. Consequently, the revised algorithm is re-executed on
the remaining regression test cases.

3. Results Analysis
In order to introduce and validate the results from the
proposed approach, an experimental tool has been
constructed. This tool involves hardware layer, operating
system layer and application layer (tool). The hardware
layer and operating system layer have been implemented
by using Windows 8.1 Pro on a PC with i7 2.20 GHz CPU
and 4 GB RAM, and the application layer includes the
proposed tool which implements the proposed approach
by using Java programming language.

3.1 Experimental Results
The activity diagrams of the vending machine and ATM
machine have been applied previously in many software
engineering research works [9, 35, 32]. Therefore, they
have also been used in this research to illustrate the
processes of the proposed approach to generate and
prioritize regression test cases. As shown in Figure 5a, in
the Vending Machine System (VMS) a user (customer)
can select a type of drink, then the machine validates the
selection and checks for the availability of a product. If a
product is not available, the machine displays a message
and returns back the selection menu. Else the machine
displays a product price and then asks the user to insert
the coins. Consequently, the machine calculates the
deposited amount. If the deposited amount is insufficient,
the machine displays an error message and dispense back
the deposited coins or else, the vending machine dispenses
a product and returns back to the main menu. Figure 5a
shows the activity diagram of vending machine software,
where Figure 5b shows the activity diagram of withdrawal
function in the ATM system.

Figure 5a:

As previously mentioned, when population ageing is
detected, the regeneration process is triggered to ran-
domly generate a new population. In this case, the past
population is relocated with the new one. However, the

Information Technology and Control 2021/3/50452

selection is based on crossover and mutation process
which are used in the new population only if the new
population enhances the transition coverage. If the new
population cannot contribute towards the improvement
in the transition coverage, the population ageing will be
triggered resulting in the elimination of the population,
and the generation of a new population until the ageing
condition remains inconclusive. Figure 4 shows the new
algorithm based genetic algorithm in which the sub-pro-
cess of the ageing factor calculation and population re-
generation process is involved. In order to prioritize the
individuals (regression test cases), once the optimal re-
gression test case is obtained, it is removed from the in-
put list and saved in the prioritized regression test cases
list. Consequently, the revised algorithm is re-executed
on the remaining regression test cases.

3. Results Analysis
In order to introduce and validate the results from the
proposed approach, an experimental tool has been con-
structed. This tool involves hardware layer, operating
system layer and application layer (tool). The hardware
layer and operating system layer have been implement-
ed by using Windows 8.1 Pro on a PC with i7 2.20 GHz
CPU and 4 GB RAM, and the application layer includes
the proposed tool which implements the proposed ap-
proach by using Java programming language.

Figure 5a
The activity diagram of VMS

Figure 5b
The activity diagram of ATM

The activity diagram of VMS

As explained in phase one of the proposed approach, the
control flow graph has been automatically generated from
the activity diagram. Since each activity in the activity
diagram has been represented as a node in the control flow
graph and each interaction in the activity diagram has
been presented by an edge in the control flow graph, it is
worth noting that each decision in the activity diagram has
been traversed in two paths in the control flow graph
representing the true and false answers. Figures 6a-6b
present the control flow graphs generated from the activity
diagrams of the vending machine system and ATM
system, respectively.

Figure 5b

The activity diagram of ATM

Figure 6a

Control flow diagram of VMS

The activity diagram of VMS

As explained in phase one of the proposed approach, the
control flow graph has been automatically generated from
the activity diagram. Since each activity in the activity
diagram has been represented as a node in the control flow
graph and each interaction in the activity diagram has
been presented by an edge in the control flow graph, it is
worth noting that each decision in the activity diagram has
been traversed in two paths in the control flow graph
representing the true and false answers. Figures 6a-6b
present the control flow graphs generated from the activity
diagrams of the vending machine system and ATM
system, respectively.

Figure 5b

The activity diagram of ATM

Figure 6a

Control flow diagram of VMS

3.1. Experimental Results
The activity diagrams of the vending machine and
ATM machine have been applied previously in many
software engineering research works [9, 35, 32].
Therefore, they have also been used in this research
to illustrate the processes of the proposed approach
to generate and prioritize regression test cases. As
shown in Figure 5a, in the Vending Machine System
(VMS) a user (customer) can select a type of drink,
then the machine validates the selection and checks
for the availability of a product. If a product is not
available, the machine displays a message and re-
turns back the selection menu. Else the machine dis-
plays a product price and then asks the user to insert
the coins. Consequently, the machine calculates the

453Information Technology and Control 2021/3/50

The activity diagram of VMS

As explained in phase one of the proposed approach, the
control flow graph has been automatically generated from
the activity diagram. Since each activity in the activity
diagram has been represented as a node in the control flow
graph and each interaction in the activity diagram has
been presented by an edge in the control flow graph, it is
worth noting that each decision in the activity diagram has
been traversed in two paths in the control flow graph
representing the true and false answers. Figures 6a-6b
present the control flow graphs generated from the activity
diagrams of the vending machine system and ATM
system, respectively.

Figure 5b

The activity diagram of ATM

Figure 6a

Control flow diagram of VMS

Figure 6b
Control flow diagram of ATM

Consequently, the
proposed approach
provides an algorithm
(see the algorithm in
Figure 3) to produce
all paths in the control
flow graph
recursively. By
applying this
algorithm on the
control flow graph
generated from the
activity diagram of the
vending machine and
ATM, four paths
(regression test cases)
have been produced
from the CFG of VMS
and five paths from
the CFG of ATM see
Figures 7a-7b.

Figure 7a
Regression test cases

of VMS
Figure 7b
 Regression test cases of ATM

Finally, the Revised Genetic Algorithm has been applied
to prioritize the generated test paths (regression test
cases). Figure 8 presents the prioritized regression test
cases for both systems produced by the revised genetic
algorithm.

Figure 8a

Properitized regression test cases of VMS

Figure 8b
Properitized regression test cases of ATM

3.2 Validation of Results
The prioritized test cases resulted from the proposed
approach are evaluated using the average percentage
transition coverage (APTC) metric, which quantifies the
degree at which prioritized test cases cover the conditions.
Equation 14 is used to calculate the APTC.

APTC=1- ∑ TCmmi=1
mn + 1

2n , (14)

wherein T denotes the test suite under evaluation; n
represents test cases; m indicates the number of transitions
in the control flow graph and TCi shows the position of
the first test case in the test suite T that covers ith
transition.

Table 1

 APTC values and execution F for the prioritization approaches

Prioritization
approach

Values of
APTC (%)

Execution time

(millisecond)

Optimum order 55% 53

Random order 42% 45

GA 96.4% 53

BCA 94.7% 30

Proposed approach 100% 10

Figure 6a
Control flow diagram of VMS

Figure 6b
Control flow diagram of ATM

deposited amount. If the deposited amount is insuffi-
cient, the machine displays an error message and dis-
pense back the deposited coins or else, the vending ma-
chine dispenses a product and returns back to the main
menu. Figure 5a shows the activity diagram of vending
machine software, where Figure 5b shows the activity
diagram of withdrawal function in the ATM system.
As explained in phase one of the proposed approach,
the control flow graph has been automatically generat-
ed from the activity diagram. Since each activity in the
activity diagram has been represented as a node in the
control flow graph and each interaction in the activity
diagram has been presented by an edge in the control
flow graph, it is worth noting that each decision in the
activity diagram has been traversed in two paths in the
control flow graph representing the true and false an-
swers. Figures 6a-6b present the control flow graphs
generated from the activity diagrams of the vending
machine system and ATM system, respectively.
Consequently, the proposed approach provides an al-
gorithm (see the algorithm in Figure 3) to produce all
paths in the control flow graph recursively. By apply-
ing this algorithm on the control flow graph generat-
ed from the activity diagram of the vending machine
and ATM, four paths (regression test cases) have been
produced from the CFG of VMS and five paths from
the CFG of ATM see Figures 7a-7b.

Figure 7a
Regression test cases of VMS

Figure 6b
Control flow diagram of ATM

Consequently, the
proposed approach
provides an algorithm
(see the algorithm in
Figure 3) to produce
all paths in the control
flow graph
recursively. By
applying this
algorithm on the
control flow graph
generated from the
activity diagram of the
vending machine and
ATM, four paths
(regression test cases)
have been produced
from the CFG of VMS
and five paths from
the CFG of ATM see
Figures 7a-7b.

Figure 7a
Regression test cases

of VMS
Figure 7b
 Regression test cases of ATM

Finally, the Revised Genetic Algorithm has been applied
to prioritize the generated test paths (regression test
cases). Figure 8 presents the prioritized regression test
cases for both systems produced by the revised genetic
algorithm.

Figure 8a

Properitized regression test cases of VMS

Figure 8b
Properitized regression test cases of ATM

3.2 Validation of Results
The prioritized test cases resulted from the proposed
approach are evaluated using the average percentage
transition coverage (APTC) metric, which quantifies the
degree at which prioritized test cases cover the conditions.
Equation 14 is used to calculate the APTC.

APTC=1- ∑ TCmmi=1
mn + 1

2n , (14)

wherein T denotes the test suite under evaluation; n
represents test cases; m indicates the number of transitions
in the control flow graph and TCi shows the position of
the first test case in the test suite T that covers ith
transition.

Table 1

 APTC values and execution F for the prioritization approaches

Prioritization
approach

Values of
APTC (%)

Execution time

(millisecond)

Optimum order 55% 53

Random order 42% 45

GA 96.4% 53

BCA 94.7% 30

Proposed approach 100% 10

Figure 7b
Regression test cases of ATM

Figure 6b
Control flow diagram of ATM

Consequently, the
proposed approach
provides an algorithm
(see the algorithm in
Figure 3) to produce
all paths in the control
flow graph
recursively. By
applying this
algorithm on the
control flow graph
generated from the
activity diagram of the
vending machine and
ATM, four paths
(regression test cases)
have been produced
from the CFG of VMS
and five paths from
the CFG of ATM see
Figures 7a-7b.

Figure 7a
Regression test cases

of VMS
Figure 7b
 Regression test cases of ATM

Finally, the Revised Genetic Algorithm has been applied
to prioritize the generated test paths (regression test
cases). Figure 8 presents the prioritized regression test
cases for both systems produced by the revised genetic
algorithm.

Figure 8a

Properitized regression test cases of VMS

Figure 8b
Properitized regression test cases of ATM

3.2 Validation of Results
The prioritized test cases resulted from the proposed
approach are evaluated using the average percentage
transition coverage (APTC) metric, which quantifies the
degree at which prioritized test cases cover the conditions.
Equation 14 is used to calculate the APTC.

APTC=1- ∑ TCmmi=1
mn + 1

2n , (14)

wherein T denotes the test suite under evaluation; n
represents test cases; m indicates the number of transitions
in the control flow graph and TCi shows the position of
the first test case in the test suite T that covers ith
transition.

Table 1

 APTC values and execution F for the prioritization approaches

Prioritization
approach

Values of
APTC (%)

Execution time

(millisecond)

Optimum order 55% 53

Random order 42% 45

GA 96.4% 53

BCA 94.7% 30

Proposed approach 100% 10

Information Technology and Control 2021/3/50454

Figure 8a
Properitized regression test cases of VMS

Figure 8b
Properitized regression test cases of ATM

Finally, the Revised Genetic Algorithm has been ap-
plied to prioritize the generated test paths (regression
test cases). Figure 8 presents the prioritized regres-
sion test cases for both systems produced by the re-
vised genetic algorithm.

Figure 6b
Control flow diagram of ATM

Consequently, the
proposed approach
provides an algorithm
(see the algorithm in
Figure 3) to produce
all paths in the control
flow graph
recursively. By
applying this
algorithm on the
control flow graph
generated from the
activity diagram of the
vending machine and
ATM, four paths
(regression test cases)
have been produced
from the CFG of VMS
and five paths from
the CFG of ATM see
Figures 7a-7b.

Figure 7a
Regression test cases

of VMS
Figure 7b
 Regression test cases of ATM

Finally, the Revised Genetic Algorithm has been applied
to prioritize the generated test paths (regression test
cases). Figure 8 presents the prioritized regression test
cases for both systems produced by the revised genetic
algorithm.

Figure 8a

Properitized regression test cases of VMS

Figure 8b
Properitized regression test cases of ATM

3.2 Validation of Results
The prioritized test cases resulted from the proposed
approach are evaluated using the average percentage
transition coverage (APTC) metric, which quantifies the
degree at which prioritized test cases cover the conditions.
Equation 14 is used to calculate the APTC.

APTC=1- ∑ TCmmi=1
mn + 1

2n , (14)

wherein T denotes the test suite under evaluation; n
represents test cases; m indicates the number of transitions
in the control flow graph and TCi shows the position of
the first test case in the test suite T that covers ith
transition.

Table 1

 APTC values and execution F for the prioritization approaches

Prioritization
approach

Values of
APTC (%)

Execution time

(millisecond)

Optimum order 55% 53

Random order 42% 45

GA 96.4% 53

BCA 94.7% 30

Proposed approach 100% 10

Figure 6b
Control flow diagram of ATM

Consequently, the
proposed approach
provides an algorithm
(see the algorithm in
Figure 3) to produce
all paths in the control
flow graph
recursively. By
applying this
algorithm on the
control flow graph
generated from the
activity diagram of the
vending machine and
ATM, four paths
(regression test cases)
have been produced
from the CFG of VMS
and five paths from
the CFG of ATM see
Figures 7a-7b.

Figure 7a
Regression test cases

of VMS
Figure 7b
 Regression test cases of ATM

Finally, the Revised Genetic Algorithm has been applied
to prioritize the generated test paths (regression test
cases). Figure 8 presents the prioritized regression test
cases for both systems produced by the revised genetic
algorithm.

Figure 8a

Properitized regression test cases of VMS

Figure 8b
Properitized regression test cases of ATM

3.2 Validation of Results
The prioritized test cases resulted from the proposed
approach are evaluated using the average percentage
transition coverage (APTC) metric, which quantifies the
degree at which prioritized test cases cover the conditions.
Equation 14 is used to calculate the APTC.

APTC=1- ∑ TCmmi=1
mn + 1

2n , (14)

wherein T denotes the test suite under evaluation; n
represents test cases; m indicates the number of transitions
in the control flow graph and TCi shows the position of
the first test case in the test suite T that covers ith
transition.

Table 1

 APTC values and execution F for the prioritization approaches

Prioritization
approach

Values of
APTC (%)

Execution time

(millisecond)

Optimum order 55% 53

Random order 42% 45

GA 96.4% 53

BCA 94.7% 30

Proposed approach 100% 10

3.2. Validation of Results
The prioritized test cases resulted from the proposed
approach are evaluated using the average percentage
transition coverage (APTC) metric, which quantifies
the degree at which prioritized test cases cover the
conditions. Equation 14 is used to calculate the APTC.

Figure 6b
Control flow diagram of ATM

Consequently, the
proposed approach
provides an algorithm
(see the algorithm in
Figure 3) to produce
all paths in the control
flow graph
recursively. By
applying this
algorithm on the
control flow graph
generated from the
activity diagram of the
vending machine and
ATM, four paths
(regression test cases)
have been produced
from the CFG of VMS
and five paths from
the CFG of ATM see
Figures 7a-7b.

Figure 7a
Regression test cases

of VMS
Figure 7b
 Regression test cases of ATM

Finally, the Revised Genetic Algorithm has been applied
to prioritize the generated test paths (regression test
cases). Figure 8 presents the prioritized regression test
cases for both systems produced by the revised genetic
algorithm.

Figure 8a

Properitized regression test cases of VMS

Figure 8b
Properitized regression test cases of ATM

3.2 Validation of Results
The prioritized test cases resulted from the proposed
approach are evaluated using the average percentage
transition coverage (APTC) metric, which quantifies the
degree at which prioritized test cases cover the conditions.
Equation 14 is used to calculate the APTC.

APTC=1- ∑ TCmmi=1
mn + 1

2n , (14)

wherein T denotes the test suite under evaluation; n
represents test cases; m indicates the number of transitions
in the control flow graph and TCi shows the position of
the first test case in the test suite T that covers ith
transition.

Table 1

 APTC values and execution F for the prioritization approaches

Prioritization
approach

Values of
APTC (%)

Execution time

(millisecond)

Optimum order 55% 53

Random order 42% 45

GA 96.4% 53

BCA 94.7% 30

Proposed approach 100% 10

(14)

wherein T denotes the test suite under evaluation; n
represents test cases; m indicates the number of tran-
sitions in the control flow graph and TCi shows the
position of the first test case in the test suite T that
covers ith transition.
Table 1 includes APTC values and execution time to
each prioritization approach, where the proposed

prioritization technique has been compared with the
other four prioritization techniques. Here, the first
two approaches are considered as a control group
where other conditions are identical to other groups.
Optimum order: in this prioritization technique the
rate of fault detection is used to priorititize the test
cases.
Random order: in this priorization technique the test
cases are prioritized randomly.
GA: in the original genetic algorithm the mutation op-
erators are employed to prioritize the test cases.
Bee Colony Algorithm (BCA): in this technique, the
test cases are proiritized to enhance the execution
time and coverage [21].
The statistical results in the table show that the pro-
posed approach provides much transition coverage
with significantly less execution time in comparison
with the other techniques. It is worth mentioning
that, the proposed approach is better as it covers the
modified transitions in the control flow graph so the
modified transitions in the activity diagram of a use
case. Hence the proposed approach is better and of-
fers significant help in specific test cases prioritiza-
tion and providing faults earlier.
From the previous experimental results and analysis
of different aspects, the Revised Genetic Algorithm
clearly provides a more useful and efficient priori-
tization approach on average percentage transition
coverage (APTC) and execution time in compari-
son to other prioritization techniques as it achieves
more excellent test coverage with minimal regression
test cases. As shown in table 1, the original genetic
algorithm offers promising results in terms of per-
formance and coverage (53 milliseconds and 96.4%,

Table 1
APTC values and execution F for the prioritization approaches

Prioritization
approach

Values of
APTC (%)

Execution time
(millisecond)

Optimum order 55% 53

Random order 42% 45

GA 96.4% 53

BCA 94.7% 30

Proposed approach 100% 10

455Information Technology and Control 2021/3/50

respectively). Additionally, the BCA provides also
hopeful results in term of execution time and cover-
age (30 milliseconds and 94.7%, respectively). The
optimum order technique achieves only 55% cover-
age with 53 milliseconds of execution time and the
random order technique achieves 42% coverage with
45 milliseconds of execution time, where the run time
for each technique integrates the entire process of
automatic generating test cases and prioritizing such
test cases. However, the proposed technique offers
better results in term the execution time and coverage
than prioritization techniques. Furthermore, com-
paring to the Regeneration Genetic Algorithm (RGA)
by Yang et al. [38], the proposed technique provides
more test coverage rate and less execution time. In-
terestingly, the coverage rate and the execution time
for RGA are 95% and 24 milliseconds, but for the pro-
posed technique 100% and 10 milliseconds.
The possible reason for this enhancement is due to
the other techniques apply mutation operators and
their functions for exploring the whole search space
and sometimes it is hard for the other techniques to
find local optimal solutions that exist in a local search
space as compared with the proposed technique. On
the contrary, as compared with the other techniques,
the proposed technique employ the crossover opera-
tors to obtain the local optimal solutions, which may
be the reason for the better performance of the pro-
posed technique compared with the other techniques.

4. Conclusion
The test cases prioritization is an essential task to re-
duce the time and effort required in the test regression.
In order to obtain maximum transition coverage, this
research work has proposed an approach-based re-
vised GA to generate and prioritize the test cases gen-
erated from software specifications. five techniques of
prioritization of test cases have been empirically stud-

ied and their performances have been compared. The
performance of the proposed approach provides prom-
ising outcomes on both coverage and time criteria.
The proposed approach takes advantage of ability to
generate various test cases from software specifica-
tions (activity diagram) and to prioritize such test
cases on the basis of revised genetic algorithm. This
approach has been automated using the Java Lan-
guage. The necessity and benefit of applying a new
metric APTC as a fitness function in the revised ge-
netic algorithm is also shown in this proposed ap-
proach. Finally, the results from the empirical study
have been analyzed and compared with the original
genetic algorithm and with other techniques based
on APTC [25, 38]. It was then found that the proposed
approach is better and more efficient in maximizing
the coverage with less execution time and it avoids
the problem of population ageing that resulted from
the application of the genetic algorithm by trigger
the population regeneration method when the pop-
ulation ageing detected. Thus, these results provide
a good answer for the research question which was
formulated as: how does the proposed approach com-
pare in term of time, effort and coverage to the other
search-based approaches. Moreover, the experimen-
tal results from this research work confirmed also
the prior results stated in the software testing liter-
ature regarding the good performance of the genetic
algorithm [38]. However, the results indicate to some
interesting characteristics of the proposed approach
including minimizing the execution time and maxi-
mizing the transitions coverage.
The results of this study are promising. Thus, further
research work is required to support such findings.
Additionally, other specifications models such as
sequence diagrams and use case description model
should be studied and compared with the results from
this work. Considering the average of percentage of
the coverage, it could be extended to enhance regres-
sion test cases selection and prioritization.

References
1. Ahmad, T., Iqbal, J., Ashraf, A., Truscan, D., Porres, I.

Model-Based Testing Using UML Activity Diagrams:
A Systematic Mapping Study. Computer Science Re-
view, 2019, 33(1), 98-112. https://doi.org/10.1016/j.cos-
rev.2019.07.001

2. Alrawashed, T. A., Almomani, A., Althunibat, A.,
Tamimi, A. An Automated Approach to Generate Test
Cases From Use Case Description Model. Computer
Modeling in Engineering and Sciences, 2019, 119(3),
409-425. https://doi.org/10.32604/cmes.2019.04681

https://doi.org/10.1016/j.cosrev.2019.07.001
https://doi.org/10.1016/j.cosrev.2019.07.001
https://doi.org/10.32604/cmes.2019.04681

Information Technology and Control 2021/3/50456

3. Arora, P. K., Bhatia, R. Agent-Based Regression Test
Case Generation Using the Class Diagram, Use Cas-
es and Activity Diagram. Procedia Computer Sci-
ence, 2018, 125(1), 747-753. https://doi.org/10.1016/j.
procs.2017.12.096

4. Barisas, D., Bareiša, E. A Software Testing Approach
Based on Behavioral UML Models. Information Tech-
nology and Control, 2009, 38(2), 119-124. http://doi.
org/10.5755/J01.ITC.38.2.12094

5. Biswas, S., Mall, R., Satpathy, M., Sukumaran, S. Re-
gression Test Selection Techniques: A Survey. Infor-
matica, 2011, 35(3), 289-321. https://doi.org/10.1109/
ICSTW.2011.28

6. Booch, G., Rumbaugh, J., Jacobson, I. The Unified Mod-
eling Language User Guide. Addison-Wesley, Boston,
1999.

7. Chen, T. Y., Zhou, Z. Q. Adaptive Random Testing
Through Iterative Partitioning. Proceedings of Interna-
tional Conference on Reliable Software Technologies,
Berlin, Heidelberg, June 18-22, 2006, 155-166. https://
doi.org/10.1007/11767077_13

8. Dai, Y. S., Xie, M., Poh, K. L., Yang, B. Optimal Test-
ing-Resource Allocation with Genetic Algorithm for
Modular Software Systems. Journal of Systems and
Software, 2003, 66(1), 47-55. https://doi.org/10.1016/
S0164-1212(02)00062-6

9. Dalal, S., Hooda, S. Automated Test Sequence Gener-
ation of Aspect-Oriented Programs Based upon UML
Activity Diagram. International Journal of Engineer-
ing and Technology, 2017, 9(2), 1469-1474. https://doi.
org/10.21817/ijet/2017/v9i2/170902286

10. De Vito, G., Ferrucci, F., Gravino, C. Design and Automa-
tion of a COSMIC Measurement Procedure Based on
UML Models. Software and Systems Modeling, 2020,
19(1), 171-198. https://doi.org/10.1007/s10270-019-
00731-2

11. Dey, A., Pal, A., Long, H. V. Fuzzy Minimum Spanning
Tree with Interval Type 2 Fuzzy Arc Length: Formu-
lation and a New Genetic Algorithm. Soft Comput-
ing, 2020, 24(6), 3963-3974. https://doi.org/10.1007/
s00500-019-04166-1

12. Ekelund, E. D., Engström, E. Efficient Regression Test-
ing Based on Test History: An Industrial Evaluation.
In 2015 IEEE International Conference on Software
Maintenance and Evolution, (ICSME 2015), Bremen,
Germany, Sep 29- Oct 1, 2015 , 449-457. https://doi.
org/10.1109/ICSM.2015.7332496

13. Engström, E., Runeson, P. A Qualitative Survey of Re-
gression Testing Practices. Proceedings of Internation-
al Conference on Product Focused Software Process
Improvement, Limerick, Ireland, June 21-23, 2010,
3-16. https://doi.org/10.1007/978-3-642-13792-1_3

14. Girgis, M. R. Automatic Test Data Generation for Data
Flow Testing Using a Genetic Algorithm. Journal of
Universal Computer Science, 2005, 11(6), 898-915.
https://doi.org/10.3217/jucs-011-06-0898

15. Guo, K. Research on Location Selection Model of Dis-
tribution Network with Constrained Line Constraints
Based on Genetic Algorithm. Neural Computing and
Applications, 2020, 32(6), 1679-1689. https://doi.
org/10.1007/s00521-019-04257-y

16. Harikarthik, S. K., Palanisamy, V., Ramanathan, P. Op-
timal Test Suite Selection in Regression Testing with
Testcase Prioritization Using Modified Ann and Whale
Optimization Algorithm. Cluster Computing, 2019, 22(5),
11425-11434. https://doi.org/10.1007/s10586-017-1401-7

17. Kavitha, R., Sureshkumar, N. Test Case Prioritization
for Regression Testing Based on Severity of Fault. Inter-
national Journal on Computer Science and Engineer-
ing, 2010, 2(5), 1462-1466. https://doi.org/10.24297/
ijct.v9i3.6814

18. Keshanchi, B., Souri, A., Navimipour, N. J. An Improved
Genetic Algorithm for Task Scheduling in the Cloud
Environments Using the Priority Queues: Formal Ver-
ification, Simulation, and Statistical Testing. Journal
of Systems and Software, 2017, 124(1), 1-21. https://doi.
org/10.1016/j.jss.2016.07.006

19. Khan, R., Amjad, M., Srivastava, A. K. Generation of
Automatic Test Cases with Mutation Analysis and
Hybrid Genetic Algorithm. In 2017 3rd International
Conference on Computational Intelligence and Com-
munication Technology (CICT 2017), Ghaziabad,
India, Feb 9-10, 2017, 1-4. https://doi.org/10.1109/CI-
ACT.2017.7977265

20. Khurana, N., Chillar, R. S. Test Case Generation and Op-
timization Using UML Models and Genetic Algorithm.
Procedia Computer Science, 2015, 57(1), 996-1004.
https://doi.org/10.1016/j.procs.2015.07.502

21. Konsaard, P., Ramingwong, L. Total Coverage Based
Regression Test Case Prioritization Using Genetic
Algorithm. In 2015 12th International Conference on
Electrical Engineering/Electronics, Computer, Tele-
communications and Information Technology (EC-
TI-CON 2015), Hua Hin, Thailand, June 24-26, 2015,
1-6. https://doi.org/10.1109/ECTICon.2015.7207103

https://doi.org/10.1016/j.procs.2017.12.096
https://doi.org/10.1016/j.procs.2017.12.096
https://doi.org/10.1109/ICSTW.2011.28
https://doi.org/10.1109/ICSTW.2011.28
https://doi.org/10.1007/11767077_13
https://doi.org/10.1007/11767077_13
https://doi.org/10.1016/S0164-1212(02)00062-6
https://doi.org/10.1016/S0164-1212(02)00062-6
https://doi.org/10.21817/ijet/2017/v9i2/170902286
https://doi.org/10.21817/ijet/2017/v9i2/170902286
https://doi.org/10.1007/s10270-019-00731-2
https://doi.org/10.1007/s10270-019-00731-2
https://doi.org/10.1007/s00500-019-04166-1
https://doi.org/10.1007/s00500-019-04166-1
https://doi.org/10.1109/ICSM.2015.7332496
https://doi.org/10.1109/ICSM.2015.7332496
https://doi.org/10.1007/978-3-642-13792-1_3
https://doi.org/10.1007/s00521-019-04257-y
https://doi.org/10.1007/s00521-019-04257-y
https://doi.org/10.1007/s10586-017-1401-7
https://doi.org/10.24297/ijct.v9i3.6814
https://doi.org/10.24297/ijct.v9i3.6814
https://doi.org/10.1016/j.jss.2016.07.006
https://doi.org/10.1016/j.jss.2016.07.006
https://doi.org/10.1109/CIACT.2017.7977265
https://doi.org/10.1109/CIACT.2017.7977265
https://doi.org/10.1016/j.procs.2015.07.502
https://doi.org/10.1109/ECTICon.2015.7207103

457Information Technology and Control 2021/3/50

22. Kwon, N., Song, K., Ahn, Y., Park, M., Jang, Y. Mainte-
nance Cost Prediction for Aging Residential Buildings
Based on Case-Based Reasoning and Genetic Algo-
rithm. Journal of Building Engineering, 2020, 28(1),
101006. https://doi.org/10.1016/j.jobe.2019.101006

23. Li, Z., Harman, M., Hierons, R. M. Search Algorithms
for Regression Test Case Prioritization. IEEE Trans-
actions on Software Engineering, 2007, 33(4), 225-237.
https://doi.org/10.1109/TSE.2007.38

24. Lin, P., Bao, X., Shu, Z., Wang, X., Liu, J. Test Case Gen-
eration Based on Adaptive Genetic Algorithm. In 2012
International Conference on Quality, Reliability, Risk,
Maintenance, and Safety Engineering, (ICQR2MSE
2012), Chengdu, China, June 15-18, 2012, 863-866.
https://doi.org/10.1109/ICQR2MSE.2012.6246363

25. Mala, D. J., Mohan, V., Kamalapriya, M. Automated
Software Test Optimisation Framework-An Artificial
Bee Colony Optimisation-Based Approach. IET Soft-
ware, 2010, 4(5), 334-348. https://doi.org/10.1049/iet-
sen.2009.0079

26. Mani, P., Prasanna, M. Validation of Automated Test
Cases with Specification Path. Journal of Statistics and
Management Systems, 2017, 20(4), 535-542. https://
doi.org/10.1080/09720510.2017.1395173

27. Nguyen, C. D., Miles, S., Perini, A., Tonella, P., Harman,
M., Luck, M. Evolutionary Testing of Autonomous Soft-
ware Agents. Autonomous Agents and Multi-Agent
Systems, 2012, 25(2), 260-283. https://doi.org/10.1007/
s10458-011-9175-4

28. Panda, N., Acharya, A. A., Mohapatra, D. P. Test Scenario
Prioritization for Object-Oriented Systems Using UML
Diagram. International. Journal of System Assurance
Engineering and Management, 2019, 10(3), 316-325.
https://doi.org/10.1007/s13198-019-00759-z

29. Pressman, R. S. Software Engineering: A Practitioner’s
Approach. Palgrave macmillan, London, 2005.

30. Sahoo, R. K., Nanda, S. K., Mohapatra, D. P., Patra, M. R.
Model Driven Test Case Optimization of UML Combi-
national Diagrams Using Hybrid Bee Colony Algorithm.
International Journal of Intelligent Systems and Ap-
plications, 2017, 9(6), 43-54. https://doi.org/10.5815/
ijisa.2017.06.05

31. Sapna, P. G., Balakrishnan, A. An Approach for Generat-
ing Minimal Test Cases for Regression Testing. Proce-
dia Computer Science, 2015, 47(1), 188-196. https://doi.
org/10.1016/j.procs.2015.03.197

32. Sapna, P. G., Mohanty, H. Prioritization of Scenarios
Based on UML Activity Diagrams. In 2009 First Inter-
national Conference on Computational Intelligence,
Communication Systems and Networks, (CICSYN
2009), Indore, India, Jul 23-25, 2009, 271-276. https://
doi.org10.1109/CICSYN.2009.74

33. Solin, A., Särkkä, S. Hilbert Space Methods for Re-
duced-Rank Gaussian Process Regression. Statistics
and Computing, 2020, 30(2), 419-446. https://doi.
org/10.1007/s11222-019-09886-w

34. Sur, P., Chen, Y., Candès, E. J. The Likelihood Ratio Test
in High-Dimensional Logistic Regression is Asymp-
totically a Rescaled Chi-Square. Probability Theory
and Related Fields, 2019, 175(1), 487-558. https://doi.
org/10.1007/s00440-018-00896-9

35. Swain, R. K., Panthi, V., Behera, P. K. Generation of Test
Cases Using Activity Diagram. International journal of
computer science and informatics, 2013, 4(1), 35-44.
https://doi.org/10.47893/IJCSI.2014.1171

36. Vinitha, K., Preetha, S. A. Multi Objective RGA for In-
creasing the Coverage and Reducing the Loop State-
ments. International Journal of Research and Analyt-
ical Reviews (IJRAR), 2018, 5(4), 269-276. https://doi.
org/10.6084/m9.doi.one.IJRAR1904027

37. Vitiutinas, R., Silingas, D., Telksnys, L. Model-Driven
Plug-in Development for UML Based Modeling Sys-
tems. Information Technology and Control, 2011, 40(3),
191-201. https://doi.org/10.5755/j01.itc.40.3.627

38. Yang, S., Man, T., Xu, J., Zeng, F., Li, K. RGA: A Light-
weight and Effective Regeneration Genetic Algorithm
for Coverage-Oriented Software Test Data Generation.
Information and Software Technology, 2016, 76(1), 19-
30. https://doi.org/10.1016/j.infsof.2016.04.013

39. Yoo, S., Harman, M. Regression Testing Minimization,
Selection and Prioritization: A Survey. Software Test-
ing, Verification and Reliability, 2012, 22(2), 67-120.
https://doi.org/10.1002/stvr.430

This article is an Open Access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jobe.2019.101006
https://doi.org/10.1109/TSE.2007.38
https://doi.org/10.1109/ICQR2MSE.2012.6246363
https://doi.org/10.1049/iet-sen.2009.0079
https://doi.org/10.1049/iet-sen.2009.0079
https://doi.org/10.1080/09720510.2017.1395173
https://doi.org/10.1080/09720510.2017.1395173
https://doi.org/10.1007/s10458-011-9175-4
https://doi.org/10.1007/s10458-011-9175-4
https://doi.org/10.1007/s13198-019-00759-z
https://doi.org/10.5815/ijisa.2017.06.05
https://doi.org/10.5815/ijisa.2017.06.05
https://doi.org/10.1016/j.procs.2015.03.197
https://doi.org/10.1016/j.procs.2015.03.197
https://doi.org/10.1007/s11222-019-09886-w
https://doi.org/10.1007/s11222-019-09886-w
https://doi.org/10.1007/s00440-018-00896-9
https://doi.org/10.1007/s00440-018-00896-9
https://doi.org/10.47893/IJCSI.2014.1171
https://doi.org/10.5755/j01.itc.40.3.627
https://doi.org/10.1016/j.infsof.2016.04.013
https://doi.org/10.1002/stvr.430

