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Mathematical description for a complex signal is very important in engineering application but there are many 
challenges in reality. The emergence of the Generative Adversarial Network (GAN) shows the possibility to 
train a single neural network to be a Specific Signal Generator (SSG), which is only controlled by a random 
vector with several elements. However, there is no explicit criterion for the GAN training process to stop, and 
in real applications the training always stops after a certain big iteration. In this paper, a serious issue was 
discussed during the process to use GAN as a SSG. And, an explicit criterion for the GAN as a SSG to stop the 
training process were proposed. Several experiments were carried out to illustrate the issues mentioned above 
and the effectiveness of the stopping criterion proposed in this paper.
KEYWORDS: Generative Adversarial Network, Specific Signal Generator, Stopping Criterion. 

1. Introduction
As a practical tool, mathematics plays a very import-
ant role in engineering, especially in the field of signal 
processing which requires the aid of mathematical 
function to depict a specific signal. However, there are 
many signals with certain probability features which 
cannot be described by a single specific function, such 

as the spectrum, chromatographic wave, electroen-
cephalogram, seismic wave and so on. If there is a sin-
gle mathematical description which could depict a set 
of signals with certain probability characteristics, it 
would solve many problems in the field of signal pro-
cessing [8, 25].
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Normally, mathematical description can illustrates 
the relationship between independent variables and 
dependent variables. The Deep Neural Networks 
(DNN), which can be regarded as a special mathemat-
ical description. It has an information forward struc-
ture, where the data flows forward from the network 
inputs through many hidden units and eventually to 
the output blocks [7]. It is widely used to generate dif-
ferent signals by fitting the independent variables and 
the dependent variables to a certain extent. However, 
for DNN, too many hidden layers will cause gradient 
explosions. It also causes overfitting when the train-
ing samples are complex and limited.
While as another mathematical description, the deep 
generative model can learn probability distribution 
from a set of training data and then generate similar 
signals, images or text. The earliest deep generative 
models are Boltzmann Machines [13] and Restrict-
ed Boltzmann Machines (RBM). These two models 
consist of a visible layer and a hidden layer, which 
are stochastic neural network models [18] and had 
been applied in many domains such as dimension 
reduction, classification, collaborative filtering, fea-
ture learning and so on. Hinton proposed Deep Belief 
Networks (DBNs) [12] in 2006, which is extended 
from the RBMs and one of the first non-convolution 
models to successfully apply deep architecture train-
ing. The most successful application of DBNs was 
for image classification, where DBNs were used to 
extract feature representations. In 2013, Kingma et 
al. proposed the Variational Auto-Encoder (VAE) 
[15] that was a directed model using a well-estimat-
ed inference that could be trained purely using a gra-
dient-based approach. However, all the models that 
discussed above have same challenges of intractable 
functions or intractable inference, which in turn re-
stricts the effectiveness of these models [1]. In 2014, 
the emergence of the Generative Adversarial Net-
work (GAN) [10] brought a profound reformation in 
the field of deep generative model. Following, various 
GAN-based models were successfully applied to im-
age generation and editing, semi-supervised learning, 
and domain adaptation [29]. In 2014, Mirza and Osin-
dero proposed a Conditional Generative Adversarial 
Networks (CGAN) [20], which was a kind of generat-
ed confrontation model with conditional constraints. 
They performed the conditioning by feeding y into 
both the discriminator and generator as additional in-

put layer to produce samples with specific properties. 
This improvement had also been proved very effec-
tive, and also provide guidance for subsequent related 
work. Alec Radford et al. proposed a class of DCGAN 
(Deep Convolutional Generative Adversarial Net-
work) [21] in 2015, which used strided convolutions 
and fractional-strided convolutions as the structure 
of the discriminator and generator respectively in-
stead of the multilayer perceptron. The results of DC-
GAN proved that it was a relatively stable generative 
model. Arjovsky et al. [2] analyzed the properties of 
four different divergences and concluded that Wass-
erstein distance was more stable than Jensen-Shan-
non divergence. And then, WGANs was proposed 
based on Wasserstein distance. In particular, they 
also proved that WGAN could improve the stability of 
learning, get rid of problems like mode collapse, and 
provide meaningful learning curves useful for debug-
ging and hyperparameter searches. David Berthelot et 
al. [4] propose a new model (BEGAN) which used the 
equilibrium enforcing method paired with a loss de-
rived from the Wasserstein distance for training au-
to-encoder based Generative Adversarial Networks. 
This equilibrium concept could balance the power of 
the discriminator against the generator, making the 
resulting image more realistic and diverse. Mao et 
al. [19] used the least square loss function to replace 
the loss function of the original GAN for both the dis-
criminator and the generator, which alleviated the 
instability of GAN training, poor image quality and 
insufficient diversity to some extent. 
Based on the successful application of the GAN, it 
could be prospective to use the GAN to produce spe-
cific curves with certain probability distribution. The 
whole generating process is only controlled by a ran-
dom vector with several elements which are just like 
an independent variable for a mathematical equation. 
However, during the process of building a SSG based 
on the GAN, a serious issue, which will be illustrated 
in the experiments, was encountered: the best gener-
ator with expected curves was not the one that was 
created in the last iteration steps. For example, 10000 
steps were involved in the training process and each 
iteration would give a trained generator. However, 
the best generator was not always the 10000th one. 
Therefore, when the training process of SSG model 
should be stopped is a problem worthy of research. 
Stopping the training process in a suitable earlier it-
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eration would also reduce the training time. In order 
to solve the above issue, a method that how to find the 
appropriate stop iteration was designed in this paper.

2. Principle Analysis and Related Work
The SSG model used in this paper based on 1D GAN is 
introduced in Appendix A with discussions and anal-
ysis. However, just as various of GANs, the SSG model 
also faced the problem regarding when the training 
process should be stopped. 

As shown in Appendix A, the structure of SSG is con-
structed based on GAN, which is mainly composed of 
a discriminator (D) and a generator (G). The training 
process of SSG model is completed through the antag-
onistic game between the D and G. The value function 
of SSG is shown in Equation (1).
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The parameters of D and G are updated by alternat-
ing training of D and G until a stable state is reached: 
Nash equilibrium. At the Nash equilibrium point, the 
parameters of D and G reach a “check and balance” 
state. However, the Nash equilibrium point does not 
mean a global optimal solution, instead of a stable 
state after multiple games. 
The parameters of D are updated by ascending its sto-
chastic gradient which is descripted in Equation (2).
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The generator is trained by descending its stochastic 
gradient as in Equation (3) to produce data which are 
more similar as the training dataset.
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The theory of SSG is the same as GAN. According to 
[3], we know that when the generator is fixed, the op-
timal discriminator D can be obtained as:
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where datap  represents the real distribution, gp  rep-
resents the generative distribution. Then the min-
imax game in Equation (1) can be reformulated as 
Equation (5).
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So, the global minimum of the virtual training criteri-
on C(G) is achieved if and only if data gp p= , and then 
the C(G) can be reformulated as Equation (6).

( ) log(4) 2* ( || )data gC G JSD p p= − + . (6)

Equations (4)-(6) shows the process of finding the 
Nash equilibrium for GAN. Eventually, the generative 
loss can be equivalent to the JS divergence between 

datap  and gp . If two distributions have no overlap at 
all, or their overlap is negligible, the JS divergence is 
fixed as a constant log 2, which means the generator 
could not get the gradient information. This leads to 
the instability of GAN training.
In addition, we know that the gradient descent tech-
niques are typically designed to find a low value of 
a cost function, rather than to find the Nash equi-
librium of a game. Hence, when seeking for a Nash 
equilibrium, it may fail to converge [9], which will 
resulting the SSG model tend to miss the Nash equi-
librium point during the training process. In addition, 
the losses of D and G are always oscillate irregularly 
during searching for Nash equilibrium so that we also 
cannot judge when should to stop the training process 
according to the losses. Therefore, determining the 
convergence of GANs and stopping the training in ad-
vance is generally a difficult task. 
Typically, for various GANs, the number of epochs or 
visual inspection are the only practical ways to get a 
sense of how training has progressed in [4]. Many re-
searchers focused on qualitative comparison by com-
paring the visual quality of samples. Unfortunately, 
such approaches are subjective and possibly mislead-
ing. Therefore, Inception Score (IS) was proposed 
in [22] to quantitatively assess the performance of 
GANs which is based on the fact that a good model 
should generate samples for which, when evaluated 
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by the classifier, the class distribution has low entro-
py. IS measures the quality and diversity of generated 
samples based on Inception V3 training set—Ima-
geNet. Equation (7) shows the principle of IS:

~( ) exp( ( ( | ) || ( )))x p KLIS G E D p y x p y
θ

= , (7)

where ~x pθ  means that x  is an image obeying dis-
tribution of pθ , ( ( | ) || ( ))KLD p y x p y  is the KL diver-
gence between the ( | )p y x  and ( )p y . Images who con-
tain meaningful objects should have a condition class 
distribution ( | )p y x  with low entropy, and the model 
is expected to generate varied images, so the margin-
al class ( )p y  should have high entropy. Then there 
will be a large KL-divergence between the distribu-
tions ( | )p y x  and ( )p y , which will lead to a large IS. 
Inception Score is a good metric for evaluation that 
correlates very well with human judgment. However, 
it can’t reflect the distance between the real data and 
the generated data and whether the model overfits. 
Gurumurthy et al. [11] proposed Modified Inception 
Score (m-IS) and suggested to use a cross-entropy 
style score ( | ) log( ( | ))i jp y x p y x−  where jx  are sam-
ples from the same class as ix  based on the inception 
model’s output. Incorporating this term into the orig-
inal inception-score results in:

exp( [ [ ( ( | ) || ( | ))]])
i jx x KL i jE E D p y x p y x , (8)

which is calculated on a per-class basis and is then 
averaged over all classes. Essentially, m-IS can be 
viewed as a criterion for measuring both intra-class 
sample diversity as well as sample quality [3]. Mode 
Score (MS) [6] overcomes the drawback of the Incep-
tion score which is ignoring the prior distributions of 
the ground truth labels:

exp( [ ( ( | ) || ( ))] ( ( ) || ( )))train train
x KL KLE D p y x p y D p y p y− , (9)

where ( )trainp y  is the empirical distributions of labels 
computed from training data. Mode score adequately 
reflects the variety and visual quality of generated im-
ages [6]. Zhou et al. [30] proposed AM Score and ar-
gue that entropy terms in IS and MS are not suitable 
when the data is not evenly distributed over classes. 
They change the order of trainy  and ( | )p y x  in the two 
KL divergence terms in the MS which leads to a more 
sensible metric.

exp( [ ( ( ) || ( | ))] ( ( ) || ( )))train train
x KL KLE D p y p y x D p y p y− . (10)

Lucic et al. [16] proposed using Frechet Inception 
Distance (FID) as an indicator to evaluate the GAN 
model. FID used Inception V3 as a feature extractor 
that directly measured the distance between the dis-
tributions of the real data and generated data. The 
equation of FID is given by:
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where 2 (( , ), ( , ))w wd m C m C  represents the FID be-
tween the Gaussian with mean and covariance ( , )m C  
obtained from generated data and the Gaussian 
( , )w wm C  obtained from real data, ()Tr  is the trace of 
the matrix. If the mean and covariance of the gen-
erated data and the real data are the same, a smaller 
FID will be obtained, which also means that the two 
distributions are closer, the quality of the generated 
image is higher and the diversity is better. However, 
the problem of overfitting on large-scale data set as 
ImageNet remains unresolved. In addition, FID is 
based on feature extraction, which is de pendent on 
the presence or absence of certain features. Wang et 
al. [23] proposed an image retrieval measure to eval-
uate GANs. The main idea is to investigate images in 
the dataset that are badly modeled by a network. Im-
ages from a held-out test set as well as generated im-
ages are represented using a discriminatively trained 
CNN. The nearest neighbors of generated images in 
the test dataset are then retrieved. Zhang et al. [27] 
used an off-the-shelf classifier to assess the realism 
of synthesized images and then determine the quali-
ty of the generator. They put their fake colorized im-
ages to a VGG network that was trained on real color 
photos. If the classifier performs well, this indicates 
that the colorizations are accurate enough to be in-
formative about object class. Yang et al. [26] proposed 
two metrics, Adversarial Accuracy and Adversarial 
Divergence. They also proposed to compare ( | )gP y x  
and ( | )rP y x  instead of ( | )gP x y  and ( | )rP x y  which 
represent distributions of generated data and real 
data conditioned on all possible variables of interest y, 
e.g., category labels. Then two classifiers were trained 
from human annotations to approximate ( | )gP y x  and 

( | )rP y x  for different categories. Computes the classi-
fication accuracies achieved by the two classifiers on 



157Information Technology and Control 2021/1/50

a validation set. If ( )gP x  is close to ( )rP x , then similar 
accuracies are expected. Computes the KL diver-
gence between ( | )gP y x  and ( | )rP y x . The lower the 
adversarial divergence, the closer the two distribu-
tions. Zeng et al. [28] proposed to evaluate generative 
models in terms of low-level statistics of their gener-
ated images with respect to natural scenes. They con-
sidered four statistics including 1) the mean power 
spectrum, 2) the number of connected components in 
a given image area, 3) the distribution of random filter 
responses, and 4) the contrast distribution. Isola et al. 
[14] proposed the “FCN score” to evaluate the gener-
ative model by measure the quality of the generated 
images conditioned on an input segmentation map. 
They fed the generated images to the fully-convolu-
tional semantic segmentation network (FCN) [17] 
and then measured the error between the output seg-
mentation map and the ground truth segmentation 
mask. Berthelot et al. proposed a method in [4] that is 
derive a global measure of convergence by using the 
equilibrium concept, which can be formulated as:

( ) ( ) ( ( ))global GL x L x L G zγΜ = + − , (12)

where ()L  represents the loss for training a pixel-wise 
autoencoder and formulated as ( ) ( ) , {1,2}L v v D v η η= − ∈
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smaller globalΜ  is, the higher the convergence degree of 
the model. This measures can be used to determine 
when the network has reached its final state or if the 

model has collapsed. Totally, when a certain iteration 
is over, the methods discussed above all can be used 
to judge the quality of GAN. However, these methods 
mentioned above are all designed for images but not 
applicable to the SSG model. In 2017, Xiang and Li [24] 
proposed that using reconstruction error to evaluate 
generative models. Starting from an all-zero vector, 
they performed gradient descent on the latent code to 
find the one that minimizes the L2 norm between the 
samples generated from the code and the target ones. 
But only for the final trained model, they performed an 
extensive evaluation on a larger test set, with a larger 
number of steps. In view of the above methods are not 
applicable to the SSG model, we put forward a stopping 
criterion to stop the training process at the right time. 
The rest of this paper is organized as follows: In Section 
3, constructs the method to find the stopping criterion. 
Several experiments were carried out with discussions 
in Section 4 to demonstrate the performance of the SSG 
model and effectiveness of the proposed criterion. Con-
clusions and future works were drawn in Section 5.

3. Stopping Criterion
3.1. Framework of The Stopping Criterion
During the experiments of the SSG model, the prob-
lem of when the training process should be stopped 
was encountered, which would affect the training re-
sults seriously. In this section, the framework of the 
stopping criterion was proposed as demonstrated in 
Figure 1.

Figure 1
The method to find the stop iteration for training process
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There are two parts in Figure 1: the training part at the 
right side of the dash line and the judging part at the 
left. The notes in Figure 1 were descripted in Table 
1. After a certainly basic iteration step, for example 
the 100th iteration among the total 10000 steps, the 
judging part in Figure 1 began to operate. First, a sub-
group S with certain members is selected which are 
different from the training data sets. Then a group of 
vectors Z0=[(z01  z02 ... z0I], z0i∈Rnz  were initialized ran-
domly to generate curves Cith = [c1

ith  c2
ith ... cI

ith]  from 
the generator Gith, where the digital I equaled to the 
number contained in the above subgroup S. Follow-
ing, errors εith between C and S were calculated using 
the least squares norm of vectors. Then, the values 
of Z0 were updated by minimizing the errors εith with 
gradient methods until the values of all the elements 
in εith kept stable. Finally, the average value ε– of εith 
and the state of C and S are used to judge whether the 
training process at the right side would continue or 
not. If the value of ε– was less than a preset value δ, and  
C is similar to S in shape, the whole training process 
should stop and the current Gith could be a SSG mod-
el; otherwise, 100 more training step was required. In 
Section 3.2, the algorithm to update the vector Z0 in 
Figure 1 will be introduced.

passing through the trained well generator. If no suit-
able z  exists, that mean the generator was not well 
trained. The process of inferring z  from x  named 
inversion [5], which proposed by Antonia Creswell 
and Anil Anthony Bharath. This process can be for-
mulated as a minimization problem, as is shown in 
Equation (13).

  

𝐠𝐠𝒊𝒊𝒊𝒊𝒊𝒊 S patch of curves randomly generated from 𝑮𝑮𝒊𝒊𝒊𝒊𝒊𝒊  
𝛆𝛆𝒊𝒊𝒊𝒊𝒊𝒊 Errors between 𝐬𝐬 and 𝐠𝐠𝒊𝒊𝒊𝒊𝒊𝒊 
𝐳𝐳𝟎𝟎 Initial value for z to generate 𝐠𝐠𝒊𝒊𝒊𝒊𝒊𝒊 
ε� Average error for every 𝛆𝛆𝒊𝒊𝒊𝒊𝒊𝒊 

 
3.2 Algorithm of Model Inversion 

Ordinarily, curves represented in Z-space are often 
meaningful. So we can infer z from x  based on the 
well-trained generator. If given a target curve xX , we 
can infer its representation in the Z-space z Z , which can 
produces a curve very similar to x  when passing through the 
trained well generator. If no suitable z  exists, that mean the 
generator was not well trained. The process of inferring z  
from x  named inversion [Error! Reference source not 
found.], which proposed by Antonia Creswell and Anil 
Anthony Bharath. This process can be formulated as a 
minimization problem, as is shown in Equation (13). 

        * min logxz
G    z Ε z  .                  (13) 

Provided that the generator G( )z  is known, *z can be 
calculated via gradient descent methods. Therefore, based on 
the idea of [Error! Reference source not found., Error! 
Reference source not found.] we proposed the method in 
Figure 1 as the stopping criterion of SSG model. The 
inversion calculation step is detailed in Table 2. 

Table 2 
Algorithm 1 for inferring 

*z from x  
Algorithm 1: Algorithm for Inferring * z Z ,  
1 *~ ( )ZP zz  
2 while NOT converged do 
3 ( log[ ( )] (1 ) log[1 ( )])x G z x G z     L ; 
4 * *

z  z z L ; 
5 end 
6 return *z  
 
4 Results and Discussion  

4.1 Results and Discussion of The SSG Model 

In Appendix A we introduced the SSG model, and this 
section we will show its related experiments. In experiments, 
four sets of signal were generated which include sinusoidal 
waves, triangular waves, square waves and sawtooth waves. 
As shown in Figure 2, the signals were truncated between 0 
and 10. The sampling frequency was selected as 1/12.8, 
which gives 128 points for every curve. To make the 
generated curves more random, moving the curves along the 
x-axis, and the numbers of the curves are 128. The parameter 
of “nz” was set as 3 and 10 respectively. 10000 iterations 
were adopted in the training process. The results were shown 
in Figure 3, Figure 4 and Figure 5. In Figure 3 and Figure 4 
the sinusoidal waves and triangular waves with “nz”=3 and 

“nz”=10. There are square waves and sawtooth waves with 
“nz”=3 in Figure 5.  

Figure 2 
Four different of signal data sets 

 
(a) Sinusoidal wave                (b) Triangular wave 

 
(c) Square wave                       (d) Sawtooth wave 

Figure 3 
Sinusoidal waves and triangular waves produced from the G 
under vector z with “nz”=3 

 
 (a) Results for sinusoidal wave  

 
(b) Results for triangular wave 

 
(c) Results for sinusoidal wave and triangular wave 

Figure 4 
Sinusoidal waves and triangular waves produced from the G 
under vector z with “nz”=10. 

. (13)

Provided that the generator G( )z  is known, *z can be 
calculated via gradient descent methods. Therefore, 
based on the idea of [5, 23] we proposed the method in 
Figure 1 as the stopping criterion of SSG model. The 
inversion calculation step is detailed in Table 2.

4. Results and Discussion 

4.1. Results and Discussion of The SSG Model
In Appendix A we introduced the SSG model, and 
this section we will show its related experiments. 
In experiments, four sets of signal were generated 
which include sinusoidal waves, triangular waves, 
square waves and sawtooth waves. As shown in 
Figure 2, the signals were truncated between 0 and 
10. The sampling frequency was selected as 1/12.8, 
which gives 128 points for every curve. To make the 
generated curves more random, moving the curves 
along the x-axis, and the number of the curves is 128. 
The parameter of “nz” was set as 3 and 10 respec-
tively. 10000 iterations were adopted in the training 
process. The results were shown in Figure 3, Fig-
ure 4 and Figure 5. Figure 3 and Figure 4 show the 
sinusoidal waves and triangular waves with “nz”=3 
and “nz”=10. There are square waves and sawtooth 
waves with “nz”=3 in Figure 5. 

Table 1 
The notes of Figure 1

Note Description

X Training data set

S A patch of signals selected randomly different from X

Dith The discriminator at the ith iteration

Gith The generator at the ith iteration

gith S patch of curves randomly generated from Gith 

εith Errors between s and gith

z0 Initial value for z to generate gith

ε– Average error for every εith

3.2. Algorithm of Model Inversion
Ordinarily, curves represented in Z-space are often 
meaningful. So we can infer z  from x based on the 
well-trained generator. If given a target curve x∈X, 
we can infer its representation in the Z-space ∈z Z, 
which can produces a curve very similar to x  when 

Table 2
Algorithm 1 for inferring z*from X

Algorithm 1: Algorithm for Inferring * ∈z Z , 

1 * ~ ( )ZP zz
2 while NOT converged do
3 ( log[ ( )] (1 ) log[1 ( )])x G z x G z∗ ∗← − + − −L ;
4 * *

zα← − ∇z z L ;
5 end
6 return *z
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Figure 2
Four different of signal data sets

  

𝐠𝐠𝒊𝒊𝒊𝒊𝒊𝒊 S patch of curves randomly generated from 𝑮𝑮𝒊𝒊𝒊𝒊𝒊𝒊  
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In experiments, Gaussian curves, which are trun-
cated between o and 100, was used to make it more 
diverse. The parameter of “nz” is set from 1 to 20, 
and Figure 6 shows some of the training curves and 
the generated curves for “nz”=20 which indicated 
that it is difficult for SSG model to learn its distri-

Figure 4
Sinusoidal waves and triangular waves produced from the G under vector z with “nz”=10

Figure 5
Square waves and sawtooth waves produced from the G under vector z with “nz”=3

  

 

 

 

Figure 5 
Square waves and sawtooth waves produced from the G 
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In experiments, Gaussian curves, which are truncated 
between o and 100, was used to make it more diverse. The 
parameter of “nz” is set from 1 to 20, and Figure 6 shows 
some of the training curves and the generated curves for 

“nz”=20 which indicated that it is difficult for SSG model to 
learn its distributions to generate high quality Gaussian 
curves. However, by using the method proposed in Figure 1 
in this paper, training can be stopped at the appropriate time, 
so that the relatively good Gaussian curves can be generated 
and then applied in a specific context. 

 

Figure 6 
Gaussian curves for training and produced from the G under 
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The results demonstrate: 

(1) When the training reached a certain long iteration step, 
the curves given by the trained generator under random 
vector z  have the same shape feature as those in the training 
dataset. This result illustrated that the generator had 
remembered the probability distribution of the training data 
set.  

(2) The dimension of the random vector z  has obviously 
influence on the results for the different curves to some 
extent. As shown in Figure 3 /4 (b) and (c), there is obvious 
difference in shape which could be observed by human eyes, 
especially for the triangular waves when “nz”=10. So, the 
shapes of sinusoidal waves and triangular waves that given 
by the SSG model could be controlled by three scalars.  

(3) The SSG model could describe piecewise function. 
The triangular waves, square waves and sawtooth waves, 
which cannot be depicted by a single mathematical function. 
But as shown in Figure 3 (b) and Figure 5, they could be 
generated by a single network. Moreover, the shape of these 
piecewise curves could be controlled only by scalars of z . 
For different curves, the dimension of “nz” and the number 
of training samples are crucial. For example, the sawtooth 

  

 

 

 

Figure 5 
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butions to generate high quality Gaussian curves. 
However, by using the method proposed in Figure 
1 in this paper, training can be stopped at the ap-
propriate time, so that the relatively good Gaussian 
curves can be generated and then applied in a spe-
cific context.
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The results demonstrate:
1 When the training reached a certain long iteration 

step, the curves given by the trained generator un-
der random vector Z have the same shape feature as 
those in the training dataset. This result illustrated 
that the generator had remembered the probability 
distribution of the training data set. 

2 The dimension of the random vector Z has obvious-
ly influence on the results for the different curves 
to some extent. As shown in Figure 3 /4 (b) and (c), 
there is obvious difference in shape which could be 
observed by human eyes, especially for the triangu-
lar waves when “nz”=10. So, the shapes of sinusoidal 
waves and triangular waves that given by the SSG 
model could be controlled by three scalars. 

3 The SSG model could describe piecewise function. 
The triangular waves, square waves and sawtooth 
waves, which cannot be depicted by a single math-
ematical function. But as shown in Figure 3 (b) 
and Figure 5, they could be generated by a single 
network. Moreover, the shape of these piecewise 
curves could be controlled only by scalars of Z. 
For different curves, the dimension of “nz” and the 
number of training samples are crucial. For exam-
ple, the sawtooth waves with “nz”=3 and the trian-
gular waves with “nz”=10 both have low quality.

4 The SSG model could produce curves which have 
different shape features. When both the sinusoi-
dal waves and the triangular waves were used in 
the training process simultaneously, the generator 
could produce both of these two kinds of signals. 

Figure 6
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Although we have conclusions above, we also encoun-
tered the issue that the best generator with wanted 
curves is not the one with the final iteration steps. 
In Section 3, we introduced the method to resolve it. 
Hence, more experiments were given to show the ef-
fectiveness for our method to find the stop condition 
for the GAN training in Section 4.2.

4.2. Experiments to Find The Condition of 
Stopping Training 

We divided the experiments into two groups. For the 
first group, four kinds of samples were involved in the 
training, including sinusoidal wave with the ampli-
tude is 0.3 and 0.7; the triangular wave with the am-
plitude is 0.4 and 0.8. The dimensions of “nz” are set 
as from 1 to 5. The other group are various Gaussian 
curves, and the dimensions of “nz” were set from 5 to 
20. In order to verify the issue proposed above, 10000 
iterations were adopted in the training process. The 
average errors  ε–  of every generator were recorded. 
In Figure 7 shows the losses curves of D and G when 
“nz”=3 and “nz”=5 of first group. The losses curves of 
D and G when “nz”=10 and “nz”=20 of second group 
showed in Figure 8. We can see that both D and G were 
not converge, but oscillates up and down constantly. 
This is why we can’t terminate the training process 
of SSG model at any time by observing the loss curve. 
Therefore, the method proposed in Figure 1 can serve 
as a criterion and several experiments will be per-
formed to prove it.



Information Technology and Control 2021/1/50162

After training, the inversion experiment was divided 
into two groups and the subgroup curve S is chosen 
randomly that is different from the training data set. 
For the experiments of the first group, including sinu-

Figure 7
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soidal wave with the amplitude of 0.4 and triangular 
wave with the amplitude of 0.7. The numbers of both 
kinds were set as 64. For the experiment of the other 
group, the randomly generated Gaussian curves were 
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ed curves were list in Table 3 and Table 4. From the 
results we can see:
1 Regardless of the value of nz, the best generators 

were found much earlier than the last iteration. In 
Figure 9, the generated curves were much better at 
the 5000th iteration than that at the 9999th one. The 
error, with the value of 0.00595, was also found at 
the 5000th iteration in the Table 3. The same situa-
tion was also found in Figure 10.

used as S. The batchsize was set as 128 and the learn-
ing rate α was 2e-4. 
For the first group, the top 10 of target curves and re-
constructed curves with “nz”=3 and “nz”=5 were il-
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curve, the generated curves were much better at 
the 4000th iteration than that at the 9999th one. As 
showed in Table 4, the error at the 4000th iteration 
arrive the smallest value. So, the experiments 
verified the effectiveness of the method proposed 
in Figure 1. 

Figure 10 
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target curves by inversion when the dimension of 
“nz” was greater than 10. 

4 The method descripted in Figure 1 could be used 
as the judgment for the training process to stop. 
When the value of  ε–  became small enough or sta-
ble, the generator could be considered as a well-

trained network, which could be used as a SSG 
model to generate curves similar as the training 
dataset.

5 Stopping the training process timely would short-
en the training iteration and save time, which 
could be a practical technology in real application, 
especially with the requirement of short time.
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Figure 12
The second group of selected curves, S, and reconstructed curves C at different iteration when “nz”=20

Table 3
Errors between reconstructed curves and selected curves when “nz”=3 and “nz”=5 of the first group inversion experiment

Nz Calculation results

3

Step 3000 4000 5000 9999

Errors 0.00621 0.00361 0.00595 0.00668

Top 10 average Errors 0.00099 0.00287 0.00079 0.00274

5

Step 3000 4000 5000 9999

Errors 0.00098 0.00239 0.00144 0.00143

Top 10 average Errors 0.00122 0.00196 0.00178 0.00252

  

 
  

 

 
  

Table 3 
Errors between reconstructed curves and selected curves 
when “nz”=3 and “nz”=5 of the first group inversion 
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Step 3000 4000 5000 9999 

Errors  0.0009
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0.0023
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average 
Errors 
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0.0025
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Table 4 
Errors between reconstructed curves and selected curves 
when “nz”=10 and “nz”=20 of the second group inversion 
experiment 

Nz Calculation results 
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Errors 0.0047
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average 
Errors 
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0.0003
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0.0011
5 

0.0002
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20 
Step 3000 4000 5000 9999 

Errors  0.0020
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0.0011
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0.0021
0 

0.0056
1 

Top 10 
average 
Errors 

0.0032
1 

0.0000
8 

0.0063
3 

0.0045
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5 Conclusions and Future Work 

5.1 Conclusions 

In this paper, several experiments were performed to 
demonstrate that the SSG model could generate different 
signals according to the training data set. During this process, 
however, there is a tricky problem about when the training 
process should be stopped. So the stopping criterion of the 
training process was proposed based on the model inversion 
technology. This criterion give a clear judgment for training 
stop instead of a fixed large iteration, which could avoid 
unnecessary calculation in the excrescent iterations. And then, 
experiments also shown that the training of the SSG can be 
stopped in time. 

5.2 Future Works 

Although the results of this paper show promising research 
prospect, deeper researches are still needed in following 
fields: 

(1) For the experiments of finding the stopping criterion, 
we used the method of inversion, which need to calculate the 
error between the samples and the reconstructed curves to 
update the 𝒁𝒁𝒁𝒁0. However, this process does not stop until the 
error ε� is small or stable, and it often needs to be iterated for 
about 25,000 times, which wasting the time. Therefore, we 
can try to use some swarm optimization algorithms to reduce 
the time. 

(2) The learning data sets used in the experiments in this 
paper are relatively simple. The results only proved the 
possibility for the 1D GAN to be trained as a SSG model. 
More researches with complex data sets are needed to make 
the SSG model more practicable, such as, spectrum and other 
signals that are not periodic and more diverse.  

(3) From the experimental results we can see that it is 
harder for SSG to generate high-quality samples of Gaussian 
curves. However, using the method in Figure 1 can find the 
relatively better one of 10,000 iterations and generate 
reconstructed curves that are closer to the target curves. Thus, 
it is necessary to further explore the reasons. In addition, 
improvement of the 1D GAN model itself could be also 
involved. 

 (4) The theoretical interpretation of the SSG model should 
be studied. The criterion for choosing a suitable dimension 
for the random vector z  has not been discussed in this paper 
clearly. Larger dimension can express more information but 
need more time to calculate. So, different dimensions should 
be found for different curves that are suitable for them in the 
future.  
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we used the method of inversion, which need to calculate the 
error between the samples and the reconstructed curves to 
update the 𝒁𝒁𝒁𝒁0. However, this process does not stop until the 
error ε� is small or stable, and it often needs to be iterated for 
about 25,000 times, which wasting the time. Therefore, we 
can try to use some swarm optimization algorithms to reduce 
the time. 

(2) The learning data sets used in the experiments in this 
paper are relatively simple. The results only proved the 
possibility for the 1D GAN to be trained as a SSG model. 
More researches with complex data sets are needed to make 
the SSG model more practicable, such as, spectrum and other 
signals that are not periodic and more diverse.  

(3) From the experimental results we can see that it is 
harder for SSG to generate high-quality samples of Gaussian 
curves. However, using the method in Figure 1 can find the 
relatively better one of 10,000 iterations and generate 
reconstructed curves that are closer to the target curves. Thus, 
it is necessary to further explore the reasons. In addition, 
improvement of the 1D GAN model itself could be also 
involved. 

 (4) The theoretical interpretation of the SSG model should 
be studied. The criterion for choosing a suitable dimension 
for the random vector z  has not been discussed in this paper 
clearly. Larger dimension can express more information but 
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Table 4
Errors between reconstructed curves and selected curves when “nz”=10 and “nz”=20 of the second group inversion experiment

Nz Calculation results

10

Step 5000 6000 7000 9999

Errors 0.00474 0.00262 0.00147 0.00316

Top 10 average Errors 0.00159 0.00039 0.00115 0.00021

20

Step 3000 4000 5000 9999

Errors 0.00200 0.00110 0.00210 0.00561

Top 10 average Errors 0.00321 0.00008 0.00633 0.00454

5. Conclusions and Future Work
5.1. Conclusions

In this paper, several experiments were performed 
to demonstrate that the SSG model could generate 
different signals according to the training data set. 
During this process, however, there is a tricky problem 
about when the training process should be stopped. 
So the stopping criterion of the training process was 
proposed based on the model inversion technology. 
This criterion give a clear judgment for training stop 
instead of a fixed large iteration, which could avoid 
unnecessary calculation in the excrescent iterations. 
And then, experiments also shown that the training of 
the SSG can be stopped in time.

5.2. Future Works

Although the results of this paper show promising re-
search prospect, deeper researches are still needed in 
following fields:
1 For the experiments of finding the stopping crite-

rion, we used the method of inversion, which need 
to calculate the error between the samples and the 
reconstructed curves to update the Z0. However, 
this process does not stop until the error  ε–  is small 

or stable, and it often needs to be iterated for about 
25,000 times, which wasting the time. Therefore, 
we can try to use some swarm optimization algo-
rithms to reduce the time.

2 The learning data sets used in the experiments in 
this paper are relatively simple. The results only 
proved the possibility for the 1D GAN to be trained 
as a SSG model. More researches with complex 
data sets are needed to make the SSG model more 
practicable, such as, spectrum and other signals 
that are not periodic and more diverse. 

3 From the experimental results we can see that it is 
harder for SSG to generate high-quality samples of 
Gaussian curves. However, using the method in Fig-
ure 1 can find the relatively better one of 10,000 it-
erations and generate reconstructed curves that are 
closer to the target curves. Thus, it is necessary to fur-
ther explore the reasons. In addition, improvement of 
the 1D GAN model itself could be also involved.

4 The theoretical interpretation of the SSG mod-
el should be studied. The criterion for choosing a 
suitable dimension for the random vector Z has not 
been discussed in this paper clearly. Larger dimen-
sion can express more information but need more 
time to calculate. So, different dimensions should 
be found for different curves that are suitable for 
them in the future. 
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Appendix A
The SSG is composed of a discriminator D and a gen-
erator G. The symbol of x  is the data from samples, 
and the G( )z  is a data generated from the generator G, 
which has the same size as x . The data x  with the 
label of ‘1’ and the data G( )z  with the label of ‘0’ are 
putted into the discriminator D for training, which 
makes D be a more powerful network to distinguish 
between x  and G( )z . 
The training process is executed with mini batch, 
which is demonstrated in Table A1. The cyclic vari-
able i controls the iteration. The parameter of k is set 
manually, which is usually used as ‘1’. The subscript m 
for z and x is the number of every mini batch. The su-
perscript n is the dimensionality of the random vari-
able z. And the h is the dimensionality of the data x, 
whose dimensionality may be bigger than one.

s. In this paper, the generator G after trained is called 
SSG model.
The structures of the discriminator D and the gen-
erator G are demonstrated in Figure A1, and the pa-
rameters of the layers are list in Table A2. Both the 
discriminator D and the generator G are composed 
of 6 layers and the parameters of the layers are list in 
Table A2. For the discriminator D, the first 5 layers 
consist of a convolution unit, a batch normalization 
unit and an activated function of “leaky_relu”. The 
6th layer of the discriminator consists of a convolu-
tion unit which gives a scalar result, and a sigmoid 
function to activate the scalar result. Because there 
is only one dimension for every signal, the input 
channel, which is noted as “Ic” in Table A2, of the 
first convolution unit is set as ‘1’. The output chan-
nel, which is noted as “Oc”, for the first convolution 
unit is set as ‘64’, which means 64 kernels are used 
in this unit. The input channel should equal to the 
output channel of the previous layer. So the input 
channel and output channel of the rest convolution 
units are set as shown in Table A2. The dimension of 
signal in the samples is set as 128, so there will be a 
scalar coming out at the 6th convolution unit. Final-
ly, the sigmoid function is used to process the scalar. 
In the first 5 layers, a batch normalization unit and 
an activate unit are adopted after every convolution 

Table A1 
Algorithm A1 for SSG training

Algorithm A1: The number of steps to apply to the 
discriminator, k, is a hyperparameter. 

For i in iterations
For k in steps

• Give Z=[z1, z2,…,zm]∈Rn×m according to certain prior 
probability distribution

• Get X=[x1, x2,…,xm]∈Rh×m from samples 
• Update the discriminator by ascending its stochastic 

gradient
End for

• Give Z=[z1, z2,…,zm]∈Rn×m again
• Update the generator by descending its stochastic 

gradient
End for

The purpose of this paper is to build a generative 
model to produce the specific signal with certain 
probability distribution. Firstly, some known signals 
or curves of s with certain length are generated to be 
the samples. Then, a 1D GAN model which is suitable 
for the above signals of s is constructed to train the 
generator G. After the update of all the parameters, 
the generator G could be used to produce a signal with 
the same probability distribution as the above signals 

Figure A1
The structure of the SSG model

(b) the structure of the generator
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signal with the same probability distribution as the above 
signals s. In this paper, the generator G after trained is called 
SSG model. 
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normalization unit and an activated function of “leaky_relu”. 
The 6th layer of the discriminator consists of a convolution 
unit which gives a scalar result, and a sigmoid function to 
activate the scalar result. Because there is only one dimension 
for every signal, the input channel, which is noted as “Ic” in 
Table A2, of the first convolution unit is set as ‘1’. The output 
channel, which is noted as “Oc”, for the first convolution unit 
is set as ‘64’, which means 64 kernels are used in this unit. 
The input channel should equal to the output channel of the 
previous layer. So the input channel and output channel of 
the rest convolution units are set as shown in Table A2. The 
dimension of signal in the samples is set as 128, so there will 
be a scalar coming out at the 6th convolution unit. Finally, the 
sigmoid function is used to process the scalar. In the first 5 
layers, a batch normalization unit and an activate unit are 
adopted after every convolution unit. In Table A2, the 
column K, S, P, represent the kernel size, stride and padding 
size respectively. The combination of (4, 2, 1) for these three 
parameters in the first 5 layers could make the output length, 
which is noted as “On”, equal to the half of the input length, 
which is noted as “In”; and the values of (4, 1, 0) for these 
three parameters in the 6th layer could make the output length 
of the 6th layer to be ‘1’.  

 Similar as the discriminator, the generator also has 6 
layers.  The difference is that the convolution unit is replaced 
by a transposed convolution (or deconvolution) unit, which 
realizes the inverse calculation of the convolution. The 
generator G will produce a signal of a curve regardless of the 
dimension of the input random vector z, which is noted as “nz” 
in Table A2. In the experiments, several different values are 
given to the parameter of “nz” for comparison.  

The note of “NS” in Table A2 is the negative slope of the 
activation function. And the parameter of “inplace” is set as 
“True” to change the input data. 

 

 

Table A2 
Parameters for the discriminator and the generator 

L 
Discriminator Generator 

Ic Oc In On K S P Inplace NS Ic Oc In On K S P Inplace NS 
1 1 64 128 64 4 2 1 True 0.2 nz 1024 1 4 4 1 0 True 0.2 
2 64 128 64 32 4 2 1 True 0.2 1024 512 4 8 4 2 1 True 0.2 
3 128 256 32 16 4 2 1 True 0.2 512 256 8 16 4 2 1 True 0.2 
4 256 512 16 8 4 2 1 True 0.2 256 128 16 32 4 2 1 True 0.2 
5 512 1024 8 4 4 2 1 True 0.2 128 64 32 64 4 2 1 True 0.2 
6 1024 1 4 1 4 1 0 -- -- 64 128 64 128 4 2 1 -- -- 
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The input channel should equal to the output channel of the 
previous layer. So the input channel and output channel of 
the rest convolution units are set as shown in Table A2. The 
dimension of signal in the samples is set as 128, so there will 
be a scalar coming out at the 6th convolution unit. Finally, the 
sigmoid function is used to process the scalar. In the first 5 
layers, a batch normalization unit and an activate unit are 
adopted after every convolution unit. In Table A2, the 
column K, S, P, represent the kernel size, stride and padding 
size respectively. The combination of (4, 2, 1) for these three 
parameters in the first 5 layers could make the output length, 
which is noted as “On”, equal to the half of the input length, 
which is noted as “In”; and the values of (4, 1, 0) for these 
three parameters in the 6th layer could make the output length 
of the 6th layer to be ‘1’.  

 Similar as the discriminator, the generator also has 6 
layers.  The difference is that the convolution unit is replaced 
by a transposed convolution (or deconvolution) unit, which 
realizes the inverse calculation of the convolution. The 
generator G will produce a signal of a curve regardless of the 
dimension of the input random vector z, which is noted as “nz” 
in Table A2. In the experiments, several different values are 
given to the parameter of “nz” for comparison.  

The note of “NS” in Table A2 is the negative slope of the 
activation function. And the parameter of “inplace” is set as 
“True” to change the input data. 

 

 

Table A2 
Parameters for the discriminator and the generator 

L 
Discriminator Generator 

Ic Oc In On K S P Inplace NS Ic Oc In On K S P Inplace NS 
1 1 64 128 64 4 2 1 True 0.2 nz 1024 1 4 4 1 0 True 0.2 
2 64 128 64 32 4 2 1 True 0.2 1024 512 4 8 4 2 1 True 0.2 
3 128 256 32 16 4 2 1 True 0.2 512 256 8 16 4 2 1 True 0.2 
4 256 512 16 8 4 2 1 True 0.2 256 128 16 32 4 2 1 True 0.2 
5 512 1024 8 4 4 2 1 True 0.2 128 64 32 64 4 2 1 True 0.2 
6 1024 1 4 1 4 1 0 -- -- 64 128 64 128 4 2 1 -- -- 

 

 

(a) the structure of the discriminator
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Table A2
Parameters for the discriminator and the generator

L
Discriminator Generator

Ic Oc In On K S P Inplace NS Ic Oc In On K S P Inplace NS

1 1 64 128 64 4 2 1 True 0.2 nz 1024 1 4 4 1 0 True 0.2

2 64 128 64 32 4 2 1 True 0.2 1024 512 4 8 4 2 1 True 0.2

3 128 256 32 16 4 2 1 True 0.2 512 256 8 16 4 2 1 True 0.2

4 256 512 16 8 4 2 1 True 0.2 256 128 16 32 4 2 1 True 0.2

5 512 1024 8 4 4 2 1 True 0.2 128 64 32 64 4 2 1 True 0.2

6 1024 1 4 1 4 1 0 -- -- 64 128 64 128 4 2 1 -- --

unit. In Table A2, the column K, S, P, represent the 
kernel size, stride and padding size respectively. The 
combination of (4, 2, 1) for these three parameters in 
the first 5 layers could make the output length, which 
is noted as “On”, equal to the half of the input length, 
which is noted as “In”; and the values of (4, 1, 0) for 
these three parameters in the 6th layer could make 
the output length of the 6th layer to be ‘1’. 
Similar as the discriminator, the generator also has 
6 layers.  The difference is that the convolution unit 

is replaced by a transposed convolution (or deconvo-
lution) unit, which realizes the inverse calculation of 
the convolution. The generator G will produce a sig-
nal of a curve regardless of the dimension of the input 
random vector z, which is noted as “nz” in Table A2. 
In the experiments, several different values are given 
to the parameter of “nz” for comparison. 
The note of “NS” in Table A2 is the negative slope of 
the activation function. And the parameter of “in-
place” is set as “True” to change the input data.




