
153Information Technology and Control 2021/1/50

A Stopping Criterion for the
Training Process of the Specific
Signal Generator

ITC 1/50
Information Technology
and Control
Vol. 50 / No. 1 / 2021
pp. 153-170
DOI 10.5755/j01.itc.50.1.27351

A Stopping Criterion for the Training Process of the Specific Signal Generator

Received 2020/07/18 Accepted after revision 2021/02/18

 http://dx.doi.org/10.5755/j01.itc.50.1.27351

HOW TO CITE: Cui, L., Zhao, P., Li, B., Li, X., Wang, K., Yang, Y., Bu, X., Fei, S. (2021). A Stopping Criterion for the Training Process of
the Specific Signal Generator. Information Technology and Control, 50(1), 153-170. https://doi.org/10.5755/j01.itc.50.1.27351

Corresponding author: clzh0308@126.com

Lizhi Cui, Peichao Zhao, Bingfeng Li, Xinwei Li, Keping Wang,
Yi Yang, Xuhui Bu, Shumin Fei
School of Electrical Engineering and Automation, Henan Polytechnic University, Henan Jiaozuo 454000, China

Mathematical description for a complex signal is very important in engineering application but there are many
challenges in reality. The emergence of the Generative Adversarial Network (GAN) shows the possibility to
train a single neural network to be a Specific Signal Generator (SSG), which is only controlled by a random
vector with several elements. However, there is no explicit criterion for the GAN training process to stop, and
in real applications the training always stops after a certain big iteration. In this paper, a serious issue was
discussed during the process to use GAN as a SSG. And, an explicit criterion for the GAN as a SSG to stop the
training process were proposed. Several experiments were carried out to illustrate the issues mentioned above
and the effectiveness of the stopping criterion proposed in this paper.
KEYWORDS: Generative Adversarial Network, Specific Signal Generator, Stopping Criterion.

1. Introduction
As a practical tool, mathematics plays a very import-
ant role in engineering, especially in the field of signal
processing which requires the aid of mathematical
function to depict a specific signal. However, there are
many signals with certain probability features which
cannot be described by a single specific function, such

as the spectrum, chromatographic wave, electroen-
cephalogram, seismic wave and so on. If there is a sin-
gle mathematical description which could depict a set
of signals with certain probability characteristics, it
would solve many problems in the field of signal pro-
cessing [8, 25].

mailto:obodovskiy58@gmail.com

Information Technology and Control 2021/1/50154

Normally, mathematical description can illustrates
the relationship between independent variables and
dependent variables. The Deep Neural Networks
(DNN), which can be regarded as a special mathemat-
ical description. It has an information forward struc-
ture, where the data flows forward from the network
inputs through many hidden units and eventually to
the output blocks [7]. It is widely used to generate dif-
ferent signals by fitting the independent variables and
the dependent variables to a certain extent. However,
for DNN, too many hidden layers will cause gradient
explosions. It also causes overfitting when the train-
ing samples are complex and limited.
While as another mathematical description, the deep
generative model can learn probability distribution
from a set of training data and then generate similar
signals, images or text. The earliest deep generative
models are Boltzmann Machines [13] and Restrict-
ed Boltzmann Machines (RBM). These two models
consist of a visible layer and a hidden layer, which
are stochastic neural network models [18] and had
been applied in many domains such as dimension
reduction, classification, collaborative filtering, fea-
ture learning and so on. Hinton proposed Deep Belief
Networks (DBNs) [12] in 2006, which is extended
from the RBMs and one of the first non-convolution
models to successfully apply deep architecture train-
ing. The most successful application of DBNs was
for image classification, where DBNs were used to
extract feature representations. In 2013, Kingma et
al. proposed the Variational Auto-Encoder (VAE)
[15] that was a directed model using a well-estimat-
ed inference that could be trained purely using a gra-
dient-based approach. However, all the models that
discussed above have same challenges of intractable
functions or intractable inference, which in turn re-
stricts the effectiveness of these models [1]. In 2014,
the emergence of the Generative Adversarial Net-
work (GAN) [10] brought a profound reformation in
the field of deep generative model. Following, various
GAN-based models were successfully applied to im-
age generation and editing, semi-supervised learning,
and domain adaptation [29]. In 2014, Mirza and Osin-
dero proposed a Conditional Generative Adversarial
Networks (CGAN) [20], which was a kind of generat-
ed confrontation model with conditional constraints.
They performed the conditioning by feeding y into
both the discriminator and generator as additional in-

put layer to produce samples with specific properties.
This improvement had also been proved very effec-
tive, and also provide guidance for subsequent related
work. Alec Radford et al. proposed a class of DCGAN
(Deep Convolutional Generative Adversarial Net-
work) [21] in 2015, which used strided convolutions
and fractional-strided convolutions as the structure
of the discriminator and generator respectively in-
stead of the multilayer perceptron. The results of DC-
GAN proved that it was a relatively stable generative
model. Arjovsky et al. [2] analyzed the properties of
four different divergences and concluded that Wass-
erstein distance was more stable than Jensen-Shan-
non divergence. And then, WGANs was proposed
based on Wasserstein distance. In particular, they
also proved that WGAN could improve the stability of
learning, get rid of problems like mode collapse, and
provide meaningful learning curves useful for debug-
ging and hyperparameter searches. David Berthelot et
al. [4] propose a new model (BEGAN) which used the
equilibrium enforcing method paired with a loss de-
rived from the Wasserstein distance for training au-
to-encoder based Generative Adversarial Networks.
This equilibrium concept could balance the power of
the discriminator against the generator, making the
resulting image more realistic and diverse. Mao et
al. [19] used the least square loss function to replace
the loss function of the original GAN for both the dis-
criminator and the generator, which alleviated the
instability of GAN training, poor image quality and
insufficient diversity to some extent.
Based on the successful application of the GAN, it
could be prospective to use the GAN to produce spe-
cific curves with certain probability distribution. The
whole generating process is only controlled by a ran-
dom vector with several elements which are just like
an independent variable for a mathematical equation.
However, during the process of building a SSG based
on the GAN, a serious issue, which will be illustrated
in the experiments, was encountered: the best gener-
ator with expected curves was not the one that was
created in the last iteration steps. For example, 10000
steps were involved in the training process and each
iteration would give a trained generator. However,
the best generator was not always the 10000th one.
Therefore, when the training process of SSG model
should be stopped is a problem worthy of research.
Stopping the training process in a suitable earlier it-

file:///D:/Darbai/Maketavimas/Zurnalas/Informacines%20technologijos/2021%20nr1/doi/javascript:;
file:///D:/Darbai/Maketavimas/Zurnalas/Informacines%20technologijos/2021%20nr1/doi/javascript:;
file:///D:/Darbai/Maketavimas/Zurnalas/Informacines%20technologijos/2021%20nr1/doi/javascript:;
file:///D:/Darbai/Maketavimas/Zurnalas/Informacines%20technologijos/2021%20nr1/doi/javascript:;

155Information Technology and Control 2021/1/50

eration would also reduce the training time. In order
to solve the above issue, a method that how to find the
appropriate stop iteration was designed in this paper.

2. Principle Analysis and Related Work
The SSG model used in this paper based on 1D GAN is
introduced in Appendix A with discussions and anal-
ysis. However, just as various of GANs, the SSG model
also faced the problem regarding when the training
process should be stopped.

As shown in Appendix A, the structure of SSG is con-
structed based on GAN, which is mainly composed of
a discriminator (D) and a generator (G). The training
process of SSG model is completed through the antag-
onistic game between the D and G. The value function
of SSG is shown in Equation (1).

~ ()

~ ()

min max (,) [log ()]

[log(1 (()))]
data

z

x p xG D

z p z

V D G D x

D G Z

= Ε +

Ε −
(1)

The parameters of D and G are updated by alternat-
ing training of D and G until a stable state is reached:
Nash equilibrium. At the Nash equilibrium point, the
parameters of D and G reach a “check and balance”
state. However, the Nash equilibrium point does not
mean a global optimal solution, instead of a stable
state after multiple games.
The parameters of D are updated by ascending its sto-
chastic gradient which is descripted in Equation (2).

() ()

1

1 [log () log(1 (()))]
d

m
i i

i
D x D G z

mθ
=

∇ + −∑ . (2)

The generator is trained by descending its stochastic
gradient as in Equation (3) to produce data which are
more similar as the training dataset.

()

1

1 log(1 (()))
g

m
i

i
D G z

mθ
=

∇ −∑ . (3)

The theory of SSG is the same as GAN. According to
[3], we know that when the generator is fixed, the op-
timal discriminator D can be obtained as:

* ()
()

() ()
data

G
data g

p x
D x

p x p x
=

+
, (4)

where datap represents the real distribution, gp rep-
resents the generative distribution. Then the min-
imax game in Equation (1) can be reformulated as
Equation (5).

* *
~ ~

* *
~ ~

~ ~

() max (,)

[log ()] [log(1 (()))]

[log ()] [log(1 ())]

()()
[log] [log].

() () () ()

data z

data g

data z

D

x p G z p G

x p G x p G

gdata
x p z p

data g data g

C G V G D

D x D G z

D x D x

p xp x
p x p x p x p x

=

= Ε +Ε −

= Ε +Ε −

= Ε +Ε
+ +

(5)

So, the global minimum of the virtual training criteri-
on C(G) is achieved if and only if data gp p= , and then
the C(G) can be reformulated as Equation (6).

() log(4) 2* (||)data gC G JSD p p= − + . (6)

Equations (4)-(6) shows the process of finding the
Nash equilibrium for GAN. Eventually, the generative
loss can be equivalent to the JS divergence between

datap and gp . If two distributions have no overlap at
all, or their overlap is negligible, the JS divergence is
fixed as a constant log 2, which means the generator
could not get the gradient information. This leads to
the instability of GAN training.
In addition, we know that the gradient descent tech-
niques are typically designed to find a low value of
a cost function, rather than to find the Nash equi-
librium of a game. Hence, when seeking for a Nash
equilibrium, it may fail to converge [9], which will
resulting the SSG model tend to miss the Nash equi-
librium point during the training process. In addition,
the losses of D and G are always oscillate irregularly
during searching for Nash equilibrium so that we also
cannot judge when should to stop the training process
according to the losses. Therefore, determining the
convergence of GANs and stopping the training in ad-
vance is generally a difficult task.
Typically, for various GANs, the number of epochs or
visual inspection are the only practical ways to get a
sense of how training has progressed in [4]. Many re-
searchers focused on qualitative comparison by com-
paring the visual quality of samples. Unfortunately,
such approaches are subjective and possibly mislead-
ing. Therefore, Inception Score (IS) was proposed
in [22] to quantitatively assess the performance of
GANs which is based on the fact that a good model
should generate samples for which, when evaluated

Information Technology and Control 2021/1/50156

by the classifier, the class distribution has low entro-
py. IS measures the quality and diversity of generated
samples based on Inception V3 training set—Ima-
geNet. Equation (7) shows the principle of IS:

~() exp(((|) || ()))x p KLIS G E D p y x p y
θ

= , (7)

where ~x pθ means that x is an image obeying dis-
tribution of pθ , ((|) || ())KLD p y x p y is the KL diver-
gence between the (|)p y x and ()p y . Images who con-
tain meaningful objects should have a condition class
distribution (|)p y x with low entropy, and the model
is expected to generate varied images, so the margin-
al class ()p y should have high entropy. Then there
will be a large KL-divergence between the distribu-
tions (|)p y x and ()p y , which will lead to a large IS.
Inception Score is a good metric for evaluation that
correlates very well with human judgment. However,
it can’t reflect the distance between the real data and
the generated data and whether the model overfits.
Gurumurthy et al. [11] proposed Modified Inception
Score (m-IS) and suggested to use a cross-entropy
style score (|) log((|))i jp y x p y x− where jx are sam-
ples from the same class as ix based on the inception
model’s output. Incorporating this term into the orig-
inal inception-score results in:

exp([[((|) || (|))]])
i jx x KL i jE E D p y x p y x , (8)

which is calculated on a per-class basis and is then
averaged over all classes. Essentially, m-IS can be
viewed as a criterion for measuring both intra-class
sample diversity as well as sample quality [3]. Mode
Score (MS) [6] overcomes the drawback of the Incep-
tion score which is ignoring the prior distributions of
the ground truth labels:

exp([((|) || ())] (() || ()))train train
x KL KLE D p y x p y D p y p y− , (9)

where ()trainp y is the empirical distributions of labels
computed from training data. Mode score adequately
reflects the variety and visual quality of generated im-
ages [6]. Zhou et al. [30] proposed AM Score and ar-
gue that entropy terms in IS and MS are not suitable
when the data is not evenly distributed over classes.
They change the order of trainy and (|)p y x in the two
KL divergence terms in the MS which leads to a more
sensible metric.

exp([(() || (|))] (() || ()))train train
x KL KLE D p y p y x D p y p y− . (10)

Lucic et al. [16] proposed using Frechet Inception
Distance (FID) as an indicator to evaluate the GAN
model. FID used Inception V3 as a feature extractor
that directly measured the distance between the dis-
tributions of the real data and generated data. The
equation of FID is given by:

22
2

1/2

((,), (,))

(2))
w w w

w w

d m C m C m m

Tr C C CC

= − +

+ −

22
2

1/2

((,), (,))

(2))
w w w

w w

d m C m C m m

Tr C C CC

= − +

+ −
,

(11)

where 2 ((,), (,))w wd m C m C represents the FID be-
tween the Gaussian with mean and covariance (,)m C
obtained from generated data and the Gaussian
(,)w wm C obtained from real data, ()Tr is the trace of
the matrix. If the mean and covariance of the gen-
erated data and the real data are the same, a smaller
FID will be obtained, which also means that the two
distributions are closer, the quality of the generated
image is higher and the diversity is better. However,
the problem of overfitting on large-scale data set as
ImageNet remains unresolved. In addition, FID is
based on feature extraction, which is de pendent on
the presence or absence of certain features. Wang et
al. [23] proposed an image retrieval measure to eval-
uate GANs. The main idea is to investigate images in
the dataset that are badly modeled by a network. Im-
ages from a held-out test set as well as generated im-
ages are represented using a discriminatively trained
CNN. The nearest neighbors of generated images in
the test dataset are then retrieved. Zhang et al. [27]
used an off-the-shelf classifier to assess the realism
of synthesized images and then determine the quali-
ty of the generator. They put their fake colorized im-
ages to a VGG network that was trained on real color
photos. If the classifier performs well, this indicates
that the colorizations are accurate enough to be in-
formative about object class. Yang et al. [26] proposed
two metrics, Adversarial Accuracy and Adversarial
Divergence. They also proposed to compare (|)gP y x
and (|)rP y x instead of (|)gP x y and (|)rP x y which
represent distributions of generated data and real
data conditioned on all possible variables of interest y,
e.g., category labels. Then two classifiers were trained
from human annotations to approximate (|)gP y x and

(|)rP y x for different categories. Computes the classi-
fication accuracies achieved by the two classifiers on

157Information Technology and Control 2021/1/50

a validation set. If ()gP x is close to ()rP x , then similar
accuracies are expected. Computes the KL diver-
gence between (|)gP y x and (|)rP y x . The lower the
adversarial divergence, the closer the two distribu-
tions. Zeng et al. [28] proposed to evaluate generative
models in terms of low-level statistics of their gener-
ated images with respect to natural scenes. They con-
sidered four statistics including 1) the mean power
spectrum, 2) the number of connected components in
a given image area, 3) the distribution of random filter
responses, and 4) the contrast distribution. Isola et al.
[14] proposed the “FCN score” to evaluate the gener-
ative model by measure the quality of the generated
images conditioned on an input segmentation map.
They fed the generated images to the fully-convolu-
tional semantic segmentation network (FCN) [17]
and then measured the error between the output seg-
mentation map and the ground truth segmentation
mask. Berthelot et al. proposed a method in [4] that is
derive a global measure of convergence by using the
equilibrium concept, which can be formulated as:

() () (())global GL x L x L G zγΜ = + − , (12)

where ()L represents the loss for training a pixel-wise
autoencoder and formulated as () () , {1,2}L v v D v η η= − ∈

() () , {1,2}L v v D v η η= − ∈ , γ is a new hyper-parameter called the diver-

sity ratio which defined as []
[] [](())

0,1
()

L G z
L x

γ
Ε

= ∈
Ε

. The

smaller globalΜ is, the higher the convergence degree of
the model. This measures can be used to determine
when the network has reached its final state or if the

model has collapsed. Totally, when a certain iteration
is over, the methods discussed above all can be used
to judge the quality of GAN. However, these methods
mentioned above are all designed for images but not
applicable to the SSG model. In 2017, Xiang and Li [24]
proposed that using reconstruction error to evaluate
generative models. Starting from an all-zero vector,
they performed gradient descent on the latent code to
find the one that minimizes the L2 norm between the
samples generated from the code and the target ones.
But only for the final trained model, they performed an
extensive evaluation on a larger test set, with a larger
number of steps. In view of the above methods are not
applicable to the SSG model, we put forward a stopping
criterion to stop the training process at the right time.
The rest of this paper is organized as follows: In Section
3, constructs the method to find the stopping criterion.
Several experiments were carried out with discussions
in Section 4 to demonstrate the performance of the SSG
model and effectiveness of the proposed criterion. Con-
clusions and future works were drawn in Section 5.

3. Stopping Criterion
3.1. Framework of The Stopping Criterion
During the experiments of the SSG model, the prob-
lem of when the training process should be stopped
was encountered, which would affect the training re-
sults seriously. In this section, the framework of the
stopping criterion was proposed as demonstrated in
Figure 1.

Figure 1
The method to find the stop iteration for training process

Information Technology and Control 2021/1/50158

There are two parts in Figure 1: the training part at the
right side of the dash line and the judging part at the
left. The notes in Figure 1 were descripted in Table
1. After a certainly basic iteration step, for example
the 100th iteration among the total 10000 steps, the
judging part in Figure 1 began to operate. First, a sub-
group S with certain members is selected which are
different from the training data sets. Then a group of
vectors Z0=[(z01 z02 ... z0I], z0i∈Rnz were initialized ran-
domly to generate curves Cith = [c1

ith c2
ith ... cI

ith] from
the generator Gith, where the digital I equaled to the
number contained in the above subgroup S. Follow-
ing, errors εith between C and S were calculated using
the least squares norm of vectors. Then, the values
of Z0 were updated by minimizing the errors εith with
gradient methods until the values of all the elements
in εith kept stable. Finally, the average value ε– of εith
and the state of C and S are used to judge whether the
training process at the right side would continue or
not. If the value of ε– was less than a preset value δ, and
C is similar to S in shape, the whole training process
should stop and the current Gith could be a SSG mod-
el; otherwise, 100 more training step was required. In
Section 3.2, the algorithm to update the vector Z0 in
Figure 1 will be introduced.

passing through the trained well generator. If no suit-
able z exists, that mean the generator was not well
trained. The process of inferring z from x named
inversion [5], which proposed by Antonia Creswell
and Anil Anthony Bharath. This process can be for-
mulated as a minimization problem, as is shown in
Equation (13).

𝐠𝐠𝒊𝒊𝒊𝒊𝒊𝒊 S patch of curves randomly generated from 𝑮𝑮𝒊𝒊𝒊𝒊𝒊𝒊
𝛆𝛆𝒊𝒊𝒊𝒊𝒊𝒊 Errors between 𝐬𝐬 and 𝐠𝐠𝒊𝒊𝒊𝒊𝒊𝒊
𝐳𝐳𝟎𝟎 Initial value for z to generate 𝐠𝐠𝒊𝒊𝒊𝒊𝒊𝒊
ε� Average error for every 𝛆𝛆𝒊𝒊𝒊𝒊𝒊𝒊

3.2 Algorithm of Model Inversion

Ordinarily, curves represented in Z-space are often
meaningful. So we can infer z from x based on the
well-trained generator. If given a target curve xX , we
can infer its representation in the Z-space z Z , which can
produces a curve very similar to x when passing through the
trained well generator. If no suitable z exists, that mean the
generator was not well trained. The process of inferring z
from x named inversion [Error! Reference source not
found.], which proposed by Antonia Creswell and Anil
Anthony Bharath. This process can be formulated as a
minimization problem, as is shown in Equation (13).

  * min logxz
G    z Ε z . (13)

Provided that the generator G()z is known, *z can be
calculated via gradient descent methods. Therefore, based on
the idea of [Error! Reference source not found., Error!
Reference source not found.] we proposed the method in
Figure 1 as the stopping criterion of SSG model. The
inversion calculation step is detailed in Table 2.

Table 2
Algorithm 1 for inferring

*z from x
Algorithm 1: Algorithm for Inferring * z Z ,
1 *~ ()ZP zz
2 while NOT converged do
3 (log[()] (1) log[1 ()])x G z x G z     L ;
4 * *

z  z z L ;
5 end
6 return *z

4 Results and Discussion

4.1 Results and Discussion of The SSG Model

In Appendix A we introduced the SSG model, and this
section we will show its related experiments. In experiments,
four sets of signal were generated which include sinusoidal
waves, triangular waves, square waves and sawtooth waves.
As shown in Figure 2, the signals were truncated between 0
and 10. The sampling frequency was selected as 1/12.8,
which gives 128 points for every curve. To make the
generated curves more random, moving the curves along the
x-axis, and the numbers of the curves are 128. The parameter
of “nz” was set as 3 and 10 respectively. 10000 iterations
were adopted in the training process. The results were shown
in Figure 3, Figure 4 and Figure 5. In Figure 3 and Figure 4
the sinusoidal waves and triangular waves with “nz”=3 and

“nz”=10. There are square waves and sawtooth waves with
“nz”=3 in Figure 5.

Figure 2
Four different of signal data sets

(a) Sinusoidal wave (b) Triangular wave

(c) Square wave (d) Sawtooth wave

Figure 3
Sinusoidal waves and triangular waves produced from the G
under vector z with “nz”=3

 (a) Results for sinusoidal wave

(b) Results for triangular wave

(c) Results for sinusoidal wave and triangular wave

Figure 4
Sinusoidal waves and triangular waves produced from the G
under vector z with “nz”=10.

. (13)

Provided that the generator G()z is known, *z can be
calculated via gradient descent methods. Therefore,
based on the idea of [5, 23] we proposed the method in
Figure 1 as the stopping criterion of SSG model. The
inversion calculation step is detailed in Table 2.

4. Results and Discussion

4.1. Results and Discussion of The SSG Model
In Appendix A we introduced the SSG model, and
this section we will show its related experiments.
In experiments, four sets of signal were generated
which include sinusoidal waves, triangular waves,
square waves and sawtooth waves. As shown in
Figure 2, the signals were truncated between 0 and
10. The sampling frequency was selected as 1/12.8,
which gives 128 points for every curve. To make the
generated curves more random, moving the curves
along the x-axis, and the number of the curves is 128.
The parameter of “nz” was set as 3 and 10 respec-
tively. 10000 iterations were adopted in the training
process. The results were shown in Figure 3, Fig-
ure 4 and Figure 5. Figure 3 and Figure 4 show the
sinusoidal waves and triangular waves with “nz”=3
and “nz”=10. There are square waves and sawtooth
waves with “nz”=3 in Figure 5.

Table 1
The notes of Figure 1

Note Description

X Training data set

S A patch of signals selected randomly different from X

Dith The discriminator at the ith iteration

Gith The generator at the ith iteration

gith S patch of curves randomly generated from Gith

εith Errors between s and gith

z0 Initial value for z to generate gith

ε– Average error for every εith

3.2. Algorithm of Model Inversion
Ordinarily, curves represented in Z-space are often
meaningful. So we can infer z from x based on the
well-trained generator. If given a target curve x∈X,
we can infer its representation in the Z-space ∈z Z,
which can produces a curve very similar to x when

Table 2
Algorithm 1 for inferring z*from X

Algorithm 1: Algorithm for Inferring * ∈z Z ,

1 * ~ ()ZP zz
2 while NOT converged do
3 (log[()] (1) log[1 ()])x G z x G z∗ ∗← − + − −L ;
4 * *

zα← − ∇z z L ;
5 end
6 return *z

159Information Technology and Control 2021/1/50

Figure 2
Four different of signal data sets

𝐠𝐠𝒊𝒊𝒊𝒊𝒊𝒊 S patch of curves randomly generated from 𝑮𝑮𝒊𝒊𝒊𝒊𝒊𝒊
𝛆𝛆𝒊𝒊𝒊𝒊𝒊𝒊 Errors between 𝐬𝐬 and 𝐠𝐠𝒊𝒊𝒊𝒊𝒊𝒊
𝐳𝐳𝟎𝟎 Initial value for z to generate 𝐠𝐠𝒊𝒊𝒊𝒊𝒊𝒊
ε� Average error for every 𝛆𝛆𝒊𝒊𝒊𝒊𝒊𝒊

3.2 Algorithm of Model Inversion

Ordinarily, curves represented in Z-space are often
meaningful. So we can infer z from x based on the
well-trained generator. If given a target curve xX , we
can infer its representation in the Z-space z Z , which can
produces a curve very similar to x when passing through the
trained well generator. If no suitable z exists, that mean the
generator was not well trained. The process of inferring z
from x named inversion [Error! Reference source not
found.], which proposed by Antonia Creswell and Anil
Anthony Bharath. This process can be formulated as a
minimization problem, as is shown in Equation (13).

  * min logxz
G    z Ε z . (13)

Provided that the generator G()z is known, *z can be
calculated via gradient descent methods. Therefore, based on
the idea of [Error! Reference source not found., Error!
Reference source not found.] we proposed the method in
Figure 1 as the stopping criterion of SSG model. The
inversion calculation step is detailed in Table 2.

Table 2
Algorithm 1 for inferring

*z from x
Algorithm 1: Algorithm for Inferring * z Z ,
1 *~ ()ZP zz
2 while NOT converged do
3 (log[()] (1) log[1 ()])x G z x G z     L ;
4 * *

z  z z L ;
5 end
6 return *z

4 Results and Discussion

4.1 Results and Discussion of The SSG Model

In Appendix A we introduced the SSG model, and this
section we will show its related experiments. In experiments,
four sets of signal were generated which include sinusoidal
waves, triangular waves, square waves and sawtooth waves.
As shown in Figure 2, the signals were truncated between 0
and 10. The sampling frequency was selected as 1/12.8,
which gives 128 points for every curve. To make the
generated curves more random, moving the curves along the
x-axis, and the numbers of the curves are 128. The parameter
of “nz” was set as 3 and 10 respectively. 10000 iterations
were adopted in the training process. The results were shown
in Figure 3, Figure 4 and Figure 5. In Figure 3 and Figure 4
the sinusoidal waves and triangular waves with “nz”=3 and

“nz”=10. There are square waves and sawtooth waves with
“nz”=3 in Figure 5.

(a) Sinusoidal wave (b) Triangular wave

(c) Square wave (d) Sawtooth wave

Figure 3
Sinusoidal waves and triangular waves produced from the G
under vector z with “nz”=3

 (a) Results for sinusoidal wave

(b) Results for triangular wave

(c) Results for sinusoidal wave and triangular wave

Figure 4
Sinusoidal waves and triangular waves produced from the G
under vector z with “nz”=10.

𝐠𝐠𝒊𝒊𝒊𝒊𝒊𝒊 S patch of curves randomly generated from 𝑮𝑮𝒊𝒊𝒊𝒊𝒊𝒊
𝛆𝛆𝒊𝒊𝒊𝒊𝒊𝒊 Errors between 𝐬𝐬 and 𝐠𝐠𝒊𝒊𝒊𝒊𝒊𝒊
𝐳𝐳𝟎𝟎 Initial value for z to generate 𝐠𝐠𝒊𝒊𝒊𝒊𝒊𝒊
ε� Average error for every 𝛆𝛆𝒊𝒊𝒊𝒊𝒊𝒊

3.2 Algorithm of Model Inversion

Ordinarily, curves represented in Z-space are often
meaningful. So we can infer z from x based on the
well-trained generator. If given a target curve xX , we
can infer its representation in the Z-space z Z , which can
produces a curve very similar to x when passing through the
trained well generator. If no suitable z exists, that mean the
generator was not well trained. The process of inferring z
from x named inversion [Error! Reference source not
found.], which proposed by Antonia Creswell and Anil
Anthony Bharath. This process can be formulated as a
minimization problem, as is shown in Equation (13).

  * min logxz
G    z Ε z . (13)

Provided that the generator G()z is known, *z can be
calculated via gradient descent methods. Therefore, based on
the idea of [Error! Reference source not found., Error!
Reference source not found.] we proposed the method in
Figure 1 as the stopping criterion of SSG model. The
inversion calculation step is detailed in Table 2.

Table 2
Algorithm 1 for inferring

*z from x
Algorithm 1: Algorithm for Inferring * z Z ,
1 *~ ()ZP zz
2 while NOT converged do
3 (log[()] (1) log[1 ()])x G z x G z     L ;
4 * *

z  z z L ;
5 end
6 return *z

4 Results and Discussion

4.1 Results and Discussion of The SSG Model

In Appendix A we introduced the SSG model, and this
section we will show its related experiments. In experiments,
four sets of signal were generated which include sinusoidal
waves, triangular waves, square waves and sawtooth waves.
As shown in Figure 2, the signals were truncated between 0
and 10. The sampling frequency was selected as 1/12.8,
which gives 128 points for every curve. To make the
generated curves more random, moving the curves along the
x-axis, and the numbers of the curves are 128. The parameter
of “nz” was set as 3 and 10 respectively. 10000 iterations
were adopted in the training process. The results were shown
in Figure 3, Figure 4 and Figure 5. In Figure 3 and Figure 4
the sinusoidal waves and triangular waves with “nz”=3 and

“nz”=10. There are square waves and sawtooth waves with
“nz”=3 in Figure 5.

(a) Sinusoidal wave (b) Triangular wave

(c) Square wave (d) Sawtooth wave

Figure 3
Sinusoidal waves and triangular waves produced from the G
under vector z with “nz”=3

 (a) Results for sinusoidal wave

(b) Results for triangular wave

(c) Results for sinusoidal wave and triangular wave

Figure 4
Sinusoidal waves and triangular waves produced from the G
under vector z with “nz”=10.

𝐠𝐠𝒊𝒊𝒊𝒊𝒊𝒊 S patch of curves randomly generated from 𝑮𝑮𝒊𝒊𝒊𝒊𝒊𝒊
𝛆𝛆𝒊𝒊𝒊𝒊𝒊𝒊 Errors between 𝐬𝐬 and 𝐠𝐠𝒊𝒊𝒊𝒊𝒊𝒊
𝐳𝐳𝟎𝟎 Initial value for z to generate 𝐠𝐠𝒊𝒊𝒊𝒊𝒊𝒊
ε� Average error for every 𝛆𝛆𝒊𝒊𝒊𝒊𝒊𝒊

3.2 Algorithm of Model Inversion

Ordinarily, curves represented in Z-space are often
meaningful. So we can infer z from x based on the
well-trained generator. If given a target curve xX , we
can infer its representation in the Z-space z Z , which can
produces a curve very similar to x when passing through the
trained well generator. If no suitable z exists, that mean the
generator was not well trained. The process of inferring z
from x named inversion [Error! Reference source not
found.], which proposed by Antonia Creswell and Anil
Anthony Bharath. This process can be formulated as a
minimization problem, as is shown in Equation (13).

  * min logxz
G    z Ε z . (13)

Provided that the generator G()z is known, *z can be
calculated via gradient descent methods. Therefore, based on
the idea of [Error! Reference source not found., Error!
Reference source not found.] we proposed the method in
Figure 1 as the stopping criterion of SSG model. The
inversion calculation step is detailed in Table 2.

Table 2
Algorithm 1 for inferring

*z from x
Algorithm 1: Algorithm for Inferring * z Z ,
1 *~ ()ZP zz
2 while NOT converged do
3 (log[()] (1) log[1 ()])x G z x G z     L ;
4 * *

z  z z L ;
5 end
6 return *z

4 Results and Discussion

4.1 Results and Discussion of The SSG Model

In Appendix A we introduced the SSG model, and this
section we will show its related experiments. In experiments,
four sets of signal were generated which include sinusoidal
waves, triangular waves, square waves and sawtooth waves.
As shown in Figure 2, the signals were truncated between 0
and 10. The sampling frequency was selected as 1/12.8,
which gives 128 points for every curve. To make the
generated curves more random, moving the curves along the
x-axis, and the numbers of the curves are 128. The parameter
of “nz” was set as 3 and 10 respectively. 10000 iterations
were adopted in the training process. The results were shown
in Figure 3, Figure 4 and Figure 5. In Figure 3 and Figure 4
the sinusoidal waves and triangular waves with “nz”=3 and

“nz”=10. There are square waves and sawtooth waves with
“nz”=3 in Figure 5.

(a) Sinusoidal wave (b) Triangular wave

(c) Square wave (d) Sawtooth wave

Figure 3
Sinusoidal waves and triangular waves produced from the G
under vector z with “nz”=3

 (a) Results for sinusoidal wave

(b) Results for triangular wave

(c) Results for sinusoidal wave and triangular wave

Figure 4
Sinusoidal waves and triangular waves produced from the G
under vector z with “nz”=10.

𝐠𝐠𝒊𝒊𝒊𝒊𝒊𝒊 S patch of curves randomly generated from 𝑮𝑮𝒊𝒊𝒊𝒊𝒊𝒊
𝛆𝛆𝒊𝒊𝒊𝒊𝒊𝒊 Errors between 𝐬𝐬 and 𝐠𝐠𝒊𝒊𝒊𝒊𝒊𝒊
𝐳𝐳𝟎𝟎 Initial value for z to generate 𝐠𝐠𝒊𝒊𝒊𝒊𝒊𝒊
ε� Average error for every 𝛆𝛆𝒊𝒊𝒊𝒊𝒊𝒊

3.2 Algorithm of Model Inversion

Ordinarily, curves represented in Z-space are often
meaningful. So we can infer z from x based on the
well-trained generator. If given a target curve xX , we
can infer its representation in the Z-space z Z , which can
produces a curve very similar to x when passing through the
trained well generator. If no suitable z exists, that mean the
generator was not well trained. The process of inferring z
from x named inversion [Error! Reference source not
found.], which proposed by Antonia Creswell and Anil
Anthony Bharath. This process can be formulated as a
minimization problem, as is shown in Equation (13).

  * min logxz
G    z Ε z . (13)

Provided that the generator G()z is known, *z can be
calculated via gradient descent methods. Therefore, based on
the idea of [Error! Reference source not found., Error!
Reference source not found.] we proposed the method in
Figure 1 as the stopping criterion of SSG model. The
inversion calculation step is detailed in Table 2.

Table 2
Algorithm 1 for inferring

*z from x
Algorithm 1: Algorithm for Inferring * z Z ,
1 *~ ()ZP zz
2 while NOT converged do
3 (log[()] (1) log[1 ()])x G z x G z     L ;
4 * *

z  z z L ;
5 end
6 return *z

4 Results and Discussion

4.1 Results and Discussion of The SSG Model

In Appendix A we introduced the SSG model, and this
section we will show its related experiments. In experiments,
four sets of signal were generated which include sinusoidal
waves, triangular waves, square waves and sawtooth waves.
As shown in Figure 2, the signals were truncated between 0
and 10. The sampling frequency was selected as 1/12.8,
which gives 128 points for every curve. To make the
generated curves more random, moving the curves along the
x-axis, and the numbers of the curves are 128. The parameter
of “nz” was set as 3 and 10 respectively. 10000 iterations
were adopted in the training process. The results were shown
in Figure 3, Figure 4 and Figure 5. In Figure 3 and Figure 4
the sinusoidal waves and triangular waves with “nz”=3 and

“nz”=10. There are square waves and sawtooth waves with
“nz”=3 in Figure 5.

(a) Sinusoidal wave (b) Triangular wave

(c) Square wave (d) Sawtooth wave

Figure 3
Sinusoidal waves and triangular waves produced from the G
under vector z with “nz”=3

 (a) Results for sinusoidal wave

(b) Results for triangular wave

(c) Results for sinusoidal wave and triangular wave

Figure 4
Sinusoidal waves and triangular waves produced from the G
under vector z with “nz”=10.

(a) Sinusoidal wave (b) Triangular wave

(c) Square wave (d) Sawtooth wave

Figure 3
Sinusoidal waves and triangular waves produced from the G under vector z with “nz”=3

𝐠𝐠𝒊𝒊𝒊𝒊𝒊𝒊 S patch of curves randomly generated from 𝑮𝑮𝒊𝒊𝒊𝒊𝒊𝒊
𝛆𝛆𝒊𝒊𝒊𝒊𝒊𝒊 Errors between 𝐬𝐬 and 𝐠𝐠𝒊𝒊𝒊𝒊𝒊𝒊
𝐳𝐳𝟎𝟎 Initial value for z to generate 𝐠𝐠𝒊𝒊𝒊𝒊𝒊𝒊
ε� Average error for every 𝛆𝛆𝒊𝒊𝒊𝒊𝒊𝒊

3.2 Algorithm of Model Inversion

Ordinarily, curves represented in Z-space are often
meaningful. So we can infer z from x based on the
well-trained generator. If given a target curve xX , we
can infer its representation in the Z-space z Z , which can
produces a curve very similar to x when passing through the
trained well generator. If no suitable z exists, that mean the
generator was not well trained. The process of inferring z
from x named inversion [Error! Reference source not
found.], which proposed by Antonia Creswell and Anil
Anthony Bharath. This process can be formulated as a
minimization problem, as is shown in Equation (13).

  * min logxz
G    z Ε z . (13)

Provided that the generator G()z is known, *z can be
calculated via gradient descent methods. Therefore, based on
the idea of [Error! Reference source not found., Error!
Reference source not found.] we proposed the method in
Figure 1 as the stopping criterion of SSG model. The
inversion calculation step is detailed in Table 2.

Table 2
Algorithm 1 for inferring

*z from x
Algorithm 1: Algorithm for Inferring * z Z ,
1 *~ ()ZP zz
2 while NOT converged do
3 (log[()] (1) log[1 ()])x G z x G z     L ;
4 * *

z  z z L ;
5 end
6 return *z

4 Results and Discussion

4.1 Results and Discussion of The SSG Model

In Appendix A we introduced the SSG model, and this
section we will show its related experiments. In experiments,
four sets of signal were generated which include sinusoidal
waves, triangular waves, square waves and sawtooth waves.
As shown in Figure 2, the signals were truncated between 0
and 10. The sampling frequency was selected as 1/12.8,
which gives 128 points for every curve. To make the
generated curves more random, moving the curves along the
x-axis, and the numbers of the curves are 128. The parameter
of “nz” was set as 3 and 10 respectively. 10000 iterations
were adopted in the training process. The results were shown
in Figure 3, Figure 4 and Figure 5. In Figure 3 and Figure 4
the sinusoidal waves and triangular waves with “nz”=3 and

“nz”=10. There are square waves and sawtooth waves with
“nz”=3 in Figure 5.

(a) Sinusoidal wave (b) Triangular wave

(c) Square wave (d) Sawtooth wave

G

Figure 4
Sinusoidal waves and triangular waves produced from the G
under vector z with “nz”=10.

𝐠𝐠𝒊𝒊𝒊𝒊𝒊𝒊 S patch of curves randomly generated from 𝑮𝑮𝒊𝒊𝒊𝒊𝒊𝒊
𝛆𝛆𝒊𝒊𝒊𝒊𝒊𝒊 Errors between 𝐬𝐬 and 𝐠𝐠𝒊𝒊𝒊𝒊𝒊𝒊
𝐳𝐳𝟎𝟎 Initial value for z to generate 𝐠𝐠𝒊𝒊𝒊𝒊𝒊𝒊
ε� Average error for every 𝛆𝛆𝒊𝒊𝒊𝒊𝒊𝒊

3.2 Algorithm of Model Inversion

Ordinarily, curves represented in Z-space are often
meaningful. So we can infer z from x based on the
well-trained generator. If given a target curve xX , we
can infer its representation in the Z-space z Z , which can
produces a curve very similar to x when passing through the
trained well generator. If no suitable z exists, that mean the
generator was not well trained. The process of inferring z
from x named inversion [Error! Reference source not
found.], which proposed by Antonia Creswell and Anil
Anthony Bharath. This process can be formulated as a
minimization problem, as is shown in Equation (13).

  * min logxz
G    z Ε z . (13)

Provided that the generator G()z is known, *z can be
calculated via gradient descent methods. Therefore, based on
the idea of [Error! Reference source not found., Error!
Reference source not found.] we proposed the method in
Figure 1 as the stopping criterion of SSG model. The
inversion calculation step is detailed in Table 2.

Table 2
Algorithm 1 for inferring

*z from x
Algorithm 1: Algorithm for Inferring * z Z ,
1 *~ ()ZP zz
2 while NOT converged do
3 (log[()] (1) log[1 ()])x G z x G z     L ;
4 * *

z  z z L ;
5 end
6 return *z

4 Results and Discussion

4.1 Results and Discussion of The SSG Model

In Appendix A we introduced the SSG model, and this
section we will show its related experiments. In experiments,
four sets of signal were generated which include sinusoidal
waves, triangular waves, square waves and sawtooth waves.
As shown in Figure 2, the signals were truncated between 0
and 10. The sampling frequency was selected as 1/12.8,
which gives 128 points for every curve. To make the
generated curves more random, moving the curves along the
x-axis, and the numbers of the curves are 128. The parameter
of “nz” was set as 3 and 10 respectively. 10000 iterations
were adopted in the training process. The results were shown
in Figure 3, Figure 4 and Figure 5. In Figure 3 and Figure 4
the sinusoidal waves and triangular waves with “nz”=3 and

“nz”=10. There are square waves and sawtooth waves with
“nz”=3 in Figure 5.

(a) Sinusoidal wave (b) Triangular wave

(c) Square wave (d) Sawtooth wave

G

Figure 4
Sinusoidal waves and triangular waves produced from the G
under vector z with “nz”=10.

𝐠𝐠𝒊𝒊𝒊𝒊𝒊𝒊 S patch of curves randomly generated from 𝑮𝑮𝒊𝒊𝒊𝒊𝒊𝒊
𝛆𝛆𝒊𝒊𝒊𝒊𝒊𝒊 Errors between 𝐬𝐬 and 𝐠𝐠𝒊𝒊𝒊𝒊𝒊𝒊
𝐳𝐳𝟎𝟎 Initial value for z to generate 𝐠𝐠𝒊𝒊𝒊𝒊𝒊𝒊
ε� Average error for every 𝛆𝛆𝒊𝒊𝒊𝒊𝒊𝒊

3.2 Algorithm of Model Inversion

Ordinarily, curves represented in Z-space are often
meaningful. So we can infer z from x based on the
well-trained generator. If given a target curve xX , we
can infer its representation in the Z-space z Z , which can
produces a curve very similar to x when passing through the
trained well generator. If no suitable z exists, that mean the
generator was not well trained. The process of inferring z
from x named inversion [Error! Reference source not
found.], which proposed by Antonia Creswell and Anil
Anthony Bharath. This process can be formulated as a
minimization problem, as is shown in Equation (13).

  * min logxz
G    z Ε z . (13)

Provided that the generator G()z is known, *z can be
calculated via gradient descent methods. Therefore, based on
the idea of [Error! Reference source not found., Error!
Reference source not found.] we proposed the method in
Figure 1 as the stopping criterion of SSG model. The
inversion calculation step is detailed in Table 2.

Table 2
Algorithm 1 for inferring

*z from x
Algorithm 1: Algorithm for Inferring * z Z ,
1 *~ ()ZP zz
2 while NOT converged do
3 (log[()] (1) log[1 ()])x G z x G z     L ;
4 * *

z  z z L ;
5 end
6 return *z

4 Results and Discussion

4.1 Results and Discussion of The SSG Model

In Appendix A we introduced the SSG model, and this
section we will show its related experiments. In experiments,
four sets of signal were generated which include sinusoidal
waves, triangular waves, square waves and sawtooth waves.
As shown in Figure 2, the signals were truncated between 0
and 10. The sampling frequency was selected as 1/12.8,
which gives 128 points for every curve. To make the
generated curves more random, moving the curves along the
x-axis, and the numbers of the curves are 128. The parameter
of “nz” was set as 3 and 10 respectively. 10000 iterations
were adopted in the training process. The results were shown
in Figure 3, Figure 4 and Figure 5. In Figure 3 and Figure 4
the sinusoidal waves and triangular waves with “nz”=3 and

“nz”=10. There are square waves and sawtooth waves with
“nz”=3 in Figure 5.

(a) Sinusoidal wave (b) Triangular wave

(c) Square wave (d) Sawtooth wave

G

Figure 4
Sinusoidal waves and triangular waves produced from the G
under vector z with “nz”=10.

(a) Results for sinusoidal wave (b) Results for triangular wave

(c) Results for sinusoidal wave and triangular wave

Information Technology and Control 2021/1/50160

In experiments, Gaussian curves, which are trun-
cated between o and 100, was used to make it more
diverse. The parameter of “nz” is set from 1 to 20,
and Figure 6 shows some of the training curves and
the generated curves for “nz”=20 which indicated
that it is difficult for SSG model to learn its distri-

Figure 4
Sinusoidal waves and triangular waves produced from the G under vector z with “nz”=10

Figure 5
Square waves and sawtooth waves produced from the G under vector z with “nz”=3

Figure 5
Square waves and sawtooth waves produced from the G
under vector z with “nz”=3.

(a) Results for Square wave

(b) Results for sawtooth wave

In experiments, Gaussian curves, which are truncated
between o and 100, was used to make it more diverse. The
parameter of “nz” is set from 1 to 20, and Figure 6 shows
some of the training curves and the generated curves for

“nz”=20 which indicated that it is difficult for SSG model to
learn its distributions to generate high quality Gaussian
curves. However, by using the method proposed in Figure 1
in this paper, training can be stopped at the appropriate time,
so that the relatively good Gaussian curves can be generated
and then applied in a specific context.

Figure 6
Gaussian curves for training and produced from the G under
vector z with “nz”=20

(a) Gaussian curves for training

(b) Results for Gaussian curves

The results demonstrate:

(1) When the training reached a certain long iteration step,
the curves given by the trained generator under random
vector z have the same shape feature as those in the training
dataset. This result illustrated that the generator had
remembered the probability distribution of the training data
set.

(2) The dimension of the random vector z has obviously
influence on the results for the different curves to some
extent. As shown in Figure 3 /4 (b) and (c), there is obvious
difference in shape which could be observed by human eyes,
especially for the triangular waves when “nz”=10. So, the
shapes of sinusoidal waves and triangular waves that given
by the SSG model could be controlled by three scalars.

(3) The SSG model could describe piecewise function.
The triangular waves, square waves and sawtooth waves,
which cannot be depicted by a single mathematical function.
But as shown in Figure 3 (b) and Figure 5, they could be
generated by a single network. Moreover, the shape of these
piecewise curves could be controlled only by scalars of z .
For different curves, the dimension of “nz” and the number
of training samples are crucial. For example, the sawtooth

Figure 5
Square waves and sawtooth waves produced from the G
under vector z with “nz”=3.

(a) Results for Square wave

(b) Results for sawtooth wave

In experiments, Gaussian curves, which are truncated
between o and 100, was used to make it more diverse. The
parameter of “nz” is set from 1 to 20, and Figure 6 shows
some of the training curves and the generated curves for

“nz”=20 which indicated that it is difficult for SSG model to
learn its distributions to generate high quality Gaussian
curves. However, by using the method proposed in Figure 1
in this paper, training can be stopped at the appropriate time,
so that the relatively good Gaussian curves can be generated
and then applied in a specific context.

Figure 6
Gaussian curves for training and produced from the G under
vector z with “nz”=20

(a) Gaussian curves for training

(b) Results for Gaussian curves

The results demonstrate:

(1) When the training reached a certain long iteration step,
the curves given by the trained generator under random
vector z have the same shape feature as those in the training
dataset. This result illustrated that the generator had
remembered the probability distribution of the training data
set.

(2) The dimension of the random vector z has obviously
influence on the results for the different curves to some
extent. As shown in Figure 3 /4 (b) and (c), there is obvious
difference in shape which could be observed by human eyes,
especially for the triangular waves when “nz”=10. So, the
shapes of sinusoidal waves and triangular waves that given
by the SSG model could be controlled by three scalars.

(3) The SSG model could describe piecewise function.
The triangular waves, square waves and sawtooth waves,
which cannot be depicted by a single mathematical function.
But as shown in Figure 3 (b) and Figure 5, they could be
generated by a single network. Moreover, the shape of these
piecewise curves could be controlled only by scalars of z .
For different curves, the dimension of “nz” and the number
of training samples are crucial. For example, the sawtooth

Figure 5
Square waves and sawtooth waves produced from the G
under vector z with “nz”=3.

(a) Results for Square wave

(b) Results for sawtooth wave

In experiments, Gaussian curves, which are truncated
between o and 100, was used to make it more diverse. The
parameter of “nz” is set from 1 to 20, and Figure 6 shows
some of the training curves and the generated curves for

“nz”=20 which indicated that it is difficult for SSG model to
learn its distributions to generate high quality Gaussian
curves. However, by using the method proposed in Figure 1
in this paper, training can be stopped at the appropriate time,
so that the relatively good Gaussian curves can be generated
and then applied in a specific context.

Figure 6
Gaussian curves for training and produced from the G under
vector z with “nz”=20

(a) Gaussian curves for training

(b) Results for Gaussian curves

The results demonstrate:

(1) When the training reached a certain long iteration step,
the curves given by the trained generator under random
vector z have the same shape feature as those in the training
dataset. This result illustrated that the generator had
remembered the probability distribution of the training data
set.

(2) The dimension of the random vector z has obviously
influence on the results for the different curves to some
extent. As shown in Figure 3 /4 (b) and (c), there is obvious
difference in shape which could be observed by human eyes,
especially for the triangular waves when “nz”=10. So, the
shapes of sinusoidal waves and triangular waves that given
by the SSG model could be controlled by three scalars.

(3) The SSG model could describe piecewise function.
The triangular waves, square waves and sawtooth waves,
which cannot be depicted by a single mathematical function.
But as shown in Figure 3 (b) and Figure 5, they could be
generated by a single network. Moreover, the shape of these
piecewise curves could be controlled only by scalars of z .
For different curves, the dimension of “nz” and the number
of training samples are crucial. For example, the sawtooth

(a) Results for sinusoidal wave (b) Results for triangular wave

(c) Results for sinusoidal wave and triangular wave

 (a) Results for sinusoidal wave

(b) Results for triangular wave

(c) Results for sinusoidal wave and triangular wave

Figure 5

In experiments, Gaussian curves, which are truncated
between o and 100, was used to make it more diverse. The
parameter of “nz” is set from 1 to 20, and Figure 6 shows
some of the training curves and the generated curves for

“nz”=20 which indicated that it is difficult for SSG model to
learn its distributions to generate high quality Gaussian
curves. However, by using the method proposed in Figure 1
in this paper, training can be stopped at the appropriate time,
so that the relatively good Gaussian curves can be generated
and then applied in a specific context.

Figure 6
Gaussian curves for training and produced from the G under
vector z with “nz”=20

(a) Gaussian curves for training

(b) Results for Gaussian curves

The results demonstrate:

(1) When the training reached a certain long iteration step,
the curves given by the trained generator under random
vector z have the same shape feature as those in the training
dataset. This result illustrated that the generator had
remembered the probability distribution of the training data
set.

(2) The dimension of the random vector z has obviously
influence on the results for the different curves to some
extent. As shown in Figure 3 /4 (b) and (c), there is obvious
difference in shape which could be observed by human eyes,
especially for the triangular waves when “nz”=10. So, the
shapes of sinusoidal waves and triangular waves that given
by the SSG model could be controlled by three scalars.

(3) The SSG model could describe piecewise function.
The triangular waves, square waves and sawtooth waves,
which cannot be depicted by a single mathematical function.
But as shown in Figure 3 (b) and Figure 5, they could be
generated by a single network. Moreover, the shape of these
piecewise curves could be controlled only by scalars of z .
For different curves, the dimension of “nz” and the number
of training samples are crucial. For example, the sawtooth

 (a) Results for sinusoidal wave

(b) Results for triangular wave

(c) Results for sinusoidal wave and triangular wave

Figure 5

In experiments, Gaussian curves, which are truncated
between o and 100, was used to make it more diverse. The
parameter of “nz” is set from 1 to 20, and Figure 6 shows
some of the training curves and the generated curves for

“nz”=20 which indicated that it is difficult for SSG model to
learn its distributions to generate high quality Gaussian
curves. However, by using the method proposed in Figure 1
in this paper, training can be stopped at the appropriate time,
so that the relatively good Gaussian curves can be generated
and then applied in a specific context.

Figure 6
Gaussian curves for training and produced from the G under
vector z with “nz”=20

(a) Gaussian curves for training

(b) Results for Gaussian curves

The results demonstrate:

(1) When the training reached a certain long iteration step,
the curves given by the trained generator under random
vector z have the same shape feature as those in the training
dataset. This result illustrated that the generator had
remembered the probability distribution of the training data
set.

(2) The dimension of the random vector z has obviously
influence on the results for the different curves to some
extent. As shown in Figure 3 /4 (b) and (c), there is obvious
difference in shape which could be observed by human eyes,
especially for the triangular waves when “nz”=10. So, the
shapes of sinusoidal waves and triangular waves that given
by the SSG model could be controlled by three scalars.

(3) The SSG model could describe piecewise function.
The triangular waves, square waves and sawtooth waves,
which cannot be depicted by a single mathematical function.
But as shown in Figure 3 (b) and Figure 5, they could be
generated by a single network. Moreover, the shape of these
piecewise curves could be controlled only by scalars of z .
For different curves, the dimension of “nz” and the number
of training samples are crucial. For example, the sawtooth

(a) Results for Square wave (b) Results for sawtooth wave

butions to generate high quality Gaussian curves.
However, by using the method proposed in Figure
1 in this paper, training can be stopped at the ap-
propriate time, so that the relatively good Gaussian
curves can be generated and then applied in a spe-
cific context.

161Information Technology and Control 2021/1/50

The results demonstrate:
1 When the training reached a certain long iteration

step, the curves given by the trained generator un-
der random vector Z have the same shape feature as
those in the training dataset. This result illustrated
that the generator had remembered the probability
distribution of the training data set.

2 The dimension of the random vector Z has obvious-
ly influence on the results for the different curves
to some extent. As shown in Figure 3 /4 (b) and (c),
there is obvious difference in shape which could be
observed by human eyes, especially for the triangu-
lar waves when “nz”=10. So, the shapes of sinusoidal
waves and triangular waves that given by the SSG
model could be controlled by three scalars.

3 The SSG model could describe piecewise function.
The triangular waves, square waves and sawtooth
waves, which cannot be depicted by a single math-
ematical function. But as shown in Figure 3 (b)
and Figure 5, they could be generated by a single
network. Moreover, the shape of these piecewise
curves could be controlled only by scalars of Z.
For different curves, the dimension of “nz” and the
number of training samples are crucial. For exam-
ple, the sawtooth waves with “nz”=3 and the trian-
gular waves with “nz”=10 both have low quality.

4 The SSG model could produce curves which have
different shape features. When both the sinusoi-
dal waves and the triangular waves were used in
the training process simultaneously, the generator
could produce both of these two kinds of signals.

Figure 6
Gaussian curves for training and produced from the G under vector z with “nz”=20

 (a) Results for sinusoidal wave

(b) Results for triangular wave

(c) Results for sinusoidal wave and triangular wave

Figure 5
Square waves and sawtooth waves produced from the G
under vector z with “nz”=3.

(a) Results for Square wave

(b) Results for sawtooth wave

In experiments, Gaussian curves, which are truncated
between o and 100, was used to make it more diverse. The
parameter of “nz” is set from 1 to 20, and Figure 6 shows
some of the training curves and the generated curves for

“nz”=20 which indicated that it is difficult for SSG model to
learn its distributions to generate high quality Gaussian
curves. However, by using the method proposed in Figure 1
in this paper, training can be stopped at the appropriate time,
so that the relatively good Gaussian curves can be generated
and then applied in a specific context.

Figure 6
Gaussian curves for training and produced from the G under
vector z with “nz”=20

The results demonstrate:

(1) When the training reached a certain long iteration step,
the curves given by the trained generator under random
vector z have the same shape feature as those in the training
dataset. This result illustrated that the generator had
remembered the probability distribution of the training data
set.

(2) The dimension of the random vector z has obviously
influence on the results for the different curves to some
extent. As shown in Figure 3 /4 (b) and (c), there is obvious
difference in shape which could be observed by human eyes,
especially for the triangular waves when “nz”=10. So, the
shapes of sinusoidal waves and triangular waves that given
by the SSG model could be controlled by three scalars.

(3) The SSG model could describe piecewise function.
The triangular waves, square waves and sawtooth waves,
which cannot be depicted by a single mathematical function.
But as shown in Figure 3 (b) and Figure 5, they could be
generated by a single network. Moreover, the shape of these
piecewise curves could be controlled only by scalars of z .
For different curves, the dimension of “nz” and the number
of training samples are crucial. For example, the sawtooth

 (a) Results for sinusoidal wave

(b) Results for triangular wave

(c) Results for sinusoidal wave and triangular wave

Figure 5
Square waves and sawtooth waves produced from the G
under vector z with “nz”=3.

(a) Results for Square wave

(b) Results for sawtooth wave

In experiments, Gaussian curves, which are truncated
between o and 100, was used to make it more diverse. The
parameter of “nz” is set from 1 to 20, and Figure 6 shows
some of the training curves and the generated curves for

“nz”=20 which indicated that it is difficult for SSG model to
learn its distributions to generate high quality Gaussian
curves. However, by using the method proposed in Figure 1
in this paper, training can be stopped at the appropriate time,
so that the relatively good Gaussian curves can be generated
and then applied in a specific context.

Figure 6
Gaussian curves for training and produced from the G under
vector z with “nz”=20

The results demonstrate:

(1) When the training reached a certain long iteration step,
the curves given by the trained generator under random
vector z have the same shape feature as those in the training
dataset. This result illustrated that the generator had
remembered the probability distribution of the training data
set.

(2) The dimension of the random vector z has obviously
influence on the results for the different curves to some
extent. As shown in Figure 3 /4 (b) and (c), there is obvious
difference in shape which could be observed by human eyes,
especially for the triangular waves when “nz”=10. So, the
shapes of sinusoidal waves and triangular waves that given
by the SSG model could be controlled by three scalars.

(3) The SSG model could describe piecewise function.
The triangular waves, square waves and sawtooth waves,
which cannot be depicted by a single mathematical function.
But as shown in Figure 3 (b) and Figure 5, they could be
generated by a single network. Moreover, the shape of these
piecewise curves could be controlled only by scalars of z .
For different curves, the dimension of “nz” and the number
of training samples are crucial. For example, the sawtooth

(a) Gaussian curves for training (b) Results for Gaussian curves

Although we have conclusions above, we also encoun-
tered the issue that the best generator with wanted
curves is not the one with the final iteration steps.
In Section 3, we introduced the method to resolve it.
Hence, more experiments were given to show the ef-
fectiveness for our method to find the stop condition
for the GAN training in Section 4.2.

4.2. Experiments to Find The Condition of
Stopping Training

We divided the experiments into two groups. For the
first group, four kinds of samples were involved in the
training, including sinusoidal wave with the ampli-
tude is 0.3 and 0.7; the triangular wave with the am-
plitude is 0.4 and 0.8. The dimensions of “nz” are set
as from 1 to 5. The other group are various Gaussian
curves, and the dimensions of “nz” were set from 5 to
20. In order to verify the issue proposed above, 10000
iterations were adopted in the training process. The
average errors ε– of every generator were recorded.
In Figure 7 shows the losses curves of D and G when
“nz”=3 and “nz”=5 of first group. The losses curves of
D and G when “nz”=10 and “nz”=20 of second group
showed in Figure 8. We can see that both D and G were
not converge, but oscillates up and down constantly.
This is why we can’t terminate the training process
of SSG model at any time by observing the loss curve.
Therefore, the method proposed in Figure 1 can serve
as a criterion and several experiments will be per-
formed to prove it.

Information Technology and Control 2021/1/50162

After training, the inversion experiment was divided
into two groups and the subgroup curve S is chosen
randomly that is different from the training data set.
For the experiments of the first group, including sinu-

Figure 7
The loss of D and G of first group, (a) “nz”=3, (b) “nz”=5

Figure 8
The loss of D and G of second group, (a) “nz”=10, (b) “nz”=20

Although we have conclusions above, we also encountered
the issue that the best generator with wanted curves is not the
one with the final iteration steps. In Section 3, we introduced
the method to resolve it. Hence, more experiments were
given to show the effectiveness for our method to find the
stop condition for the GAN training in Section 4.2.

4.2 Experiments to Find The Condition of
Stopping Training

We divided the experiments into two groups. For the first

group, four kinds of samples were involved in the training,
including sinusoidal wave with the amplitude is 0.3 and 0.7;
the triangular wave with the amplitude is 0.4 and 0.8. The
dimensions of “nz” are set as from 1 to 5. The other group
are various Gaussian curves, and the dimensions of “nz” were
set from 5 to 20. In order to verify the issue proposed above,
10000 iterations were adopted in the training process. The
average errors ε� of every generator were recorded.

In Figure 7 shows the losses curves of D and G when
“nz”=3 and “nz”=5 of first group. The losses curves of D and
G when “nz”=10 and “nz”=20 of second group showed in
Figure 8. We can see that both D and G were not converge,
but oscillates up and down constantly. This is why we can’t
terminate the training process of SSG model at any time by
observing the loss curve. Therefore, the method proposed in
Figure 1 can serve as a criterion and several experiments will
be performed to prove it.

7

(b) “nz”=5

Figure 8
The loss of D and G of second group, (a) “nz”=10, (b)
“nz”=20

(a) “nz”=10

(b) “nz”=20

After training, the inversion experiment was divided into
two groups and the subgroup curve 𝐒𝐒𝐒𝐒 is chosen randomly that
is different from the training data set. For the experiments of
the first group, including sinusoidal wave with the amplitude
of 0.4 and triangular wave with the amplitude of 0.7. The
numbers of both kinds were set as 64. For the experiment of
the other group, the randomly generated Gaussian curves
were used as 𝐒𝐒𝐒𝐒. The batchsize was set as 128 and the learning
rate 𝛂𝛂𝛂𝛂 was 2e-4.

For the first group, the top 10 of target curves and
reconstructed curves with “nz”=3 and “nz”=5 were
illustrated in Figure 9 and Figure 10 respectively. And for the
Gaussian curves, the top 10 of target curves and
reconstructed curves with “nz”=10 and “nz”=20 were
illustrated in Figure 11 and Figure 12. The calculation errors
between target curves and reconstructed curves were list in
Table 3 and Table 4. From the results we can see:

(1) Regardless of the value of nz, the best generators were
found much earlier than the last iteration. In Figure 9, the
generated curves were much better at the 5000th iteration than
that at the 9999th one. The error, with the value of 0.00595,
was also found at the 5000th iteration in the Table 3. The same
situation was also found in Figure 10.

Although we have conclusions above, we also encountered
the issue that the best generator with wanted curves is not the
one with the final iteration steps. In Section 3, we introduced
the method to resolve it. Hence, more experiments were
given to show the effectiveness for our method to find the
stop condition for the GAN training in Section 4.2.

4.2 Experiments to Find The Condition of
Stopping Training

We divided the experiments into two groups. For the first

group, four kinds of samples were involved in the training,
including sinusoidal wave with the amplitude is 0.3 and 0.7;
the triangular wave with the amplitude is 0.4 and 0.8. The
dimensions of “nz” are set as from 1 to 5. The other group
are various Gaussian curves, and the dimensions of “nz” were
set from 5 to 20. In order to verify the issue proposed above,
10000 iterations were adopted in the training process. The
average errors ε� of every generator were recorded.

In Figure 7 shows the losses curves of D and G when
“nz”=3 and “nz”=5 of first group. The losses curves of D and
G when “nz”=10 and “nz”=20 of second group showed in
Figure 8. We can see that both D and G were not converge,
but oscillates up and down constantly. This is why we can’t
terminate the training process of SSG model at any time by
observing the loss curve. Therefore, the method proposed in
Figure 1 can serve as a criterion and several experiments will
be performed to prove it.

7

(b) “nz”=5

Figure 8
The loss of D and G of second group, (a) “nz”=10, (b)
“nz”=20

(a) “nz”=10

(b) “nz”=20

After training, the inversion experiment was divided into
two groups and the subgroup curve 𝐒𝐒𝐒𝐒 is chosen randomly that
is different from the training data set. For the experiments of
the first group, including sinusoidal wave with the amplitude
of 0.4 and triangular wave with the amplitude of 0.7. The
numbers of both kinds were set as 64. For the experiment of
the other group, the randomly generated Gaussian curves
were used as 𝐒𝐒𝐒𝐒. The batchsize was set as 128 and the learning
rate 𝛂𝛂𝛂𝛂 was 2e-4.

For the first group, the top 10 of target curves and
reconstructed curves with “nz”=3 and “nz”=5 were
illustrated in Figure 9 and Figure 10 respectively. And for the
Gaussian curves, the top 10 of target curves and
reconstructed curves with “nz”=10 and “nz”=20 were
illustrated in Figure 11 and Figure 12. The calculation errors
between target curves and reconstructed curves were list in
Table 3 and Table 4. From the results we can see:

(1) Regardless of the value of nz, the best generators were
found much earlier than the last iteration. In Figure 9, the
generated curves were much better at the 5000th iteration than
that at the 9999th one. The error, with the value of 0.00595,
was also found at the 5000th iteration in the Table 3. The same
situation was also found in Figure 10.

(a) “nz”=3 (b) “nz”=5

Although we have conclusions above, we also encountered
the issue that the best generator with wanted curves is not the
one with the final iteration steps. In Section 3, we introduced
the method to resolve it. Hence, more experiments were
given to show the effectiveness for our method to find the
stop condition for the GAN training in Section 4.2.

4.2 Experiments to Find The Condition of
Stopping Training

We divided the experiments into two groups. For the first

group, four kinds of samples were involved in the training,
including sinusoidal wave with the amplitude is 0.3 and 0.7;
the triangular wave with the amplitude is 0.4 and 0.8. The
dimensions of “nz” are set as from 1 to 5. The other group
are various Gaussian curves, and the dimensions of “nz” were
set from 5 to 20. In order to verify the issue proposed above,
10000 iterations were adopted in the training process. The
average errors ε� of every generator were recorded.

In Figure 7 shows the losses curves of D and G when
“nz”=3 and “nz”=5 of first group. The losses curves of D and
G when “nz”=10 and “nz”=20 of second group showed in
Figure 8. We can see that both D and G were not converge,
but oscillates up and down constantly. This is why we can’t
terminate the training process of SSG model at any time by
observing the loss curve. Therefore, the method proposed in
Figure 1 can serve as a criterion and several experiments will
be performed to prove it.

Figure 7
The loss of D and G of first group, (a) “nz”=3, (b) “nz”=5

(a) “nz”=3

(b) “nz”=5

Figure 8
The loss of D and G of second group, (a) “nz”=10, (b)
“nz”=20

After training, the inversion experiment was divided into
two groups and the subgroup curve 𝐒𝐒𝐒𝐒 is chosen randomly that
is different from the training data set. For the experiments of
the first group, including sinusoidal wave with the amplitude
of 0.4 and triangular wave with the amplitude of 0.7. The
numbers of both kinds were set as 64. For the experiment of
the other group, the randomly generated Gaussian curves
were used as 𝐒𝐒𝐒𝐒. The batchsize was set as 128 and the learning
rate 𝛂𝛂𝛂𝛂 was 2e-4.

For the first group, the top 10 of target curves and
reconstructed curves with “nz”=3 and “nz”=5 were
illustrated in Figure 9 and Figure 10 respectively. And for the
Gaussian curves, the top 10 of target curves and
reconstructed curves with “nz”=10 and “nz”=20 were
illustrated in Figure 11 and Figure 12. The calculation errors
between target curves and reconstructed curves were list in
Table 3 and Table 4. From the results we can see:

(1) Regardless of the value of nz, the best generators were
found much earlier than the last iteration. In Figure 9, the
generated curves were much better at the 5000th iteration than
that at the 9999th one. The error, with the value of 0.00595,
was also found at the 5000th iteration in the Table 3. The same
situation was also found in Figure 10.

Although we have conclusions above, we also encountered
the issue that the best generator with wanted curves is not the
one with the final iteration steps. In Section 3, we introduced
the method to resolve it. Hence, more experiments were
given to show the effectiveness for our method to find the
stop condition for the GAN training in Section 4.2.

4.2 Experiments to Find The Condition of
Stopping Training

We divided the experiments into two groups. For the first

group, four kinds of samples were involved in the training,
including sinusoidal wave with the amplitude is 0.3 and 0.7;
the triangular wave with the amplitude is 0.4 and 0.8. The
dimensions of “nz” are set as from 1 to 5. The other group
are various Gaussian curves, and the dimensions of “nz” were
set from 5 to 20. In order to verify the issue proposed above,
10000 iterations were adopted in the training process. The
average errors ε� of every generator were recorded.

In Figure 7 shows the losses curves of D and G when
“nz”=3 and “nz”=5 of first group. The losses curves of D and
G when “nz”=10 and “nz”=20 of second group showed in
Figure 8. We can see that both D and G were not converge,
but oscillates up and down constantly. This is why we can’t
terminate the training process of SSG model at any time by
observing the loss curve. Therefore, the method proposed in
Figure 1 can serve as a criterion and several experiments will
be performed to prove it.

Figure 7
The loss of D and G of first group, (a) “nz”=3, (b) “nz”=5

(a) “nz”=3

(b) “nz”=5

Figure 8
The loss of D and G of second group, (a) “nz”=10, (b)
“nz”=20

After training, the inversion experiment was divided into
two groups and the subgroup curve 𝐒𝐒𝐒𝐒 is chosen randomly that
is different from the training data set. For the experiments of
the first group, including sinusoidal wave with the amplitude
of 0.4 and triangular wave with the amplitude of 0.7. The
numbers of both kinds were set as 64. For the experiment of
the other group, the randomly generated Gaussian curves
were used as 𝐒𝐒𝐒𝐒. The batchsize was set as 128 and the learning
rate 𝛂𝛂𝛂𝛂 was 2e-4.

For the first group, the top 10 of target curves and
reconstructed curves with “nz”=3 and “nz”=5 were
illustrated in Figure 9 and Figure 10 respectively. And for the
Gaussian curves, the top 10 of target curves and
reconstructed curves with “nz”=10 and “nz”=20 were
illustrated in Figure 11 and Figure 12. The calculation errors
between target curves and reconstructed curves were list in
Table 3 and Table 4. From the results we can see:

(1) Regardless of the value of nz, the best generators were
found much earlier than the last iteration. In Figure 9, the
generated curves were much better at the 5000th iteration than
that at the 9999th one. The error, with the value of 0.00595,
was also found at the 5000th iteration in the Table 3. The same
situation was also found in Figure 10.

(a) “nz”=10 (b) “nz”=20

soidal wave with the amplitude of 0.4 and triangular
wave with the amplitude of 0.7. The numbers of both
kinds were set as 64. For the experiment of the other
group, the randomly generated Gaussian curves were

163Information Technology and Control 2021/1/50

ed curves were list in Table 3 and Table 4. From the
results we can see:
1 Regardless of the value of nz, the best generators

were found much earlier than the last iteration. In
Figure 9, the generated curves were much better at
the 5000th iteration than that at the 9999th one. The
error, with the value of 0.00595, was also found at
the 5000th iteration in the Table 3. The same situa-
tion was also found in Figure 10.

used as S. The batchsize was set as 128 and the learn-
ing rate α was 2e-4.
For the first group, the top 10 of target curves and re-
constructed curves with “nz”=3 and “nz”=5 were il-
lustrated in Figure 9 and Figure 10 respectively. And
for the Gaussian curves, the top 10 of target curves
and reconstructed curves with “nz”=10 and “nz”=20
were illustrated in Figure 11 and Figure 12. The calcu-
lation errors between target curves and reconstruct-

Figure 9
The first group of selected curves, S, and reconstructed curves C at different iteration when “nz”=3

(2) It can be seen from Figure 12 that for the Gaussian
curve, the generated curves were much better at the 4000th
iteration than that at the 9999th one. As showed in Table 4,
the error at the 4000th iteration arrive the smallest value. So,
the experiments verified the effectiveness of the method
proposed in Figure 1.

(3) For any curves, generally, whether periodic or not, the
dimension of “nz” should be appropriately increased to make
it easier for the SSG model to learn the distributions of the
training data set. Just like the Gaussian curve, it is difficult
for the SSG model to generate high-quality curves. What’s
more, after many experiments we found that it is more likely
to find the corresponding target curves by inversion when the
dimension of “nz” was greater than 10.

(4) The method descripted in Figure 1 could be used as the
judgment for the training process to stop. When the value of
ε� became small enough or stable, the generator could be
considered as a well-trained network, which could be used as
a SSG model to generate curves similar as the training dataset.

(5) Stopping the training process timely would shorten the
training iteration and save time, which could be a practical
technology in real application, especially with the
requirement of short time.

Figure 9
The first group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=3

th

Figure 10
The first group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=5

(a) the 3000th iteration

(b) the 4000th iteration

(c) the 9999th iteration

Figure 11
The second group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=10

(a) the 6000th iteration

(b) the 7000th iteration

(c) the 9999th iteration

Figure 12
The second group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=20

(2) It can be seen from Figure 12 that for the Gaussian
curve, the generated curves were much better at the 4000th
iteration than that at the 9999th one. As showed in Table 4,
the error at the 4000th iteration arrive the smallest value. So,
the experiments verified the effectiveness of the method
proposed in Figure 1.

(3) For any curves, generally, whether periodic or not, the
dimension of “nz” should be appropriately increased to make
it easier for the SSG model to learn the distributions of the
training data set. Just like the Gaussian curve, it is difficult
for the SSG model to generate high-quality curves. What’s
more, after many experiments we found that it is more likely
to find the corresponding target curves by inversion when the
dimension of “nz” was greater than 10.

(4) The method descripted in Figure 1 could be used as the
judgment for the training process to stop. When the value of
ε� became small enough or stable, the generator could be
considered as a well-trained network, which could be used as
a SSG model to generate curves similar as the training dataset.

(5) Stopping the training process timely would shorten the
training iteration and save time, which could be a practical
technology in real application, especially with the
requirement of short time.

Figure 9
The first group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=3

th

Figure 10
The first group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=5

(a) the 3000th iteration

(b) the 4000th iteration

(c) the 9999th iteration

Figure 11
The second group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=10

(a) the 6000th iteration

(b) the 7000th iteration

(c) the 9999th iteration

Figure 12
The second group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=20

(2) It can be seen from Figure 12 that for the Gaussian
curve, the generated curves were much better at the 4000th
iteration than that at the 9999th one. As showed in Table 4,
the error at the 4000th iteration arrive the smallest value. So,
the experiments verified the effectiveness of the method
proposed in Figure 1.

(3) For any curves, generally, whether periodic or not, the
dimension of “nz” should be appropriately increased to make
it easier for the SSG model to learn the distributions of the
training data set. Just like the Gaussian curve, it is difficult
for the SSG model to generate high-quality curves. What’s
more, after many experiments we found that it is more likely
to find the corresponding target curves by inversion when the
dimension of “nz” was greater than 10.

(4) The method descripted in Figure 1 could be used as the
judgment for the training process to stop. When the value of
ε� became small enough or stable, the generator could be
considered as a well-trained network, which could be used as
a SSG model to generate curves similar as the training dataset.

(5) Stopping the training process timely would shorten the
training iteration and save time, which could be a practical
technology in real application, especially with the
requirement of short time.

Figure 9
The first group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=3

th

Figure 10
The first group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=5

(a) the 3000th iteration

(b) the 4000th iteration

(c) the 9999th iteration

Figure 11
The second group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=10

(a) the 6000th iteration

(b) the 7000th iteration

(c) the 9999th iteration

Figure 12
The second group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=20

(2) It can be seen from Figure 12 that for the Gaussian
curve, the generated curves were much better at the 4000th
iteration than that at the 9999th one. As showed in Table 4,
the error at the 4000th iteration arrive the smallest value. So,
the experiments verified the effectiveness of the method
proposed in Figure 1.

(3) For any curves, generally, whether periodic or not, the
dimension of “nz” should be appropriately increased to make
it easier for the SSG model to learn the distributions of the
training data set. Just like the Gaussian curve, it is difficult
for the SSG model to generate high-quality curves. What’s
more, after many experiments we found that it is more likely
to find the corresponding target curves by inversion when the
dimension of “nz” was greater than 10.

(4) The method descripted in Figure 1 could be used as the
judgment for the training process to stop. When the value of
ε� became small enough or stable, the generator could be
considered as a well-trained network, which could be used as
a SSG model to generate curves similar as the training dataset.

(5) Stopping the training process timely would shorten the
training iteration and save time, which could be a practical
technology in real application, especially with the
requirement of short time.

Figure 9
The first group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=3

th

Figure 10
The first group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=5

(a) the 3000th iteration

(b) the 4000th iteration

(c) the 9999th iteration

Figure 11
The second group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=10

(a) the 6000th iteration

(b) the 7000th iteration

(c) the 9999th iteration

Figure 12
The second group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=20

(2) It can be seen from Figure 12 that for the Gaussian
curve, the generated curves were much better at the 4000th
iteration than that at the 9999th one. As showed in Table 4,
the error at the 4000th iteration arrive the smallest value. So,
the experiments verified the effectiveness of the method
proposed in Figure 1.

(3) For any curves, generally, whether periodic or not, the
dimension of “nz” should be appropriately increased to make
it easier for the SSG model to learn the distributions of the
training data set. Just like the Gaussian curve, it is difficult
for the SSG model to generate high-quality curves. What’s
more, after many experiments we found that it is more likely
to find the corresponding target curves by inversion when the
dimension of “nz” was greater than 10.

(4) The method descripted in Figure 1 could be used as the
judgment for the training process to stop. When the value of
ε� became small enough or stable, the generator could be
considered as a well-trained network, which could be used as
a SSG model to generate curves similar as the training dataset.

(5) Stopping the training process timely would shorten the
training iteration and save time, which could be a practical
technology in real application, especially with the
requirement of short time.

Figure 9
The first group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=3

th

Figure 10
The first group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=5

(a) the 3000th iteration

(b) the 4000th iteration

(c) the 9999th iteration

Figure 11
The second group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=10

(a) the 6000th iteration

(b) the 7000th iteration

(c) the 9999th iteration

Figure 12
The second group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=20

(2) It can be seen from Figure 12 that for the Gaussian
curve, the generated curves were much better at the 4000th
iteration than that at the 9999th one. As showed in Table 4,
the error at the 4000th iteration arrive the smallest value. So,
the experiments verified the effectiveness of the method
proposed in Figure 1.

(3) For any curves, generally, whether periodic or not, the
dimension of “nz” should be appropriately increased to make
it easier for the SSG model to learn the distributions of the
training data set. Just like the Gaussian curve, it is difficult
for the SSG model to generate high-quality curves. What’s
more, after many experiments we found that it is more likely
to find the corresponding target curves by inversion when the
dimension of “nz” was greater than 10.

(4) The method descripted in Figure 1 could be used as the
judgment for the training process to stop. When the value of
ε� became small enough or stable, the generator could be
considered as a well-trained network, which could be used as
a SSG model to generate curves similar as the training dataset.

(5) Stopping the training process timely would shorten the
training iteration and save time, which could be a practical
technology in real application, especially with the
requirement of short time.

Figure 9
The first group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=3

th

Figure 10
The first group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=5

(a) the 3000th iteration

(b) the 4000th iteration

(c) the 9999th iteration

Figure 11
The second group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=10

(a) the 6000th iteration

(b) the 7000th iteration

(c) the 9999th iteration

Figure 12
The second group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=20

(a) the 4000th iteration

(b) the 5000th iteration

(c) the 9999th iteration

Information Technology and Control 2021/1/50164

2 It can be seen from Figure 12 that for the Gaussian
curve, the generated curves were much better at
the 4000th iteration than that at the 9999th one. As
showed in Table 4, the error at the 4000th iteration
arrive the smallest value. So, the experiments
verified the effectiveness of the method proposed
in Figure 1.

Figure 10
The first group of selected curves, S, and reconstructed curves C at different iteration when “nz”=5

(2) It can be seen from Figure 12 that for the Gaussian
curve, the generated curves were much better at the 4000th
iteration than that at the 9999th one. As showed in Table 4,
the error at the 4000th iteration arrive the smallest value. So,
the experiments verified the effectiveness of the method
proposed in Figure 1.

(3) For any curves, generally, whether periodic or not, the
dimension of “nz” should be appropriately increased to make
it easier for the SSG model to learn the distributions of the
training data set. Just like the Gaussian curve, it is difficult
for the SSG model to generate high-quality curves. What’s
more, after many experiments we found that it is more likely
to find the corresponding target curves by inversion when the
dimension of “nz” was greater than 10.

(4) The method descripted in Figure 1 could be used as the
judgment for the training process to stop. When the value of
ε� became small enough or stable, the generator could be
considered as a well-trained network, which could be used as
a SSG model to generate curves similar as the training dataset.

(5) Stopping the training process timely would shorten the
training iteration and save time, which could be a practical
technology in real application, especially with the
requirement of short time.

Figure 9
The first group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=3

(a) the 4000th iteration

(b) the 5000th iteration

(c) the 9999th iteration

Figure 10
The first group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=5

Figure 11
The second group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=10

(a) the 6000th iteration

(b) the 7000th iteration

(c) the 9999th iteration

Figure 12
The second group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=20

(2) It can be seen from Figure 12 that for the Gaussian
curve, the generated curves were much better at the 4000th
iteration than that at the 9999th one. As showed in Table 4,
the error at the 4000th iteration arrive the smallest value. So,
the experiments verified the effectiveness of the method
proposed in Figure 1.

(3) For any curves, generally, whether periodic or not, the
dimension of “nz” should be appropriately increased to make
it easier for the SSG model to learn the distributions of the
training data set. Just like the Gaussian curve, it is difficult
for the SSG model to generate high-quality curves. What’s
more, after many experiments we found that it is more likely
to find the corresponding target curves by inversion when the
dimension of “nz” was greater than 10.

(4) The method descripted in Figure 1 could be used as the
judgment for the training process to stop. When the value of
ε� became small enough or stable, the generator could be
considered as a well-trained network, which could be used as
a SSG model to generate curves similar as the training dataset.

(5) Stopping the training process timely would shorten the
training iteration and save time, which could be a practical
technology in real application, especially with the
requirement of short time.

Figure 9
The first group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=3

(a) the 4000th iteration

(b) the 5000th iteration

(c) the 9999th iteration

Figure 10
The first group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=5

Figure 11
The second group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=10

(a) the 6000th iteration

(b) the 7000th iteration

(c) the 9999th iteration

Figure 12
The second group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=20

(2) It can be seen from Figure 12 that for the Gaussian
curve, the generated curves were much better at the 4000th
iteration than that at the 9999th one. As showed in Table 4,
the error at the 4000th iteration arrive the smallest value. So,
the experiments verified the effectiveness of the method
proposed in Figure 1.

(3) For any curves, generally, whether periodic or not, the
dimension of “nz” should be appropriately increased to make
it easier for the SSG model to learn the distributions of the
training data set. Just like the Gaussian curve, it is difficult
for the SSG model to generate high-quality curves. What’s
more, after many experiments we found that it is more likely
to find the corresponding target curves by inversion when the
dimension of “nz” was greater than 10.

(4) The method descripted in Figure 1 could be used as the
judgment for the training process to stop. When the value of
ε� became small enough or stable, the generator could be
considered as a well-trained network, which could be used as
a SSG model to generate curves similar as the training dataset.

(5) Stopping the training process timely would shorten the
training iteration and save time, which could be a practical
technology in real application, especially with the
requirement of short time.

Figure 9
The first group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=3

(a) the 4000th iteration

(b) the 5000th iteration

(c) the 9999th iteration

Figure 10
The first group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=5

Figure 11
The second group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=10

(a) the 6000th iteration

(b) the 7000th iteration

(c) the 9999th iteration

Figure 12
The second group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=20

(2) It can be seen from Figure 12 that for the Gaussian
curve, the generated curves were much better at the 4000th
iteration than that at the 9999th one. As showed in Table 4,
the error at the 4000th iteration arrive the smallest value. So,
the experiments verified the effectiveness of the method
proposed in Figure 1.

(3) For any curves, generally, whether periodic or not, the
dimension of “nz” should be appropriately increased to make
it easier for the SSG model to learn the distributions of the
training data set. Just like the Gaussian curve, it is difficult
for the SSG model to generate high-quality curves. What’s
more, after many experiments we found that it is more likely
to find the corresponding target curves by inversion when the
dimension of “nz” was greater than 10.

(4) The method descripted in Figure 1 could be used as the
judgment for the training process to stop. When the value of
ε� became small enough or stable, the generator could be
considered as a well-trained network, which could be used as
a SSG model to generate curves similar as the training dataset.

(5) Stopping the training process timely would shorten the
training iteration and save time, which could be a practical
technology in real application, especially with the
requirement of short time.

Figure 9
The first group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=3

(a) the 4000th iteration

(b) the 5000th iteration

(c) the 9999th iteration

Figure 10
The first group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=5

Figure 11
The second group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=10

(a) the 6000th iteration

(b) the 7000th iteration

(c) the 9999th iteration

Figure 12
The second group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=20

(2) It can be seen from Figure 12 that for the Gaussian
curve, the generated curves were much better at the 4000th
iteration than that at the 9999th one. As showed in Table 4,
the error at the 4000th iteration arrive the smallest value. So,
the experiments verified the effectiveness of the method
proposed in Figure 1.

(3) For any curves, generally, whether periodic or not, the
dimension of “nz” should be appropriately increased to make
it easier for the SSG model to learn the distributions of the
training data set. Just like the Gaussian curve, it is difficult
for the SSG model to generate high-quality curves. What’s
more, after many experiments we found that it is more likely
to find the corresponding target curves by inversion when the
dimension of “nz” was greater than 10.

(4) The method descripted in Figure 1 could be used as the
judgment for the training process to stop. When the value of
ε� became small enough or stable, the generator could be
considered as a well-trained network, which could be used as
a SSG model to generate curves similar as the training dataset.

(5) Stopping the training process timely would shorten the
training iteration and save time, which could be a practical
technology in real application, especially with the
requirement of short time.

Figure 9
The first group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=3

(a) the 4000th iteration

(b) the 5000th iteration

(c) the 9999th iteration

Figure 10
The first group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=5

Figure 11
The second group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=10

(a) the 6000th iteration

(b) the 7000th iteration

(c) the 9999th iteration

Figure 12
The second group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=20

(2) It can be seen from Figure 12 that for the Gaussian
curve, the generated curves were much better at the 4000th
iteration than that at the 9999th one. As showed in Table 4,
the error at the 4000th iteration arrive the smallest value. So,
the experiments verified the effectiveness of the method
proposed in Figure 1.

(3) For any curves, generally, whether periodic or not, the
dimension of “nz” should be appropriately increased to make
it easier for the SSG model to learn the distributions of the
training data set. Just like the Gaussian curve, it is difficult
for the SSG model to generate high-quality curves. What’s
more, after many experiments we found that it is more likely
to find the corresponding target curves by inversion when the
dimension of “nz” was greater than 10.

(4) The method descripted in Figure 1 could be used as the
judgment for the training process to stop. When the value of
ε� became small enough or stable, the generator could be
considered as a well-trained network, which could be used as
a SSG model to generate curves similar as the training dataset.

(5) Stopping the training process timely would shorten the
training iteration and save time, which could be a practical
technology in real application, especially with the
requirement of short time.

Figure 9
The first group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=3

(a) the 4000th iteration

(b) the 5000th iteration

(c) the 9999th iteration

Figure 10
The first group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=5

Figure 11
The second group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=10

(a) the 6000th iteration

(b) the 7000th iteration

(c) the 9999th iteration

Figure 12
The second group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=20

(a) the 3000th iteration

(b) the 4000th iteration

(c) the 9999th iteration

3 For any curves, generally, whether periodic or
not, the dimension of “nz” should be appropriate-
ly increased to make it easier for the SSG mod-
el to learn the distributions of the training data
set. Just like the Gaussian curve, it is difficult for
the SSG model to generate high-quality curves.
What’s more, after many experiments we found

165Information Technology and Control 2021/1/50

Figure 11
The second group of selected curves, S, and reconstructed curves C at different iteration when “nz”=10

(2) It can be seen from Figure 12 that for the Gaussian
curve, the generated curves were much better at the 4000th
iteration than that at the 9999th one. As showed in Table 4,
the error at the 4000th iteration arrive the smallest value. So,
the experiments verified the effectiveness of the method
proposed in Figure 1.

(3) For any curves, generally, whether periodic or not, the
dimension of “nz” should be appropriately increased to make
it easier for the SSG model to learn the distributions of the
training data set. Just like the Gaussian curve, it is difficult
for the SSG model to generate high-quality curves. What’s
more, after many experiments we found that it is more likely
to find the corresponding target curves by inversion when the
dimension of “nz” was greater than 10.

(4) The method descripted in Figure 1 could be used as the
judgment for the training process to stop. When the value of
ε� became small enough or stable, the generator could be
considered as a well-trained network, which could be used as
a SSG model to generate curves similar as the training dataset.

(5) Stopping the training process timely would shorten the
training iteration and save time, which could be a practical
technology in real application, especially with the
requirement of short time.

Figure 9
The first group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=3

(a) the 4000th iteration

(b) the 5000th iteration

(c) the 9999th iteration

Figure 10
The first group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=5

(a) the 3000th iteration

(b) the 4000th iteration

(c) the 9999th iteration

Figure 11
The second group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed

Figure 12
The second group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=20

(2) It can be seen from Figure 12 that for the Gaussian
curve, the generated curves were much better at the 4000th
iteration than that at the 9999th one. As showed in Table 4,
the error at the 4000th iteration arrive the smallest value. So,
the experiments verified the effectiveness of the method
proposed in Figure 1.

(3) For any curves, generally, whether periodic or not, the
dimension of “nz” should be appropriately increased to make
it easier for the SSG model to learn the distributions of the
training data set. Just like the Gaussian curve, it is difficult
for the SSG model to generate high-quality curves. What’s
more, after many experiments we found that it is more likely
to find the corresponding target curves by inversion when the
dimension of “nz” was greater than 10.

(4) The method descripted in Figure 1 could be used as the
judgment for the training process to stop. When the value of
ε� became small enough or stable, the generator could be
considered as a well-trained network, which could be used as
a SSG model to generate curves similar as the training dataset.

(5) Stopping the training process timely would shorten the
training iteration and save time, which could be a practical
technology in real application, especially with the
requirement of short time.

Figure 9
The first group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=3

(a) the 4000th iteration

(b) the 5000th iteration

(c) the 9999th iteration

Figure 10
The first group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=5

(a) the 3000th iteration

(b) the 4000th iteration

(c) the 9999th iteration

Figure 11
The second group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed

Figure 12
The second group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=20

(2) It can be seen from Figure 12 that for the Gaussian
curve, the generated curves were much better at the 4000th
iteration than that at the 9999th one. As showed in Table 4,
the error at the 4000th iteration arrive the smallest value. So,
the experiments verified the effectiveness of the method
proposed in Figure 1.

(3) For any curves, generally, whether periodic or not, the
dimension of “nz” should be appropriately increased to make
it easier for the SSG model to learn the distributions of the
training data set. Just like the Gaussian curve, it is difficult
for the SSG model to generate high-quality curves. What’s
more, after many experiments we found that it is more likely
to find the corresponding target curves by inversion when the
dimension of “nz” was greater than 10.

(4) The method descripted in Figure 1 could be used as the
judgment for the training process to stop. When the value of
ε� became small enough or stable, the generator could be
considered as a well-trained network, which could be used as
a SSG model to generate curves similar as the training dataset.

(5) Stopping the training process timely would shorten the
training iteration and save time, which could be a practical
technology in real application, especially with the
requirement of short time.

Figure 9
The first group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=3

(a) the 4000th iteration

(b) the 5000th iteration

(c) the 9999th iteration

Figure 10
The first group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=5

(a) the 3000th iteration

(b) the 4000th iteration

(c) the 9999th iteration

Figure 11
The second group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed

Figure 12
The second group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=20

(2) It can be seen from Figure 12 that for the Gaussian
curve, the generated curves were much better at the 4000th
iteration than that at the 9999th one. As showed in Table 4,
the error at the 4000th iteration arrive the smallest value. So,
the experiments verified the effectiveness of the method
proposed in Figure 1.

(3) For any curves, generally, whether periodic or not, the
dimension of “nz” should be appropriately increased to make
it easier for the SSG model to learn the distributions of the
training data set. Just like the Gaussian curve, it is difficult
for the SSG model to generate high-quality curves. What’s
more, after many experiments we found that it is more likely
to find the corresponding target curves by inversion when the
dimension of “nz” was greater than 10.

(4) The method descripted in Figure 1 could be used as the
judgment for the training process to stop. When the value of
ε� became small enough or stable, the generator could be
considered as a well-trained network, which could be used as
a SSG model to generate curves similar as the training dataset.

(5) Stopping the training process timely would shorten the
training iteration and save time, which could be a practical
technology in real application, especially with the
requirement of short time.

Figure 9
The first group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=3

(a) the 4000th iteration

(b) the 5000th iteration

(c) the 9999th iteration

Figure 10
The first group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=5

(a) the 3000th iteration

(b) the 4000th iteration

(c) the 9999th iteration

Figure 11
The second group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed

Figure 12
The second group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=20

(2) It can be seen from Figure 12 that for the Gaussian
curve, the generated curves were much better at the 4000th
iteration than that at the 9999th one. As showed in Table 4,
the error at the 4000th iteration arrive the smallest value. So,
the experiments verified the effectiveness of the method
proposed in Figure 1.

(3) For any curves, generally, whether periodic or not, the
dimension of “nz” should be appropriately increased to make
it easier for the SSG model to learn the distributions of the
training data set. Just like the Gaussian curve, it is difficult
for the SSG model to generate high-quality curves. What’s
more, after many experiments we found that it is more likely
to find the corresponding target curves by inversion when the
dimension of “nz” was greater than 10.

(4) The method descripted in Figure 1 could be used as the
judgment for the training process to stop. When the value of
ε� became small enough or stable, the generator could be
considered as a well-trained network, which could be used as
a SSG model to generate curves similar as the training dataset.

(5) Stopping the training process timely would shorten the
training iteration and save time, which could be a practical
technology in real application, especially with the
requirement of short time.

Figure 9
The first group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=3

(a) the 4000th iteration

(b) the 5000th iteration

(c) the 9999th iteration

Figure 10
The first group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=5

(a) the 3000th iteration

(b) the 4000th iteration

(c) the 9999th iteration

Figure 11
The second group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed

Figure 12
The second group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=20

(2) It can be seen from Figure 12 that for the Gaussian
curve, the generated curves were much better at the 4000th
iteration than that at the 9999th one. As showed in Table 4,
the error at the 4000th iteration arrive the smallest value. So,
the experiments verified the effectiveness of the method
proposed in Figure 1.

(3) For any curves, generally, whether periodic or not, the
dimension of “nz” should be appropriately increased to make
it easier for the SSG model to learn the distributions of the
training data set. Just like the Gaussian curve, it is difficult
for the SSG model to generate high-quality curves. What’s
more, after many experiments we found that it is more likely
to find the corresponding target curves by inversion when the
dimension of “nz” was greater than 10.

(4) The method descripted in Figure 1 could be used as the
judgment for the training process to stop. When the value of
ε� became small enough or stable, the generator could be
considered as a well-trained network, which could be used as
a SSG model to generate curves similar as the training dataset.

(5) Stopping the training process timely would shorten the
training iteration and save time, which could be a practical
technology in real application, especially with the
requirement of short time.

Figure 9
The first group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=3

(a) the 4000th iteration

(b) the 5000th iteration

(c) the 9999th iteration

Figure 10
The first group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=5

(a) the 3000th iteration

(b) the 4000th iteration

(c) the 9999th iteration

Figure 11
The second group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed

Figure 12
The second group of selected curves, 𝐒𝐒𝐒𝐒, and reconstructed
curves 𝐂𝐂𝐂𝐂 at different iteration when “nz”=20

that it is more likely to find the corresponding
target curves by inversion when the dimension of
“nz” was greater than 10.

4 The method descripted in Figure 1 could be used
as the judgment for the training process to stop.
When the value of ε– became small enough or sta-
ble, the generator could be considered as a well-

trained network, which could be used as a SSG
model to generate curves similar as the training
dataset.

5 Stopping the training process timely would short-
en the training iteration and save time, which
could be a practical technology in real application,
especially with the requirement of short time.

(a) the 6000th iteration

(b) the 7000th iteration

(c) the 9999th iteration

Information Technology and Control 2021/1/50166

Figure 12
The second group of selected curves, S, and reconstructed curves C at different iteration when “nz”=20

Table 3
Errors between reconstructed curves and selected curves when “nz”=3 and “nz”=5 of the first group inversion experiment

Nz Calculation results

3

Step 3000 4000 5000 9999

Errors 0.00621 0.00361 0.00595 0.00668

Top 10 average Errors 0.00099 0.00287 0.00079 0.00274

5

Step 3000 4000 5000 9999

Errors 0.00098 0.00239 0.00144 0.00143

Top 10 average Errors 0.00122 0.00196 0.00178 0.00252

Table 3
Errors between reconstructed curves and selected curves
when “nz”=3 and “nz”=5 of the first group inversion
experiment

Nz Calculation results

3

Step 3000 4000 5000 9999

Errors 0.0062
1

0.0036
1

0.0059
5

0.0066
8

Top 10
average
Errors

0.0009
9

0.0028
7

0.0007
9

0.0027
4

5

Step 3000 4000 5000 9999

Errors 0.0009
8

0.0023
9

0.0014
4

0.0014
3

Top 10
average
Errors

0.0012
2

0.0019
6

0.0017
8

0.0025
2

Table 4
Errors between reconstructed curves and selected curves
when “nz”=10 and “nz”=20 of the second group inversion
experiment

Nz Calculation results

10

Step 5000 6000 7000 9999

Errors 0.0047
4

0.0026
2

0.0014
7

0.0031
6

Top 10
average
Errors

0.0015
9

0.0003
9

0.0011
5

0.0002
1

20
Step 3000 4000 5000 9999

Errors 0.0020
0

0.0011
0

0.0021
0

0.0056
1

Top 10
average
Errors

0.0032
1

0.0000
8

0.0063
3

0.0045
4

5 Conclusions and Future Work

5.1 Conclusions

In this paper, several experiments were performed to
demonstrate that the SSG model could generate different
signals according to the training data set. During this process,
however, there is a tricky problem about when the training
process should be stopped. So the stopping criterion of the
training process was proposed based on the model inversion
technology. This criterion give a clear judgment for training
stop instead of a fixed large iteration, which could avoid
unnecessary calculation in the excrescent iterations. And then,
experiments also shown that the training of the SSG can be
stopped in time.

5.2 Future Works

Although the results of this paper show promising research
prospect, deeper researches are still needed in following
fields:

(1) For the experiments of finding the stopping criterion,
we used the method of inversion, which need to calculate the
error between the samples and the reconstructed curves to
update the 𝒁𝒁𝒁𝒁0. However, this process does not stop until the
error ε� is small or stable, and it often needs to be iterated for
about 25,000 times, which wasting the time. Therefore, we
can try to use some swarm optimization algorithms to reduce
the time.

(2) The learning data sets used in the experiments in this
paper are relatively simple. The results only proved the
possibility for the 1D GAN to be trained as a SSG model.
More researches with complex data sets are needed to make
the SSG model more practicable, such as, spectrum and other
signals that are not periodic and more diverse.

(3) From the experimental results we can see that it is
harder for SSG to generate high-quality samples of Gaussian
curves. However, using the method in Figure 1 can find the
relatively better one of 10,000 iterations and generate
reconstructed curves that are closer to the target curves. Thus,
it is necessary to further explore the reasons. In addition,
improvement of the 1D GAN model itself could be also
involved.

 (4) The theoretical interpretation of the SSG model should
be studied. The criterion for choosing a suitable dimension
for the random vector z has not been discussed in this paper
clearly. Larger dimension can express more information but
need more time to calculate. So, different dimensions should
be found for different curves that are suitable for them in the
future.

Table 3
Errors between reconstructed curves and selected curves
when “nz”=3 and “nz”=5 of the first group inversion
experiment

Nz Calculation results

3

Step 3000 4000 5000 9999

Errors 0.0062
1

0.0036
1

0.0059
5

0.0066
8

Top 10
average
Errors

0.0009
9

0.0028
7

0.0007
9

0.0027
4

5

Step 3000 4000 5000 9999

Errors 0.0009
8

0.0023
9

0.0014
4

0.0014
3

Top 10
average
Errors

0.0012
2

0.0019
6

0.0017
8

0.0025
2

Table 4
Errors between reconstructed curves and selected curves
when “nz”=10 and “nz”=20 of the second group inversion
experiment

Nz Calculation results

10

Step 5000 6000 7000 9999

Errors 0.0047
4

0.0026
2

0.0014
7

0.0031
6

Top 10
average
Errors

0.0015
9

0.0003
9

0.0011
5

0.0002
1

20
Step 3000 4000 5000 9999

Errors 0.0020
0

0.0011
0

0.0021
0

0.0056
1

Top 10
average
Errors

0.0032
1

0.0000
8

0.0063
3

0.0045
4

5 Conclusions and Future Work

5.1 Conclusions

In this paper, several experiments were performed to
demonstrate that the SSG model could generate different
signals according to the training data set. During this process,
however, there is a tricky problem about when the training
process should be stopped. So the stopping criterion of the
training process was proposed based on the model inversion
technology. This criterion give a clear judgment for training
stop instead of a fixed large iteration, which could avoid
unnecessary calculation in the excrescent iterations. And then,
experiments also shown that the training of the SSG can be
stopped in time.

5.2 Future Works

Although the results of this paper show promising research
prospect, deeper researches are still needed in following
fields:

(1) For the experiments of finding the stopping criterion,
we used the method of inversion, which need to calculate the
error between the samples and the reconstructed curves to
update the 𝒁𝒁𝒁𝒁0. However, this process does not stop until the
error ε� is small or stable, and it often needs to be iterated for
about 25,000 times, which wasting the time. Therefore, we
can try to use some swarm optimization algorithms to reduce
the time.

(2) The learning data sets used in the experiments in this
paper are relatively simple. The results only proved the
possibility for the 1D GAN to be trained as a SSG model.
More researches with complex data sets are needed to make
the SSG model more practicable, such as, spectrum and other
signals that are not periodic and more diverse.

(3) From the experimental results we can see that it is
harder for SSG to generate high-quality samples of Gaussian
curves. However, using the method in Figure 1 can find the
relatively better one of 10,000 iterations and generate
reconstructed curves that are closer to the target curves. Thus,
it is necessary to further explore the reasons. In addition,
improvement of the 1D GAN model itself could be also
involved.

 (4) The theoretical interpretation of the SSG model should
be studied. The criterion for choosing a suitable dimension
for the random vector z has not been discussed in this paper
clearly. Larger dimension can express more information but
need more time to calculate. So, different dimensions should
be found for different curves that are suitable for them in the
future.

Table 3
Errors between reconstructed curves and selected curves
when “nz”=3 and “nz”=5 of the first group inversion
experiment

Nz Calculation results

3

Step 3000 4000 5000 9999

Errors 0.0062
1

0.0036
1

0.0059
5

0.0066
8

Top 10
average
Errors

0.0009
9

0.0028
7

0.0007
9

0.0027
4

5

Step 3000 4000 5000 9999

Errors 0.0009
8

0.0023
9

0.0014
4

0.0014
3

Top 10
average
Errors

0.0012
2

0.0019
6

0.0017
8

0.0025
2

Table 4
Errors between reconstructed curves and selected curves
when “nz”=10 and “nz”=20 of the second group inversion
experiment

Nz Calculation results

10

Step 5000 6000 7000 9999

Errors 0.0047
4

0.0026
2

0.0014
7

0.0031
6

Top 10
average
Errors

0.0015
9

0.0003
9

0.0011
5

0.0002
1

20
Step 3000 4000 5000 9999

Errors 0.0020
0

0.0011
0

0.0021
0

0.0056
1

Top 10
average
Errors

0.0032
1

0.0000
8

0.0063
3

0.0045
4

5 Conclusions and Future Work

5.1 Conclusions

In this paper, several experiments were performed to
demonstrate that the SSG model could generate different
signals according to the training data set. During this process,
however, there is a tricky problem about when the training
process should be stopped. So the stopping criterion of the
training process was proposed based on the model inversion
technology. This criterion give a clear judgment for training
stop instead of a fixed large iteration, which could avoid
unnecessary calculation in the excrescent iterations. And then,
experiments also shown that the training of the SSG can be
stopped in time.

5.2 Future Works

Although the results of this paper show promising research
prospect, deeper researches are still needed in following
fields:

(1) For the experiments of finding the stopping criterion,
we used the method of inversion, which need to calculate the
error between the samples and the reconstructed curves to
update the 𝒁𝒁𝒁𝒁0. However, this process does not stop until the
error ε� is small or stable, and it often needs to be iterated for
about 25,000 times, which wasting the time. Therefore, we
can try to use some swarm optimization algorithms to reduce
the time.

(2) The learning data sets used in the experiments in this
paper are relatively simple. The results only proved the
possibility for the 1D GAN to be trained as a SSG model.
More researches with complex data sets are needed to make
the SSG model more practicable, such as, spectrum and other
signals that are not periodic and more diverse.

(3) From the experimental results we can see that it is
harder for SSG to generate high-quality samples of Gaussian
curves. However, using the method in Figure 1 can find the
relatively better one of 10,000 iterations and generate
reconstructed curves that are closer to the target curves. Thus,
it is necessary to further explore the reasons. In addition,
improvement of the 1D GAN model itself could be also
involved.

 (4) The theoretical interpretation of the SSG model should
be studied. The criterion for choosing a suitable dimension
for the random vector z has not been discussed in this paper
clearly. Larger dimension can express more information but
need more time to calculate. So, different dimensions should
be found for different curves that are suitable for them in the
future.

Table 3
Errors between reconstructed curves and selected curves
when “nz”=3 and “nz”=5 of the first group inversion
experiment

Nz Calculation results

3

Step 3000 4000 5000 9999

Errors 0.0062
1

0.0036
1

0.0059
5

0.0066
8

Top 10
average
Errors

0.0009
9

0.0028
7

0.0007
9

0.0027
4

5

Step 3000 4000 5000 9999

Errors 0.0009
8

0.0023
9

0.0014
4

0.0014
3

Top 10
average
Errors

0.0012
2

0.0019
6

0.0017
8

0.0025
2

Table 4
Errors between reconstructed curves and selected curves
when “nz”=10 and “nz”=20 of the second group inversion
experiment

Nz Calculation results

10

Step 5000 6000 7000 9999

Errors 0.0047
4

0.0026
2

0.0014
7

0.0031
6

Top 10
average
Errors

0.0015
9

0.0003
9

0.0011
5

0.0002
1

20
Step 3000 4000 5000 9999

Errors 0.0020
0

0.0011
0

0.0021
0

0.0056
1

Top 10
average
Errors

0.0032
1

0.0000
8

0.0063
3

0.0045
4

5 Conclusions and Future Work

5.1 Conclusions

In this paper, several experiments were performed to
demonstrate that the SSG model could generate different
signals according to the training data set. During this process,
however, there is a tricky problem about when the training
process should be stopped. So the stopping criterion of the
training process was proposed based on the model inversion
technology. This criterion give a clear judgment for training
stop instead of a fixed large iteration, which could avoid
unnecessary calculation in the excrescent iterations. And then,
experiments also shown that the training of the SSG can be
stopped in time.

5.2 Future Works

Although the results of this paper show promising research
prospect, deeper researches are still needed in following
fields:

(1) For the experiments of finding the stopping criterion,
we used the method of inversion, which need to calculate the
error between the samples and the reconstructed curves to
update the 𝒁𝒁𝒁𝒁0. However, this process does not stop until the
error ε� is small or stable, and it often needs to be iterated for
about 25,000 times, which wasting the time. Therefore, we
can try to use some swarm optimization algorithms to reduce
the time.

(2) The learning data sets used in the experiments in this
paper are relatively simple. The results only proved the
possibility for the 1D GAN to be trained as a SSG model.
More researches with complex data sets are needed to make
the SSG model more practicable, such as, spectrum and other
signals that are not periodic and more diverse.

(3) From the experimental results we can see that it is
harder for SSG to generate high-quality samples of Gaussian
curves. However, using the method in Figure 1 can find the
relatively better one of 10,000 iterations and generate
reconstructed curves that are closer to the target curves. Thus,
it is necessary to further explore the reasons. In addition,
improvement of the 1D GAN model itself could be also
involved.

 (4) The theoretical interpretation of the SSG model should
be studied. The criterion for choosing a suitable dimension
for the random vector z has not been discussed in this paper
clearly. Larger dimension can express more information but
need more time to calculate. So, different dimensions should
be found for different curves that are suitable for them in the
future.

Table 3
Errors between reconstructed curves and selected curves
when “nz”=3 and “nz”=5 of the first group inversion
experiment

Nz Calculation results

3

Step 3000 4000 5000 9999

Errors 0.0062
1

0.0036
1

0.0059
5

0.0066
8

Top 10
average
Errors

0.0009
9

0.0028
7

0.0007
9

0.0027
4

5

Step 3000 4000 5000 9999

Errors 0.0009
8

0.0023
9

0.0014
4

0.0014
3

Top 10
average
Errors

0.0012
2

0.0019
6

0.0017
8

0.0025
2

Table 4
Errors between reconstructed curves and selected curves
when “nz”=10 and “nz”=20 of the second group inversion
experiment

Nz Calculation results

10

Step 5000 6000 7000 9999

Errors 0.0047
4

0.0026
2

0.0014
7

0.0031
6

Top 10
average
Errors

0.0015
9

0.0003
9

0.0011
5

0.0002
1

20
Step 3000 4000 5000 9999

Errors 0.0020
0

0.0011
0

0.0021
0

0.0056
1

Top 10
average
Errors

0.0032
1

0.0000
8

0.0063
3

0.0045
4

5 Conclusions and Future Work

5.1 Conclusions

In this paper, several experiments were performed to
demonstrate that the SSG model could generate different
signals according to the training data set. During this process,
however, there is a tricky problem about when the training
process should be stopped. So the stopping criterion of the
training process was proposed based on the model inversion
technology. This criterion give a clear judgment for training
stop instead of a fixed large iteration, which could avoid
unnecessary calculation in the excrescent iterations. And then,
experiments also shown that the training of the SSG can be
stopped in time.

5.2 Future Works

Although the results of this paper show promising research
prospect, deeper researches are still needed in following
fields:

(1) For the experiments of finding the stopping criterion,
we used the method of inversion, which need to calculate the
error between the samples and the reconstructed curves to
update the 𝒁𝒁𝒁𝒁0. However, this process does not stop until the
error ε� is small or stable, and it often needs to be iterated for
about 25,000 times, which wasting the time. Therefore, we
can try to use some swarm optimization algorithms to reduce
the time.

(2) The learning data sets used in the experiments in this
paper are relatively simple. The results only proved the
possibility for the 1D GAN to be trained as a SSG model.
More researches with complex data sets are needed to make
the SSG model more practicable, such as, spectrum and other
signals that are not periodic and more diverse.

(3) From the experimental results we can see that it is
harder for SSG to generate high-quality samples of Gaussian
curves. However, using the method in Figure 1 can find the
relatively better one of 10,000 iterations and generate
reconstructed curves that are closer to the target curves. Thus,
it is necessary to further explore the reasons. In addition,
improvement of the 1D GAN model itself could be also
involved.

 (4) The theoretical interpretation of the SSG model should
be studied. The criterion for choosing a suitable dimension
for the random vector z has not been discussed in this paper
clearly. Larger dimension can express more information but
need more time to calculate. So, different dimensions should
be found for different curves that are suitable for them in the
future.

Table 3
Errors between reconstructed curves and selected curves
when “nz”=3 and “nz”=5 of the first group inversion
experiment

Nz Calculation results

3

Step 3000 4000 5000 9999

Errors 0.0062
1

0.0036
1

0.0059
5

0.0066
8

Top 10
average
Errors

0.0009
9

0.0028
7

0.0007
9

0.0027
4

5

Step 3000 4000 5000 9999

Errors 0.0009
8

0.0023
9

0.0014
4

0.0014
3

Top 10
average
Errors

0.0012
2

0.0019
6

0.0017
8

0.0025
2

Table 4
Errors between reconstructed curves and selected curves
when “nz”=10 and “nz”=20 of the second group inversion
experiment

Nz Calculation results

10

Step 5000 6000 7000 9999

Errors 0.0047
4

0.0026
2

0.0014
7

0.0031
6

Top 10
average
Errors

0.0015
9

0.0003
9

0.0011
5

0.0002
1

20
Step 3000 4000 5000 9999

Errors 0.0020
0

0.0011
0

0.0021
0

0.0056
1

Top 10
average
Errors

0.0032
1

0.0000
8

0.0063
3

0.0045
4

5 Conclusions and Future Work

5.1 Conclusions

In this paper, several experiments were performed to
demonstrate that the SSG model could generate different
signals according to the training data set. During this process,
however, there is a tricky problem about when the training
process should be stopped. So the stopping criterion of the
training process was proposed based on the model inversion
technology. This criterion give a clear judgment for training
stop instead of a fixed large iteration, which could avoid
unnecessary calculation in the excrescent iterations. And then,
experiments also shown that the training of the SSG can be
stopped in time.

5.2 Future Works

Although the results of this paper show promising research
prospect, deeper researches are still needed in following
fields:

(1) For the experiments of finding the stopping criterion,
we used the method of inversion, which need to calculate the
error between the samples and the reconstructed curves to
update the 𝒁𝒁𝒁𝒁0. However, this process does not stop until the
error ε� is small or stable, and it often needs to be iterated for
about 25,000 times, which wasting the time. Therefore, we
can try to use some swarm optimization algorithms to reduce
the time.

(2) The learning data sets used in the experiments in this
paper are relatively simple. The results only proved the
possibility for the 1D GAN to be trained as a SSG model.
More researches with complex data sets are needed to make
the SSG model more practicable, such as, spectrum and other
signals that are not periodic and more diverse.

(3) From the experimental results we can see that it is
harder for SSG to generate high-quality samples of Gaussian
curves. However, using the method in Figure 1 can find the
relatively better one of 10,000 iterations and generate
reconstructed curves that are closer to the target curves. Thus,
it is necessary to further explore the reasons. In addition,
improvement of the 1D GAN model itself could be also
involved.

 (4) The theoretical interpretation of the SSG model should
be studied. The criterion for choosing a suitable dimension
for the random vector z has not been discussed in this paper
clearly. Larger dimension can express more information but
need more time to calculate. So, different dimensions should
be found for different curves that are suitable for them in the
future.

(a) the 3000th iteration

(b) the 4000th iteration

(c) the 9999th iteration

167Information Technology and Control 2021/1/50

Table 4
Errors between reconstructed curves and selected curves when “nz”=10 and “nz”=20 of the second group inversion experiment

Nz Calculation results

10

Step 5000 6000 7000 9999

Errors 0.00474 0.00262 0.00147 0.00316

Top 10 average Errors 0.00159 0.00039 0.00115 0.00021

20

Step 3000 4000 5000 9999

Errors 0.00200 0.00110 0.00210 0.00561

Top 10 average Errors 0.00321 0.00008 0.00633 0.00454

5. Conclusions and Future Work
5.1. Conclusions

In this paper, several experiments were performed
to demonstrate that the SSG model could generate
different signals according to the training data set.
During this process, however, there is a tricky problem
about when the training process should be stopped.
So the stopping criterion of the training process was
proposed based on the model inversion technology.
This criterion give a clear judgment for training stop
instead of a fixed large iteration, which could avoid
unnecessary calculation in the excrescent iterations.
And then, experiments also shown that the training of
the SSG can be stopped in time.

5.2. Future Works

Although the results of this paper show promising re-
search prospect, deeper researches are still needed in
following fields:
1 For the experiments of finding the stopping crite-

rion, we used the method of inversion, which need
to calculate the error between the samples and the
reconstructed curves to update the Z0. However,
this process does not stop until the error ε– is small

or stable, and it often needs to be iterated for about
25,000 times, which wasting the time. Therefore,
we can try to use some swarm optimization algo-
rithms to reduce the time.

2 The learning data sets used in the experiments in
this paper are relatively simple. The results only
proved the possibility for the 1D GAN to be trained
as a SSG model. More researches with complex
data sets are needed to make the SSG model more
practicable, such as, spectrum and other signals
that are not periodic and more diverse.

3 From the experimental results we can see that it is
harder for SSG to generate high-quality samples of
Gaussian curves. However, using the method in Fig-
ure 1 can find the relatively better one of 10,000 it-
erations and generate reconstructed curves that are
closer to the target curves. Thus, it is necessary to fur-
ther explore the reasons. In addition, improvement of
the 1D GAN model itself could be also involved.

4 The theoretical interpretation of the SSG mod-
el should be studied. The criterion for choosing a
suitable dimension for the random vector Z has not
been discussed in this paper clearly. Larger dimen-
sion can express more information but need more
time to calculate. So, different dimensions should
be found for different curves that are suitable for
them in the future.

References
1. Arjovsky, M., Bottou, L. Towards Principled Methods for

Training Generative Adversarial Networks. In Interna-
tional Conference on Learning Representations, 2017.

2. Arjovsky, M., Chintala, S., Bottou, L. Wasserstein GAN.
International Conference on Machine Learning, 2017,
214-223.

3. Borji, A. Pros and Cons of GAN Evaluation Measure. Com-
puter Vision and Image Understanding (CVIU), 2018,
179, 41-65. https://doi.org/10.1016/j.cviu.2018.10.009

4. Berthelot, D., Schumm, T., Metz, L. BEGAN: Boundary
Equilibrium Generative Adversarial Networks. arXiv
preprint arXiv:1703.10717, 2017.

https://doi.org/10.1016/j.cviu.2018.10.009

Information Technology and Control 2021/1/50168

5. Creswell, A., Bharath, A. A. Inverting the Generator
of a Generative Adversarial Network. IEEE Trans-
actions on Neural Networks and Learning Systems,
2019, 30(7), 1967-1974. https://doi.org/10.1109/TNN-
LS.2018.2875194

6. Che, T., Li, Y. R., Jacob, A. P., Bengio, Y., Li. W. J. Mode
Regularized Generative Adversarial Networks. arXiv
preprint arXiv:1612.02136, 2016

7. Dapkus, P., Mažeika, L. A Study of Supervised Combined
Neural-Network-Based Ultrasonic Method for Recon-
struction of the Spatial Distribution of Material Proper-
ties. Information Technology and Control, 2020, 49(3),
381-394. https://doi.org/10.5755/j01.itc.49.3.26792

8. Fasil, O., Rajesh, R. Time-Domain Exponential Rnergy
for Rpileptic EEG Signal Classification. Neuroscience
Letters, 2018, 694(2), 1-8. https://doi.org/10.1016/j.
neulet.2018.10.062

9. Goodfellow, I. J. On Distinguishability Criteria for
Estimating Generative Models. arXiv preprint arX-
iv:1412.6515, 2014.

10. Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y. Gen-
erative Adversarial Nets. Advances in Neural Informa-
tion Processing Systems, 2014, 2672-2680.

11. Gurumurthy, S., Sarvadevabhatla, R. K., Babu, R. V. De-
LiGAN: Generative Adversarial Networks for Diverse
and Limited Data. 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Honolulu, HI,
July 21-26, 2017, 4941-4949. https://doi.org/10.1109/
CVPR.2017.525

12. Hinton, G. E., Osindero, S., Teh, Y. W. A Fast Learning
Algorithm for Deep Belief Nets. Neural Computa-
tion, 2006, 18(7), 1527-1554.https://doi.org/10.1162/
neco.2006.18.7.1527

13. Hinton, G. E., Sejnowski, T. J., Ackley, D. H. Boltzmann
Machines: Constraint Satisfaction Networks that
Learn. Technical Report No. CMU-CS-84−119, Carne-
gie-Mellon University, Pittsburgh, PA, USA, 1984.

14. Isola, P., Zhu, J. Y., Zhou, T., Efros, A. A. Image-to-Image
Translation with Conditional Adversarial Networks.
Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, 2017, 1125-1134. https://
doi.org/10.1109/CVPR.2017.632

15. Kingma, Diederik, P., Welling, M. Auto-Encoding Varia-
tional Bayes. arXiv preprint arXiv:1312.6114, 2013.

16. Lucic, M., Kurach, K., Michalski, M., Gelly, S., Bousquet,
O. Are GANs Created Equal? A Large-Scale Study. arXiv
preprint arXiv:1711.10337, 2017.

17. Long, J., Shelhamer, E., Darrell, T. Fully Convolution-
al Networks for Semantic Segmentation. In Proceed-

ings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2015, 3431-3440. https://doi.
org/10.1109/CVPR.2015.7298965

18. Liu, G. G., Xie, L., Chen, C. H. Unsupervised Text Fea-
ture Learning via Deep Variational Auto-encoder. In-
formation Technology and Control, 2020, 49(3), 421-
437. https://doi.org/10.5755/j01.itc.49.3.25918

19. Mao, X., Li, Q., Xie, H., Lau, R. Y. K., Wang, Z., Smolley,
S. P. On the Effectiveness of Least Squares Generative
Adversarial Networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2017.

20. Mirza, M., Osindero, S. Conditional Generative Adver-
sarial Nets. Computer Science, 2014, 2672-2680.

21. Radford, A., Metz, L., Chintala, S. Unsupervised Rep-
resentation Learning with Deep Convolutional Gener-
ative Adversarial Networks. In Proceedings of the 5th
International Conference on Learning Representations
(ICLR) Workshop Track, 2016.

22. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V.,
Radford, A., Chen, X. Improved Techniques for Training
GANs. In Advances in Neural Information Processing
Systems (NIPS), 2016.

23. Wang, Y. X., Zhang, L. C., Weijer, J. V. D. Ensembles of
Generative Adversarial Networks. arXiv preprint arX-
iv:1612.00991, 2016.

24. Xiang, S. T., Li, H. On the Effects of Batch and Weight
Bormalization in Generative Adversarial Networks.
arXiv preprint arXiv:1704.03971, 2017

25. Xia, C., Qi, C., Zhao, B., Qu, X. Seismic Response of the
Subway Station due to a Specific Active Fault. Tunnel-
ing and Underground Space Technology, 2019, 85(4):12-
20. https://doi.org/10.1016/j.tust.2018.11.033

26. Yang, J. W., Kannan, A., Batra, D., Parikh, D. Lr-gan: Lay-
ered Recursive Generative Adversarial Networks for Im-
age Generation. arXiv preprint arXiv:1703.01560, 2017.

27. Zhang, R., Isola, P., Efros, A. A. Colorful Image Coloriza-
tion. In European Conference on Computer Vision, 2016,
649-666. https://doi.org/10.1007/978-3-319-46487-9_40

28. Zeng, Y., Lu, H. C., Borji, A. Statistics of Deep Generated
Images. arXiv preprint arXiv:1708.02688, 2017.

29. Zhang, H., Xu, T., Li, H. S., Zhang, X. T., Huang, X. L.,
Wang, X. G., Metaxas, D. Stackgan: Text to Photo-Real-
istic Image Synthesis with Stacked Generative Adver-
sarial Networks. Proceedings of the IEEE Internation-
al Conference on Computer Vision, 2017, 5907-5915.
https://doi.org/10.1109/ICCV.2017.629

30. Zhou, Z. M., Zhang, W. N., Wang, J. Inception Score, La-
bel Smoothing, Gradient Vanishing and-log(D(x)) Al-
ternative. arXiv preprint arXiv:1708.01729, 2017.

https://doi.org/10.1109/TNNLS.2018.2875194
https://doi.org/10.1109/TNNLS.2018.2875194
https://doi.org/10.5755/j01.itc.49.3.26792
https://doi.org/10.1016/j.neulet.2018.10.062
https://doi.org/10.1016/j.neulet.2018.10.062
https://doi.org/10.1109/CVPR.2017.525
https://doi.org/10.1109/CVPR.2017.525
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1109/CVPR.2017.632
https://doi.org/10.1109/CVPR.2017.632
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.5755/j01.itc.49.3.25918
https://doi.org/10.1016/j.tust.2018.11.033
https://doi.org/10.1007/978-3-319-46487-9_40
https://doi.org/10.1109/ICCV.2017.629

169Information Technology and Control 2021/1/50

Appendix A
The SSG is composed of a discriminator D and a gen-
erator G. The symbol of x is the data from samples,
and the G()z is a data generated from the generator G,
which has the same size as x . The data x with the
label of ‘1’ and the data G()z with the label of ‘0’ are
putted into the discriminator D for training, which
makes D be a more powerful network to distinguish
between x and G()z .
The training process is executed with mini batch,
which is demonstrated in Table A1. The cyclic vari-
able i controls the iteration. The parameter of k is set
manually, which is usually used as ‘1’. The subscript m
for z and x is the number of every mini batch. The su-
perscript n is the dimensionality of the random vari-
able z. And the h is the dimensionality of the data x,
whose dimensionality may be bigger than one.

s. In this paper, the generator G after trained is called
SSG model.
The structures of the discriminator D and the gen-
erator G are demonstrated in Figure A1, and the pa-
rameters of the layers are list in Table A2. Both the
discriminator D and the generator G are composed
of 6 layers and the parameters of the layers are list in
Table A2. For the discriminator D, the first 5 layers
consist of a convolution unit, a batch normalization
unit and an activated function of “leaky_relu”. The
6th layer of the discriminator consists of a convolu-
tion unit which gives a scalar result, and a sigmoid
function to activate the scalar result. Because there
is only one dimension for every signal, the input
channel, which is noted as “Ic” in Table A2, of the
first convolution unit is set as ‘1’. The output chan-
nel, which is noted as “Oc”, for the first convolution
unit is set as ‘64’, which means 64 kernels are used
in this unit. The input channel should equal to the
output channel of the previous layer. So the input
channel and output channel of the rest convolution
units are set as shown in Table A2. The dimension of
signal in the samples is set as 128, so there will be a
scalar coming out at the 6th convolution unit. Final-
ly, the sigmoid function is used to process the scalar.
In the first 5 layers, a batch normalization unit and
an activate unit are adopted after every convolution

Table A1
Algorithm A1 for SSG training

Algorithm A1: The number of steps to apply to the
discriminator, k, is a hyperparameter.

For i in iterations
For k in steps

• Give Z=[z1, z2,…,zm]∈Rn×m according to certain prior
probability distribution

• Get X=[x1, x2,…,xm]∈Rh×m from samples
• Update the discriminator by ascending its stochastic

gradient
End for

• Give Z=[z1, z2,…,zm]∈Rn×m again
• Update the generator by descending its stochastic

gradient
End for

The purpose of this paper is to build a generative
model to produce the specific signal with certain
probability distribution. Firstly, some known signals
or curves of s with certain length are generated to be
the samples. Then, a 1D GAN model which is suitable
for the above signals of s is constructed to train the
generator G. After the update of all the parameters,
the generator G could be used to produce a signal with
the same probability distribution as the above signals

Figure A1
The structure of the SSG model

(b) the structure of the generator

End for
 Give Z=[z1, z2,…,zm]∈Rn×m again
 Update the generator by descending its stochastic
gradient

End for

The purpose of this paper is to build a generative model to
produce the specific signal with certain probability
distribution. Firstly, some known signals or curves of s with
certain length are generated to be the samples. Then, a 1D
GAN model which is suitable for the above signals of s is
constructed to train the generator G. After the update of all
the parameters, the generator G could be used to produce a
signal with the same probability distribution as the above
signals s. In this paper, the generator G after trained is called
SSG model.

Figure A1
The structure of the SSG model

The structures of the discriminator D and the generator G
are demonstrated in Figure A1, and the parameters of the
layers are list in Table A2. Both the discriminator D and the
generator G are composed of 6 layers and the parameters of
the layers are list in Table A2. For the discriminator D, the
first 5 layers consist of a convolution unit, a batch

normalization unit and an activated function of “leaky_relu”.
The 6th layer of the discriminator consists of a convolution
unit which gives a scalar result, and a sigmoid function to
activate the scalar result. Because there is only one dimension
for every signal, the input channel, which is noted as “Ic” in
Table A2, of the first convolution unit is set as ‘1’. The output
channel, which is noted as “Oc”, for the first convolution unit
is set as ‘64’, which means 64 kernels are used in this unit.
The input channel should equal to the output channel of the
previous layer. So the input channel and output channel of
the rest convolution units are set as shown in Table A2. The
dimension of signal in the samples is set as 128, so there will
be a scalar coming out at the 6th convolution unit. Finally, the
sigmoid function is used to process the scalar. In the first 5
layers, a batch normalization unit and an activate unit are
adopted after every convolution unit. In Table A2, the
column K, S, P, represent the kernel size, stride and padding
size respectively. The combination of (4, 2, 1) for these three
parameters in the first 5 layers could make the output length,
which is noted as “On”, equal to the half of the input length,
which is noted as “In”; and the values of (4, 1, 0) for these
three parameters in the 6th layer could make the output length
of the 6th layer to be ‘1’.

 Similar as the discriminator, the generator also has 6
layers. The difference is that the convolution unit is replaced
by a transposed convolution (or deconvolution) unit, which
realizes the inverse calculation of the convolution. The
generator G will produce a signal of a curve regardless of the
dimension of the input random vector z, which is noted as “nz”
in Table A2. In the experiments, several different values are
given to the parameter of “nz” for comparison.

The note of “NS” in Table A2 is the negative slope of the
activation function. And the parameter of “inplace” is set as
“True” to change the input data.

Table A2
Parameters for the discriminator and the generator

L
Discriminator Generator

Ic Oc In On K S P Inplace NS Ic Oc In On K S P Inplace NS
1 1 64 128 64 4 2 1 True 0.2 nz 1024 1 4 4 1 0 True 0.2
2 64 128 64 32 4 2 1 True 0.2 1024 512 4 8 4 2 1 True 0.2
3 128 256 32 16 4 2 1 True 0.2 512 256 8 16 4 2 1 True 0.2
4 256 512 16 8 4 2 1 True 0.2 256 128 16 32 4 2 1 True 0.2
5 512 1024 8 4 4 2 1 True 0.2 128 64 32 64 4 2 1 True 0.2
6 1024 1 4 1 4 1 0 -- -- 64 128 64 128 4 2 1 -- --

End for
 Give Z=[z1, z2,…,zm]∈Rn×m again
 Update the generator by descending its stochastic
gradient

End for

The purpose of this paper is to build a generative model to
produce the specific signal with certain probability
distribution. Firstly, some known signals or curves of s with
certain length are generated to be the samples. Then, a 1D
GAN model which is suitable for the above signals of s is
constructed to train the generator G. After the update of all
the parameters, the generator G could be used to produce a
signal with the same probability distribution as the above
signals s. In this paper, the generator G after trained is called
SSG model.

Figure A1
The structure of the SSG model

The structures of the discriminator D and the generator G
are demonstrated in Figure A1, and the parameters of the
layers are list in Table A2. Both the discriminator D and the
generator G are composed of 6 layers and the parameters of
the layers are list in Table A2. For the discriminator D, the
first 5 layers consist of a convolution unit, a batch

normalization unit and an activated function of “leaky_relu”.
The 6th layer of the discriminator consists of a convolution
unit which gives a scalar result, and a sigmoid function to
activate the scalar result. Because there is only one dimension
for every signal, the input channel, which is noted as “Ic” in
Table A2, of the first convolution unit is set as ‘1’. The output
channel, which is noted as “Oc”, for the first convolution unit
is set as ‘64’, which means 64 kernels are used in this unit.
The input channel should equal to the output channel of the
previous layer. So the input channel and output channel of
the rest convolution units are set as shown in Table A2. The
dimension of signal in the samples is set as 128, so there will
be a scalar coming out at the 6th convolution unit. Finally, the
sigmoid function is used to process the scalar. In the first 5
layers, a batch normalization unit and an activate unit are
adopted after every convolution unit. In Table A2, the
column K, S, P, represent the kernel size, stride and padding
size respectively. The combination of (4, 2, 1) for these three
parameters in the first 5 layers could make the output length,
which is noted as “On”, equal to the half of the input length,
which is noted as “In”; and the values of (4, 1, 0) for these
three parameters in the 6th layer could make the output length
of the 6th layer to be ‘1’.

 Similar as the discriminator, the generator also has 6
layers. The difference is that the convolution unit is replaced
by a transposed convolution (or deconvolution) unit, which
realizes the inverse calculation of the convolution. The
generator G will produce a signal of a curve regardless of the
dimension of the input random vector z, which is noted as “nz”
in Table A2. In the experiments, several different values are
given to the parameter of “nz” for comparison.

The note of “NS” in Table A2 is the negative slope of the
activation function. And the parameter of “inplace” is set as
“True” to change the input data.

Table A2
Parameters for the discriminator and the generator

L
Discriminator Generator

Ic Oc In On K S P Inplace NS Ic Oc In On K S P Inplace NS
1 1 64 128 64 4 2 1 True 0.2 nz 1024 1 4 4 1 0 True 0.2
2 64 128 64 32 4 2 1 True 0.2 1024 512 4 8 4 2 1 True 0.2
3 128 256 32 16 4 2 1 True 0.2 512 256 8 16 4 2 1 True 0.2
4 256 512 16 8 4 2 1 True 0.2 256 128 16 32 4 2 1 True 0.2
5 512 1024 8 4 4 2 1 True 0.2 128 64 32 64 4 2 1 True 0.2
6 1024 1 4 1 4 1 0 -- -- 64 128 64 128 4 2 1 -- --

(a) the structure of the discriminator

Information Technology and Control 2021/1/50170

This article is an Open Access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

Table A2
Parameters for the discriminator and the generator

L
Discriminator Generator

Ic Oc In On K S P Inplace NS Ic Oc In On K S P Inplace NS

1 1 64 128 64 4 2 1 True 0.2 nz 1024 1 4 4 1 0 True 0.2

2 64 128 64 32 4 2 1 True 0.2 1024 512 4 8 4 2 1 True 0.2

3 128 256 32 16 4 2 1 True 0.2 512 256 8 16 4 2 1 True 0.2

4 256 512 16 8 4 2 1 True 0.2 256 128 16 32 4 2 1 True 0.2

5 512 1024 8 4 4 2 1 True 0.2 128 64 32 64 4 2 1 True 0.2

6 1024 1 4 1 4 1 0 -- -- 64 128 64 128 4 2 1 -- --

unit. In Table A2, the column K, S, P, represent the
kernel size, stride and padding size respectively. The
combination of (4, 2, 1) for these three parameters in
the first 5 layers could make the output length, which
is noted as “On”, equal to the half of the input length,
which is noted as “In”; and the values of (4, 1, 0) for
these three parameters in the 6th layer could make
the output length of the 6th layer to be ‘1’.
Similar as the discriminator, the generator also has
6 layers. The difference is that the convolution unit

is replaced by a transposed convolution (or deconvo-
lution) unit, which realizes the inverse calculation of
the convolution. The generator G will produce a sig-
nal of a curve regardless of the dimension of the input
random vector z, which is noted as “nz” in Table A2.
In the experiments, several different values are given
to the parameter of “nz” for comparison.
The note of “NS” in Table A2 is the negative slope of
the activation function. And the parameter of “in-
place” is set as “True” to change the input data.

